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Abstract
There is a global demand for rare earth elements (REEs), as they are a corner-
stone in many industries. REE demand is expected to grow tremendously due
to raw material constraint combined with the transition to a carbon neutral
economy. The road to having a carbon neutral world is reliant on many
environmentally friendly inventions that are heavily dependent on REEs. The
resent conflict between Russia and Ukraine has affected the global supply
chain and the need for countries to be more self-reliant is more apparent.
Therefore, more local solutions should be explored.

Mapping of rare earth elements with hyperspectral imagery has been proven
effective in research. However, the technique has yet to be demonstrated
at quarries. This MSc project investigated potential procedures that could
streamline the process of mapping REEs in field. The aim was also to
determine whether a discontinued quarry in Larvik Norway had high enough
concentration of REEs to be mapped by hyperspectral imagery. The element
of interest in this study is neodymium since it has prominent spectral features
and can be used as a proxy for REEs occurrences since REEs often occurs
together. By using cameras from HySpex (VNIR1800, VNIR3000) it was
possible to identify potential neodymium occurrences both in lab and in field.
The results showed that the concentration of neodymium is high enough
to be mapped by hyperspectral sensor. And that the process of classifying
neodymium was possible to streamline even with a great deal of data. The
process also has the potential to be refined and scaled up.
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Abstrakt
Sjeldne jordarter (REE) er en essensiell del av mange industrier noe som
medfører en stor global etterspørsel. Det er forventet en enorm økning i
etterspørsel av REE grunnet råvaremangel og overgangen til en karbon-nøytral
økonomi. Veien til å bli karbonnøytral er avhengig av mange miljøvennlige
oppfinnelser som også belager seg på REEs. Den nåværende konflikten mellom
Russland og Ukraina har påvirket den globale forsyningskjeden og mange
land kjenner behovet for å være selvforsynt i større grad enn før. Derfor bør
man utforske mer lokale løsninger.

Kartlegging av sjeldne jordarter med hyperspektrale kameraer har vist seg å
være effektivt i forskning. På tross av dette har det ennå ikke blitt iverksatt i
den aktive driften hos steinbruddene. Denne masteroppgaven har utforsket
potensiale for å effektivt kartlegge REE i felt, samt om et steinbrudd i Larvik
hadde høy nok konsentrasjon av REE til å bli kartlagt av hyperspektrale
sensorer. Hovedelementet i denne oppgaven er neodym da den har tydelige
spektrale egenskaper og kan brukes som en indikator på andre sjeldne jordarter.
Dette kommer av at sjeldne jordarter ofte forekommer sammen. Ved å bruke
kameraer fra Hyspex (VNIR1800, VNIR3000) var det mulig å identifisere
neodymforekomster i lab og felt. Resultatene viste at det var høy nok
konsentrasjon av neodym til at de hyperspektrale sensorene klarte å fange
det opp. Det viste seg også mulig å effektivisere klassifiserings prosessen, selv
med store mengder data. Rutinen har potensiale til å bli mer raffinert og
skalert opp.
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1 Motivation
Hyperspectral imagery (HSI) is a remote sensing technique that excels in
identifying and differentiating surface material’s ability to absorb and reflect
electromagnetic energy. This can be used to identify elements, molecules
and in the context of geology minerals, given high enough concentration
and occurrence. Some elements show element-specific absorption features,
REE elements are part of this group. The purpose of this study is to see
whether it is possible to use hyperspectral imagery to effectively map rare
earth elements at a discontinued quarry in Larvik, Norway. The aim is also
to determine whether the REE concentration in the quarry is high enough to
be mapped by HSI. Prior studies have shown the possibility of identifying
REEs using hyperspectral sensors . However, the technique has yet to be put
in practice at quarries, exploration from UAV and tripod have been tested
but not industrialized (Boesche et al. 2015; Turner, Rivard, and Groat 2018;
Herrmann 2019; Booysen et al. 2020). A challenge with identifying small
occurrences of minerals is the need for high geometric and spectral resolution.
This results in a great deal of data, even for relatively small areas. In our
study, the element of interest is neodymium. Neodymium (Nd) has prominent
spectral features and can be used as a proxy for REEs occurrences since REEs
often occurs together (Boynton 1984). Studies have also shown that Nd can
be detected in rocks up to a lower concentration limit of 300 PPM (Rowan,
Kingston, and Crowley 1986).

There is a global demand for REEs, as they are a cornerstone in many
industries. Demand is expected to grow up to sevenfold (IEA 2021) due to raw
material constraint combined with the transition to a carbon neutral economy
(Boissenin 2021; Ilankoon et al. 2021). There are many environmental-friendly
inventions which are reliant on REEs, but the most pressing is the potential
electrical vehicle revolution. According to Xu et al. 2020 it is estimated that
there will be over 1 billion electrical cars by 2050, with a production of 100
million per year. This would require more green-energy production. Europe
gets about 98% of its needs of REEs from China (Boissenin 2021). The
conflict between Russia and Ukraine, as well as Covid before have greatly
affected the global supply chain. Countries need to be more self-sufficient
when the supply chain is unpredictable due to an increase in geo-political
risk. Therefore, a focus for Europe and Norway will be the exploration of
local deposits of raw materials critical to the planned energy transition. A
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critical step in that exploration, is the ability to map and quantify potential
source areas effectively. Hyperspectral mapping of REE-enriched areas in
established mines like the one presented in this work could help with deposit
modelling, selective extraction of material, sorting of REE rich material into
processing chain of the quarries.
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2 Intro
This chapter will cover basics principles about the theory and technology that
creates the foundation for this thesis.

2.1 Hyperspectral imagery
Hyperspectral imagery also called imaging spectroscopy is a method of remote
sensing that maps a wide part of the electromagnetic spectrum, instead of
just the parts that are visible to the human eye. Hyperspectral imagery refers
to the large number of narrow, consecutive, overlapping bands, enabling a
high spectral resolution and detail when analyzing spectra and the ability to
resolve narrow spectral absorption features of 15nm width (Shukla and Kot
2016).

Hyperspectral cameras record the full spectrum of each pixel in the image
within a given spectral range and with a given number of spectral channels.
This is done by measuring the amount of light per wavelength that is being
collected by the sensor. The spectral range and the number of spectral
channels is dependent on the camera’s specifications. Pushbroom and full
frame are the two main types of hyperspectral cameras. The full-frame
version records the entire image frame or scene one wavelength range per
frame. Pushbroom cameras record in a line-by-line fashion, recording all
wavelength ranges per line at once and only then moving to the next line. The
output of the hyperspectral camera acquisitions can be represented as a data
cube, often called a hypercube, or a hyperspectral data cube. The spatial
information is stored in the x- and y-axis, while the spectral information in
stored in the z-axis (see Figure 1)

The large number of narrow spectral bands collected by a hyperspectral
camera allow the sensor to measure the interactions between materials and
electromagnetic light precisely (Boesche et al. 2015). Matter interacts with
incoming radiation by absorbing, reflecting or transmitting the incoming
energy. This is material specific and these interactions are wavelength de-
pendent. The electromagnetic light reflected by a material surface therefor
contains information about the absorption and reflectance attributes of the
matter. A spectrum collected over a material surface will show wavelength
dependent changes in reflectance, exhibiting local maxima and minima within

10



the spectral curve. This is called a spectral signature, and essentially works
as a fingerprint for the material reflecting the light.

Figure 1: Illustration of hyperspectral data cube

Spectral signatures exhibit features which are distinct to the given material
because of their elemental, molecular or crystalline characteristics. There
are five causes for elemental absorptions (Boesche et al. 2015): (1) crystal
field effects, (2) charge-transfers, (3) color center, (4) transition to conduction
bands and (5) vibrational transitions. The features are located in the spectrum
where the material either absorbs or reflects a lot of electromagnetic light.
This results in local peaks and dips in the spectrum. Since there can be more
than one material in each pixel, the dip or peak of the features is therefore
determined by the concentration of the material in the pixel (Herrmann
2019). Some materials share features which will then superimpose the feature.
However, materials can also cancel out each other’s features as well. These
features can be located anywhere on the electromagnetic spectrum. However,
some parts of the light spectrum are more difficult to work with than other.
The atmosphere absorbs some of the light emitted from the sun stronger
at certain parts of the electromagnetic spectrum (Widén and Munkhammar
2019). While the sun also emits its energy stronger at certain areas of the
spectrum. This combination makes it harder to separate features from noise
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at the higher wavelength part of the spectrum when using the sun as a light
source due to the lower emitted energy. To get good data in field with the
sun as light source, it is highly recommended to use the VNIR spectrum. The
VNIR spectrum goes from 350nm to 1000nm, and is more noise resilient than
the SWIR spectrum, which goes from 1000nm to 2500nm. The materials in
focus must therefore be identifiable in the VNIR spectrum.

Figure 2: Figure : The solar irradiation and atmospheric absorption from
multiple molecules. (Jensen 2014)
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2.2 Radiance And Reflectance
Radiance is a variable which is a metric of how much electromagnetic energy
enters the detector of a remote sensing instrument. When the measurement
is performed outdoors the light has to pass through the atmosphere, which
scatters some of the light (Gilabert, Conese, and Maselli 1994). This results
in a decrease in the light’s intensity and radiance. However, some of the
scattered light enters the sensor and is observed as radiance of the target and
introduces noise to the measurement. It is quantified in watt

sr/m2 . Where watt is
the intensity of the light, Sr is the steradian which is the planar angle of the
light, and m2 is the area which is hit by the light.

Reflectance is a physical property of the matter being observed. It is the
proportion between the light that hits the observed material, and the light
caught by the sensor. It has no units but is often measured as a fraction of 1
or 0 to 100%. Which describes the percentage distribution of the total light
absorbed by a band in a specific pixel.

There are several factors when scanning outside that will affect the reflectance.
The challenge is inhomogeneous scenes with areas of shadow, less light and
sharp edges. A way to compensate for these factors is to do a “joint Illu-
mination correction” (S. Thiele et al. 2021), which uses 3D data from lidar,
viewing direction and sky view factors and yield “true reflection”. If one only
compensates for the atmospheric effect and solar illumination; this yields
the “apparent reflectance” of surfaces. Which varies from true reflectance
since one has not dealt with the shadow and directional effects. However, in
many cases apparent reflectance allows for satisfactory analysis. Apparent
reflectance will be referred to as “reflectance” later in the thesis since there is
no “true” reflectance used in our experiments.
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2.3 Atmospheric Corrections
To accurately analyze surface material using HSI in the field, one must remove
atmospheric scattering effects (B.-C. Gao et al. 2009; Rani, Mandla, and
Singh 2016). It is essential when transforming data from radiance measured
by a sensor to reflectance. This process is called atmospheric correction and
there are essentially two methods, empirical and model based. There are
numerous algorithms and practices within the two main methods. Empirical
is a scene-based method and uses internal pixel-values to calculate relative
reflectance. Model based uses external information to compensate and rectify
for the atmospheric absorption. A combination of the two methods is to use
“field truths” in form of using reference panels. One then uses the empirical
method and use the pixels from the calibrated, known reference white-panel
to calculate the reflectance.

2.4 Key Quality Parameters And Calibration Of Hy-
perspectral Imaging Systems

2.4.1 Spectral And Spatial Resolution

Spatial resolution is the level of geometrical detail, that can be extracted from
an image. It is measured by the number of pixels that accurately captures
these details in the image. Which means that spatial resolution is restricted
by the optical system of the sensor. However, the number of pixels is not
the same as spatial resolution due to the point spread function (PSF). PSF
describes the inevitable dispersal of energy, when passing through an optical
system to a certain point in the image plane (Gu, 2000). (See Figure 3a)

A PSF Transforms a theoretical point into a “blur circle”, which may result
in energy dispersing into neighboring pixels as is shown in the figure below
(Figure 3a). This would mean that an image with 100 nominal pixels, and a
PSF with the width of 2 would result in an image with 100/2 = 50 effective
pixels.

Spectral resolution is the level of spectral detail that can be extracted from
a band. Narrower bands are able to resolve finer spectral details in the
acquired spectral information, collecting spectral information at a higher
precision. The spectral response function (SRF) is an important parameter
of a hyperspectral imaging system. It describes where a sensor allocates the
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energy from a narrow spectral signal. Same as the PSF, the SRF can cause
the collection of energy leaking into neighboring bands (Z. Gao et al. 2016).
This results in a lower spectral resolution, as energy from more than 1 band is
collected within one spectral band of the sensors, causing a loss of resolution.
See Figure 3b

(a) Visualization of PSF from NEO
and how electromagnetic light can
leak into neighboring pixels

(b) Visualization of SRF from NEO
and how spectral values can leak into
neighboring bands

Figure 3: Illustrations of spatial and spectral resolution

2.4.2 Keystone

Spatial misregistration is also called keystone (Bakker, Werff, and Meer 2019).
It is a magnification variation which can cause bands to be allocated to the
wrong pixels within the same scene. Keystone can drastically change spectral
signatures, especially in inhomogeneous scenes. And render the classification
results to be useless.

Figure 4: Illustration of keystone from NEO. How the bands are potentially
placed in the wrong pixels at the edges of the image sensor.
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2.4.3 Smile

Spectral misregistration is a spectral distortion, and is also called the smile
effect (Bakker, Werff, and Meer 2019). The position of the spectral band
varies with the spatial position of the pixels. There are several shapes that
spectral misregistration can take, but often it is a bending across the field of
view in the image plane. The smile effect is caused by distortion in the optics
or dispersal elements. However, misalignment of the slit and sensor may also
cause a spectral misregistration (see Figure 5). Spectral misregistration can
make it impossible to detect narrow spectral features, even with a very small
smile.

Figure 5: Illustration of spectral misregistration from NEO. This is in the
image sensor (sensor array)
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2.5 Geology
The quarry studied (“Vevja”) is situated in a range of peculiar monzonitic
rocks in the southern part of the Oslo province (Heldal and Dahl 2013). The
Oslo province was developed in the late Carboniferous and early Permian
and consisted of pluton from monzonite to nepheline syenites (Neumann et al.
2004). Veins are of great interest, since they can be seen in the quarry face
and might contain REEs (Goodenough et al. 2016).

Figure 6: Caption

This thesis does not study the geological and mineralogical aspects in detail,
but aims to look at the topic from an application perspective. The main goal
is to figure out if Nd can be detected by hyperspectral cameras in the quarry.
For more in depth information about the geology take a look at (Sunde, Friis,
and Andersen 2019).
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Figure 7: Overview image of Vevja

2.5.1 XRF

The principle of X-Ray fluorescence spectrometry is based around subjecting
elements to high energy X-ray-radiation and measuring the radiation that
occurs when electrons change orbit. When atoms are exposed to high x-ray
energy it excites the electrons to higher energy electron shells. When the
radiations stream ends the electrons returns to their original shells and emits
a precise roentgen-radiation which works as a fingerprint for the atom and is
element-specific (Crocombe, Leary, and Kammrath 2021). This allows the
scanning of material without touching or damaging the samples. The results
are a table which describes the distribution of elements in the sample and each
elements concentration in the form of parts per million. The values generated
from a handheld-XRF are different from lab-XRF as they are probably not
calibrated systems. The values are therefore relative and not absolute.
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2.5.2 REE’s And Neodymium

Rare earth elements also called lanthanides are a collective definition of 16
elements, with atomic number 57 to 71. They are elements that predominantly
occur together in geological settings (Boynton 1984).

Neodymium is a REE and has atomic number 60. It has many practical
applications such as being an essential part of the optic industry and in
the creation of modern magnets (Jackson and Christiansen 1993) and more.
Neodymium has numerous absorption features in the VNIR spectrum between
400-1000nm. The most apparent features appear around 580, 740, 800 and
870 nm (Boesche et al. 2015; Herrmann 2019). The absorptions for REEs are
assumed to be caused by electronic field transitions (Rowan, Kingston, and
Crowley 1986). However, there has been research that have indicated that the
absorption bands neodymium is also caused by vibrations (Herrmann 2019).

It is possible to measure the concentration, based on the absorption depth of
the spectral features. And research done by (ibid.) shows that the strongest
correlation between absorption depth and REE concentration is demonstrated
at concentrations below 10%. For neodymium to be visible in HIS the
minimum concentration has to be 300 PPM (Rowan, Kingston, and Crowley
1986).

There are several factors that will greatly affect the process of mapping
neodymium with HIS, a major one is the concentration of iron. Irion absorp-
tion bands will obscure neodymium’s spectral signature (Boesche et al. 2015;
Herrmann 2019) and make classification more difficult. Two measures taken
in (Boesche et al. 2015) to better classification: (1) average across multiple
images, (2) use of the Richardson-lucy algorithm. These are techniques that
will not be used for the final product of this thesis, due to good results
from other techniques. Which is why the procedures done in this thesis are
somewhat novel.
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2.6 Data Formats
2.6.1 HDR Format

The HDR image format also known as the “Radiance format”, is a raster
image that is built up by an “.hdr” and “.pic” file. “.pic” files can also have
the file extention “.img”. “The file wrapper consists of a short ASCII header,
followed by a resolution string that defines the image size and orientation,
followed by the run-length encoded pixel data” (Reinhard et al. 2006).

The ENVI HDR format is structured similarly to a standard HDR file. The
header contained in the “.hdr” file mostly describes the data contained in the
“.pic” file. This header often contains a “description” that normally describes
information that is not directly related to the data in the file itself, but how
the data was obtained. Descriptions can contain information like what lens
was used or the serial number of the camera. Other elements that are defined
in the header are directly related to the data, I.e., how many bytes are used
to represent each value in the “.pic” file. Some of the elements defined in
the header are the number of lines, samples and bands; interleaving type
and data type; wavelengths and wavelengths units. The “.pic” file is a flat
binary raster that contains the actual values for each band in each pixel. The
values in the “.pic” file is ordered in one of three interleaving types that is
also defined in the “.hdr” file.
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2.7 Image Structures
To store pictures in a flat binary stream, one must define an interleaving type.
There are three typical types (Schowengerdt 2007): Band sequential (BSQ),
band interleaved by line (BIL) and band interleaved by pixel(BIP).

• BSQ stores the values by defining the bands one by one. Here it lays
out the entire first band in order, then the second, third etc.

• BIL takes the first line of the picture and lays out the values for all the
bands that are in that line. Then it jumps to the second line and lays
out all the bands, then the third etc.

• BIP lays out all the values in each pixel before it goes onto the next
pixel.

Figure 8: The different interleaving types (https://bitbucket.org/hu-
geomatics/enmap-box-idl/wiki/Data%20Format%20Definition)
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3 Data Collection

3.1 Sensors
The sensors used for data acquisition consist of three different HySpex cameras,
a lidar and an XRF. The HySpex cameras were used to collect hyperspectral
data in lab and field. Lidar was used as a supplement to the hyperspectral
camera and was used in field. The XRF served as an exploration and validation
tool to identify areas of interest.

3.1.1 Cameras

(a) Hyspex VNIR1800 in field (b) Hyspex VNIR3000 and SWIR384
in the lab

Figure 9: Cameras in field and the lab

Hyspex is an industry-leading brand of hyperspectral cameras produced by
Norsk Elektro Optikk AS (NEO). NEO produces top-of the line quality
cameras with high spectral and spatial resolution. HySpex cameras are
pushbroom based and collect images in a line-by-line fashion. This means
that the sensor is reliant on some sort of external spatial transition to collect
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data. The camera was mounted on a tripod with rotation stages in field
with a motorized tripod head rotating the camera line-by-line during image
acquisition. In the lab, the camera was mounted above a conveyor belt that
moved the samples at a constant speed below. The camera specification of
the cameras used in this project are listed in Table 1.

Main specifications VNIR1800 VNIR3000 SWIR384
Spectral range 400 – 1000nm 400 – 1000nm 930 – 2500nm
Spatial pixels 1800 3000 384
Spectral channels 186 300 288
Spectral sampling 3.26 nm 2.0nm 5.45nm
FOV 17° 16° 16°
Pixel FOV across/along* 0.16/0.32 mrad 0.096/0.32 mrad 0.73/0.73 mrad
Bit resolution 16 bit 12 bit 16 bit
Noise floor 2.4 e- 2.37 e- 150 e-
Dynamic range 20000 11000 7500
Peak SNR (at full resolution) 255 170 1100
Max speed (at full resolution) 260 fps 117 fps 400 fps
Power consumption 30 W 30 W 30 W
Dimensions (l–w–h) 39 – 9.9 – 15 cm 39 – 9.9– 15 cm 38 – 12– 17.5 cm
Weight 5.0 kg 5.0 kg 5.7 kg
Camera Interface CameraLink USB3 CameraLink

Table 1: Hyspex VNIR1800/3000 and SWIR384 sensors parameters. Collected
from (www.hyspex.com)
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3.1.2 Lidar

Figure 10: FARO X 130 HDR in field

The terrestrial lidar used is a single
mirror terrestrial lidar with an inte-
grated GPS. It uses a rotating mirror
to scan 300° vertically and 360° hor-
izontally. Specification of the Lidar
system that was used can be found
in Table 2.

Specifications FARO X 130 HDR
Power supply 19V(External), 14.4V(Internal battery)
Power consumption 40W/80W
Battery life 4.5 hours
Ambient Temperatur 5° - 40°C
Weight 5.2 kg
Size 240 x 200 x 100mm
Unambiguity interval 30m
Range Focus 0.6m - 30m indoor or outdoor with upright

incidence to a 90% reflective surface
Measurement speed (pts/sec): 122,000 / 244,000 / 488,000 / 976,000
Ranging Error ±2mm
FOV 300° / 360°
Max Vertical scan speed 5820rpm / 97Hz
Wavelength 1550nm
Beam divergence Typical 0.19 mrad (0.011°) (1/e, halfangle)
Beam diameter at exit Typical 2.25 mm (1/e)
Laser class Laser class 1

Table 2: FARO X 130 HDR sensor parameters
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3.1.3 XRF

The wonderful people at NIBIO allowed us to borrow a handheld XRF for the
duration of our thesis. The handheld XRF uses X-ray to map elements. The
concentration of the detected elements is given in parts-per-million(ppm) along
with a standard deviation if applicable. After contacting the manufacturer,
we were informed that it has a lower detection limit (LOD) of around 200
ppm, where it can detect an element with statistical significance. We were
also informed that it has a limit of quantification (LOQ) of 600ppm and that
we would have ca. 20% precision at the 1000ppm level. LOQ is the limit
where an element can be quantified with a given measure of certainty.

Figure 11: Image of Spectro xSORT

The XRF was used in field and in lab as a tool for both finding interesting areas
to scan hyperspectrally and for validation of the scanned areas. Specification
of the XRF Spectro xSORT can be found in Table 3.

Technical Data Spectro xSORT
Operating voltage range 9.0 – 12.6 V
X-ray tube h (opt. W) anode, up to 50 kV,

up to 125 µA, max. 2.5 W
Total power during the analysis 11 W
Total power in the standby mode 6 W
Operating range (permissible ambient temperature) 10 – +45 °C; 14 – 113 °F

Table 3: xSORT SPECTRO sensor parameters
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3.2 Data Acquisition Overview
The data acquisition was done throughout the winter of 2021 and spring of
2022 and was made up of more than six individual instances of data collection.
Firstly, the initial exploration of the promising area using a handheld XRF.
Secondly, was the first scan of the quarry with NEO’s hyperspectral HySpex
cameras and the Lidar. The third was acquiring rock samples for scanning
in NEO’s lab. Fourthly, scanning the rock samples at the NEO lab in Oslo.
Fifthly, was validating the sample results using an XRF-lab. The sixth and
final collection was the second hyperspectral scan at the quarry with NEO.

Figure 12: Timeline for all the instances of data acquisition

3.3 Initial Field Exploration (XRF) [1]
A prerequisite to identify Neodymium with a hyperspectral camera, is that
the concentration of neodymium is high enough to separate it from other
minerals with no or little Nd content. To establish whether the concentration
in the quarry was high enough, manual point measurements were done at the
wall with an XRF. 17 spots were marked with tape or marker across two areas
in the quarry that were to be scanned with the XRF. The points were selected
in conjunction with the quarry’s head geologist (Dr. Magne Martinsen) who
has domain knowledge of quarries in the area. All the measurements lasted
60 seconds, and some areas got measured more than once. Since the XRF
is handheld, it’s hard to get spatially precise measurements and the marked
areas are larger than the actual measured area.
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Figure 13: Labeling of the spots scanned with the XRF in the initial explo-
ration of the quarry

(a) Spot 15 (b) Spot 16 & 17

Figure 14: Labeling of spots scanned, which are not on the wall
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3.4 Lab analysis
3.4.1 Collecting Samples [3]

The samples that were collected originate from the same wall that got scanned
in both the first and second field data collections with NEO [2][6]. We brought
tools that could cut and break off parts of the wall so that the interesting
areas could be taken to the lab. However, since the wall only has one sharp
edge which is at the west side, it became hard to chop out stone shards from
the interesting areas. Due to this, we found it was easier to collect rocks
which had fallen off naturally. Luckily the interesting area had many shards
that had already fallen off. Five samples were collected from the vein in
Figure 15a, and two samples from another wall. A manual scan with the XRF
was done on the samples to see if the concentration of Nd was satisfactory.
In the end we opted to bring samples that had been measured as both low
and high concentration to compare them with each other in the lab.

(a) The area from which the samples got
collected

(b) The samples collected from the wall

Figure 15: Sample collecting from the quarry ("Vevja")
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3.4.2 Scanning Samples [4]

The camera setup used in the lab consists of two Hyspex cameras. One
which operates in the visible light and near infrared spectrum (VNIR-3000)
(400-1000nm), and the other in the shortwave infrared spectrum (SWIR-384)
(1000-2500nm). The VNIR camera has a resolution of 3000 pixels and a field
of view (FOV) of 36.64 cm using a 1m lens. This means that the VNIR image
GSD equals 0.1 mm. The SWIR camera has considerably lower resolution
with 384 pixels and a FOV of 28.76cm, which equals a GSD of 0.75mm using
the 1m lens. The length of the scan (collected frames of the image) was
adjusted to the sample size.

Figure 16: Saturation image representation of a sample from the lab

For the data collection in the laboratory, 7 samples from the quarry were
brought to HySpex’s lab where we were lucky enough to be helped by Dr
Friederike Körting. By identifying interesting surfaces on the rocks and tilting
them in such a way that the sample would be most homogenously illuminated,
it was possible to map most of the sample’s surfaces. The integration time
of the cameras was adjusted as to not oversaturated the sample surface. If
ideal illumination cannot be achieved over the full sample surface the sample
was scanned twice to change the angle of the sample towards the light and
illuminate other areas of interest in the sample. Figure 17 shows the setup in
the laboratory. Within each scan a couple of centimeters of the calibrated
white reference panel were scanned for the reflectance retrieval. 8 scans were
acquired in total. A saturation image representation of a scan from the data
acquisition software screen is shown in Figure 16.
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Figure 17: Image of the lab setup with illustrations
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3.5 Field
3.5.1 Field Intro

For the field data collections, we were accompanied by Dr. Friederike Körting
from NEO who helped us collect all the hyperspectral field data. The sensor
used was a Hyspex VNIR1800. It is a pushbroom sensor with a spatial pixel
length of 1800 pixels per line. It was mounted on a tripod with motorized
rotation stages, which allowed us to rotate the camera head at a specific speed.
The camera and the rig were controlled with a field computer and powered by
a generator. The reflection panel used in the field was a calibrated panel of
50% reflectance (WR50) and reference foil of around 50% reflectance. WR50
was used on the first trip, and the foil was used in the second. The field setup
can be visualized in Figure 19.

Figure 18: Overview of the quarry and the different walls that got scanned.
Wall6 is further east and is not included in this figure.

The studied area of interest is a quarry ("Vevja") located in the south of
Norway. It has earlier been mined for larvikite but is now inactive. The
quarry walls face southwest and northwest and have many different levels. We
scanned at total of six walls, five in the inactive quarry and one wall further
east. The data collection was initially done in December 2021. However, due
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to difficulties with the light conditions another trip was done in March of
2022. For the initial trip in December only two walls were scanned. This
was due to the sun, and its low orbit in December. The walls scanned in
December was wall1 and wall4, where wall1 was the focus. For the second
trip wall 1,2,3,5 and 6 were scanned. The suns orbit in the middle of March
gives substantially longer days and better sun conditions than in December.
For the location of the walls see Figure 18.

Figure 19: Image of field setup with illustrations
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3.5.2 First Field Data Collection With NEO [2]

The wall in focus, “wall1”, is faced south and slightly west. Since the data
collection was done in December. The time with optimal light was shorter and
the sun angle was considerably low, so it did not illuminate the entire wall.
Therefore, it was critical to find the time which had the best sun angle towards
the wall. This was done by downloading lidar data from “hoydedata.no” and
running a simulation with the sun angle. This was done in «Quick Terrain
Modeler v8.2.3» by Applied Imagery, which calculates the sun and shadow
angle based on time and date. The time with best illumination was around 2
pm, based on the simulation.

Wall1 is approximately 12 meters tall, and 22 meters long. The hyperspectral
rig was set up in two different distances from the wall, 13 and 23 meters
using 9-13m and 13-23m lenses respectively. The calibrated white reference
panel used in all the scans, was a WR50. Due to the snow on the ground,
the saturation became somewhat of a problem. Wall4 was scanned later than
wall1 and was only scanned from one distance.

To be able to backtrack and validate the data, the XRF was used to measure
points on the walls that were marked with black tape. We measured a total of
7 points on wall1 and 14 points on wall4, with a measure time of 60 seconds.

The lidar was set up in three different positions on the main wall, and 2
different positions on wall2. Since the snow could interfere with the white
reference spheres, they got placed on the wall. Used the “outdoor” settings,
and used ½ resolution, so that each scan took approximately 15 minutes. The
lidar scans approximately 244 000 points per second in this exact setting.
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Figure 20: Image from the first field day with the head geologist (Dr. Magne
Martinsen).

3.5.3 Second Field Data Collection With NEO [6]

The same procedure was done to estimate the best time to scan wall1. This
showed that between 1pm and 5:30pm the wall was to be fully illuminated if
the sun conditions were good. The weather on the 20th of march had ideal
sun conditions, no snow, and little to no clouds. This gave us time to scan
multiple walls with good illumination. Five walls were scanned throughout
the day. The WR also got swapped out for this trip to a foil WR. A major
difference from the first field data collection, is that we had already analyzed
the lab data before the second trip.

Based on the results and observed clusters of neodymium occurrences it was
possible to estimate the appropriate GSD to effectively capture reasonably
sized clusters. The GSD is important as the occurrences of neodymium are
small and can easily disappear if the pixels are not true neodymium pixels.
The intention was to estimate the minimum viable cluster size that could fit
in one pixel. The estimated GSD required not to lose too much neodymium
clusters, was calculated to be 0.6 cm. This was based on counting the pixels
across clusters that we perceived to be a minimum size.
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The first wall we scanned is located at the east side of the quarry and faces
east. This was ideal since the sun illuminates the wall in the morning. “wall6”
as it will be referred to, was scanned quite close to the rockface as the rig
had to stand on a road. Here, a total of five scans were performed of the wall
from a distance of 10m. The lens is made for a minimum of 12 meters, so the
images might be prone to some distortion and less sharp resolution.

There was an area on wall5 that looked interesting, but it would’ve been too
high up to be captured by the camera if we had done the same setup as the
other walls. Therefore, we positioned ourselves obliquely to the interesting
area which allowed us to scan it. However, to capture the interesting area,
the distance to the wall had to be bigger. Here, four scans were performed.

Wall1 had two set ups, with 10- and 15-meters distance to the rock face.
It got scanned four times in total. Wall2 was scanned six times from two
separate distances same as wall1. While wall3 was scanned two times from a
long distance, about 20 meters.

3.6 Data Processing
Since there are so many corrections for tuning the camera, one needs all the
specifications when processing the raw data. Therefore, an in-house software
by NEO “HySpex RAD” was used to process the “raw data” into radiance.
The process of creating a reflectance image is done by averaging the pixels
that show the white reflectance panel, and dividing every image pixel by
the average. Atmospheric correction of the field data was not performed
as the distance from camera to the quarry face was considerably small and
the atmospheric affects were considered to be negligible. To counteract the
possibility of the lab data becoming too big for our computers to handle,
the process of binning two and two bands was added in the transformation
process of the VNIR-3000 data.
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The first thing we had to do was transforming from radiance to reflectance,
which was done using the calibrated white reference panel and the known
absolute reflectance of the panel delivered by the supplier. All the images
were processed using the formula below: where Fj is the corrections factor,
pj is the average values for the true reflectance on the WR and avgj in the
average values of the WR in radiance.

Fj = pj

avgi

For implementation purposes we created a python tool that did this operation.
It allows the user to mark the four corners inside the WR, and then averaging
all the pixels within the selected area. It then multiples the correction factor
to all the pixels in the image, writing a new file with identical dimensions,
and the new pixel values. It also creates a new “.hdr” header, which is based
on the original.

One can also visually inspect the distribution of the correction graph to see if
there are any abnormalities (Figure 21 & Figure 22).

Figure 21: Example of the distribution we hoped to see

Figure 22: Example of the distribution when something has gone wrong.
Typically if areas outside the WR has been included

This helped a lot when converting all the data from radiance to reflectance,
as one could spot early if something looked incorrect.
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3.7 XRF Lab [5]
To validate some of the observations made in our program, measurements
were done with the XRF on a selection of the samples. However, as it is a
handheld instrument and the areas of interest are small, a rig was created
to allow for more accurate and stable scanning(Figure 23). The rig was set
up in a way that allowed for the XRF to be stationary, while the samples
could be moved around. The samples were placed on a flat piece of wood
that could be raised and lowered in three corners. This allowed the samples
to rotate in such a way that the XRF could scan most if not all surfaces.

Figure 23: Homemade XRF rig

To choose what areas to scan, we used an early version of the output from
Hylite classification. In these rasters we checked if there was a found peak
at 580nm, 740nm, 800nm and 870nm; and then the depth was used for the
pixel value as a proxy for concentration. For each of these absorption feature
locations we have a raster that has values of zero when there is no found
feature near the absorption feature location, and the found feature’s depth as
a value if found. All four features’ rasters were written to an hdr file with four
“bands”, one for each absorption feature. We used the feature depths of the
feature around 800nm, and this “band” was used as the displayed band for
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not only red, but green and blue, resulting in a grayscale image (Figure 24a).
The greyscale image could then be used to find the most interesting areas
to measure on the samples. As the overlay was not yet implemented in our
in-house software HyperAnalysis (section 4), the image coordinates were used
to find the same area in the original image (Figure 24b) which in turn was
used to find the same location on the physical stone. Two samples were
measured with the XRF using this way of locating promising areas, p1 and
p4.

(a) Classification raster (b) RGB raster

Figure 24: Early version of classification raster and RGB raster of sample P4

38



4 Software Development
We created our own GUI software called HyperAnalysis for visualizing and
interacting with the hyperspectral data. There are some preexisting actors on
the market for this purpose, but they tend to be quite expensive and usually
each of them have their own complications. Some of the main actors are
ENVI, Erdas Imagine, PCI Geomatics and Ecognition. The prices for these
solutions are around 100 000 NOK as a single fee, or several thousand NOK
a month. For the objective of this sort of process, many of the features in
existing software become redundant as well. We focused on the viewer having
a low impact on system resources and a high ease-of-use. The software is
developed in its entirety using the programming language Python, version
3.8.11.

Figure 25: Graphic user interface of Hyperanalysis
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4.1 The functionality of HyperAnalysis
Foundational python packages

HyperAnalysis is written entirely in python using the following packages:

Spectral Python (SPy)

Spectral Python is an open-source Python module that is used for processing
and reading hyperspectral image data. SPy can read both information from
the hdr header and the image data itself. It is also able to save images to the
hdr format. (Boggs 2022)

Tkinter

Tkinter is a Python binding to the Tk GUI toolkit. It is the most used GUI
for Python and is included in standard python installs.

Pillow

Pillow is an open-source Python module for image processing and visualization.
It has a wide selection of processing functions and image manipulation
capabilities. (Kemenade et al. 2021)

NumPy

NumPy is a library with support for large multidimensional arrays and a large
assemblage of mathematical functions that can do operations on the arrays.
It is one of the most used Python libraries and its collection of functions is
quite comprehensive. (Harris et al. 2020)

Matplotlib

Matplotlib is a library for plotting and visualization in python. This is also a
comprehensive library and adds the possibility of embedding plots into GUI
toolkits like Tkinter, which is the one used in HyperAnalysis. (Caswell et al.
2021)

Functionality walk–through

When you open an image, whether it is to be viewed, for reference or as an
overlay, the entire image is read into a NumPy memmap object. Memmap is
short for memory-map, meaning that the image data is not fully read into
memory by python but instead mapped to the binary ".img" file on disk.
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The memmap is good for accessing small segments of large arrays without
flooding the memory. The reason for loading the data into a memmapped
array is that each of our images usually range from around 8–30 GB and in
the software, we will mostly either look at full spatial resolution with 3 bands
or a single pixel with all bands. This makes reading the entire image into
memory unnecessary as it causes slowdowns and is wasteful of computational
resources.

For the displayed image, a subset with three bands is extracted from the
larger memory mapped array based on the selected wavelengths for red, green
and blue. If an overlay is loaded and active, its values are added to the red
channel in this array. The equalization is also done on this extracted array.
The equalization is in essence normalizing the values to have a minimum of 0
and a maximum of 1. The different equalizations are whether to normalize
the part of the image that is visible or the entire image, and whether to
normalize the bands individually or as a group.

After the array has been processed, it is converted to an 8-bit integer rep-
resentation and then used to create a PIL Image object. The PIL Image
object is used for spatially manipulating the image. Spatial manipulation of
the image is done by an affine transformation using an affine transformation
matrix. The affine transformation matrix is changed by the user input in a
way that translates to spatial movement of the displayed image.

The affine transformation matrix is also used to translate the mouse coordi-
nates to image coordinates. Image coordinates are used for getting specified
parts of the image data array. For the plot, the mouse coordinates are trans-
lated to image coordinates and the spectrum of that point is extracted from
the memmap before being passed as y-data to the plotting function. They
are also used directly and continuously for the image coordinates display in
the GUI. To mark the calibrated white reference panel for converting from
radiance to reflectance, you click a button that records the next four clicks as
you mark the corners. The marked corner coordinates are used to get indexes
of the smallest enclosing rectangle within them. These rectangle indexes are
then used to get the mean of the WR spectra before being passed to the
function that does the converting.
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4.2 User Interface
HyperAnalysis

The interface is made up of four main elements; 1, the menubar at the top; 2,
the main image viewing window; 3, a spectral viewer in the bottom left; 4,
an options menu in the lower right. (see Figure 26)

Figure 26: User interface of Hyperanalsis

The main function of the program is to be able to open and view hyperspectral
images and plotting their spectra. It’s possible to get the spectrum from one
image and display another. You can also overlay a band from one file on the
original image.

Images are opened through the menubar at the top, which are then displayed
in the image viewer. From here you can also open a separate image for the
spectral viewer or an image for overlay, the images would have to have the
same spatial dimensions. This was necessary for being able to view the actual
spectral signatures when viewing a classified image, which is void of any
spectra. When you left click in the image viewer, the plot in the spectral
viewer changes to the spectrum of the pixel you clicked. The rest of the
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controls are regular image-viewer controls with left mouse hold for panning
and mouse wheel for zooming.

In the option menu on the lower right there are some options for the displayed
image. You can choose what wavelengths in nanometers you want to be
represented as red, green and blue and it will get and display the bands
closest to the selected wavelengths. There are some options for equalization
where you can use min and max values from either the viewable outcrop, or
the full image. The image coordinates are displayed continuously for where
the cursor hovers. There is an input option for overlay intensity accompanied
by a checkbox for toggling the overlay. This is also where you mark the
calibrated white reference panel in the images and consecutively convert them
from radiance to reflectance.

In the top menubar you have some more functions and options. This is where
you open the file to be viewed, the file for the reference spectrum and the file
for the overlay. There are options for setting an image rotation and a plot
kernel size. The plot kernel size averages the data for the plotted spectra
using a specified number of values surrounding the clicked pixel. You have
some popup options for smoothing the plotted spectra and another one for
options regarding the conversion from radiance to reflectance.

The options for converting from radiance to reflectance involves setting certain
parameters that can vary from image to image. You need to set the no-data
value, a specified value for pixels that are oversaturated. You also need to set
the number of bytes per value in the file, dependent on the file’s datatype.
The last of the options is setting what calibrated white reference panel was
used.
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4.3 Hyperspectral Data Analysis - Hylite
Hylite (S. T. Thiele et al. 2021) is an open-source python package for pro-
cessing and analysis of hyperspectral data. It has a function called “mini-
mum_wavelength” (MWL) that performs a mapping of spectral absorption
features. The MWL function performs operations on the data in stages. It
starts by flipping the spectrum upside down such that absorption features
become peaks, estimates the most prominent peaks and then tries to fit a
gaussian curve to these estimated peaks using least squares.

We deliberately chose Hylite over i.e., deep learning to be able to supervise
and understand all the steps of the classification. The lack of sufficient
training and validation data would in any case have made deep learning
challenging. As Hylite is open source, it is possible to dive into the code
and both understand it and modify it as necessary. It avoids dealing with
an unknown black box and we can more easily understand our classification
results and interpret them.

4.3.1 Richardson-Lucy deconvolution

Based on some previously conducted studies, we initially tried to implement
Richardson-Lucy deconvolution (R-L deconvolution). R-L deconvolution
was originally used to restore blurred images but can also be applied to
electromagnetic spectra as a tool for making the absorption features more
pronounced. “This specific high pass technique mainly sharpens absorptions,
such as those from rare earth bearing minerals, and simultaneously preserves
the shape of broader absorptions or the albedo.” (Boesche et al. 2015). We
managed a rough implementation but found it to be unnecessary for our data,
given the fact that at the time we only had usable data from the lab where we
saw clear neodymium correlated signatures. This could however be a useful
tool for finding features in the field data.

44



4.3.2 Hylite Classification Process

The first step to the classification is loading the imaging data into hylite’s
data object, HyImage. HyImage is a derived class of the base class HyData.
The HyImage/HyData class stores the hyperspectral image in a numpy array,
where the dimensions correspond to (rows, columns, bands). The data classes
have a lot of methods for manipulating the data, retrieving information and
visualizing in the form of simple plotting methods.

Figure 27: An unprocessed reflectance spectrum from a strongly correlated
neodymium pixel

Before passing the data cube to the MWL function it needs to be smoothed to
avoid noise interfering with the results. We used a smoothing filter called the
Savitzky-Golay filter. The Savitzky-Golay filter aims to maintain sufficient
precision of the received signal while not being influenced by noise. We are
looking to find absorption features that are quite large in relation to the
smaller internal spectral variations. This internal variation can both be real
variation in reflectance, or noise. As we are looking for these wider features
smoothing will make the slightly larger trends more noticeable.

For the Savitzky-Golay filter, least squares is used to find coefficients that
are applied to surrounding values in spectra. The coefficients are dependent
on two parameters, window length and poly order. Window length describes
the number of surrounding values to use for each value in the spectrum. Poly
order is the degree of the polynomial used to fit the samples. The filter is
applied through convolution and moves through the spectrum of each pixel
computing a new value using the computed coefficients. We smoothed our
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spectra using a window size of 23 and a poly order of 2. The smoothed output
of the spectrum in Figure 27 can be seen in Figure 28.

Figure 28: The spectrum in Figure 27 after applying the Savitzky-Golay filter

The first step of the MWL function is to perform a hull correction. The
objective of the hull correction is to remove the generalized trend of the whole
spectrum, such that if it was completely featureless, it would be a straight line
at y = 1. The hull correction in Hylite is performed per pixel. The function
splits the spectrum into segments recursively based on the deviation from the
estimated generalized slope for the whole given segment. Each segmented
part of the spectrum is then corrected using the slope and initial value of the
segment.

Figure 29: The spectrum in Figure 28 after applying hull correction
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When the data has been hull corrected, it is ready for the wavelength mapping.
First the spectrum is flipped upside down by subtracting 1 from the whole
spectrum. This is done as the internals of the MWL function is made for
finding maximums. We are looking to find the most pronounced absorption
features, so in flipped data this equates to the most pronounced maximums
or peaks.

Figure 30: The spectrum in Figure 29 after flipping the spectrum upside
down

The last step of the function is finding the absorption features. After flipping
the spectrum upside down, we are now looking for the largest peaks in the
data. Finding the largest peaks is done by fitting gaussian curves to the data
using least squares. Before fitting the gaussians using least squares, we need
to find initial guesses. The function goes through each point on the spectrum
successively. First it checks if the point is a local maximum by checking that
the two points beside it has a lower value than the point itself. Then it checks
if the points beside these points are lower and so on. The number of points
that are checked is a parameter of the function. For our mapping we checked
four points on either side. If the point is deemed to be a local maximum,
the height of the feature is evaluated against previously found maximums
on the given spectrum. As we are looking for neodymium’s four absorption
features, we are left with the four highest peaks on the spectrum. The output
consists of the peak location, height and widths for all four peaks. This is
now our initial guesses for the least squares. After the initial guesses the
output results are refined in the least squares analysis.
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4.3.3 Hylite Modifications And Output

Hylite comes with support for multiprocessing for the minimum wavelength
mapping, but we found that the built-in multiprocessing resulted in unpropor-
tionate memory usage and eventually returning memory errors. The memory
errors still occurred when the computer used for processing was upgraded
from 64gb to 128gb of memory. We then implemented a simpler way of
multiprocessing where we split the arrays on the “column”-axis into (number
of threads) smaller arrays. I.e., given an image-array of dimensions (10,
300, 300) and 30 threads, the array would be split into 30 image-arrays of
dimension (10, 10, 300) or (10, 300/30, 300). After the mapping we are then
left with (number of threads) arrays that are merged on the same axes. This
can be done without influencing the results, as all the mapping operations
are done on individual spectra.

After the mapping has been done and the resulting arrays have been merged
back together, we are left with the completed output array that has the
same spatial dimensions as the original image. Per pixel the output from the
function contains the four largest peaks found. For each of these peaks we
have the depth, location in nm, and their width.
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Different combinations involving presence of a found peak at neodymium’s
absorption feature locations and their depth was used to create the classifi-
cation raster. To be able to easily implement an overlay and visualization
into HyperAnalysis, the classification raster was written to an .hdr file. The
classification has the same spatial dimensions as the image, while the bands
are different ways of visualizing the result. Different ways of visualizing the
results are different combinations of where peaks were detected and weights
for their depths. The combinations we used the most was one where all peaks
had been found, and one where all but the 580nm feature were found. The
HyperAnalysis overlay is visualized in Figure 31.

Figure 31: Classification overlay in Hyperanalysis
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5 Results
The following chapter will go through the results found by using the above-
mentioned methods. The results will be presented consecutively. The structure
is chronological since the results rely on each other.

5.1 Initial Field Exploration (XRF) [1]
To be able to proceed with the thesis, the presence of neodymium in the
quarry walls needed to be verified. Based on the work done in the thesis
of (Herrmann 2019), we know that neodymium’s absorption features can be
detected in homogeneous powders at a concentration of 0.1% or 1000ppm.
Supplementary, according to the work of (Rowan, Kingston, and Crowley
1986) neodymium has the possibility to be detected on fresh rock surfaces
with concentrations as low as 0.03% or 300ppm. The XRF handheld detected
amounts of neodymium concentration on the wall, with most measurements
being above 300ppm and a couple around 1000ppm. It should be noted that
the standard deviation calculated by the XRF is quite high for most of the
samples, but the overall neodymium concentration results seemed sufficient
for proceeding. Table 4 shows the XRF results from measuring the 14 points
on the wall and 3 points near a ledge. NA in the table Table 4 are where the
XRF didn’t output a standard deviation.
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Point Measured value Standard deviation
[sample-n_scan-duration] [ppm] [ppm]
p1-1-60 528 416
p1-2-30 617 307
p1-3-10 1018 411
p1-4-60 464 438
p2-1-60 294 NA
p3-1-60 378 NA
p4-1-60 323 NA
p5-1-60 349 258
p6-1-60 1076 258
p7-1-60 408 299
p8-1-60 685 268
p9-1-60 288 NA
p10-1-60 985 749
p11-1-60 360 NA
p12-1-60 523 355
p12-2-60 459 328
p13-1-60 272 NA
p14-1-60 585 454
p15-1-60 470 NA
p16-1-60 285 NA
p17-1-60 414 276

Table 4: XRF measurements from the field exploration

5.2 First Quarry-Scan [2]
The data from the first field data collection in December presented some
challenges. A systematic flaw with the data, after at-surface-reflectance
retrieval, was discovered. After transformation of the data from radiance to
reflectance, the correction graph is shown in Figure 32.
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Figure 32: Image of the systematic flaw in the reflectance data. The dip
around 760nm was prominent inn all pixels.

This differs from the expected spectrum, which is usually a gradual descent.
The field work was performed in December under low sun angles, low illu-
mination and snow covering the ground. It is natural to suspect that the
snow interfered with the sensor somehow. A theory is that the light from
the sun got reflected from the snow, and unto the camera and the WR. This
could result in too many light sources causing stray light to interfere in the
correction (Widén and Munkhammar 2019).

The purpose behind the lidar data acquisition, was to investigate whether
it could be used to help with the classification. The idea was to use the
microgeometry from the lidar data and see if it correlated with neodymium.
However, we decided that it was complex and not worth the hassle since the
image data alone gave good results. It was used as a visualization of wall 1
and used when estimating the shadow angle in the quarry.

Figure 33: Lidar point cloud from wall1
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5.3 Lab Samples [4]
When examining the sample scans, a quite pronounced, almost exemplary,
neodymium signature was found by clicking around in the image of sample p4.
A number of these distinct signatures were found when manually exploring
the sample data. A log with coordinates over interesting areas that showed
promising spectral attributes was created. The log was used as validation for
hylite, and to show interesting areas for the XRF lab.

Figure 34: Neodymium spectrum identified by clicking in the image.

Hylite mapping produced raster datacubes with the four deepest found features
and their depths for each pixel. Initially we used the depth of the feature
around 800nm, if it was found, to create a raster. We saw clear neodymium
signatures in all the samples but will explore and visualize P1 and P4 in more
detail.
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Figure 35: Areas on sample P1 that have been classified and scanned with
the XRF. See Table 5

Figure 36: Areas on sample p4 that have been classified and measured with
the XRF. Area 2 and 3 has not been measured with the XRF.
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The 800nm feature depth raster proved itself to be good indicator for
neodymium signatures. For the brightest areas, the ones with the deep-
est 800nm feature, you can clearly see all the absorption features in the
reflectance spectrum. We found that the clustering of pixels with a mapped
800nm feature was an indicator that the pixels in the cluster represented the
neodymium signature. This is an important factor to consider in relation
to choosing a reasonable pixel size for scanning in the field for this type of
pegmatitic rock. The spectrum below illustrates the pronounced features
found in a pixel with a deep 800nm feature from area P4-1 in Figure 37.

Figure 37: Unprocessed reflectance spectrum from a pixel in the area P4-1

Moving to a shallower found feature in area P4-2 from Figure 38, the features
are getting less pronounced. It’s still quite clear that there are features at
740nm, 800nm and 870nm. The feature at 870nm is shallower than the 740nm
and 800nm, but more noticeable than the 580nm feature that is starting to
disappear.

Figure 38: Unprocessed reflectance spectrum from a pixel in the area P4-2
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Area p4-3 has two clusters of 800nm features and the spectrum from this
area is taken from the outskirts of one of these clusters. It is hard to see any
neodymium indicators in the reflectance spectrum of this pixel. But after the
spectrum has been smoothed by the Savitzky-Golay filter the features start
to appear. In Figure 39 the significant variation in the spectrum is visible
but there are some signs that the features are present. The features could
be due to noise, and it’s hard to verify the presence of Nd. The spectrum
in Figure 40 is most likely Nd as this particular pixel was in the outskirts
of a cluster that had deeper features near the center. It is not an obvious
neodymium signature, but the tendency is there.

Figure 39: Unprocessed reflectance spectrum from a pixel in the area P4-3

Figure 40: Smoothed reflectance spectrum from a pixel in the area P4-3
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5.4 Lab Samples XRF Validation [5]
For verification of the areas with signatures resembling that of neodymium,
XRF measurements were taken. Some of these areas were measured more
than once, as the XRF is difficult to aim at a specific location. The results
show that there is a correlation between the observed neodymium spectra
and a presence of neodymium. We can also see the tendency of correlation
between depth of the features and neodymium concentration, also described in
the thesis of (Herrmann 2019). Table 5 below describes the largest measured
concentration of neodymium in each point and their standard deviations. The
point locations on the samples can be visualized in Figure 35(sample P1) &
Figure 36(sample P4).

Sample Image ref Image coordinates Largest value Standard deviation
Fig 35, Fig 36 (x, y) [ppm] [ppm]

P1 1 543, 717 493 NA
P1 2 1043, 1626 445 257
P1 3 1225, 1321 272 NA
P1 4 1414, 842 6952 346
P1 5 1448, 895 1471 255
P4 4 1531, 2718 72969 3061
P4 1 1538, 2180 23445 1331

Table 5: XRF measurements done in the XRF lab

5.5 Second Quarry-Scan [6]
As the XRF lab results indicated a strong correlation between the classified
areas and the points with high concentration, it gave the foundation to do the
same classification of the field data. When exploring the field data, reflectance
retrieval showed good results, apart from a strong oxygen feature present in
the data around 760nm. The estimated required GSD was roughly 0.5cm.
However, not all the scans were taken within this requirement. For this
section, four walls in the main quarry are highlighted, excluding details on
wall6. The classification from wall6 did show promising results, with a few
clusters of spectral signatures indicating presence of neodymium.
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Figure 41: RGB image of wall1

Figure 42: Example area of classification overlay of wall1 in Hyperanalysis

We observed the same tendencies on the walls as we did in the lab data. The
outcrop is from one of the areas with both the highest number of found, and
the most pronounced neodymium spectra on wall1. This was the true for all
images, however the strength of the spectral signatures varied.

Figure 43 shows point spectra from the four walls. We decided to group
these four walls as they represent the same area. These are the non-smoothed
spectrum data and can therefore be harder to interpret. The spectra from
Wall1 and wall3 are the ones that most and least resemble the Nd spectral
signature. Wall1 is the wall that we put the most focus on, and the only
wall where we collected XRF data. The pixel chosen for the plot shows a
prominent neodymium spectrum. And when compared to wall3, where the
features disappear in the noise it is reasonable to think the concentration
to be lower. However, wall3 was scanned from a further distance and with
a different lens. It has in general less prominent features, which are to be
expected due to lower energy, and that the pixel not “pure” neodymium
pixels. Based on wall3’s raw spectrum, little to no neodymium features are
shown.
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Figure 43: Spectra that strongly correlates with the known neodymium
features: 580nm, 740nm, 800nm and 870nm.

A very important aspect when interpretating these data is to take geometrical
and spectral resolution into account. In our field study, state of the art
cameras were used. They have incredibly low spectral and geometrical error,
with a very low PSF, SRF, smile and keystone. The reason this is very
important in these classifications is because the Nd occurrences are so small.
The areas of interest (minerals) can be as small as 0.1 cm2, and it is therefore
crucial that the camera is able to map these occurrences correctly in each
pixel. If pixels were to leak spectral and geometrical attributes unto the
neighboring pixels, pixel-based classification would be impossible. This would
not be as important if the areas of interest were significantly bigger than the
GSD, where the neighboring pixels would contain more similar values.
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The Figure 44 shows spectra with shallow features, collected from all the four
walls. These are spectra that correlate with neodymium’s spectral signature,
but the depth of the features are shallow compared to the deepest found
features. These are pixels which probably has some neodymium in them but
might not be pure pixels. These are the most typical spectra we observed
that we assume to be neodymium.

Figure 44: Spectra that somewhat correlates with the known neodymium
features: 580nm, 740nm, 800nm and 870nm.

As seen in Figure 45 there are many pixels which are hard to define. A
weakness for our study is the lack of conclusive validation data. These are
all spectra which, to some degree, show absorption attributes of neodymium.
However, they are not like the ones observed in the lab. Based on (Herrmann
2019) measurements can be strongly affected by the surrounding minerals
and Nd features might be imprinted onto other existing mineral spectra and
spectral trends. It is therefore possible to see Nd absorption features, but
close to impossible to accurately estimate the Nd concentration in field. It
was also indicated that irons spectral response (wide, shallow features around
650 and 900nm) suppresses that of REEs. More information would be needed
to make assumptions regarding the concentration of neodymium.
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Figure 45: Spectra with low correlation to the know neodymium features,
and are therefore hard to classify.

5.6 Processing
Processing time and big-data handling are important aspects when looking
at the possibility of streamlining the mapping process. The CPU’s number of
threads and clock speed dictate the processing speed. The way the mapping
is implemented now, a certain amount of RAM is required for the analysis to
run, dependent on the size of each file. From observing the resource usage
for our images this seems to be in the ballpark of around 50-60GB. This can
easily be modified for less memory usage at the potential cost of increased
processing time. One way of doing this would be to do the analysis batchwise
on each image, i.e., splitting the image into two smaller images, running the
analysis on them successively, and then merging them back together.

The way we implemented Hylite multiprocessing also means that this could
be scaled to maximize usage of computational resources given a higher data
load. This could be scaled up for both several separate computers and larger
clusters of hardware. The processing setup is also quite trivial to implement
in a cloud service like Amazon Web Services, where the data could start
processing right away when it’s added to some cloud storage.
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We logged the processing time of each thread for a batch of images. The
processing times for a batch of 20 images relative to their file sizes are
visualized in Figure 46 below. The computer used for processing has high-end
components that aids in reducing the processing time. The relevant computer
specifications can be seen in Table 6. A linear trend between processing time
and file size is visible. There are small variations from the linear regression
line, and these are most likely due to variations in clock speed and potentially
the number of iterations in the least squares refinement.

This points to the method being highly scalable and can easily be made to
handle larger computer clusters with more threads.

Figure 46: Correlation graph between processing time and file size.

Component Specifications
CPU 16 cores, 32 threads

Base Clock: 3.5GHz, Max. Clock: 4.7GHz
RAM 128 GB, DDR4, 3200MHz
SSD read/write speeds Read: 4950MB/s, Write: 4250MB/s

Table 6: Hardware specification for the processing computer
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6 Discussion

6.1 Classifications Aspects, Potential For Machine
Learning

There are several parts of our classification method that leaves more to be
desired, and it has great potential for improvement. A method of looking
at more specific absorption features should be developed and implemented.
When we look for the four deepest features on the spectrum instead of
looking at the features specific to neodymium, information about them can
be lost. If there are larger features elsewhere on the spectrum due to noise
or other influences, and there exists a neodymium feature, the neodymium
feature will be lost. There could still be refinement of the results given our
output from the MWL function. One could tweak and implement different
approaches, like the presence of a specified number of features instead of
specific combinations. Thresholds for the depth of the features is another way
of refining the classification results using the method described in this study.

Machine learning also has the potential to greatly increase the classification
accuracy. The greatest issue with implementing machine learning is the lack
of validated, labelled training data. We have images with low GSD but the
clusters of neodymium can be as small as 1cm2. To be able to train a decent
deep learning model we would need knowledge of the actual neodymium
levels in each pixel and not just an estimate. As the neodymium levels can’t
be measured remotely one would also have to project the results so that
they spatially align with the hyperspectral image. The possibility is there
but would be quite involved. One theoretical way could be using an XRF
device that could be automatically moved and geolocated that would take a
very large number of measurements that could be interpolated to a complete
raster.

One aspect of implementing machine learning is that one might be able to
quantify the neodymium content, given the thesis of (Herrmann 2019). It
would be interesting to see i.e., a U-net regression model with good training
data. In our data we observed that in the clusters of neodymium, the signature
would be more pronounced near the center and be harder to recognize the
further from the center. As U-net is a deep learning architecture that keeps
in mind the spatial relationship between pixels it might be able to use the
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clustering information for better prediction. Combining this with regression
means that you might be able to output a continuous raster of neodymium
content in each pixel, of course with some uncertainty.

6.2 Can REE Classification Based On Hyperspectral
Imaging Be Integrated Into The Mining Industry?

For something to be streamlined, it must be applicable in practice. A major
cornerstone of doing any sort of data collecting with a hyperspectral sensor,
is to have good weather conditions. Based on our results from being in field,
the key difference from the first and second trip was the weather conditions.
The first field which was done in December, had sunny conditions but were
problematic due to the snow. The second trip also had sunny conditions
but were done in March with no snow. It is therefore impossible to compare
the two scans, due to the systematic error in the data from the first field
data collection. It is therefore unclear whether the sun conditions were good
enough in December to do a classification. It would therefore be interesting to
do more research into the minimum required sun intensity to capture REEs in
field. This would make it possible to estimate the number on potential scan
days in year, which would show the potential efficiency of mapping REEs.

The field-rig used in our thesis was a HySpex VNIR1800 on tripod with
rotations stages. Since the rig was reliant on a power generator and had to
be manually moved the transition time between scans was somewhat high.
However, this could easily be streamlined with putting the rig on a vehicle.
Each scan took roughly 5 minutes, plus a few minutes of tuning before each
scan. With a more effective transition time, it would perhaps be possible to
scan 2-3 walls per hour.
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7 Conclusion
This study has set out to test whether hyperspectral imagery can be used in
a more applicable way in the mining industry. Two main objectives of this
thesis were:

• if it was possible to map neodymium in a discontinued quarry in Larvik?

• is it possible to streamline HSI scanning within operating quarries?

The classification results show strong correlation with neodymium features.
The measurements from the XRF-rig indicated that the concentration was
higher in the areas identified in lab-data. The measurements done in field
with the XRF also indicated high neodymium concentrations which supports
the classification. The spectral signatures that were identified also showed a
big correlation with the spectral signature found in the studies of (Boesche
et al., 2015b; Sabrina Herrmann, 2019b). This leads us to conclude that
the quarry (“Vevja”) contains minerals with high enough concentration of
neodymium to be mapped with HIS. The classification itself is not refined due
to lack of validation data, time constraints and the fact that the classification
was not the main aim of this thesis. The lack of validation data is also a big
reason that neural networks were not used in this study.

With the first thesis question answered, the second question was whether it
was possible to streamline the process of mapping and identifying neodymium.
Since we did not collect the data without help, the data acquisition part of
streamlining the process was just done in theory as there was no possibility
of testing out these theories on our own. However, everything from the raw
data to the classification was possible to streamline. A major part of this, was
creating a program that allowed us to easily process and classify the data. One
aspect that was important in the processing and classification, was managing
the data size. Since the data size of each image easily exceeded 10 GB, the
program had to handle huge amount of data at the same time. Therefore,
a lot of effort was put into creating a better multiprocessing procedure and
facilitating for scalability. This allowed for quicker classification and made
the process doable. The time needed to process each scene was around 1 to 3
hours, which makes the process applicable.
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7.1 Further Research
There were many things that could be more refined given more time. Things
that we would have done if given more time:

• Collecting more validation data, and perhaps analyse the minerals with
electron microscope to verify the content of REEs. And figure out the
mineralogy in the quarry. It would perhaps allow for implementing
neural networks in some parts of the classification

• Do more research into single image vs averaged images classification

• More research into dealing with big data, Hylite could use some better
memory management.

• Refinement of the classification process. I.e, Looking for, and mapping
the depth of neodymium’s specific features instead of the overall four
deepest features.
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