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Mucosal organs are principle portals of entry for microbial invasion and as such developing 
protective vaccines against these pathogens can serve as a first line of defense against 
infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose 
main function is not only to prevent pathogen attachment by being continuously secreted 
and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, 
and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on 
mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting 
cells (APCs) that activate cells of the adaptive immune system to generate long-lasting 
protective immune responses. The functional activities of APCs are orchestrated by a 
vast array of proinflammatory cytokines and chemokines found in all mucosal organs. 
The adaptive immune system in mucosal organs is made of humoral immune responses 
that are able to neutralize invading pathogens as well as cellular-mediated immune 
responses whose kinetics are comparable to those induced by parenteral vaccines. In 
general, finfish mucosal immune system has the capacity to serve as the first-line defense 
mechanism against microbial invasion as well as being responsive to vaccination.

Keywords: gill, gut, igM, igT, mucosal, oral, skin, vaccine

introduction

Mucosal surfaces are important physical barriers whose main function is to protect the systemic 
environment of the body against microbial invasion. An ideal mucosal vaccine should have the 
capacity to produce protective immunity that is able to prevent microbial invasion, colonization, 
and establishment of infection at portals of entry (1). All mucosal organs are endowed with antigen-
presenting cells (APCs) that play a vital role in antigen uptake and processing followed by presenta-
tion to naïve B- and T-lymphocytes to induce a long-lasting protective immunity (2). Despite so, 
our understanding of the immunological basis of mucosal vaccine protection has for a long time 
lagged behind systemic immunity not only in finfish, but also in higher vertebrates, which has led to 
a corresponding delay in developing highly protective mucosal vaccines across the vertebrate taxa.

The demand for mucosal vaccines in aquaculture has been exacerbated by different stages of fish 
production cycles in which administering vaccines by injection might not be feasible thereby render-
ing the use of mucosal vaccines as an alternative. For Atlantic salmon (Salmo salar L), administering 
vaccines by injection at the freshwater stage is the most commonly applied method while boost 
vaccination for fish in cages at sea is only applicable by oral vaccination. On the other hand, vaccinat-
ing small fish by injection causes stress-related mortalities, which make immersion vaccination a 
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better alternative. While the mode of vaccine delivery is to a large 
extent dependent on the fish production cycle, developing highly 
protective vaccines for oral and immersion vaccination has been 
a serious challenge for a long time because the process of optimiz-
ing vaccine delivery methods and measuring immune responses 
for mucosal vaccines is more complicated than for injectable 
vaccines (3). For example, the vaccine dose taken up by oral or 
immersion vaccination is difficult to accurately quantify. Unlike 
injectable vaccines whose immune response to vaccination is 
determined by measuring serum antibody levels, there is no 
optimized quantitative assay established for measuring antibody 
levels in the mucus of vaccinated fish. Therefore, it is difficult to 
optimize mucosal vaccine performance for finfish (3). Despite 
so, gene expression studies show that mucosal vaccines are able 
to induce immune responses in vaccinated fish. It is anticipated 
that generating vaccines that have the capacity to induce a com-
bined effect of highly protective mucosal and systemic immune 
responses could be more effective at attaining sterile immunity. 
Mucosal immune responses would serve as gatekeepers at the 
portals of pathogen entry while systemic immunity would serve 
as a secondary barrier to block the spread of infection to target 
organs in infected fish.

Considerable progress has been made in optimizating the 
performance of injectable vaccines in aquaculture (4, 5), but 
not for mucosal vaccines. However, recent advances in mucosal 
immunology show that teleosts fish, like all vertebrates, are 
endowed with a protective immune system although there has 
been no comprehensive review that puts together a summation of 
underlying mechanisms of mucosal vaccine protection in finfish, 
thereby creating the basis for this review. Therefore, this review 
puts together a collection of different components of the mucosal 
immune system of finfish with the view to shed insight on how 
these elements prevent microbial invasion on mucosal surfaces 
as a basis for designing highly protective mucosal vaccines for 
finfish.

immunological Mechanisms of vaccine 
Protection in Different Mucosal Organs

Mucosal organs in finfish have been classified into four broad 
categories, namely the gut, gills, skin, and nasal mucosa by 
different scientists (6–9). Hence, in this review, we discuss the 
immunological basis of mucosal vaccine protection based on this 
classification.

Gut Mucosal Responses to vaccination
The gut immune system of finfish is made of two components, 
namely the innate and adaptive immune system whose immune 
responses to vaccination are discussed below.

Innate Immune Responses to Mucosal Vaccination  
in the Gut
A layer of mucus containing antimicrobial peptides, complement 
factors, immunoglobulins, and other surface defensins covers 
the mucosal surface of the gut (Table 1). Rombout et al. (6) have 
recently reviewed the type of immune cells found in the gut of 
fish. APCs, such as monocytes and macrophages, are found in 

the lamina propria (LP) while the intra epithelial lymphocytes 
(IELs) mainly comprises of B and T-lymphocytes. Zhang et al. 
(10) and Li et al. (11) have shown that teleosts B-cells possess 
phagocytic properties that play an important role as APCs. It has 
been shown that IgT coats gut commensal bacteria in a similar 
pattern as IgA in mammals (10). In addition, Fuglem et al. (12) 
have reported of M-cells and dendritic-like cells in the gut of 
salmonid intestinal epithelium.

Martin et  al. (32) compared the antigen uptake ability of 
intestinal leukocytes with their head-kidney (HK) and peripheral 
blood (PBL) counterparts and showed that intestinal phagocytes, 
when activated, ingested as many yeast cells as their HK coun-
terparts, indicating that gut APCs have the same capacity for 
antigen uptake as their systemic counterparts. Rombout et  al. 
(21, 22) have shown that there are differences in the distribution 
of APCs between different gut segments with the second segment 
having more APCs than the first. Similarly, Fuglem et al. (12) also 
showed that the uptake of gold-BSA was restricted to dendritic-
like cells and other epithelial cells located in mucosal folds 
found in the second gut segment. In another study, Chen et al. 
(33) recently showed uptake of inactivated infectious pancreatic 
necrosis virus (IPNV) antigens in the second gut segment fol-
lowing oral and anal intubation, which were also detected in the 
HK melanomacrophages of Atlantic salmon (S. salar L). Overall, 
these studies indicate that antigens deposited in the second gut 
segment were more likely to be taken up by APCs than antigens 
deposited in other gut segments. Therefore, the challenge is to 
develop vaccine delivery systems able to deposit antigens in the 
second gut segment.

Similar to systemic immune responses (5, 34), mucosal anti-
gen uptake is linked to expression of different proinflammatory 
cytokines, such as IL-1β, TNFα, and IL-8, in the gut (Table 1). In 
addition, Table 1 shows that chemokines expressed in response 
to antigen delivery through the gut mucosa are comparable to 
those induced by parenteral vaccination (35, 36) suggesting 
that antigen uptake by gut APCs is coordinated by chemokines 
and cytokines comparable to those induced by systemic antigen 

TABLe 1 | innate immune components of the gut mucosa in finfish.

Component Regulatory/effectors cells/genes Reference

Mucus and surface 
defensins

Muc2 (13)
Antimicrobial peptides (14, 15)
Complement system (16–19)

Cell types Goblet cells (14)
Macrophages (6, 7)
Granulocytes (6, 7)
Rodlet cells (20)
M-cells (12)
Enterocytes (21, 22)

Pattern recognition  
receptor

Toll-like receptors (23, 24)
Peptidoglycan PRR (25)

Proinflammatory  
cytokines

IL-1β (26, 27)
TNFα (28)
IL-6 (27)

Chemokines CCR6 (29)
CCR9B (29)
CXCL10 (30)
CK12 (31)

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


TABLe 2 | Adaptive immune components of the gut mucosa in finfish.

Component Regulatory/effectors 
cells/genes

Abbreviation Reference

Humoral 
responses

Cell types B-lymphocytes (6, 39)
Immunoglobulins (Ig) IgT/IgZ (26, 40–42)

IgM (26, 41)
IgD (41)

B-cell transcription  
factors

Blimp1 (41)
Pax5 (41)

Cellular 
responses

Major histocompatibility MHC-I (26)
MHC-II (26)

T-helper cells Th1 (43)
Th2 (43)
Treg (33)

Transcription GATA-3 (27, 44–46)
T-bet (46–49)
FoxP3 (33, 45, 49, 50)

CD4-Regulatory  
cytokines

IL-2 (27)
IL-4/13 (27)
IL-10 (51)
IL-12 (52, 53)
IFNγ (52, 53)
TNF (28)
PD-1 (54)
TGF-β (54)

Cell type T-lymphocytes (54, 55)
CD8 T-cells CD8α (26, 32, 54)
T-cell receptor TCR genes (55)
CD8 transcription factor(s) Eomesodermin (47, 48, 56)
CD8 regulatory cytokines
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high antibody levels in other mucosal organs, which was not the 
case for vaccines delivered by the intraperitoneal route, (ii) the 
second segment of the gut is the most antigen absorptive site able 
to induce high antibody responses, and (iii) antibodies generated 
by mucosal vaccination were protective against microbial inva-
sion in the gut mucosa.

Several scientists (32, 57, 58) have shown that CD8α, which 
is a marker for activated cytotoxic T-lymphocytes (CTLs) in 
fish, accounts for the largest proportion of T-lymphocytes in the 
gut of teleosts fish. It is interesting to note that upregulation of 
CD8α cells has been linked to the corresponding upregulation of 
MHC-I, suggesting that presentation of antigens via the MHC-I 
pathway could be linked to activation of naïve CD8 cells into 
effector CTLs in the gut mucosa of finfish. For example, Kai et al. 
(26) showed upregulation of MHC-I that corresponded with 
upregulation of CD8α in the gut of grouper larvae (Epinephelus 
coioides) exposed to nervous necrosis virus (NNV) by oral vac-
cination, suggesting that activation of CD8α was via the MHC-I 
pathway. Furthermore, upregulation of T-cell receptor (TCR) and 
CD3 genes has also been shown to correspond with upregula-
tion of CD8α and MHC-I genes (57, 59, 60). Martin et al. (32) 
showed a cytotoxic activity that was twice higher in the intestine 
than in head-kidney leukocytes in rainbow trout while Picchietti 
et al. (57) showed high cytotoxic activity in lymphocytes purified 
from the intestinal mucosa, providing further insight into the 
cellular-mediated activity of activated CTLs in the gut mucosa 
of finfish. Put together, these studies show that the gut mucosa 
is endowed with different components of CD8 T-cell responses 
whose kinetics corresponds with CTL responses shown to 
eliminate cells infected with intracellular pathogens in higher 
vertebrates. As for CD4 responses, transcription factors for their 
specification into Th1 and Th2 subtypes have been characterized 
in fish and these include T-bet, GATA-3, and FoxP3 (Table 1). 
Recently, Wang et al. (61) showed that grass carp virus (GCRV) 
induced upregulation of T-bet when GATA-3 was downregulated 
in which upregulation of IFNγ correlated with upregulation of 
T-bet being similar to kinetics induced by parenteral vaccines in 
finfish (5, 47). Overall, these studies show that the gut mucosa 
of finfish is endowed with a cellular-mediated immune response 
orchestrated by CD4 and CD8 genes expressed in response to 
mucosal vaccination. However, there still remains the challenge 
of demonstrating the functional role of cellular-mediated immu-
nity in finfish vaccinated by the mucosal route.

Skin immune Responses to vaccination
The skin of teleost fish is endowed with different components of 
the innate and adaptive immune system, which are responsive to 
vaccination as shown below.

Innate Immune Responses to Mucosal Vaccination in 
the Skin
Mucus overlying the epidermis is the first line of defense against 
microbial invasion on the skin surface. It exerts its protec-
tive role by being continuously produced and sloughing off 
to prevent pathogen adherence. Second, it serves as a vehicle 
for several immune factors that include lysozomes, proteases, 
alkaline phosphatases, complement, immunoglobulins, lectins, 

delivery systems (35–37). However, there is need for detailed 
investigations to elucidate the role of these chemokines and 
cytokines in enhancing the performance of mucosal vaccines in 
finfish.

Adaptive Immune Responses to Mucosal Vaccination 
in the Gut
All three immunoglobulin (Ig) isotypes characterized in teleosts 
fish have been detected in the gut (Table  2). Unlike IgM, IgT 
is specialized in mucosal surfaces in a similar pattern that IgA 
functions in mammals and it accounts for the largest proportion 
of the B-cell population found in the gut of finfish (10). Kai et al. 
(26) have shown that high IgT levels were only expressed by 
bath or immersion vaccination unlike IgM that had high levels 
for vaccines administered by injection (4). Vervarcke et al. (38) 
compared antibody levels induced by anal intubation of vaccines 
into the second segment of the gut, oral vaccination through feed 
and intraperitoneal vaccination against Vibrio anguillarum and 
observed high antibody levels in the skin mucus and bile for fish 
vaccinated by intubation and not in the intraperitoneally vac-
cinated fish. In addition, they detected high antibody levels for 
fish vaccinated by intubation than the orally vaccinated fish. They 
further noted that the antigen dose of vaccines administered by 
anal intubation correlated with post vaccination antibody levels 
suggesting that deposition of vaccines in the second segment of 
the gut by anal intubation produced better correlates of vaccine 
protection than oral vaccination. In summary, these studies 
show (i) compartmentalization of mucosal responses in which 
antigens delivered by intubation into the gut mucosa produced 
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TABLe 3 | innate immune components of the skin mucosa of finfish.

Component Regulatory/effectors  
cells/genes

Reference

Mucus and surface  
defensins

Muc5B (13)
Antimicrobial peptides (14, 27)
Complement system (76)

Cell types Macrophages (71, 72)
Granulocytes (71, 72)
Goblet cells (14, 77, 78)
Sacciform cells (78)
Club cells (78)
Malpighian cells (78, 79)

Pattern recognition receptor Toll-like receptors (72, 73)

Proinflammatory cytokines IL-1β (27, 80)
TNFα (80, 81)
IL-6 (27, 82)
IL-8 (27, 80, 81)

Chemokines CXCR4 (83)
CXCL10 (30)
CK1, 3, 9, and 11 (84)

TABLe 4 | Adaptive immune components of the skin mucosa of finfish.

Component Regulatory/effectors  
cells/genes

Abbreviation Reference

Humoral  
responses 

Cell types B-lymphocytes (7, 42, 88)
Immunoglobulins (Ig) IgT/IgZ (7, 40, 42)

IgM (27, 76)
IgD (7, 8, 10)

Cellular  
responses

Major histocompatibility MHC-II (76, 81)
T-helper cells Th17 (89)

Th2 (90)
T-bet (46)

Transcription GATA-3 (27, 46, 90)
CD4-Regulatory  
cytokines

IL-4/13 (27, 90)
IL-10 (27)
IL-12 (91)
PD-1 (54)
TGF-β (81, 82)
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and C-reactive proteins that prevent pathogen invasion into the 
skin (14, 15, 62–64). Despite so, bath vaccination studies have 
shown that the primary site of attachment of V. anguillarum is 
the skin in which the bacteria cause local inflammatory responses 
upon attachment (65, 66). This causes the skin epithelial cells to 
phagocytose pathogens that attach to the skin surface (7, 65). And 
as such, different phagocytic cells have been characterized that 
include macrophages, granulocytes, goblet cells, sacciform cells, 
club cells, and malpighian cells in finfish (Table 3). In addition, 
dendritic-like cells have also been characterized from the skin 
mucosa of different fish species (67–69). The presence of mono-
cytes, macrophages, and dendritic-like cells (67–71) indicates 
that the skin mucosa is endowed with APCs like other mucosal 
organs found in finfish. Upregulation of different toll-like recep-
tors (TLRs) after pathogen invasions suggests that cells of the skin 
mucosa have sensors that are able to detect and bind to pathogen-
associated molecular patterns (PAMPs) expressed by invading 
pathogens (72, 73). Li et al. (74) showed upregulation of TLR2 
in orange-spotted grouper (E. coioides) exposed to Cryptocaryon 
irritans infection while Zhao et al. (75) showed increased levels 
of TLR1, 2, and 19 in response to Ichthyophthirius multifiliis 
infection in channel catfish (Ictalurus punctatus). It is interesting 
to note that upregulation of TLRs genes has been shown to corre-
spond with upregulation of proinflammatory genes. For example, 
Li et al. (74) showed upregulation of TLR2 that coincided with 
upregulation of IL-1β in orange spotter grouper exposed to C 
irritans pointing to antigen recognition by APCs orchestrated by 
proinflammatory genes.

In summary, the skin mucosa of finfish exert its protective 
mechanisms by (i) having mucus, which prevents pathogen 
attachment by continuously being produced and sloughing 
off, (ii) the presence of different host defensins that degrade, 
opsonize, and neutralize invading pathogens, (iii) carrying out 
phagocytosis of pathogens that attach onto the skin surface, and 
(iv) carrying out antigen uptake and processing by APCs that 
activate the adaptive immune system thereby creating the basis 
for mucosal vaccination via the skin.

Adaptive Immune Responses to Mucosal Vaccination 
in the Skin
All Ig isotypes characterized in fish have been detected in the skin 
mucosa (Table 4) and as pointed out by Zhang et al. (10), IgT is the 
major Ig isotype found in the skin mucosa although IgM is also 
present but in low quantities. In general, fish antibodies are pro-
tective against invading pathogens on mucosal surfaces as shown 
by Wang et al. (85, 86) and Dickerson and Clark (87) that naive 
fish exposed to sub-lethal infection of I. multifiliis become resist-
ant to subsequent challenge. In their findings, they observed that 
resistance correlated with antibody levels in sera and skin mucus 
of immune fish. They further noted that antibodies from resist-
ant fish easily bound to the immobilization antigens (i-antigens) 
found on the parasite cell and ciliary membranes. Antibody-
mediated cross-linking with i-antigens resulted in expulsion of 
the parasite from exposed fish indicating that mucosal antibodies 
have the capacity to eliminate pathogens from mucosal surfaces in 
finfish. Recovered fish were protected from subsequent exposure 
to the parasite for a long time indicating that sub-lethal infection 
of I. multifiliis could serve as a live vaccine. These studies showed 
that exposure to I. multifiliis infection through the skin mucosa 
induced both mucosal and systemic antibody responses. In addi-
tion, they noted that vaccinating fish using purified i-antigens, 
provided long-lasting protective immunity against I. multifiliis, 
which makes the i-antigens to be the most promising candidate 
for subunit vaccine production.

In another study, Zhao et  al. (92) showed that antibody-
secreting cells (ASC), which include B-cells, plasmablasts, and 
non-replicating plasma cells, were found in low numbers in the 
skin of channel catfish. However, after immunization against 
I. multifiliis these antibodies increased by 20-fold. Thereafter, 
the number of ASC in the skin remained high for a long time 
and they were shown to confer long-term protective immunity 
against reinfection. However, it is vital to point out that although 
antibody responses were protective against parasitic infections 
such as I. multifiliis, there are limited studies that show protec-
tive immunity against viral and bacterial infections in the skin 
(93, 94). Hence, there is need for more studies to determine the 
protective mechanisms of skin antibodies for other pathogens. 
However, based on studies carried out this far (85–87, 92, 95), 
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TABLe 5 | innate immune components of the gill mucosa of finfish.

Component Regulatory/effector  
cells/genes

Reference

Mucus surface  
defensins

Muc5B (13)
Complement system (16, 18, 109)
Antimicrobial peptides (15, 109, 110)

Cell types Macrophages (111, 112)
Rodlet cells (20)
Eosinophilic granulocytes (111, 113, 114)
Neutrophils (111)

Pattern recognition  
receptor

Toll-like receptors (23, 72, 92, 111,  
114–116)

Peptidoglycan PR (25)

Proinflammatory  
cytokines

IL-1β (117–121)
IL-8 (121)
TNFα (119–121)
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indications are that vaccination via the skin mucosa can induce 
protective antibody responses thereby creating the basis for vacci-
nation by immersion or bath exposure as shown that fish exposed 
to I. multifiliis via the skin were protected by mucosal antibodies 
against subsequent exposure.

As for cellular-mediated immunity, there are no studies that 
categorically show the ability of vaccine-induced CD8 T-cell 
responses to prevent microbial invasion into the skin mucosa of 
vaccinated fish. In general, only a few studies have been carried 
out on cellular-mediated immunity found in the skin mucosal 
of finfish (27, 96). However, it is interesting to note that induc-
tion of humoral immune responses due to parasitic flagellate 
Ichthyobodo necator infection correlated with increased CD4+ 
T-cell expression when CD8α was downregulated in the skin of 
rainbow trout (27). In their study, Chettri et al. (27) observed 
upregulation of the transcription factor GATA-3 and IL-4/13A, 
which correlated with upregulation of IgM+, suggesting that 
exposure to I. necator induced CD4+ responses in the skin mucosa 
of infected rainbow trout whose kinetics are similar to those 
induced by inactivated IPNV vaccines in Atlantic salmon (47). 
In general, these findings demonstrate that the cellular-mediated 
immune system of the skin mucosa in finfish is responsive to 
antigen stimulation and that increased CD4+ and IL-4/13A levels 
could play an important role in enhancing antibody functions as 
shown in mammals (97–99).

Gill Mucosal Responses to vaccination
Similar to other mucosal organs in finfish, immune responses to 
vaccination in the gills are coordinated by different innate and 
adaptive immune responses as shown below.

Innate Immune Responses to Mucosal Vaccination in 
the Gills of Finfish
Similar to other mucosal organs of finfish, the gill surface is cov-
ered by a mucus layer that contains complement, antimicrobial 
compounds, antibodies, and other surface defensins (Table  5). 
Different phagocytic cells have been characterized in the gills of 
different fish species and these include monocytes, macrophages, 
rodlet cells, eosinophilic granular cells, and neutrophils (Table 5). 
In addition, dendritic-like cells have also been reported from the 
gills (100). The expression pattern of CD83, a known surface 
marker of activated dendritic-like cells in fish (101–103), was 
shown to correlate with increased uptake of poly(I:C) in the gill 
mucosa of turbot (Scophthalmus maximus) (104), suggesting that 
dendritic-like cells in finfish express surface markers characteris-
tic of activated APCs after antigen uptake. In addition, upregula-
tion of IL-1β, IL-8, and TNFα has been shown to correspond with 
upregulation of TLR genes after vaccination in gills of different 
fish species (23, 25, 74, 105). Furthermore, some studies have also 
reported of upregulation of chemokines such as CXCL10, CK3, 
CK9, CK11, and CK12 that correspond with the homing of APCs 
to antigen deposition sites in the gills (35, 106–108). Put together, 
these observations show that the gill mucosa in finfish is bestowed 
with (i) a mucus layer that serves as a vehicle for host defensins, 
(ii) APCs comprising monocytes, macrophages, and dendritic-
like cells, and (iii) regulatory cytokines and chemokines able to 
coordinate the functional activities of APCs. Therefore, it can 

be concluded that the gill mucosa is endowed with a functional 
innate immune system responsive to vaccination able to activate 
the adaptive immune system.

Adaptive Immune Responses to Mucosal Vaccination 
in the Gills of Finfish
Adaptive immune components of the gut identified in finfish 
are shown in Table  6. Olsen et  al. (105) have shown that IgT+ 
B-cells are predominantly located in the epithelial lining of 
the gill lamellae, suggesting a primary role of this Ig isotype in 
mucosal defense against pathogen invasion, whereas IgM posi-
tive cells are located in gill arterioles and lamellar capillaries. Kai 
et al. (26) showed that IgM and IgT levels in the gill mucosa were 
only upregulated by bath or immersion vaccination, suggesting 
that the route of vaccine delivery had an influence on the induc-
tion of humoral immune responses in the gills. Jorgensen et al. 
(108) showed that IgT and IgM were able to bind to the surface 
structures of I. multifiliis in the gills of immune rainbow trout 
shortly after invasion. In their studies, they noted that IgT+ B-cells 
were predominantly located in the gill epithelia in the secondary 
lamellae corresponding to observations made by Olsen et  al. 
(105). Parasites in immune fish were stained with IgT and yet no 
stain was detected from parasites from non-immune fish. They 
also observed that IgM+ B-cells were only found inside the capil-
laries of the secondary gill lamellae and yet the parasites located 
on the gill surface were stained with IgM, suggesting that there is 
possible diffusion of serum IgM from the systemic compartment 
to the exterior surface for it to stain the parasites at the mucosal 
surface within hours after penetration. In summary, these studies 
show that (i) there is compartmentalization in the distribution 
of IgT and IgM with the former being on the outer surface of the 
epithelia lining while the latter being in the capillaries and (ii) 
both IgM and IgT have the capacity to bind the exterior surfaces 
of invading pathogens.

Several scientists have shown the activation of naïve CD4 and 
CD8 T-cells in the gill mucosa of different fish species (58, 126, 
127). Takazawa et  al. (58) showed that CD8α cells account for 
a large proportion of the total lymphocytes found in the gills 
of salmonids. It is interesting to note that induction of MHC-I 
and CD8+ responses in the gills is mostly by bath or immersion 
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TABLe 6 | Adaptive immune components of the gill mucosa of finfish.

Component Regulatory/effectors 
cells/genes

Abbreviation Reference

Humoral 
responses 

Cell types B-lymphocytes (7)
Immunoglobulins (Ig) IgT/IgZ (40, 42, 109, 

110)
IgM (121–123)
IgD (35)

Cellular 
responses

Major histocompatibility MHC-I (119)
MHC-II (109, 110, 119)

T-helper cells Th1 (46, 124)
Th2 (90)
Treg (45, 49)

CD4 Transcription  
factors

GATA-3 (46, 90)
T-bet (46, 49, 125)
FoxP3 (45, 47, 50)

Chemokines CCR6 (29)
CCR7 (35, 107)
CCR9B (29)
CXCL10 (30)
CK1, 3, 9, 11 and 12 (29)

CD4-Regulatory  
cytokines

IL-2 (125)
IL-4/13 (90)
IL-10 (124)
IL-22 (125)
IFNγ (125)
TGF-β (119)

Cell type T-lymphocytes (124)
CD8 T-cells CD8α (124)
T-cell receptor TCR genes (124)
CD8 transcription factor(s) Eomesodermin (48, 56)
CD45 CD45 (124)
CD8 regulatory cytokines
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vaccination (26, 52). Kai et  al. (26) and Overgard et  al. (52) 
observed that upregulation of CD8α cells coincided with upregu-
lation of MHC-I after vaccination using viral antigens pointing 
to possible activation of CD8 cells via the MHC-I pathway. 
Overgard et  al. (53) also showed upregulation of TCR genes 
alongside upregulation of MHC-I and CD8α pointing to possible 
binding of TCRs to MHC-I molecules leading to activation of 
CD8α cells. Moreover, Aquilino et al. (128) showed upregulation 
of CD3 genes and perforins alongside increased levels of CD8α 
and MHC-I in rainbow trout exposed to viral hemorrhagic sep-
ticemia virus (VHSV). Put together, these studies show that the 
gill mucosa is endowed with different components of CD8 T-cell 
mediated immune genes ranging from TCRs that bind to antigens 
presented on MHC-I molecules to CD3 molecules that activate 
naïve CD8 T-cells to effector CTLs and perforins that carry out 
cytotoxicity killing of cells infected with intracellular pathogens. 
However, there is need for detailed investigations to elucidate the 
role of CTL responses in mucosal vaccine protection in finfish.

As for CD4 T-cell responses, activation of naïve CD4 T-cells 
into effector subtypes is via the MHC-II pathway (34). Olsen et al. 
(105) showed that MHC-II cells were distributed across the gill 
filaments where they accumulated in the hyperplastic tissue in 
rainbow trout. As shown in Table 6, different transcription factors 
that specify the differentiation of naïve CD4 cells into different 
T-helper (Th) subtypes have been identified and characterized in 
the gills of different fish species. In addition, different cytokines 

and chemokines that regulate the functional activities of differ-
ent Th-cells have also been characterized in different fish species. 
Studies carried out by Takizawa et al. (90) have shown that the 
constitutive expression of IL-4/13 and GATA-3 skewed toward 
a Th2 response in gill cells of isogenic rainbow trout exposed to 
poly(I:C). In their studies (90), they showed that the kinetics of 
IL-4/13A and IFNγ in the gill cells were consistent with expres-
sion patterns observed from fish vaccinated by injection (47). 
In general, these studies suggest that CD4 T-cells are responsive 
to antigen stimulation in the gill mucosa of finfish. Therefore, 
future studies should seek to identify the helper roles of different 
Th-subtypes in conferring protective immunity in fish vaccinated 
via the gill mucosa.

Nasal Mucosal Responses to vaccination
Recent advances have shown that the nasal mucosa is endowed 
with an innate and adaptive immune system comparable to other 
mucosal organs in finfish (9). Studies carried out by Tacchi et al. (9) 
have shown that the nasal mucosa expressed different cytokines, 
chemokines, antimicrobial peptides, complement factors, and 
TLR genes in rainbow trout vaccinated against Yersinia ruckeri. 
In addition, it also expressed MHC-II genes as well as different 
B-cell receptor and TCR genes in response to vaccination against 
Y. ruckeri. All three Igs characterized in fish were detected in the 
nasal mucosa with IgT being the most abundant followed by IgM 
(9). Tacchi et al. (9) and La Patra et al. (129) showed significant 
protection against infectious hematopoietic virus infection 
(IHNV) and Y ruckeri in rainbow trout vaccinated via the nasal 
mucosa after challenge. In general, indications are that the nasal 
mucosa uses similar protective mechanisms with those used by 
other mucosal organs in finfish. However, given that the nasal 
mucosa is a recently discovered mucosal organ whose protective 
mechanisms have only been reported in rainbow trout, there is 
need for follow-up studies in order to consolidate these findings 
in other fish species.

General Discussion and Conclusion

In general, teleosts fish are endowed with different mucosal 
organs that include the gills, gut, skin, and nasal mucosa (6, 7, 
9, 10). It is interesting to note that all mucosal organs have an 
innate immune systems, which is made of three important ele-
ments, namely (i) mucus whose function is not only to prevent 
microbial attachment to mucosal surfaces by continuously being 
excreted and sloughed-off but it serves as a vehicle for antimi-
crobial peptides, complement, and Igs that degrade, opsonize, 
and neutralize invading pathogens on mucosal surfaces; (ii) 
APCs that carry out antigen uptake, processing, and presentation 
to cells of the adaptive immune systems (130); and finally (iii) 
proinflammatory cytokines and chemokines that coordinate the 
functional activities of APCs. Overall, this review shows that the 
innate immune systems in different mucosal organs is responsive 
to mucosal vaccination and that it has the capacity to activate cells 
of the adaptive immune systems in finfish.

It is interesting to note that all three Ig isotypes characterized in 
finfish have been detected in all mucosal organs (6, 7, 9, 10). Based 
on studies carried out this far, it is evident that mucosal antibody 
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responses are the only component of the adaptive immune system 
that has been shown to confer protective immunity in vaccinated 
fish (85, 86, 131) although the majority of studies that support 
this observation are based on the neutralizing ability of mucosal 
antibodies on parasitic infections (85, 86, 131) with only a few 
studies showing protection against viral and bacterial infec-
tions (93, 94). Nevertheless, it is interesting to note that there is 
compartmentalization in the expression of different Ig isotypes 
with IgT being the major isotype in mucosal organs while IgM is 
mostly found in systemic circulation (7, 10, 40). In addition, there 
is compartmentalization in terms of the physical distribution of 
IgT and IgM in some mucosal organs as shown that in the gills 
IgT is mainly found on exterior surfaces of the gill lamellae (105, 
131), suggesting that this isotypes functions as a gatekeeper at 
the portals of entry whereas IgM is mostly found in the arterioles 
(105, 131), suggesting that its role is to prevent systemic dissemi-
nation of pathogens as a secondary defense strategy in situation 
where IgT on mucosal surfaces fails to prevent the penetration of 
pathogens into the systemic environment.

Although cellular-mediated immunity is present in all mucosal 
organs, its existence is mostly demonstrated by gene expression. 
The ability of these genes to prevent microbial invasion in vac-
cinated fish has not been clearly elucidated although the kinetics 
of CD4+ and CD8+ gene expression in different mucosal organs 
suggests that cellular-mediated immunity is responsive to vac-
cination in finfish. And as pointed out in our previous studies (5, 
34, 35), the route of antigen delivery into APCs is deterministic 
of the type of cellular-mediated immune response induced by 
vaccination. Antigens delivered via the intracellular route evoke 
both CD4+ and CD8+ responses whereas antigens delivered by the 
extracellular route only induce CD4+ responses. And as pointed 
out by Howarth and Elliot (132), the most protective vaccines are 
those that stimulate both CD4+ and CD8+ responses. Therefore, 

live virus and DNA vaccines that evoke both CD4+ and CD8+ 
responses are likely to produce better protection than inactivated 
vaccines. Although live vaccines produce long-lasting protective 
immunity given that they are replicative and are more immuno-
genic than in inactivated vaccines (133, 134), they are less used 
in aquaculture because of the fear of reversion to virulence as 
shown in the case of IPNV that avirulent strains can revert to 
virulence under stress conditions (135). On the other hand, DNA 
vaccines that are also delivered via the intracellular route are not 
widely used in aquaculture for ethical reasons because of their 
genetic modified nature (34).This far, only the IHNV-DNA vac-
cine has been licensed for commercial use in Canada. Hence, the 
majority of commercial vaccines currently used in aquaculture 
are inactivated vaccines, which are limited to induction of CD4+ 
and humoral immune responses. Hence, there still remains the 
challenge of developing intracellular antigens delivery systems 
able to evoke of CD4+ and CD8+ T-cell responses that do not 
pose the danger of reversion to virulence.

This review summarizes the different components of the innate 
and adaptive immune systems in mucosal tissues of finish, which 
are activated following mucosal infection and/or vaccination 
studies. Based on the synopsis put forth in this review, mucosal 
antibodies appear to play a key role in conferring protective 
immunity in vaccinated fish (85, 86, 92, 93, 95). On the other 
hand, there still remains the challenge of elucidating the ability of 
mucosal vaccine-induced cellular-mediated immune responses 
to protect fish against microbial invasion in mucosal organs.
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