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Abstract

Structural variants (SVs) are defined as genomic rearrangements of 50 base pairs (bp)
or larger. Although they are less frequent in the genome, they can account for ten
folds more variable base pairs than the widely studied singe nucleotide polymorphisms
(SNPs). SVs have been hard to detect by short-read sequencing, especially in repeat
rich regions. The recent addition of a new reference genome (GCA_905237065.2) and
long-read sequencing data for eleven Atlantic salmon individuals has allowed for a more
extensive characterization of SVs, revealing a significantly higher count than previously
reported. By constructing a genome graph with new high-quality assemblies based
on long-reads, we aim to genotype salmon SVs in short-read data, not detectable by
traditional methods.

We demonstrate how genome graphs, generated with the bioinformatic pipeline PGGB,
can be used to detect and accurately represent SVs in Atlantic salmon genomes. We
also present two pipelines for graph-based genotyping using short-reads and discuss
alternative metrics for genome graph quality improvement. Eventually, this work will
contribute to building a whole genome graph for Atlantic salmon, enabling population
scale SV-calling based on already available short-read data.
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Sammendrag

Strukturelle varianter (SVer) er definert som genomisk endring på 50 basepar eller mer.
Selv om de er i mindretall i genomet, står SVer for mange ganger antallet variable
basepar enn de mye studerte enkeltnukleotidpolymorfismer (SNPs). Strukturelle vari-
anter har tidligere vært utfordrende å oppdage ved bruk av eldre teknologi som short-
read sekvensering, spesielt i regioner med høyt innhold av repetativt DNA. Et nytt
refereanse genom for atlanterhavslaks (GCA_905237065.2), samnt long-read sekvenser-
ingsdata for elleve individer, har åpnet opp for utvidet karakterisering/deteksjon av
strukturelle varianter. Dette har avdekket høyere forekomster enn hva som tidligere
har blitt rapportert. Ved å konstruere en genomgraf fra nye assemblies av høy kvalitet,
basert på long-read sekvenseringsdata, åpner vi for mulighetene til å genotype flere
strukturelle varianter med short-read data fra Atlantisk laks.

Vi demonstrerer hvordan det bioinformatiske verktøyet PGGB kan produsere genom-
grafer som kan brukes til å detektere og representere strukturelle varianter i atlanter-
havslaks. Videre presenterer vi to datastrømmer for grafbasert genotyping ved bruk av
short-read data, og diskuterer ulike målbare kvaliteter som kan brukes til å forbedre
grafen. Hensikten med dette arbeidet er å bidra til utviklingen av en helgenom graf for
atlanterhavslaks som vil muliggjøre SV-calling på populasjonsnivå ved bruk av allerede
eksisterende short-read data.
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1. Introduction

1.1 Structural variants

Genome variation between individuals in a species range in size, from a single base
change to large rearrangements that are possible to see in a microscope (Conrad and
Hurles, 2007). Single nucleotide polymorphisms (SNPs) can be efficiently typed by high-
throughput sequencing and SNP-arrays. SNPs have been extensively used in genome
wide association studies to understand the basis of phenotypes of aqua-and agriculture
importance, such as tomato flavour (Zhang et al., 2015) and age at maturity of Atlantic
salmon (Sinclair-Waters et al., 2020). Linking genomic positions with phenotypes, can
identify candidate pathways and lead to a greater understanding of the underlying bi-
ological mechanisms of a trait (Alkan et al., 2011). Genotype of a sample is inferred
through mapping reads to a reference genome, or with SNP-arrays, and the results are
presented in the variant calling format (VCF). The introduction of SNP-arrays decreased
costs and enabled genome wide association studies with a large number of samples, but
is limited to genotype known variants in the genome.

Structural variants (SVs) is another class of genome variation. They are diverse in
type and size, ranging from 50 to thousands of base pairs and include different types of
sequence rearrangements (Figure 1.1) like insertions, deletions, inversions, translocations
and duplications (Mahmoud et al., 2019). Although SVs are fewer in numbers, they
affect more bases than SNPs. About 30 000 SVs are expected in any human genome,
but this type of variation is still not well understood due to limitations in sequencing
technology (Ho et al., 2020).

Structural variants can disrupt functional elements of the genome, ultimately affecting
the phenotype. Rearrangements in regulatory elements and copy number variants can
have an impact on gene expression and dosage, while deletions can cause gene truncation
or fusion (Mahmoud et al., 2019). SVs have been studied in a number of teleost species
of interest to the aquaculture industry. Hundreds of high confidence SVs found in
domesticated rainbow trout were identified as exon loss variants or gene fusion variants
(Liu et al., 2021), and in lake whitefish, SVs are suggested to contribute to speciation
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(Mérot et al., 2022). SVs have also been identified in plants, where they have been
associated with traits like tolerance, fruit yield and quality (Mahmoud et al., 2019).

Figure 1.1: Overview of different classes of SVs Different types of SVs include deletion, tandem
duplication, inversion, cut and paste insertion (translocation), interspersed duplication and novel ele-
ment insertion. Here shown in separate genomes, compared to a reference. The rearranged sequence is
colored red. Figure from Heller and Vingron, 2019

Repetitive DNA is an important source of SVs and make up large parts of eukaryote
genomes (de Koning et al., 2011). There are two main categories of repetitive DNA,
transposable elements (TEs) and tandem repeats (TRs). TEs are mobile elements of
DNA, often classified by the mechanism of transposition, which can be either cut and
paste, known as transposons or copy-paste, known as retrotransposons (Hartley and
O’Neill, 2019; Bourque et al., 2018). TRs are defined as adjacently repeated stretches of
DNA, where the length of the repeated unit (array size) and sequence composition vary
greatly (Lu et al., 2021; Sulovari Arvis et al., 2019). Their prevalence often differ between
chromosome regions (Hartley and O’Neill, 2019). TRs are believed to contribute to
structural variants through polymerase slipping (Raz et al., 2019), tandem duplications
(Farnoud et al., 2019) and template switching (Course et al., 2020). Reconstructions of
full genome assemblies based on sequencing data are often flawed in TR-regions due to
limitations of short-read sequencing data to read through TR-arrays (Tørresen et al.,
2019).

The read length of high-throughput short-read sequencing technologies has also been
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a limiting factor for reliable SV-detection and genotyping. When the sequencing reads
are shorter than the variant length, mapping to a linear reference genome will be a
challenge. Genotypes are inferred through patterns found in mapped reads, like split
read alignments or discordant read pairs (Wang et al., 2022). Poor mapping will make
it difficult to distinguish the different types of SVs (Mahmoud et al., 2019). Thus far,
no bioinformatic tool has been able to detect all SV-types and sizes reliably (Mahmoud
et al., 2019). Mid to large size insertions are particularly challenging to identify. The
fraction of all SVs detected, known as recall, is expected to be between 10% and 70%,
while the false positive rate is reported to be as high as 89 % (Mahmoud et al., 2019).

The development of long-read sequencing technologies has exceedingly improved SV-
calling. The prominent technologies from PacBio and Oxford Nanopore Technologies
(ONT), generate kilobases long reads. Long-read data makes genome assembly and
read mapping easier, which in turn has improved SV-detection (Sedlazeck et al., 2018).
Mapping patterns are easier to distinguish as the reads cover full variants and flanking
sequence. The count of SVs detected by the use of long-read data has been reported to
be in the range of 2 to 8.33 times the count found with short-read data, depending on
the organism (Mahmoud et al., 2019).

As long-read sequencing has made reference quality assemblies more obtainable, we
expect to see an increase in collections of genome assemblies, referred to as pangenomes
(Eizenga et al., 2020). This creates a need for methods to compare variation between a
large number of assemblies.

1.2 Genome graphs

Genome graphs are data structures well suited for representing pangenomes, and they
are suggested as a variant aware alternative to linear reference genomes (Eizenga et al.,
2020). Graph-based SV genotyping makes it possible to utilize existing short-read data
to infer variants undetectable using a linear reference (Li et al., 2020; Hickey et al.,
2020). As a result, it will be feasible to carry out population scale SV-studies without
resequencing using costly long-read technology. Another major motivation for graph-
based genotyping is the decreased reference bias, as proven in Garrison et al., 2018.
Reads containing alternative alleles are less likely to be mapped to a linear reference
than a read with a reference allele, which may create a bias towards calling reference
allele (Brandt et al., 2015; Sirén Jouni et al., 2022; Martiniano et al., 2020). The human
pangenome consortium estimates that more than 70% of SVs have been undetected in
SV-studies due reference bias and short-read limitation. They aim to improve detection
of structural variants through the construction of a human genome reference graph,
based on alignment of long-read based assemblies (Wang et al., 2022).
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There are two main approaches to constructing a genome graph. The most common
method is to base the graph on a linear reference genome, often referred to as the
backbone of the graph. Subsequently, known variants are added from a VCF file, re-
sulting in a directed acyclic graph (DAG). GraphTyper2 (Eggertsson et al., 2019) and
Paragraph (Chen et al., 2019) are examples of graph based short-read genotypers using
the VCF-approach. The graph handling toolkit vg (Hickey et al., 2020) will also build
graphs with VCF files and linear reference sequence. The second approach, as applied by
the pangenome graph builder (PGGB)(Garrison et al., 2021) and minigraph (Li et al.,
2020) is alignment based graphs, where de novo assemblies are aligned, and identical
sequence is collapsed into nodes (Figure 1.2). Variants between the sequences in the
graph, often referred to as bubbles due to the shape they form, are detected during graph
construction and can be extracted in the variant call format (VCF)(Figure 1.2 C). This
approach is made possible because genome assemblies have become obtainable with the
rise of long-read sequencing technology. Multiple sequence alignment is challenging and
computationally expensive, but Minigraph and PGGB have solved this by making their
own alignment algorithms that are specialized for graph construction.

VCF

Position 1 Position 2

Sample 1

Sample 2

A.

B.

C.

Position 1

Position 2

Sample 1    Sample 2

1/0 1/0

1/0 2/0

Figure 1.2: Genome graph representation of SVs A. The four colored lines represent aligned
haplotype-resolved assemblies from two samples. B. Simplified visualisation of genome graph for the
four sequences. Identical sequences are collapsed into nodes (the squares), and each sample is repre-
sented as paths linking the nodes (colored lines). C. Corresponding variant calls in a simplified version
of a VCF, with the blue sequence as reference. For every position of variation (bubble) in the graph,
the genotype inferred from the graph is recorded for each sample. There is one call for each haplotype,
separated by a slash. The genotypes are encoded, 0 for reference call, other numbers are referring to
alternative allele number. The figure is made from figures in Garrison and Guarracino, 2022 and Ebler
et al., 2022

.

VCF-based graphs have proved to reliably genotype high confidence SVs, but have
limited SV-representation. Eggertsson et al., 2019 reported to have improved genotyping
sensitivity with GraphTyper2 compared to linear reference SV genotyping. However,
GraphTyper2’s data structure was identified as unable to represent a full pangenome,
because it could not represent complex structures like nested variants. In addition,
Paragraph and GraphTyper2 are dependent on an accurate breakpoint sequence for the
set of known SVs to be genotyped accuratly (Chen et al., 2019; Eggertsson et al., 2019).
Recall has as been shown to decrease with shifts in the breakpoint. Another VCF-
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approach from the vg toolkit (Garrison et al., 2018), has a more extensive set of graph
handling tools and a different data structure, making it possible to include complex
structures (Hickey et al., 2020). Vg is not as affected by breakpoint inaccuracy, but was
outperformed by alignment based graphs using short-read mapping identity as a metric
(Hickey et al., 2020).

Alignment based graph construction tools are still under active development. Minigraph
is the most established of these tools, and has been used to create bovine and whitefish
genome graphs. Crysnanto Danang et al., 2021 discovered novel functional sequence by
creating a bovine pangenome graph and identified a large percentage of the variants in
multiallelic bubbles. Mérot et al., 2022 identified insertions and deletions linked to TEs
as a key component of divergence between two whitefish species. Both studies utilized
short-reads to do graph-based genotyping. Minigraph is fast, but does not perform base-
level alignment and will not include variarion <50 bp. Without base level alignment,
minigraph will have trouble with aligning sequences in TR-regions (Li et al., 2020).
PGGB will do base level alignment and include smaller variants in addition to SVs.
As a recently developed tool, there are yet to be any published results, but the human
Pangenome consortium are using PGGB to construct a human pangenome, focusing on
inclusion of diversity, made for research and medical application (Wang et al., 2022).

Multiple specialized graph-tools for downstream analysis of genome graphs have been
developed in recent years. Through a collaborative effort, a standardized format for
assembly graphs has been developed (GFA group, 2022). A variation of the graphical
fragment assembly (GFA) format, as first suggested by Li et al., 2020 is now accepted or
under implementation for most graph tools. Odgi is the most comprehensive toolkit for
analyzing giga base scale genome graphs efficiently (Guarracino et al., 2022), including
tools for detecting complex regions, extracting regions of interest, exploratory analysis,
manipulation, validation, and visualization. Historically, graph-based genotyping has
been time consuming due to slow read mapping. Newly developed giraffe from the vg
toolkit has made significant headway on this problem, and has reported read mapping
runtimes close to that of a linear reference (Garrison et al., 2018; Sirén Jouni et al., 2022).
Another genotyper of note is the PanGenie tool, which claim to improve genotyping by
k-mer based methods (Ebler et al., 2020).
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1.3 Analyzing structural variants in the Atlantic salmon
genome

Atlantic salmon (Salmo salar) is an anadromous fish species of high economical, cul-
tural and ecological importance. Aquaculture species like the Atlantic salmon are early
in domestication and genetic improvement toward increased quality of production has
motivated a great number of genome wide association studies (Houston et al., 2020).
Atlantic salmon also presents an opportunity to study vertebra genome evolution, as it is
undergoing rediploidization after a salmonid specific whole genome duplication (WGD)
80-120 million years ago (Lien et al., 2016; Gundappa et al., 2022). Duplicates with
75-100 percent identity exists for at least half of the protein coding genes. There is
large genomic divergence between European and North American Atlantic salmon pop-
ulations, including distinct karyotypes (Brenna-Hansen et al., 2012). The most recent
reference genome for Atlantic salmon (GCA_905237065.2) adds up to 2.76 giga base
pairs (Stenløkk et al., 2022). The content of repeated DNA based on the previous ref-
erence genome was estimated to be 58-60%, which is one of the highest found in any
vertebra (Lien et al., 2016).

Population scale detection of SVs based on short-read data was reported by Bertolotti
et al., 2020 based on the previous reference sequence ICSASG_V2 assembly (NCBI
accession GCA_000233375; Lien et al., 2016). Lumpy, a probabilistic tool was used
for SV-detection (Layer et al., 2014) in addition to manual curation to ensure only
high confidence SVs were kept. The manual curation filtered out all insertions, as they
were not possible to confirm by visualization of mapped reads, which was an important
step of the curation process. The final set of high confidence variants were of 15,483
unique SVs called for 492 individuals. More than 90 % of the total number of SVs
were deletions, being the easiest SV-type to detect and confirm during curation. As
much as 1432-1436 of the deletions were caused by a recently active transposon. False
positive rate was estimated to be 0.91. In conclusion, the combination of high repeat
content, homologous regions with high sequence similarity and large diversity between
phylogeographic groups, makes it challenging to call SVs in Atlantic salmon with short-
reads.

Recently, eleven long-read based de novo assemblies were generated as the first step
towards making an Atlantic salmon pangenome resource. Long-read technology data
read through repeat regions, making repeat regions accessible for genome analysis. The
data incorporates one individual sampled from aquaculture (Simon) and ten individuals
from wild populations in North America and Europe (Figure 1.3). The new Atlantic
salmon reference genome sequence Ssal_v3.1 (GCA_v905237065.2) has been generated
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from an aquaculture strain (AquaGen) named Simon. The estimate of repeat content
was increased to 60-70 % in the new reference sequence. TEs made up 40.61 % of
the assembly, and 11% of all base pairs in the genome was identified as Tc1-mariner
elements. TRs were estimated to 34 % of the genome, and was found to be enriched
in telomeres. The other ten individuals represent the four different phylogeographical
groups, North American, Baltic, Barents/White Sea and Atlantic (Stenløkk et al., 2022).
The motivation for sampling from different phylogeographical groups was to include as
much diversity as possible to build a pangenomic resource.

Figure 1.3: Map showing origin of long-read sequenced Atlantic salmon Wild salmon was
sampled from four phylogeographic groups; North American (Louis, Bond, Brian and Maxine), Baltic
(Barry), Barents/White Sea (Tanner and Alto) and Atlantic (Klopp, Arnold and Tess). The aquaculture
individual used to build Ssal_v3.1 (Simon) is not shown in the map, but it origins mainly from the
Atlantic phylogeographic group. The map is based on data from Stenløkk et al., 2022

The pangenome has been used to call high confidence SVs with three different tools,
sniffles, SVIM and NanoVar (Stenløkk et al., 2022), keeping only SVs detected by mul-
tiple tools to ensure a higher precision. SV-calling was done by continent, as there
is expected to be high genetic divergence between the European and North American
Atlantic salmon. Simon was used as reference for Europe, while Brian was used for the
North-American individuals. The resulting set of SVs include more than 700 000 SVs
detected in European Atlantic salmon, and more than 300 000 detecten in the North
American samples. The SVs consists of 59.89 % deletions, 39.72 % insertions, 0.17 %
inversions and 0.22 % duplications. This pattern is shared with TRs, and despite TRs
only covering 34 % of the genome, more than 80 % of deletion base pairs overlap TRs.
The SV distribution in the genome showed a striking enrichment in telomeric regions
(Monsen et al., 2022).
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1.3.1 Benchmarking SV detection and genotyping in Atlantic
salmon genome

Generating a relevant dataset with known variants is useful for evaluating the perfor-
mance of variant calling tools. Ideally, one would want to use a benchmarking dataset
like the one created for human (Zook et al., 2020). Unfortunately, no such dataset is
available for Atlantic salmon. Acquiring a benchmark is costly and will not be possible
for most non-model organisms. An alternative approach will be to simulate data or
select small regions suited for validating the results manually. It is important to keep
in mind that simulated data will be a simplification of real data.

The following genomic regions in Atlantic salmon are identified as representative of
the species with regard to the characteristics described earlier, which makes them ideal
for testing new data analysis pipelines. Chromosome 22 contains telomeric enrichment
of TRs, as well as regions with less TRs. This makes the chromosome a well suited
dataset when investigating the impact of TRs on SV-detection. The zinc finger region
of the PRDM9 gene was selected as a biological interesting, small and structurally
complex region suitable for testing. PRDM9 is a DNA binding protein, defining meiotic
recombination sites, and has been linked to speciation (Grey et al., 2018). In the last
exon of the Atlantic salmon PRDM9 copy on chromosome 5, there is a variable array of
zinc fingers (Figure 1.4). A single repeat may vary slightly in composition, and as the
zinc finger is the DNA-binding part of the protein, polymorphims will affect the position
and affinity of the binding sites, thus the recombination frequency can be changed (Grey
et al., 2018).

KRAB PR/SET

Zinc Fingers

683 aa 28 aa

Variable array

Figure 1.4: Structure of the functional PRDM9 gene found in chromosome 5 in the At-
lantic salmon genome The full gene spans 683 amino acids and is well conserved between individuals
with the exception of the variable zinc finger array. This figure specifically shows variants found in Simon
(GCA_905237065.2) allele 1 with six repeats. The figure is adapted from Guldbrandsen, manuscript
in preparation
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1.4 Aims of the study

In this study, we will explore genome graph construction with PGGB, and compare
two graph based genotyping pipelines. One pipeline includes short-read graph mapper
giraffe (Sirén Jouni et al., 2022), while the other is a k-mer based genotyper called
PanGenie (Ebler et al., 2020) (Figure 1.5 A). We will evaluate how repeats influence
PGGBs performance, and we will create a simulated sequence with known SVs in order
to validate the variants detected.

Next, we want to extend the pipeline to using real data, constructing a graph on assem-
blies and using real reads by focusing on the zinc finger array of a functional PRDM9
gene on Atlantic salmon chromosome 5 (Figure 1.5 B). Graph-based SV genotyping has
already been proven to be better than traditional linear based approaches, (Hickey et
al., 2020; Sirén Jouni et al., 2022; Ebler et al., 2022) but we want investigate if it works
for the complex genome of Atlantic salmon.

The aim is to evaluate the feasibility of making a Atlantic salmon whole genome graph,
with the interest of using it for population SV studies. For the pipelines to be of use,
we have to establish an approach which satisfies the following criteria:

• The graph must be able to detect and represent SVs.

• The graph-based genotying pipeline must reliably call SVs with short-reads.

Figure 1.5: Overview of datasets and bioinformatic pipelines used to detect SVs in the
Atlantic salmon genome Green boxes represent a process, orange represent data. A: shows an
overview of the pipeline for evaluating PGGB and the genotypers with simulated data. B: PGGB and
vg toolkit is will be used genotype PRDM9 zinc finger on chromosome 5 with real sequencing data and
assemblies
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2. Methods

2.1 Simulating Atlantic salmon chromosome 22 data

From the approximately 65 Mbp long chr. 22, two 10 Mbp regions were selected based
on the repeat density of the reference genome. One region with a low count of TRs, and
another with a high count of TRs. SVs from the long-read detected catalog (Stenløkk
et al., 2022) were used to simulate a sequence from chr. 22. To decrease the count of
SVs and ensure true variants, we opted to only keep SVs detected with at least 3 tools
and found in 2 individuals. Three of the SV were removed because they overlapped with
other variants. The remaining SVs were inserted into the reference sequence of chr. 22
using VISOR (Bolognini et al., 2020) in order to make a new sequence with SVs inserted
into the two regions.

In order to asses the two different graph-based genotyping pipelines, we simulated reads
from the new sequence (Figure 2.3). ART (Huang et al., 2012) was used to simulate short
paired-end reads based on the original chr. 22 sequence and the simulated sequence.
When genotyping this set of reads, we expect heterozygous callings for all variants.
Parameters were chosen to resemble 150 bp Illumina reads with approximately 400 bp
in fragment size. Simulation was carried out for multiple levels of read depth.

2.2 PRDM9 dataset

The PRDM9 zinc finger region of the assemblies had previously been manually phased,
resulting in a total of 12 haplotype-resolved sequences. The array showed between five
and eight zinc fingers in these sequences (table 2.1). In order to align the sequences
better to the full chromosome 22, each haplotype sequence was extended with 5 kbp of
reference sequence on each end.
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Table 2.1: Number of repeats in the zinc finger array for each haplotype sequence Four
individuals were successfully phased, Simon, Klopp, Arnold and Maxine. The remaining individuals
are represented by one haplotype. Based on data from Gulbrandsen, in preparation

Name Haplotype Number of repats in znf-array
Simon 1 6
Simon 2 5
Klopp 1 6
Klopp 2 8
Arnold 1 6
Arnold 2 7
Alto 1 6
Tanner 1 8
Maxine 1 8
Maxine 2 6
Brian 1 6
Bond 1 6

2.3 Graph construction

2.3.1 PGGB - the pangenome graph builder

The pangenome graph builder (PGGB) is a three-step pipeline for making alignment-
based genome graphs. A pangenome refers to a collection of all genomic sequences found
within a species, population, clade or metagenome (Eizenga et al., 2020). A pangenome
graph will be a graphical model to represent them. Pangenome graphs and genome
graphs are terms used interchangeably. In this thesis, we are using the term genome
graphs for simplicity. PGGB will include all kinds of variants into the graph, including
variants < 50 base pairs long. However, this study will only focus on the structural
variants.

Figure 2.1: An overview of the pangenome graph builder pipeline (PGGB) Three tools are
developed specifically for the purpose of constructing genome graphs. Input to the pipeline is a fasta
file with assemblies, and the output is a genome graph. Wfmash will align the input sequences, seqwish
induces the graph before smoothxg ensures local linearity in the final step.

The first step of the pipeline is a pairwise sequence alignment of the input sequences
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with wfmash (Figure 2.1). The queries are divided into non-overlapping segments, which
are then mapped to the other sequence in the pair using a version of mashmap. Only
mappings with identity over a certain threshold will be kept, thus the segment size
parameter works as a minimum alignment filter. These approximate mappings will be
used as a target for alignment with wflign. Wfmash is quick and conserves synteny while
also being able to ensure base level alignment (Garrison, 2022b).

Graph induction using seqwish is the second step of the PGGB pipeline. An alignment
graph is built using the output from wfmash, before collapsing the nodes into a variantion
graph (Garrison and Guarracino, 2022) (Figure 1.2 A and B).

The last step of the pipeline is smoothxg. This tool will perform partial order alignment
(PoA) on blocks in the graph, ensuring local linearity. It is the most computational
expensive step in the pipeline, but very important as it decreases the complexity of the
graph, making it possible to use for down stream analysis such as graph-based read
mapping (Garrison, 2022b).

2.3.2 Graph evaluation

The graph quality was assessed by the count of SVs represented in the graph. This
metric was used for parameter tuning and to evaluate PGGB’s ability to detect SVs
from de novo assemblies. Variants found in the graph were extracted into a VCF with
vg deconstruct and compared to the truth set of SVs. True positives (TP) were de-
fined as the variants in the graph with start and end position ±60 bp from any of
the original variants inserted into the simulated sequence. False positive (FP) was a
variant detected by PGGB but not found in the SV-catalog. False negative was the
SVs in the simulated squence not detected in the graph. A script was written with
functions for comparing positions and finding recall, precision and F1 score. A metric
taking both recall and precision into consideration as defined in equation 2.1-2.3. https:
//github.com/ankjelst/SalmonGraph/blob/main/scripts/rscripts/metrics.R.

precision = TP

TP + FP
(2.1)

recall = TP

TP + FN
(2.2)

F1 = 2 × precision × recall

precision + recall
(2.3)
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2.3.3 Parameter tuning

There are three parameters required for running PGGB version 0.2.0, -s, -n, and -p. The
number of mappings reported for each segment (-n) was set to the number of sequences
in the input fasta as recommended by the developers. The percent identity, (-p) was
decided by the mash distances between sequences within the chromosome, selecting the
largest distance in this equation 100 − (maxdivergence × 100). Percent identity (-p)
should be set to this value or lower. The last required parameter, segment size (-s) will
require some tuning. The segment size is the minimum size of the sequences for the
approximate mapping of wfmash, and works as a minimum alignment filter. If you set
this too low, you will risk keeping small matches caused by repeats from two different
regions. If you set it to high, your sequences will not be aligned. PGGB was run with
different -s values. F1 score, clock time and memory consumption was recorded for each
run.

Two optional parameters were adjusted. Minimum match length (-k) was set to 311,
based on recommendations for human data. This value was constant for all runs in
this study. The -k parameter will filter out small matches in the graph induction step
of seqwish. The second optional parameter adjustment was block size (-G), which is
relevant in smoothxg. This parameter was selected for tuning as it is stated to have a
large impact on memory and time usage of the pipeline (Garrison et al., 2022).

Two values are passed to -G as default, resulting in two rounds of graph refinement. -s
was set to 100 000 like in the human genome for -G tuning. All the other parameters
were left to default. Be aware of differences in defaults values and required input between
versions of PGGB.

2.4 Genotyping

For down-stream analysis, we want to use the graph to genotype SVs for individuals
where only short-read data is available. Two pipelines were tested for graph-based SV-
genotyping, representing two different approaches 2.3. The vg pipeline represent a read
mapping approach, including Giraffe (Sirén Jouni et al., 2022). PanGenie is a k-mer
based genotyper, an approach known to be quicker then a mapping approach, but has
been unreliable in repeats and duplicate regions. PanGenie address this vulnerability
by inferring genotypes based on neighbouring variants when it is not possible to tell
genotype based on unique k-mers (Ebler et al., 2022). This is why the tool requires
haplotype-resolved sequences. In addition, it is only applicable to diploid organisms.

The two pipelines presented some requirements which had to be considered when con-
structing the input graph. To meet PanGenies requirement of at least two samples

14



with haplotype information, the input fasta was made up of three copies of the original
sequence and one of the simulated sequence (Figure 2.2), representing two samples by
using the PanSN-spec convention (Garrison, 2022a). PGGB parameters were set to -s
50 000 and -G 7919,8069.

Sample2#1#chromosome22
Sample2#2#chromosome22

Sample1#2#chromosome22
Sample1#1#chromosome22

Variant Sample 2

1

2

3
.
.
.

1 / 0

1 / 0

1 / 0
   .
   .
   .

VCF

Figure 2.2: Input for construction of chr. 22 graph The green line represents the simulated
sequence, and the blue lines represent the original reference chr. 22. The simplified VCF visualisation
shows expected genotype for sample 2, which will be 1/0 for every single variant.

Giraffe has not been tested on PGGB-graphs by the developers, and it did require some
work-arounds to run successfully (Novak, 2022). The giraffe preprocessing had to be
done manually in 4 steps, as the graph lost all path lines when running the autoindex
tool. For the manual preprocessing to work, we had to chop our graph where nodes
exceeded 1024 bp. This step was preferential to do manually as opposed to letting
the preprossessing tools chop the graph, as it allowed us to retain control over the
coordinates. After mapping reads to the graph, the vg call function was used to call
genotypes. This step required a preprocesing of vg pack. The same set of reads were used
as input into PanGenie, as well as the VCF from vg deconstruct as PanGenie requires
specification of the sites to call. The full pipeline from simulation to genotyping is
presented in Figure 2.3.
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Figure 2.3: Overview of the full pipeline for the chr. 22 based graph construction and
down-stream analysis An overview of all the tools (in green), input and output data (in orange)
from each step in the pipeline for construction and down stream analysis of the simulated data based
on chromosomes 22. Simulation of a sequence with known variation, based on chromosome 22 was
carried out by inserting SVs from a SV-catalog with VISOR. The simulated sequence and the original
reference was the input to PGGB (Figure 2.2), which generated a genome graph. Reads were simulated
with ART and used to compare two different approaches to graph-based genotyping, PanGenie and vg.
Preprocessing steps for the genotypers are not included.
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2.5 PRDM9 zinc finger graph

After testing the pipeline on simulated data, PGGB and the vg pipeline was rerun
with real sequencing data on the PRDM9 zinc finger (Figure 2.4). A genome graph
was constructed with the whole ONT long-read based reference genome and the phased
PRDM9 zinc finger sequences from Arnold, Klopp, Maxine and Simon, as well as the
individuals that were not successfully phased (Table 2.1). By mapping short reads from
the same individuals from which the graph was built, we can evaluate how well the
graph-based genotype pipeline works in a complex region like the PRDM9 znf-array.

This input to PGGB required parameter tuning because some of the sequences are
very short. The zinc finger sequences are between 671 and 923 bp long. We extended
each sequence with 10 000 bp to improve alignment, but we still have to use a smaller
segment length (-s) parameter in order to prevent filtering out all approximate mappings
in the alignment step of the pipeline. lllumina short-reads were mapped to the graph
and genotyping was performed with the vg pipeline. The graph was visualized using
odgi (Guarracino et al., 2022), and the genotypes were manually compared to expected
callings.
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Figure 2.4: Overview of pipeline for graph construction and graph-based genotyping
PRDM9 zinc finger array on Atlantic salmon chr. 5 The green boxes are processes/tools, while
the orange boxes are data. A graph was constructed with haplotype-resolved sequences (Figure2.1)
and the full reference genome (GCA_905237065.2). Giraffe was used to map Illumina short-reads to
the graph, before inferring genotypes with vg call. Short-read based genotyping was carried out for
the four individuals where we have acquired two haplotype sequences (Arnold, Maxine, Klopp, Simon,
Figure 2.1)
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3. Results and discussion

3.1 Simulation on Atlantic salmon chromosome 22

A sequence was simulated based on Atlantic salmon reference chromosome 22. The
counts of SVs in the simulated dataset are shown in Table 3.1. Deletions are the most
frequent SV-type, and we can observe an increase of SVs in the high repeat region
as reported in earlier work, making our SVs representative of their respective regions.
The two regions were selected based on repeat content visualised in Figure 3.1 B. We
restricted SVs to two regions in order to simplify the test runs, which kept the count
of SVs down and allowed us to focus on two regions with different repeat content, and
identifying key parameters and repeat impact, before expanding to a more complex
input.

Table 3.1: Number of SVs inserted in the two regions of the simulated sequence The regions
of interest are selected based on the tandem repeat distribution shown together with the start position
of all SVs in the simulated sequence as shown in Figure 3.1.

SV type Low repeat region High repeat region Total
Insertion 73 140 213
Deletion 135 259 394
Total 208 399 604
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Figure 3.1: SV distribution in simulated sequence and TR density on chromosome 22 The
yellow areas show the regions selected for SV simulation. A. The figure presents the distribution of SVs
across chromosomes 22 in the simulated sequence. B. The figure presents the TR count in 1 Mbp bins.
The data is from Monsen et al., 2022 and made with the tool Tandem repeats finder (Benson, 1999).
SV count peaks in the same positions as TR count, which is in accordance with reports of repeats being
a source of SVs.

SV-length distribution of the selected SVs are different between the two regions (Figure
3.2). We can observe an increase of shorter SVs in the high repeat region, which is
likely due to repeat number differences. We can also observe a peak of approximately
1500 bp, which possibly represents the recently active transposable element reported by
Bertolotti et al., 2020.

In order to simulate a realistic sequence, the simulation tool must take positioning into
consideration. As previously mentioned, SVs are not evenly dispersed in a chromosome,
but are expected to be enriched in repeat sequences. Visor was selected for simulation
as it will insert SVs into positions defined by the user. This allowed us to base the
simulated data on real SV sequence and positioning.

Even with a representative sequence and a realistic sequence length distribution within
the selected regions of interest, there are important simplifications implicated by this
dataset. There are no overlapping variants and no SNPs in the simulated sequence. A
real sequence will include more complex structures of variation. In addition, there are
only variants in two regions and we only simulated one sequence.
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Figure 3.2: SV-length distribution in the simulated dataset There are differences in distribution
between the two selected regions. In the high repeat region, the SVs were shorter in length. In addition,
the longest SVs were much longer than in the low repeat region. We can observe a peak at 1500 bp
which is assumed to be a recently active TE.

3.2 Optimization of parameters in PGGB

Understanding the key parameters, as well as being able to optimize them according
to your data and use, is essential to make a genome graph suited to your application
with PGGB. Although only three parameter inputs are required, the total number of
parameters is much larger. The number of parameters makes it possible to build genome
graphs from data with different levels of identity and for different applications. This
comes at the cost of having to spend time on parameter tuning, and until recently,
documentation on PGGB has been sparse. This has been improved, making the tool
more user friendly, with recommended settings for multiple organisms and identification
of the key parameters (Garrison, 2022b).

Two parameters in PGGB, -s and -G were selected for parameter optimisation as they
were identified as having the largest effect on runtime and graph complexity. The
minimum segment size (-s) will impact the initial step and alignment of the sequences,
while the second parameter optimized (-G), will influence the "smoothening" of the
graph, ensuring local linearity which is important for the graph to be applicable for
down stream analysis (Garrison, 2022b). Figure 3.3 presents high F1 scores for all
parameters values. Lowest F1 score is found for -s set to 5000, but the score is higher
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(>0.98) for all other values of -s. The results suggests that the two parameters have
little impact on PGGBs ability to detect SVs with the simulated data as input.

Figure 3.3: Parameter tuning PGGB Green points show F1 score for different values of parameter
-G when -s is set to 100 000. Orange point show F1 score for different values of parameter -s when -G
is set to 7919,8069. F1 is based on number of SVs found in the resulting graph as explained in methods
section 2.3.2.

Time and memory consumption, like the F1 score, were not impacted by different values
of -s (Figure 3.4). For -G on the other hand, there is a small increase in time usage
with higher block size in two passes to -G, and a large shift in memory and time usage
when passing only one value of 20 000. The single pass results in using less time, but
required a lot more memory without improving F1 score. While there is no evidence of
increased SV detection performance when increasing -G, it seems to be advantageous
to include two rounds of refinement with lower block sizes compared to one round with
a large block size, as memory consumption is much lower with two passes to -G (see
Figure 3.4).

The small differences in SV detection performance as well as time and memory usage
is likely due to our very simple input of two sequences. Using a larger number of
input sequences will increase the number of pairwise mappings in wfmash, and -s will
have a greater impact on run time and memory consumption. There will also be more
complex multiallelic regions with an increase of sequences, which we expect will be
more challenging for smoothxg, making -G have a greater impact on SV detection as
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well as time and memory consumption. Another artefact of the input data are the large
stretches of identical sequence in the two input sequences (Figure 3.1). If variation was
distributed across the chromosome, the first step of alignment would become a bigger
computational challenge, thus changing -s would have more impact. This test gives us
a starting point and a framework for exploring the effect of PGGB parameters on larger
and more complex input data.

Figure 3.4: Runtime and memory usage for PGGB Running PGGB with the chr. 22 sequences
(Figure 2.2) with different values of -G and -s to optimize parameters. A. Memory is stable except for
one run where -G is set to 2000. B. Clock time increases with larger values for -G, and decreases when
run with only one round of smoothening (one imput value).

3.3 PGGB graphs for SV detection

A chromosome 22 graph was made for comparison of the two graph-based genotyping
pipelines. Table 3.2 shows high recall and precision for all regions and types of SVs.
PGGB is able to detect almost every single SVs and calls very few false positive variants.
All missed and falsely called variants are found in the high repeat region. A closer look
reveals only one FP and one FN SV, both of approximately the same length of 100
bp, and with start positions 100 bp apart. It is likely the same variant, but repeated
sequence makes identification of the start position ambiguous.

23



Table 3.2: SVs detected with PGGB Precision, recall and F1 score by region and SV type. Metrics
are based on number of SVs found in the resulting graph as explained in methods section 2.3.2

Region SV type Precision Recall F1
Low repeat Insertion 1.000 1.000 1.000
Low repeat Deletion 1.000 1.000 1.000
High repeat Insertion 1.000 1.000 1.000
High repeat Deletion 0.996 0.996 0.996

The simulated input data may present artificially good results because of the simple na-
ture of input. Non-simulated sequences contain complex structures and nested variants,
which will be harder to detect. This is a two-sequence genome graph. When increasing
the number of input sequences, the graph is going to be more complex.

The metric used to evaluate PGGB SV-detection was to compare positions between
variants found in the graph and the SVs in the SV-catalog. A variant was classified as
true or false based on the start and end positions, allowing a slack of 60 bp. This was an
arbitrary threshold with unclear importance. Positions were compared with functions
written in R, but there are exiting tools for comparing positions in VCF files like bedtools
intersect (Quinlan and Hall, 2010). This tool may be preferable to use in order to save
time, as it is well tested and already exist.

3.4 PanGenie and vg comparison on chromosome 22

The two graph based genotype pipelines, PanGenie and vg, were run with the same
short-read and graph inputs in order to compare their results (Figure 3.5). The vg
pipeline shows the highest precision for all depths of reads and types of SVs (Figure
3.5). PanGenie performs well with higher depth set of reads, but reveals a lower preci-
sion for calling insertions.
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Figure 3.5: Precision comparison of two graph-based genotyping pipelines on simulated
data The vg pipeline shows the highest precision for all depths of reads and types of SVs.

While PanGenie requires more memory, it is much quicker than the vg pipeline (Figure
3.6). In addition, the memory requirements are stable, not showing an increase with
read depth. PanGenie finds all possible k-mers in the graph for each run, which is prob-
ably the cause of the high, but stable memory consumption. These time and memory
measures must be considered as estimates, as it not consider which node of the computer
cluster the command is run at as the different nodes have different CPUs. This is likely
why we see larger time usage for read depth of 10 compared to depth of 20. Traffic on
the cluster may also impact the runtime.

Where the vg-pipeline have multiple steps for prepossessing input files for vg giraffe and
vg call, PanGenie is run by a single command. The requirements for the input VCF are
strict, but other than that, PanGenie is easy to run. PanGenie does require haplotype
resolved assemblies, which is unavailable for Atlantic salmon at this point.
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Figure 3.6: Runtime and memory usage for graph-based genotyping pipelines PanGenie
shows higher memory usage, but is much faster than the vg pipeline. In general, runtime increases with
depth for both tools.

3.5 PRDM9 zinc finger graph

The zinc finger graph shows the length differences of the sequences in one position
(Figure 3.7). Alternative alleles corresponds to the length and sequence of one, two
or three zinc finger repeats when calling genotypes in the graphs using the shortest
sequence, Simon haplotype 2 (Simon#2) as a reference to call variation. One exception
is the reference assembly Ssal_v3.1. which is not haplotype-resolved, meaning that
the sequence is a mix of the two haplotypes of one individual. This has resulted in
a collapsed zinc finger array in the reference sequence based on Simon, which is also
included into the graph. A way to avoid including the collapsed variant, could be to
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make a smaller graph with only the haplotype-resolved sequences. However, it would
not be possible to map real reads to this graph, as reads span the full genome and thus
needs a full genome to be mapped to.

Ssal_v3.1
Simon#1
Simon#2
Klopp#1
Klopp#2
Arnold#1
Arnold#2
Alto#1
Tanner#1
Brian#1
Bond#1
Maxine#1
Maxine#2

Figure 3.7: Visualisation of the variable zinc finger array with ODGI Colored lines represent
genomic sequence, while the black lines show graph paths. The first sequence is the reference genome
Ssal_v3.1 (GCA_905237065.2) which includes a collapsed zinc finger array. The numbers of repeats is
between five and eight.

SV representation with PGGB and graph-based genotyping showed promising results on
simulated data, but it remains to be seen how the complexity of real data and a larger
number of input sequences will affect the pipeline. The PRDM9 zinc finger array is a
very challenging region to map reads to, as it consists of a variable number of almost
identical repeats. In addition, we built the graph from 13 sequences which created
bubbles with up to 12 alternative alleles, making this a complex graph which could
make down-stream analysis challenging.

Ideally, the graph should be constructed on chromosome scale input sequences. This
was not possible since no phased Atlantic salmon assemblies of this size currently exist.
Phased sequences are needed to have an accurate presentation of the PRDM9 region.
Aligning shorter sequences with flanks of reference sequence was the approach we utilized
to get the different length sequences to align.

3.6 Graph-based genotyping of zinc finger repeat
number

We chose the vg pipeline for graph-based genotyping of the PRDM9 zinc finger region
because it performed better than PanGenie on the simulated dataset. In addition,
PanGenie requires a haplotype resolved input sequences, which we do not have for the
full genome. Even if we were able to run PanGenie, the tool would not be able to rely on
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unique k-mers in this repeat region, and the short haplotype resolved sequences would
not include any nearby variants to infer genotypes from.

Calling repeat numbers in the zinc finger array of PRDM9 with short-reads turned out
to be challenging. For Klopp and Maxine, one repeat less then expected was called,
while for Simon, one repeat more than expected was called (Figure 3.8). The results
indicate a bias towards calling 7 repeats, and suggests that we are unable to reliably
genotype the zinc finger repeats with this graph.

Simon

Arnold

Maxine

Klopp

 One repeat
84 base pairs

Simon

Arnold

Maxine

Klopp

Figure 3.8: Repeat numbers called in zinc finger array with graph based genotyping
Number of repeats in the PRDM9 zinc finger graph for a given individual called from the assemblies
(top) and with short reads (bottom). The colored bars indicates a bubble in the graph where variation
is called. Green bars show repeats represented in the graph, which is in accordance to previously
reported repeat numbers 2.1. The blue bars represent the number of repeats called with short reads
and the vg pipeline. The correct number of repeats was called for Arnold, but not for any of the other
individuals. SNP level differences between the repeats are not taken into consideration.

Although this specific graph represent the repeat differences well, there could be qualities
of the graph which is negating accurate graph-based genotyping. Genome graph quality
will be limited by the quality of the assemblies, in this sense, errors from sequencing or
assembly will impact graph-based genotyping. In addition, the quality of the PRDM9-
sequences is dependent on phasing. The nature of the PRDM9 zinc finger array has
made phasing challenging. This has resulted in missing haplotypes for several of the
long-read sequenced individuals. Errors in the graph can potentially cause difficulties
in mapping reads to the graph for an already challenging region. The adjacent, near
identical zinc finger motifs, makes it hard to tell reads from the different repeats apart.
Improving quality of the sequences used in construction of the graph can possibly make
read mapping to the graph better and genotyping more successful.

Assembly-based graphs can include very complex structures. Complex structures often
origin from errors in assemblies or regions that are hard to align (Guarracino et al., 2022)
like we see in the PRDM9 region. It is possible to remove complex structures, which is
expected to decrease the computational burden. Simplifying the graph may also make
read mapping less vulnerable to artifacts introduced by complex regions. There will
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be fewer possible positions to map to, leading to less ambiguous mappings. The odgi
toolkit has suggested pipelines to identify and simplify these regions.

Read mapping can be used as a metric of graph quality in order to optimize the graph
for genotyping. This metric can be a measure of quality independent on the data set,
and will allow for evaluation of graphs based on sequences without known SVs. It is
possible to extract mapping statistics such as counts of un-mapped reads and perfectly
mapped reads from giraffe.

3.7 Conclusion and further work

This study presents a viable method for representing the Atlantic salmon pangenome
through a PGGB graph. With simulated data and the highly variable PRDM9 zinc fin-
ger repeat array, PGGB proved to successfully detect SV variation in genome assemblies
by graph construction.

Two different approaches for graph-based genotyping with short-reads showed promising
results on simulated data. However, PGGB allows for complex datastructures which are
vulnerable to errors from sequencing, assembly and phasing. This became particularly
apparent for the PRDM9 zinc finger region, where we were unable to genotype the
correct number of repeats through short-reads with the vg pipeline. The contrasting
results to the initial run with simulated data demonstrates the importance of solid test
data in order to produce reliable results.

Ultimately, we would like to create a Atlantic salmon pangenome graph which will allow
for population scale SV-studies at low cost. A full genome graph would be constructed
one chromosome at a time, merging the graphs together before downstream analysis.
This will be a be a large and complex data structure, which will likely require simplifi-
cations to be useful for down stream analysis. A combination of metrics like SV-count,
read-mapping statistics or graph complexity will make sure to construct a graph which
represent variation, but also allows for analysis such as genotyping.

29





References

Alkan, C., Coe, B. P., and Eichler, E. E. (May 2011). Genome structural variation discovery
and genotyping. Nature Reviews Genetics 12 (5): 363–376. doi: 10.1038/nrg2958.

Benson, G. (Jan. 1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Research 27 (2): 573–580. doi: 10.1093/nar/27.2.573.

Bertolotti, A. C., Layer, R. M., Gundappa, M. K., Gallagher, M. D., Pehlivanoglu, E., Nome,
T., Robledo, D., Kent, M. P., Røsæg, L. L., Holen, M. M., Mulugeta, T. D., Ashton, T. J.,
Hindar, K., Sægrov, H., Florø-Larsen, B., Erkinaro, J., Primmer, C. R., Bernatchez, L.,
Martin, S. A. M., Johnston, I. A., Sandve, S. R., Lien, S., and Macqueen, D. J. (Oct. 2020).
The structural variation landscape in 492 Atlantic salmon genomes. Nature Communications
11 (1): 5176. doi: 10.1038/s41467-020-18972-x.

Bolognini, D., Sanders, A., Korbel, J. O., Magi, A., Benes, V., and Rausch, T. (Feb. 2020).
VISOR: a versatile haplotype-aware structural variant simulator for short- and long-read
sequencing. Bioinformatics 36 (4): 1267–1269. doi: 10.1093/bioinformatics/btz719.

Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault,
M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., and Feschotte, C. (Nov. 2018).
Ten things you should know about transposable elements. Genome Biology 19 (1): 199. doi:
10.1186/s13059-018-1577-z.

Brandt, D. Y. C., Aguiar, V. R. C., Bitarello, B. D., Nunes, K., Goudet, J., and Meyer, D.
(May 2015). Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes
in the 1000 Genomes Project Phase I Data. G3 Genes|Genomes|Genetics 5 (5): 931–941.
doi: 10.1534/g3.114.015784.

Brenna-Hansen, S., Li, J., Kent, M. P., Boulding, E. G., Dominik, S., Davidson, W. S., and
Lien, S. (Aug. 2012). Chromosomal differences between European and North American
Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hy-
bridization analysis. BMC Genomics 13 (1): 432. doi: 10.1186/1471-2164-13-432.

Chen, S., Krusche, P., Dolzhenko, E., Sherman, R. M., Petrovski, R., Schlesinger, F., Kirsche,
M., Bentley, D. R., Schatz, M. C., Sedlazeck, F. J., and Eberle, M. A. (Dec. 2019). Paragraph:
a graph-based structural variant genotyper for short-read sequence data. Genome Biology
20 (1): 291. doi: 10.1186/s13059-019-1909-7.

Conrad, D. F. and Hurles, M. E. (July 2007). The population genetics of structural variation.
Nature Genetics 39 (7): S30–S36. doi: 10.1038/ng2042.

Course, M. M., Gudsnuk, K., Smukowski, S. N., Winston, K., Desai, N., Ross, J. P., Sulovari,
A., Bourassa, C. V., Spiegelman, D., Couthouis, J., Yu, C.-E., Tsuang, D. W., Jayadev,
S., Kay, M. A., Gitler, A. D., Dupre, N., Eichler, E. E., Dion, P. A., Rouleau, G. A., and
Valdmanis, P. N. (Sept. 2020). Evolution of a Human-Specific Tandem Repeat Associated
with ALS. eng. American journal of human genetics 107 (3). Edition: 2020/08/03 Publisher:
Elsevier: 445–460. doi: 10.1016/j.ajhg.2020.07.004.

31

https://doi.org/10.1038/nrg2958
https://doi.org/10.1093/nar/27.2.573
https://doi.org/10.1038/s41467-020-18972-x
https://doi.org/10.1093/bioinformatics/btz719
https://doi.org/10.1186/s13059-018-1577-z
https://doi.org/10.1534/g3.114.015784
https://doi.org/10.1186/1471-2164-13-432
https://doi.org/10.1186/s13059-019-1909-7
https://doi.org/10.1038/ng2042
https://doi.org/10.1016/j.ajhg.2020.07.004


Crysnanto Danang, Leonard Alexander S., Fang Zih-Hua, and Pausch Hubert (May 2021).
Novel functional sequences uncovered through a bovine multiassembly graph. Proceedings of
the National Academy of Sciences 118 (20). Publisher: Proceedings of the National Academy
of Sciences: e2101056118. doi: 10.1073/pnas.2101056118.

de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A., and Pollock, D. D. (Dec. 2011).
Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLOS Genet-
ics 7 (12). Publisher: Public Library of Science: e1002384. doi: 10.1371/journal.pgen.
1002384.

Ebler, J., Clarke, W. E., Rausch, T., Audano, P. A., Houwaart, T., Korbel, J., Eichler, E. E.,
Zody, M. C., Dilthey, A. T., and Marschall, T. (Jan. 2020). Pangenome-based genome in-
ference. bioRxiv: 2020.11.11.378133. doi: 10.1101/2020.11.11.378133.

Ebler, J., Ebert, P., Clarke, W. E., Rausch, T., Audano, P. A., Houwaart, T., Mao, Y., Korbel,
J. O., Eichler, E. E., Zody, M. C., Dilthey, A. T., and Marschall, T. (Apr. 2022). Pangenome-
based genome inference allows efficient and accurate genotyping across a wide spectrum of
variant classes. Nature Genetics 54 (4): 518–525. doi: 10.1038/s41588-022-01043-w.

Eggertsson, H. P., Kristmundsdottir, S., Beyter, D., Jonsson, H., Skuladottir, A., Hardarson,
M. T., Gudbjartsson, D. F., Stefansson, K., Halldorsson, B. V., and Melsted, P. (Nov. 2019).
GraphTyper2 enables population-scale genotyping of structural variation using pangenome
graphs. Nature Communications 10 (1): 5402. doi: 10.1038/s41467-019-13341-9.

Eizenga, J. M., Novak, A. M., Sibbesen, J. A., Heumos, S., Ghaffaari, A., Hickey, G., Chang, X.,
Seaman, J. D., Rounthwaite, R., Ebler, J., Rautiainen, M., Garg, S., Paten, B., Marschall,
T., Sirén, J., and Garrison, E. (Aug. 2020). Pangenome Graphs. Annual Review of Genomics
and Human Genetics 21 (1). Publisher: Annual Reviews: 139–162. doi: 10.1146/annurev-
genom-120219-080406.

Farnoud, F., Schwartz, M., and Bruck, J. (Feb. 2019). Estimation of duplication history under a
stochastic model for tandem repeats. BMC Bioinformatics 20 (1): 64. doi: 10.1186/s12859-
019-2603-1.

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., Jones, W.,
Garg, S., Markello, C., Lin, M. F., Paten, B., and Durbin, R. (Oct. 2018). Variation graph
toolkit improves read mapping by representing genetic variation in the reference. Nature
Biotechnology 36 (9): 875–879. doi: 10.1038/nbt.4227.

Garrison, E., Guarracino, A., and Heumos, S. (2021). The pangenome graph builder. url:
https://github.com/pangenome/pggb/tree/v0.2.0.

Garrison, E., Heumos, S., Guarracino, A., and Gao, Y. (May 2022). Homogenizing and ordering
the graph with smoothxg. url: https://github.com/pangenome/pggb/tree/v0.2.0#
homogenizing-and-ordering-the-graph-with-smoothxg.

Garrison, E. (May 2022a). PanSN-spec: Pangenome Sequence Naming. url: https://github.
com/pangenome/PanSN-spec.

Garrison, E. (May 2022b). PGGB documentation. url: https://pggb.readthedocs.io/en/
latest/.

Garrison, E. and Guarracino, A. (Jan. 2022). Unbiased pangenome graphs. bioRxiv: 2022.02.14.480413.
doi: 10.1101/2022.02.14.480413.

GFA group (May 2022). GFA: Graphical Fragment Assembly (GFA) Format Specification. url:
https://github.com/GFA-spec/GFA-spec.

Grey, C., Baudat, F., and de Massy, B. (Aug. 2018). PRDM9, a driver of the genetic map. PLOS
Genetics 14 (8). Publisher: Public Library of Science: e1007479. doi: 10.1371/journal.
pgen.1007479.

32

https://doi.org/10.1073/pnas.2101056118
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1101/2020.11.11.378133
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1186/s12859-019-2603-1
https://doi.org/10.1186/s12859-019-2603-1
https://doi.org/10.1038/nbt.4227
https://github.com/pangenome/pggb/tree/v0.2.0
https://github.com/pangenome/pggb/tree/v0.2.0#homogenizing-and-ordering-the-graph-with-smoothxg
https://github.com/pangenome/pggb/tree/v0.2.0#homogenizing-and-ordering-the-graph-with-smoothxg
https://github.com/pangenome/PanSN-spec
https://github.com/pangenome/PanSN-spec
https://pggb.readthedocs.io/en/latest/
https://pggb.readthedocs.io/en/latest/
https://doi.org/10.1101/2022.02.14.480413
https://github.com/GFA-spec/GFA-spec
https://doi.org/10.1371/journal.pgen.1007479
https://doi.org/10.1371/journal.pgen.1007479


Guarracino, A., Heumos, S., Nahnsen, S., Prins, P., and Garrison, E. (Jan. 2022). ODGI:
understanding pangenome graphs. bioRxiv: 2021.11.10.467921. doi: 10.1101/2021.11.10.
467921.

Gundappa, M. K., To, T.-H., Grønvold, L., Martin, S. A. M., Lien, S., Geist, J., Hazlerigg,
D., Sandve, S. R., and Macqueen, D. J. (Jan. 2022). Genome-Wide Reconstruction of
Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid
Evolution. Molecular Biology and Evolution 39 (1): msab310. doi: 10.1093/molbev/msab310.

Hartley, G. and O’Neill, R. J. (2019). Centromere Repeats: Hidden Gems of the Genome.
Genes 10 (3). doi: 10.3390/genes10030223.

Heller, D. and Vingron, M. (Sept. 2019). SVIM: structural variant identification using mapped
long reads. Bioinformatics 35 (17): 2907–2915. doi: 10.1093/bioinformatics/btz041.

Hickey, G., Heller, D., Monlong, J., Sibbesen, J. A., Sirén, J., Eizenga, J., Dawson, E. T.,
Garrison, E., Novak, A. M., and Paten, B. (Feb. 2020). Genotyping structural variants in
pangenome graphs using the vg toolkit. Genome Biology 21 (1): 35. doi: 10.1186/s13059-
020-1941-7.

Ho, S. S., Urban, A. E., and Mills, R. E. (Mar. 2020). Structural variation in the sequencing
era. Nature Reviews Genetics 21 (3): 171–189. doi: 10.1038/s41576-019-0180-9.

Houston, R. D., Bean, T. P., Macqueen, D. J., Gundappa, M. K., Jin, Y. H., Jenkins, T. L.,
Selly, S. L. C., Martin, S. A. M., Stevens, J. R., Santos, E. M., Davie, A., and Robledo, D.
(July 2020). Harnessing genomics to fast-track genetic improvement in aquaculture. Nature
Reviews Genetics 21 (7): 389–409. doi: 10.1038/s41576-020-0227-y.

Huang, W., Li, L., Myers, J. R., and Marth, G. T. (Feb. 2012). ART: a next-generation se-
quencing read simulator. eng. Bioinformatics (Oxford, England) 28 (4). Edition: 2011/12/23
Publisher: Oxford University Press: 593–594. doi: 10.1093/bioinformatics/btr708.

Layer, R. M., Chiang, C., Quinlan, A. R., and Hall, I. M. (June 2014). LUMPY: a probabilistic
framework for structural variant discovery. Genome Biology 15 (6): R84. doi: 10.1186/gb-
2014-15-6-r84.

Li, H., Feng, X., and Chu, C. (Oct. 2020). The design and construction of reference pangenome
graphs with minigraph. Genome Biology 21 (1): 265. doi: 10.1186/s13059-020-02168-z.

Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., Hvidsten, T. R.,
Leong, J. S., Minkley, D. R., Zimin, A., Grammes, F., Grove, H., Gjuvsland, A., Walenz, B.,
Hermansen, R. A., von Schalburg, K., Rondeau, E. B., Di Genova, A., Samy, J. K. A., Olav
Vik, J., Vigeland, M. D., Caler, L., Grimholt, U., Jentoft, S., Inge Våge, D., de Jong, P.,
Moen, T., Baranski, M., Palti, Y., Smith, D. R., Yorke, J. A., Nederbragt, A. J., Tooming-
Klunderud, A., Jakobsen, K. S., Jiang, X., Fan, D., Hu, Y., Liberles, D. A., Vidal, R.,
Iturra, P., Jones, S. J. M., Jonassen, I., Maass, A., Omholt, S. W., and Davidson, W. S.
(May 2016). The Atlantic salmon genome provides insights into rediploidization. Nature
533 (7602): 200–205. doi: 10.1038/nature17164.

Liu, S., Gao, G., Layer, R. M., Thorgaard, G. H., Wiens, G. D., Leeds, T. D., Martin, K. E.,
and Palti, Y. (2021). Identification of High-Confidence Structural Variants in Domesticated
Rainbow Trout Using Whole-Genome Sequencing. Frontiers in Genetics 12. url: https:
//www.frontiersin.org/article/10.3389/fgene.2021.639355.

Lu, T.-Y., Munson, K. M., Lewis, A. P., Zhu, Q., Tallon, L. J., Devine, S. E., Lee, C., Eichler,
E. E., Chaisson, M. J. P., and The Human Genome Structural Variation Consortium (July
2021). Profiling variable-number tandem repeat variation across populations using repeat-
pangenome graphs. Nature Communications 12 (1): 4250. doi: 10 . 1038 / s41467 - 021 -
24378-0.

33

https://doi.org/10.1101/2021.11.10.467921
https://doi.org/10.1101/2021.11.10.467921
https://doi.org/10.1093/molbev/msab310
https://doi.org/10.3390/genes10030223
https://doi.org/10.1093/bioinformatics/btz041
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1038/s41576-019-0180-9
https://doi.org/10.1038/s41576-020-0227-y
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1186/gb-2014-15-6-r84
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1038/nature17164
https://www.frontiersin.org/article/10.3389/fgene.2021.639355
https://www.frontiersin.org/article/10.3389/fgene.2021.639355
https://doi.org/10.1038/s41467-021-24378-0
https://doi.org/10.1038/s41467-021-24378-0


Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., and Sedlazeck, F. J.
(2019). Structural variant calling: the long and the short of it. Genome Biol 20 (1). Type:
Journal Article: 246–246. doi: 10.1186/s13059-019-1828-7.

Martiniano, R., Garrison, E., Jones, E. R., Manica, A., and Durbin, R. (Sept. 2020). Removing
reference bias and improving indel calling in ancient DNA data analysis by mapping to a
sequence variation graph. Genome Biology 21 (1): 250. doi: 10.1186/s13059-020-02160-7.

Mérot, C., Stenløkk, K. S. R., Venney, C., Laporte, M., Moser, M., Normandeau, E., Árnyasi,
M., Kent, M., Rougeux, C., Flynn, J. M., Lien, S., and Bernatchez, L. (Apr. 2022). Genome
assembly, structural variants, and genetic differentiation between lake whitefish young species
pairs (Coregonus sp.) with long and short reads. Molecular Ecology n/a (n/a). Publisher:
John Wiley & Sons, Ltd. doi: 10.1111/mec.16468.

Monsen, Ø., Stenløkk, K. S., Sandve, S. R., and Sigbjørn, L. (2022). Structural Variation in At-
lantic salmon Strongly Correlated with Telomere Accociated Tandem Repeats. Manuscript
in prep.

Novak, A. M. (Apr. 2022). url: https://github.com/vgteam/vg/issues/3614#issuecomment-
1086329910.

Quinlan, A. R. and Hall, I. M. (Mar. 2010). BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26 (6): 841–842. doi: 10.1093/bioinformatics/btq033.

Raz, O., Biezuner, T., Spiro, A., Amir, S., Milo, L., Titelman, A., Onn, A., Chapal-Ilani, N.,
Tao, L., Marx, T., Feige, U., and Shapiro, E. (Mar. 2019). Short tandem repeat stutter
model inferred from direct measurement of in vitro stutter noise. Nucleic Acids Research
47 (5): 2436–2445. doi: 10.1093/nar/gky1318.

Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A.,
and Schatz, M. C. (June 2018). Accurate detection of complex structural variations using
single-molecule sequencing. eng. Nature methods 15 (6). Edition: 2018/04/30: 461–468. doi:
10.1038/s41592-018-0001-7.

Sinclair-Waters, M., Ødegård, J., Korsvoll, S. A., Moen, T., Lien, S., Primmer, C. R., and
Barson, N. J. (Feb. 2020). Beyond large-effect loci: large-scale GWAS reveals a mixed large-
effect and polygenic architecture for age at maturity of Atlantic salmon. Genetics Selection
Evolution 52 (1): 9. doi: 10.1186/s12711-020-0529-8.

Sirén Jouni, Monlong Jean, Chang Xian, Novak Adam M., Eizenga Jordan M., Markello
Charles, Sibbesen Jonas A., Hickey Glenn, Chang Pi-Chuan, Carroll Andrew, Gupta Nam-
rata, Gabriel Stacey, Blackwell Thomas W., Ratan Aakrosh, Taylor Kent D., Rich Stephen
S., Rotter Jerome I., Haussler David, Garrison Erik, and Paten Benedict (2022). Pange-
nomics enables genotyping of known structural variants in 5202 diverse genomes. Science
374 (6574) (). Publisher: American Association for the Advancement of Science: abg8871.
doi: 10.1126/science.abg8871.

Stenløkk, K., Moser, M., Monsen, Ø., Manousi, D., Nome, T., Árnyasi, M., Kent, M., Sandve,
S., and Lien, S. (2022). The Atlantic salmon pan-genome provides insight into the structural
variation landscape across phylogeographic groups. Manuscript in prep.

Sulovari Arvis et al. (Nov. 2019). Human-specific tandem repeat expansion and differential
gene expression during primate evolution. Proceedings of the National Academy of Sciences
116 (46). Publisher: Proceedings of the National Academy of Sciences: 23243–23253. doi:
10.1073/pnas.1912175116.

Tørresen, O. K., Star, B., Mier, P., Andrade-Navarro, M. A., Bateman, A., Jarnot, P., Gruca,
A., Grynberg, M., Kajava, A. V., Promponas, V. J., Anisimova, M., Jakobsen, K. S., and
Linke, D. (Dec. 2019). Tandem repeats lead to sequence assembly errors and impose multi-

34

https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1186/s13059-020-02160-7
https://doi.org/10.1111/mec.16468
https://github.com/vgteam/vg/issues/3614#issuecomment-1086329910
https://github.com/vgteam/vg/issues/3614#issuecomment-1086329910
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/nar/gky1318
https://doi.org/10.1038/s41592-018-0001-7
https://doi.org/10.1186/s12711-020-0529-8
https://doi.org/10.1126/science.abg8871
https://doi.org/10.1073/pnas.1912175116


level challenges for genome and protein databases. Nucleic Acids Research 47 (21): 10994–
11006. doi: 10.1093/nar/gkz841.

Wang, T., Antonacci-Fulton, L., Howe, K., Lawson, H. A., Lucas, J. K., Phillippy, A. M.,
Popejoy, A. B., Asri, M., Carson, C., Chaisson, M. J. P., Chang, X., Cook-Deegan, R.,
Felsenfeld, A. L., Fulton, R. S., Garrison, E. P., Garrison, N. A., Graves-Lindsay, T. A.,
Ji, H., Kenny, E. E., Koenig, B. A., Li, D., Marschall, T., McMichael, J. F., Novak, A. M.,
Purushotham, D., Schneider, V. A., Schultz, B. I., Smith, M. W., Sofia, H. J., Weissman,
T., Flicek, P., Li, H., Miga, K. H., Paten, B., Jarvis, E. D., Hall, I. M., Eichler, E. E.,
Haussler, D., and the Human Pangenome Reference Consortium (Apr. 2022). The Human
Pangenome Project: a global resource to map genomic diversity. Nature 604 (7906): 437–446.
doi: 10.1038/s41586-022-04601-8.

Zhang, J., Zhao, J., Xu, Y., Liang, J., Chang, P., Yan, F., Li, M., Liang, Y., and Zou, Z.
(2015). Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing
to Tomato Flavor. Frontiers in Plant Science 6. url: https://www.frontiersin.org/
article/10.3389/fpls.2015.01042.

Zook, J. M., Hansen, N. F., Olson, N. D., Chapman, L., Mullikin, J. C., Xiao, C., Sherry, S.,
Koren, S., Phillippy, A. M., Boutros, P. C., Sahraeian, S. M. E., Huang, V., Rouette, A.,
Alexander, N., Mason, C. E., Hajirasouliha, I., Ricketts, C., Lee, J., Tearle, R., Fiddes, I. T.,
Barrio, A. M., Wala, J., Carroll, A., Ghaffari, N., Rodriguez, O. L., Bashir, A., Jackman, S.,
Farrell, J. J., Wenger, A. M., Alkan, C., Soylev, A., Schatz, M. C., Garg, S., Church, G.,
Marschall, T., Chen, K., Fan, X., English, A. C., Rosenfeld, J. A., Zhou, W., Mills, R. E.,
Sage, J. M., Davis, J. R., Kaiser, M. D., Oliver, J. S., Catalano, A. P., Chaisson, M. J. P.,
Spies, N., Sedlazeck, F. J., and Salit, M. (Nov. 2020). A robust benchmark for detection
of germline large deletions and insertions. Nature Biotechnology 38 (11): 1347–1355. doi:
10.1038/s41587-020-0538-8.

35

https://doi.org/10.1093/nar/gkz841
https://doi.org/10.1038/s41586-022-04601-8
https://www.frontiersin.org/article/10.3389/fpls.2015.01042
https://www.frontiersin.org/article/10.3389/fpls.2015.01042
https://doi.org/10.1038/s41587-020-0538-8




Appendix A. Software and code

All scripts used in this thesis are available in the following github repository: https:
//github.com/ankjelst/SalmonGraph

The scripts were run at the Orion High Performance Computing at the University of
Norwegian University of Life Sciences at arbitrary nodes with a variable number of cores
defined in the slurm scripts.

Software has been run in containers with singularity version 3.8.6-1.el7, with the excep-
tion of PanGenie which was installed as described in the readme (https://github.com/
eblerjana/pangenie/tree/d03d66d7da2e158a67a9b7e02c604e7fd09a8d57) as there
were no existing image available.

The PGGB docker image version 0.2.0 was downloaded from github https://github.
com/pangenome/pggb. Odgi was also run in this container.

The vg tools, including giraffe was run with version 1.38.0 Canossa https://github.
com/vgteam/vg.

VISOR image from docker https://hub.docker.com/r/davidebolo1993/visor

ART image from galaxy art:2016.06.05–he1d7d6f_6
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