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One-sentence summary: Cross-species network analysis enables identification and validation of 26 

growth regulators in Arabidopsis. 27 

The author responsible for distribution of materials integral to the findings presented in this article 28 

in accordance with the policy described in the Instructions for Authors 29 

(https://academic.oup.com/pphys/pages/General-Instructions) is Klaas Vandepoele. 30 

Abstract 31 

With the need to increase plant productivity, one of the challenges plant scientists are facing is to 32 

identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, 33 

it is generally not trivial to transfer this knowledge about gene function across species to identify 34 

functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth 35 

transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen 36 

(Populus tremula). Next, known growth regulators, here defined as genes that when mutated or 37 

ectopically expressed alter plant growth, together with cross-species conserved networks, were 38 

used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature 39 

screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype 40 

when mutated or overexpressed and thus represent novel potential growth regulators. Globally, 41 

these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, 42 

and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two 43 

predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM 44 

IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species 45 

strategy to identify genes involved in plant growth and development.  46 

Introduction 47 

The need to increase plant productivity reveals that, despite the detailed information gained on 48 

plant genomes, modelling plant growth and translating the molecular knowledge obtained in model 49 

plant species to crops is not trivial (Nuccio et al., 2018; Simmons et al., 2021, Inze and Nelissen, 50 

2022). Plant organ growth is one of the processes that is well-studied in model plants (Vercruysse 51 

et al., 2020a), playing a major role in affecting plant productivity (Sun et al., 2017). New plant 52 

organs are formed and then grow continuously throughout development. Upon adverse conditions, 53 
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growth adjustments are among the first plant responses, rendering growth regulation an important 54 

yield component (Gray and Brady, 2016; Nowicka, 2019). The growth of plants involves complex 55 

mechanisms controlling processes from the cellular to the whole-organism level (Verbraeken et 56 

al., 2021). However, which growth zones or cell types are most important in controlling organ 57 

growth is not always clear.  58 

Numerous genes, which we refer to as growth regulators, have been identified that when mutated 59 

or ectopically expressed alter organ size, such as leaf size, in plants. Detailed transcriptome and 60 

functional analyses have revealed that many of these genes are part of functional modules 61 

conserved across plant species (Vercruysse et al., 2020b). Previous research has shown that largely 62 

similar cellular and molecular pathways govern the fundamental growth processes in dicots and 63 

monocots (Anastasiou et al., 2007; Nelissen et al., 2016). This observation is based on the presence 64 

of functionally conserved orthologous growth regulators which promote organ growth in both 65 

dicots and monocots. Notable examples are genes encoding CYTOCHROME P450, FAMILY 78, 66 

SUBFAMILY A, POLYPEPTIDE 8 (CYP78A), AUXIN-REGULATED GENE INVOLVED IN 67 

ORGAN SIZE (ARGOS), rate limiting GA biosynthesis enzymes, BRASSINOSTEROID 68 

INSENSITIVE 1 (BRI1), ANGUSTIFOLIA3 and GROWTH-REGULATING FACTORS 69 

(Powell and Lenhard, 2012; Vercruysse et al., 2020a). 70 

The complex and highly dynamic nature of the regulatory networks controlling complex traits 71 

makes the identification of growth regulatory genes challenging (Baxter, 2020). Moreover, 72 

duplication events across the plant kingdom have caused a general enlargement of gene families 73 

and, with it, plant- and tissue-specific functional specialization (Jones and Vandepoele, 2020). It 74 

became clear that, even when the gene space is well characterized and conserved, the translation 75 

from model species to crops is not straightforward (Gong et al., 2022; Inze and Nelissen, 2022). 76 

One of the bottlenecks lies in the complexity of crop genomes, such as polyploidy, and the 77 

subsequent difficulty in identifying functional orthologs. 78 

Gene orthology information is essential to transfer functional annotations from model plants with 79 

high-quality annotations (e.g. Arabidopsis thaliana) to other species. Functional annotations 80 

derived from experimental evidence can be used to identify relevant orthologs and drive gene 81 

function discovery in crops (Lee et al., 2015, 2019). This approach is not straightforward, mainly 82 

for two reasons: first, the orthology approach normally leads to the identification of complex (one-83 
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to-one, one-to-many and many-to-many) orthology relationships (Movahedi et al., 2011; Van Bel 84 

et al., 2012); second, for genes with multiple orthologs, it has been observed that the ortholog with 85 

the highest protein sequence similarity is often not the ortholog with the most similar regulation, 86 

indicating that identifying functionally conserved orthologs is challenging (Patel et al., 2012; 87 

Netotea et al., 2014). 88 

Biological networks offer the means to study the complex organization of gene interactions. 89 

Densely connected network clusters form gene modules, defined as groups of linked genes with 90 

similar expression profiles (i.e. co-expressed genes), which also tend to be co-regulated and 91 

functionally related (Heyndrickx and Vandepoele, 2012; Klie et al., 2012). Although transferring 92 

network links from better annotated species to crops is the most intuitive approach and has proven 93 

to be helpful (Ficklin and Feltus, 2011; Obertello et al., 2015), it has been shown that only ~20-94 

40% of the co-expression links are conserved in pairwise comparison of Arabidopsis (Arabidopsis 95 

thaliana), Populus, and rice (Oryza sativa) (Netotea et al., 2014). On the other hand, it has been 96 

shown that using gene modules that are conserved across species can increase the amount of 97 

biological knowledge transferred from one species to another (Mutwil et al., 2011; Heyndrickx 98 

and Vandepoele, 2012; Cheng et al., 2021). Such conserved gene modules mirror biological 99 

processes conserved across species, meaning that the orthologous genes present in these modules 100 

are involved in the same process and potentially perform the same function (Stuart et al., 2003; 101 

Ruprecht et al., 2011). Significantly conserved cross-species modules (with many shared 102 

orthologs) can be used to transfer gene function annotations and analyze expression conservation 103 

for paralogs involved in complex many-to-many orthology relationships. A guilt-by-association 104 

approach can also then be used to infer functions of unknown genes from the functions of co-105 

expressed annotated genes (Wolfe et al., 2005; Lee et al., 2010; De Smet and Marchal, 2010; Klie 106 

et al., 2012; Rhee and Mutwil, 2014).  107 

Here, we aimed at developing an integrative approach to identify functionally conserved 108 

regulators, leveraging high-resolution transcriptomes and the power of cross-species network 109 

biology. In particular, we chose leaf as a system to study plant growth, as high-quality datasets 110 

covering cell proliferation and expansion are available in three plant species: two dicotyledonous 111 

plants, the annual plant Arabidopsis and the perennial plant aspen (Populus tremula), and one 112 

monocotyledonous plant, maize (Zea mays). We leveraged these data to construct aggregated gene 113 
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networks for each species and identified, through gene neighborhood conservation analysis, genes 114 

with cross-species network conservation. Subsequently, we used known plant growth regulators, 115 

belonging to various functional modules and influencing growth of different plant organs, as guide 116 

genes to predict putative growth regulators among these conserved genes. For the top 100 predicted 117 

growth regulators, we screened the literature to investigate if predictions linked to leaf growth 118 

were obtained. For a subset of highly ranked predictions with no reported information on plant 119 

growth, we performed phenotypic analyses and succeeded in validating two novel Arabidopsis 120 

growth regulators.  121 

Results  122 

Network construction and gene neighborhood conservation analysis 123 

To perform network construction based on gene expression information, we used transcriptomic 124 

data from leaves, which were selected as a representative system to study plant growth. This choice 125 

was primarily motivated by the well-known similarities in leaf growth regulation across dicots and 126 

monocots, which make cross-species comparison of gene networks straightforward and useful for 127 

gene function discovery (Vercruysse et al., 2020b). Secondly, our motivation relied on the 128 

availability of large-scale expression profiling studies, which allow selecting similar samples and 129 

constructing a congruent dataset for the different species. Expression compendia were built for 130 

Arabidopsis, maize and aspen that contained a minimum of 24 leaf samples (Figure 1, step 1; 131 

Supplemental Table S1; Supplemental Methods). These expression compendia all include 132 

developmental stages with active cell proliferation and cell expansion. The Arabidopsis expression 133 

compendium was composed of three main developmental phases: cell proliferation, cell expansion 134 

and the transition between these two phases. For maize, the developmental expression 135 

compendium included a newly generated high-resolution dataset and covered cell proliferation, 136 

cell expansion and mature phases of development (Supplemental Methods). For aspen, samples 137 

covered the developmental stages ranging from the very youngest leaf primordia to fully expanded 138 

and mature leaves. In total, expression data covered 20,313 genes for Arabidopsis, 29,383 genes 139 

for maize, and 35,309 genes for aspen (Supplemental Dataset S1). 140 

The network construction was performed for each species with Seidr, a toolkit to perform multiple 141 

gene network inferences and combine their results into a unified meta-network (Schiffthaler et al., 142 
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2018). For each network inference algorithm included, a fully connected weighted gene network 143 

was constructed. These were in turn aggregated into a weighted meta-network (simply “network” 144 

hereinafter, Figure 1, step 2).  When applying a weight threshold, the network density was defined 145 

as the ratio between the number of links with a weight higher than this threshold and the number 146 

of links in the weighted network. To dissect the network structure, several thresholds were used to 147 

subset the networks into more stringent density subnetworks (DSs). For each species network, five 148 

DSs were obtained ranging from DS1 (top 0.1% links) with an average of 358,455 links, to DS5 149 

(top 10% links) with an average of 35,845,512 links (Figure 1, step 3), with higher densities 150 

corresponding to a higher number of neighbors for each gene in the network (Supplemental Figure 151 

S1). A gene’s neighborhood is defined as all genes connected with this gene for a given network. 152 

Genes showing gene neighborhood conservation across species are part of conserved functional 153 

modules controlling distinct biological processes. This implies that the conserved network 154 

containing these genes confers a selective advantage and therefore that these genes are functionally 155 

related (Stuart et al., 2003). However, which gene neighborhood size to select to identify conserved 156 

growth-related functional modules is not straightforward, as being too stringent might lead to the 157 

loss of valuable interactions while being too relaxed might include non-functional interactions 158 

potentially representing noise (Movahedi et al. 2012). To identify genes showing network 159 

conservation in different species, a gene neighborhood conservation analysis was performed using 160 

each DS and the information on the orthology relationships between Arabidopsis, maize and aspen 161 

genes (Figure 1, step 4a). The network neighborhood of a gene is represented by all genes 162 

connected to it, at a given threshold. This concept was used to identify “triplets” (Supplemental 163 

Dataset S2), each containing three orthologous genes across Arabidopsis, maize and aspen with 164 

statistically significant overlaps between their gene network neighborhoods (see Methods). In an 165 

example triplet (Figure 1, step 4a), a specific Arabidopsis gene A1, will have an ortholog Z1 in 166 

maize and another ortholog P1 in aspen and these three genes will have a significant overlap of 167 

their gene network neighborhoods. Due to the complex orthology relationships that exist in plants, 168 

each gene can belong to one or multiple triplets as it can have one or more orthologs. For example, 169 

an Arabidopsis gene with only one ortholog in maize and aspen, assuming they have significant 170 

overlap of their gene network neighborhoods, will belong to one triplet. In contrast, another 171 

Arabidopsis gene with two orthologs in maize and three in aspen, assuming they also all have 172 

significant overlaps of their gene network neighborhoods, will belong to six triplets. We refer to 173 
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the set of unique genes that are part of triplets as “triplet genes”. Next, the conserved gene 174 

neighborhoods were used to dissect the complex network structures of these plants and to 175 

functionally harness the orthology relationships. The cross-species networks are available in an 176 

interactive web application (https://beta-complex.plantgenie.org). 177 

Delineation of conserved growth regulators 178 

Since the output of cell proliferation and expansion are strongly contributing to leaf size, we 179 

hypothesized that the generated triplets were an excellent source to extract orthologs potentially 180 

altering plant growth, representing conserved GRs. Growth regulators typically act by stimulating 181 

cell proliferation (yielding a higher cell number, as in the case of GRF (GROWTH-182 

REGULATING FACTOR) and GIF (GRF-INTERACTING FACTOR) proteins (Lee et al., 2009)) 183 

and/or cell expansion (as in the case of ZHD5 (ZINC-FINGER HOMEODOMAIN 5) (Hong et al., 184 

2011)). We generated a list of known GRs (“primary-GRs”) covering 71 primary-GRs from 185 

Arabidopsis, 71 from aspen and eight from maize. While the Arabidopsis and maize GRs mainly 186 

have a role in controlling leaf size, the aspen GRs are affecting stem size. In both organs, cell 187 

proliferation and expansion play an important role in controlling growth (Serrano-Mislata and 188 

Sablowski, 2018). This list of genes was obtained by collecting scientific literature and by 189 

phenotypic analysis of mutant and over-expression lines in Arabidopsis, maize, and aspen. We 190 

then used the triplets to transfer GRs from maize and aspen to Arabidopsis (“translated-GRs”). In 191 

other words, primary-GRs from maize and aspen, also identified as triplet genes, were used to 192 

extract Arabidopsis orthologs with gene neighborhood conservation. The primary-GRs and 193 

translated-GRs were finally merged and filtered for high expression variation in the Arabidopsis 194 

expression compendium to retain only those active during either cell proliferation or cell 195 

expansion. The resulting set, named “expression-supported GRs” (Supplemental Table S2, 196 

Supplemental Figure S2), was composed of 82 GRs, including 24 Arabidopsis primary-GRs and 197 

58 translated-GRs (GRF2 and GA20OX1 (GIBBERELLIN 20-OXIDASE 1) were shared between 198 

primary-GR and translated-GR sets). According to their expression profiles in Arabidopsis, 35 199 

expression-supported GRs showed maximal expression during cell proliferation, including several 200 

proliferation marker genes like GROWTH-REGULATING FACTORs (e.g. GRF1, GRF2, GRF3), 201 

AINTEGUMENTA (ANT (Mizukami and Fischer, 2000) and KLUH (Anastasiou et al., 2007)), 202 

and 47 expression-supported GRs had increased expression during cell expansion, such as 203 
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GA20Ox1 (Barboza et al., 2013) and BR ENHANCED EXPRESSION 2 (BEE2 (Friedrichsen et al., 204 

2002)). 205 

The 82 expression-supported GRs (from here on simply referred to as “GRs”) represent our guide 206 

genes, obtained by the integration of prior knowledge on plant growth and the cross-species gene 207 

neighborhood conservation approach, to identify candidate GRs. 208 

Functional analysis of cross-species conserved networks underlying leaf cell proliferation 209 

and expansion  210 

To explore cross-species conserved genes that function during cell proliferation and expansion, 211 

we performed a Gene Ontology (GO (Ashburner et al., 2000)) functional enrichment analysis of 212 

the Arabidopsis triplet genes from each DS across two sets: (1) all triplet genes (All) and (2) the 213 

subset of triplet genes including the 82 GRs and their co-expressed triplet genes (Growth regulator-214 

related triplet genes) (Figure 2). The total number of triplets ranged from 1,739 (DS1) to 243,645 215 

(DS5) (Figure 2A; Supplemental Dataset S2). To assess the significance of these numbers, a 216 

permutation approach was employed where the orthology relationships were randomized 500 217 

times and the number of triplets obtained from each permutation was recorded. The number of 218 

triplets observed were highly significant with not a single permutation for any DS exceeding the 219 

number of triplets observed in the non-permuted data (p-value<0.002). The number of unique 220 

Arabidopsis triplet genes ranged from 211 (DS1) to 6,526 (DS5) indicating that less sparse 221 

networks tend to have more genes and more conserved gene neighborhoods (Figure 2A). 222 

Interestingly, GRs and their network neighbors on average made up 71% of the triplet genes across 223 

the five DSs, suggesting that leaf growth-related gene networks are well conserved during leaf 224 

development across plant species. For simplicity, from here on we will refer to triplet genes at a 225 

specific DS as, for example at DS1, “genes conserved at DS1”. The functional enrichment (Figure 226 

2B) showed that triplet genes from the most stringent subnetwork (DS1) were enriched for basal 227 

biological processes during leaf development, including photosynthesis (e.g. glucose metabolic 228 

process, response to light and carbon fixation) and translation (e.g. large and small ribosomal 229 

subunits). Processes such as cell division and cell cycle regulation were significantly enriched for 230 

genes conserved at DS2 and DS3, including genes coding for cyclins (type A, B, D and P), cyclin 231 

dependent kinases (CDK) and their subunits (CKS), and other genes involved in the spindle 232 

formation (i.e. MICROTUBULE-ASSOCIATED PROTEINS (MAP)65-4 and -5). Cell expansion-233 
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related processes were identified among genes conserved at DS3 and included genes coding for 234 

expansins (EXP) and xyloglucan endotransglucosylases/hydrolases (XTH). Genes conserved at 235 

the two least stringent subnetworks (DS4 and DS5) were enriched for GO terms related to cell wall 236 

organization (e.g. lignan biosynthesis, pectin degradation, lignin metabolism), defense response to 237 

biotic and abiotic stresses (e.g. defense response to oomycetes, response to salt stress and heat 238 

stress), and transmembrane transport and hormone signaling (e.g. response to auxin, ethylene and 239 

brassinosteroid). The category “regulation of transcription” was enriched for genes conserved at 240 

DS3, DS4, and DS5. GRs were significantly over-represented in subnetworks starting from DS2, 241 

indicating that GRs have highly conserved gene network neighborhoods. Most of the GRs (87%) 242 

were conserved in one or more DSs (Figure 2C).  243 

Among the GRs conserved at DS2, 32% were transcription factors (TFs), including regulators of 244 

cell cycle (e.g. AINTEGUMENTA) and cell elongation such as BEE2 and its homolog HBI1 245 

(Supplemental Figure S3). These results suggest a conserved role of these TFs in leaf development 246 

across the three plant species. Genes involved in hormone-mediated transcriptional regulation 247 

(INDOLEACETIC ACID-INDUCED PROTEIN (IAA)3, IAA14, IAA30, and AUXIN RESISTANT 248 

(AUX)1) were also detected. Cell growth regulators, including the GRF family, were found 249 

conserved and, among them, GRF2 was conserved at DS2. Literature information on differentially 250 

expressed gene (DEG) sets from perturbation experiments was also included in the functional 251 

enrichment analyses for several primary-GRs. In particular, genes up- and down-regulated in 252 

SAMBA loss-of-function mutants (Eloy et al., 2012) and JAW (JAGGED AND WAVY) 253 

overexpression lines (Gonzalez et al., 2010) were significantly enriched in the GR-related set 254 

(Figure 2B). Whereas SAMBA plays a key role in organ size control (seeds, leaves and roots), 255 

transgenic overexpression lines of JAW showed enlarged leaves and an increased cell number, 256 

indicative of prolonged cell proliferation (Gonzalez et al., 2010; Eloy et al., 2012). An additional 257 

functional enrichment analysis was performed focusing on TF families to identify their cross-258 

species conservation level. In particular, genes conserved from DS2 to DS5 (Supplemental Figure 259 

S4) were significantly enriched for the ETHYLENE RESPONSE FACTOR (ERF) family (q-value 260 

< 0.01), which has a recognized role in plant growth (Dubois et al., 2018). At DS3, among others, 261 

MYB and WRKY TF families, known to be involved in developmental processes, appeared 262 

strongly conserved. At the least stringent DSs (DS4 and DS5) we could observe other conserved 263 

TF families like DOF (regulating the transcriptional machinery in plant cells), MIKC-MADS 264 
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(involved in floral development) and NAC (with functions in plant growth, development and stress 265 

responses) (Lehti-Shiu et al., 2017). For TFs conserved at DS2, a significant enrichment was 266 

observed for the CONSTANS-like TF-family when considering GR-related triplet genes and 267 

included BBX3, BBX4, BBX14 and BBX16. A number of BBX proteins have been linked with 268 

photomorphogenesis, neighborhood detection, and photoperiodic regulation of flowering (Vaishak 269 

et al., 2019). 270 

Network-based prediction of novel growth regulators  271 

Apart from analyzing the conservation level of known GRs, we subsequently investigated if new 272 

GRs could be identified. To obtain high-quality GR predictions, a combined strategy was adopted 273 

to leverage the known GRs and the gene neighborhood conservation analysis through a guilt-by-274 

association (GBA) approach. The GBA principle states that genes with related function tend to be 275 

protein interaction partners or share features such as expression patterns or close network 276 

neighborhood (Oliver Stephen, 2000). First, gene function prediction through GBA was 277 

performed, where the known GRs were used as guide genes for network-based gene function 278 

discovery (Figure 1, step 4b). Gene functions were assigned through functional enrichment in the 279 

Arabidopsis networks, at different DSs. As a result, genes that were part of network neighborhoods 280 

significantly enriched for guide GRs were classified as predicted GRs, and a GBA score was 281 

assigned to quantify the strength of the predicted GRs (see Materials and Methods). Secondly, the 282 

predictions (Figure 1, step 4b) were filtered for those already identified as triplet genes (Figure 1, 283 

step 4a). These filtered predictions (Figure 1, step 5), forming the predicted GR set, were labelled 284 

with their species names if they were part of the guide GRs (primary or translated-GR) or with 285 

“new” if they were novel (Supplemental Table S3). This approach led to 2206 GR predictions, of 286 

which 66 were guide GRs. For the latter, 11 were uniquely from the Arabidopsis GR primary set, 287 

53 uniquely from the aspen translated-GRs, and the remaining two were shared among species. 288 

Note that the recovery of known GR genes would be zero in case the network would be random 289 

and not capture growth-related transcriptional information. From DS1 to DS5, the subsets of GR 290 

predictions covered 175, 496, 421, 891 and 223 genes, respectively (Supplemental Table S3). 291 

Overall, the biological processes observed for the conserved predictions agreed with those 292 

observed for all triplet genes (Figure 2). 293 
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To evaluate the reliability of the predicted GR set and its potential use for discovering genes with 294 

a significant effect on plant growth, the public phenotype database RARGE II (Akiyama et al., 295 

2014), covering 17,808 genes and 35,594 lines, was screened obtaining a list of 391 Arabidopsis 296 

genes that, if mutated, caused a phenotype change in Arabidopsis leaf length, width and/or size 297 

(RARGE II leaf trait genes, Supplemental Table S4). When investigating the gene recovery for the 298 

RARGE II leaf trait genes (Figure 3), a clear trend was observed in phenotype recovery ranging 299 

from DS1, with higher recovery (~3 and ~4.3 fold enrichment compared to what is expected by 300 

chance for proliferation and expansion, respectively), to DS5, with almost no recovery. This result 301 

indicates that, among all DSs, DS5 is the least suitable one to identify genes with a potential effect 302 

on leaf phenotype.  303 

Validation of GR predictions using literature and leaf phenotyping 304 

To validate the assumption that the GR predictions top ranked by GBA are more likely to show a 305 

plant growth-related phenotype, an in-depth literature analysis was performed to summarize the 306 

connection with different growth-related pathways (Supplemental Table S5) and to score known 307 

growth-related phenotypes for the top 100 GR predictions (Supplemental Table S6). For 61 of 308 

these 100 predicted genes, mutant lines and/or lines with ectopic expression were reported. For 34 309 

out of the 61 genes (55.7%), obvious alterations to leaf size and shape as well as petiole length 310 

were reported when mutated or overexpressed (Supplemental Table S6). 311 

Functional analysis of the 34 genes with described leaf phenotypes revealed their involvement in 312 

several biological processes and pathways such as cell cycle regulation, hormone response, 313 

photosynthesis, carbon utilization and cell wall modification (Figure 4). Importantly, we could 314 

find conserved relationships between five specific genes active in the expansion phase: 315 

CATIONIC AMINO ACID TRANSPORTER (CAT)2, THIOREDOXIN X (THX), BETA 316 

CARBONIC ANHYDRASE (BCA)4, CA2, and PMDH2. Among them, CAT2 and BCA4 were 317 

also high ranked by GBA score. For the proliferation cluster, we could observe strong relationships 318 

between ANT, OBF BINDING PROTEIN 1 (OBP1), GRF2, CYCD3;3, GLABRA 1 (GL1), HTA8 319 

(HISTONE H2A 8), and AN3. Among them, we identified TFs mainly involved in cell cycle 320 

process (ANT, OBP1, GRF2), cell wall (GL1), and hormone signaling pathways such as jasmonate 321 

(GL1), abscisic acid (ANT), and gibberellin (GL1). Twenty-seven of the 61 predictions with knock-322 

down mutations and/or ectopic expression lines did not show a association with leaf growth, which 323 
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may be partially due to the redundancy of large gene families or that the leaf phenotype was not 324 

explored in those studies. Additionally, three of these 27 genes have been reported to influence 325 

root or hypocotyl development, which may also contribute to overall plant growth and organ size.  326 

To further validate the role of these candidate GRs in the leaf development, the system that we 327 

chose to study plant growth, we collected the mutants of nine genes among the 27 predicted GRs 328 

which have not been reported with a leaf phenotype (Supplemental Table S7). Molecular 329 

identification of these mutants was conducted and a detailed analysis of leaf growth in controlled 330 

long-day soil-grown conditions was made (Supplemental Figure S5). By following the projected 331 

rosette area (PRA), compactness and stockiness of each mutant line over time, this phenotypic 332 

characterization revealed that the mutants of two GR candidate genes showed altered rosette 333 

growth. The mutant lines of a putative nitrate transporter gene NPF6.4/NRT1.3, sper3-1 and sper3-334 

3, both displayed decreased PRA compared with the wild-type plants (Figure 5A). The sper3-1 335 

harbored a mutation at a conserved glutamate of NRT1.3, while the T-DNA line sper3-3 was a 336 

knockout allele (Tong et al., 2016). The reduction in size of sper3-3 was smaller and occurred later 337 

in development compared with sper3-1. Before bolting (26 DAS), sper3-1 and sper3-3 were 37.3% 338 

and 13.2% smaller, respectively, compared with the wild-type (Supplemental Table S7). Both 339 

sper3-1 and sper3-3 showed significantly reduced leaf number compared to wild type (Figure 5, 340 

Supplemental Figure S6). Besides NPF6.4, the mutants of LATE MERISTEM IDENTITY2 (LMI2) 341 

which has been reported to be required for correct timing of the meristem identity transition 342 

(Pastore et al., 2011), also showed altered rosette growth. In standard long-day conditions in soil, 343 

a significant reduction of PRA was detected in lmi2-1, which displayed elevated LMI2 expression 344 

in seedlings. By contrast, the lmi2-2 mutants in which the T-DNA insertion gave rise to a truncated 345 

non-functional LMI2 protein, exhibited significantly increased PRA and were 13.5% larger than 346 

the wild-type plants at 26 DAS (Figure 5B and Supplemental Table S7). Among LMI2 mutants, 347 

lmi2-2 showed significantly increased leaf number (Figure 5, Supplemental Figure S6). Both 348 

NPF6.4 and LMI2 were highly ranked by GBA (rank 18 and 20, respectively), which further 349 

implies that the predictions with a low GBA score are more likely to show a leaf phenotype. 350 

Although the leaf was the model system chosen and analyzed in this study, we do not exclude that 351 

the predicted candidate GRs, including the validated NPF6.4 and LMI2, might also alter the growth 352 

of other organs. Taken together, these experimentally validated genes lend additional support to 353 

the potential of our predictions for plant growth regulation.  354 
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Discussion 355 

In this study, we developed an integrative approach to identify candidate genes responsible for 356 

altering plant growth. To accomplish this, we used cross-species gene network analysis focusing 357 

on the leaf, given its similarities between dicots and monocots (Nelissen et al., 2016). To identify 358 

relevant context-specific gene interactions, it is highly recommended to focus the gene network 359 

analysis on a specific condition or context, rather than integrating multiple conditions (e.g. 360 

different stresses, growth conditions, development stages) (Pavlidis and Gillis, 2012; Liseron-361 

Monfils and Ware, 2015; Serin et al., 2016). For this reason, expression datasets were generated 362 

and compiled capturing two main features of leaf growth: cell proliferation and cell expansion. 363 

These two processes are governed by similar cellular and molecular pathways across monocots 364 

and dicots (Nelissen et al., 2016), which inspired the selection of transcriptional datasets from two 365 

dicots (Arabidopsis and aspen) and one monocot (maize). The network construction was carried 366 

out integrating multiple inference methods to leverage the power and complementarity of different 367 

network inference algorithms (Marbach et al., 2012; Schiffthaler et al., 2018). To evaluate the 368 

strength of different biological signals in our network, the gene interactions, obtained after 369 

applying different network density cutoffs (DS1-5), were studied. Given that thousands of genes 370 

are expressed during leaf development, prioritizing candidate growth regulators starting from 371 

different developmental expression datasets is a major challenge. To do so, we relied on two main 372 

approaches: the guilt-by-association principle, which is frequently used for gene discovery, and 373 

network neighborhood conservation analysis, which detects significantly overlapping network 374 

neighborhoods across species to identify reliable functional orthologs (Movahedi et al., 2011; 375 

Netotea et al., 2014).  376 

From the gene neighborhood conservation analysis on five different density subnetworks, we 377 

observed that, with an increased network density, the number of genes with conserved network 378 

neighborhood also grew. This is expected and is probably due to a greater statistical power when 379 

comparing larger neighborhoods (Netotea et al., 2014). Overall, as previously observed 380 

(Vercruysse et al., 2020b), the integration of different sequence-based orthology detection methods 381 

was important because of their complementarity, highlighting complex orthology relationships and 382 

evaluating the strength of the orthology support. Overall, 36% of the Arabidopsis genes (7,320 out 383 

of 20,313 genes present in the network) had conserved neighborhoods across Arabidopsis, aspen, 384 
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and maize, in any of the five density subnetworks. This result is similar to what has been found 385 

across Arabidopsis, poplar and rice, although a different network construction pipeline was used 386 

there (Netotea et al., 2014). 387 

From a plant breeding perspective, we were interested in cross-species functionally conserved 388 

predictions with experimental evidence in more than one species. GA20-oxidase1 represents a 389 

well-known example of a GR that is functionally conserved across monocots and dicots. This gene 390 

was confirmed in our analyses to be conserved at the network neighborhood level. GA20-oxidase1 391 

is in fact a rate limiting enzyme for gibberellin growth hormone biosynthesis in Arabidopsis, 392 

aspen, maize and rice (Gonzalez et al., 2010; Nelissen et al., 2012; Qin et al., 2013; Eriksson et 393 

al., 2000). To validate the functional relevance of the predicted GRs, we screened the top 100 GR 394 

predictions and observed that, among the 34 Arabidopsis predicted genes with a known leaf 395 

phenotype in Arabidopsis, six were also already known to affect plant growth in aspen (here stem 396 

size). This result is not unexpected as overlapping regulatory mechanisms and genes are shared 397 

between primary and secondary meristems, which are responsible for the formation of plant tissues 398 

and organs (Baucher et al., 2007). The six translated-GRs were AUX1, IAA3/SHY2, AUXIN 399 

RESISTANT 5 (AXR5), ATBS1 INTERACTING FACTOR 3 (AIF3), AIF4, and HOMOLOG OF 400 

BEE2 INTERACTING WITH IBH 1 (HBI1) and their expression in Arabidopsis was peaking at the 401 

cell expansion phase. The first three genes are auxin-related genes. Auxin is important for 402 

regulating root meristem growth and is crucial for root initiation and lateral root number. AUX1 403 

was translated from aspen Potra002054g16021 while IAA3/SHY2 and AXR5 were translated from 404 

aspen Potra000605g04596. For both these aspen genes, generated aspen RNAi lines exhibited an 405 

increase in stem size, an important indicator for tree biomass yield, connecting back to the 406 

underlying regulatory processes in the meristematic tissues (Supplemental Table S2). AUX1 is an 407 

auxin transport protein which regulates auxin distribution across source (young leaf) and sink 408 

organs (young roots) (Marchant et al., 2002). IAA3/SHY2 is crucial for root meristem development 409 

in Arabidopsis, being the converging point of cytokinin and auxin regulatory circuit (Li et al., 410 

2020). Arabidopsis mutants for AUX1 and IAA3/SHY2 showed alterations in number and size of 411 

lateral roots (Tian and Reed, 1999; Marchant et al., 2002) while AXR5 is an auxin response factor 412 

and mutant plants for this gene are tolerant to auxin and show alterations of root and shoot tropisms 413 

(Yang et al., 2004). Our network results and phenotypes in aspen and Arabidopsis indicate that 414 

these genes also play an important role in meristem growth in other organs apart from root. HBI1, 415 
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AIF3, and AIF4, encode a tier of interacting bHLH transcription factors downstream of BR and 416 

regulate the cell elongation in leaf blade and petiole (Bai et al., 2013; Ikeda et al., 2013). AIF3 and 417 

AIF4 were translated from Potra004144g24626 while HBI1 was translated from 418 

Potra186144g28414. These two aspen genes have been tested with an overexpression approach in 419 

aspen trees showing even a bigger increase in stem size as compared with the auxin-related aspen 420 

genes Potra000605g04596 and Potra002054g16021 (Supplemental Table S2). Arabidopsis 421 

mutants for these genes (HBI1, AIF3, and AIF4) have been linked with alteration of petiole length 422 

(Supplemental Table S6).  423 

LMI2 was a highly ranked GR prediction. Importantly, LMI2 (a MYB TF) is not a paralog of LATE 424 

MERISTEM IDENTITY 1 (LMI1, a homeobox TF), also predicted here. Although LMI1 and LMI2 425 

belong to different TF families, they both function downstream of LEAFY to regulate meristem 426 

transition (Pastore et al., 2011). LMI1 was reported to regulate leaf growth in Arabidopsis and 427 

other species (Vlad et al., 2014; Andres et al., 2017; Li et al., 2021). Arabidopsis LMI1 loss-of-428 

function mutant showed decreased leaf serration and promoted tissue growth in stipules (Vuolo et 429 

al., 2018). The observed phenotype of mutated LMI2 was related to an increase of the number of 430 

cauline leaves and secondary inflorescences (Pastore et al., 2011). Here, LMI2 transgenic lines 431 

were subjected to phenotypic analysis, which demonstrated that a LMI2 loss-of-function mutant 432 

showed increased leaf number and rosette area. We do not exclude that other organs and/or traits 433 

might also be affected by the loss of functionality of this gene. The neighborhood conservation of 434 

both LMI1 and LMI2 suggests that it would be worthwhile to further explore their roles in leaf 435 

shape control across monocots and dicots. 436 

Other known examples of functionally conserved predictions across monocots and dicots were 437 

GRFs (e.g. the highly ranked GRF2), which have a recognized role in leaf size regulation, and 438 

AN3/GIF1, a transcriptional co-activator protein (Nelissen et al., 2016). This was also testified by 439 

their network conservation in stringent density subnetworks (DS2). A second gene, GL1, had its 440 

network neighborhood conserved with GRMZM2G022686 from maize. This maize gene encodes 441 

for the MYB-related protein Myb4. This protein plays important roles in plant improved tolerance 442 

to cold and freezing in Arabidopsis and barley (Soltész et al., 2012), but no connections with 443 

growth have been observed for this gene. Arabidopsis SUC2 showed conservation with 444 

GRMZM2G307561, a sucrose/H+ symporter which remobilize sucrose out of the vacuole to the 445 



16 
 

growing tissues. Mutants for this gene showed reduced growth and the accumulation of large 446 

quantities of sugar and starch in vegetative tissues in Arabidopsis (Srivastava et al., 2008), while 447 

in maize mutants, slower growth, smaller tassels and ears, and fewer kernels were observed (Leach 448 

et al., 2017). This gene is thus also important for growth, development, and yield across monocots 449 

and dicots. 450 

The application of a cross-species approach is an important feature of our methodology. To 451 

perform GR predictions, translated-GRs from aspen and maize were also used as guide genes, 452 

together with triplets to focus on the conserved parts of the inferred leaf networks. As a result, 453 

among the cross-species conserved predictions with experimental evidence in more than one 454 

species described above, AUX1, IAA3/SHY2, AXR5, AIF3, AIF4, HBI1, AN3/GIF1, GL1, and 455 

SUC2 couldn’t have been predicted using solely primary-GRs from Arabidopsis. This observation 456 

indicates that the integration of information of different plant species enhances the detection of 457 

GRs.  458 

A total of 11 primary-GRs from Arabidopsis showed no network neighborhood conservation. Lack 459 

of conservation might be the result of (1) missing orthologs in a target species or (2) different 460 

network gene neighbors across species, which in turn might be caused by different transcriptional 461 

control. One clear example of no conservation due to a lack of orthologs is PEAPOD 2 (PPD2), 462 

which is a TIFY transcriptional regulator part of the PEAPOD (PPD) pathway. This pathway plays 463 

an important role in cell proliferation and, with its PPD/KIX/SAP module, is involved in leaf, 464 

flower, fruit, and seed development. This pathway is present in most vascular plant lineages, but 465 

was lost in monocot grasses (Schneider et al., 2021). The reason for this absence might be found 466 

back in intrinsic differences between eudicots and grasses, being mainly lack of meristemoids and 467 

functional redundancy for the regulation of cell proliferation. Surprisingly, several non-grass 468 

monocot species such as banana (Musa acuminata) and oil palm (Elaeis guineensis), the 469 

angiosperm Amborella trichopoda and lycophytes, carry PPD/KIX/SAP orthologs, although 470 

information about their functionality is missing (Schneider et al., 2021). Another gene with 471 

orthologs but lacking network neighborhood conservation was AHK3, a cytokinin receptor that 472 

controls cytokinin-mediated leaf longevity. This might be explained by knock-out experiments on 473 

AHK receptors showing contrasting effects on flowering time or floral development across 474 

Arabidopsis and rice (Burr et al., 2020). Another non-conserved GR was ZHD5 that regulates 475 
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floral architecture and leaf development and is regulated by MIF1 (MINI ZINC-FINGER 1) (Hong 476 

et al., 2011), which also lacked network conservation. ZHD5 regulation might thus be different 477 

across species. Similarly, FBX92 (F-BOX PROTEIN92) was not conserved, which might be 478 

explained by the opposite effects on leaf size shown by ZmFBX92 and AtFBX92 gain of function 479 

in Arabidopsis due to the presence of an F-box-associated domain in AtFBX92, lacking in 480 

ZmFBX92. FBX92 orthologs might thus undergo different transcriptional regulation (Baute et al., 481 

2017). EPF1 (EPIDERMAL PATTERNING FACTOR 1) was also a non-conserved GR. This gene 482 

affects stomatal density and water use efficiency. Recent work suggested that, in monocots and 483 

dicots, EPF1 orthologs probably have different temporal dynamics of gene expression in the 484 

stomatal lineage (Buckley et al., 2020), which might result in different network gene neighbors. 485 

 486 

Based on the validation results of our GR prediction pipeline, a correlation between network size 487 

and recovery of genes affecting leaf size was observed. In particular, with increasing network size, 488 

the recovery rate decreased, indicating that DS5 is not a recommended network density to use to 489 

find growth regulators. The network neighborhood conservation of genes in the most stringent 490 

networks involved different basal biological processes, suggesting their functional similarity 491 

across monocots and dicots. Not surprisingly, genes involved in cell cycle regulation and plant 492 

hormonal response were found, as both processes have a key role in leaf development. Several cell 493 

cycle regulators were predicted as GRs, like the cyclin gene CYCD3;3, the CDK inhibitor KRP3 494 

(KIP-RELATED PROTEIN), and a DOF transcription factor gene OBP1 (OBF BINDING 495 

PROTEIN 1) that controls cell cycle progression (Dewitte et al., 2007; Skirycz et al., 2008; Jun et 496 

al., 2013). The auxin-responsive transcription factor gene MONOPTEROS (MP) is crucial for leaf 497 

vascular development (Hardtke and Berleth, 1998), while the Aux/IAA gene that represses auxin 498 

signaling, AXR2, whose gain-of-function leads to strong inhibition of leaf growth (Mai et al., 499 

2011), was also predicted. Besides auxin, brassinosteroid (BR) and gibberellin (GA) coordinately 500 

play key roles in regulating plant cell elongation. The other two predicted transcription factor 501 

genes, HB25 (HOMEOBOX PROTEIN 25) and MYR1, which modulate bioactive GA biosynthesis, 502 

were also shown to have an effect on the petiole growth (Bueso et al., 2014). It is noteworthy that 503 

nearly half of all the 34 genes with leaf phenotype were transcription regulators, which highlights 504 

the importance of TF-mediated gene expression regulation during leaf development. In addition to 505 

hormone-related genes and TFs, genes related to photosynthesis are also important for leaf 506 
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development. A carotenoid biosynthesis gene LCY and a chloroplast redox-regulating gene 507 

THIOREDOXIN X were predicted as GR and have been shown to affect leaf size (Li et al., 2009; 508 

Pulido et al., 2010). Moreover, the cytoplasmic carbonic anhydrase genes CA2 and BCA4 were 509 

identified, consistent with the view that carbon utilization in leaves is closely linked to leaf area 510 

(DiMario et al., 2016). Cell wall modification is considered to be another important determinant 511 

of leaf development. The predicted candidate genes LACCASE11 (LAC11) and CUTICLE 512 

DESTRUCTING FACTOR 1 (CDEF1), encoding for a laccase that associates with the lignin 513 

deposition in cell wall and a cutinase essential for the degradation of cell wall components, 514 

respectively, are also involved in regulating leaf growth and morphology (Takahashi et al., 2010; 515 

Qin et al., 2013). Among Arabidopsis genes with a reported phenotype in the RARGE II loss-of-516 

function dataset, ACO2 (ACC OXIDASE 2) led to increased leaf size, and AT3G43270, a member 517 

of Plant invertase/pectin methylesterase inhibitor superfamily, to smaller leaves. GRs translated 518 

from aspen led, through our integrative network approach, to the prediction of NITRATE 519 

TRANSPORTER 1.3 (NPF6.4/NRT1.3) as a potential GR. In Arabidopsis shoot, the expression of 520 

AtNPF6.4/NRT1.3 was induced by nitrate (Okamoto et al., 2003) while, in Medicago truncatula, 521 

MtNRT1.3 shares 70% identity with AtNPF6.4/NRT1.3 and was reported to be a dual-affinity 522 

nitrate transporter (Morre-Le Paven et al., 2011). It was also hypothesized that NPF6.4/NRT1.3 523 

may play a role in supplying nitrate to photosynthesizing cells (Tong et al., 2016). In our 524 

experiments, we showed that this gene, when mutated, is altering leaf growth. This cross-species 525 

conserved gene would thus contribute to nitrogen assimilation, that, closely interacting with carbon 526 

metabolism, sustains plant growth and development (Nunes-Nesi et al., 2010). Due to the 527 

relevance and the strong interconnection of the processes where NPF6.4/NRT1.3 and many of the 528 

candidate GRs here predicted, are involved in, future experimental work will have to reveal the 529 

role of these candidate GRs in other organs. 530 

In conclusion, the approach developed in this study fully exploits the potential of integrative 531 

biology to translate and expand yield-related functional annotations in different plant species, as 532 

such accelerating crop breeding. 533 



19 
 

Materials and Methods 534 

Integration of developmental expression datasets and network construction 535 

Transcriptomic datasets were obtained from a list of studies in Arabidopsis, maize and aspen 536 

covering samples from the main leaf developmental phases (Supplemental Table S1, Supplemental 537 

Methods, Supplemental Dataset S1). Details about these datasets and the processing of these 538 

samples were reported in Supplemental Methods. Maize data was mainly composed by a 539 

developmental compendium generated in this work (Supplemental Methods). The network 540 

inference was carried out with Seidr (Schiffthaler et al., 2018), which infers gene networks by 541 

using multiple inference algorithms and then aggregating them into a meta-network. This approach 542 

has been shown to strongly improve the accuracy of the results (Marbach et al., 2012). Each 543 

network was subset into five density subnetworks (DSs) using five different network density 544 

values. This procedure consisted in selecting the top 0.1, 0.5, 1, 5 and 10% top Seidr links in each 545 

species-specific network and generating five DSs (from the most stringent DS1 to the least 546 

stringent DS5). 547 

Orthology and network neighborhood conservation 548 

To compute cross-species gene network neighborhood conservation, orthology information 549 

between genes from Arabidopsis, maize and aspen was computed using the PLAZA comparative 550 

genomics platform (Van Bel et al., 2018). A custom version of this platform was built covering in 551 

total 15 eukaryotic species including Arabidopsis thaliana (TAIR10), Eucalyptus grandis (v2.0), 552 

Populus trichocarpa (v3.01), Populus tremula (v1.1), Vitis vinifera (12X March 2010 release), 553 

Zea mays (AGPv3.0), Oryza sativa ssp. Japonica (MSU RGAP 7), Triticum aestivum (TGACv1), 554 

Amborella trichopoda (Amborella v1.0), Picea abies (v1.0), Pinus taeda (v1.01), Selaginella 555 

moellendorffii (v1.0), Physcomitrium patens (v3.3), Chlamydomonas reinhardtii (v5.5) and 556 

Micromonas commode (v3.0). PLAZA allows identifying orthologs using different methods 557 

(evidences), corresponding to orthologous gene families inferred through sequence-based 558 

clustering with OrthoFinder (Emms and Kelly, 2015), phylogenetic trees, and multispecies Best-559 

Hits-and-Inparalogs families (Van Bel et al., 2012). The PLAZA orthology relationships were 560 

extracted and filtered retaining all orthologs having a requirement of 2/3 orthology evidences and, 561 

for those with 1/3 evidence and >25 orthologs, the ones corresponding to the best 25 blast hits 562 
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(sorted by e-value) were retained. The generated orthology output was used for the following 563 

pipeline steps. 564 

The generated DSs and the orthology information were used to compare the three species using a 565 

network neighborhood conservation analysis (ComPlEx analysis, as in Netotea et al. 2014). In this 566 

analysis, the network neighborhood of a gene (i.e. all genes with a link to it) was considered 567 

conserved if it had a statistically significant (q < 0.05) overlap with the network neighborhood of 568 

its ortholog in the other species (Netotea et al., 2014). Here, the comparison was performed for all 569 

pairs of networks between the datasets of the three species, and the output of this analysis was 570 

collated to create “triplets”. The triplets are sets of three orthologous genes–one per 571 

network/species–that have a significantly conserved network neighborhood in all three pairs of 572 

comparisons. Since the test is not commutative, the neighborhoods had to be significantly 573 

conserved in both directions of the test. To estimate the false discovery rate (FDR) of the detection 574 

of triplets, a permutation strategy was adopted. For 500 runs of ComPlEx, ortholog relationships 575 

were shuffled, keeping the relative number of orthologs per gene and per species, and then 576 

comparing the number of triplets computed from randomization with those resulting using the 577 

original (unshuffled) orthologs. 578 

Functional analyses and prediction of growth regulators 579 

Gene Ontology (Ashburner et al., 2000) functional annotations for Arabidopsis, maize and aspen 580 

were retrieved from TAIR (download 25/12/2018), Gramene (AGPv3.30, 581 

http://bioinfo.cau.edu.cn/agriGO/download.php), and PlantGenIE 582 

(ftp://ftp.plantgenie.org/Data/PopGenIE/Populus_tremula/v1.1/annotation/), respectively, and 583 

filtered for the genes present in the corresponding species networks. We focused on biological 584 

processes (BP) and excluded the general GO BP terms with >= 1500 genes as well as GO terms 585 

with <= 10 genes to avoid biases towards very general and specific terms. For each gene, all GO 586 

annotations were recursively propagated in order to include parental GO terms. Functional over-587 

representation analyses were performed using the hypergeometric distribution together with 588 

Benjamini-Hochberg (BH) correction for multiple testing (Benjamini and Hochberg, 1995). To get 589 

a complete view on all relevant processes related to plant growth, information from literature was 590 

collected on growth regulators (GRs). Experimentally validated genes in Arabidopsis, maize and 591 

aspen (primary-GRs) were retrieved from public databases (Gonzalez et al., 2010; Beltramino et 592 
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al., 2018). Experimentally validated aspen genes were obtained by access to SweTree 593 

Technologies private database that contains data from the large-scale testing of >1,000 genes and 594 

their growth-related properties (here only “stem size” was taken into consideration), an effort 595 

where more than 1,500 recombinant DNA constructs were used to either introduce a gene product 596 

or alter the level of an existing gene product by over-expression or RNA interference in aspen 597 

trees, whose growth characteristics were then monitored in greenhouse and field experiments to 598 

provide extensive gene-to-yield data. The Arabidopsis GR primary set was then enlarged with high 599 

quality GR orthologs from maize and aspen using the triplets (“translated-GRs”) to obtain a 600 

combined GR set. The combined set was finally filtered with genefilter package from 601 

Bioconductor (Gentleman et al., 2021) to remove genes with small expression variance 602 

(var.func=IQR, var.cutoff=0.8) and focus on genes active during proliferation or expansion phases 603 

of leaf development (“expression-supported GRs”, Supplemental Table S2). Other information on 604 

functional categories (Vercruysse et al., 2020a) and differentially expressed genes from relevant 605 

studies on plant development was also included in the functional enrichment analyses (Anastasiou 606 

et al., 2007; Gonzalez et al., 2010; Eloy et al., 2012; Vercruyssen et al., 2014). 607 

The expression-supported GRs were used as guide genes to perform network-guided gene function 608 

prediction via a guilt-by-association (GBA) approach. This approach is based on the assumption 609 

that genes close to the input GRs in the network are likely to have similar functions. The GBA 610 

approach was applied to attribute functions based on GO enrichment in the modules of each DS 611 

yielding five sets of gene predictions. By this procedure, gene neighborhoods significantly 612 

enriched for guide GRs were functionally annotated (hypergeometric distribution). This allowed 613 

to predict candidate GRs and estimate, for each of them, a corresponding FDR adjusted p-value 614 

(or q-value), which was renamed “GBA-score”. The GBA score is a confidence score that ranks 615 

genes high if they are connected with many GRs in the network (in fact high ranked genes have a 616 

low GBA score as this is an indicator of a strong enrichment). For an example GR prediction (in 617 

one of any of the five DSs), the GBA-score from the five DSs was summarized taking the mean 618 

of the GBA-scores and setting the GBA-score to 0.05 for the DSs where the gene was not 619 

predicted. This yielded a list of GR predictions that was then further filtered by only retaining 620 

those predictions having conserved neighborhood in at least one DS. To perform a validation of 621 

the gene function predictions, the RARGE II (Akiyama et al., 2014) database was interrogated to 622 

retrieve a list of Arabidopsis genes that, when mutated, showed an increased or decreased length, 623 
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width and size for rosette leaf, vascular leaf and cauline leaf (leaf trait genes). This gene set was 624 

used to analyze the recovery at each DS of leaf growth-related phenotypes. For the top 100 625 

predictions ranked by GBA-score a manual literature search was performed to retrieve all genes 626 

with a reported phenotype including information about the biological pathway the gene might be 627 

active in, and other public functional annotations.  628 

Rosette growth phenotyping 629 

The Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the wild-type in this study. The 630 

T-DNA insertion lines for At4g26530 (Salk_080758/fba5-1), At3g21670 (Salk_001553/sper3-3), 631 

At3g61250 (Salk_066767/lmi2-1, Salk_020792/lmi2-2),  At4g25240 (Salk_113731), At1g63470 632 

(Salk_123590/ahl5), At4g37980 (Salk_001773/chr hpl), At2g38530 (Salk_026257/ltp2-1), 633 

At4g28950 (Salk_019272), and At1g12240 (Salk_016136) were confirmed using PCR with a T-634 

DNA primer and gene-specific primers (Supplemental Table S8) (Lu et al., 2012; Zhao et al., 2013; 635 

Jacq et al., 2017; Tanaka et al., 2018; Pastore et al., 2011; Tong et al., 2016). All tested seeds were 636 

stratified in the darkness at 4 °C for 3 days and then sown on soil in the 7 cm wide square pots 637 

with a density of four seeds per pot. After 8 days in the growth room (with controlled temperature 638 

at 22 °C and light intensity 110 μmol m-2 s-1 in a 16 h/8 h cycle), the four seedlings were screened, 639 

leaving one seedling per pot, which most closely resembled the genotype average. The plants were 640 

imaged in a phenotyping platform (MIRGIS) with fixed cameras located directly above the plants, 641 

which images plants at the same time every day. These images were then processed to extract the 642 

rosette growth parameters of each plant. The mean PRA, compactness and stockiness values were 643 

calculated over time for each genotype. 644 

Accession Numbers 645 

Sequence data from this article have been submitted to ENA (E-MTAB-11108). NPF6.4/NRT1.3 646 

and LATE MERISTEM IDENTITY2 have locus identifier AT3G21670 and AT3G61250, 647 

respectively. 648 
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Figure legends 680 

Figure 1. Outline of the cross-species network approach to identify candidate growth 681 

regulators. For Arabidopsis, maize and aspen, the expression data (step 1) is used as input to 682 

construct a fully connected meta-network per species (step 2). Subsequently, each meta-network 683 

is split into five density subnetworks (DSs) by applying specific density cutoffs (step 3). These 684 

DSs are the input for two different analyses: they are used first as input to compute cross-species 685 

gene neighborhood conservation (step 4a). Secondly, they are used to predict functions via guilt-686 

by-association (step 4b). This leads to gene function annotations of query genes (blue circles) 687 

based on prior knowledge on growth regulators (purple circles). Edge thickness defines in which 688 

subnetwork the interaction is conserved (line thickness represents the DS and ranges from 1, the 689 

most stringent DS represented by the thickest line, to 5, the least stringent DS represented by the 690 

thinnest line). Finally, the results of these two analyses (steps 4a and 4b) are integrated to obtain a 691 

list of candidate growth regulators (step 5). 692 

Figure 2. Triplets and their functional enrichments in cross-species conserved leaf networks. 693 

(A) The number of triplet genes showing cross-species gene neighborhood conservation is plotted 694 

for all density subnetworks (DSs). (B) The biological process functional over-representation at 695 

each DS is summarized for two sets: (1) all triplet genes (All) and (2) growth regulators and their 696 

network neighbor (Growth regulator-related) triplet genes, subset of all triplet genes. Functional 697 

categories marked with asterisks (*) belong to leaf growth modules described in Vercruysse et al. 698 

(2020) and to the differentially expressed gene sets from relevant studies on plant development 699 

(Bezhani et al., 2007; Gonzalez et al., 2010; Eloy et al., 2012; Vercruyssen et al., 2014; Vanhaeren 700 

et al., 2017). For clarity, long biological process names have been abbreviated (§). (C) Overview 701 

of growth regulators with (and without) cross-species neighborhood conservation at different DSs. 702 

Figure 3. Recovery of RARGE II leaf trait genes for each density subnetwork split in 703 

proliferation and expansion. The grey dashed line indicates the leaf-related phenotype gene 704 

recovery expected by chance (within the RARGE II dataset). 705 
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Figure 4. Gene-function network of the 34 phenotype-related genes out of the top 100 706 

predicted growth regulators. Predictions are clustered by expression profile (proliferation on the 707 

left and expansion on the right). Node label colours from dark green (weak) to yellow (strong) 708 

represent the reliability of the gene prediction (GBA score). Node border colours indicate known 709 

growth regulators from Arabidopsis (black), known growth regulators from aspen (red), and 710 

Arabidopsis known growth regulator paralogs (violet). Diamonds represent transcription factors. 711 

Links from dark orange thick (DS1) to light orange thin (DS5) represent the density subnetwork 712 

where the genes were found connected. Genes are linked with their respective growth-related 713 

pathways (centered if connecting to both proliferation and expansion related genes) by grey links. 714 

Anti-correlation links (connecting proliferation with expansion genes) were removed for clarity.  715 

Figure 5. Mutants of predicted growth regulators NRT1.3 and LMI2 showed altered rosette 716 

growth. (A-B) Dynamic growth analysis of projected rosette area, compactness and stockiness 717 

over time of wild-type Col-0 and the mutants of NRT1.3 (A) and LMI2 (B) in soil. Values are 718 

means ± SD. For phenotypic analysis of mutants of LMI2, sample sizes (n) were n=16 for Col-0, 719 

n=16 for lmi2-2, and n=17 for lmi2-1. For phenotypic analysis of mutants of NRT1.3, n=14 for 720 

Col-0, n=15 for sper3-1, and n=13 for sper3-3. The asterisks represent the time points at which 721 

differences in the PRA become significant between the mutants and wild-type, as determined by 722 

Student’s t test (*, P<0.05; **, P<0.01). The experiments were repeated three times with similar 723 

results, and one representative experiment is shown. (C-D) Phenotype of 26-day-old mutants of 724 

NRT1.3 (C) and LMI2 (D). Scale bar = 1 cm. 725 
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Figure 1 . Outline of the cross -species network approach to identify candidate growth
1

regulators. For Arabidopsis, maize and aspen, the expression data (step 1) is used as input to2

construct a fully connected meta -network per species (step 2). Subsequently , each meta-network3

is split into five density subnetworks (DSs) by applying specific density cutoffs (step 3). These4

DSs are the input for two different analyses: they are used first as input to compute cross -species
5

gene neighborhood conservation (step 4a). Secondly, they are used to predict functions via guilt -
6

by-association (step 4b). T his leads to gene function annotations of query genes (blue circles)
7

based on prior knowledge on growth regulators (purple circles). Edge thickness defines in which

8

subnetwork the interaction is conserved (line thickness represents the DS and ranges from 1 , the

9

most stringent DS represented by the thickest line, to 5, the least stringent DS represented by the

10

thinnest line). Finally, the results of these two analyses (steps 4a and 4b) are integrated to obtain a

11

list of candidate growth regulators (step 5).
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Figure 2. Triplets and their functional enrichments in cross-species conserved leaf networks. (A) The 
number of triplet genes showing cross -species gene neighborhood conservation is plotted for all density 
subnetworks (DSs). (B) The  biological process functional over-representation at each DS is summarized 
for two sets:   (1) all triplet genes (All) and (2) growth regulators and their network neighbor (Growth 
regulator-related) triplet genes, subset of all triplet genes. Functional categories marked with aste risks (*) 
belong to leaf growth modules described in Vercruysse et al. (2020) and to the differentially expressed gene 
sets from relevant studies on plant development  (Bezhani et al., 2007; Gonzalez et al., 2010; Eloy et al., 
2012; Vercruyssen et al.,  2014; Vanhaeren et al., 2017).  For clarity, long biological process  names have 
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Figure 5. Mutants of predicted growth regulators NRT1.3 and LMI2 showed altered rosette 
1

 

growth. (A-B) Dynamic growth analysis of projected rosette area, compactness and stockiness 
2

 

over time of wild -type Col-0 and the mutants of   NRT1.3 (A) and LMI2 (B) in soil.  Values are 
3

 

means ± SD. For phenotypic analysis of mutants of LMI2, sample sizes (n) were n=16 for Col-0, 4 

n=16 for lmi2-2, and n=17 for  lmi2-1. For phenotypic analysis of mutants of   NRT1.3, n=14 for 5 

Col-0, n=15 for sper3-1, and n=13 for  sper3-3. The asterisks represent the time points at which 6 

differences in the PRA become significant between t he mutants and wild-type, as determined by 7 

Student’s t test (*, P<0.05; **, P<0.01).  The experiments were repeated three times with similar 8
 

results, and one representative experiment is shown  . (C-D) Phenotype of 26 -day-old mutants of 
9

 

NRT1.3 (C) and LMI2 (D). Scale bar = 1 cm. 
10

 



Supplemental Figures: Identification of growth regulators using cross-

species network analysis in plants 

 

 

 

Supplemental Figure S1. Number of neighbors per gene at each density subnetwork in 

Arabidopsis. Within each box, horizontal black lines denote median values; boxes extend from 

the 25th to the 75th percentile of each group's distribution of values; vertical extending lines denote 

adjacent values (i.e., the most extreme values within 1.5 interquartile range of the 25th and 75th 

percentile of each group); dots denote observations outside the range of adjacent values. DS refers 

to density subnetworks. 



 

Supplemental Figure S2. Expression patterns for the expression-supported growth 

regulators in Arabidopsis. Growth regulator sources are also presented (Arabidopsis, aspen, 

maize, or shared across two species). Values are row-scaled. 

 



 

Supplemental Figure S3. Expression-supported growth regulators with neighborhood 

conservation at each network density level. DS refers to density subnetworks. 



 

Supplemental Figure S4. Functional enrichment of cross-species conserved transcription 

factors (TF) grouped by TF family. Values are expressed as –log(q-value) resulting from the 

enrichment analysis. DS refers to density subnetworks while GR refer to growth regulators. 

 

 



 

Supplemental Figure S5. Identification of T-DNA insertion lines. (A) Molecular analysis of T-

DNA insertion lines by PCR using a T-DNA primer and gene-specific primers. (B) Quantitative 

real-time PCR analysis showed the disrupted expression of At4g25240 in Salk_113731, the 

increased expression of At4g28950 in Salk_019272, and the decreased expression of At1g12240 

in Salk_016136, respectively. The data represent means ± SD calculated from three biological 

replicates. LP, left primer; RP, right primer; LB, left border primer; F1 ,F2, F3, forward primers; 

R1, R2, R3, reverse primers. 

 

 



 

Supplemental Figure S6. The rosette leaf numbers of the wild-type Col-0 and the mutants of 

NRT1.3 and LMI2. The rosette leaf number of 26-day-old wild-type Col-0 and the mutants of 

NRT1.3 (A) and LMI2 (B). Asterisks denote significant differences compared to the wild-type Col-

0, as determined by Student’s t test (*, P<0.05; **, P<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Methods 

Maize developmental expression dataset 

Maize growth conditions 

Maize plants were grown in growth chambers with controlled relative humidity (55%), 

temperature (24 °C day/18 °C night), and light intensity (170–200 μmol m-2 s-1 photosynthetic 

active radiation at plant level) provided by a combination of high-pressure sodium vapor (RNP-

T/LR/400W/S/230/E40; Radium) and metal halide lamps with quartz burners (HRI-

BT/400W/D230/E40; Radium) in a 16-h/8-h (day/night) cycle. 

Developmental maize compendium (15 samples) 

Three sections (from the base to 3.5 cm, from 3.5 to 7.0 cm and from 7.0 to 10.5 cm) of a 

developing leaf 4 were harvested two days after leaf emergence, from maize B104 inbred plants. 

To aim for enough tissue per section and per replicate, 28 plants per replicate were pooled. In total, 

five biological replicates for the three sections (15 samples in total) were used for RNAseq. After 

harvesting, samples were directly frozen in liquid nitrogen. Total RNA was extracted using the 

guanidinium thiocyanate-phenol-chloroform extraction method using TRI-reagent (Thermo Fisher 

Scientific) followed by DNA digestion using the RQ1 RNase-free DNase kit (Promega). Total 

RNA was sent to GATC Biotech for RNA sequencing. Library preparation was done using the 

NEBNext Kit (Illumina). In brief, purified poly(A)-containing mRNA molecules were fragmented, 

randomly primed strand-specific cDNA was generated and adapters were ligated. After quality 

control using an Advanced Analytical Technologies Fragment Analyzer, clusters were generated 

through amplification using cBOT (Cluster Kit v4, Illumina), followed by sequencing on an 

Illumina Hi Seq2500 with the TruSeq SBS Kit v3 (Illumina). Sequencing was performed in paired-

end mode with a read length of 125 nt. 

Quantitative real-time PCR (qPCR) for zone delineation in the developmental maize 

compendium (methods) 

The first ten cm of a growing fourth leaf, two days after leaf emergence, from maize B104 inbred 

lines was harvested and segmented into smaller pieces of 5mm (basal two cm) and 10mm (distal 

eight cm). For each piece, we had three biological replicates, each pool consisting of tissue of three 

plants. After harvesting, samples were directly frozen in liquid nitrogen. Total RNA was extracted 



using the guanidinium thiocyanate-phenol-chloroform extraction method using TRI-reagent 

(Thermo Fisher Scientific) followed by DNA digestion using the RQ1 RNase-free DNase kit 

(Promega). cDNA was prepared from 1 μg of total RNA with the iScript cDNA Synthesis Kit 

(Biorad). The qPCR was done on a Lightcycler 480 (Roche) with SYBR green for detection in a 

5-μl volume (2,5 μl of mastermix, 0,25 μl of 5 μM of each forward and reverse primer and 2 μl of 

cDNA). Every reaction was performed in triplicate on a 384-multiwell plate to allow determination 

of mean and SEM of cycle threshold (CT) values. Data were analyzed in Microsoft Excel with the 

2-∆∆CT method (Schmittgen and Livak, 2008) and values were standardized against those of 18S 

rRNA (primers P1 and P2). The mean expression levels were calculated from three biological 

repeats, using the P3 and P4 primers for phosphoribulokinase, P5 and P6 for NADP malate 

dehydrogenase, P7 and P8 for NADP-malic enzyme (NADP-ME), P9 and P10 for Photosystem 

Q(B) protein (psbA), P11 and P12 for cytochrome B6 (petB), P13 and P14 for NADPH-quinone 

oxidoreductase subunit 1 (ndhA), P15 and P16 for  

Photosystem I iron-sulfur center (psaC) and P17 and P18 for phosphoenolpyruvate carboxylase 

(PEPC) (Supplemental Methods Figure 1).  

qPCR for zone delineation in the developmental maize compendium (assay results) 

Throughout the developmental gradient represented in the maize leaf growth zone, genes related 

to photosynthesis are differentially expressed, some even starting in the division zone and 

expansion zone (Nelissen et al., 2018). Therefore, the maize RNAseq compendium along the 

developmental gradient of a growing maize leaf three zones were delineated based on a qPCR 

analysis of several known genes involved in photosynthesis (Wang et al., 2014; Chotewutmontri 

and Barkan, 2016; Schlüter and Weber, 2019; Heldt and Piechulla, 2021). The qPCR results 

showed that those genes had specific transcriptional profiles in the lower half of maize leaves that 

can be divided in three classes. The fragment from the base to 3.5 cm, contains the leaf growth 

zone in which only the tested transcripts involved in the light dependent reactions of photosystem 

I and II (Photosystem Q(B) protein (psbA), cytochrome B6 (petB), NADPH-quinone 

oxidoreductase subunit 1 (ndhA) and Photosystem I iron-sulfur center (psaC)) were expressed 

(Supplemental Methods Figure 1). Their expression gradually increased along the leaf 

developmental gradient. The expression level of the other tested genes involved in the C4 carbon 

assimilation cycle was minimal at the base of the leaf and their transcription levels started to 

increase from 3.5 to 7.0 cm (NADP malate dehydrogenase and phosphoenolpyruvate carboxylase 



(PEPC)) or even only started to show an increase in expression in the mature part of the leaf from 

7.0 to 10.5 cm (NADP-malic enzyme (NADP-ME) and phosphoribulokinase) (Supplemental 

Methods Figure 1). From 7.0 to 10.5 cm the expression of all genes had reached their maximal 

value.  

In conclusion, based on a qPCR analysis of genes involved in photosynthesis, three zones along 

the developmental gradient of the maize leaf were harvested. While the first section consisted of 

proliferative and expanding leaf tissue (base to 3.5 cm), the second section (3.5 to 7.0 cm) 

contained expanding and mature cells and the last part (7.0 to 10.5 cm) was fully mature. 

 

 

 



 

 

Supplemental Methods Figure 1. Transcripts encoding critical C4 photosynthesis enzymes are 

differentially expressed in a gradient fashion in the lower half of B104 maize leaves.  

 

Proliferative maize samples (3 samples) 

The three proliferative maize dataset samples were taken from the inbred line B104. The first basal 

half cm (dividing cells) of leaf four two days after leaf appearance was sampled. Three biological 

replicates were taken, each pool consisting of proliferative tissue of three plants. After harvesting, 

samples were directly frozen in liquid nitrogen. Total RNA was extracted using the guanidinium 

thiocyanate-phenol-chloroform extraction method using TRI-reagent (Sigma-Aldrich). RNA 

concentration and purity were determined spectrophotometrically using the Nanodrop ND-1000  

(Nanodrop Technologies) and RNA integrity was assessed using a Bioanalyser 2100 (Agilent). 

Per sample, 500 ng of total RNA was used as input. Using the Illumina TruSeq® Stranded mRNA 

Sample Prep Kit (protocol 15031047 Rev E October 2013) poly-A containing mRNA molecules 

were purified  from the total RNA input using poly-T oligo-attached  magnetic  beads.  In a reverse 

transcription  reaction using random primers, RNA was converted into first strand cDNA and 

subsequently converted into double-stranded cDNA in a second strand cDNA synthesis reaction. 

The cDNA fragments were extended with a single ‘A’ base to the 3’ ends of the blunt-ended cDNA 



fragments after which multiple indexing adapters were ligated introducing different barcodes for 

each sample. Finally, enrichment PCR was carried out to enrich those DNA fragments that have 

adapter molecules on both ends and to amplify the amount of DNA in the library. For the sequence  

run, libraries were equimolarly pooled and sequenced using a high 300 cycles (PE- 2 x 150 bp) 

NextSeq kit. Sequencing was performed on an Illumina NextSeq 500 Paired-End mode. 

Other maize samples (6 samples)  

Other six maize samples corresponding to proliferation stage of developing leaf 4 were obtained 

from Sun et al. (2017) (see the original article for more details). 

Maize data processing  

The 24 total RNA-seq sample reads were processed with Prose (Vaneechoutte and Vandepoele, 

2019), which implements kallisto (Bray et al., 2016) for mapping against the maize genome 

version B73 RefGen_v3. 

Aspen developmental expression dataset (see the original article for more details) 

Aspen data was obtained by the developmental series of terminal leaves published by (Mähler et 

al., 2020) (LeafDev dataset, 33 samples). This dataset was composed by: the first fully unfurled 

leaf, defined as a reference point and labeled leaf T0; three leaves above the reference leaf (labeled 

as T-1, T-2, and T-3) and the apical region, containing the shoot apical meristem; the very youngest 

leaf primordia (labeled T-4); and two leaves below the reference leaf (labeled T1 and T2).  

Arabidopsis developmental expression dataset (see the original articles for more details) 

Transcriptomic data for Arabidopsis were obtained from several studies: AGRONOMICS1 Tilling 

Array (Andriankaja et al., 2012) including leaves from seedlings harvested at the stages of 

proliferation (8 and 9 days after sowing (DAS)), transition (10, 11, and 12 DAS), and expansion 

(13 and 14 DAS) for a total of 24 samples; ATH1-array (Skirycz et al., 2010) including leaves 

harvested from plants at proliferation (9 DAS) and expansion (15 DAS) stages for a total of 6 

samples. ATH1-array (Skirycz et al., 2011) including leaves harvested at proliferation stage (9 

DAS). RNA-seq data (Dubois et al., 2017) including leaves harvested at expansion stage (11 DAS) 

for a total of 11 samples.  



Arabidopsis data processing 

The integration of array and RNA-seq data followed two main steps. The first was performed to 

obtain two datasets with the same distribution and was performed via the quantile normalization 

selecting processed RNA-seq data sample-set (11 samples) as target distribution and microarray 

sample-set (42 samples) as reference distribution (Thompson et al., 2016). In the second step, all 

samples were inspected using principal component analysis (PCA). Batch effect correction was 

applied using ComBat implemented in the R package SVA to remove non-biological sources of 

variation in the dataset (Leek et al., 2010). 
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