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Abstract 

Detecting dead wood with airborne laser scanning (ALS) would have many benefits. It would 

make it easier to find areas with high mortality rates, help make better decisions on which 

areas to preserve, and increase the accuracy of volume- and value-estimations. In this study, 

we tried to assess the accuracy of volume predictions of living wood, standing dead wood, 

and lying dead wood, as well as pinpoint the most descriptive ALS variables. The focus was 

on homogenous mature managed forests on good site indexes.  

A plane equipped with LiDAR was flown over a 7500 ha forest area in Dalarna, Sweden. 

Laser variables were made to describe the point cloud from the LiDAR. 102 field plots were 

generated in mature managed stands and all trees (including bigger lying wood) were 

measured for diameter and height. The volume of living wood, standing dead wood, and lying 

wood was found for each field plot. The field plots were then run in a simulation with 500 

iterations. For each iteration, 81 random field plots were used as calibration plots and the 

remaining 21 field plots were used as prediction plots. For each iteration, multiple variable 

linear regression and a “k nearest neighbour”-algorithm (kNN) with one, two, and three 

neighbours were calibrated on the calibration plots and then used to predict the volumes on 

the prediction plots. The mean difference between predicted and real volume were found for 

each method (regression and kNN with one, two, and three neighbours) and tree class (living, 

standing dead, and lying dead). 

When predicting living volume, regression got a good fit with an adjusted R2 value of 0,73. 

Standing dead volume got a medium fit with an adjusted R2 value of 0,46. Lying dead volume 

got a very low fit with an adjusted R2 value of just 0,12. Overall, the kNN algorithm did better 

with one neighbour, compared to two or three. Regression achieved very low systematic 

errors across the board, while the kNN algorithm got higher systematic errors but slightly 

lower standard errors of the mean compared to regression. 

The most descriptive laser variables for living volume were related to branches in the upper 

and middle parts of the stems. The most descriptive laser variables for describing standing 

dead wood volume were related to tree heights and branches in the middle and lower parts of 

the stem. Lying dead wood had too low a correlation with the laser variables to find a clear 

pattern. When predicting wood volumes with kNN, a higher k did not improve the results.  
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Sammendrag 

Å finne døde trær i skog med flybåren laserskanning (ALS) hadde hatt mange fordeler. Det 

hadde gjort det lettere å oppdage områder med høy mortalitet, hjulpet til med å ta bedre 

beslutninger om vern, og det kunne forbedret volum- og verdi-estimeringer i skog. I denne 

studien har vi sett på nøyaktigheten av volumprediksjoner av levende volum, stående dødt 

volum, og liggende dødt volum, i tillegg til å se på hvilke laservariabler som var mest 

beskrivende. Studien er gjort i eldre homogene skjøtte bestand på gode boniteter. 

Et fly utstyrt med en LiDAR-sensor ble fløyet over et 7500 ha stort skogsområde i Dalarna i 

Sverige. Det ble laget laservariabler som beskrev punktskyen fra LiDAR-sensoren. Så ble det 

generert 102 prøveflater i samme område. Alle trær på prøveflatene ble målt for høyde og 

diameter i brysthøyde (inkludert større liggende stammer/stokker). Levende volum, stående 

dødt volum, og liggende dødt volum ble beregnet for hver prøveflate. Prøveflatene ble kjørt i 

en simulering med 500 iterasjoner. For hver iterasjon ble 81 tilfeldige prøveflater brukt som 

kalibreringsflater, mens de resterende 21 prøveflatene ble brukt som predikeringsflater. For 

hver iterasjon ble kalibreringsflatene brukt til å finne den beste modellen for multippel lineær 

regresjon, i tillegg til å brukes som kalibreringsflater for en «k nearest neighbour»-algoritme 

(kNN) med en, to, og tre «naboer». Regresjonsmodellen og kNN-algoritmene ble så brukt til å 

predikere volumet på prediksjonsflatene. Gjennomsnittlig differanse mellom predikert volum 

og virkelig volum ble funnet for hver metode (regresjon og kNN med en, to, og tre «naboer») 

og hver tre-klasse (levende, stående dødt, og liggende dødt). 

Regresjon fungerte godt til å predikere levende volum, med en gjennomsnittlig justert R2-

verdi på 0,73. Stående dødt volum fikk en gjennomsnittlig justert R2-verdi på 0,46 mens 

liggende dødt volum fikk veldig lave 0,12. kNN-algoritmen gjorde det generelt bedre med en 

«nabo», i forhold til to og tre. Regresjon ga veldig lave systematiske feil, klart lavere enn 

kNN. Standardfeilen til gjennomsnittet var derimot alltid noe lavere med kNN i forhold til 

regresjon.  

De mest beskrivende laservariablene for levende volum var relatert til mengden greiner fra 

toppen til midten av stammene. De mest beskrivende laservariablene for stående dødt volum 

var relatert til tre-høyder og mengden greiner fra midten av stammene og ned. Liggende død 

ved hadde for lav korrelasjon til å finne en klar sammenheng med laservariablene. 

Predikeringer med kNN ble ikke bedre med flere «naboer».  
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1 Introduction 

Forests are an extremely important resource. About 31% of the global land area is covered by 

forests (UN, 2020), and in the Nordic countries, Finland has the biggest part of their landmass 

covered by forests with 76% (MAFF, 2020). Forests have different values for different 

people. A forest owner is usually interested in the economic value, while a hiker is probably 

most interested in the look and feel, and its recreational value. A politician might be more 

concerned about the forest as a resource on a local and national scale. With a resource that 

requires such big areas, it is only logical that there will be a lot of interested parties and 

differing opinions, which in turn can make the management of such a resource very difficult. 

One step in the direction of making the management easier and more knowledge-based is to 

have a more detailed overview of what the forests contain in terms of resources, and how it 

differs throughout the areas. This way, it will be easier to manage the forest in a way that is 

favourable to both different people and biodiversity. 

Knowledge-based planning requires a good overview of the resources available and their 

development. In Norway, the National Forest Inventory (NFI) has had the responsibility of 

mapping the forests since 1919 (Granhus, 2022). They have permanent inventory plots that 

get measured about every ten years. That way they can keep track of the Norwegian forests 

and their development, both regionally and nationally. Sweden, Denmark, and Finland also 

have similar systems (Fridman, 2016) (Nord-Larsen, 2016) (Tomppo, 2009). 

Mapping of the total forest resources in a country is important for the national government to 

make sure they can make their goals and keep their promises to agreements like the Paris 

agreement and The LULUCF Regulation (UNFCCC, 2020) (EC, 2021). These agreements 

require its members to have control over their forest areas’ development. It’s also important to 

make more detailed mappings over smaller areas, like a forest property. This is important for 

the decisions on a smaller scale, like the timing of management measures or felling. The goal 

when performing these mappings is to reach a good trade-off between accuracy and price. 

Historically, the most expensive part of forest resource mapping is the data collection in the 

field. Because of this, efforts have been made to decrease the amount of necessary fieldwork. 

This usually involves using new technology to reach the required precision in the mapping.  

Towards the end of the 1970s, the forest sector started using photogrammetry in the mapping 

process (Næsset, 2014). This method required less fieldwork and was therefore cheaper. Soon 

after, airborne laser scanning (ALS) started being used for topographic mappings. The 
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potential for ALS being used for forest mapping was low at the time, mostly because of the 

low point density on the ground. As technology advanced, so did the point density, and the 

potential for use in forest mapping became apparent. The first tests in the Nordics were 

carried out in 1991 (Naesset et al., 2004). In 1995 ALS was first tested for estimating average 

height and volume in forest stands (Naesset, 1997). The potential was clear, and many studies 

followed both in the Nordic countries and in other parts of the world. Experiences from 

Norway, Sweden, and Finland showed that ALS was at least as good as photogrammetry for 

estimating average height and volume in forest stands (Naesset et al., 2004). The precision of 

the estimates varied between parameters, but in the Nordics at the beginning of the 2000s, the 

total standing volume could be estimated with a consistent precision of between  ten and 

fifteen percent (Næsset, 2014). 

Laser scanners have advanced quite drastically since the beginning. In the first test in the 90s, 

the laser scanners had a repetition frequency of two kHz. This translated into about 0,1 ground 

hits per square meter (Næsset, 2014). In the following fifteen years, the repetition frequency 

got about 100 times faster (Næsset, 2014). More ground hits per area translate into more 

detailed point clouds, which makes it possible to extract more (and more detailed) data. 

Higher repetition frequency also made it possible to fly at higher altitudes during measuring, 

and thereby collect data more efficiently (Næsset, 2014). 

In the beginning, one of the biggest problems was finding the exact location of the laser points 

on the ground (Naesset et al., 2004). This problem was pretty much solved already in the 90s 

when they started using both GPS and the plane's integrated navigation system to pinpoint the 

movement of the plane and scanner (Naesset et al., 2004). After this, it didn’t take long before 

they managed to calculate the position of the laser points on the ground with a precision of 

about 0,5 meters (Naesset et al., 2004). 

A laser scanner can detect several returns from the same pulse. At first, they didn’t see the use 

for this in forest mapping, and they only recorded the last return from each pulse (Næsset, 

2014). But eventually, it became clear that recording several returns from each pulse could 

provide information about the canopies and branches. This meant that ALS could be used to 

collect data for a much wider spectre of parameters than before. 

After collecting ALS data, you end up with a point cloud made of laser echoes. This point 

cloud is then analysed and turned into variables that describe the distribution of the echoes. 

These variables are not very descriptive by themselves, so they need to be interpreted by 
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matching them to real ground values. Some fieldwork is required to collect data from 

calibration plots. When we have both real values from calibration plots and the laser variables 

that describe the point clouds from the calibration plots, this can be used to estimate values for 

new areas. 

Laser data can be interpreted in different ways, but the most common is to use regression for 

modelling. This method is used to fit models that best explain the ground values, using laser 

variables. It is also possible to use non-parameter methods. An example of this is to use a “k 

nearest neighbour” (kNN) algorithm, which is widely used in both Sweden and Finland 

(Maltamo and Packalen, 2014). kNN compares laser data from new areas with laser data from 

ground plots and gives the new area the same values as the most similar ground plot(s). This 

can have several advantages over regression. Among the most obvious, kNN can better 

describe an area where the correlation between ground values and laser variables is different 

from the correlation described by regression. For example, linear regression is used in this 

study, but if the correlation is not linear, kNN might be a better choice for predicting values in 

new areas. Another positive is that the kNN method never extrapolates, every area is given 

values within the range of the calibration plots. This also leads to one of the biggest pitfalls 

with kNN: it requires that the calibration plots cover the whole spectre of the forest. If a new 

area is outside of the range that the calibration plots cover, it will be assigned false values 

(Maltamo and Packalen, 2014). 

1.1 Estimating dead wood 

Having an overview of the amount of dead wood has many advantages. Estimating dead wood 

volumes with ALS can help make more accurate value estimations of the standing volume or 

help locate areas with high mortality. And with today's big focus on sustainability and 

biodiversity, it can be used to make better decisions on which areas to preserve and which 

areas to cut. Preserving areas with high amounts of dead wood can increase the total amount 

of dead wood in the forests over time. That would be good news for the more than 7500 

different species tied to dead wood in the Nordics (Stokland, 2012).  

The more advanced the ALS systems become, the more we can do with them. There has been 

some research on predicting dead wood volume and the number of dead trees in the past 

(Pesonen et al., 2008) (Pesonen et al., 2009). They have shown that it’s easier to do 

predictions on dead wood in natural forests compared to managed forests. This is mostly 
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because thinning changes the spatial forest structure. This makes it harder to find dead wood 

based on openings in the canopy layer. 

As the technology advances further, eventually, we should be able to do estimations on dead 

wood with reasonable accuracy. Since the previous studies on the matter are getting old, it is 

about time to have a look at it again. And that is the purpose of this study. The goal of this 

thesis is to assess the accuracy of volume predictions of dead wood in a mature managed 

forest, as well as pinpointing the most descriptive ALS variables.  
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2 Materials and methods 

2.1 Study area 

The data collection was conducted on a forest property owned by Kopparfors Skogar AB in 

June 2021 just outside Hedemora, Sweden (542942,6666299). The forest area was around 

7500 ha in total and mostly covered by homogenous stands of Scots pine (Pinus sylvestris) or 

Norway spruce (Picea abies). There were some stands with only deciduous trees, and most 

stands had a few deciduous trees spread out in the stand. In this study we only included stands 

with mainly coniferous trees. In general, the area was managed for commercial use. 

102 field plots were generated at random in mature forest stands, with a 10-meter buffer sone 

to eliminate edge effects. All plots were in stands with primarily Scots pine (Pinus sylvestris) 

or Norway spruce (Picea abies) in felling classes 4 and 5. Most stands seemed to have been 

thinned at least once. The volume distribution of the field plots is shown in Figure 1 and 

Figure 2. 

 

 

Figure 1: Distribution of total and living volume in the field plots. Volumes are given in m3 per hectare. 
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Figure 2: Distribution of standing dead and lying dead volume in the field plots. Volumes are given in m3 per hectare. 

 

2.2 Field inventory 

One field plot was generated in every mature stand in felling classes 4 and 5. 102 field plots 

were generated in total, with a couple of stands having two field plots in them. The field plots 

were circular with a radius of ten meters, but this was changed after the data collection. After 

the collection, the trees further than nine meters from the plot centre were removed, due to the 

laser variables being made for a 9-meter radius. The number of field plots with living, 

standing dead and lying dead trees, as well as volumes in the field plots (with a 9-meter 

radius) is presented in Table 1. The middle point of each field plot was found with a mobile 

phone running google maps. When the distance to the point was zero meters on the phone, it 

was counted as the middle point of the plot. We used a Haglöf postex system with ultrasound 

to get the coordinates for every tree within the plot. The Haglöf system was set up in the 

middle of the plot together with an external GPS antenna connected to a field computer. The 

field computer registered the location from the GPS every second for at least 1300 seconds on 

every plot. The Haglöf system uses three ultrasound transponders on a tripod to triangulate the 

position of every tree, and we used a compass to line up the transponders in the right 

direction. We registered the coordinates of every tree within the plot with a diameter of above 

five cm in breast height (DBH), as well as registering DBH and species (pine, spruce or 

other). We also registered the coordinates and diameter of every lying tree with a diameter at 

the thickest point within the plot of at least fifteen cm and a length (within the plot) of at least 

one meter. The coordinates were registered at the thickest point. Every registered tree was 

also classified as alive, dead, or lying dead. Standing trees that showed clear signs of dying 
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(for example losing needles or loose bark) were classified as dead. The height was measured 

for every dead tree within the plot, and most living trees. On plots with many trees, the 

smallest living trees often didn’t get measured for height (to save time). Trees that were 

overly bent or were standing at an angle had their height measured from the ground directly 

under the top, to the top of the tree. The length of lying wood was measured as the length 

lying within the plot. A height model (height-to-DBH) was found using a mixed-effect model 

by tree species, using the R function “nlme” (Pinheiro, 2022) with plot ID for a random effect. 

The function used for this was “Korf”, shown in Equation 1. That model was then used to get 

height values for trees without height measurements. Tree volumes were calculated with 

Swedish volume functions from Brandel (1994). Total volumes for each tree class (alive, 

dead, and lying dead) were calculated for each field plot. 

 

Equation 1: «Korf» equation. a and b are parameters to be estimated. d is DBH. 

 

 

Table 1: Number of field plots with > 0 volume, and mean volume and standard deviation for volume (for each tree class). 

 Living Standing dead Lying dead 

Number of plots with > 0 volume 102 73 31 

Mean volume (m3/ha) 280,8 18,3 3,1 

Standard deviation (m3/ha) 132,9 52,4 6,5 

 

2.3 Laser scanner data 

Laser data was collected by plane equipped with a dual-channel “Riegl VQ-1560i-DW” 

LiDAR sensor with a repetition frequency of 1000 kHz (for both channels), flying at an 

altitude of 610 to 650 meters at 120 knots (ground speed). The sensor had one green 532 nm 

channel and one infrared 1064 nm channel. Max opening angle was 28 degrees. Point density 

was around fifty points per m2 after cutting flightline overlap. The LiDAR data was collected 

and processed by MW Forest Sense AB and interpreted by Arbonaut Oy Ltd. Laser echoes 

were found for each plot and converted into a set of height and density variables describing 

the point cloud. The laser variables are presented and described in Table 2. To get the density 

variables, the distance between two meters above ground and the 95th height percentile was 

derived into ten equal fractions. The 95th height percentile is the height at which 95% of the 
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laser points are below. Each density variable gives the share of echoes above the lower height 

limit of the given fraction. This way, the density variables can describe at which heights the 

laser points got reflected the most. Up to two return pulses were recorded for every laser 

pulse. This means that we had two of every laser variable; one for first return pulses and one 

for last return pulses. 

 

Table 2: Laser variables used for predictions. Height variables start with "H", and density variables start with "D". Every 

variable has two versions: one for 1st echo and one for 2nd echo. 

Variable Description 

Hmax Highest laser echo height (m) 

Hmean Average laser echo height (m) 

Hsd Standard deviation for laser echo heights (m) 

Hcv Coefficient of variation for laser echo heights (m) 

Hkurt Kurtosis (m) 

Hskewness Skewness (m) 

Hqav Average square height (m) 

H10 10th percentile height (m) 

H20 20th percentile height (m) 

H30 30th percentile height (m) 

H40 40th percentile height (m) 

H50 50th percentile height (m) 

H60 60th percentile height (m) 

H70 70th percentile height (m) 

H80 80th percentile height (m) 

H90 90th percentile height (m) 

D0 Share of laser echoes above 2 meters 

D1 Share of laser echoes above first height limit 

D2 Share of laser echoes above second height limit 

D3 Share of laser echoes above third height limit 

D4 Share of laser echoes above fourth height limit 

D5 Share of laser echoes above fifth height limit 

D6 Share of laser echoes above sixth height limit 

D7 Share of laser echoes above seventh height limit 

D8 Share of laser echoes above eighth height limit 

D9 Share of laser echoes above ninth height limit 

 

2.4 Data analysis 

The field plots were divided into 81 calibration plots and 21 validation plots. The calibration 

plots were used to fit multiple linear regression models with the laser variables to find the 

volumes on the plots. The models were limited to a maximum of four variables. One model 
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was chosen for each tree class. The best models were chosen with the Bayesian information 

criterion (BIC) (Schwarz, 1978). The models were then used to predict the volumes on the 

validation plots. This was done 500 times in a loop, with calibration plots and validation plots 

chosen at random for each iteration of the loop. This was done to get many different 

compositions of calibration plots and validation plots and make predictions under many 

different circumstances.  

A kNN algorithm (Zhang, 2016) was also used to predict the volumes on the validation plots. 

This was also done 500 times in a loop, with the same compositions of calibration plots and 

validation plots as with regression. For each validation plot, the kNN algorithm found which 

calibration plot(s) had the most similar laser variables. The validation plot was given the 

average volume of the k most similar calibration plots. The algorithm was run with one, two, 

and three neighbours (k). 

Every time a plot was predicted, the difference between the predicted volume and the real 

volume was recorded for every tree class. That meant that for each of the 500 different 

compositions of calibration and validation plots, we got 81 differences for regression and 81 

differences for each version of kNN (k set to one, two, and three), for every tree class. This 

was used to make one mean value for each iteration and tree class, for regression and every 

version of kNN. That meant we had 500 mean differences for every tree class for both 

regression and every version of kNN. 

Mean difference (MD) was calculated as the mean value of the 500 mean differences. The 

standard error of the mean (SE) was calculated as the mean standard deviation of the 500 

mean difference values. Relative MD and SE values were calculated as MD or SE divided by 

the average volume in the 500 different compositions (the average volume of the given tree 

class). The p-values were calculated as the average p-value for the 500 MD values. 

To analyse which laser variables were the most descriptive of each tree class, I counted how 

many times each laser variable was included in the best regression model for the given tree 

class. The fifteen most common laser variables for each tree class are presented in Table 5, 

Table 6, and Table 7. Since we have both first and last echo variables, the first echo variables 

end with “.1”, while the last echo variables end with “.2”. I also recorded the most common 

relationship (positive or negative) as the main relationship for the variables in the models. 

Because some variables have a positive relationship in some models and negative in others, I 

also included how often the main relationship occurred.  
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3 Results 

3.1 Living volume 

Both regression and kNN had an average difference from the real volume of close to zero, 

which means a small systematic error. Regression had a slightly smaller systematic error 

compared to every iteration of kNN, while kNN overall got a slightly smaller range of 

difference and standard error of the mean. No substantial difference between the different 

kNN iterations. The range of the mean differences is visualised in Figure 3, and statistics are 

shown in Table 3 and Table 4. 

 

 

Figure 3: Difference between predicted and real volume in field plots for the living tree class. Result of simulation with 500 

iterations, and 21 field plots predicted for each iteration. 

 

3.2 Standing dead volume 

Regression got a significantly lower systematic error of the MD compared to every version of 

kNN. The standard error of the mean was very high for both kNN and regression. kNN got a 

lower systematic error of the MD with one or two neighbours compared to three, as well as a 

higher p-value (higher is better). The range of the mean differences is visualised in Figure 4, 

and statistics are shown in Table 3 and Table 4. 
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Figure 4: Difference between predicted and real volume in field plots for the standing dead tree class. Result of simulation 

with 500 iterations, and 21 field plots predicted for each iteration 

 

3.3 Lying volume 

Regression got a much lower systematic error of the MD compared to kNN. The standard 

error was high among every method. kNN got significantly higher p-values with one and two 

neighbours compared to three (higher is better). The range of the mean differences is 

visualised in Figure 5, and statistics are shown in Table 3 and Table 4. 

 

 

Figure 5: Difference between predicted and real volume in field plots for the lying dead tree class. Result of simulation with 

500 iterations, and 21 field plots predicted for each iteration. 
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3.4 Statistics 

None of the mean differences (MD) is significantly different from zero (with a 95% 

confidence level). With regression, the systematic error was consistently lower compared to 

that obtained using kNN, while also consistently getting the highest standard error of the 

mean (SE). For dead volumes, kNN did better with k set to one or two. Overall, the standing 

dead volume got the highest systematic errors and the highest standard errors of the mean.  

 

Table 3: MD: mean difference (in m3/ha) between predicted and real volume. MD (%): Mean difference between predicted 

and deal volume in % of mean volume of tree class in predicted plots. SE: standard error of the MD values (in m3/ha). SE 

(%): standard error in % of mean volume of tree class in predicted plots. P-value: p-value for MD values. R2
adj: mean 

adjusted R2 value for the best models. 

Regression MD (m3/ha) MD (%) SE (m3/ha) SE (%) p-value R2
adj. 

Living 0,6 0,2% 19,8 7% 0,46 0,73 

Standing dead -1,3 -7,1% 11,8 67% 0,44 0,46 

Lying -0,1 -2,4% 1,7 52% 0,46 0,12 

 

 

Table 4: k represents the number of neighbours used in the kNN algorithm. MD: mean difference (in m3/ha) between 

predicted and real volume. MD (%): Mean difference between predicted and deal volume in % of mean volume of tree class 

in predicted plots. SE: standard error of the MD values (in m3/ha). SE (%): standard error in % of mean volume of tree class 

in predicted plots. P-value: p-value for MD values. 

kNN (k=1) MD (m3/ha) MD (%) SE (m3/ha) SE (%) p-value 

Living 1,5 0,5% 15,8 6% 0,53 

Standing dead -9,9 -56,0% 10,9 62% 0,38 

Lying -1,3 -40,1% 1,6 50% 0,42 

kNN (k=2) MD (m3/ha) MD (%) SE (m3/ha) SE (%) p-value 

Living -2,8 -1,0% 14,3 5% 0,50 

Standing dead -8,9 -50,3% 10,7 60% 0,38 

Lying -1,1 -34,0% 1,6 48% 0,45 

kNN (k=3) MD (m3/ha) MD (%) SE (m3/ha) SE (%) p-value 

Living -3,4 -1,2% 15,1 5% 0,48 

Standing dead -12,7 -71,8% 10,4 59% 0,24 

Lying -2,4 -75,2% 1,5 45% 0,22 
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3.5 Variables used in regression models 

3.5.1 Living volume 

Density variables within the middle and lower fraction were the most common, and the two 

most common variables used in the models were both density variables within the middle 

fraction. The height variables mostly describe average laser echo height values. The last echo 

variables were most common. The fifteen most common laser variables in the best models are 

shown in Table 5. 

 

Table 5: The 15 most common variables used in the best regression models when predicting living volume. The first echo 

variables are marked with ”.1” and the last echo variables are marked with “.2”. Count: how many times the variable was 

used in the best model of an iteration in the simulation (500 iterations in total). Relationship: the most common relationship 

for the variable in the best models. % main relationship: how often the main relationship for the variable occurred in the best 

models. 

Variable Count Relationship % main relationship 

D5.1 332 Negative 100% 

D3.2 271 Positive 100% 

Hmean.2 261 Positive 100% 

Hqav.2 126 Positive 100% 

Hskewness.1 79 Positive 100% 

H90.1 72 Positive 100% 

D4.1 69 Negative 100% 

D2.2 69 Positive 100% 

D0.2 48 Positive 100% 

H90.2 46 Negative 72% 

D4.2 37 Positive 100% 

Hsd.2 34 Negative 100% 

Hmax.1 16 Positive 100% 

Hmax.2 16 Negative 100% 

D6.1 15 Negative 100% 
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3.5.2 Standing dead volume 

The two most used variables were height variables in the highest fraction of the stem. Apart 

from those, almost all the other variables were density variables. No preference for first or last 

echo variables. The fifteen most common laser variables in the best models are shown in 

Table 6. 

 

Table 6: The 15 most common variables used in the best regression models when predicting standing dead volume. The first 

echo variables are marked with ”.1” and the last echo variables are marked with “.2”. Count: how many times the variable 

was used in the best model of an iteration in the simulation (500 iterations in total). Relationship: the most common 

relationship for the variable in the best models. % main relationship: how often the main relationship for the variable 

occurred in the best models. 

Variable Count Relationship % main relationship 

H90.1 474 Positive 100% 

H90.2 416 Negative 100% 

D3.1 254 Positive 100% 

D5.2 191 Negative 100% 

D4.2 172 Negative 100% 

D4.1 139 Positive 100% 

D0.1 67 Positive 100% 

D2.2 50 Negative 100% 

H80.2 45 Negative 100% 

D1.2 43 Negative 100% 

D6.2 25 Negative 100% 

D2.1 20 Positive 100% 

D1.1 15 Positive 93% 

D3.2 12 Negative 100% 

H70.2 12 Negative 100% 
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3.5.3 Lying volume 

No variables were hugely dominating the models when predicting lying wood. The variables 

were distributed between density variables in the upper fraction and various height variables. 

First echo variables were most common. The fifteen most common laser variables in the best 

models are shown in Table 7. 

 

Table 7: The 15 most common variables used in the best regression models when predicting lying volume. The first echo 

variables are marked with ”.1” and the last echo variables are marked with “.2”. Count: how many times the variable was 

used in the best model of an iteration in the simulation (500 iterations in total). Relationship: the most common relationship 

for the variable in the best models. % main relationship: how often the main relationship for the variable occurred in the best 

models. 

Variable Count Relationship % main relationship 

D9.1 126 Positive 100% 

D8.2 95 Negative 100% 

H60.1 93 Negative 100% 

Hmax.2 92 Negative 100% 

Hsd.1 91 Positive 100% 

Hmax.1 91 Positive 100% 

H70.1 74 Positive 99% 

D9.2 69 Positive 99% 

D8.1 51 Negative 96% 

H80.1 45 Positive 100% 

D5.1 38 Negative 100% 

D7.2 27 Positive 96% 

D7.1 27 Positive 100% 

Hqav.1 21 Positive 100% 

H30.1 21 Negative 100% 
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4 Discussion 

4.1 Differences between tree classes 

The standard error of the mean was always lower with kNN, which usually gets a suppressed 

variation range. This is due to larger values getting underestimated, while smaller values 

usually get overestimated (Tomppo et al., 2008). Because of its smaller variation range, the 

kNN method got a higher p-value compared to regression when predicting living volume. On 

the downside, this in turn lead to a higher systematic error. 

There was a clear difference in the systematic error when predicting volumes for different tree 

classes. This is especially true for kNN which systematically underestimated the dead 

volumes significantly compared to regression. This might be driven by the fact that most plots 

did not contain any dead wood (or very little), which could lead to an underestimation more 

often than an overestimation. This is especially true when using two or three neighbours (k set 

to two or three). Since most plots had either very little dead wood or none, when predicting a 

plot that contained dead wood most of the calibration plots to choose from contained less dead 

wood than the plot that was being predicted. This might be one of several contributors to the 

consistent underprediction of dead wood with kNN. This should not be a problem when 

predicting living volume since that volume was more consistent across all plots. 

Previous research has shown that it’s harder to predict dead wood in managed forests 

compared to unmanaged forests (Maltamo et al., 2014). This is especially true for lying dead 

wood. In a natural forest, openings in the canopy layers are often a result of a fallen tree. In a 

managed forest, an opening in the canopy layer is usually a result of thinning. This makes it 

harder to use the spatial forest structure to find lying wood. By comparing our R2 values from 

the regression approach with the R2 values from Pesonen et al. (2008), it is clear to see that 

the correlation between laser metrics and lying dead wood is far better in a natural forest. It 

could help to include more types of data to get a better correlation in a managed forest. One 

idea could be to include optical data, like hyperspectral imaging. 

Another thing to note from Pesonen et al. (2008) is that they got the best results when 

predicting lying dead wood (compared to standing dead), while our results are less clear. 

When looking at the results from the regression in Table 3 we can see that the R2 value were 

much higher when predicting standing dead wood compared to lying dead, while both the 

relative MD and the relative SE were lower. This could be an indication that the correlation 

for lying dead volume is not linear. By briefly looking at some residual plots of some of the 
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regression models, it seemed like lying dead volume were slightly leaning towards a quadratic 

correlation.  

4.2 Varying the number of neighbours in kNN 

Judging by the p-values, kNN got the best results with one or two neighbours. This also holds 

when comparing the MD values, especially for standing dead volume and lying volume. This 

is again a result of most of the plots containing no dead wood or very little dead wood. The 

standard error of the mean is slightly smaller with more neighbours because of the suppressed 

variation range (Tomppo et al., 2008). 

The differences between kNN with one and two neighbours are quite small, and it does not 

seem to matter which one you use. When predicting living volume, one neighbour got the 

smallest MD, but only beat kNN with two neighbours by 0,5% (and beat three neighbours 

with 0,7%). When predicting dead wood (both standing and lying), two neighbours seemed to 

be doing slightly better, but both got very similar results.  

4.3 Variables used in regression models 

The main logic behind estimating dead wood with LiDAR is that there should be a correlation 

between the spatial forest structure and the amount of dead wood. Previous research in natural 

forests has shown that there is a clear correlation between spatial forest structure and dead 

wood, and even other phenomena, like natural regeneration on the forest floor (Pesonen et al., 

2008) (Bollandsas et al., 2008). As mentioned above, it is to be expected that managed forests 

have a weaker correlation between spatial structure and what is happening on the forest floor. 

But since the laser pulses within two meters from the ground are aggregated into one height 

variable and one density variable, you must look at the spatial forest structure above two 

meters to analyse the forest floor with ALS. When using two echoes from the same laser 

pulse, the first pulse will describe the canopy surface, while the last echo will penetrate the 

surface and account for vertical canopy variation (Bollandsas et al., 2008).  

4.3.1 Living volume 

When living volume was predicted with regression, the last echo variables were most 

common. The first echoes probably had a larger variation, due to branches and needles in the 

canopy. That could make them less consistent, and less useful when predicting the volume of 

living wood. The most common variables were density variables in the middle and lower parts 

of the stem. This indicates that the amount of branches in the middle and lower parts of the 

stem has a high correlation with the living volume, and that was the easiest correlation for the 
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ALS to pick up on. The most common height variable is the mean height of the laser echoes, 

with a positive relationship. This indicates that more branches in the canopy layer means 

higher volume.  

4.3.2 Standing dead volume 

The standing dead tree class is a bit broader than the other two classes. In the field, the 

standing dead wood category included every standing tree that was dead or dying (and not 

lying). That means some trees might look almost normal, while still being classified as dead. 

This is especially true for trees that just recently got injured so that they have not yet lost vast 

amounts of needles and branches. That means that it can be extremely hard to use ALS data to 

recognise standing dead trees, as a lot of the time they will look almost exactly like living 

trees. 

From Table 6 we can see that the first and last echo height variables in the highest fraction 

were by far the most used variables when predicting standing dead wood. When a plot 

contains many dead trees there might be a bigger difference between the first and last echo 

height variables. This is probably because it is fewer branches in the canopy layer. That in 

turn should lead to a bigger height difference between the first and last echoes. The other 

main variables were density variables in the middle fraction. This indicates that the amount of 

branches at medium height is correlated with standing dead volume. This makes sense as 

many of the dead trees have just a few branches at the top of the stem, or no branches at all. 

4.3.3 Lying dead volume 

The lying dead volume were mostly predicted based on the first echo variables. This supports 

the theory that openings in the canopy layer are the best indication of lying wood. At the same 

time, the most used variable was a density variable in the top fraction with a positive 

correlation. This indicates that a more closed canopy layer means more lying wood. Overall, 

this makes very little sense and shows that regression had a hard time finding anything that 

strongly correlated with lying wood in a managed forest like this. This is also supported by 

the low R2 value. 

4.4 General comments 

There were some uncertainties regarding exact tree locations that might have influenced the 

results. There seems to be an inherent error in the Haglöf system. We used a 10-meter radius 

in the field plots, which means that no tree can be more than twenty meters from any other 

tree in the plot. But by going through just a few of the plots we found some trees being as 
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much as 22,3 meters from each other. This could influence the volume values of the plots. 

This is because we had to adjust which trees to include in the plot values, because of the 

difference in radius used in the field and the radius used to make ALS variables. We used GIS 

to remove all trees further than nine meters from the plot centre. Because of the error in the 

Haglöf system, we cannot be sure that we included all the right trees. If the error is systematic 

there is a chance this could have influenced the results, though unlikely very much.  

The field plots were overall very similar in terms of spatial structure. Some field plots were 

placed in dense forest, but most of the plots did not differ much. Because of this, the average 

values of the calibration plots and the validation plots should not differ much no matter how 

the plots are distributed. This could mean that the low systematic errors are a result of similar 

mean values in all iterations of the simulation. That would explain how the systematic errors 

can be so low while the R2 values are also low (especially for lying wood). When the R2 value 

is so low for lying wood, it is better just to use average values from field plots for estimation 

of the volume in a bigger area. 

To improve the study, we could have added more data variables. An obvious next step is to 

include hyperspectral imaging data. That might help to see some of the things that are not 

picked up by the point cloud. We could also have looked for different correlations, not just 

linear. 

 

5 Conclusion 

In a mature managed forest like this one, ALS variables have a moderate correlation with 

standing dead wood. The most descriptive laser variables for living volume were related to 

branches in the upper and middle parts of the stems. The most descriptive variables for 

standing dead wood volume were related to tree height and branches in the middle parts of the 

stems. Variables from ALS were not descriptive for lying dead wood volume. When 

predicting wood volume with kNN, a higher k did not improve the results.  
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