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Abstract

Mapping areas in an urban environment can be challenging due to various mate-
rials and manufactured structures. The urban environment is a mix of natural and
artificial materials, and finding the right object of a specific material is a challenge
even for the trained eye. Therefore, by applying high spectral resolution hyperspec-
tral imagery it is possible to examine surface materials based on spectral signature.
Combined with LiDAR, it is also feasible to detect the geometrical structure of the
surface. These data can be exposed to a machine learning algorithm to recognize
objects automatically. In this study machine learning algorithms are exposed to
airborne images of roof materials.

This thesis presents an application of semantic segmentation for roof materi-
als based on fused hyperspectral (HySpex VNIR-1800 and SWIR-384) and LiDAR
(Riegl VQ-560i) data acquired from 2021 over Bærum municipality near Oslo in
Norway. The machine learning algorithm is a semantic segmentation model named
Res-U-net with a U-net architecture and a ResNet34 backbone. The Res-U-Net is
a supervised neural network with high capacity to learn high-dimensional airborne
data. The model returns a mask of the urban area that pinpoints the roofs’ position
and materials. The ground truth is generated with information from field work,
a geographical database and the watershed algorithm for object detection. This
ground truth consists of nine different roof materials and background.

The semantic segmentation model is optimized by testing different model con-
figurations for this specific problem. The best model scores 0.903, 0.896, and 0.579
in accuracy score, F1 score weighted and Matthews Correlation Coefficient. For the
binary problem of detecting roof the model scores 0.948, 0.946, and 0.767 on the
same metrics. This study demonstrates that semantic segmentation is viable for
localizing and classifying roof materials with fused hyperspectral and LiDAR data.
Such an analysis can potentially automate several mapping chores and manual as-
signments by systemically processing a larger area in a short time to free human
capacity.
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1 Introduction

1.1 Background and Purpose of Study

Urban environments consist of a mix of natural and artificial surface materials that
reflect and influence the energy consummation, climate, and ecological condition of
cities and suburbs [1]. These surfaces can be materials ranging from wood, concrete,
tiles, ceramic, metal, sand, stone and plastic. One of the main components in
urban environment is buildings, manufactured objects built in various materials
directly exposed to nature and precipitation. The variety of building materials can
dramatically change the characteristics of a building. Therefore, it can be beneficial
for authorities and businesses to map areas with roof buildings that can be used in
various amounts of analysis, reports, maintenance or conventional chores.

There are several ways of mapping the buildings’ roofs. For instance, the owner
of the building can report it, someone can collect the information manually or use
a sensor far away to photograph the roofs. The last, remote sensing, is by far the
most effective for covering a larger area in a short amount of time. Converting
this remotely sensed information is challenging due to the complexity, spatial and
spectral diversity in the urban area [2, 3].

Hyperspectral imagery has high spectral resolution and can be utilized in finding
spectral differences in materials. It has high potential in material-oriented mapping
by recognition spectral characteristics in surface materials [1]. Combining this with a
laser rangefinder that measures the geometry of objects can lead to both spectral and
spatial information of an area. The challenge still stands to find valuable information
in this dense fog of data.

Machine learning has the later years excelled in image analysis [4]. By exposing
data to particular kinds of machine learning algorithms, valuable information can
be derived from the dense fog. In previous years different techniques have been used
to extract such information from hyperspectral images and a combination of hyper-
spectral and laser data. In 2005 Lemp and Weider [5] used hyperspectral and laser
scanning data to categorize roof surfaces in segments. They manually extracted the
roof with a digital surface model and a vegetation filter. These roofs were man-
ually differentiated based on the spectral information. In 2007 S. van der Linden
et al. [6] used a support vector machine to classify different objects in the urban
environment. Fast forward to 2019, A. Rangnekar et al. [7] introduced a data set
on airborne hyperspectral images. They used several convolutional neural networks
to localize and classify different objects in that data set. Talented scientists, like
F. Trevisiol et al., [8] have classified roof materials from high spectral resolution
satellite images, but did prework to isolate the roof using laser data before classi-
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fication. In 2020 R. Senchuri [9] wrote the predecessor of this master’s thesis. He
analyzed and compared shallow machine learning to recognize objects in the ur-
ban environment. This master’s thesis will take his work to the next step and use
deep learning semantic segmentation in the same location. R. Senchuri’s work was
mainly focused on pixel-based classification that often results in a salt-pepper effect
of different classes in an area. I want to eliminate that issue of mixed pixels, and
consider the roofs like cohesion objects.

Using neural network model architectures from image segmentation and exposing
these models to a fused hyperspectral and laser data set makes it interesting to see
the possibility of localizing and classifying roofs. This is done by feeding the network
the raw data without the aid of object extraction before classification. The neural
networks job is to find and recognize the roof materials all by itself. The thesis
objectives can be summarized in the forms of two research questions:

• Can semantic segmentation models detect roofs in urban environments
with fused hyperspectral images and LiDAR data?

• Is semantic segmentation viable for localizing and classifying roof
materials in urban environments by utilizing fused hyperspectral images
and LiDAR data?

1.2 Thesis Structure

This thesis is divided into six chapters. It begins with background and purpose for
the study. Chapter two introduces the theoretical background. Followed by the third
chapter that explains the method of data processing and model optimization. The
fourth chapter explores the results, and the fifth chapter is a discussion about data
quality, model performance, comparison to similar work and future suggestions. The
thesis finishes with a conclusion. The appendix contains optimization, experiments
and results that have a minor impact on the outcome of the thesis. The source code
is a Github repository https://github.com/stianteien/M_DV_V2022, where the
last commit for the thesis is f73b658. Additionally, two demonstration jupyter note-
books in Table 1.1 show the processes of generating the ground truth and semantic
segmentation. These two processes are the essential part of this master’s thesis, and
they give practical examples of how the research questions are solved.

Table 1.1: Demonstrative jupyter notebooks for essential parts of generating the
ground truth and training a semantic segmentation model.

Filename Link Commit hash
demo generate ground truth.ipynb Github-Link 5900512
demo semantic segmantion.ipynb Github-Link f73b658
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2 Theory

2.1 Remote Sensing

The main objective of remote sensing is to gather information at a distance. In
airborne remote sensing, the Earth’s land and water surfaces are generally the point
of interest. These surfaces get observed for the purpose of measuring the reflected
or emitted electromagnetic energy with sensors [10].

The history of remote sensing origins from the early practice and technology. In
1839 Loius Daguerre (1789-1851) reported the results of his experiment with pho-
tographic chemicals. This date forms the milestone of the very birth of successful
photography. Later on in 1858, Gaspard-Félix Tournachon (1829-1910) took the
first airborne photo from a tethered air balloon in France. In the following years,
airplanes were the primary platform for airborne images. World War I and II ex-
celled the necessity of aerial reconnaissance. As a result of the increasing demand
for remote sensing the momentum in technological innovation sped up, and resulted
in technologies and equipment such as radars, weather satellites and digital image
processing. In the 1980s and 1990s hyperspectral sensors, LiDAR (light detection
and ranging) and global remote sensing systems were developed. Nowadays, re-
mote sensing is used in various applications by the military [11], governments [12],
agriculture [13], environmental monitoring [14], scientist [15] and even as a hobby
[16].

2.1.1 Electromagnetic Radiation

Electromagnetic radiation is electromagnetic waves traveling through space carrying
electromagnetic radiant energy [17]. Electromagnetic waves consist of an electric and
a magnetic field. The waves’ surface normal vectors are oriented orthogonal to one
another and travel as vectors in the same direction. The length of the waves tells
the energy of a wave and formulates as

Energy =
hc

λ
, (1)

where h is Planck’s constant (6.62607015·1034Js), c is the speed of light (2.99792458·
108m

s
) and λ is the wavelength. Wavelength is the mean distance between wave

crests and is measured in nano- (nm) or micrometers (µm). Figure 2.1 illustrates
an electromagnetic wave with the wavelength λ, electric and magnetic field.
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Figure 2.1: Electromagnetic waves consist of electric and magnetic fields perpendic-
ular to one another and the direction of propagating. λ is the wavelength between
wave crests. Figure used under a CC BY-SA 4.0 International license.

Electromagnetic radiation is categorized by its wavelength, and is called the elec-
tromagnetic spectrum that ranges from low frequency radio waves to high frequency
X-rays and gamma waves. Humans can see some parts of the electromagnetic spec-
trum, and this is what we call visible light. Visible light contains electromagnetic
radiation with wavelengths from 400nm to 750nm, and in this range, every visible
color appears. In the field of remote sensing, electromagnetic waves are grouped
based on their wavelengths. For instance, the lower frequency waves from 400nm
to 1000nm are grouped as visible and near infrared (VNIR), waves in the range
of 1000nm to 2500nm are called short-wavelength infrared (SWIR), mid and long
wavelength infrared are waves with λ between 3000nm to 15000nm. The last group
is far infrared and contains wavelength from 15000nm to 1,000,000nm [18].

2.1.2 Electromagnetic Radiation Interference with Surfaces

When electromagnetic radiation emits from the sun or an external light source, it
travels through space and interacts with particles and gases in the atmosphere. This
causes the radiation to scatter, reflect, transmit and to be absorbed by the elements
and particles. The radiation that gets reflected by the surface travels through the
atmosphere once again and then hits the sensor that records the energy. Figure 2.2
illustrates this interaction.

When the transmitted radiance reaches the surface of the earth and interacts
with surfaces, the radiance is reflected, absorbed and transmitted based on the
energy and surface material. For instance, Vegetation absorbs primarily red wave-
lengths and reflects the green, and we observe the vegetation as green. The material
surfaces and density have a great impact on electromagnetic radiation.
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Figure 2.2: Electromagnetic radiation interference with different kinds of obstacles
in their paths.

2.1.3 Radiance and Reflectance

Radiance is the value of reflected light in each wavelength [19]. Radiance includes
all radiation reflected from the surface, including interfering reflection from nearby
objects. Radiance is derived from what the sensor detects. The rawest data is a
digital number that corresponds to the intensity of the electromagnetic radiation
for the recorded wavelength. These digital numbers are converted to radiance based
on the physical properties of sensor. Even though the values are transformed with
respect to the sensor, the data still contains a lot of noise from the atmosphere.
Radiance is heavily influenced by the condition of the atmosphere and light. The
atmosphere and light condition are constantly changing, and the data needs to be
corrected to get stable repetitive values before an analysis.

Reflectance is the ratio between reflected and incident radiation as a function
of wavelength [20]. In other words, how much of the light gets reflected. Radiance
consists of atmospheric effects, and estimating the reflectance spectrum from the
radiance spectrum is a crucial step in aerial image analysis applications. To obtain
a reflectance spectrum, an atmospheric correction needs to be performed [21].

2.1.4 Corrections

Atmospheric correction is a process for removing the atmospheric effect of the radi-
ance values from images taken by satellite or airborne sensors [22]. The correction
processes radiance data to reflectance data. Essential factors when correcting are
aerosol thickness, water vapor, airplane altitude, the terrain, time and sun angle.

Ortorectification is one correction in the process of making ortophoto [23]. Or-
tophotos are aerial photos seen directly above. When capturing aerial photos the
photos are often taken from an angle. This angle causes the photo’s perspective
to see the object slightly from the side. Therefore, images over the same area are
processed together to create results that look like they are captured directly above
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the areas. Figure 2.3 illustrates the angle effect.

Figure 2.3: Illustration of how angle from an airborne image can affect the photo.
Ortorectification is used to correct the photo. Illustration under CC0 1.0 licence.

2.1.5 Georeferencing

X. A. Yao, author of the book Georeferencing and Geocoding [24], explains georef-
erencing as the process of giving the internal coordinate system of a map or aerial
scan relative to a geographic coordinate system. It is one of the fundamentals of
geographic information system (GIS). Every location on the earth’s surface can be
specified by a set of values in a coordinate system [24]. When georeferencing aerial
photos, the operators use the position of the airplane, altitude, airspeed and known
locations on the ground. In combination with a Global Navigation Satellite System
(GNSS) they pinpoint the exact location of the photographed area.

2.1.6 Capture Methods

In aerial photography there are two major scan methods: push broom and whisk
broom. Push broom uses a line, often called line-scan, of detectors that are perpen-
dicular to the flight direction and ground [25]. Each detector focuses on their points
of the scan line. This method gives a robust, instantaneous and clear signal from
the scanned area, but requires calibration on all detectors. Whisk broom scanners
move back and forth like a whisk broom, and capture a whole strip at once [26].
Figure 2.4 illustrates a flight where both methods are used. Field of view (FOV)
explains the width of the capture angle.

Remote sensing sensors are categorized into two types: passive remote sensing
sensors and active remote sensing sensors. Passive remote sensing, such as hyper-
spectral images, requires radiation to be emitted or reflected from a surface. This
means that an external source of electromagnetic radiation, like the sun, must be
emitting radiation while using a passive remote sensor. Passive remote sensors are
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Figure 2.4: Illustration of push broom to the left and whisk broom methods to the
right in aerial imagery. FOV explains field of view, the width of the capture angle.
Illustration modified from [27].

sensitive to atmospheric conditions and illumination. Active remote sensors, like
LiDAR, emit radiation like a laser beam, and are less responsive to external factors
[28]. An active sensor does not need an external light source, and can for instance use
the intensity measurement of the beam to map shaded areas in urban environments
[29]. The sensors are complementary and are often used in combination.

2.1.7 Felles Kartdatabase

Felles KartdataBase (FKB) is a central part of the collection in the Norwegian base
map [30]. It is fundamental geographical information to enact statutory and regu-
latory causes. The maps can be used in projects, administrative processes, analysis
or creating new maps. The database is owned by the “Geovekst”-collaboration 1

in close association with the responsible municipalities. FKB contains information
about area resources, railways, buildings, building projects, contours, cables, air-
ports, nature information, tracks, water and roads. FKB accommodates such an
amount of information, and gets used regularly in governance, the information gets
updated regularly.

2.2 Hyperspectral Imaging

Hyperspectral imaging is a technique that combines conventional images with optical
spectroscopy [31]. The images have the advantage of combining spatial information
of an area, and spectral data from a wide range of electromagnetic wavelengths.
Hyperspectral images originate from remote sensing and have been used in various

1A collaboration between The Norwegian Mapping Authority, municipalities, Norwegian Public
Roads Administration, the county municipalities, Energy Norway, The Norwegian Ministry of
Agriculture and Food, Bane NOR, Telenor and The Norwegian Water Resources and Energy
Directorate
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applications like vegetation and water resources control [32, 33], food safety and
control [34] and biomedicine [35]. NASA has through the years been one of the
leading developer of the hyperspectral cameras for mapping the earth while orbiting
it [36].

A hyperspectral image can be seen as a cube. The first two dimensions are
the spatial dimensions representing the shape of the hyperspectral image, while the
third, spectral dimension represents the number of spectral bands [37]. These bands
contain optical information recorded at an exact wavelength. The recordings are
obtained so each pixel in the image has an approximate continuous range of spectral
information [38]. An example of a hyperspectral cube is shown in Figure 2.5. This
cube has spatial dimensions x and y. Y is obtained with the photographically
technique push broom scan. The spectral axis λ contains optical information from a
range of wavelengths. In this case the bands span from 400nm to 700nm called the
visible light range (VIS). A hyperspectral cube can give a vast amount of information
about objects with the same spectral capability as conventional images.

Figure 2.5: An example of a hyperspectral cube. X and Y are the spatial dimensions
and λ is the spectral axis. One pixel is extracted and the spectral information is
visualised. In this example, the bands cover the spectrum of visible light [39].
Illustration under CC BY 4.0 International licence and personal approval by the
author.

2.2.1 Unfolding a Hyperspectral Cube

The hyperspectral cube has three dimensions, but most algorithms only have a two
dimensional input. Therefore it is beneficial to unfold the cube before applying
statistical modeling. The most common approach to unfolding the cube is to use
the pixels as data points and the spectral information as features. This will reduce
the dimensions of the data from three to two dimensional, and in the process the
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spatial information is lost. However, this shape is favorable for exploiting spectral
information and variance from all the pixels. In Figure 2.6, a hyperspectral cube
is unfolded. The wavelengths in the spectral dimension now become the features
dimension of a table-like data matrix.

Figure 2.6: Hyperspectral cube unfolded. The cube is transformed into a two di-
mensional matrix. Reprinted from [40] with permission from Elsevier.

2.2.2 Spectral Signature

Spatial resolution from airborne remote sensing is often so coarse it is difficult to
identify objects. Therefore, it is interesting to inspect the spectral signatures of
the surface of materials. The spectral signature of an object can be defined in the
solar-reflective region by its reflectance as a function of wavelength, measured at
an appropriate spectral resolution [10]. Physical properties and chemical composi-
tion determinate absorption and reflection for a material [41]. These characteristic
properties give the basis for unique spectral signatures for different materials. Con-
ventional images contain three wavelengths: red, blue and green. The spectral
signature of these three wavelengths is often not enough to identify objects. This
motivates that hyperspectral images can distinguish materials based on differences
in their spectral signatures. In Figure 2.7 are some typical spectral signatures of
land cover types. The reflectance of a material can vary in strength reliant on the
incoming solar reflections. Therefore, the spectral signature is often the same shape
independent of the light conditions. For instance in Figure 2.7, green vegetation will
have a similar shape in different light settings, but the reflectance amplitude may
vary. Even though there is much information to extract from the spectral signature,
the spatial resolution still limits some of the analysis. For instance, if an urban area
with a car is scanned and one pixel shows the whole car, it is challenging to see that
pixel as a car. Using the spectral signature for the metal of the car, it is possible to
assume that the pixel is an automobile.
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Figure 2.7: Typical spectral signatures of different land covers in visible and infra-
red region of the electromagnetic spectrum. Illustration with modification from [42].

2.3 LiDAR

Light Detection and Ranging (LiDAR) is an optical sensor used to measure points
of physical objects [43]. LiDAR is an active sensor that uses a laser beam aimed at
an object, then with a very precise measurement counts the time of the returning
laser beam. Thus, it calculates the distance to the object. LiDAR is both fast
and accurate, therefore it is suitable for mapping larger complex areas. LiDAR
is a viable solution for ongoing tasks for mapping infrastructure and terrain for
modelling, preliminary maintenance and analysis [44]. LiDAR scans often produce
a point cloud, where each point is the distance from the device. In Figure 2.8 is a
typical point cloud from a LiDAR scan. The density of the clouds varies from type
of scanner, distance from the scanner and texture of an object. Scans with a high
density of points enable objects to be recognized easier. In airborne LiDAR scans
variation of point density from scans is minimal.
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Figure 2.8: Point cloud of NMBU from Kartverket’s open-access database. The
point cloud has RGB colors and the data points are collected with an airborne
sensor.

2.3.1 LiDAR Returns and Intensity

When the LiDAR system fires a laser beam it hits various surface materials. These
materials will have different influences on the beam. The intensity of a return is a
result of the material’s reflection, transmission and absorption of light. This can tell
something about what kind of material the surface contains [45]. Moreover, if the
laser beam transmits an object, the system can receive multiple returns. Multiple
returns are typical when scanning vegetation because beams pass the leaves or pine
needles. For instance, if the beam hits a tree, the first return will have information
about the top cone. The next returns will give information about the middle part,
and the last return will be something impenetrable like the ground. As seen in
Figure 2.9 the first return is the top of the tree, then intermediate returns inside the
tree, and the last return of the impenetrable ground. Some modern LiDAR scanners
also get the intensity of each return as seen on the right side of the Figure 2.9.

The first return is usually the most significant when combining LiDAR with
hyperspectral images. Because hyperspectral cameras are passive sensor and will
often only see the top surface of an object. Combining these two sensors can give
powerful insight when performing surface analysis.

2.3.2 Digital Surface Model

Digital Surface Model (DSM) represents all the natural and built features on the
surface of an area [46]. DSM is usually the first return of a LiDAR scan, and gives
a representation of the scanned area. The DSM is extracted from the point cloud of
an area, and generated by using the height of the first return [47]. DSM has many
successful applications, and the most profitable is analyzing the surface layer of an
area. For instance, monitoring forest regeneration [48], wildlife fire risk assessment
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Figure 2.9: Different return of LiDAR with the intensity of the different returns.

[49] and extracting urban features [50]. In Figure 2.10 is an example of a DSM where
the colors indicate the height of the surface. Note that the trees and buildings on
the hill are more colorful than similar trees and buildings in the lower areas.

2.3.3 Digital Terrain Model

Digital Terrain Model (DTM) represents the terrain surface of an area. To achieve
a DTM every object that is not terrain needs to be filtered out from the DSM.
Natural vegetation above the terrain and human-made objects like buildings and
power lines are some of the objects that need to be filtered out to make a smooth
DTM that represents the terrain. To generate a DTM, points in the point cloud
must be classified as terrain or not-terrain. For vegetation the last return is often the
ground, but for objects like buildings, external information needs to be supplemental
or an interpolation from the nearest points. Figure 2.10 shows DTM where color
represents the heights. Notice how the middle part of the area has a colorful hill.

2.3.4 Normalized Digital Surface Model

Normalized Digital Surface Model (nDSM) combines DSM and DTM. The nDSM
is the relative elevation of an object from the surrounding terrain. By subtracting
the DTM from the DSM,

nDSM = DSM −DTM, (2)

the remaining part is the nDSM, the heights of the objects. This gives a basis for
comparison of objects on different terrain elevations. Objects like buildings, trees,
cars and power lines now stand out with their relative height from the surrounding
ground. Figure 2.10 represents an example of a nDSM. Now see how the hill in the
middle of the area is lowered. The colors represent the relative height in the area.
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Figure 2.10: DSM, DTM and nDSM.

2.4 Machine Learning Algorithms

Machine learning is a study of algorithms that can derive knowledge from data in
order to make predictions [51]. These algorithms run on computers to significantly
increase computation speed and increase application. Instead of requiring humans
to manually derive rules and build models by analyzing large amounts of data,
machine learning offers an effective alternative to learning patterns and knowledge
in the data [51] resulting in data-driven processes and freeing human capacity.

Machine learning has a direct impact on almost everyone’s life nowadays. From
robust email filters, voice recognition software on smartphones to computer vision
in medicine or automobiles [52, 53, 54, 55].

The jungle of machine learning can be quite obscure. However, it is possible
to categorize in three main types: supervised learning, unsupervised learning and
reinforcement learning [51]. Supervised learning refers to an algorithm that trains
on training data with known labels. The labels are called the ground truth, and the
algorithm makes calculations to imitate this ground truth based on the input data.
Training on known data makes it possible to estimate the outcome on unseen data.
Unsupervised machine learning trains on data with no known ground truth. The
algorithm tries to distinguish based on meaningful structure within the data. These
algorithms often group the data into clusters or perform a dimension reduction.
The idea behind reinforcement learning is to develop a model that improves its
performance on interaction with an environment [51].

The general workflow of a machine learning algorithm seen in Figure 2.11 uses
training data, with or without labels. Then creates a model that can give a predic-
tion on new, unseen data.
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Figure 2.11: Typical workflow of a machine learning algorithm. Training data is
used to fit a model to make a prediction on new data. The Figure is inspired by
[51].

Even though machine learning has excelled in many scientific fields, there are
some limitations. Bias in the data set is the foremost issue when applying machine
learning. In man-made data sets there are unconscious and institutional biases
already present in society [56]. M. Garcia writes that without careful consideration,
our technology will be just as racist, sexist, and xenophobic as we are. For instance,
when M. Riberio et al. used one of Google’s pre-trained networks to classify husky
or wolf in an image. The prediction model discovered that wolf images have snow,
so once a husky image with snow is presented to the model, it classifies the image as
a wolf [57]. Survivor bias is an example of selecting the desirable bias that can lead
to overly optimistic beliefs because multiple failures are ignored. This happened in
world war II when the officers examined the surviving airplanes’ bullet holes [58].
They thought that reinforcing these areas would make the aircraft withstand longer
in combat. The misjudgment by the officers was that they reinforced based on the
surviving airplanes, and the casualties that did not return home probably were hit
in other areas. Figure 2.12 shows most hit areas on the plane. There is a great
chance that the casualties might be hit in the engines or cockpit. Machine learning
models might find hidden patterns in the model, but it is important to understand
what kinds of patterns this might be.
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Figure 2.12: Examination of most frequent bullet hits of returning flights in WWII.
The officers reinforced these areas without considering the causality airplanes might
be hit elsewhere. Figure under CC BY-SA 4.0 International Licence

Another challenge when applying machine learning is overfitting the model. In
general, the goal is to maximize the model’s predictive accuracy on new data. Not
necessarily its accuracy on the training data [59]. It is usually better to make the
model solve the general problem with some errors. Instead of making the model
fit perfectly into the training data. Figure 2.13 shows a good compromise between
under- and overfitting that will make a general model for a problem.

Figure 2.13: An example of under- and overfitting, and how a good compromise can
results in a general model [51]. Figure used by permission from Packt publisher. All
rights reserved to the author and publisher.

2.5 Artificial Neural Networks

A philosophy in artificial intelligence is that our brain follows the law of physic
and chemistry, and as our knowledge expands, it might be possible to reproduce
the nervous system with some physical device [60]. The first step towards this
was in 1943 when W. McCulloch and W. Pitts wrote a paper on how neurons act
[61]. Since that discovery, it went almost two decades before B. Widrow and M.
Hoff in 1959 developed ADALINE [62]. An adaptive linear model that is still in
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commercial use. In the upcoming decades, neural networks were mostly limited by
computational power. In the first years after the turn of the millennium, artificial
neural networks raised in popularity. In 2012 AlexNet [63] joined the ImageNet
competition and performed considerably better than the runner-ups. This started
an era of well-performing neural network. The computer hardware was able to
handle an immense amount of calculations, thus commercial usage excelled.

A simple artificial neural network can consist of an input layer, one or more
hidden layers and one output layer. Each layer contains a set of nodes, and between
the layers are weights connected to nodes in the previous and next layer. These
weights are often called parameters and are the editable and adaptive component of
a neural network. When the network is fully connected it is often called a multilayer
perceptron (MLP) [51]. Figure 2.14 shows a small MLP with two inputs, two hidden
layers of three neurons each and output of two neurons. The purple nodes are the
bias, they are often set to 1 and has adjustable weights. This last output is the
prediction the neural network makes. The orange arrows are the weights from each
neuron. Each weight multiplies with the previous neuron inside the neuron and
sums up in the current neuron. X1 and X2 are the input features, ŷ1 and ŷ2 are
model’s predictions.

Figure 2.14: Multilayer perceptron with two neurons as input, two hidden layers
with three neurons each, and one output. The X in the input data, and ŷ as the
prediction. The orange lines are the weights from each neuron. The purple nodes
are the bias.

If we look at the upper neuron in the second hidden layer, the multiplication
will from neuron will look like
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where a
(2)
0 is the neuron. The 0 stands for the index as the first neuron, the 2

stands for the second layer. w is the corresponding weights from the neurons and wb

is the weight from the bias. Inside each neuron, a nonlinear activation function often
controls the sum of neurons and weights. The bias allows us to shift the activation
function left or right.

The results of neural networks are often so good that they exceed human capabil-
ity. Because of the nonlinear characteristics and capacity of some neural networks,
the idea is that a neural network can learn anything [64].

2.5.1 Backpropagation

The neural network input values get processed through the network and the net-
work makes a prediction. Based on a loss function and optimizing strategy, the
prediction compares to a ground truth, and the parameters adjust to fit the ground
truth better. This adjustment is usually done by a process called backpropagation.
Backpropagation is an intricate process that solves an optimization problem and
adjusts every weight based on that solution. Based on the loss function, backprop-
agation finds the relative proportion of the change in weights that causes the most
rapid decrease in loss. Technically, backpropagation finds the negative gradient of
a loss function, the difference between a predicted and a true state. Then takes the
partially derived of this function for each weight and multiplies with an often low
learning rate. The weight change can be seen as

w := w +∆w, where ∆w = −ηJ(w), (4)

where J is the loss function and η is the learning rate. If we look at the node from
earlier and the connecting weight with the green line to the top right, the partial
derivative of the weight can be seen as

∂

∂wout
0,1

J(W ) = a
(2)
0 δ

(out)
1 , (5)

where δout1 is the error term for the second out node. In this case δout1 will be the
difference between the prediction and the value after the activation function. The
direction for the optimization often ends up at a local minimum. This minimum
describes the least wrong, or the “rightest”, a neural network can take.

2.5.2 Activation Function

Each node has an activation function. This function makes the neural network learn
nonlinear conditions. Two of the most popular activation functions are sigmoid [65]
and rectified linear unit (ReLU) [66]. The sigmoid function is characterized as an
S shape function that converts a real value into a value between 0 and 1. One
challenge with the sigmoid function is when derivative of larger numbers can be
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close to zero. As seen above, when performing backpropagation we find the partial
derivative of the loss function. If the derivative is close to zero, the change in the
weights is close to zero, and the neural network does not learn. This can cause the
vanishing gradients problem [67]. The sigmoid function is given by

ϕsigmoid(x) =
1

1 + e−x
. (6)

To the left in Figure 2.15 is the sigmoid function and its derivative.
ReLU is mainly known for solving the computational problem of vanishing gra-

dients. ReLU is defined as

ϕReLU(x) = max(0, x), (7)

and takes the max of 0 or the input value. Every value beneath 0 will be filtered
by the ReLU function. That means that the derivative of the function will either
be 0 or 1. In Figure 2.15 to the right is this function with its derivative illustrated.

Figure 2.15: Sigmoid and ReLU activation functions with corresponding derivatives.

The last activation function that needs to be mention is the softmax activation
function. This function is often used as the last layer of a neural network. It is a
normalized exponential function [68] for multiple dimensions, and used to normalize
the last output to be a probability distribution of the outputs. With K as number
of classes, the softmax function can be described as

ϕsoftmax,i(x) =
exi∑K
j=1 e

xj

for i = 1, ..., K and x = x1, ..., xK). (8)

2.5.3 Convolution Neural Networks

A convolution neural network (CNN) is an advancement of the artificial neural
network and is especially well-performing in image analysis. CNNs are a family of
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models that were originally inspired by how the visual cortex of the human brain
recognized objects [51]. It was first introduced when Y. LeCun et al. proposed a
neural network architecture to recognize handwritten digits from images [69]. CNN
is similar to ANN with an input layer, several hidden layers and an output layer.
They both arose from the same concept of adaptable weights. However, there are
notable differences in the arrangement of nodes and weights. CNN contains filters
that maneuver over the image and do a convolution. In these filters, the same
weights get used in different patches of the input image. A convolution is a relation
between two vectors. It can be formulated as

y = x ∗w, (9)

where x is the input and y is the output. w is the relation between those two
vectors. In the convolution, the w uses a sliding window approach to get the output,
dot product, for each element in the x vector [51]. This can be formulated as

y = x ∗w −→ y[i] =
k=m∑
k=0

x[i+m− k]w[k], (10)

and i is the index and m is the length of the vector. To solve the problem where
the convolution hits the edges of a vector, there is usually a padding of zeros to
control the shape of the output.

The idea of CNN is to extract important features from the data. These can
be a color combination of pixels, intensity in the color channels or the shape of an
object. Since CNN has filters that maneuver over the data, the filters will examine
an area including the surrounding pixels. By doing so, CNN will understand both
the spatial and spectral context.

Figure 2.16 shows a short CNN with an input image and convolution layers that
extract the import features of the image. Lastly the filters are flattened and feed
into an artificial neural network that classifies the image.
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Figure 2.16: CNN with convolution layers that extract the import features of the
image. Then fed into an artificial neural network to classify the image. Figure used
under a CC BY-SA 4.0 International license.

2.5.4 Layers in CNN

There are many layers that can be used in a CNN. Here is a collection of the relevant
in this report.

Convolution 2D is the most interesting layer in a CNN. This layer has a kernel
size, often as a square of 3x3 pixels or bigger, with associating weights for each pixel
in the filter. These weights are the adjustable parameters that learn the features of
the data. The filter will convolve over the data, and the stride decides how many
pixels the filter will move horizontal or vertical over the image. This will influence
the output from the layer. For instance, if the filter skips every second pixel, the
output will be half of the original image. If the filter iterates every pixel and the
image has a padding on the edges to including edge pixels, the output will be the
same size as the input.

Maxpooling layer has a filter like convolution 2D, but with no weights. This filter
extracts the maximum value of in filter area. By doing so, the data gets reduced
and hopefully the most important features are extracted.

Concatenate has the ability to merge two tensors, or arrays, in the feature di-
mension. In an image example, the concatenate layer merges the filters in the third
dimension, often the feature color channel.

Add layer is almost like concatenate, but instead of merging it adds the values
and keeps its shape throughout the layer.

BatchNormalization normalizes the values so the output mean is close to 0 and
standard derivation is close to 1. The layer learns the weights that lead to mean
near 0 and standard derivation near 1.

Activation layer is a layer that handles the activation. This filter transforms the
data based on the activation selected.

Upsamlingsampling layer upsample the data. It takes the nearest data point and
duplicates it. The interpolation of this can vary based on the desired result.
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2.5.5 Semantic Segmentation

Semantic segmentation is the process of partitioning a digital image into multiple
image segments [70]. This is done by giving each pixel in the image a label. In com-
parison to object detection, semantic segmentation disregards identifying objects
but focuses on classifying every pixel in the image. Instance segmentation identifies
the differences between the objects that are not background. Figure 2.17 shows an
example where the cat and dog are different from each other and the background.

Figure 2.17: Semantic segmentation of dog, cat and background.

2.5.6 U-net

U-net is a convolution neural network architecture with strong image segmentation
results. O. Ronneberger et al. built the network in 2015 and outperformed several
state-of-the-art models [54]. The founders of the architecture say “The architecture
consists of a contracting path to capture context and a symmetric expanding path
that enables precise localization” [54]. This characteristic is suitable for semantic
segmentation in image data where the goal is to localize and classify objects.

U-net is an architecture based on CNN layers. As seen in Figure 2.18 the con-
tracting path consists of the typical architecture of a convolutions network. Each
step consists of two 3x3 pixels convolutions with nonlinear activation. Followed by
a 2x2 pixels maxpooling layer, which takes the max value of a 2x2 pixels filter and
compresses the information into a smaller scale [54]. At each downsample the filter
channels double. On the expanding path, 2x2 pixels up-convolution layers do the
opposite of maxpooling by scaling up the data and entering a two 3x3 pixels con-
volution layers per step. At the same time, samples from the contraction path get
copied and concatenated with corresponding parts after up-convolution.
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Figure 2.18: U-net as shown in [54]. This U-net is not symmetric due to no padding
layers. Figure used under licence by SPRINGER NATURE © [2015].

In Ronnerberg’s application, the U-net was primarily used on medical examples
with heavy data augmentation. But the idea of semantic segmentation has been
applied to other scientific fields. For instance, Z. Pan et al. used U-net in 2020 to
classify buildings and objects in urban villages with satellite data [71].

2.5.7 Deep Residual Network - ResNet-34

Deep residual network (ResNet) was first introduced by K. He et al. in 2016 as a
response to the challenge of training deeper neural network [72]. From the original
paper K. He et al. write: “We explicitly reformulate the layers as learning residual
functions with reference to the layer inputs, instead of learning unreferenced func-
tions. We provide comprehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from considerably increased
depth.” [72].

The trend of neural networks was that they became deeper and the number
of adjustable weights skyrocketed. These deeper networks perform better [73, 74]
than previous networks. Driven by this correlation between deeper nets and well-
performing nets, a question arises: Is learning better networks as easy as stacking
more layers? [72]. However, when the nets become too deep, new hitches arise.
One obstacle for a very deep network was that the error from the prediction did not
reach the start of the network when performing backpropagation. This problem is
reduced by normalized initialization [75] and intermediate normalization layers [76].
K. He et al. then address a new challenge when deeper networks start to converge,
a degradation problem exposes. Accuracy metrics saturate then degrade rapidly.
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This problem is not caused by overfitting, but adding more layers lead to higher
training error, K. He et al. reported and experienced in [72, 77].

Figure 2.19: Deep residual network building block. In each convolution block a skip
connection lets the network learn the residual mapping [72] © [2016] IEEE.

The solution for the degradation of the accuracy problem is deep residual net-
works. K. He et al. say that preceding neural network with many stacked layers
will hopefully learn the desired underlying mapping, but with ResNet, these layers
explicitly fit a residual mapping [72]. As seen in Figure 2.19, a ResNet block shows
how the weighted layers need to learn a residual mapping to optimize. The hy-
pothesis is that optimizing residual mapping is easier than optimizing the original,
unreferenced mapping [72]. Additionally, the skip connections give a shorter way
back to the earlier layers when performing backpropagation.

ResNet-34 got its name from the 34 convolution layers the network has. Other
ResNet configurations span from 18 to 152 layers. Originally, the ResNet-34 output
was a straightforward vector classifier of images, but then F. Milletari presented a
U-net-like architecture that incorporates ResNet-like residual blocks [78]. Combin-
ing the ResNet blocks and U-net architecture, with internal skip blocks in down-
and up-sampling. Alongside the larger skip connections between contracting and
expansion paths. The new combined architecture can lead to faster optimization
and improvement for semantic segmentation [79].

2.6 Accuracy Assessment

Measuring the model’s performance is an important part of evaluation and building
good, reliable statistical models. There are many metrics to measure performance,
and the main idea is how good a model predicts compared to the true labels. Some
metrics emphasize the number of recognized samples, and others punish wrongly
classified samples. Many of the metrics depend on a confusion matrix. A confusion
matrix tells how many samples that are correctly or falsely classified. In a binary
problem these represent as true positive (TP), correctly classified positive class.
True negative (TN) is correctly classified negative class. False positive (FP) is
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falsely classified as positive. And lastly, false negative (FN) is falsely classified as a
negative class. In Figure 2.20, all four categories are in the confusion matrix.

Figure 2.20: Binary confusion matrix.

When a confusion matrix has a multi label problem, the positive and negative
classes are substituted with the labels in the data set. Then the confusion matrix
C will be K ×K, where K is the number of classes. C will show which samples are
correctly classified, and if not — which other class it gets classified as.

The most convenient metric is accuracy. Accuracy tells us how many of the
samples were classified correctly. Taking a look at Figure 2.20 with the confusion
matrix, accuracy uses TP and TN divided over all the samples. Formulated as

Accuracy =
TP + TN

TP + TN + FN + FP
, (11)

accuracy gives an easy understanding metrics and performs well on balanced
data sets.

2.6.1 F1 Score

F1 score is a well-suited metric for imbalance data sets. C. J. van Rijsbergen is
viewed as the founder of F1 score from his book Information Retrieval [80]. He
explained the metrics with “... measures the effectiveness of retrieval with respect
to a user who attaches β times as much importance to recall as precision.”. Here he
named the score E, but it later got its well-known F1 name. The β is often set to
1, and then the recall and precision are equally weighted. A good F1 score means a
low share of false positives and negatives. The formula

F1 =
TP

TP + 1
2
(FP + FN)

(12)

shows the F1 score. It ranges between 0 and 1, where 1 is a perfect score. Some
criticize F1 for not being symmetric. F1 ignores the true negatives, and can be
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misleading if a set is imbalance in that favor. In multi class problems the weighting
of F1 can be done in three different ways: micro, macro and weighted. Micro
calculates the metric globally using TP, FN and FP. Macro calculates the metric
for each class and finds the unweighted mean. Weighted calculates the metric for
each class and then takes the average weighted for each class based on the number
of samples in that class compared to the whole set.

2.6.2 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is originally a metric to measure the qual-
ity of binary classifications introduced by B. W. Matthews in 1975 [81]. The co-
efficient is especially suited for imbalanced data sets [82]. Taking true positives
and false negatives into account makes it easy to spot if the minority class predicts
wrongly. MCC spans from -1 to +1, where 0 is the same as a random guess. MCC
formulates as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (13)

There are some cases when the denominator becomes zero or near to zero. This
will result in an artificial high score, and needs to be adjusted. Compared to other
metrics like accuracy and F1 score, MCC performs well and flags out both false
positives and false negatives. Figure 2.21 is a binary problem with slopes of accuracy,
F1 score and MCC. On top of the graph are confusion matrices of three episodes. The
first is the worst-case prediction, then the last is the best-case prediction. Firstly, all
samples are misclassified and MCC is the only metric that detects this. Secondly, all
false negatives have become true negatives, and half of the samples are recognized.
Accuracy yields 0.5, and F1 score yields over 0.6, but MCC 0.0. This shows the
weakness of F1. When all samples are rightly classified all three metrics are in
unison.

Figure A.1 in Appendix I shows an imbalanced data set (80/20 distribution).
The majority class can be seen as the background and the minority as an object.
The graph goes from all wrong answers, and then all the background samples get
classified as correct. After that, the foreground samples get classified correctly.
MCC can explain the whole situation, from all wrong to all right. This is especially
evident when the class distribution is imbalanced. When every sample is predicted
as background, accuracy yields 80% correct, but MCC and F1 do not increase before
the foreground is predicted right.

For multi class problems, MCC is generalized. J. Gorodkin introduced this
generalization in 2004 [83], and called the generalization for RK statistics. K is for
K-different classes defined by a confusion matrix C which is K ×K. The formula
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Figure 2.21: Comparison of MCC, F1 score and accuracy. The situation for the
score is described as confusion matrices above.

MCC =
ΣkΣlΣmCkkClm − CklCmk√

Σk(ΣlCkl) · (Σk′|k′ ̸=kΣl′Ck′l′)
√
Σk(ΣlClk) · (Σk′|k′ ̸=kΣl′Cl′k′)

(14)

explains MCC for multi class. It still ranges in the same area and has the same
attributes as the binary version.

2.7 Loss Function and Optimization Strategy

The loss function is a method that determines how well a particular algorithm learns
the data. The loss function explains the gap between prediction and actual values.
A smaller gap indicates a better imitation of the data. An optimization strategy is
an algorithm to optimize the loss function. The goal is to find the minimum of the
loss function, e.g. the point at the prediction is most similar to the truth. Choosing
the proper loss function decides how a neural network will learn the underlying
patterns and structure of the data. Therefore, the loss function characteristics must
be well suited for the problem. Loss functions exist in many variants. Some are
made for classifications, and others are made for regression. Some are better on
imbalanced data sets and others are better on object reconditions.
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2.7.1 Focal Loss

Focal loss is a loss design for classification on extremely imbalanced data sets. T.
Lin et al. introduced this to address a one-step solution for imbalanced data in
image sets [84] where the background had a majority of the samples. This was
earlier done in an R-CNN framework and two-stage decoder [85], but T. Lin et al.
showed that their Focal loss matched both computation speed and performance by
outperforming the earlier state-of-the-art solutions. Focal loss consists of the normal
categorical crossentropy (CE) part, and a γ part where high value of a γ gives a
more forgiving loss when making an error. Figure 2.22 illustrates Focal loss with
different values for γ.

Figure 2.22: Focal loss from the original paper by T. Lin et al. [84]. Focal loss
explains the loss function based on the correctness of a classification. γ is editable
and adjusts the amount of loss © [2017] IEEE.

2.7.2 Jaccard Loss

Jaccard index is a metric known as the Jaccard similarity coefficient. It is used
to detect similarities and dissimilarities of sample sets. Paul Jaccard introduced
the Jaccard loss [86] and derived it from the ratio of intersection over union (IoU).
Jaccard takes the size interception and is divided by the union of the two samples,
shown in formula

J(A,B) =
|A ∩B|
|A ∪B|

. (15)

This takes the true positives and divides them by true positive, false negative and
false positive. Figure 2.23 shows three examples of the Jaccard index for overlapping
shapes.

Jaccard index can be used as a loss function, often called Jaccard Distance.
Jaccard index ranges between 0 and 1, so to apply Jaccard as loss use
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Figure 2.23: Overlapping shapes with their Jaccard index. A higher score is better.

Jloss(A,B) = 1− J(A,B). (16)

This loss function performs well in object detection and is a good fit when used
in computer vision [87].

2.7.3 Adam - Adaptive Moment Estimation

The key to optimizing a neural network is finding the minimum of a loss function.
A state-of-the-art method for this is called Adam (adaptive moment estimation).
Adam was introduced by D. P. Kingma et al. in 2014. Adam uses adaptive mo-
mentum and learning rate for effective optimization. Momentum accelerates the
weight updates in promising directions. The authors say, “Adam is an algorithm for
first-order gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments. Adam is computationally efficient, has
little memory requirement, invariant to diagonal rescaling of gradients, and is well
suited for problems that are large in terms of data and parameters.” [88]. Adam
has three parameters that need to be declared. The first is the learning rate. This
is usually a low default value at 0.001. Then there are two exponential decay rates
for the moment estimates; β1 and β2. They are set on values between 0 and 1. The
most important steps in the algorithm are to find the gradients at a timestep, and
then correct the first and second momentum bias, then update the parameters.

2.8 Object Detection

Object detection is a technique in computer vision for finding objects in digital
images or videos based on qualitative attributes (e.g., color homogeneity), low-
level features (e.g., color model component’s distribution), object spatial relations
and multimedia processing methods (e.g., color clustering) [89]. This technique
has plenty of applications, and in the later years excelled in popularity due to the
commercialization of neural networks. Neural networks are rather complex and
require a lot of data and computation power. Even though machine learning yields

28



sturdy results, there are older, simpler, faster and more manual algorithms that give
robust products.

2.8.1 Watershed Algorithm

The watershed algorithm is an object detection algorithm used in image processing.
The algorithm was first introduced by S. Beucher and C. Lantuejoul in 1979 [90].
They explain it as a non-parametric method for contour extraction on a grayscale
image. The method relies on defining the contour as the watershed gradient modulus
of the light function.

Figure 2.24: Part of the watershed algorithm. The landscape f(x) show the distance
from the center of the object to an edge. The original paper finds a local minimum
to watershed [90] © [1979] IEEE.

The idea behind the algorithm is to find edges in an image, then use morphology
to find the center of objects. Thus measure the distance from the center to the closest
edges. Then this distance can be seen as a landscape of f(x) as seen in Figure 2.24.
The further away the center of the object is from the edge the greater the value. In
the figure, the larger object also gets a high value that can be represented on the
third axis. S. Beucher and C. Lantuejoul used a local minimum to set a threshold
for the watershed. The next operation in the method is to flood everything beneath
this local minimum for f(x). Like water floods a mountain landscape, this method
floods and removes objects that are not high enough. The remaining areas peak out
of the water, and objects get extracted from an image.
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3 Method

3.1 Chapter Description

This chapter presents the method in this thesis. The chapter initially starts with
a description of the acquisition, processing and correction of the data. Then it
continues explaining what kinds of software and hardware were used. The rest of
the chapter is a detailed description of preparing the data for analysis, the workflow,
a step-by-step description of the process of generating the ground truth and the
progress of model parameter selection. The chapter rounds off by summarizing the
final model.

3.2 Data Acquisition

In this study, airborne hyperspectral images and LiDAR scans are analyzed to ex-
tract valuable information from an area. The images and scans have been produced
and preprocessed by Terratec AS, Norway’s largest geodata supplier. Bærum mu-
nicipality is the project manager and wants to use the data for data analysis and
mapping of their areas. The region of interest is Høvik, a district in Bærum munic-
ipality in Norway, and is illustrated in Figure 3.1.

Figure 3.1: Area of interest: Høvik, a district right outside the city Sandvika in
Bærum municipality.

The hyperspectral images and LiDAR scans were acquired in August 2019 and
June 2021. The original project in 2019 had three different locations including
Bærum with a total area of 37.4 km2. In this study, only scans from Høvik are
applied. The flight in 2021 centered around Bærum municipality and covered a
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larger area in total 53.0 km2. Both flights had an altitude of 1100 meters above
the terrain and a maximal speed of 130 knots. In the first flight, the direction of
the strips was east-west as seen on the left in Figure 3.2. In the second data set
from 2021, the flight direction was north-south seen on the right in Figure 3.2. One
overlying goal is to see changes over time from the data, and therefore only areas
with overlapping flights are used. To narrow the area further, three regions are
extracted to examine the hyperspectral and LiDAR data. The flight numbers are
04, 05 and 07 from 2019, and flights 044 to 048 from 2021. Figure 3.3 shows these
three areas with a red borderline, and they cover approximately 0.65 km2. All three
regions have information from 2019 and 2021, but 04 was mainly used in the analysis
in this study.

Figure 3.2: Flight plan from 2019 and 2021 over Sandvika. To the left is the plan
from 2019, and to the right is 2021. Flight plan by Terratec [91].
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Figure 3.3: A closer look at areas examined in the study. RGB images from three
flights.

3.2.1 Airborne System Layout

Both sensors are mounted to a gyro frame and laid for a maximum of 16 degrees
opening angle for one of the cameras. The system layout in the aircraft is shown in
Figure 3.4, and shows the gyro mount for both LiDAR and hyperspectral sensors.
The sensors are mounted next to each other in the airplane.
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Figure 3.4: System layout from the flights by Terratec.

3.2.2 Sensor Specific Information

The hyperspectral system contains two sensors: HySpex VNIR-1800 and HySpex
SWIR-384. Capturing respectively visible near infrared (VNIR) and short wave in-
frared (SWIR) [91]. These two sensors combined can capture wavelengths ranging
from 400nm to 2500nm with a total of 474 spectral channels. The sensors are man-
ufactured by Norsk Elektro Optikk AS (NEO), a Norwegian company specializing
in the field of photonics. HySpex is NEO’s product of hyperspectral cameras. Both
cameras are based on pushbroom scanning principle. The sensor captures a line
of spectral data while the airplane moves forward. The LiDAR data was collected
simultaneously as the hyperspectral images. A Riegl VQ-1560i laser scanner records
it with an ingratiated Inertial Measurment Unit (IMU). The LiDAR sensor uses a
laser beam with wavelength of 1064nm [91]. Table 3.1 is the specifications for both
the hyperspectral cameras.

3.2.3 Preprocessing Raw Data

All scans are georeferenced and orthorectified. The data was orthorectified with
Parge (3.4) software based on a 30 cm digital terrain model obtained using the
Leica ALS70 laser next to the hyperspectral sensors. Georeferencening and ortorec-
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Table 3.1: Specifications for hyperspectral cameras [91].
Specification VNIR-1800 SWIR-384
Spectral range 400 - 1000nm 930 - 2500nm
Spatial pixels 1800 384
Spectral channels 186 288
FOV 17 degree 16 degree
Pixel FOV across/along 0.16/0.32 mrad 0.73/0.73 mrad
Spatial resolution 0.3 m pr pixel 0.7 m pr pixel
Bit resolution 16 bit 16 bit
Dynamic range 2000 7500
Noise floor 2.4 e- 150 e-
Max speed 260 fps 400 fps

tification are done using nearest-neighbor interpolation. In the flight over Bærum
it was control points on the ground for more exact measurements. Combined with
GNSS and control points, the images and scans are georeference to the WGS84
UTM32 coordinate system.

The hyperspectral data obtained by Terratec AS is in radiance. The airborne
photos were taken at an altitude where atmospheric noise affected the data. There-
fore, the hyperspectral data is atmospheric corrected. Atmospheric correction is
executed using ATCOR-4 software for airborne imagery. ATCOR-4 performs at-
mospheric corrections and estimates the surface reflectance. ATCOR uses AFRL
MODTRAN code to determine the atmospheric look-up table database, and the
parameters were set up manually.

VNIR data has a resolution on 0.3 meter per pixel, and SWIR has a resolution
on 0.7 meter per pixel. Gram Schmidt Spectral Sharpening [92] was performed to
increase the resolution of the SWIR images. By doing so, both hyperspectral images
cover the same area with the same amount of pixels. The LiDAR data is extracted
from the point cloud to a raster file using the program Quick Terrain Modeller
(QTM).

Some of the wavelength channels are removed due to interference with water in
the atmosphere, these channels are so noisy and inconsistent there is challenging
to use in an analysis. Channels removed because of the water interference are
wavelengths between 1354nm and 1475nm, and between 1803nm and 2033nm. Some
channels have a high amount of outliers and are removed, and all the channels above
2400nm are so noisy there are not in use.

3.3 Software, Hardware and Memory

Python is mainly used in data management and analysis. I use QGIS, an open
source GIS platform for visualization and exploration of hyperspectral data. For
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the LiDAR point cloud I use Quick Terrain Model (QTM). Table B.1 in Appendix
II is an overview of program and all module versions used in Python. Tensorflow is
the main framework when working with machine learning, and OpenCV has a built-
in method for image processing. Matplotlib is used for plotting and visualization of
the images.

I was fortunate to have the opportunity to use effective computational hard-
ware. Minor tasks and exploration can easily be done on a standard laptop. More
computational demanding calculations need better hardware and a strong GPU.
Therefore, training of the neural networks was done on external computers with
high capacity. The experimental phase of machine learning was done in Google’s
Colaboratory, an IPython Kernel in the cloud service by Google. This virtual en-
vironment provides GPU and all the other Python 3 environments needed in the
study. The PRO version of Colaboratory was used to expand computation time
on GPUs. Another high-capacity computer cluster applied in the project is Orion
High-Preforming Computing cluster located at NMBU with even more computa-
tional power. It runs on Singularity a free, cross-platform and open-source com-
puter program that performs operating-system-level virtualization, also known as
containerization. These containers need to be built inside a system for each project,
and demand more technological insight by the user. In Table 3.2 is an overview of
the hardware used. In the Orion cluster it is possible to combine more GPU and
CPU to get up to 100 GB of GPU and over 1 TB of RAM.

Table 3.2: Overview of Hardware used in the study.
System CPU RAM GPU name GPU RAM
Standard Laptop 2.7 GHz 8.00 GB - -
Google Colab Pro 2.2 GHz 25.7 GB Tesla T4 27.3 GB
Orion cluster NMBU 2.0 GHz 30.8 GB Quadro RTX 8000 48.0 GB

The data in this study requires a lot of disk space. In particular the hyperspectral
data takes a lot of memory. Just for the study area in Figure 3.3 the areas 04, 05
and 07, the hyperspectral and LiDAR data require 32 GB of memory. The data is
put on external drivers to ease up the storage.

3.4 Region of Interest

The region of interest in this study is the 04 area from Figure 3.3. The area has
overlapping flights from several years and is of high quality. A smaller area is easier
to work with on a standard computer with computational limits. Figure 3.5 shows
the area in RGB image from the hyperspectral data.
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Figure 3.5: Region of interest, flight 04 from June 2021.

3.5 Preparation of Data in the Study Area

Preparations of the study area must be done before the data is ready for analysis.
The data from the area comes in different file formats. LiDAR data is in a laser
point cloud (.las), and needs to be converted to a 2D raster file that fits the area.
Both DSM and DTM raster files are used to create nDSM. The hyperspectral data
is stored in High Dynamic Range (.hdr) raster file, one for VNIR and one for SWIR.
All three files were converted into raster files fitted for the exact study area and then
stacked in the channel dimension. Lastly, the data was saved as a numpy file (.npy)
fit for machine learning algorithms. The machine learning algorithms do not use the
georeference properties from a raster file, so any file format is viable. Numpy was
chosen for it is convenient for handling and manipulating high-dimensional data.

3.5.1 Create nDSM

A nDSM is produced from the DTM and DSM. Metadata and georefrences from
DSM were copied directly to nDSM. Figure 3.6 shows all three models. With nDSM
it is possible to examine if an object is elevated from the ground. Hyperspectral
images show the surface reflectance and combined with height data it can be possible
to tell the exact height of the object independent of terrain surface and shape.
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Figure 3.6: DTM is subtracted from DSM to make a nDSM model. Heights are
relative to the lowest point in the area.

3.5.2 Stacking SWIR, VNIR and nDSM

SWIR and VNIR photos are taken from two different sensors, but it is desirable to
combine the data into a nearly continuous spectrum from 400nm to 2400nm. VNIR
contains 176 bands from 400nm to 1000nm, and SWIR contains 222 bands from
930nm to 2500nm. Some of the bands are overlapping, but in that from SWIR is
kept in that case. The stacking of the data results in a total of 398 spectral bands
with almost continuous spectral information. In addition to spectral information, it
is beneficial to use available data about height. Therefore, nDSM data is stacked in
the same format as hyperspectral data. The data now contains 399 features in the
third dimension, where the last in the relative height of objects. Figure 3.7 shows
an illustration of the three data sets stacked. Different examples from the data are
extracted to illustrate all the information available.

Figure 3.7: VNIR, SWIR and nDSM stacked into one data set. The rear image is
nDSM, the rest are some of the wavelengths in the set.
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3.6 Workflow

This study aims to use machine learning directly on hyperspectral and LiDAR data
to localize and classify roof materials. It is possible to extract the interesting pixel
and run a shallow machine learning algorithm on the data, but I want to retain
spatial structure and interference with surrounding pixels for objects in the image.
The workflow in this study is split up into two paths. The first path generates the
ground truth, and the second uses machine learning to mimic the ground truth.
Figure 3.8 shows the workflow where the lower path is where the generating of the
ground truth happens. This path has many steps, and my goal is to bypass these
steps by using semantic segmentation.

Figure 3.8: Workflow of the project for generating the ground truth and semantic
segmentation.

3.7 Generate the Ground Truth

Supervised learning needs a ground truth to train and evaluate a model. There is
no premade ground truth in this project, so it needs to be made from aerial photos
and field work. It is often necessary with domain knowledge to make reliable ground
truths.

This study uses field work and algorithms to create a ground truth. First, a field
trip to the region of interest made the basis for the labels. Secondly, data from the
field work and FKB buildings are combined to extract the buildings. Then using the
watershed algorithm and “fill in”-technique a labeled ground truth was generated.
The ground truth sets the foundation for how well the machine learning model can
learn the data.
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3.7.1 Field Work - Spectral Library

Mapping the materials are one of the most essential steps of the process. This step
can require a lot of human capacity and is often the most expensive and tedious
part of machine learning projects. In this project, field work from the area has
documented all visible roofs and recognizable materials from the ground. There
are no data for roofs that are not visible from the ground. All this information
created a spectral library of the roof materials in the area. The spectral library is
georeferenced, so every documented roof is easily implemented in GIS. Figure 3.9
shows the field work and documented materials.

Figure 3.9: Field work of roof materials.

3.7.2 Extracting Rooftops with FKB

The spectral library gives a foundation for some roofs and their materials. Still,
there are many roofs not documented in the library. FKB is then used to extract all
the buildings in the area. This database has polygons of the buildings, and masking
the polygons on the area rooftops are extracted. Every building not containing
information from the field work will be marked as unknown. Figure 3.10 shows how
FKB is used to extract every building including those with labels. The unknown
roof materials are marked as gray.
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Figure 3.10: The area with data from FKB and spectral library. Gray roofs are
marked as the Unknown class.

3.7.3 Object Detection - Watershed and Majority Vote

The watershed algorithm is used on the image to extract the rooftops as objects.
When the objects get extracted they will be extracted as cohesive objects and can
be manipulated as units. When applying the watershed algorithm to the image,
the image needs to be converted to a grayscale image. This is easily done because
the image has values from 0 to 11. The local minimum before watershedding the
landscape f(x) is set manually in these processes. This is to control how big an
object can be. Many buildings are built as townhouses with roofs next to each
other in the same construction style, but the roof materials can still be different.
Therefore, the algorithm runs three times with three different thresholds for f(x) to
extract smaller and smaller buildings. For each time the algorithm runs, the found
objects are removed from the original image and stored as temporary images. Then
the three images merge as one. The threshold was set in descending order of 0.6,
0.5 and 0.3, of the maximum distance from a center to an edge.

Now that every rooftop is extracted from the image, I assume that a roof only
contains one material, and the whole roof consists of that material. Every rooftop
can be handled as an individual object after the watershed. Then by iterating all
the objects, the material with the majority of the values in each object gets filled
in. If there is a mix of labels in the object, and the unknown label is the majority
of the object, the roof will be filled with the second dominant label. In this way, all
available information from the field trip is getting used. Figure 3.11 shows how the
watershed algorithm extracts objects and then merges the images.
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Figure 3.11: Watershed of the area. The watershed algorithm runs three times with
descending thresholds to extract most of the roofs.
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3.7.4 Change of Class - Gravel

When examining the images, one class was questionable. The class gravel did not
concur with the RGB images and seems to be something else. On closer examination
with GIS, satellite photo and Google Maps Street View to verify the gravel, there
was doubt that it was gravel on the roofs. The roof looks more like red concrete
and based on the similar surrounding buildings and their roof material, the gravel
class got discarded and replaced with red concrete.

3.7.5 Finish Labeled Map

The result for generating the ground is shown in Figure 3.12. This map will be
the fundament for further machine learning and semantic segmentation. The map
consists of various roof materials and has almost all the roofs from FKB. Every roof
from the field work is in use.

Figure 3.12: The ground truth for the study.

3.8 Data Distribution

The data comes in two sets: the fused hyperspectral and LiDAR data, and the
ground truth. The data indexes are set so the ground truth corresponds to the
same area in the hyperspectral and LiDAR data. The hyperspectral and LiDAR
data will be referred to as the X, explanatory variable. The ground truth will be
referred to as y, the response variable.

The distribution of the data sets can give an indicator of how machine learning
models perform. The goal is to make a general model that can handle all events in
the data sets. The X data’s distribution needs to have so much variance that the
model can distinguish between the different labels.
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3.8.1 Separate the Data

When applying machine learning, the model must be generalized to solve the prob-
lem. This can be controlled by separating the data into train and test section and
then evaluating the model on unseen test data. It is possible to see if the model can
solve the underlying problem or if it has just learned the data by heart. The data
is separated with 80% of the data in train, and 20% of the data for test. Figure
3.13 shows how the data is split up into four areas, two training and two test sets.
The reason for this split is to have a variety of objects in each set. For instance, the
railway is only on the eastern side of the map.

Figure 3.13: Separation of train and test set. This separation is in four section to
vary the materials and objects in test set.

The images and labels need to be in a distinct format to use the data in a
semantic segmentation model. In this study, the images are split up into images of
128x128 pixels. The images are separated with no overlapping areas. A fragment
of the train set can be seen in Figure 3.14. The white lines indicate the borders in
the images. In this case, 18 smaller images are put together as one image. The test
data set is also sliced into smaller images.
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Figure 3.14: A fragment from the train set in RGB of 18 smaller images.

3.8.2 Class Distribution

This labeled map consists of 10 different classes. The majority class is the least
interesting class in this study. It is interesting to see if the algorithm can detect
interesting classes out of the not-so-interesting surroundings. Figure 3.15 shows the
distribution of the classes. Here the imbalanced of class distribution apparent. On
the right side is the same distribution in a logarithmic scale. That makes the minor
classes more visible in the distribution.

Figure 3.15: Distribution of the ground truth. Linear to the left and logarithmic to
right.
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3.8.3 Input Data Distribution

The distribution of some explanatory input variables is shown in Figure 3.16. The
distribution is from the top left image in Figure 3.14. Figure 3.16 shows the proba-
bility distribution for the red, blue, green, nDSM and wavelength at 1500nm. The
median of the values is the white dot in the rectangle, and the interquartile range
is the rectangle.

X data is scaled from 0 to 1. This was not necessary to make the model optimize
faster, but for simpler data handling in plots and manual checks. The data was
originally a 16-bit data type ranging from -32767 to +32767. The height data is
also scaled from 0 to 1, where 1 is 30 meters. The highest point found in the nDSM
was 26.5 meters.

Figure 3.16: Violin plot for some of the X data. This plot shows the distribution of
red, blue and green color channels. To the right is the height from the nDSM and
distribution from the channel with 1500nm.

3.8.4 Train, Validation, Test Split

To evaluate the model, it is essential to have a training set and a validation set.
Then a test set is used as a visual evaluation of the model. First, the data set is
split up into train and test parts. The test parts are taken from two areas and are
shown in Figure 3.13. The rest is used as training and validation.

For both areas, smaller non-overlapping images of 128x128 pixels are created.
These images are will be inputs and outputs for the model. The area gets split up
into 96 smaller images in the training set, and the test area has 24 images.

The validation set is then made by splitting up the train set into training and
validation. Since the images are not overlapping, the model has not “seen” by the
validation data. The split between training and validation is done so all classes are
represented as equally as possible. This results in a distribution of train, validation
and test split shown in Table 3.3. In each images there are over 16 thousand data
points with 399 features. Resulting in more than 1.23 million data points in the
training set and almost 1.90 million data points total. It is ideal to have the same
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distribution in all sets, but that is a challenge when there are few images and it is
random what class the images contain. Figure 3.17 shows the distribution of the
classes in the train, validation and test sets. One disadvantage of the test set is that
that are no samples with classes of green ceramic and pvc.

Table 3.3: Shape of train, validation and test set.
Data set name Shape of X data Shape of y data
Train set (77, 128, 128, 399) (77, 128, 128, 10)
Validation set (19, 128, 128, 399) (19, 128, 128, 10)
Test set (22, 128, 128, 399) (22, 128, 128, 10)

Figure 3.17: Distribution of y data when split in train, validation and test set.

The labeled data is redesigned to fit a onehot-style. This means that the values
goes from scalar to a vector, where the index of the vector represents the class. This
style ensures that the model does not believe a higher number is more important.
At the same time, there are many machine learning frameworks made to work with
onehot encoding. Table 3.3 shows this dimension of the y data set. Equation 17
shows a simple example of what the redesign to a onehot-style looks like. The
dimensions will change slightly.

[0, 1, 2] =⇒ [[1, 0, 0], [0, 1, 0], [0, 0, 1]] (17)

3.9 Semantic Segmentation on Ground Truth

The goal for semantic segmentation is to recognize the ground truth based on the
input hyperspectral and LiDAR data. The ResNet was set as a backbone to a
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U-net, which means that the U-net’s encoder (downward path) is a ResNet. This
combination will be called Res-U-Net to make it clear that it is a combination of
the two. First, several configurations of U-net and Res-U-Net were tested. They got
measured on how they performed with different losses, optimization strategies and
weighting of the classes. These tests result in a model configuration that performs
overall best and has the suiting characteristics.

3.9.1 Parameter Optimization

To find the best configuration for a model, several tests were preformed. The U-
net architecture is kept as a fundament because of good performance in semantic
segmentation. Beyond the architecture, the configurations tested were different loss
functions, combinations of loss functions, a weighting of these combinations and
weighting of classes. Additionally, model structures were tested with the different
available ResNet configurations of backbone in the Semantic models module [93]. A
vanilla U-net is also included in the test as a benchmark.

The tests were done with 10 models with randomly generated initialized weights.
They train for 200 epochs. The measurement for all tests were Matthews Correlation
Coefficient. The tests take around 3 to 6 hours on the Orion High Performing
Cluster.

Firstly, the model structures are compared. The structures examined are a
vanilla U-net and Res-U-Net with these bacbones: ResNet18, ResNet34, ResNet50,
ResNet101 and ResNet152. Focal loss is used in all models. The models’ name and
amount of trainable parameters are shown in Table 3.4. The result from the test
in Figure 3.18, and the lines are the mean of all tests and the colored area is the
95% confidence interval (CI). There is a clear trend that the Res-U-Nets perform
better than vanilla U-net. Therefore, with a compromise between best performing
and lowest complexity, the ResNet34 backbone is selected to be the model of choice
in the later tests.

Table 3.4: Trainable parameters for the different models that were compared.
Model name Amount of trainable parameters
U-net 2,218,843
ResNet18 15,574,346
ResNet34 25,682,506
ResNet50 33,757,258
ResNet101 52,749,386
ResNet152 68,393,034
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Figure 3.18: Comparison of different models and backbones. The tests span from 0
to 200 epochs and score in MCC.

Secondly, the different loss functions are examined on Res-U-net with ResNet34
as the backbone. These functions are tested in the same manner as the model
test. Each loss function, and combination of loss functions, is built and trained 10
times on randomly generated initialized weights. The different loss functions are
Categorical Crossentropy, one of the most used losses in multi class problem. Dice
loss, Jaccard loss and Focal loss. Additionally, a combination of Focal loss, Dice
and Jaccard was tried. Figure 3.19 shows the results from this test. The line is
the mean and the colored areas is the 95% CI. A surprise here is that Focal loss
did not perform well compared to the other losses. In combination with Jaccard or
Dice, Focal loss yields a good score. The differences between these top scores are
minor and can be random, so the loss chosen is Focal + Jaccard loss. I want to keep
the characteristics of both of the losses. Focal loss is chosen to handle the extreme
imbalance, and Jaccard loss is chosen to recognize objects.
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Figure 3.19: Comparison of different loss functions and combinations of these. The
tests span from 0 to 200 epochs and score in MCC.

Thirdly, when two losses are combined, it is possible to weigh each loss. Focal
loss will converge to a lower loss faster because it tolerates more misclassficiation,
as seen in Figure 2.22. Jaccard on the other hand takes a longer time and needs
to be closer to the truth before the loss converges. Optimistically, these two losses
will fill each other out, and take advantage of both functions: handling extremely
imbalanced data and spotting objects.

To check the best balance between these two losses, a test needs to preformed.
The test is run with weight for Jaccard loss as the variable. The weight spans
from 0 to 2. The test is done as the other tests. Random initialized weights 10
times for each model. The model that is used is the Res-U-Net with ResNet34 as
the backbone. The mean and 95% CI is shown in Figure 3.20 in the same way as
earlier. The results do not show any of the configurations to be better than the
others, and losses are weighted equally to keep it simple.
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Figure 3.20: Comparison of different weighing of Jaccard and Focal loss. The tests
span from 0 to 200 epochs and score in MCC.

The fourth optimization that can affect the performance of the model is the op-
timization strategy. Four kinds of optimization strategies are examined. These are:
Adam, SGD, stochastic gradient descent, a classic gradient descent. RMSprop, that
uses the root mean square propagation for a decaying average of partial gradients.
Lastly, AdaMax, a variant of adam based on the infinity norm. All the algorithms
optimize the loss function, and the goal is to find the global minimum as fast as
possible. The results from this test are shown in Figure 3.21. All losses except SGD
did almost similar, and I keep Adam as the optimization strategy.

Figure 3.21: Comparison of different optimizers. The tests span from 0 to 200
epochs and score in MCC.
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The last configuration that is easy to optimize is the class weighting in the
Jaccard loss. In other words, the magnitude of each class in Jaccard loss. If a class
has a high weighting, this will result in a greater loss if that class is not classified
correctly. This can be done opposite, that a class weights lower than the others and
cost less to classify wrongly. This is what I want to see if it affect the model. The
hypothesis is weighting the None class lower will give the model more motivation to
learn the differences between materials. The weighting for None is 0.1 and 0.01, the
rest are 1. Then all the other classes have 10 and 100 times more influence on the
loss function. Focal loss also has the option of weight classes, but the intention of
using Focal loss is to regulate the extreme imbalance classes by itself, and weighting
will not be done with this loss function. Results from this test are seen in Figure
3.22. There is no significant difference between weighting or not weighing. Therefore
I try to keep it simple and weigh the classes equally.

Figure 3.22: Comparison of the difference of weighting the None class. The tests
span from 0 to 200 epochs and score in MCC.

Based on the optimization test, the final model used in this project is a fully
connected convolution neural network with a combination of ResNet-34 and U-net
architecture in a Res-U-Net. The loss function for the models is a combination of
Jaccard Loss and Focal loss equally weighted. In Jaccard loss it is possible to weigh
the classes, but all the classes are weighted the same based on results from Figure
3.22. In Focal loss, γ is set to the default value of 2. The optimization strategy for
the model is Adam. The values for Adam are learning rate of 0.001, β1 at 0.99 and
β2 at 0.999. The metric for the model is Matthews Correlation Coefficient and is
used for validation of the model.

It is worth mentioning that these tests were done in series after each other, and
there might be a combination that is not tested that could perform better. Testing
all combinations is a demanding job, and there is some risk of overfitting this small
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data set. Appendix VIII shows an approach to testing different combinations in
figures H.1, H.2, H.3. There all model configurations are trained independent. This
was done at a late stage in the study and did not affect the report.

3.9.2 Model Specifications

The model is then created based on the optimisation as a Res-U-Net with ResNet34
as the backbone (encoder). The input for the model is a set of 128x128 pixels with
399 dimensions. The data looks like this: (Batch size, 128, 128, 399). That means
that each image that goes through the model must have a height and width of 128
pixels, and 399 features. Data that goes in the model in a later state needs this
shape. The output is (Batch size, 128, 128, 10). This is the same width and height
as the input, but now a vector with a length of 10. This vector represents each
class that the model can predict. They return the prediction in a one-hot-encoder
style. Each pixel has a vector with a length of 10, and the highest value indicates
the answer. The output activation function for the model is softmax.

Figure 3.23 shows the final model. This is a U-net architecture with a ResNet
34 as backbone. The InputLayer is the initial input of the image. This is the
input described above. Before each Activation is a BatchNormalization layer that
normalizes the values. Then the data goes to the Activation layer. ReLU is used for
every activation except the last one. This gives the model ability to learn nonlinear
context. At the start, there is a MaxPooling2D layer that reduces the data. This
is only done once. For the rest, the stride in the convolution is set so the data
gets half the size. ZeroPadding sets a padding of zeros around the data to create
a border and extracts features from the edges of the data in the same manner as
the middle parts. The residual block can be seen as a combination of the Conv2D
(convolution layer), BatchNormaliztion, Activation and ZeroPadding. There is a
small skip connection to an Add block for each block that connects the residual. In
Appendix VII, Figure G.1 shows this small skip connection of a residual block. The
thickness of the building blocks in Figure 3.23 indicates the number of filters. The
deeper the network goes, the thicker they become. In the deepest section, there are
512 filters per convolution layer.

The decoder path has UpSampling2D layers that will upsample the data. Then
sent through a residual block. After each upsampling, the Concatenate layers receive
information from the encoder path like the original U-net. Then in the end, a
convolution layer gives the data the right output dimension, with 10 classes, and a
Softmax Activation layer to normalize the last output to a probability distribution.

The model trains for 300 epochs, where the last epoch is used to predict and
evaluate. The batch size is 32. 32 images will pass through before it changes the
weights. This is a good number because it is important there is some variation of
the materials before the weights change.
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Figure 3.23: Final Res-U-Net model with ResNet34 as backbone. Generated with
visualkeras package in Python.

3.9.3 Ensemble Models

An ensemble of 10 models is trained to give a more robust prediction. The model
can struggle to find the right material of a rooftop, so they might collectively find a
better result by putting more models together. 10 models are trained with random
initial weights. When making a prediction the results are summed, and a majority
vote selects the class the models agree upon. This is done by arguments of the
maxima that takes out the index of maximum value of a vector.

3.9.4 Dimension Reduction

There is a belief that the model has trouble dealing with the high dimensional data
and therefore be beneficial to perform a dimension reduction on the X data. With
the model described above as a tester, three different dimension reductions were done
on the data to see if some of them yielded better results. The dimension reductions
performed were principal component analysis (PCA) with 10 components, extracting
every 3rd wavelength (reducing the dimensions to 1

3
of the size) and extracting groups

of 10 wavelengths and reducing each group to the mean of the 10. None of these
dimension reductions gave any better results seen in Appendix III in Figure C.1.
Therefore, all the bands were kept in further analysis.
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4 Results

4.1 Chapter Description

In this chapter, results from the image semantic segmentation are presented. The
chapter initially starts with results from the training of 10 models. Their training re-
sults and computation time are documented and graphed here. Then a table presents
the model performance on three different metrics: accuracy, F1 score weighted and
Matthew Correlation Coefficient. The rest of this chapter is separated into two
similar parts, where the first part shows results from one of the best models, and
the second part shows results from the ensemblement of models. The results in the
chapter are these three: a visual representation of the prediction of the test area, a
confusion matrix of the different materials and a binary confusion matrix consisting
of the labels roof and not roof. All score values and confusion matrices are based
on a merge between validation and test set. The validation and test set are fused
because all classes are not in the test set. The validation set is used to validate the
model and it is not ideal to use it once again, but it is better to have all classes
represented than missing two. The validation set contains 19 images and the test
set has 24 images. When these two merge into 43 images, the model gets exposed
to a vast amount of objects and diversity in the data, and the metric performance
is hopefully more robust.

4.2 Training Results

The training is done for 300 epochs. After around 250 epochs the metric saturates
and does not seem to get any better. 10 models are trained to obtain representative
results due to randomly initially weights for each model. The model predicts results
from the last epoch. On Google Colab’s servers, computation takes around 1 to 3
seconds per epoch, so training 300 epochs take up to 10 minutes. The training time
is halved to 1 second per epoch on the Orion cluster. The training was monitored in
Matthew Correlation Coefficient in both train and validation sets. The validation
score evaluates the performance of the model. A higher validation score for MCC
indicates that the model performs better on the entire data set.

Figure 4.1 shows the training and validation MCC score for 10 models. The line
is the mean of all models, and the colored area above and below is the 95% CI.
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Figure 4.1: Training of the models. Model performance is measured in MCC for
training and validation set. The line is the mean of the 10 models with associate
standard deviation.

Figure 4.2 shows the training time per epoch on the Orion cluster. The line is
the mean of 10 models’ training times, and the colored area is the 95% CI. This
shows that the training takes 0.7 to 0.8 seconds per epoch.

Figure 4.2: Training time per epoch over all the epochs. The blue line is the mean,
and the colored area is the 95% CI.

Figure 4.3 shows the training time accumulated. The figure shows the training
as almost linear with a small amount of variance. The line in the plot is the mean
of the 10 training, and the variation is the blue color part around. This color area
is the 95% CI of the training time data. From this chart, the training for the ten
models took an average of 240 seconds, 4 minutes, to finish 300 epochs.
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Figure 4.3: Accumulated training time for the models.

4.3 Loss Results

The loss results show the results from the two loss function. This is the optimization
slope of the model, and the goal is to get as low loss value as possible. Figure 4.4
shows the different slopes of the losses. The blue line, MCC Validation is the metric
evaluation of the model’s performance. This is ideal to maximize.

The orange line is the total loss of Focal and Jaccard loss. The two losses are
summed up in one, and that is what the network tries to optimize. In the start
the variance of focal loss impacts the total loss, and when that settles the total loss
follows the trend of Jaccard.
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Figure 4.4: Slopes of the different loss functions on the validation data. The blue
line is MCC which is used as a metric in the evaluation of the model performance.

4.4 Metric Results

The following results are based on data from the 10 models and their training.
As the models start with random initiated weights, they all have different starting
points. This can affect their converging pace and a model might end with a local
minimum where it recognizes different characteristics and materials than the other
models. Results in Table 4.1 show model performance with three different metrics.
The score is the mean of ten predictions with associated standard derivation. F1
Score is weighted by the number of samples in the respectively classes. Table 4.2
shows the score for the binary problem of recognizing roofs with the same metrics
as above.
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Table 4.1: Metric score for models on the multiclass problem.
Metric name Score ± standard deviation
Accuracy 0.903 ± 0.006
F1 Score weighted 0.896 ± 0.008
Matthews Correlation coefficient 0.579 ± 0.034

Table 4.2: Metric score for models on the binary problem.
Metric name Score ± standard deviation
Accuracy 0.948 ± 0.005
F1 Score weighted 0.946 ± 0.007
Matthews Correlation coefficient 0.789 ± 0.031

4.5 Best Model Results

This chapter shows results from the model that performs the best of the ten trained
models. This best model has an MCC score of 0.599 on the validation set for the
multiclass problem. For the binary problem the best model got an MCC score of
0.794 on the same set.

4.5.1 Visual Results

Figure 4.5 shows the visual results of the test area. This area is split up into two
different areas to get various materials in the visualization. The model predicts
the smaller 128x128 pixels images, and then the predictions are set together as one
larger image to show the whole area. The white lines sever the images. The colors
represent the different materials, and black means there is not a roof. To the left
in Figure 4.5 is an RGB image of the area, in the middle is the ground truth the
model should mimic and to the right is the model prediction. Only the test set is
used for this visualization.
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Figure 4.5: RGB, ground truth and prediction of the test area made by the best
performing model.
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4.5.2 Confusion Matrix

The confusion matrix shows true and predicted labels of the samples. The predicted
labels are on the horizontal axis, and the true labels are on the vertical axis. The
values are normalized on the true axis, meaning that the values sum up to 1 in
the horizontal direction. Then it is possible to see the share of samples classified
correctly or as another class. The colors correspond with the value of this share and
get stronger with higher values. The results are seen in Figure 4.6.

Figure 4.6: Confusion matrix for prediction of the best model. The values are
normalized on the true labels, so they sum up to 1 on the horizontal axis.
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4.5.3 Binary Results

Figure 4.7 shows the best model’s binary classification results. The model predicts
whether the samples are roof or not. The confusion matrix is also normalized on
the true label. The number beneath in parenthesis is the amount of samples. In
Appendix V Figure E.1 visualizes the test area results in binary format by the best
model.

Figure 4.7: Confusion matrix for binary classification. The best model predicts if
samples are roof or not roof.

4.6 Ensemble Model Results

Ensemble models can give robust results. This is done by taking all the 10 trained
models and using the predictions in a majority vote. The most frequent answers is
selected in the final prediction. The score is the same as above. The visual results
and confusion matrix is a collaboration between the models.

4.6.1 Visual Results

Figure 4.8 shows a visualization of the results from the majority voting of the pre-
diction from the 10 models. Every sample has 10 suggestions from the 10 models,
and the suggestion with the most votes is kept.
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Figure 4.8: Majority vote on predictions from 10 models.
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4.6.2 Confusion Matrix

Figure 4.9 shows the confusion matrix for the majority voting from the 10 models.
This matrix is also normalized on true labels.

Figure 4.9: Confusion matrix from 10 models and normalized on the true labels.

4.6.3 Binary Results

Binary confusion matrix for the ensemblement of the models. Figure 4.10 shows the
binary confusion matrix in the same fashion as the others, and the number beneath
in parenthesis is the number of samples.
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Figure 4.10: Binary confusion matrix for roof or not roof with the majority vote of
all models.

4.7 Dimension Reduction Results

Results for dimension reduction can be seen in Appendix IV figures D.1, D.2 and D.3.
These figures show results from PCA with 10 components, results from extraction
of every third wavelength, and results from a batch-wise extraction of the mean of
ten wavelengths. All three variants have nDSM added as the last dimension.
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5 Discussion

5.1 Chapter Description

This chapter discusses central aspects of data quality, model performance, compari-
son of related work and future studies. In the data quality subchapter, the addressed
topics are quality of the raw data before the analysis, challenges with the aspect that
the hyperspectral sensors only capture surface materials, quality of the generated
ground truth, correctness of FKB and the ground truth, and the advantages of this
data set. The model performance subchapter disputes the model’s performance,
results and if the model obtains desirable characteristics. Then some related work
is compared against the results and the chapter ends with some recommendations
and suggestions for future work.

5.2 Data Quality

The data from the hyperspectral and LiDAR has generally high quality. The data
has a wide range of usable bands, and the overlap from VNIR to SWIR is smooth.
The data presents few unwanted effects since it is already converted to reflectance
with an atmospheric correction before the analysis. Even though the data is of high
quality, it is not perfect. Some bands have noise that needs to be removed. For
instance, some bands have negative values that should not be possible. This can be
sensor calibration or other factors that the producers of the scans are responsible
for. Anyhow, the easiest way to deal with these small issues is to eradicate these
data points. By doing so, there is some information lost in the process that can
affect the analysis, but hopefully the data is good enough for this type of analysis.

There are some aspects of the data set that cause difficulty. First of all, the
hyperspectral sensors only capture the surface materials directly exposed to the
sensor on the airplane. This can cause some unwanted incidences, for instance
where trees are growing and hanging over buildings. The vegetation covers the
roof material making it impossible to observe it. When it is impossible to observe
the roof, it is challenging to evaluate if values from this area are purely from the
tree or if some roof material shins through the vegetation. This leads to another
problem, in the ground truth these covering obstacles are marked as roofs. These
misinterpretations can cause unwanted effects in the learning process. If a tree is
marked as a roof in the ground truth, the machine learning algorithm learns that
this tree might be a roof, and future similar trees can be marked as roofs. Such
trees can be seen in Figure 5.2 where the roofs are underneath trees. Another issue
directly caused by the data is the slicing of the images. Since the algorithm learns
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from smaller images, there is not much room for many objects in one image. In
some lucky cases a roof is in the middle of the image, but in most cases the roof is
cut off at one or the other end. This counts for all the other elements in the image
as well. For instance, the road is marked as None and is not interesting in the seek
for roof materials, but for the algorithm is it equally important to mark this road
as None as marking a roof as red concrete. Cutting out parts of almost any types
of objects by slicing the area into smaller images, the model needs to learn objects
from a fragment of the original shape of the objects. The last unused potential of
the LiDAR data is the utilization of the point cloud. I mentioned that the passive
sensors from hyperspectral cameras only capture the surface. The active LiDAR
sensor makes it possible to see several returns from penetrable objects like trees.
Only the first returns from the points cloud are used in the nDSM. This is some lost
potential and information, and the analysis can benefit by exploiting such potential.
These challenges are not impossible to deal with, but can reduce the results and
outcome of the analysis.

Despite the challenges in the data set, it still has many good qualities. There
is a wide variety of roof materials in a relatively small area. The area contains
characteristics of a suburb area, like smaller and larger roads, houses, railways and
vegetation. Most of the buildings stand alone and are easy to isolate. They are
also built in all directions, giving the machine learning model the variance in spatial
localization it might need to generalize a typical building shape. The model is also
exposed to different light conditions on the roofs. Since the sun shines from the
south, it creates shadows on the northern side of the roofs. This causes the material
to reflect somewhat lower values and allows the model to learn a material in two
different light conditions.

The label data contains some challenges too. The classes are extreme imbalances,
especially the None and unknown labels take the majority of the samples. This
imbalance is not great for a general analysis, but in this case it is the genuine
problem the machine learning algorithm will solve. The data is high-dimensional
and contains a lot of information. There might that there is not enough labels to
cover the variance good enough. The split between training, validation and test sets
is not equally balanced, but is a result of real world imbalanced areas.

The training and validation set have all classes represented, but the test set
misses two classes. This is a weakness of the whole data set and can give misleading
model performance results. It is therefore impossible to visual examine the model
recognizes these missing classes. This problem appears because the area is limited
and the sets are split up in distinct places. The validation set is carefully extracted
from the train set to contain all class samples. But, it is impossible to put the
validation set together to visualize a greater area as it is done with the test set.
When the areas are split into distinct parts and the content of the images is random,
it requires more knowledge of the area before splitting to get the wanted equally
distribution in all sets. When the model gets evaluated, validation and test set
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are merged to get a representation of all classes. This is a weakness because the
validation set is already used on the model to select the best performing, but still
better than missing out on some classes by only using the test set.

Two other complications in the labeled map are FKB and the watershed algo-
rithm. FKB is a database manually updated by the responsible authority. These
updates might not always be correct at the given time and can in some cases be
wrong. Figure 5.1 shows an area where the ground truth shows there should be a
building, but the building is not there when looking at the RGB image. In this data
set FBK from 2019 is used on photos from 2021. When the FBK is two years from
the actual data it is inevitable that there will be some errors.

Figure 5.1: Mismatch between ground truth and the airborne photos. Extracted
from the middle images of Figure 4.5.

The watershed algorithm extracts data based on its length from the center to
the edge and can be misleading in some cases. For instance, if an object is so small
the f(x) gets so low that the threshold for water flooding is above the highest point
of f(x). Then the object disappears from the data and I lose information. Another
example is the watershed algorithm struggles when two roofs are adjoining with
different materials. Then the border between these two roofs is hard to identify by
the algorithm and the exact differentiation is blurry. This border is distinct when
looking at the orthophoto, resulting in the model learning something that is not
true.

The unknown class can be challenging. This class includes every roof that is
not documented which can be materials belonging to another class. Having the
same types of values resulting in two different classes is not optimal. Anyhow, the
labeled ground truth has some flaws, but is of high enough quality for semantic
segmentation.

69



5.3 Model Performance

The training procedure for models as seen in Figure 4.1 shows that the models
quickly comprehend the training set, but take some time to generalize to the vali-
dation set. After around 250 epochs, metrics for validation data saturate and the
models learn much slower. This might indicates that the models have reached their
potential on the data set. A test was done for training the models for over 500
epochs the metric did not get any better results, but a closer visual examination
must be done to verify this.

The training time of the models is stable. For each epoch a network uses around
0.78 seconds, where an epoch consists of feeding the network 77 shuffled images in
3 batches. The first two batches have 32 images, and the last has the remaining.
After each batch the model changes the weights based on the optimization strategy
and loss functions. At the end of the epoch the model does a prediction on the
validation set, and returns the evaluation for the metrics. There are over 25 million
adjustable weights in one model, and the training set contains around 1.5 million
data points. All of this is done in under a second, and it confirms that the high
capacity hardware plays an important role in making the learning process effective.

Figure 3.15 shows the distribution of the data is 85.6% None and 14.4% roofs.
If the models constantly guess None for all samples, the accuracy will yield 0.856,
but F1 and MCC will yield 0. The scores from Table 4.1 clearly show that the
models guess more than random or other classes than None. The MCC score of
0.579 cannot confirm if it is a great score when there is nothing to compare against,
but the model clearly learns some the data structure. The low standard derivation
indicates that the models learn generally stable. All of this indicates that this model
architecture is well suited and robust for this type of data.

Figure 4.4 shows the slopes of the different loss functions. In addition to the
losses in the plot, MCC is included to evaluate the model performance. MCC gives
an indication of when the model starts to learn the data structure. I interpret from
the figure that the model first seems to learn the Focal loss problem. Thus, when
the Focal loss decreases slowly, the Jaccard loss keeps decreasing while the MCC
rises and the models learn. It seems like the model manages to utilize the best of
the two losses. Firstly, the extremely imbalanced characteristic of the Focal loss is
solved, then the IoU object detection for Jaccard makes the model learn the correct
structures of the roofs. Keep in mind that this is just a hypothesis and an approach
to explaining a complex model. The complexity of the model can be challenging to
explain if it does tasks that require justification.

The visual results in Figure 4.5 show that the best model gives a good approx-
imation to the ground truth. The buildings are distinct and clearly recognized as
objects with their spatial form. The results show that most of the roofs are marked
as just one material for the whole roof. Especially the class red concrete has solid
forms on the entire buildings. Some roofs have a mixed set of materials, and where
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the images are sliced on the white lines many of the roofs change material. These
results indicate that the models are good at finding the spatial structure of a roof,
but not so good at finding the material. A conceivable explanation can be that
there is an inadequate amount of data of the minor classes. The models perform
well in finding red concrete, and that can be because red concrete is one of the major
classes in the data set. When there are many data points in the class, there is a
much higher chance the samples are correct and of high quality. Obstacles between
the roof and sensors are reviling in the visual results. Vegetation is above the roofs
in several of the images, and by examine the results the sensors probably only see the
vegetation. Figure 5.2 shows the effect of dense overhanging vegetation. According
to the ground truth there is a building beneath, but a challenge to detect.

Figure 5.2: Roof under vegetation that is challenging to spot by the model and the
sensors. Extracted from the lower images of Figure 4.5.

The confusion matrix in Figure 4.6 shows the relationship between true and
predicted classes. It is normalized on the true axis, meaning that it is possible to
see the percent share of what a class gets classified as. For instance, red concrete
with the values seen in Table 5.3 of share predicted samples.

Table 5.1: Share of predicting for red concrete samples from confusion matrix in
Figure 4.6.

Red concrete Brown concrete Black concrete Unknown None
0.85 0.0016 0.016 0.047 0.09
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This table shows that 85% of the red concrete samples are classified as red con-
crete. The second frequent guess is that there is not a roof where it is red concrete,
and 4.7% is classified as unknown. This indicates that the model has learned the
spectral signature of brown concrete and is able to recognize it on unseen data. For
the minor classes the model performs poorly. Brown concrete, green ceramic, metal
roofing and pvc are rarely classified and are mostly categorized as other materials.
This can be because the model does not have the capacity and characteristics learn
this complex material. A more convincing reason can be that the data quality of
these classes is poor and the model struggles to learn them. However, based on the
confusion matrix the model indicates to learning some materials, but others are not
recognizable.

The binary confusion matrix substantiates the indication that the model per-
forming well in recognizing roofs. The model might struggle to distinguish between
the material of the roof, but it successfully localizes many of roofs. By studying the
binary confusion matrix I learned that the model finds 82% of the roof samples. The
share that is marked as false negative, not roof but actually is, is much higher than
the true positive. This demonstrates that the model will rarely predict non-existing
roofs. For a model like this, the goal is to localize and classify roofs. For the use
case of this model where it operates alone. I think it is better to have a low rate of
type I, false positive, because the model is reasonably sure it is a building with a
roof. It is better to miss one building instead of new buildings suddenly spawning.
This is dependent on the use case for the data. If the model is used as an initial
search for roofs and materials and is regulated afterwords. It might be better to
have a higher type II, so it finds more roofs. One important notice of the binary
confusion matrix is that the matrix is normalized on the true axis. By looking at
the same figure the samples beneath tell that there is almost the same amount of
misclassification in both classes, but the share is much lower in the non roof class.

The goal of using all the models in an ensemblement is to get more robust
results. The majority voting is meant to remove abnormal behavior in the belief
that the majority knows the best. This seems not to be the case for this model and
data set. The ensemble models performed worse than the best model. Looking at
the confusion matrix the models do not recognize the minor classes. Every class
has a lower score except the None class. This outcome is reflected in the visual
representation of the area. On the other hand, there are fewer false positives of
roofs. As seen in the confusion matrix the share rightly classified None class is
higher, and the models classify less of the other classes when it is None. I conclude
that an ensemblement of models is more conservative and cautious in finding roofs,
but performs lesser.

Saying that the ensemblement is lesser than the best model indicates that the
metric is well suited for the problem. As the models are measured in Matthews
Correlation Coefficient, the best performing model’s metric looks better in the con-
fusion matrix and visual examination is a great indication that a higher score equals
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a better model. Therefore, the best model will be the one with the highest MCC
validation score.

Dimension reduced data did not give the model better performance. This con-
firms that when reducing the dimension some information is lost in the process.
One thing to notice is that the models did not perform significantly less with the
dimension reduced. The computation time is considerably lower when there is less
dimension. So it is possible to get almost the same results using less time and re-
sources. Using a less complex model with reduced data it can be possible to get the
same results, but that needs to be tested.

5.4 Compared to Similar Works

There are few similar studies that use hyperspectral cameras combined with LiDAR
to classify roof material. Expect for the shallower models used by S. van der Linden
et al. [6], and F. Trevisiol et al. [8] with their support vector machine and prepro-
cesseing to extract the roof before classification. Many have tried to recognize and
extract just the building structure from aerial photos. For instance, M. Bassier et
al. managed to classify buildings with an accuracy around 87% based on random
forest exposed to a point cloud [94], and M. Guo et al. [95] used a multiloss U-net
architecture to extract buildings and showed good performance on the Aerial Im-
agery data set for roof segmentation. This is probably one of the most similar study
to this thesis. It is impossible to directly compare metric results with other studies
if they are not on the same data set. But, it gives a supportive indication that this
type of model shows good performance on the same problems this study examines.
The losses M. Guo et al. tried on their model were categorical cross entropy in
combination with dice loss, and the probabilistic Rand index (PRI) combined with
Jaccard loss. That indicates that the losses I have selected have been chosen by
other scientists and are suitable for the task. In A. Kuras review on classification
algorithms [28], there are many CNN classifiers that use fused hyperspectral and
LiDAR. These models find the differences between larger objects like roads, vegeta-
tion and buildings. Many of these classifiers are exposed to the same data set: 2013
IEEE GRSS DF Contest data set [96, 97, 98, 99]. This data consists of background,
different kinds of vegetation’s health conditions and types, different kinds of roads,
parking lots, tennis courts and even running tracks. This requires the models to
learn a vast variance of elements. I believe the model might do at least as well with
a lower spectral resolution, like an RGB image, because of the great differences in
the objectives. I believe the interesting aspect of hyperspectral images is to tell the
difference between materials that look similar and are hard to distinguish. Such
materials can be roofs, they are hard to classify because many look almost identical.
As far as I can see, few, or maybe none papers that classify roof materials with
semantic segmentation.

The most comparable works to consider are earlier master’s thesis using similar
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data from the area. One of the challenges R. Senchuri found during his study was
an inconsistent pixel-wise prediction over a larger area. A prediction of an area
can contain all the different classes without directly relation with the neighboring
pixels. He recommended implementing advanced classification and segmentation
algorithms, which has been done in my thesis. The results from my study indicate
that these segmentation algorithms reduce this inconsistent salt-pepper effect from
shallower machine learning algorithms. This exact problem I experienced myself on
this data set. Appendix VI Figure F.1 shows the difference between a random forest
classifier and the segmentation model. Obviously, the last model gives desirable
characteristics compared to the random forest. The metrics for the random forest
classifier are equally good, and for MCC even better compared to the segmentation
model. The visual result tells another story where the segmentation model performs
much better. In another master’s thesis by A. Primstad and Å. Stemme [100], they
write about pixel-based area classification of urban environment with deep learning
and hyperspectral images. They also recommend applying segmentation models as
future work for finding objects in an image.

This study has explored new methods of analyzing fused hyperspectral images
and LiDAR data. Previous experiences from other master’s thesis and papers have
been used in the choice of algorithm structures. Using these experiences on a specific
problem, finding roof materials, the study shows the practicality and versatility of
detail mapping using semantic segmentation on hyperspectral and LiDAR data.

5.5 Future Work

The results from this study show that semantic segmentation of roof materials is
promising. The results can be used to demonstrate the usage of the algorithm on
the data, but are far from constant enough to industrialize and automatically map
areas without being authorized. However, there are several opportunities for the
data foundation and model architecture for future research that can yield better
results.

The immediate improvement is data collection. The more data the models are
exposed to, the better and more generalized they typically get. This project has
an enormous amount of airborne data, so the limitation lies in the labeled data. I
recommend documenting more roof materials for a larger ground truth for future
research. It might be a good idea to engage experts in the field of roof materials to
increase the data quality and ensure the correctness of the ground truth. Based on
the applications of such information collection and the value it gives, it might be
one of the most impactful improvements.

If it is not possible to collect more data, a maximal usage of the available data
might increase the performance of the models. By augmenting the data it is possible
to generate a larger data set based on the accessible images. The images can be
augmented in many ways, and the most useful modifications are brightness, rotation,
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distortion and blurring. If the brightness is manipulated in the image, the image
will appear either darker or lighter than the original. This can be beneficial for
recognizing the spectral signature in different light settings. The reflection from the
material heavily depends on an external light source, and throughout the day the
light from the sun changes. The area changes brightness, shadows and sun angle
depending on time of the day. If an image brightness is augmented, it is possible to
expose the model to artificial data that can mimic different light conditions, and the
model might generalize independent of the light conditions. Another advantageous
augmentation of the data is rotation. By rotating the image and setting the roofs
in different angles, the model will experience varying localizations of houses and
probably find all kinds of houses independent of their position in the terrain. Both
distortion and blurring the image can be useful to get more variation of the elements
in the image. If the image is distorted there is the same data just in another spatial
form, and blurring is an unclear image. These are not desirable characteristics the
model can learn but are probably harmless modifications to generate artificial data.

Some data augmentations can be especially good at extracting features for clas-
sifying the roof materials. Therefore, a feature engineering of the data to isolate the
model’s essential features can be a valuable step toward better results.

Semantic segmentation is a growing scientific field with many innovations. The
performance of the U-net probably made it one of the most known and popular,
but in the later years newer and better architectures have come along. Most of the
architectures have a backbone like the ResNet, and beyond that there are many con-
figurations. Some popular architectures that have a lot of open source solutions are:
LinkNet, PSPNet and FPN. The website www.paperswithcode.com/sota tracks
ranking over best performing architecture on known data sets. One popular data
set SkyScapes, aerial photos of urban environments, has a net called DeepLabV3+
and one called SkyScapesNet-Dense that scores the overall best [may 2022]. The
DeepLabV3+ and SkyScrapeNet scores respectively 38.2 and 40.1 in the IoU, com-
pared to a plain U-net only has a score of 14.2.

In the jungle of architecture, it might be a jungle of backbones. There can be
beneficial to search for backbones that are trained on hyperspectral images, and
ideally airborne hyperspectral images.

The last recommendation for future work to improve the models is to change
the number of filters in the Res-U-Net. The Res-U-Net compacts the data from 399
dimensions to 64 filters in the first layers. This might lose some spectral information,
and it can be beneficial to have a starting filter size that can handle and be larger
than the amount of dimension.

To sum up the recommendations for further work: First, generate more quality
data, augment available data, then experiment with other architectures or back-
bones. A good place to start is tensorflow’s model garden: https://github.com/
tensorflow/models/tree/master/official.
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6 Conclusion

In this study, hyperspectral and LiDAR data are used in analysis to localize and
classify roof materials. Hyperspectral and LiDAR data are obtained simultaneously
over Bærum municipality right outside of Oslo, Norway. A ground truth was gener-
ated based on local field work, information from FKB and the watershed algorithm.
A DSM and DTM are extracted from the LiDAR point cloud to make a nDSM that
explains the heights of objects in the area. The hyperpectral data that contains
VNIR and SWIR are fused and then merged with the nDSM. The data is then split
into three sets: a training set, a validation set and a test set. Validation set is used
to validate the training performance and the test set is used to examine the results
visually. Both of these sets are used to evaluate the metric score of the model due
to lack of classes in the test set.

The model in this thesis is a supervised fully connected convolutional neural
network. This model has a U-net architecture with ResNet34 as the backbone.
It learns to localize and classify roof materials. The metric results from Table
4.1 and 4.2 for accuracy, F1 Score weighted and Matthews Correlation Coefficient
are respectively for the multiclass and binary problem. The metric scores for the
multiclass problem are 0.903, 0.896 and 0.579. The scores for the binary problems
are 0.948, 0.946 and 0.789.

Based on the score from the results and the visual examination of the train set
I conclude that semantic segmentation is a viable technique in the answer of the
two research questions. The technique can detect roof in urban environments with
high precision, and it is viable on fused hyperspectral and LiDAR data to localize
and classify roof materials. Compared to shallower machine learning algorithms,
semantic segmentation significantly reduces the salt-pepper effect in the visual re-
sults. With quality data of all classes, this method yields desirable objectifying
characteristics that consider both an object’s spectral and geometrical information
and its surroundings spatial and spectral information.
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A Appendix I

Figure A.1: Metric scores compared on an imbalanced data set. Confusion matrix
explains the distribution between true or false positives and negatives
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B Appendix II

Table B.1: Program and Python modules used in this study.
Module/Program name Appliance Version
Python High level programming language 3.7.7
QGIS GIS program 3.20.3
QTM Point cloud tool 830 IX
Tensorflow Deep learning framework 2.8.0 & 2.1.0
Keras Deep learning API 2.8.0
Segmentation models Image segmentation API 1.0.1
Spectral Hyperspectral image 0.22.2
GDAL Georeference images 3.0.2
PIL/Pillow Georeference metadata 8.2.0
Matplotlib Plotting graphic 3.5.1
Seaborn Plotting graphic 0.11.2
Numpy Mathematical functions 1.21.5
Pandas Data analysis 1.3.5
OpenCV Image processing 4.4.0
visualkeras Visualise NN models 0.0.2
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C Appendix III

Figure C.1: Model optimizing on dimension reduction for input data. PCA is with
10 components, every 3rd is that every third wavelength is in use, and 10 grouped is
batches of 10 wavelengths are extracted and the mean of these are the input data.

89



D Appendix IV

Figure D.1: Visual results for model with dimension reduction PCA with 10 com-
ponents.
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Figure D.2: Visual results for model with dimension reduction where every 3rd
wavelength is extracted.
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Figure D.3: Visual results for model with dimension reduction of groups of 10 and
the mean of them.
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E Appendix V

Figure E.1: Binary prediction for the best model.
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Figure E.2: Binary prediction for all models.
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F Appendix VI

Comparison between Res-U-Net with ResNet34 as backbone and Random Forest.
Random forest is often the best performing shallow machine learning. This algo-
rithm requires minor computation capability compared to the Res-U-Net, and in
some cases with small and medium data set Random forest performs better than a
more advanced CNN. Therefore, it is curious to see if a random forest achieves just
as good score and if it is worth using a complex and harder to explain algorithm.
Table F.1 shows the metrics that looks very good for Random forest, but by looking
at the visual results in FigureF.1 Random forest has a lot of unwanted characteristic.

Table F.1: ResNet vs Random forest metrics.
Metric name Random Forest Res-U-Net
Accuracy 0.898 0.903 ± 0.006
F1 Score weighted 0.874 0.896 ± 0.008
Matthews Correlation coefficient 0.618 0.579 ± 0.034

Figure F.1: Visual results from Random Forest and Res-U-Net.
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G Appendix VII

Figure G.1: One residual block for the model. Taken from the second lowest depth
for the model.
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H Appendix VIII

Figure H.1: Independent test for many configurations 1/3.
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Figure H.2: Independent test for many configurations 2/3.
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Figure H.3: Independent test for many configurations 3/3.
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I Appendix IX

Figure I.1: Comparison on full data set, data set without nDSM and RGB channels.
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