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Abstract

In recent years, solar energy has received a major boost politically, technologically,

and socially. High electricity costs, global disasters and climate change has has laid

the foundation for a global interest in investments in electric power production from

solar energy. For utility-scale photovoltaic systems, efficient operation and

maintenance are crucial for profitability.

The purpose of this dissertation is to find meaningful information in soiling data

from dedicated measuring stations for utility-scale photovoltaic systems. The

research question is formulated as: How can soiling station data be filtered and

analyzed to determine the soiling situation and its effects on the performance of a

utility-scale PV plant?

The main goal of this thesis is to find estimates for the daily soiling rates in the

various PV plants. This includes developing filters to better differentiate between

good and poor data quality. In addition, the relationship between the soiling level

and the corrected performance ratio in several plants is examined. Finally, the effect

of rainfall panel cleaning is investigated. The general method in the dissertation is

filtration and correction of data sets, as well as various statistical and mathematical

analyzes, seen in the context of existing theory.

The main findings are daily soiling rates of, on average, 0.12± 0.01%,

0.135± 0.006% and 0.047± 0.006% for utility-scale PV plants in South America,

North Africa, and South Africa respectively. In addition, little correlation is found

between the soiling level and the corrected performance ratio, which strongly

indicates a presence of other performance-limiting events that were undetected. It is

also found that daily rainfall between 3.3mm and 4.2mm is sufficient to keep the

soiling rate between 1.0% and 1.5% in South America.

For further research, improving data quality and collection would be an important

priority. In addition, an automatable method is proposed that would also be

interesting to explore further. Since the soiling of solar panels can greatly reduce

production, further research in this field is crucial for the future of this technology.
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Sammendrag

Gjennom de siste årene har solenergi f̊att et løft politisk, teknologisk og sosialt.

Høye elektrisitetskostnader, globale katastrofer og klimaendringer har lagt

grunnlaget for satsingen p̊a elektrisk kraftproduksjon fra solenergi. For stor-skala

solcelleanlegg er effektiv drift og vedlikehold avgjørende for lønnsomhet.

Formålet med denne oppgaven er å finne meningsfull informasjon i tilsmussingsdata

fra målestasjoner for stor-skala solcelleanlegg. Forskningsspørsmålet er formulert

som følger: Hvordan kan tilsmussingsdata bli filtrert og analysert for å bestemme

smuss-situasjonen og dens effekt p̊a ytelsen av et stor-skala solcelleanlegg?

Hovedm̊alet med oppgaven er å finne estimater for daglig tilsmussingsgrad i de

forskjellige solcelleparkene. Dette innebærer å utvikle metoder for å bedre

differensiere mellom god og d̊arlig datakvalitet. I tillegg blir forholdet mellom

tilsmussingsgrad og korrigert ytelsesgrad i parken undersøkt. Avslutningsvis blir

effekten regn har p̊a vasking av panelene undersøkt. Gjennomg̊aende metode i

avhandlingen er filtrering og korrigering av datasett, samt diverse statistiske og

matematiske analyser sett opp mot eksisterende teori.

Hovedfunnene viser daglige tilsmussingsgrader p̊a i snitt, 0, 12± 0, 01%,

0, 135± 0, 006% og 0, 047± 0, 006% for solcelleanlegg i Sør Amerika, Nord Afrika og

Sør Afrika respektivt. I tillegg blir det funnet lite korrelasjon mellom

tilsmussingsniv̊a og ytelsesgrad, noe som tyder p̊a tilstedeværelse av andre

uoppdagede ytelsesbegrensende hendelser. Det blir ogs̊a funnet at daglig nedbør

mellom 3, 3mm og 4, 2mm er tilstrekkelig nok til å holde tilsmussingsgraden

mellom 1, 0% og 1, 5% i Sør Amerika.

For videre forskning vil forbedring av datakvalitet og innsamling av data være en

prioritering. I tillegg blir det foresl̊att en automatiserbar metode som ogs̊a ville vært

interessant å utforske videre. Siden tilsmussing av solcellepaneler kan redusere

energiproduksjon betydelig, er videre forskning p̊a dette feltet avgjørende for

solcelleteknologiens fremtid.

III



Nomenclature

Physical symbols

E Energy J

G Irradiance W/m2

I Current A

P Power W

R Resistance Ω

T Temperature K or ◦C

z Zenith angle ◦

Abbreviations

AC Alternating current -

AM Air mass -

CPR Corrected performance ratio -

DC Direct current -

DHI Diffuse horizontal irradiance -

DNI Direct normal irradiance -

GHI Global horizontal irradiance -

NaN Not a number -

O&M Operations and maintenance -

POA Plane of array (irradiance) -

PPMC Pearson product moment correlation -

PR Performance ratio -
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PV Photovoltaic -

SI Soiling index %

SR Soiling ratio %

SRate Soiling rate %

STC Standard test conditions -

TS Transformer station -

WS Weather station -

Subscripts

cell Solar cell -

g Band gap -

i Intrinsic -

MPP Max power point -

oc Open circuit -

p Peak -

sc Short circuit -

stc Standard test conditions -

Constants

Gsc Solar constant 1362Wm−2

h Planck constant 6.62607015× 10−34 JHz−1

q Elementary charge 1.602× 10−19C
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Chapter 1

Introduction

1.1 Background

This thesis falls under a series of articles and research, seeking to improve the

operation and maintenance of utility-scale solar power. The data used in this thesis

are from commercial, operational utility-scale PV plants. By developing algorithms

and robust methods for the analysis of operational data, operations become both

more efficient and more profitable. One of the parameters still largely unexplored,

at least in-depth, are the soiling levels delivered directly from soiling measurement

stations. Exact estimates for the soiling levels are unknown, although they usually

have been tolerable. It is unknown how the soiling level varies through a year or if it

even does so. After a quick look at the data, there seem to be issues with at least

some of the soiling measurement stations. Good data is detrimental to correctly

forming a picture of the state in a PV plant with several hundred thousand solar

panels. Relying only on manual approaches are incompatible with realistic

operations; therefore, robust automatic methods are required.

Since this work is part of a larger effort regarding operations and management,

some research has already been published with similar goals. Work from Åsmund

Skomedal [1], [2], [3], also tries to quantify soiling rates, but with a different

approach. His work differs from this thesis, by leaning heavier into quantification

based on performance metrics, and not direct, dedicated soiling measurement

equipment. Both approaches have their merits. The mission of this thesis is to

develop a platform for more secure decision-making regarding soiling problems with

dedicated equipment.
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1.2 Objectives

The overarching goal of this thesis is to better quantify soiling losses on a plant

scale so that decisions regarding cleaning frequencies are made on correct

foundations. If the soiling rates are correctly defined, optimization of costs can be

done with greater confidence. While quantifying soiling losses, the validity of

different soiling stations is also examined, leading to a categorization of good and

poor data across the plants. By examining the most common faults and problems at

the equipment level, data quality and analysis can be improved. The main

objectives, as stated in table 1.1, are based on some of the many challenges plant

operators face daily, and will to an increasing degree face in the future [4].

Table 1.1: Describes the four objectives of this thesis.

Objective Description
Characterize quality
of data collected

Includes developing tools to quickly determine possible
error-types.

Quantify soiling rates Across multiple plants over time. Based on data taken
from dedicated measurement stations.

Examine the impact of
soiling on performance

By comparing the translation of soiling levels and simul-
taneous plant performance.

Rate efficiency
of cleaning events

Rainfall and manual cleaning affects soiling levels, and
it is useful to study how big this impact is.

Based on these objectives, the following research question was made:

How can soiling station data be filtered and analyzed to determine the

soiling situation and its effects on the performance of a utility-scale PV

plant?
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Chapter 2

Theory

2.1 Solar physics

The theoretical solar physics in this chapter is loosely based on various written

works used in PV education [5], [6]. The purpose of this chapter is to lay the

theoretical groundwork to better understand the problems faced in this thesis. Some

thematic areas are purposefully weighted to a greater extent, to allow for more

thorough explanations of important subjects.

2.1.1 Solar irradiance

The sun is the most integral part of life on planet Earth. By continuous nuclear

fusion of protons into helium cores, energy is released from the core of the sun in

form of radiation. The radiation travels from the core, eventually reaching its

surface. At the surface, the sun has a temperature of about 6000K, and behaves

close to a black body (section 2.1.3). The radiant solar flux (power) hitting the

Earth at any given time is called solar irradiance. For a plane perpendicular to the

direction of the sun, at a mean distance of Earth-sun outside the atmosphere, the

total irradiance of the solar radiation is 1, 361 W
m2 [7]. This flux density is called the

solar constant, GSC .

There are several different measurements for irradiance as a result of sunlight on

Earth. Direct normal irradiance (DNI) is the irradiation per unit area a

perpendicular (to the sun) plane receives from the sun. This means all direct

sunlight that travels in a straight path to the plane. Diffuse horizontal irradiance
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(DHI) is the solar irradiation per unit area received by a horizontal plane, as a

result of non-direct paths from the sun. The non-direct paths may occur because of

scattering, or collisions with other airborne molecules. A higher ratio of DHI/DNI

is a sign of more airborne particles, like clouds, water vapor, pollution, and other

aerosols. Global horizontal irradiation (GHI) is the result of both previously

mentioned effects, as given in equation 2.1

GHI = DNI · cos(θ) +DHI (2.1)

where theta is the angle of incidence of sunlight. GHI is a frequently used

measurement for photovoltaics, as the global irradiance incorporates all effects that

result in solar energy hitting a surface. A distribution map showing irradiation

(GHI) across the world is seen in figure 2.1. Areas with low latitudes (near the

equator) get more sunlight in a year, thus higher GHI, making them more suited for

PV. The plants in this thesis lay in the interval from around 5 daily totals and up.

Figure 2.1: Total GHI distribution globally. From Global Solar Atlas [8].

Sunlight has properties like that of an electromagnetic wave. However, it also shows

the properties of particles. These particles are called photons. For a single photon

from the rays of the sun, the energy, Eph, is given by Planck’s law:

Eph = hv (2.2)

where h is Planck’s constant and v is the frequency of the photon. This shows that

the energy of a photon is proportional to the frequency of the light.
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2.1.2 Atmospheric effects

Although the solar constant, GSC sets a precedence for the order of magnitude of

solar power reaching the Earth, solar energy still needs to pass through the Earth’s

atmosphere together with multiple other potential hindrances. The first hindrance,

effectively reducing the amount of solar energy that reaches a ground level at the

Earth, is the atmosphere itself. By passing through the atmosphere, solar rays of

energy are attenuated, meaning they lose more of their energy as they pass through

more of the medium. This is partly because of absorption, reflection, and scattering

by different objects in the atmosphere. Sunlight attenuates through a medium,

where the transmittance decreases exponentially with the increase in length traveled

through that medium, as given by the Beer-Lambert law [9]. Additionally, clouds,

aerosols, air humidity, and other particles present in the atmosphere can both

absorb solar radiation, but also reflect it into the atmosphere, away from sea level at

the Earth, as figure 2.2 illustrates.

Figure 2.2: Some of the different atmospheric effects influencing irradiation on a tilted
solar panel. Based on [10].

By passing through the atmosphere, atmospheric scattering most heavily impact the

high-energy wavelengths of the sunlight. This leads to sun rays losing most of their

blue (high energy) tint to scattering before hitting the Earth. Because of this effect,

the direct sunlight remaining is the relatively lower energy, red and orange light,

while the diffuse sunlight that was previously scattered appears blue from the rest of

5



the sky. This effect is further increased with a lower incident angle of the sun’s rays

towards the Earth. This effect is called “air mass”, referring to the sheer mass of air

the solar energy must pass through before hitting surface level at the Earth.

Equation 2.3 shows the air mass definition,

AM =
L

L0

(2.3)

where AM is the air mass at a given length, L, from the sun if the sun has a zenith

length (normal on the Earth) of L0. The terminology of air mass is usually used

together with a mass coefficient, calculated approximately in equation 2.4, as first

proposed in [11].

AM =
1

cos z + 0.50572 · (96.07995− z)−1.6364
(2.4)

with z being the zenith angle of the sun at a given point. This leads to the air mass

being one at the equator, zero outside the atmosphere, and one and a half at a solar

incident angle of about 48, 2◦.

The magnitude of radiation at surface level versus outside the atmosphere varies

greatly with a multitude of factors, but the resulting irradiation is often

standardized to about 1 000W/m2.

2.1.3 Solar spectrum

The spectral irradiance of the sun closely resembles that of a black body at around

5777K. In figure 2.3, the spectral irradiance of AM 0, AM 1.5 and a black body at

5400K is shown. The data in this spectrum is generated from Simple Model of the

Atmospheric Radiative Transfer of Sunshine (SMARTS), based on the international

standard ISO 9845-1 from 1992. As a consequence, this exact data is somewhat

outdated, as the newest data could not be acquired for this thesis. The main

spectral differences between that of the extraterrestrial (AM 0) and the global tilt

(AM 1.5) stems from effects like scattering and absorption by different airborne

components, like H2O, CO2, and O3. This spectral distribution can be seen as the

distribution of the energy of incoming light. As previously stated, from equation 2.2,

the function of the photon energy per different wavelengths gives this distribution.

Visible light has wavelengths between 380− 740nm, which are the only wavelengths
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Figure 2.3: Solar spectrum for AM0 and AM1.5, together with the spectrum for a 5400K
black body.

human eyes can see. As seen in the spectrum of the sun, it peaks in the range of

visible light in both cases. However, there is still much more spectral irradiance

both beyond and before this range. The sun radiates energy for almost all types of

electromagnetic radiation, albeit much more of some types than others.

2.2 Photovoltaics

The focus of this thesis is utility-scale solar power. As such, the bulk of the theory

is adjusted hereafter. It is still valuable to explain the basics of solar cells to better

understand the principles, but this will not be an in-depth explanation of the

smallest parts of photovoltaics (PV).

2.2.1 Semiconductors and solar cells

Semiconductors are materials with electrical conductivity somewhere between a

conductor, like copper and gold, and an insulator, like rubber or plastic. The

conducting properties in a semiconductor can be changed by “doping”. This means

introducing a different material into the crystal structure of the semiconductor.

Many different elements can be used as semiconductors, but the most widely used

element is silicon, which is the main material used for solar cells in this thesis as

well.

A semiconductor can be doped, introducing impurities by fitting a different element

inside its crystal structure. The effect of doping depends on what material was used.
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Valence electrons refer to the electrons residing in the out-most shell of an atom. If

a material with more valence electrons than silicon is introduced, like phosphorous,

the crystal structure will have a surplus of electrons, leading to a negatively charged

semiconductor. If an element with fewer valence electrons, like boron, is introduced,

the semiconductor will have excess “holes”. The terminology for semiconductors are

“n-doped” for excess electrons, and “p-doped” for excess holes.

When combining the two different types of semiconductors, so that they are in

contact, a p/n junction is created. This interface between the two semiconductors is

a result of electrons and holes diffusing into the other type of material, eliminating

the charges of each other. Inside this junction, charge equilibrium is reached, and a

voltage difference called the “built in voltage”, is formed. This voltage acts as a

barrier for external electrons in each semiconductor so that when connected to an

external circuit, they are directed through the circuit instead of through the p/n

junction.

Electrons in a semiconductor are restricted to reside in quantized bands of energy,

meaning that they are unable to permanently reside outside of these bands. The

term “band gap” refers to the energy required to excite one electron from the

valence band out to the conduction band where the electron is “free” to move.

Every material has a bandgap. Conductors, like metals, have overlapping valence

and conduction bands, meaning that electrons are free to move (conduct). An

insulator, contrary, has such a sufficiently large band gap that no electrons may pass

into the conduction band. Semiconductors have band gaps in between. This leads to

the excitation of electrons into the conduction band, if electrons are affected by an

external energy source. One force that could excite an electron in a semiconductor

is the energy from a solar photon. Photons with energy levels below the

semiconductor’s bandgap will pass through the material, but photons with bandgap

energy, or higher, will excite an electron to the conduction band. Excess energy

above the bandgap is dissipated as other energy forms, like heat. The usable energy

left from solar radiation forms the theoretical maximum boundary of solar cell

efficiency.

By applying these principles to an electrical component, a solar cell is made. A

standard solar cell encapsulates the previous principles by connecting the

semiconductor to an external circuit. By absorption of light, an electron-hole pair is

generated. Then, as these charge carriers of opposite types are separated, they can

be extracted through the external circuit. Additionally, a cell protects the inner
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components through a glass or plastic cover and usually has a form of anti-reflective

coating below that cover.

2.2.2 Voltage, current, and power

For a solar cell connected to an electrical circuit, the current will flow when

illumination from a light source is applied to the cell. Without a load connected, the

measured current through the circuit is the short-circuit current, Isc. This can be

seen as the maximum current the cell can provide, without having any components

to drop a voltage potential across. If the cell, however, is not connected to an

external circuit, the electrons will not move externally, and thus the open-circuit

voltage, Voc, is given as the potential between the two terminals when I = 0. By

plotting the distribution of current and voltage as in figure 2.4, the power from a

solar cell is found as

Pcell = I · V (2.5)

with a max power point, PMPP on the curve given by the current and voltage pair

that maximizes the area of the rectangle under the I-V curve.

Several factors affect the IV curve. The two most common factors are cell

temperature and incline irradiation. Naturally, the power delivered from a solar

panel is reduced when irradiation is reduced since the photo-generated power is

directly reliant on sunlight photons to generate charge carriers. With temperature,

the hotter the cell is, the lower the power that can be extracted from a cell is [12].

This is mainly because of temperature dependence for Voc in the dark saturation

current, I0, given by

I0 = qA
Dn2

i

LND

(2.6)

where q is the elementary electron charge, D is the diffusivity of the silicon minority

charge carrier from the doping with diffusion length L, and A is the area. ND is the

dopant amount, and ni is the intrinsic carrier concentration for silicon. It is the

intrinsic carrier concentration that is the most significant temperature-dependent

variable. This concentration is higher with lower bandgap energy. For higher

energies in each carrier, as a result of higher temperatures, the intrinsic carrier
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concentration is also higher. Isc increases slightly with a cell temperature increase,

as a result of lower bandgap energy, therefore more electron-hole pairs. This means

that for a normal silicon solar cell, higher temperature results in a lower

open-circuit voltage compared to the small increase in Isc, leading to a lower overall

power output from equation 2.5 [13].

(a) Effect of varying irradiation on the IV-
curve

(b) Effect of varying cell temperature on the
IV-curve

Figure 2.4: These two graphs describe the effect of irradiation and cell temperature for a
monocrystalline silicon solar module. Reused from a HiE-S395VG module [14].

2.2.3 Standard test conditions

Standard test conditions (STC), is an industry standard defined by the

International Electrotechnical Commission (IEC) standardizing testing and

datasheet information in PV devices [15]. By using a set of fixed, standard,

conditions, all comparisons between solar panels are accurately based on the same

metrics. The standardized test conditions are defined by these parameters:

• Cell temperature - 25◦C. This is the temperature of the solar cell itself, not

the ambient temperature.

• Solar irradiance - 1000 W
m2 . For testing purposes this refers to the amount of

energy, from light, flowing into an area at a given time.

• Air mass - 1.5. This number quantifies how much air the sunlight is passing

through proportional to its zenith angle. AM 1.5 is analog to a zenith angle,

z ≈ 48, 19.
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The reasoning behind the choice of values for these parameters is geographically

motivated. Most large cities and countries where producers, and to a degree users,

are located have similar conditions to the ones specified in the STC. This means

that standardized testing usually falls in a realistic set of conditions where it would

be applied in a real scenario. STC can also be used to correct the performance ratio

of a PV plant, leading to a temperature-independent performance indicator. This

will be explained in 2.5.4.

2.3 Scalability of solar modules

2.3.1 Solar modules and strings

A solar module (or panel) is a collection of singular solar cells mounted and

connected inside a frame to increase the output values and ease installation. The

frame-mounted design has several advantages over singular cells. The module is in a

solid-state, meaning no moving parts, thus increasing longevity and reducing

maintenance. In addition, protective coatings are usually applied, to protect the

cells from scratching, weather, and other damages that would compromise the

efficiency of the module. The average module size for utility-scale solar was about

380Wp in 2019, and rapidly increasing [16]. Panels usually consist of 60-72 and more

cells per module. The connection between each cell determines how the voltages and

currents of the cells add up. A series connection of cells will increase the voltage

additively, but maintain the current of the weakest cell. Cells connected in parallel

will maintain the voltage of the weakest cell but increase the current additively.

To combat the problem of the lowest producing cell limiting the entire production of

the panel, a bypass diode can be wired in parallel with some of the cells in a

module. This might be beneficial for shading scenarios, or through periods with

heavy soiling deposition. Usually, this means that a series of cells are connected,

corresponding to a common bypass diode, as one diode per cell often is expensive

and superficial. A bypass diode works by being reversely biased, thus impact-less for

the circuit, if no cells are shaded. If there is a fully or partially shaded cell in the

series, the bypass diode is then forward biased, thus conducting current. By

implementing this solution, the production losses from shading are lowered so that

the only losses happen in the shaded strings.

Behind each module sits a junction box. This box works as an output interface for
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further connections of the module. All modules can be connected, through

weather-resistant cabling (largely MC4-cables). The same additive rules for voltage

and current applied to module scale connections as to cell scale. For every

commercial purpose, multiple solar modules are connected in strings to increase the

output voltage, thereby also the power of the string. Multiple solar strings

connected electrically are called solar arrays.

2.3.2 Solar arrays

Solar arrays are a collection of more than one solar string. These arrays are

modular, meaning they can be further built upon by connecting arrays with other

arrays. For large-scale projects, several arrays will be connected in strings to an

inverter (chapter 2.5.2). The current in a solar array will be limited by the weakest

panel in the series connection. This could be due to either shading, soiling or other

defects. Because of this, continuous data logging of performance metrics for each

array is vital to keep a high up-time for a utility-scale PV plant.

2.4 Soiling

2.4.1 A brief introduction to soiling

In this thesis, “soiling” refers to the accumulation of particles on the surface of a

solar panel. Common particle types are dust, sand, snow, pollen, and many others.

These particles build up over time, effectively creating a coating that reduces

irradiation on a cell and may create hot spots leading to performance losses. The

measurement of the consequential performance losses is in this thesis referred to as

“soiling losses”. On a global scale, soiling losses cut production by at least 3-4% at

optimal cleaning efficiency. This equates to at least 3-5 billion euro annual revenue

losses, which could rise further in the coming years [17], [18]. The amount of soiling

deposition varies globally. Studies show that dry areas are more prone to higher

soiling depositions. This mainly applies to areas around the equator, but also other

dust and sand exposed areas. This study concludes that the most dust exposed

areas in the world are North Africa and the Middle East, as seen in figure 2.5.
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Figure 2.5: Global dust accumulation, where more dust exposed areas are darker [19].
The plants in this thesis mainly lie in zones 2-4.

The PV plants used in this thesis are mainly located in high soiling zones in South

America, Africa, and the Arabian Peninsula. As a result of prolonged dry seasons

with frequent dust-filled winds, particle deposition on solar panels will at times be

high. The Sahara desert is the world’s most important source of dust [20]. For the

plants located in geographical proximity to the desert, abrupt soiling levels at times

are common. This power loss is regained mostly by manual cleaning events in dry

periods.

2.4.2 Soiling variations

A study was conducted on similar plants as those in this thesis. This study shows

that the difference between a “preferably” soiled panel and a “badly” soiled panel

can be as much as a 5% transmission - and in turn production loss [21]. Soiling

losses are a function of many factors, and as such, different types of dust, sediment,

and other particulates may interfere with power production at different scales.

Particle size is one factor, as larger particles could lead to higher dust deposition on

the panels [22]. For the same particle concentration, larger particles could allow

more irradiation to pass through to the panel beyond creases and openings [21]. It

is thoroughly established that increased dust deposition leads to transmission

reductions regardless of size [23]. Figure 2.6 shows most of the parameters affecting

utility-scale PV in terms of soiling and production.

Uncontrollable environmental parameters like particle accumulation and

cementation are inevitable for many areas. The degree of cementation and

petrification of particulates depends largely on cleaning frequency and efficiency for
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Figure 2.6: Different types of parameters affecting soiling deposition in a PV plant [22].

each cleaning event. Controllable parameters needs correct information regarding

dust deposition, soiling rates, and weather to be optimized. Quantification of soiling

rates is important to operations and maintenance in order to operate the plant more

efficiently.

2.4.3 Soiling deposition ratios

Soiling deposition can be measured with a setup consisting of two solar panels. The

soiling ratio (SR), is defined in the IEC 61724-1:2017 technical standard. This ratio

is the relationship between the temperature-corrected maximum power values of the

panels. It is calculated by equation 2.7:

SR =
Psoiled

Pclean

(2.7)
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Where Psoiled and Pclean are the maximum power delivered from the soiled and clean

panels respectively. SR can also be calculated by the short circuit current values. A

study has shown that the short circuit method works best on other solar panels

than silicon [24]. SR is useful for illustrating production differences between a soiled

panel and an ideal, clean one. The soiling index (SI), can be used to illustrate the

actual soiling level, or the dust accumulation’s effect on production. This is often

used in tandem with soiling loss. As seen in equation 2.8, this is just a different way

of establishing the same tendency between the panels.

SI = 100− SR (2.8)

Since SI is a measure of how badly soiled a panel is, the value should never exceed

100%. Research has shown that average, worst case soiling scenarios in dry seasons

could face daily soiling rates up to 0.32% [25]. Daily soiling rates are heavily

localized and may vary greatly from area to area. The soiling levels may even vary

within one PV plant.

2.4.4 Soiling mitigation

Measures regarding mitigation of soiling levels can be implemented both before

installation of the plant and as continuous maintenance. In a realistic scenario, some

degree of continuous cleaning is mandatory to maintain an efficient performance.

Several mitigation techniques exist, thoroughly explained and discussed [26], [27].

For an automatized cleaning system, efficiencies of 98% production restoration after

35 seconds of operations [28] was discovered. Although this automatized system is

not implemented in the plants used in this thesis, it gives an indicator that an

almost complete production recovery is possible with just pressurized water.

Studies have also shown that dust deposition is higher in periods with less rainfall

than deposition in periods with a higher amount of rain [29]. This might indicate

that manual soiling mitigation might not always be necessary for periods of heavy

rainfall.

Since most solar plants in this thesis, are located in relatively dry areas, access to

water for cleaning is an issue. As a result, cleaning can get expensive,

resource-demanding, and little sustainable in the long run. Methods not requiring

water nor mechanically moving parts, do exist, [30]. Additionally, mitigation can
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start in production of the panels [31].

The most common cleaning method is not reliant on a supply of freshwater. This

method is called dry-cleaning. This simple, manual, method is the cleaning of dust

from solar panels using dry brushes. These brushes can either be attached to

tractors or at the end of cleaning equipment requiring manual labor. There are

several advantages to this method. By being independent of water, the cleaning is

less resource intensive. It is also simpler to implement, as well as less prone to

failures and expensive investments. Conversely, cleaning efficiency is not as high as

for methods using water. Also, dry brushes may cause moderate damage to the

panels, though this is often not a big problem [32].

2.4.5 Economic consequences of soiling

Dust deposition will limit, and can sometimes reduce electricity production to a

large degree. Some results show that dust deposition can lead to energy losses

equivalent to almost 40 euros per kWp [33]. Considering the lifetime cost of energy

investment, the term “Levelized Cost Of Electricity”, LCOE, can be used. This

term is defined as the total life cycle cost divided by the total lifetime energy

production [34]. Extended, the equation can be described as

LCOE =
Investment+O&M +Depreciationn − Residual value

Total lifetime energy production
(2.9)

where cleaning costs from soiling fall under the O&M category, and soiling losses

affect the lifetime energy production [35].

For 2019, LCOE for utility-scale solar has been estimated between 5− 10 cents per

kWh [36]. Depending on the location, soiling may increase the LCOE of PV plants

by more than one cent per kWh [37]. IRENA predicts that the LCOE for solar

electricity generation towards 2050 could decrease by 1− 5 cents per kWh globally

[38]. Soiling losses could potentially play a big part in affecting this cost and is

therefore an important thing to minimize for further operations.
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2.5 Utility-scale PV

2.5.1 Plant structure

A utility-scale PV plant is a collection of multiple solar arrays. Together, they form

a power plant. These may vary in size. The plants used in this thesis range from

one to three digits in the MW order of magnitude. The plants can span large areas,

as seen in figure 2.7. Some of these plants are collections of almost a million solar

panels. Everything is connected through strings in arrays, further to inverters

powering the grid. All inverters have a corresponding weather and measurement

station. Parameters like irradiation, soiling, temperature, are measured and

monitored. Some parameters, like rainfall, are often measured only at the plant

level. Larges amounts of data have to be collected and analyzed to operate and

maintain the plant at all times. This requires both good technical foundations and

manual interference from staff. As such, there are several employed workers needed

just to run a PV plant of this scale [39].

Figure 2.7: A utility-scale PV plant in the southern hemisphere.
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2.5.2 Power inverters

Solar panels generate direct current (DC). Transmission of electric power over

distances, via a power grid, demands alternating current (AC). To convert DC to

AC, a power inverter is used. This electrical component rapidly changes the polarity

of the DC input signal to match the grid frequency. In a utility-scale PV plant,

multiple solar arrays are usually connected to one inverter, with the necessary

amount of inverters spread around the plant. For the PV plants in this thesis, all

inverters are mapped to their respective solar arrays and weather stations. The

inverter level is a frequently used level when information regarding individual panels

or strings is unnecessary. At the inverter level, calculations like Performance Ratio

(PR) and logging of typical performance losses are carried out.

2.5.3 Soiling measurement stations

Quantification of soiling deposition on solar panels can be done with a specialized

soiling measurement station. These stations are typically placed around a PV plant.

Data collected from the station is used to diagnose surrounding solar arrays. The

station usually consists of two separate solar panels. One panel acts as a control: it

is cleaned often, preferably at least daily, to maintain a soiling level near zero. The

other panel is cleaned together with the rest of the modules, thus experiencing

soiling deposition over time. The difference in output power between the soiled and

clean panels represent the soiling ratio for the surrounding panels. These soiling

stations are placed locally in the weather station of the PV plants in this thesis.

Henceforth, the term “weather station”, or “ws” will mainly be used when

describing the soiling measurement stations. Figure 2.8 shows a soiling

measurement station for one plant in this thesis. Here, the two out-most panels in

the array are logged and compared to each other.

The Soiling ratio (SR) can be calculated as in equation 2.7, with the addition of a

calibration constant, c, acting as an equalizer for the differences between the two

panels. The calculation of SR takes place locally in the equipment, so the output is

a finished soiling ratio. This means that for some stations, the deepest

measurements are the soiling ratios themselves and not the raw data supplied to the

SR function.
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Figure 2.8: A soiling measurement station in one of the plants in this thesis. This partic-
ular station consists of two panels mounted in an array with other panels.

2.5.4 Performance indicators

The performance ratio (PR) for a plant is a measure of the overall performance;

meaning the ratio between actual production and rated production. As seen in

equation 2.10, measured plane of array (POA) irradiance is used to calibrate for

deviations from STC irradiation.

PR =

∑
i PACi∑

i

[
PSTC

(
GPOAi

GSTC

)] (2.10)

Here i is a given point in time, with summations being defined over a time period.

PAC is the measured AC electrical power generation, as opposed to PSTC which is

the test power generation at STC. GPOA and GSTC are the irradiations at the POA

(measured at the site), and at STC respectively.

To account for irradiation and cell temperature, an extended version of equation

2.10 is shown in equation 2.11. This is called the Corrected Performance Ratio

(CPR) because it corrects for cell temperatures [40]. In addition to this correction,

one further correction based on other losses is also included. The additional included

losses are detailed in section 2.5.5. The corrected performance ratio, CPR is hereby

defined by the following equation, in addition to correction for the additional losses:
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CPR =

∑
i PACi∑

i

[
PSTC

(
GPOAi

GSTC

) (
1− δ

100
(Tcellavg − Tcelli)

)] (2.11)

The previous equation is extended with temperature elements. δ incorporates power

losses from increased cell temperature and is called the temperature coefficient for

power. Tcellavg is the average cell temperature throughout a year of weather data.

Tcell is the measured cell temperature (alternatively computed from measured

weather data). For a corrected performance ratio, values should stay relatively

invariant between days if no other performance-limiting events occur. Over time, as

dust deposition increases, the expected PR response is a gradual decline in tandem

with the increase in SI. A study concluded that the PR difference due to soiling was

16% for dry seasons [25]. However, a study conducted in another geographical

location, gave a ∆PR of around 10% [41]. This is a more realistic estimate, as the

location is more akin to those in this thesis.

Other performance-limiting events could still occur. If they are not detected, they

will affect the CPR negatively. As such, CPR shows performance losses from

soiling, but they will not be in perfect tandem. Other performance-limiting events,

that are undetected, will occur. By examining the relationship between soiling levels

and CPR, a big disparity between the two would indicate a large number of

uncorrected for events.

The corrected performance ratio also has a theoretical upper bound. This bound is

at 100%, as a performance ratio should never exceed the theoretical maximum

production. Typical values for PR are often around 80%− 90% and lower [42].

With the correction for other losses, CPR is at times expected to be lower.
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2.5.5 Typical losses in a utility-scale PV plant

Four detectable performance limiting events are corrected for in the CPR. By

correcting for these losses, events limiting performance are kept to a minimum. This

makes the effect of soiling on performance more detectable. Below are the four

events corrected for in this thesis.

Curtailment loss

All grid-tied electrical power generators may experience curtailment losses. In short,

this loss is the result of a deliberate reduction of usable energy out of the PV plant,

decided by the grid operator. The reason for this reduction in otherwise usable

power is supply and demand on the grid, and the transmission constraints hereafter.

In some cases where curtailment happens, the conditions for great production are

present. As a result of curtailment, some of the produced energy is never sent

through the grid.

Clipping loss

When planning a new solar installation, the dimensions of the power inverters

should coincide with the peak output of the solar panels. Since solar irradiation is a

function of the time of day, the solar panel will not produce peak output at all

times. As a result, inverters need to be correctly sized to operate at their nominal

power as much as possible. They also need to handle production from the panels if

panels often produce energy at their peak. This is a regular occurrence around the

equator. When the solar panels produce too much power compared to the sizing of

the inverter, the inverter will manually halt excess production above its maximum

output. This case is shown in figure 2.9, where the desired production is that of the

green, full-wave curve. The inverter “clips” some of the peak power production,

resulting in an actual output shown in the red curve. This might happen on days

with optimal conditions for production. All lost power from the inverter limitations

are called clipping losses.
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Figure 2.9: Clipping of a graph. The red line illustrates the clipped output signal, while
the un-clipped, ideal production is in the background in green.

Grid loss

Since all inverters across the plant are grid-tied, unwanted occurrences on the grid

could also affect production. Grid loss is characterized by all production lost as a

result of grid downtime. When the grid is offline, power exportation should also halt

to prevent unintentional live wires, also known as anti-islanding [43]. Production is

still tracked, but not supplied to the grid, so all production in these periods counts

as losses.

Production loss

The final type of loss used in CPR is the power lost as a result of faulty equipment

plant-side. The production loss mainly consists of inverter downtime for various

reasons. Still, there exists enough data to accurately measure the amount of energy

lost. For some occurrences, inverter downtime leads to missing information

regarding production loss.

2.6 Statistics

2.6.1 Variance

The variance of a data set is a measure of the dispersion of the data, meaning the

estimate for a given value’s spread from its average value. In this thesis, it is used in

two ways. Directly, it is used to measure the spread in the data sets, both before
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and after data processing. Additionally, it is used in several other statistical

calculations, as will be shown later in this chapter. Variance for a random variable,

X, can be defined as

V(X) = E(X − µ)2 (2.12)

where E is the expected value, and µ is the mean of the data series. As such, the

variance is the expected value of the squared difference (deviation) from the mean of

the data series. By including the fact that µ = E[X], meaning the expectation of X

is the mean of the data series, equation 2.12 can be expanded to

V(X) = E[X2]− E[X]2 (2.13)

which gives the expression for the variance of a data series. The variance of the data

series is in other words the difference between the mean of the square of X and the

square of the mean of X [44]. Since variance squares the deviations from the mean,

outliers further away from the mean are weighted more heavily than values close to

the mean. Additionally, since squaring a number makes it invariant to the sign,

both deviations above and under the mean add to the variance of the data.

Additionally, the sample variance is used in this thesis. The sample variance,

meaning the variance of a sample of a larger population, is given by

Var(X) =
1

n− 1

n∑
j=1

(xj − µ)2 (2.14)

where n is the number of days, and xj is the sample value at index j.

2.6.2 Standard deviation and normal distribution

The standard deviation is a measure of the dispersion in a data set and is defined as

the square root of the variance,

σ =
√
V(X) (2.15)

with V(X) being the variance of the entire data set. As such, standard deviation

gives a concrete number to the variation of the data set and is given in the same
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units as the data itself. A low standard deviation indicates a low spread in the data,

while a large deviation indicates a large spread. The standard deviation has the

symbol σ, while variance is often written as σ2.

A normal distribution is a continuous probability-density function, often used for

modeling the behavior of real-life random variables. The distribution states that for

a given mean, µ, of a sample, 68.26% of the observed data values are within one

standard deviation, σ, from the mean. This, and the percentages for multiple

standard deviations from the mean, are shown in figure 2.10.

The term confidence interval is often used to describe certainty when predicting

values. For a predicted value in a normal distribution, the confidence interval is the

percentage certainty that the value lies inside the chosen area in the normal

distribution. So for a confidence interval of µ ± 2σ, there is a certainty at 95.44%

that the value is inside the interval, for a normally distributed data set. The usage of

the normal distribution in this thesis will be further expanded upon in chapter 3.2.2.

Figure 2.10: Normal distribution with the percentage of values that reside inside each
standard deviation interval [45].

2.6.3 Regression

A regression model seeks to estimate values based on existing input data, by

minimizing the error defined by the user. Effectively, a “best fit” line is computed,

which incorporates every value in the data set, and, if desired, weighs values

differently based on input conditions. In this thesis, the numpy.polyfit library was
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used to generate the best fit line. This particular calculation found the solution that

minimized the squared error

E =
k∑

j=0

|p(xj)− yj|2 (2.16)

in the equations

x[0]n · p[0] + ...+ x[0] · p[n− 1] + p[n] = y[0]

x[1]n · p[0] + ...+ x[1] · p[n− 1] + p[n] = y[1]

...

x[k]n · p[0] + ...+ x[k] · p[n− 1] + p[n] = y[k]

where the coefficient matrix, p was a Vandermonde matrix, meaning it had the

terms of a geometric progression in each row [46]. For a first-order (linear) model,

the best fit line is given in the form

y = mx+ b (2.17)

with m being the slope of the line, and b, the constant value. Each of these variables

could be extracted separately, and the equation could be used as an estimate for any

given value in the regression interval.

When calculating the fit of the regression line and the squared error, the distance

between the regression line and a data point is called the residual. For the

np.polyfit library, the residuals are given as the sum of all residuals squared,

RSS, from the best fit line which minimizes the squared error, as defined by

RSS =
n∑

i=1

(yi − f (xi))
2 (2.18)

where yi is the actual value for for i, and f (xi) is the estimated value (by the

regression function) for the same place, up to the length of the data set, n. The

squared error or squared residuals become more heavily weighted the further away
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from the best fit line they are, as a result of the squaring of the distance. For a data

set that is void of outliers, as previously defined, the squared residuals should not

impact the overall error too much, but relatively extreme values will still weigh the

sum of all squared errors more heavily. This could result in data series with a

majority of points without any residuals, but some extreme values, still having a

larger squared error than data series with more noise, but in closer proximity to

each other.

2.6.4 Correlation

A measurement of how well two different variables share a relationship is the

correlation coefficient. This coefficient, ρ quantifies the linear relationship between

the two variables, whether causal or not, and ranges from −1 ≤ ρ ≤ 1. Multiple

different coefficients for this exist, and the one used in this thesis was the Pearson

Product Moment Correlation (PPMC), defined in equation 2.19,

ρX,Y =
cov (X, Y )

σXσY

(2.19)

where cov (X, Y ) is the covariance between the two populations, and σ is the

standard deviation for each of the two populations. In this case, a population is a

time series of measurements, for example, SI and PR.

The covariance, analogous to variance, is a measure of the mutual variability

between two variables and is defined as

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (2.20)

where E[x] is the expected value, meaning the mean, of x. Covariance is not

normalized and is therefore dependent on the size and units of the variables. This is

the reason for correlation coefficients being used instead, as they are invariant to

both size and unit of the data set.

When working with data from real, operational plants, it is expected to find the

actual correlation coefficient as a floating number between −1 and 1, and strong

edge cases are shown in figure 2.11. Here, a coefficient close to −1 indicates a strong

negative correlation, meaning as one variable increases, the other decreases

accordingly, as illustrated in figure 2.11c. The opposite relationship is true for a
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coefficient close to 1; both variables in this scenario increase in tandem with each

other, as seen in figure 2.11a. A correlation close to zero, like in figure 2.11b, means

the variables are not correlated at all, and no discernible trend can be extracted.

(a) Positive correlation. (b) No correlation. (c) Negative correlation.

Figure 2.11: These figures show the different near-edge cases when examining correlation.
The data points are plotted as scatter points, meaning all data points have both an x and
a corresponding y value.

2.6.5 Error and uncertainty

The first measurement of uncertainty or discrepancy from the fit line is the residuals

between the data set and the best fit line. The way these residuals can be used in

the context of uncertainty is by quantifying this discrepancy. As an example, figure

2.12 shows two different regression lines with approximately the same slope

coefficient. However, as evident, one figure has values close to the best fit line, and

the other has a relatively much larger spread in the values. The result is that RSS

becomes 12 times as large in this case when the values are more spread out. Ideally,

it is better the more minimized RSS is, and for the edge case of RSS = 0, the fit

between the regression line and data points is perfect.

Figure 2.12: Two figures with similar regression slopes, but vastly different residual
squared sums (RSS).
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The application of this observation could for example be for determining the

certainty of the calculated line. If RSS for a slope is relatively large compared to

the observations, this could indicate that this observation is not entirely reliable,

even based on the data points in the interval.

The standard error, σ−
x , is another measurement used to calculate uncertainty. It

can be defined, at least for the purposes in this thesis as the standard deviation of

the means, and is given by

σ−
x =

σ√
n

(2.21)

where σ is the standard deviation of a population, and n is the sample size. This

can be explained as an estimate of how far away a sample mean is from the

population mean [47], where a simple standard deviation would only estimate how

far away from the sample mean a random variable is found. In this thesis, the

standard error will be used when finding the mean of means for different values.
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Chapter 3

Method

3.1 Data collection

The data used in this thesis consisted of information from several different weather

stations from utility-scale PV plants in commercial operation. The data mainly

consisted of measurements between January 2020 and March 2022. Several

parameters were extracted from the stations, and the most prevalent were soiling

levels, performance ratio and error losses, and rainfall. Most of the data were

directly imported from the measurement stations, while some data was passed

through preprocessing at an external software before it was extracted. This did not

affect the results, as most preprocessing either calculated values or grouped data

into larger clusters to save space. Still, for some applications, the data lost in

preprocessing would have been helpful in regards to identifying problems or

comparing other values with each other. Lastly, since this data already had been

collected, there was no way to contribute to the scientific integrity of the data

collection itself. Often, in data science, data can be sub-optimal, as the collection of

data, calibrations, missing values and errors are complex to keep optimized at all

times. Therefore, the scope of this thesis was limited to data processing and filtering

of existing data, thus extracting useful information from partially sub-optimal data

sets.

3.1.1 Naming the soiling stations

The soiling data that was used, came from three PV plants with different

geographical locations. A naming framework mapping each weather station to a
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plant and its position inside the plant was used and is described in table 3.1.

Additionally, these three geographical locations had a corresponding description of

the temperature and humidity in the area, categorized by the mapping proposed in

[48]. The symbols from table 3.2 correspond to the temperature and humidity keys

given for each plant.

Table 3.1: Naming keys and their descriptions for all weather stations in the three loca-
tions.

Key Information
Geographical location A: South America (T2 : H3)

B: Arabian peninsula/Northern Africa (T7 : H3)
C: Southern Africa (T5 : H5)

Weather station number The number of the given weather station internally
in the plant

Table 3.2: Categorization of the different weather parameters used to describe a PV plant.

Threshold
Description Symbol 1− 2 2− 3 3− 4 4− 5 5− 6 6− 7

Module Temperature (◦C) T 14 19 24 29 34 39
Specific Humidity (g/kg) H 3.0 4.1 5.9 10.5 − −
Wind, 25-year MRI (m/s) W 1 33 36 39 − −

3.2 Data filtering

Data analysis is a big part of many fields of discipline, both in academia, businesses,

marketing, health amongst others. In many cases, data is considered trustworthy,

given that large, expensive systems designed solely for data collection are often used.

Conclusions based on wrong data can be detrimental [49]. The assurance that the

data is trustworthy is the most important part of working with data sets. Therefore,

the data in this thesis was passed through multiple filters, tests and calculations

before the analysis itself could start. This section describes the measures that were

taken to ensure an acceptable level of data integrity for the rest of the thesis.

3.2.1 Imputation

Missing and unrealistic values, like negative soiling levels and periods of missing

data, were present in parts of the data set. In addition, each value in the data set
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corresponded to a quality tag that was generated based on several factors at each

equipment locally. The qualities were rated as either “Good”, “Bad” or

“Uncertain”. “Good” quality data was the only type being kept. All

aforementioned scenarios, except plausible negative values, were removed from the

main data set. They were still kept separately for comparison later. Plausible

negative values were the values in the same order of magnitude as the main positive

values. This was because of the way SR was calculated (chapter 2.4.3) at the

weather stations. A negative value could mean a slight fault in the calibration of the

measuring equipment. Thus, by including some negative values in the result, a

better picture of the actual state was made.

3.2.2 Outlier detection

Although the data was cleaner from the initial imputation, some anomalies still

existed. Since the main data being examined came from soiling stations,

assumptions regarding relative small value increases over time were valid. Thus, any

large spikes in short time frames, compared to neighbouring values were considered

anomalies. Soiling levels can experience rapid increases between days [50]. However,

it was not expected to fluctuate down again quickly thereafter, for then to repeat

this pattern in relatively high frequency.

An outlier is an anomaly in the data set significantly different from the rest.

Quantification and identification of outliers can be done in different ways. The

method used in this thesis was the interquartile range (IQR) method of outlier

detection. IQR is the difference between the first and third quartile of the data set,

as shown in figure 3.1. From this range, lower and upper bounds for acceptable

deviations from the bulk of the data were defined.

To find the right threshold for outlier detection, a scale value was used to weight the

IQR. To find a reasonable weight value, the form of a normal distribution was used.

In a normal distribution, 99.75% of the entire data set is within three standard

deviations, marked red, blue and green in figure 2.10. Within three standard

deviations data was considered acceptable [51]. Anything outside this threshold

needed to be detected. When an outlier was detected, that data point was set to

NaN , as this ensured safe removal without replacing it with an estimated value.

The first (Q1) and third (Q3) quartiles, were defined with limits at −0.675σ and

+0.675σ respectively. This formed the lower and upper bounds of the interquartile
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Figure 3.1: Boxplot showing the interquartile range (IQR), which is the difference between
the first and third quartile of the data set. Values existing beyond the minimum and
maximum thresholds are considered outliers.

range. The weighting of IQR was given by

Weight =
Bound±Q3/1

IQR
(3.1)

which gave a weighting of the IQR at W = 1.72. This meant that any value outside

the two calculated thresholds was considered an outlier, and was removed. The

threshold was found with

Threshold = Q3/1 ± 1.72 · IQR (3.2)

The outlier filtration was performed twice for every data set. Once on a global scale,

and once on a local scale. When considering the global scale, IQR, Q1 and Q3 were

computed based on all values from that weather station. For the local scale, a

moving/rolling window was used to compute the three values for every window at a

given size. The rolling window went through the entire time series, with an

increment of one day for each iteration. This function calculated the thresholds for

each window and returned a Boolean data set with all values beyond the thresholds

marked. Afterwards, this new data set was used as a mask so that all outliers could

be removed from the original data.

This double outlier filtration ensured that both large outliers on a global scale were

removed. Also, this ensured the removal of smaller variations deemed too large, as

an extra means of reducing noise without losing information from the non-outlying
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data points.

3.2.3 Noise removal and interpolation

When removing outliers, the removed values were replaced by NaN values in the

data set. For some purposes, a continuous data set was needed, as calculations

sometimes required complete data sets with only actual numbers. The solution to

maintaining the trend of the soiling values was to use linear interpolation between

the values. Since soiling levels increase linearly, linear interpolation was deemed the

best and simplest way to make the data set continuous again.

Linear interpolation was performed on every soiling station and inverter

measurements after outlier removal. This simple method is illustrated in figure 3.2.

By finding the linear relationship between two given variables, all points with an

x-value (or a time-date in this case) were then placed on that linear relationship

line. Therefore, all artificially added values were in line with the expected behaviour

of soiling levels.

Figure 3.2: How interpolation finds missing values between two points. The black dia-
monds represents known values. The red diamonds are then fitted on a linear ray between
the two points, given an x-value.

The nature of most data signals was noisy, even after outlier removal. Values would

often vary with many percent between days. Therefore, a noise-reduced new data
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curve was implemented. There are many ways to define noise, but in this thesis, the

noise was defined as the residual between the value and mean of a seven-day interval

in the signal, as proposed in [2]. A function which calculated the mean in seven-day

windows was used to generate the noise-reduced signal. Figure 3.3 shows an

example of how the noise-reduced data signal could look.

The implementation of this algorithm used the python DataFrame.rolling

function. First, NaN -values were generated for the n first days, with n being the

window size. Then, the rolling window incremented upwards on the date-time index

by one for each iteration. For each iteration, a mean of the n values was calculated,

and this mean value was put in the highest index position of the date-times in the

window.

Figure 3.3: The original data set in black, with the noise-reduced function in red. The
noise reduction is a mean function of windows at seven days.

The noise-reduced signals were mainly used for visualizational purposes, but in

some cases also for calculations. Where possible, the outlier removed data set was

used. This preserved most of the original data information. As visible in figure 3.3,

soiling values from the noise reduces function tended to be more conservative. This

meant they at times did not reach as high values as expected from the original data.

3.2.4 Selecting suitable data for further use

In previous chapters, the limitations of the current soiling measurements were

explained. The consequence of sub-optimal data collection is the inclusion of
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irrelevant or unsuitable data. To combat this, another filtration was necessary. This

final filtration aimed to find usable, “good”, data that correctly described the actual

trends at the plants. Some statistical analytic tools were used (explained more in

section 3.3), as well as some manual exclusions. This last filter gave each weather

station a tag based on several criteria, given in table 3.3. Some of the weather

stations either had errors like flipped polarities or miscalibrations, or were missing

so many data points at times that meaningful data extractions were impossible. The

result of this selection was clean, consistent data for further analysis. The purpose

of this thesis was to extract useful information from partially sub-optimal data sets.

Therefore, exclusions of data with insufficient quality was in line with the goals.

Table 3.3: Tags used to determine data usability and their descriptions. The filtration
was done in the order in which the tags appear in the table, and only one tag was given for
each station. They were removed from further checks if one of these conditions were met.

Tag Description (True if condition is met)
Insufficient data If number of NaN observations > α
Too small variations
about zero

If sum of area between y = 0 and SI was between β

Net negative values If sum of all numeric values < γ
No faults If none of the above conditions were met

The values for the three variables in the tagging filter were decided manually.

Which values were chosen affected the results, and thus, this filtration carried a bit

of a bias. If this algorithm were to be used in actual operations for utility-scale

solar, further testing would be required, but for this thesis, the values used were

considered reliable, good values. In this thesis, α = 300, while the number of days

(observations) was 812. The proportion of missing data acceptable before

conclusions are unable to be formed is a frequently discussed theme. For this thesis,

around 40% allowed missing data were considered acceptable at most, due to the

nature of the soiling signal [52]. The interval, β = [−0.8, 0.8], meaning that if the

sum of the areas landed in this interval, that weather station was tagged accordingly.

An example of this scenario is shown in figure 3.4. The sum of all values equates to

the sum of the areas marked red and green. The value γ was set to zero in this

thesis, but a negative number could also have been used if tests revealed that this

was needed. With the data used in this thesis, a value of zero was appropriate.
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Figure 3.4: Example of a soiling signal where the area between the graph and the x-axis
roughly equates to near zero.

3.3 Statistical analysis

The extracted data was mainly time-series data. This meant that quick overviews of

trends as functions of time were visualized. It was, however, not decisive enough to

base any meaningful results on time-series alone. To further analyze the data, some

statistical models were used. This allowed for greater confidence in findings and

formed the foundation for the conclusions.

3.3.1 Calculating soiling rates

The overarching goal of this thesis was to quantify soiling rates across different

plants, and examine if there were any local variations of soiling levels in the plant.

This meant not just finding the current soiling levels, but also the daily soiling rate

for each plant. In principle, identification of local extrema would set the limits for

where the interval of the rate of change would be calculated. However, to account

for uncertainties in the data, a method with greater confidence was deemed to be

the use of regression, as this method based itself on multiple data points through a

given interval.

Since the data already was void of any outliers, extra weighting of close versus

extreme values was not needed. The linear regression was then calculated in

intervals where the soiling signal was considered reliable, using the original, outlier

removed data; not the noise filtered mean function [53].
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The intervals were chosen manually, based on several criteria. If a decrease in SI

followed a registered cleaning event, this marked a local maximum. Equivalently for

sufficient rainfall events. As long as the data was deemed reliable, this maximum

was soon followed by a local minimum thereafter. These limits, when applied to all

data sets, then formed the interval in which regression was calculated within. For

large periods, no manual cleaning logs were present, even though the plant

operators knew that manual cleaning had occurred. There was no completely

certain way to determine where manual cleaning had been carried out in periods of

missing cleaning logs. As a result, manual inclusion of periods visually unaffected by

other events, which was ended by a steep drop in SI was done. Figure 3.5 shows

one example of un-logged but probable cleaning events. In this figure, two intervals

were then formed, visualized by the two slopes in between the three vertical lines

marking probable cleaning events.

Figure 3.5: An apparent increasing soiling signal with abrupt declines. This pattern was
used as an indicator that a manual, un-logged cleaning event had occurred, as marked with
the dotted red lines.

After a sufficient number of intervals with clear soiling trends were found for every

weather station in the analysis, daily soiling rates were calculated. The soiling rates

were calculated by

SRate% =
(b+m · x)− b

ndays

(3.3)

where the soiling rate, SRate%, was given for an interval with a linear regression
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line with the form given in equation 2.17, over ndays number of days. This gave a

daily soiling rate as an absolute percentage. For example, SRate = 0.1% meant

that the overall SI of that weather station increased by 1 every ten days, if

unaffected by cleaning events.

3.3.2 Finding relationships between SI and CPR

Correlation as a tool was used to examine the relationship between CPR and SR.

CPR was corrected for several variables, like temperature and irradiation, in

addition to four detectable losses. More on these losses in chapter 2.5.5 Therefore,

the correlation was expected to be significantly negative. There were two main

reasons for analyzing the correlation between SI and CPR. One outcome of this

analysis was that the two variables did not correlate. If that was the case, the

implication was then that either the data quality was poor for at least one of the

variables, or that there had been other performance-limiting events in the period

that went undetected. The degree of non-correlation between the two variables

indicated the degree of the aforementioned faults. The other outcome of the

analysis could be that the values did correlate significantly. If that was the case, the

effect soiling deposition had on overall plant performance could be found with a

better data foundation.

In this thesis, the correlation was analyzed in two ways for each weather station.

First, the entire time series of 812 days was supplied to the correlation function for

both CPR and SI. This gave an overall estimate for the entire time-period of over

two full years. However, as will be visualized later, most data sets in this thesis were

at times faulty or otherwise unreliable. This created a need for a more selective

characterization. Therefore, the correlation was analyzed inside the same intervals

chosen in chapter 3.3.1. Since these intervals were manually chosen to be quality

assured, this should, in theory, have alleviated most of the problems regarding poor

data quality. Finally, the results of the two correlation intervals were compared to

each other.

3.3.3 Uncertainty analysis

There are several tools for assessment of the uncertainty of results in data science.

Therefore, it is not always clear what the best method to use is. The principles used

in this thesis were based on several written works [44], [54], [55] and with support
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regarding simplification and application [56]. Since uncertainty analysis was

partially peripheral in this thesis, there were not allocated large amounts of

resources to extract all the parts which made up the uncertainty. For example, no

calibration and equipment uncertainty was collected, as that information was

classified. Also, some simplifications regarding the shape of the data set being

normally distributed and the way uncertainty was calculated was done.

Uncertainty analysis in PV soiling could have been an entirely separate thesis, and

some research has been conducted in this field already [57]. Therefore, uncertainty

analysis in this thesis was done to evaluate the general area of the soiling levels. As

previously mentioned, there existed other uncertainties throughout as well that

would decrease confidence in the findings. Lastly, because of unquantifiable sources

of errors, like missing cleaning logs and equipment downtime and extreme values,

the real uncertainty was probably larger than estimated in this thesis. In this thesis,

uncertainty was important to consider when calculating the daily soiling rates. It

was also useful when considering the fit of each regression line. Additionally,

principles from uncertainty analysis were also used when proposing a method that

could be useful for further work in this field.

Values were found for each slope of the daily soiling rates, based on equation 3.3

and the np.polyfit covariance matrix and residual summation [58]. The values

were given on the form

SRate = SRateval ±
√

Vary (3.4)

where SRateval was the calculated value from equation 3.3 and Vary was the

variance of y. The last component of the covariance matrix in the form given by the

np.polyfit function as

[
Var(x) cov(x, y)

cov(x, y) Var(y)

]

The soiling rates were also combined for each weather station, forming a mean

soiling rate throughout several time-periods. When discussing the uncertainty of the

mean, the measured mean value, SRatemean was defined as

SRatemean = SRateavg ±∆SRateavg (3.5)
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where SRateavg was the average value of all the soiling rates for a weather station.

∆SRateavg was given by

∆SRateavg =
SRatemax − SRatemin

2
√
N

(3.6)

where the maximum and minimum values were the corresponding extreme values for

the soiling rates in the weather station. The number of slopes, N , showed that the

uncertainty became lower when more slopes were considered in the calculation.

Finally, when looking at the plant average, the mean of all soiling rate means from

each weather station was the standard error, σ−
plant. This was considered the

standard deviation of the means. Thus, the absolute value of the plant average

soiling rate was given by

SRateplant = SRateavg ± 2σ−
plant (3.7)

where SRateavg was the average value between all mean measurements in the plant.

3.4 Analysis of cleaning events

Cleaning events were the biggest influences for sudden drops in the soiling level for a

PV plant. A better understanding of how SI evolved during periods of rainfall, or

how efficient manual cleaning was, could make future decisions regarding cleaning

more confident. Research was conducted on how the soiling level behaved through

two periods of rainfall at an average of 3.3mm to 4.2mm daily precipitation.

Additionally, the efficiency of manual cleaning was analyzed, but, as later explained,

due to a large number of sources for errors, these results were inconclusive.

3.4.1 Rainfall

There have been several studies regarding thresholds for when rainfall is considered

a cleaning event. For 50% of the soiling level to recover after a rainfall event, the

literature states rainfall around 2.2− 3.5mm is most likely [59], [60]. The latter

number is comprised of areas more akin to the plants in this thesis (Arabian

Peninsula amongst others), so a threshold at 3.5mm was used. Every day with

precipitation was noted, even the ones with a rainfall lower than this threshold.
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However, for a period to be characterized as a rainfall period, only the values above

the threshold were included as limits. This did not necessarily mean that rain above

the threshold was guaranteed to clean the panels with at least 50%, but it was an

indicator of when to expect sudden drops in the soiling level.

To analyze the behaviour of SI during periods of rainfall, two rainfall periods for

plant A were used. The two periods had 3.3mm and 4.2mm precipitation daily, for

187 and 89 days respectively. The rainfall was calculated cumulatively during the

entire period. The analysis itself consisted of visual comparisons and discussion

around the cumulative rainfall together with the soiling level throughout the rainfall

period. The analysis was made to find a precise estimate for the soiling levels during

periods of heavy rainfall. However, lower and upper thresholds for when rainfall was

considered sufficient for cleaning a panel were not found.

3.4.2 Manual cleaning of solar panels

For most weather stations across the several plants used in this thesis, manual

cleaning logs existed. Though, at most times, they were severely incomplete. The

existing logs stated which inverter, meaning the arrays connected to it, was cleaned,

and when. This was based on manual input by cleaning personnel. To examine the

efficiency of cleaning, the soiling levels before and after a manually registered

cleaning event were compared. To account for date-offsets as a result of manual

registration of cleaning events, the values before and after were compared to their

closest neighbouring values on the same side of the cleaning event.

41



Chapter 4

Results and discussion

4.1 Data filtration

In this thesis, work is being done on several hundred similar measurement stations.

It is not convenient to illustrate all this data as figures at all times. Therefore, one

example station, A ws02, is used throughout the entirety of this chapter as an

illustrative example. This particular station had overall good data quality, and can

therefore be seen as a representative station. Other figures are also presented in this

chapter, and for the most important illustrations, every signal can be found in the

appendixes.

4.1.1 Signal cleaning

To illustrate the magnitude of outliers in the data set, the variance within the time

series is shown for each weather station in figure 4.1. Similarly, the spread in

corrected performance ratio is shown as variance in figure 4.2. The variance in both

cases was calculated right after data extraction, meaning it was uninfluenced by

other filters. In addition to the visualized values, some un-physical, extreme values

were also present in the data.

Of the 80 weather stations first considered, 20 had variances above 13%. Multiple

stations had variances beyond the theoretical maximum of 100% for both SI and

CPR. After the outlier filtration, the magnitude of the variance was in line with

expected values, with a maximum occurrence around 30% for SI. The figure shows

that almost half of the weather stations had a SI variance close to zero or negative.
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This could stem from small variances as a result of an overall low soiling level, or

due to faults with the data itself. Variance is extremely susceptible to few, large

variations. Therefore, variance in itself is not a precise measure of data quality.

Variance in this thesis was used as an illustration of the spread in original data

versus the spread after some filtration. It was not used for decision making or as a

prediction tool.

Figure 4.1: Variance within the time series for each (80) weather station. The left fig-
ure shows the variance pre-filtration on a logarithmic scale, while the right figure is post-
filtration. Some extreme outliers are not shown.

Figure 4.2: Variance within the time series for each (583) power inverter. The left figure
shows the variance pre-filtration, while the right figure is post-filtration. Note that the
y-axis remains the same for both figures.

Figure 4.3 shows weather station A ws02 before and after outlier filtration. As seen,
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the filtrated signal is generally contained in a lesser interval on the y-axis, as the

largest outliers have been removed. Additionally, some local outliers that resided

between 0− 6% have also been removed. This was a result of the local, rolling

outlier removal.

Figure 4.3: Illustration of the difference in a raw input and the same data set after double
outlier filtration.

The global outliers were easily recognized visually and removed as they represented

little realistic values. Soiling levels should not rise that abruptly unless affected by

extreme weather events, especially not followed by an immediate decline towards a

normal level the next day. The local outliers, however, were less noticeable. Some of

them could be found by examining the areas where the filtrated data was

discontinued. Here, it seemed that sudden, proportionally small, changes from the

trend gave outliers. The consequence of this filtration was that some of the slope

values responsible for more rapid changes in the signal were removed. This did not

pose a problem later, as the noise filtering functions filled these voids with precise

assumptions where needed.

The outlier-removed time series are referred to as the original data sets for further

calculations. As argued, the new data sets represent reality better after the outlier

removal. As seen from these results, a simple outlier filtration should in general be

implemented early on in the data analysis for further uses. Another solution, which

was not done in this thesis, is to find the IQR for all weather stations in a plant

together. This can be done by averaging all values across stations for a mean signal

plant-wide. This way, only outliers that stray too far from the mean of all plants are
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removed, and not potentially correct but extreme values. This would yield a more

intact raw data set, but likely remove fewer outliers.

4.1.2 Categorizing quality of data

Categorization of possible error types was a key feature to implement, since the

scope of this thesis was to extract usable information from the dedicated

measurement stations. After outlier filtration was conducted, the weather stations

were passed through several filters. Each filter tagged the appropriate tag, from

table 3.3, if the given condition was met. The results of this characterization are

presented in table 4.1. Each weather station only got tagged once, even though

some stations could invoke several tagging conditions. The order of conducted

tagging ensured that data with little meaningful information got removed from the

checks before they were wrongly categorized.

Table 4.1: The counts of each characterization tag when labeling the quality of data for
all weather stations. The count is the number of weather stations that were tagged with
the respective condition.

Tag Count
No faults 25
Insufficient data 31
Too small variations about zero 23
Net negative values 1

A dilemma emerged at this point, as two possible interpretations of this tagging

were possible. The way this filter was set up, meant that for some signals, a

partially flawed time series would tag the entire signal accordingly. This would lead

to this station being considered of sufficiently poor quality, and excluded entirely

from further use. This did not indicate that the entire time series was flawed. Only

that certain parts were sufficiently so, as to invoke the tagging condition.

Only stations that passed this filtering process were included for further analysis.

This was a choice made early on in the process, for two reasons: Firstly, if parts of

other time series were to be used, further manipulation of the data was needed.

Some of these manipulations will be elaborated on later in this chapter. Secondly, in

some cases, it was not possible to determine how the soiling signal should translate,

meaning that problems like wrong calibrations and polarity issues were hard to

identify. In the interest of O&M, the removed data is still very useful, as the filters
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could indicate potential problems. Additionally, parts of the time series could be

further manipulated to produce actionable knowledge for plant operators. To

maintain as much scientific integrity as possible in this thesis, however, this was not

done.

Since several weather stations were excluded from further soiling quantification,

graphical representations of this data were not included in this thesis. To exemplify

each tag in the filter, figure 4.4 shows one weather station for each tag.

Figure 4.4: One data example of each of the four tags was used to characterize the quality
of the individual weather stations.

The weather station without any detected faults, seemingly had a relatively

continuous line with clear fluctuations throughout time. Still, noticeable noise

persisted. Some trends were unclear. At some points, the signal even passed

through zero and into negative values. No data measurement station is exempt from

issues, so minor inconveniences were expected. By passing the conditions of the

other filters, the weather stations in this category were considered credible enough

to use as a whole. Later, these stations were filtered further to remove periods of

poor data quality.

The time series considered insufficient information, was severely lacking to the point

of being unintelligible. The inclusion of these plants would only deteriorate the
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results, and not bring any worthwhile new information. A conclusion made on

incorrect premises is always worse than not concluding at all.

The single, net negative weather station had a seemingly clear trend. It seemed like

a regular soiling signal, only inverted about zero. This was most likely due to a

polarity inversion. As figure 4.5 illustrates, the SI seems to grant reasonable data

for the non-zero periods. The signal is still not very good after May 2021.

Naturally, this tagging result would allow plant operators to manually fix this

problem so that the measuring station could provide meaningful data in the future.

It could be possible that the station was correctly connected after this zero-value

downtime period, but no information regarding this was present.

Figure 4.5: Inverted signal of the net negative soiling index in figure 4.4. All original
values have the opposite polarity in this figure.

Lastly, the station with small variations about zero had signals with an amplitude

around a maximum of one. It is seemingly impossible to tell which way the signal

should go. Therefore, it is unwise to make adjustments without a broader

background, at least for scientific purposes. The two most likely scenarios (besides

faulty equipment) throughout the stations in this category were either

miscalibrations or polarity issues. The tagging filter would not extinguish polarity

issues in this case, since it was based on the mean of all values being in between

proximity to zero. Thus, polarity could still be an issue for stations that did not

register as net negative. One example station is re-calibrated in figure 4.6, through

a manually implemented offset on the y-axis. Note the shift of the entire data set

towards the lowest point at around zero. As evident here, this signal could prove
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useful for operations at the site, thus for further research, these kinds of errors

would need to be corrected.

Figure 4.6: Original data for one station and the re-calibrated values. Here, the calibration
coefficient, cnew = cold + 0.9. Note were zero on the y-axis is.

Potentially, more weather stations could have been used throughout the entire

analysis if they were calibrated correctly or polarity-reversed. As visible in the

figure, the new soiling signals seem to follow a trend, and could potentially contain

meaningful information. However, to not deteriorate the confidence in the findings

any further, these weather stations were discarded instead of re-calibrated. The

reasoning behind this is that a re-calibration would require either a manually

determined offset, or an automatic coefficient based on the lowest number in a

sample. Both alternatives would require setting a new calibration constant without

any other basis than the discord between soiling levels and expected values. If

quantification of soiling rates was detrimental short term, one could develop an

automatized re-calibration filter. To preserve scientific integrity, the preferable

choice was instead to not use these values. Many stations were more usable than

these, without the need for excess manipulation.

A problem that persisted throughout many signals, even the ones further used, was

“stale values”. These values could be identified by periods of alike signals or zeros,

as marked red in figure 4.7. This was an indication that values in this period were

unreliable, and should therefore not be included in the final analysis.
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Figure 4.7: A common occurrence where the soiling signal was zero for an extended period,
marked in red. This phenomenon, stale values, is an indication of poor data quality in the
observed time-period.

The automatic tag filters were developed only with the supplied data at disposition.

As such, the filter performed well with this data. However, there could be unwanted

results as a consequence of over-fitting the model to fit this exact data set [61]. If

this filter was the main goal of this thesis, additional measures would have been

taken. For example, this could be preserving a small selection sample to validate the

model. Since this filter was quite simple, continuous improvements based on further

supplied data are expected.

4.1.3 Noise reduction of signals

Due to missing data and outlier removal, none of the original time series were

complete. Additionally, the data was also noisy, meaning that clear cutoff points

were hard to identify. An example of this, is when analyzing cleaning events. Noise

created a need for an aggregate function of the real data set. The noise was defined

as the difference between the mean value over a window size of the original data, as

defined in [2]. Since the data was void of outliers at this point, the mean and

median gave approximately alike results. Several window sizes were tested. The

main two aggregate windows, together with the original data, are shown in figure

4.8. The linear interpolation values are shown in figure 4.9, which were needed when

calculating the noise-reduced values.
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Figure 4.8: Differences in the noise-reduced signal when the window size was increased.

When choosing an aggregate function to use, the window size of 7 days was deemed

the best representation of a noise-reduced signal, while still maintaining clear trends

present in the original data set.

Figure 4.9: The original data set with interpolated values are marked red.

4.1.4 Data sets fit for further analysis

All soiling indexes together with local rainfall and manual cleaning events are shown

in appendix A. In figure 4.10, the original data for the illustrative plant is shown.

The rainfall is measured in millimeters, and sourced from a plant-wide rainfall

measurement station. The dates align for the rainfall and SI signal so that each day

has both a soiling level and a corresponding rainfall amount. The manual cleaning

dates are illustrated by the dotted vertical lines. These manual cleaning events were
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logged manually by local cleaning personnel. This may have led to certain cleaning

days having an offset of a few days. Still, the rapid decline in SI is mostly easy to

spot. Visually, it seems that most cleaning dates align well with the soiling signal.

The cleaning logs were registered on the inverter level. Since up to ten inverters

could be linked to the same weather station, many values would vary slightly based

on inverter choice. For the most part, inverters around the same weather station

were cleaned simultaneously, plus-minus one day. When plotting the cleaning events

in the figures, the inverter in the closest proximity to the weather station was used.

There were, however, also some logged cleaning events for wrong inverters.

Therefore, some of the vertical lines marking a cleaning event could have been

falsely placed.

Figure 4.10: An overview of the soiling tendency at one weather station for the entire
period. The original values and mean line show the soiling levels for each day. The vertical
dotted lines indicate a manual cleaning event, while the amount of daily rainfall is shown
below.
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4.2 Quantification of daily soiling rates

For regression in a given interval to work, time intervals were manually created

based on two factors. The data points following a manual cleaning event, marked

the starting time in the interval. The end of the interval, was marked by continuing

upwards until a new cleaning event occurred. Rainfall was also considered a

cleaning event. In the interest of examining the two cleaning events for themselves,

intervals including rainfall events were kept to a minimum.

The regression was calculated over the outlier removed original data. Since NaN

values were incompatible with the regression, the missing values were interpolated

between existing ones. The regression slopes, together with the rolling mean values

of the weather station in figure 4.11. The absolute soiling rates are shown in pink

boxes in the figure, from left to right as the soiling slopes appear. The uncertainty

for each slope was calculated with equation 3.4, and is given as an absolute

percentage.

It was confirmed by the plant operators that manual cleaning of the panels had

been executed on many occasions, without this event being logged. This led to an

unwanted conundrum. The frequency and extent of the cleaning was unknown.

Therefore, it was impossible to pinpoint cleaning events with a hundred percent

certainty at all times. If the only valid intervals for soiling rate quantification were

those between registered cleaning events, the results of this data set would have

been lackluster. Most cleaning events were registered only in the few last months.

The solution to this was to manually determine intervals. Two major prerequisites

needed to be present for this manual approach to work. The soiling index data

points needed to be unaffected by cleaning events in the period, including rain and

manual cleaning. This was determined by the noise-reduced values, showing where

the moving average of the data points suddenly dropped. The other prerequisite

was complete and fault-free data in the intervals. Since interpolation was used,

voids between data points were filled linearly. In periods of poor data quality,

soiling rate estimates were not carried out. As such, most weather stations ended up

with two to four intervals where soiling rates were calculated. For some plants, more

intervals could have been chosen. However, since this approach was manual, it was

decided better to choose the most obvious slopes followed by clear, rapid descents

than to try and find more slopes on ambiguous grounds.
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Figure 4.11: The soiling situation for one weather station. The slopes, marking the ascent
of the soiling level in the selected intervals, are marked red in the figure. Cleaning events
in the form of rainfall and manual cleaning are also present.

The results of the soiling rate quantification by regression is shown in table 4.2.

Here, the soiling rates are given as the daily soiling level increase in percent of the

total soiling level. This means a SRate = 0.1% will increase the soiling index of the

plant by one after ten days. Uncertainty is given as a percentage of daily soiling

increase, not as a percentage of the mean value. The values were generated as the

mean of all calculated slopes for a single weather station, as described in equation

3.5. In appendix B, all weather stations and their corresponding slopes and soiling

rate values are shown.
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Table 4.2: The results of the soiling rate calculations. Each SRate is given as a mean of
all calculated rates for a weather station.

Weather
station

SRate (%) Weather
station

SRate (%)

A ws13 0.070± 0.007% B ws04 0.16± 0.01%

A ws10 0.065± 0.004% B ws02 0.153± 0.007%

A ws02 0.09± 0.02% B ws04 0.13± 0.03%

A ws03 0.083± 0.006% B ws04 0.100± 0.04%

A ws11 0.29± 0.09% B ws02 0.14± 0.02%

A ws04 0.09± 0.01% B ws04 0.14± 0.04%

A ws12 0.12± 0.04% C ws6 0.07± 0.02%

A ws05 0.16± 0.05% C ws7 0.07± 0.02%

A ws06 0.15± 0.03% C ws3 0.03± 0.02%

A ws07 0.19± 0.01% C ws6 0.035± 0.004%

A ws08 0.08± 0.02% C ws8 0.03± 0.03%

A ws09 0.10± 0.02% C ws3 0.05± 0.02%

It was evident that geographical area C experienced the lowest soiling rates of the

three locations. Area B had a relatively high soiling rate compared to the rest. The

soiling rates in A varied to a greater extent internally. Plant A had more weather

stations than the other plants, and was significantly larger in both production and

size. As such, larger variations were expected in the big plants, as soiling could

depend on local conditions. By examining the full illustrations of all calculated

soiling rates for each weather station, it seemed that the rates were in the same

order of magnitude internally for most stations. Some stations had variations up to

50% difference, but they were in the minority. For the illustrative station, A ws02,

the middle interval gave a less steep slope than the other two. There was a higher

degree of discord between the trend of the data points in this interval. It was clear

that an interval starting later would produce a steeper slope, more akin to the other

slopes. The uncertainty gave a quick indication of how close to reality the different

slopes were. Assessments like these were a big drawback of manually selecting

intervals. Since the shape of the data before the slope was unclear, and the mean

function suddenly dropped in the middle of the interval, automatized methods

would likely also face issues in this interval.

By including every SRate observation per plant in the calculations, an interval for
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the rates was found. These results are shown as box plots for each plant in figure

4.12. One outlier for station A ws11, at almost 0.5%, is not shown but can be seen

in the appendix.

Figure 4.12: The soiling rate distribution for each plant. All individual slopes are con-
tained as data points. With the exclusion of one large outlier in plant A.

For the plant averages, equation 3.7 was used, incorporating each weather station

average per plant. The results of this calculation are given below.

SRateA = 0.12± 0.01%

SRateB = 0.135± 0.006%

SRateC = 0.047± 0.006%

The soiling rates for both plants A and B were in the same general area. For plant

C, the soiling rates were significantly lower. This was perhaps a bit unexpected,

considering that both areas A and C were being categorized as medium dust
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exposed areas [19]. Again, since soiling levels can be localized, this result was not

unexpected. Based on studies from similar areas, values around 0.1% are in line

with theory for plant A [62], and even higher soiling rates have precedence in theory

for plant B [63]. Lower values, as found in plant C, are also previously found [64],

though often attributed to lower dust density areas.

Worth noting is the significant difference between the median soiling rate for plant

A given in figure 4.12, and the mean value that was calculated. The reason for this

discrepancy is the one outlier previously mentioned. Calculations by mean tends to

weight a few extreme values heavier than the median calculation does, for the same

data set.

The differences between the soiling rates of the plants varied. By examining the

daily mean soiling rate for each plant, an overall estimate of the economic

consequences of soiling can be proposed. For a given scenario, SI needs to exceed a

threshold of 5% before manual cleaning is performed. During a 2.5-year period, this

means that plant A is cleaned 10 times, as opposed to 11 times in plant B. Plant C,

however, is only cleaned four times during the entire period. Naturally, plant

operators may want to clean this plant more frequently as well, to maintain even

lower soiling losses. From here, it is only a matter of finding a threshold that

optimizes cleaning costs versus soiling losses. Since economic assessments are

outside the scope of this thesis, this is not elaborated further on, still, a low soiling

rate could potentially mean money saved over time.

The calculation of uncertainty was simplified in this thesis. Throughout the process,

uncertainty has been present: measuring equipment, on-site calculations, faults,

aggregation in external servers, data rounding, and the statistical calculations

performed. The complexity of uncertainty regarding soiling signals is high [57]. To

correctly quantify these uncertainties, the entire thesis would need to be dedicated

to this. In addition to systematic errors like equipment errors and calibration

offsets, more random errors were also present. This includes equipment downtime,

other undetected faults, the absence of complete logs, and the general randomness

of the soiling measurement stations themselves. These factors were harder to

account for, but may have skewed the results heavily. Therefore, the actual soiling

rate uncertainty may lie in a different interval than what was found in this thesis.

One of the most manual processes in this thesis was the selection of data intervals

to calculate the daily soiling rates for a weather station. At the start, a method
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using local minimum and maximum points to automatically generate intervals was

developed and tested. Although the method worked in terms of localizing intervals,

it was eventually set aside due to a few factors. The noisy nature of the input

signals lead to the local extrema being calculated as often as up to every four days.

This interval was deemed too short to correctly form a picture of large trends

plant-wide. By explicitly stating a window size to calculate extrema within, some of

the short window size problems were alleviated. However, this logic lacked finesse,

and was too general to use automatically for large numbers of weather stations. In

addition, different window sizes were necessary for each plant. The translation of

the soiling index signal varied across the time series for every weather station.

This required a degree of manual categorization yet again. As this method was

developed, complexity quickly increased in tandem. For example, a manual cleaning

event should form a basis for the start date of calculations. Ideally, the end date

should then be at the next cleaning event. This requires two prerequisites: One,

manual cleaning logs must be both complete and existing at all times. If not,

comparisons are made on a false basis, leading to false conclusions. Secondly, this

logic is crumbling if there exist any other cleaning events during the interval, like

rainfall. The method would have to find intervals between cleaning events not

affected by rainfall, and be certain that there was no un-logged cleaning happening

between the logged ones. Since the cleaning data was incomplete, and the

credibility of several data suppliers was lacking, a manual approach to selecting

intervals was deemed to be the most credible solution for this thesis. One added

benefit of this is the ability to examine the impact of rainfall through periods.

One factor that could prove detrimental to the results was the existence, and

absence, of cleaning logs. For some plants, the cleaning logs were nonexistent. For

most other plants, they were incomplete. Measures had been taken in terms of

improving registration of manual cleaning events later in the data set.

Unfortunately, this happened too late to be accounted for in this thesis. The main

consequence of this was the ambiguity and uncertainty in determining whether a

cleaning event had happened, or if the soiling levels just decreased naturally. For

several intervals for each weather station it seems like some cleaning events

occurred. This based on the way most of the data looked after outlier filtration,

with some rapid declines in the soiling index over a short period. It could be argued

that this trend was caused by natural cleaning events like wind and other external

factors. At the same time, it could have been caused by a manual cleaning event as
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well. The rapid decline in soiling levels, unattributed to rainfall or manual cleaning,

was not expected with as high frequencies as observed. For sudden rapid inclines in

the soiling level, weather phenomena like dust storms and general heavy soiling

deposition at times could explain those findings [50]. Based on geographical

location, certain plants in this thesis could experience extreme soiling depositions

from desert dust as often as every third day [20].

For further work in this field, some algorithms could be implemented. These

algorithms are not yet widespread, and would require more thorough testing before

implementation. Algorithms for detecting un-registered cleaning events exist [65],

and can be examined for further work. Other methods for examining soiling levels

have been proposed [66], [3] where the soiling levels were calculated from the yield,

as opposed to from soiling stations.

4.3 Correlation between SI and CPR

In theory, the corrected performance ratio should to a certain degree follow the

trend of the soiling level. A 0.24% daily decline in CPR as a result of soiling has

been observed at a test plant in Santiago, Chile [67]. This is in line with several

soiling rate estimates, at around 0.3% daily soiling level increases [25]. This

confirms that the corrected performance ratio described in equation 2.11 should

follow the soiling index closely, decreasing as SI increases. Still, the two

performance indicators are not expected to behave in perfect tandem, as there are

still many lesser losses unaccounted for. Examining the relationship between CPR

and SI yielded valuable information regarding two things: One, the volume of

unregistered performance-limiting events present in the plant. Two, if one or both

of the signals were faulty. Too large discrepancies between the expected outcome

and reality indicated that at least one of the aforementioned facts had occurred in

the given time period.

Firstly, SI and CPR were calculated and plotted for each plant that was included.

For five of the 25 weather stations, no inverter data was available. Since CPR is

dependent on inverter data, not soiling levels, these five stations were not included

in this sub-chapter. Figure 4.13 shows both SI and CPR in the same figure for

station A1 ws02. These signals were the noise-reduced signals, as the original data

had large fluctuations. As visible in the figure, the overall tendency for station A

ws02 seems to be that the two variables shared a connection, with CPR decreasing
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as SI increased. However, for each date, the still present noise in both signals

ensures that minor discrepancies still happen.

Figure 4.13: Both the soiling index and the noise-reduced corrected performance ratio for
A ws02.

Regarding correlation, the biggest difference between the original and the

noise-reduced signal was about 0.03 for the weather station with the largest

difference. In terms of correlation, where values range from zero to a one, these

percentages did not influence the conclusion at all. For the rest of this thesis,

correlation was therefore calculated with the original, interpolated data set.

Furthermore, many weather stations had periods in the time series that were

non-representative of the actual soiling levels. This could be duo to several reasons.

To account for partially flawed data sets, the correlation calculation between CPR

and SI was also executed on the manual intervals used in soiling rate quantification.

In that way, comparisons could be done on guaranteed better data, as these

intervals were chosen manually.

The correlation was calculated as aforementioned, and is shown in a scatter plot

with the correlation line and its confidence intervals in figure 4.14. The correlation

coefficient, ρ, is shown in the title of the figure. For each date in the time series, a

value for both SI and CPR exists. As such, each data point is visualized on the

x-y-axis. At SI = 0, CPR had values with a large spread. This could have

indicated stale values. As seen in figure 4.13, no such periods existed for this

station. The interpretation of this result could be that zero is likely to be a default
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value when stations experience downtime or other issues. Since there were no visual

periods of only zeros, these values were not removed.

Figure 4.14: Correlation between SI and CPR for the weather station A1 ws02. The
orange line indicates the correlation coefficient, with a confidence interval as the lighter area
around the line.

For the calculations regarding the entire time series for each weather station, the

coefficients had values in the interval [−0.06,−0.47]. As expected, this meant that

all weather stations had a negative correlation. Still, the correlation was relatively

weak. No clear-cut threshold for correlation coefficients marking a finding significant

exists, but it is commonly accepted that findings below ρ ≈ |0.8| are considered

non-significant correlations [68]. Therefore, none of the SI and CPR pairs over the

time series could be seen as correlating. The fact that all coefficients were negative,

indicates a slight trend displaying that as the soiling level of the plant increases,

overall performance tends to drop. However, because of the low coefficients, not

enough correlation existed to conclude that they were linked.

When analyzing the correlation for each manually selected interval, different results

appeared. The coefficients were found ranging from −0.90 to a positive 0.53,

showing a bigger spread than before. All values were counted, and are illustrated in
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figure 4.15. Each bin represents the count of coefficients inside the given interval,

and each count is the correlation between the two variables through a manually

selected interval.

Figure 4.15: Histogram showing the count of number of correlation coefficients for each
value in the bins. Each plant has a corresponding color as seen in the legend.

The variations were larger when analyzing smaller window sizes for the data. There

could be several reasons for this. The number of days for each interval was smaller

than an entire time series. The number of data points in the calculation could vary

from over 100 days, to 14 days. The consequence of this is that some periods had a

low number of data points. Naturally, such a low number of data points decrease

the confidence in the findings. Additionally, since some of the periods were

relatively short, other losses that went uncorrected for could play a part in offsetting

CPR to the point where it did not correlate with SI anymore.

To form a picture of what a negative correlation between SI and CPR could look

like, figure 4.16 shows the station and slope interval with the highest correlation of

all measurements. The trend and relationship between the two variables is clear,

with a little noise throughout. This noise could stem from minor

performance-limiting events. Nevertheless, from this signal, it is clear that the two
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variables share a relationship.

Figure 4.16: CPR and SI for a selected period with the highest (negative) correlation.

Figure 4.17 shows four different windows correlation was calculated over, each with

different results. Figure 4.17a shows the third largest negative correlation that was

found. There was a trend with CPR decreasing as SI increased. The values were

mostly in the same general area, with only a few outlying values for higher

CPR-rates. Additionally, the confidence interval, visualized by the weaker orange

area around the main correlation line, was located nearby throughout the entire

scatter-plot. This indicating an high degree of confidence in this correlation.

On the opposite side, figure 4.17b shows a positive correlation. This station also had

a relatively high degree of confidence. This finding was contradictory to what would

be expected if the corrected performance ratio did correct for events unrelated to

soiling. The most likely explanation, besides faulty data, is that an un-detected

performance-limiting event had happened in the lower SI parts of this exact time

interval. Thus, performance was reduced artificially low for the earlier days in this

interval, seeing as the soiling level increased over time in this interval. To find if
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(a) Strong negative correlation with high confi-
dence

(b) Medium-strong positive correlation with high
confidence

(c) Weak positive correlation with low confidence
(d) Weak negative correlation with low confi-
dence

Figure 4.17: Correlation between SI and CPR for the weather stations and slope numbers
given in the title. Plotted as scatter plots with coefficient lines and confidence intervals.

there had happened any un-detected performance-limiting events, this exact interval

was compared to the other interval in the same plant, as well as the intervals for the

other plants categorized as plants B in this thesis. Most CPR values for the other

plants in the same geographical location were between 80% to 85%, with occasional

values outside this range. This indicated that the CPR values shown in figure 4.17b

possibly were lowered by an external event that went undetected. If that is the case,

the expected, unaffected CPR in the early periods in this interval could have been

around 85% or above, yielding a negative correlation like most other similar

stations.

Both figures 4.17c and 4.17d show correlations with a low confidence level. This is

indicated by the large area of the light orange band around the correlation line. Due

to a low number of observations in the interval, it was difficult to know which values
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were just affected by the soiling level, and which values were affected by other

events as well. As visible by the confidence bands, the slope of the correlation line

would drastically change if a few of the included observations were omitted or

changed. Because of this, findings based on few observations were more exposed to

offsets due to un-detected events. Figure 4.17d additionally shows a scatter plot

with seemingly no detectable trend. The number of observations was not large, but

the spread between the values indicated no trend anyways. Again, this could have

been caused by un-detected events affecting parts of the time series.

The correlation between CPR and SI varied greatly. Since the corrected

performance ratio should account for several other production losses than soiling,

the correlation should have been stronger. Some variations in CPR were expected,

but not to a degree that would offset correlation by this scale. This is an indicator

that at least one part of the time series data was flawed to a degree, or that other

performance-limiting events had occurred. Ideally, the fluctuations in CPR should

follow the changes in SI. That way, a production loss (as a percent of ideal

production) could be attributed to each level of soiling. Since the correlation was

weak, production loss from the soiling level was not found, based on this data.

CPR could have lost some relevant values during the global outlier filtration, but

not enough to greatly influence the result. The soiling signal also passed through

the same filtration. A research project has executed more rigorous data exclusions,

by removing all values with changes more than 2% [69]. The lack of correlation is

both an important and useful finding, relating to undetected performance-limiting

events. Additionally, weather events like dust storms, heavy winds carrying soiling

particulates, or extremely local shade, could also lead to large changes in CPR, still

attributed to soiling [50].

4.4 Effect of cleaning events on soiling levels

The plants in this thesis were not all that exposed to rainfall. Two major downpour

events happened in plant A during the two years of data, with a third event

gradually starting towards the end of the time series. It seemed that the rainfall for

this location was localized mainly in the first half of each year, returning each

season. This aligns with expected rainfall in South America [70]. In addition to this

plant, one rainfall event that was further examined was the one event for plant B at

around 10mm rain. For plant C, some rainfall occurred, but the soiling signals were
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mainly unreliable or missing for the period, so these were not examined further.

The precipitation data itself was considered plausible, even for the plants that did

not experience rainfall at all through the entire two-year-plus period. Based on a

study, the average rainfall in area B, at least south of Cairo, is < 20mm/year [71].

These numbers may vary based on geographical locations and differ locally.

The first rainfall period in plant A is shown in figure 4.18. The cumulative rainfall

in blue increased over time, with some horizontal periods where no rainfall occurred.

The soiling index in this case was the mean of every noise-reduced signal for plant A

in the period. For the most part, the soiling index seemed to fluctuate between

1.0% and 1.5%, but fell rapidly towards the end of the downpour period despite no

relative increase in rainfall amount. Seven values were missing from the beginning of

the time series as a result of the noise removal since that was the window size.

However, these were not significant to the results.

Figure 4.18: The relationship between rainfall and soiling level for the first rainfall period.
The rainfall in blue is cumulative, meaning a perfect horizontal line gives no precipitation
for that day.

As identified in the previous paragraph, the cumulative rainfall started to flatten

towards the end of this period. Still, the soiling index decreased the most in the

same time frame. This indicated that another cleaning event had occurred across

the plant. Without longer data series or multiple other rainfall occurrences, other

explanations were hard to propose. Therefore, it was further presumed that this

occurrence was the result of manual cleaning, despite a small fraction of rainfall
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happening in the time period.

The second period of rainfall for plant A is shown in figure 4.19. Here, the soiling

signal started higher, just above 2.5%. It then rapidly fell towards 1.5% after a

large amount of rain. From here, as observed in the rainfall period for the previous

year, the soiling signal fluctuated between 1.5% and 1.0%. Rainfall in this period

was almost halved compared to the previous year, but the soiling index remained

roughly the same. This rainfall period lasted only 89 days, compared to 187 days for

2020. Therefore, the average rainfall was higher for 2021. Additionally, no evident

decrease towards zero happened in this time period.

Figure 4.19: The relationship between rainfall and soiling level for the second rainfall
period. The rainfall is cumulative, meaning a perfect horizontal line gives no precipitation
for that day.

Since no sudden decrease in SI happened in 2021, the occurrence in 2020 was

further solidified as a manual cleaning event. With this assumption, a conclusion

about the effect of rainfall on plant A could be formed. The amount of cumulative

rain for the second time period was only 60% of that of the previous year, but

spread over a shorter period. The soiling index did not remain significantly higher

or lower because of the difference in rainfall. Additionally, the soiling index in 2021

started relatively higher than the rest. It then declined shortly after rapid rainfall,

and stabilized in the same area as the other measurements. To simplify the result,

the daily rainfall for period 2020 was on average 3.3mm, and 4.2mm for 2021.

Based on these observations, the soiling index was kept between 1.0% to 1.5% for
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daily rainfall amounts between 3.3mm and 4.2mm. This while the soiling index

still was affected by a positive soiling rate.

With lack of other rainfall periods to compare with, a threshold for required rainfall

to completely clean a panel was not found. Oppositely, a lower threshold for rainfall

effectively counteracting the soiling rate only was not found either. It was not

possible to conclude if SI would stay near-zero SI through the entire rainfall

period, if cleaning was executed at the beginning. It could be evident that the SI

stabilizes around 1.0%, as rainfall struggles to remove the last parts of the soiling

particles. Further research would have to be carried out to form a more thorough

generalization of this problem. Additionally, for this analysis, only the mean of all

weather stations together was analyzed. There could have been local variations that

affected the result as well.

In plant B, the rainfall occurrence at around at around 10mm rain, was used to

investigate the effect of rain in this area. As can be seen in the appendix, this

applied to station B ws06 and B ws02. Weather station ws06 saw a SI decline from

around 5% down to about zero right after the rainfall. However, the other station,

ws02, went from 6% to about 2.5% from the same rain occurrence. It was difficult

to conclude what the reason for the disparity between the two was, without further

comparisons. Three likely explanations could be formed. The increased soiling level

(5% versus 6% before rainfall) could have rendered rainfall less effective at cleaning

the entire panel surface. Alternatively, since soiling can be an extremely local

phenomenon, the composition of soiling particles could have been different between

the two weather stations as well, thus affecting the efficiency of cleaning from rain.

Lastly, there was also observed one single value at zero after the rainfall for ws02.

This could be the “correct” soiling level, but due to the position of the rest of the

neighboring values, it seemed unlikely. Therefore, analysis of the effect rainfall had

on soiling levels in area B was inconclusive.

For geographical areas with similar soiling levels to plant A, as according to [19],

rainfall has been observed to clean panels to within 1% of the full power of an equal

non-soiled panel [72]. This is by accounting for an output difference of 0.8%

between the panel experiencing natural dust deposition and a panel being cleaned

regularly [73]. This could have transferability to this thesis, as there existed some

uncertainty regarding the calibration between the control and test panels. By

accounting for a certain output difference, the effect of rainfall would prove to be

better at cleaning the panels. Still, the fact that the soiling signal reached zero in
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figure 4.18 illustrated that rainfall might not have been any more effective after all.

Determining the efficiency of manual cleaning yielded an ambiguous result. The

uncertainty regarding whether or not some weather stations were correctly

calibrated led to results that might not have represented reality. When the soiling

level decreased down to a non-zero level, there was no way to determine if cleaning

was less efficient than expected, or if the calibration was offset leading to an

effective zero-level above the actual zero. The same problem could have been

present when analyzing the cleaning efficiency of rainfall as well. Though most

weather stations had multiple observations below the lowest observed SI in the

rainfall period, there was still some uncertainty connected to the calibrations, that

would have been necessary to address more thoroughly for a future research project.

Since logging of manual cleaning events mainly started too late for this thesis, the

foundations for an analysis of manual cleaning was weak. Additionally, some

cleaning dates may have carried an offset of several days. Lastly, not all inverters

represented the weather station being cleaned. Still, for some occurrences, the

weather station was still logged as being cleaned, despite it not actually being so.

By combining these factors with the calibration offsets, quantification of the manual

cleaning efficiency was inconclusive.
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Chapter 5

Conclusion

The main goal of this thesis was to examine how soiling data could be filtered and

analyzed to determine the soiling situation and its effects on the performance of a

utility-scale PV plant. This included developing methods to better filter between

good and poor data quality, and categorizing them accordingly. Additionally, the

relationship soiling levels had with both corrected performance ratio and cleaning

events were examined. Lastly, daily soiling level increases were found for each of the

three plants with sufficient data. Through data analysis, statistical analysis, and

general discussion, multiple interesting plant parameters were found.

The automatic filtration that was developed, led to parts of the initial data set

being removed. Since no intrusive post-processing, which could affect results greatly,

was used, these measurements were not included for further analysis.

The mean daily soiling rate for plant A, located in South America, was found to be

0.12± 0.01%. Equivalently, the mean rate for plant B, located in extremely dry

parts of Northern Africa, was 0.135± 0.006%. Lastly, plant C, located in dry areas

of Southern Africa, had a mean at 0.047± 0.006%. It was also found that the

soiling rates varied a lot internally, especially for plant A. The spread in soiling

rates here was up to 0.2%, possibly due to the significantly larger size of this plant

compared to the others. Examination of seasonal variations in soiling rates was not

conclusive, as the data sets were not long enough, or of sufficient quality to

determine changes with such low resolution. It was, however, observed seasonal rain

periods during the first half of all years for plant A.

The correlation analysis between SI and CPR indicated that the two variables were
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independent of each other. There was not found any correlation between the two

variables when analyzing the entire time series at once. There was, however,

correlation observed for some manually selected intervals, though the majority still

was uncorrelated. This could be explained by either poor data quality for at least

one of the two variables, or explained by other performance-limiting events that

went uncorrected by when calculating CPR. The latter explanation is most likely,

as not every performance-limiting event was detected. As such, the effect of soiling

levels on performance was not found, but the results of this analysis could still be

used as an indicative tool to measure unwanted events.

The analysis of cleaning events yielded some useful information, but no clear

thresholds for the amount of rainfall needed to completely clean the plant were

found. A decrease in soiling levels, as a result of manual cleaning, was not found,

mainly due to wrongly calibrated data and incomplete cleaning logs. Two rainfall

periods was present in the data sets, and the conclusion was that daily rainfall

between 3.3mm and 4.2mm on average, was sufficient to keep the soiling levels

between 1.0% to 1.5%. This finding indicated that for periods of rainfall, manual

cleaning of panels is likely not cost-effective.
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Chapter 6

Further work and improvements

To further expand on the ideas proposed in this thesis, ensuring better data quality

across weather stations would lead to more information being extractable. Several

ways to improve quality have already been discussed throughout this thesis, but the

main points are summarized as follows:

• Form a complete picture of manual cleaning in each plant. This requires

collaboration across fields, and at times even countries, but is detrimental if

cost-analysis is to be performed regarding soiling expenses.

• Further develop the categorization-filter used in this thesis. Flag the faulty

measurement equipment so that faults are detected. By implementing

automatic categorization, the troubleshooting of stations may become

alleviated.

• Re-calibrate all weather stations to current levels. This could be based on the

zero-level observed in practice for the data today.

• Filter more thoroughly through the data by removing all data points with

poor quality. In that way, only good data remains, leading to a cleaner, but

shorter data set through the period.

Not all of these points are necessarily feasible, or perhaps even needed, in

commercial operations. However, for the work in this thesis to reach its full

potential, these points would have needed to be considered. They all contributed to

a lessening of the confidence in the findings.

Real-life operational data is not always perfect, nor is it expected to be. Therefore,
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if the goals of this thesis are revisited in the future, dedicated test equipment should

be considered. This would not necessarily mean that data quality would improve,

but it would at least become more controllable than data from plants spanning

several hundred megawatts in total.

Otherwise, it would be interesting to further develop automatic filters for rapid

analysis of the data quality and possible errors for incoming soiling signals.

Lastly, one method that could be interesting to examine further is proposed. As

previously seen, two major factors for uncertainty in this thesis were the manual

selection of intervals, and the general low confidence in the data set. Additionally,

manual diagnostics and examinations are incompatible with the quick nature of

day-to-day operations in a PV plant. Therefore, a method or algorithm should be

developed to implement some of the suggestions in this thesis. This is not meant to

be a final algorithm, but is rather to be seen as a proposal or basis for further

research. One advantage of a method like this is, the fact that a more slopes can be

generated for each weather station, without the need for manual interaction once it

is implemented.

Method for automatizing soiling rate quantification

1. Thoroughly clean all input data sets.∗

2. Filter out noise, i.e. by finding the mean of multiple days.

3. Calculate the local minimum and maximum values for set win-

dow sizes and map one of each type to a pair based on the sign

of the slope in the original function.∗∗

4. Calculate regression slopes between all minimum-maximum

pairs.

5. Define a measurement for the fitness of the regression, i.e. by

RSS values.

6. Grant each calculated slope a numerical weighting based on dif-

ferent thresholds from the fitness.

7. Calculate the mean for every weather station or plant by incor-

porating all slopes, and also their weighting from the fitness.

∗ This includes outlier filtration and interpolation.
∗∗ The rolling window method can be used, as well as other methods. I.e. looking

at the derivative of the noise-reduced graph.
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Appendix A

Soiling index and cleaning events for

all soiling stations
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Appendix B

Soiling rate intervals and values for

all soiling stations

Note that the percentage value for each soiling rate is the percentage increase of the

soiling level in the plant. Uncertainty is also given in the same manner, so it is not

a percentage uncertainty, it is absolute.
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Appendix C

Soiling index and corrected perfor-

mance ratio

Only 20 weather stations were included in this analysis, as the last five stations did

not have corresponding CPR values. Both signals below are the mean values of

their respective data sets. This means that the visualized data is heavily noise

reduced, while still maintaining trends. As such, visual analysis is easier, without

much information being lost.
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