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Abstract

The penetration of Variable Renewable Energy Sources (VRES) in the power system
creates new challenges for the Transmission System Operators (TSOs). In the Nordic
Power System (NPS), consisting of Norway, Sweden, Finland and eastern Denmark, all
electricity is generated at the same frequency. When the system is in balance, meaning
production and consumption is on the same level, the frequency is 50.00 Hz. It is crucial
that the frequency remains stable. If the total load exceeds total generation, the fre-
quency falls. Too much generation, and frequency rises. Conventional generation plants
are connected to the power grid by means of rotating machines driven by a rotor, gen-
erating electricity at the desired frequency. Once in motion, the kinetic energy stored
in the rotor will keep the generator running, even if the mechanical force driving it dis-
appears. This effect is called inertia and is an essential inert part of the stability of a
power system.

VRES are not connected to the grid by rotating machines but through Power Electron-
ics (PE), and do not contribute to the system’s inertia. The increasing share of renew-
able energy sources leads to decreased power system inertia, and frequency stability be-
comes a concern. Therefore, the estimation of power system inertia has been of focus in
the NPS in recent years.

In order to secure frequency stability in the Nordic synchronous area, a new fast power
reserve will be introduced. Fast frequency reserves (FFR) will complement the exist-
ing primary reserves for disturbances (FCR-D). To plan for future operation, the aim is
to forecast the system inertia such that the instantaneous frequency minimum caused
by the loss of the largest generator can be assessed, and sufficient fast reserves are pro-
cured.

Since 2015, the Nordic TSOs have estimated and stored the value of system inertia by
calculating the sum of inertia contributions from synchronous machines connected to
the grid. This value is closely related to the amount of generation in the power system.
This thesis applied a top-down estimation using linear models with production data
as explanatory variables to estimate system inertia. Data from 2018 and 2019 on pro-
duction and inertia were collected. Data from January 2018 to June 2019 were used to
train models, and the models’ performance was tested on data from July and August
2019. On the Nordic level, these models received a Mean Average Percentage Error of
2 % on the test set, revealing potential of using this approach to forecast inertia by us-
ing production forecasts per production type.

The Nordic estimation of inertia level is a sum of estimations from Norway, Sweden,
Denmark and Finland, so models were also tested using data from each country. This
revealed that the Norwegian inertia estimation is already a top-down estimation. It was
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also found that the top-down estimation model is inaccurate in Denmark. The results
from Sweden and Finland indicated that conventional power production, such as nu-
clear, thermal and hydro, was relevant to models while VRES production was irrele-
vant.
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Sammendrag

Fremveksten av variable fornybare energikilder i kraftsystemet er grunnlag for nye ut-
fordringer for kraftsystemets systemansvarlige (TSO - transmission system operators). I
det nordiske kraftsystemet (NPS - nordic power system) som består av Norge, Sverige,
Finland og øst-Danmark genereres all elektrisitet med samme frekvens. Når systemet
er i balanse er produksjon og forbruk på samme nivå, og frekvensen er 50,00 Hz. Det
er avgjørende at frekvensen forblir stabil. Hvis total last er større enn total produk-
sjon, faller frekvensen. For mye produksjon fører til at frekvensen øker. Tradisjonelle
kraftverk er koblet til kraftsystemet gjennom roterende maskiner som blir drevet av en
rotor, som produserer elektrisitet med ønsket frekvens. Når maskinene er i gang, vil den
kinetiske energien som er lagret i form av rotasjonsenergi i rotoren holde generatoren i
gang, selv om en andel av kraften som driver rotoren faller bort. Denne effekten kalles
inertia, og er en avgjørende egenskap som påvirker stabiliteten i kraftsystemet.

Fornybare energikilder er ikke koblet til kraftsystemet med roterende masse, men gjen-
nom kraftelektronikk, og bidrar ikke til inertia i kraftsystemet. Den økende andelen
av fornybare energikilder fører derfor til at mengden inertia er synkende, og dette øker
bekymringen om frekvensstabilitet. Derfor har estimering av kraftsystemets inertia vært
et fokusområde i NPS de siste årene.

For å sikre frekvensstabilitet i det nordiske synkronområdet, vil en ny rask reserve bli
introdusert. Raske frekvensreserver (fast frequency reserves, FFR) vil fungere som en
ekstra effektrespons som et komplement til den eksisterende primærreserven for drifts-
forstyrrelser (FCR-D). For å kunne planlegge systemdriften er det et mål i NPS å lage
et prognoseverktøy slik at frekvensminimum som kan oppstå på grunn av utfall av den
største produksjonsenheten kan beregnes, og tilstrekkelig mengde med effektreserve kan
bestilles.

De nordiske systemoperatørene har siden 2015 estimert mengden inertia i systemet,
ved å beregne summen av bidrag av rotasjonsmasse fra alle synkrontilkoblede mask-
iner til enhver tid. Denne verdien er nært knyttet til mengden produsert effekt i kraft-
systemet. I denne oppgaven ble en ovenfra-og-ned estimering tilpasset, for å estimere
systemets inertia basert på lineære modeller som benytter produksjonsdata som forklar-
ingskolonner. Data om inertia og produksjon fra 2018 og 2019 ble samlet inn. Data fra
Januar 2018 til Juni 2019 ble brukt til å trene lineære modeller, og modellenes ytelse
ble testet på data fra Juli og August 2019. På et nordisk nivå fikk disse modellene et
gjennomsnittlige prosentavvik på 2 % i testperioden, som tyder på at slike modeller kan
benyttes i prognosemodeller ved å benytte predikerte produksjonsverdier per produk-
sjonstype.

Den nordiske estimasjonen av inertia er en sum av estimasjoner fra Norge, Sverige,
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Danmark og Finland. Modeller for hvert av disse landene ble derfor også testet. Disse
avslørte at den norske inertiaestimasjonen allerede er en ovenfra-ned estimasjon. Videre
avslørte resultatene at en ovenfra-ned estimasjon er unøyaktig i Danmark. Resultatene
fra Sverige og Finland indikerte at konvensjonelle produksjonstyper, som kjernekraft,
termiske kraftverk og vannkraftverk har forklaringspotensiale i ovenfra-ned modeller,
mens fornybare energikilder ikke bidrar i slike modeller.
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Chapter 1

Introduction

1.1 Background
The future is electric, is the motto of the Norwegian state-owned enterprise Statnett,
the transmission system operator (TSO) in Norway. Indeed, electricity is the backbone
of the technological growth mankind has experienced in the last hundred years, and
electricity demand will only continue to rise as more and more sectors are electrified.
There are many appealing characteristics of electricity. It is an excellent energy carrier
with great convenience in terms of transmission and conversion. Further, the energy
quality of electricity is very high, meaning that electricity can be converted with high
efficiency to other energy forms, such as heating, lighting or kinetic energy (e.g. making
an electric vehicle move) [1].

Electrical power is distributed through power systems. At the very beginning of the his-
tory of electricity, a standard power system consisted of individual generators connected
to matching loads, usually for lighting purposes [1, 2, 3] Since then, power systems have
increased in size, motivated by various technical, social and economical factors. Inter-
connection of neighbouring utilities has usually led to improved system security and
economy of operation. The security of supply increases as the utilities from different
regions can assist each other. The economy of operation increases because a combined
larger system needs less generating reserve capacity than two smaller systems. Intercon-
nection also permits the utility always to take advantage of the most economical power
sources. Since the beginning, these benefits have been recognised, and power systems
around the world continue to strengthen transmission interconnections. An example of
this are the high voltage direct current (HVDC) links that tie the Nordic Power System
(NPS) and the synchronous grid of Continental Europe together.

In 2020 and 2021, two new HVDC links were connected: NordLink, from Sirdal to Wilster,
Germany, and North Sea Link from Kvilldal to Blythe, England. In Statnetts net devel-
opment plan [4], Statnett points out that these new HVDC links may lead to a more
complex system operation due to higher variability of power flow and more intraday
variations.
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Nowadays, in modern society, we take electricity for granted and use it for every pur-
pose in our daily activities. Electricity is widely used for industrial, domestic and leisure
purposes. Since electricity plays such an essential role in our everyday life, the opera-
tion of the electrical power systems must remain reliable, no matter the challenges that
occur. This has been, and will continue to be a huge task, as the interconnected power
system is a large system of enormous complexity.

Industrialization and urbanisation have resulted in severe environmental pollution of
our planet. A significant contributor to this pollution is the release of Carbon Dioxide
(CO2) to the atmosphere. Consequently, the authorities and political leaders in different
countries have developed strategies and created plans on how to decrease CO2 emis-
sions. These strategies mainly focus on two solutions. We can either use less energy,
by reducing our demand or making our energy consumption more efficient. To succeed,
we must most likely do both. An example of reducing overall energy usage is electrifi-
cation since electrical technology is more energy-efficient than fossil. In addition, tra-
ditional fossil energy production is being replaced by clean electricity from renewable
energy sources (RES) and is expected to decrease from the current mix of about 66 %
to around 31 % by 2050, according to Bloombergs New Energy Outlook 2019 [5]. In
this outlook, wind and solar will supply almost 50 % of world electricity in 2050, while
in Europe, wind and solar is expected to account for 80 %.

New challenges for the power systems

The changes in system configuration impact the operating conditions, creating new
challenges that the System Operators (SOs) must face and handle. Despite having an
overall positive impact on the environment, the intermittent and distributed nature of
the new power plants is forcing the system closer to its safe operational limits. Whereas
production capability traditionally has been located in large power plants, with a high
degree of control on production capacity, the future will see a higher share of uncontrol-
lable, highly volatile production, forcing SOs to measure and model system components
more accurately. Further, the traditional measures to ensure safe operation might need
to be replaced by means of new technology. Balancing the system in the future will re-
quire faster, more accurate actions.

To ensure a reliable power system operation and find ways to withstand severe distur-
bances, SOs are conducting various analyses regarding power system stability. Power
system stability is by Kundur et al. in [6] defined as "the ability of an electric power
system, for a given initial operating condition, to regain a state of operating equilib-
rium after being subjected to a physical disturbance, with most system variables bounded
so that practically the entire system remains intact". Further definitions and classifica-
tion of power system stability can be found in [6] and [2]. The classification from [6] is
shown schematically in Figure 1.1. The focus point of this thesis is related to frequency
stability.
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Figure 1.1: Classification of power system stability. The figure is a copy from Kundur et
al. [6].

There are still no good ways to store electricity. Surely, household batteries, and elec-
tric vehicle (EV) batteries are doing their purpose, but there are no efficient and eco-
nomical ways to store large amounts of electrical energy on a larger scale. Therefore, in
a power system, the amount of active power generated and imported (hereafter called
generation) should always equal the active power consumed and exported, including
system losses (hereafter called load). The system operators must ensure that this bal-
ance is perfect, and the measure of this balance is the system frequency. The frequency
of power systems in Europe has a nominal value of 50 Hz.

In the case of an active power imbalance between generation and load, the frequency
will deviate from its nominal value. The frequency of the electric power system should
remain in a specific range, close to its nominal value, to ensure that the system com-
ponents are operating in safe conditions. The normal frequency band in the NPS is
49.9 to 50.1 Hz. If frequency falls below or rises above the normal frequency band, SOs
will initiate measures. Initially, this involves using the Frequency Restoration Reserves
(FRR) to increase/decrease generation.

In more critical events, for instance right after a disturbance, one can expect the fre-
quency to drift outside the normal operating limits. In these cases, the different power
grids define their own frequency limit values and usually list specific actions that should
be taken if the frequency drops below, or rises above the set limits. These actions are
designed by proper authorities to reduce the risk of damaging system components and
prevent a system collapse. Examples of such actions are the disconnection of system
components, such as loads in the case of undergeneration, and even power plants in the
case of overgeneration. The disconnection of system components could lead to unde-
sired events, such as further uncontrolled system separation, cascade effects or even
worse, a total system blackout. Even though there are not many recorded cases in re-
cent history, the impact can be huge; In London, on August 9th, 2019, approximately 1
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million customers lost power for 15 to 45 minutes due to a chain of unfortunate events
in the power system [7]. In 2003, on September 28th the entire Italian power system
blacked out, affecting around 45 million people. Complete restoration of the power sys-
tem took 19 hours [8].

A power system is frequency stable when it maintains a frequency within the allowed
frequency band after a disturbance causing an imbalance between generation and load
[6]. As indicated in Figure 1.1, frequency stability includes both short term and long
term components. Short term frequency stability refers to a time frame of up to tens
of seconds, usually caused by fast frequency deviations occuring due to momentary
power imbalance. Long term refers to frequency instabilities that may range from tens
of seconds to minutes and could be caused by inadequate amount of reserves to keep
the power balance at the nominal frequency. The focus point of this thesis is related to
short term frequency stability.

There are three significant contributors or factors regarding short term frequency stabil-
ity:

• Amount of active power imbalance

• Available reserves

• System inertia

The active power imbalance refers to the momentary difference between generation and
load after a disturbance1. The larger this active power imbalance is, the greater the
instantaneous frequency deviation the power system will suffer. SOs must regard the
maximum instant frequency deviation in an N-1 event when planning the future opera-
tion. This means that the power system should remain stable even with the loss of one
component. In the Nordic Power System, the greatest size of a single disturbance2 is
1,450 MW, and it is caused by the disconnection of the power plant Oskarshamn 3 [9].
The dimensioning incident defines the required reserve capacity [10], and it is perhaps
not so surprising to see that the new HVDC interconnections to Germany and UK have
a capacity of 1,400 MW [11, 12].

The power system inertia determines the frequency behaviour the first few seconds after
a disturbance. In the event of a disruption causing a power deficit, e.g. the tripping of
a central power plant, the immediate response is the release of kinetic energy3 stored in
the rotating masses of the synchronous machines connected to the grid. This effect is
referred to as the system’s resistance to change. All rotating masses synchronously con-
nected to the system contributes to this resistance with their kinetic energy. As a result
of the immediate release of kinetic energy, the synchronous machines slow down, caus-
ing the system frequency to decline, creating an underfrequency event. On the contrary,
if a power surplus occurs, the inertial response is the absorption of kinetic energy by ro-
tating masses synchronously connected to the grid. In this case, the machines will begin
to rotate faster, driving the system frequency up creating an overfrequency event.

1In this thesis, when referring to a disturbance, it means the sudden disconnection of a significant
component, such as the trip of a big distribution transformer, a HVDC link or an entire power plant.
The small load changes that are continuously happening are not considered.

2Also called dimensioning or reference incident in literature.
3In this thesis, the terms kinetic energy and inertia are used interchangeably.
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A graphical representation of this relationship between inertia, generation and load is
presented in Figure 1.2. The impact inertia has on frequency behaviour is analogous to
a spring, where the spring’s greater stiffness refers to a higher amount of system inertia
and vice versa. According to Future system inertia [13], "power system inertia is the
ability of a power system to oppose changes in system frequency due to the resistance
provided by rotating masses". Because the generation mix between operating days and
hours change, the system inertia will also change.

Figure 1.2: Relationship between inertia, generation and load. Inertia is represented by a
spring. Adapted from [14].

Traditionally, overfrequency events are much easier to solve than situations leading
to underfrequency. Firstly, the NPS’s dimensioning component for an overfrequency
incident in the NPS is much lower than an underfrequency event.4 Secondly, overfre-
quency situations can be met by simply decreasing generation. This is easily solved by
having power plant governors reduce the generator’s output, or by having more power
transferred out of the power system via HVDC links. Because of this, overfrequency
events do generally not normally affect system performance, and hence, the literature
and studies on the topic are mostly related to underfrequency events. Underfrequency
events require the increase of generation. If there is no way of increasing generation,
load has to be cut. This is known as Under Frequency Load Shedding (UFLS), leading
to power not being delivered to end-users.

In general, a power system with a lower amount of kinetic energy connected to rotat-
ing masses (hereafter called inertia) will be less resilient to frequency deviation. This
is because such a system can extract less power from the rotating masses. Effectively,
the frequency will fall lower and faster. Having as much inertia as possible in the power
system is therefore desired. Previously, inertia connected to power systems has been an
"ignored" effect, as most of the generation has originated from big synchronous gener-
ators. With the shift of generation to devices connected to the system through power
electronics, there is a tendency for system inertia to be reduced, and inertia has become
a focus area. In 2013, the Nordic Analysis Group (NAG) initiated the project "Future
system inertia". This project aims to improve knowledge of power system behaviour re-
lated to system inertia. One of the main interests was to know the amount of system

4This will change when the new HVDC cables are finished, but is not a focus of this thesis.
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kinetic energy, to plan and maintain system operation as efficiently and securely as pos-
sible. NAG has published two reports, Future system inertia 1 [13] and 2 [15].

1.2 Motivation
With system inertia decreasing, imbalances will cause larger instantaneous frequency
deviation. Low inertia situations arise in the summer period, often at nighttime. When
NordLink, the new subsea cable connecting the Norwegian and German electricity mar-
kets, is commissioned, it is expected that the number of low inertia hours will increase.
A system having low inertia and at the same time having large dimensioning incidents
are leading to an increased risk of UFLS in case of a sudden N-1 imbalance. Currently,
in this situation, the Nordic System Operators (SO) is managing this risk by limiting
the magnitude of the highest possible frequency deviation [16]. During the summer of
2019, this was achieved by having Oskarshamn 3, the largest power plant connected
to the Nordic system, reduce its active power output by 100 MW when inertia fell too
low [16]. Having nuclear plants reduce their power output is an imperfect solution, as
nuclear plants are driven under strict restrictions. Having them reduce the production
takes time, and is sometimes not even possible. If the highest dimensioning fault in the
power system is the trip of a HVDC cable, another measure is to limit the capacity of
said cable, which is an unwanted intervention in the power market.

Therefore, the Nordic SOs aim to implement very fast activated reserve power, acti-
vated in a fault event. The NAG has concluded that implementation of Fast Frequency
Reserves (FFR) is the best measure to meet challenges related to low inertia situations.
FFR will work as a primary response when system frequency falls below a set thresh-
old. [17]. In order to decide the required volume of FFR, good prognosis tools of system
inertia have to be implemented.

1.3 Scope
This study will focus on system inertia in the NPS. The Nordic TSOs have since 2015
estimated the kinetic energy of the Nordic power system (Norway, Sweden, Finland and
eastern Denmark). This estimation is based on real-time telemetry of individual genera-
tors. In "Ensuring future frequency stability in the Nordic synchronous area" by Eriks-
son et. al [18], this is called a bottom-up approach. In the same paper, a top-down
approach is proposed, estimating inertia based on production per generation type and
using a generic inertia constant.

This thesis aims to implement and study a top-down estimation of system inertia. This
work will use a combination of visual inspection and data-driven modelling with linear
models to study the top-down approach. The models and results will be compared to
the historical estimations done by the TSOs with a bottom-up method. This is a step
in the current work done by the Nordic TSOs on improving the inertia forecasting tool.
The idea of this thesis came from Statnett, where Landssentralen already has a proto-
type forecasting tool running. However, this thesis is not linked to this prototype but
is a free-standing exploratory analysis. Because future information on generating units
connected to the system is unknown prior to operation, a bottom-up method is unsuit-
able for forecasting system inertia. However, forecasts of generation/load are generated
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with a 7-day horizon, meaning that a top-down estimation model potentially can be
used to forecast system inertia with the same time horizon.

The main goal for the work of this thesis is:

M Develop linear models using production data that can estimate the amount of ki-
netic energy in the Nordic Power System.

The first step to achieve this goal is to create a dataset of historical values of inertia
and load/generation, and after that train models using subsets of the dataset to esti-
mate system inertia. The focus is to estimate model accuracy, to explore which features
are most relevant, and to compare the differences when adding or reducing constraints
on the models.

As this is a master thesis with limited time, the analyses are performed on historical
data. Keep in mind that all data used is real historical data, and all analyses are per-
formed in order to potentially increase the model accuracy of forecasts. Forecasting
load and consumption in the NPS is done by various companies and service providers,
and is NOT a focus in this thesis. In this essence, the results of models created in this
thesis can be looked at as "best case" models, with perfect forecasts of generation per
production type and price area.
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Chapter 2

Theory

This chapter provides an overview of the theoretical background concerning the power
system relevant to this thesis, including power system frequency and stability. The last
section in the chapter contains theory regarding supervised learning and linear regres-
sion models, upon which the methods of the thesis is built.

2.1 The Nordic Power System
The Norwegian power system is a part of the Nordic Power System (NPS), consist-
ing of Norway, Sweden, Finland and the eastern part of Denmark (corresponding to
elspotarea DK2, Figure 2.1.). The frequency is close to uniform within this area, with a
nominal frequency of 50 Hz, and a normal frequency band between 49.9 Hz and 50.1 Hz.
Through HVDC links, NPS is further connected to the Baltic countries and the conti-
nent. Different production mixes characterise the energy systems of the Nordic coun-
tries. In the following, the data source is the International Energy Agency’s data and
statistics page on electricity, [19]. In 2020, Norwegian power plants produced 154 TWh,
with hydropower accounting for 92 % and 6 % coming from wind power. Towards 2050
the total generation is expected to rise to around 200 TWh, mainly driven by an in-
creased share of wind power plants (25 %), according to Statnetts long-term market
analysis [20]. Swedish power plants produced 163 TWh electric energy in 2020, with a
combination of mainly hydro- and nuclear power, accounting for 44 % and 30 % respec-
tively. The remaining production is wind power (17 %) or thermal power plants. Stat-
nett expects the share of wind power in Sweden to increase from 23 TWh/y to 85 TWh/y
towards 2040, while nuclear power plants will be decommissioned [20]. Finlands yearly
production was 69 TWh in 2020, with a mix of power sources; Wind (12 %), Hydro (23
%), Nuclear (34 %) and regular thermal power plants using biofuel (16 %), coal (8 %)
or natural gas (5 %). Denmark has mostly wind (57 %) and thermal power plants (39
%), producing 29 TWh in 2020.

Price areas in the Nordic Power System

The entire Nordic region is a single electricity market divided into different price ar-
eas/Elspot areas. A more extended discussion of the Nordic power market is out of
scope in this thesis but is described in detail in [21]. Power within this market is traded
in the Nord Pool power exchange [22]. The purpose of dividing the region into price
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areas is to take into account limitations in the transfer capacities in the grid. Since
November 2011, Norway has five price areas, Sweden has four. Finland operates with
only one price area. Denmark is split into two price areas, and the Danish grid has two
separated transmission systems. The western part of Denmark is price area DK1 and is
connected to the synchronous grid of Continental Europe. The eastern part of Denmark
is price area DK2 and is connected to the Nordic synchronous grid. Therefore, in this
thesis, only data from DK2 is of interest. The approximate location and borders of each
price area are shown in Figure 2.1.

Figure 2.1: Illustration of the Nordic Power System, divided into Elspot areas. Figure is
adapted from [23].
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2.2 Frequency
As mentioned in the introduction, the frequency of a power system can be considered
an index that represents the balance between generation and load. The frequency should
stay between specified limits and close to its nominal value. In the NPS, this reference
value is at 50.00 Hz. The TSOs continuously monitor the frequency to ensure a stable
operation.1 The total generation should be equal to the total consumption. The system
frequency will stay at its nominal value if this criterion is met. Significant deviations
can harm the components of the system, and cause interruptions to the electric supply
of the customers. In Definition and Classification of Power System Stability, by Kun-
dur et al. 2004 [6], frequency stability is defined as the system’s ability to keep a steady
frequency after an event leading to a significant deviation. The TSOs task is to operate
the power system in such a way that equilibrium between generation and load can be
restored, without unintentional loss of load.

Immediately following a large power imbalance, for example a trip of a production unit,
the deficit in power will be delivered from all synchronously connected rotating masses.
That is, power is extracted from the kinetic energy of the rotating masses, causing the
rotation to slow down, and thereby the grid frequency decreases [2], [13]. Therefore,
initially after a disruption, the generation or power delivered into the system remains
the same as before the disturbance. This effect, called the inertial response, enables the
turbine governors to react to the disturbance. The decreasing frequency will trigger Fre-
quency Containment Reserves (FCR), that injects active power into the system. Even-
tually, the system will reach the maximum instantaneous frequency deviation, and the
synchronously connected machines will begin to accelerate again while the FCR is cov-
ering the power deficit. The inertial and governor response (FCR) constitutes the fre-
quency response of the power system. Figure 2.2 displays frequency behaviour consider-
ing different amounts of kinetic energy in the system. The solid lines represent a system
with FCR, and the dotted lines represents a system without FCR. A higher amount of
kinetic energy results in a slower frequency drop, with a higher minimum instantaneous
frequency. For the cases without FCR, the frequency will continue to drop without re-
covering.

Frequency deviation may harm the system components, as these are designed to oper-
ate close to the system’s nominal frequency. A drifting frequency is a risk mainly for
the synchronous machines connected to the system, generators and synchronous motors,
as the internal windings may experience irregular current flow and become overloaded.
For this reason, synchronous generators are equipped with relays set to trigger in the
events of over- or underfrequency conditions. If a generator disconnects because of un-
derfrequency, this will cause further frequency drop since the imbalance between gen-
eration and load is amplified. A cascade effect - or even a blackout - can be provoked
since the additional frequency drop may trigger more generators protection schemes. In
such situations, system operators have to disconnect loads to prevent a system collapse
or blackout and restore the system balance. This is called Under Frequency Load Shed-
ding.

1A real time visualization is provided by Statnett on their webpage https://www.statnett.no/
en/.
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Figure 2.2: The effect the amount of kinetic energy on frequency behaviour following a
loss of production. Solid lines represents a system with FCR, and dotted lines represents a
system without FCR. The figure is copied from Future System Inertia [13].

2.3 Swing equation
To understand the inertial response of a power system, one should first study the swing
equation. This equation explains the main physics behind the concept of frequency
change. Derived from Newton’s second law for rotation, the swing equation relates the
acceleration or deceleration of a synchronous generator and turbine to the imbalance
between mechanical- and electrical torque. For a single generator Gi, Newton’s second
law of rotation gives

Ji
dωmi

dt
= τmi − τei. (2.1)

Here, Ji is the total moment of inertia of the turbine, shaft and rotor given in [kgm2],
ωmi is the mechanical angular velocity of the rotor in [rad/s], τmi is the mechanical
torque in [Nm], and τei is the electromagnetic torque in [Nm]. This equation is called
the swing equation. It is possible to write this equation by means of power simply by
multiplying by ωmi, so

ωmiJi
dωmi

dt
= Pmi − Pei, (2.2)

where Pmi = ωmiτmi is the mechanical input to the generator expressed in [W] and
Pei = ωmiτei is the electrical power output of the generator, also in [W]. The inertia
constant Hi of a single generator Gi is given by the following equation:

Hi = 1
2
Jiω

2
mi

Sni

. (2.3)
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In this equation, it is evident that Hi is a function of ωmi. However, it is a reasonable
assumption that even during frequency events, ωmi does not deviate significantly from
the generators rated mechanical velocity ωmsi. This way, Hi can be considered to be a
constant given by

Hi = 1
2
Jiω

2
msi

Sni

. (2.4)

The inertia constant is given in seconds [s] and represents the time that it takes to im-
mobilize a generator rotating at synchronous speed, while no mechanical power is pro-
vided and still delivering electrical power. Depending on the type of generator, inertia
constants are in the range of 1-10 seconds [3], [24].

2.4 Inertia of a power system
If inertia constants and rated apparent powers of individual turbine-generators are known,
the inertia of an entire power system Hsys can be calculated as

Hsys =
∑N

i=1 SniHi

Sn,sys

[s], (2.5)

with Sn,sys = ∑N
i=1 Sni and Sni being the rated apparent power of generator i in [VA]

and Hi being the inertia constant of the same generator i.

Synchronously connected motors to the power system is also contributing to system
inertia and should be included in the same way as generators.

The TSOs in the NPS is not monitoring the system inertia in seconds, but are instead
monitoring a closely related measurement, namely the kinetic energy of rotating masses
connected to the system. System kinetic energy can be expressed in terms of energy
[MWs] or [GWs] by writing Equation 2.5 as:

Ek,sys = Sn,sysHsys =
N∑

i=1
SniHi [GWs]. (2.6)

2.5 Frequency behaviour
There will always be power changes in consumption and production. Small power changes
are only visible as noise in the frequency, because of the large number of rotating ma-
chines contributing with inertia in the power system. However, for larger power imbal-
ances, the system frequency can deviate further from the nominal value. The change in
frequency is depending on the actual power imbalance ∆P , and on the amount of sys-
tem inertia in that instant. The dynamic behaviour of every individual generator can
be described using the swing equation:

Hi
dfi

dt
= f 2

n

2Snifi

(Pmi − Pei) , (2.7)

where fi is the frequency of generator i, fn is the nominal frequency, Pmi is the mechan-
ical power of turbine-generator i, and Pei is the electrical power of generator i [13].
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Equation 2.7 shows that an imbalance between mechanical and electrical power of a
generator will result in the change in frequency with time. This frequency derivative
will be dependent on the imbalance (Pmi − Pei), and inertia Hi of the generator.

In a power system there will be a large number of generators, and a transmission net-
work connecting generators to the load. Hence, the frequency drop due to an imbalance
in one part of the system will not transmit uniformly. The generators with the small-
est electrical distance to the fault location will be the first reactors. This is elaborated
upon in Future system inertia 1 [13], which also includes a worked example of the fre-
quency response in a simplified network consisting of two generators and one load.

2.6 Ancillary Services
Ancillary services are operational reserves procured by the Transmission System Oper-
ators to balance supply and demand and maintain power quality. Examples of services
include voltage control, black start capability and grid loss compensation. Since this
thesis focuses on frequency control, this subsection will focus on the balancing market.
As stated previously, the frequency in the power system is constantly changing. To ad-
just and fine-tune the balance between load and generation, the Nordic TSOs are buy-
ing reserves in balancing markets. The Nordic region divides the balancing market into

• Primary reserves - Frequency Containment Reserves (FCR)

• Secondary reserves - automatic Frequency Restoration Reserves (aFRR)

• Tertiary reserves - manual Frequency Restoration Reserves (mFRR)

Figure 2.3 illustrates the activation and response time of the three types of reserve, in
addition to the inertial response. FCR and aFRR are activated automatically in re-
sponse to measured frequency changes, and tertiary reserves (mFRR) are activated
manually by the Nordic TSOs if needed [21], [25].

Figure 2.3: Illustration of activation and response time of the balancing reserves in the
Nordic Power System. Primary reserves (FCR), secondary reserves (aFRR) and tertiary
reserves (mFRR).
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FCR, also called primary control, is the part of the control system that deals with mo-
mentary imbalances between production and consumption [26]. The inertial response of
a power system is making the frequency of the power system change, and this change
activates primary reserves, FCR. Reserve capacity that responds as expected is funda-
mental to maintain a safe operation of the power system.

2.6.1 FCR-N
FCR-N (Frequency Containment reserves for normal operation) is a symmetric power
reserve, automatically activated with frequency deviation within the normal frequency
band 50 ± 0.1 Hz. These reserves should be regulated out within 2 minutes. The total
capacity of FCR-N in the NPS today is 600 MW, where 210 MW is located in Norway.
Each subsystem must have 2/3 its own FCR-N, for each subsystem to be self-sufficient
and able to be run in islanded operation until a major disturbance is cleared. The re-
maining part of FCR-N can be power exchanges between subsystems. In Norway and
Sweden, hydropower is used exclusively as FCR-N [27].

2.6.2 FCR-D
FCR-D (Frequency Containment reserves for disturbances) is a continuation of FCR-
N, activated when the frequency drops below 49.9 Hz. At the moment, this reserve is
unsymmetric, only activated in under frequency events. The TSOs set the requirements
for FCR-D:

• FCR-D should activate at 49.9 Hz and be fully activated at 49.5 Hz.

• Required FCR-D capacity should equal the largest possible imbalance, or dimen-
sioning fault.

• Activation of FCR-D should not create other problems in the power system

• Each subsystem should be able to supply 2/3 of its FCR-D itself

In the case of a significant disturbance, the following requirements should be met:

• 50 % of FCR-D should be activated within 5 seconds after frequency drops below
49.5 Hz.

• 100 % of FCR-D should be activated within 30 seconds after frequency drops be-
low 49.5 Hz.

2.6.3 Fast frequency reserves, FFR
Following the work on Future system inertia 1 [13] and 2 [15], the Nordic Analysis
Group concluded that the most efficient and cost-effective solution to mitigate low in-
ertia situations is to implement a new type of reserve [28]. In such situations, FCR-D is
not reacting fast enough.

Fast Frequency Reserves (FFR) will work as a power response, activating within a sec-
ond after system frequency drops below a threshold. A pilot project by Statnett in 2018
[29], involved contributions from industry, pump storages and datacenters. The pilot
was a success, and Statnett gained knowledge on the availability of FFR from different
technologies.
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Further demonstration projects were run in 2020 and 2021. Both years, Statnett pro-
cured FFR through two different contract options in the summer season (defined as
May through September.)

• FFR Profile, in 2021 delivered from week 20 through week 36 (May 17 to Septem-
ber 12). This reserve capacity was procured during the entire weekdays at night-
time (between 10 pm until 7 am the following day). In addition, FFR Profile was
procured the whole weekend).

• FFR Flex was bought on a short term prognosis, when forecasts showed that
FFR need was greater than the amount already available through FFR Profile.

In 2020 Statnett bought a total volume of 27.2 MW FFR Profile, at a total cost of
4.6 MNOK. The recieved bids did not cover Statnetts demand of 126 MW FFR Profile,
and no bids fulfilled the techical requirements of FFR Flex. [30]. In 2021 Statnett ac-
cepted bids of 51.18 MW FFR Profile at a price of 112 NOK/MW/hour. 68.3 MW FFR
Flex was also bought at a uniform market price of 495 NOK/MW/hour [31].

2.7 Inertia online estimation
Previously, much work has been laid down to provide SOs with a tool to estimate sys-
tem inertia real-time. The Nordic Analysis Group (NAG) did in Future System Inertia
[13] argue that inertia estimation tools using measured frequency deviation during dis-
turbances is challenging, and also only able to provide inertia estimation during actual
disturbances. Because of this, the same authors in chapter 4 in the same paper [13] de-
scribe the implementation of a real-time inertia estimation currently used and shared
between the Nordic TSOs.

Each TSO in the nordic cooperation have information about their own production, so
the real-time estimation is carried out so each TSO is making their own real-time es-
timation of its own area. For an estimation of inertia at a nordic level, the estimation
from each TSO is combined. Chapter 4 in [13] is describing, per area, how the real-time
inertia estimation has been performed.

2.7.1 Calculation of kinetic energy
Kinetic energy in the NPS can be estimated by knowing the circuit breaker positions
of production units. When a generator is connected, i.e. the circuit breaker is in closed
position, it is assumed that the generator can contribute to the kinetic energy of the
system. The kinetic energy Esys can then be calculated according to Equation 1.4 in
[13], which is rewritten here as

Esys =
N∑

i=1
SniHi [GWs], (2.8)

where the inertia constant Hi and rated power Sni is retrieved from a generator register,
and N is the number of connected generators.

In terms of kinetic energy capacity of each country’s power system, values are summed
up in Table 2.1. If all available kinetic energy capacity is provided in the Nordic power
system, the value is 390 GWs.
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Table 2.1: Available kinetic energy in each country in the NPS. Data from Future System
Inertia 1 [13].

Area Kinetic energy capacity (GWs)
Sweden (SE) 170
Norway (NO) 100
Finland (FI) 90
Denmark (DK2) 30
SUM 390

2.7.2 Real time measurements
The terms inertia and kinetic energy is often used interchangeably in literature. Nordic
TSOs each make real time inertia estimations in their own area, and the values are
added up to get an estimation of the total kinetic energy of the power system. Fin-
grid is providing real time measurements of the total kinetic energy of the NPS2. Fig-
ure 2.4 shows data from Fingrid representing the total kinetic energy estimation in
the NPS February 2020. There are clear variations in night/day, and also differences
in week/weekday. (February 1, 2020 was a Saturday).

Figure 2.4: Stored values of real time estimation of kinetic energy in the NPS, February
2020. The figure is a screenshot from [32]

2Available at https://www.fingrid.fi/en/electricity-market/
electricity-market-information/InertiaofNordicpowersystem/ [32].
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2.8 Supervised learning and linear models
The following section describes the theory behind the method used in this thesis. The
main goal of this thesis is to develop linear models using production data that can esti-
mate the amount of kinetic energy in the Nordic Power system.

2.8.1 Supervised learning
The common principle underlying all supervised machine learning algorithms for predic-
tive modelling is as follows:

The machine learning algorithm can be described as a function (f) that maps input
variables (X) to an output variable (Y ).

Y = f(X). (2.9)

Supervised learning learns this model based on training on known response values. Later,
the trained model can be used to predict the outcome of previously unseen data. Figure
2.5 displays a typical roadmap for supervised machine learning problems. In the follow-
ing, each step will be briefly explained.

Figure 2.5: Roadmap for a machine learning algorithm using supervised learning. The
four boxes illustrate the essential steps in preprocessing and development of a machine
learning system. The figure is reprinted with permission from [33].
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Step 1: Preprocessing

The first main box in Figure 2.5 is the first, and arguably the most important step
when developing a machine learning model. Before a dataset can be input to a ma-
chine learning model, the data must be preprocessed to the correct format. This can
involve Feature Extraction and Scaling, Feature Selection, Dimensionality Reduction and
Sampling. After preprocessing, data is usually split into two parts - a training and test
dataset. In the first learning step, the training set with the known outcome is input to
the learning algorithm [33].

Step 2: Learning

The next step to perform after the preparation of data is to apply one or more machine
learning models on the training dataset prepared in step one. Different techniques, as
displayed in Figure 2.5 can be performed to fine tune the models.

Step 3: Evaluation

After the model is trained on the training dataset, it is time to compare the perfor-
mance of the model on the test dataset. For this purpose, the chosen performance met-
ric is applied. After this step, the model can be evaluated. The model, trained on the
training dataset, is now applied to the test dataset, and predicts outputs that can be
compared to the known actual values. If the performance is below expectations, the
usual procedure is to go back to step 2 and further develop the model.

Step 4: Prediction

When the model’s performance in step 3 is adequate, the model can be used for predict-
ing new, unseen data - and the predictions can then be used for instance in forecasting.

2.8.2 The bias-variance trade-off
With access to training data, a crucial part of supervised learning is to obtain a good
compromise between bias and variance [33].

Bias is the difference between the average prediction of a model and the correct value
it is trying to predict. A model with a high bias pays very little attention to training
data and oversimplifies the model. Such models always lead to high error on training
and test data [34].

Variance is the variability of model prediction for a given data point or a value that
tells how scattered the data is. A model with high variance pays a lot of attention to
training data and does not generalize well on unseen data. As a result, such models
perform very well on training data but can have high error rates on test data [34].

Mathematically, let’s denote Y as the variable to predict, and X are the explanatory
variables. Assumed there is a relationship between the two such that Y = f(X) + e,
where e is the error term, normally distributed with a zero mean. Modelling f̂(X) of
f(X), using linear regression or another modelling technique, the expected squared er-
ror at point x is

Err(x) = E[(Y − f̂(x))2]. (2.10)
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which can be further decomposed as

Err(x) =
(
E[f̂(X)]− f(x)

)2
+ E

[(
f̂(x)− E[f̂(x)]

)2
]
]

+ σ2
e

Err(x) = Bias2 + V ariance+ IrreducibleError
(2.11)

The first term is the squared bias, the amount by which the average of the estimation
differs from the true mean. [35]. The second term is the variance, the expected squared
deviation of f̂(x) around its mean. The last term is the variance of the target variable
around its true mean. It can be regarded as noise in the data, and cannot be avoided
no matter how well f(X) is estimated, unless σ2

e = 0 [34], [35].

Underfitting and overfitting

In supervised learning, the model can be characterized by how good it captures the un-
derlying patterns in the data. This is visualized in Figure 2.6. The situation shown in
Fig 2.6 a) shows a model that is too general and unable to capture the underlying pat-
tern of the data. This is called underfitting [34]. Such models usually have high bias
and low variance. This can happen when the amount of data available for training is
low or trying to build a linear model on data that is nonlinear.

Models that capture noise along with the underlying pattern in the data are called
overfitting [34]. This can happen when a model is trained a lot on a noisy dataset.
Such models have low bias and high variance. Referring again to Fig. 2.6, the model
shown in b) is very sensitive to noise or randomness in the training data.

Fig. 2.6 c) shows a good compromise between having high bias and high variance, and
would likely be general enough to give good predictions if applied on previously unseen
data.

Figure 2.6: Illustration of the concept bias-variance tradeoff. The model shown in a)
is underfitting. It is too general to capture the underlying pattern in the data. In b) the
model is too complex and is overfitting. c) shows a good compromise. The figure is recre-
ated from [34].

To summarize, the bias-variance tradeoff arises because a model that is too simple and
has few parameters will have high bias and low variance. Making the model more com-
plex, for instance by having more parameters might cause the model to have high vari-
ance and low bias. An algorithm can not simultaneously be more complex and less
complex at the same time, and that is the reason for the bias-variance tradeoff [34].

19



2.8.3 Regression for predicting continuous outcomes
Regression analysis is the prediction of continuous outcomes. This thesis is an example
of a regression problem. Given a number of explanatory variables, the goal is to predict
a continuous response. Here we try to find a relationship between those variables that
allows us to predict an outcome.

Figure 2.7 illustrates the concept of linear regression. Given a predictor variable x and
a response variable y we fit a straight line to this data that minimizes the distance
(most often the average squared distance) between the sample points and the fitted
line. The intercept and slope learned from this data can be used to predict the outcome
variable of new data.

Figure 2.7: Illustrating the concept of linear regression. Given a number of explanatory
variables x fit a straight line that minimizes the distance to the dependant variable.

2.8.4 Regression algorithms
There are many common regression algorithms. Some are linear, others tree-based, and
again other are memory-based. The common point is that the goal of all algorithms is
to predict a response value based on a set of explanatory variables.

The first and most common algorithm to test is the linear regression, described below:

2.8.4.1 Linear regression

A linear regression model assumes that there is a linear relationship between input and
target variables. Multiple linear regression is a generalized version of the simple linear
regression, and is described with the following equation,
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ŷ = w0x0 + w1x1 + ...+ wmxm =
m∑

j=0
wjxj =

m∑
j=0

wTx, (2.12)

where ŷ is the target variable. w0 is the y-axis intercept with x0 = 1. w1 to wm are un-
known regression coefficients and x1 to xm are the explanatory variables. The regression
coefficients can be found using training data and apply the least squares approach so
the residual sum of squares (RSS) is minimized [35].

RSS(w) =
N∑

i=0
(yi − ŷi)2

=
N∑

i=0

yi −
m∑

j=0
wjxi,j

2

,

(2.13)

where i is the measurement number from 1 to the total number of measurements N and
j is the variable number from 1 to m. It can be shown mathematically that the least
square solution is

ŵ = (XTX)−1XTy. (2.14)

Finally, the target variables can be estimated with Eq. 2.12. In order to obtain a bet-
ter bias-variance trade-off, it is often useful to apply different shrinkage methods, also
called regularization. Such methods limits the regression coefficients by penalising their
size [35].

2.8.4.2 Ridge regression

Ridge Regression is one of the most popular approach to tackle the problem of overfit-
ting [33]. A model trained with ridge regression will have coefficients that are restricted.
The ridge coefficients minimise a penalised residual sum of squares as follows

wRidge = argmin
w
||Xw − y||22 + α||w||22, (2.15)

where the complexity parameter α ≥ 0 controls the amount of shrinkage. By increas-
ing the value of α, the regularization strength is greater - meaning the weights will be
shrinked. A lower α indicate a low degree of penalisation which allows the regression
coefficients a higher value. Worth noting is that the model is not shrinking the intercept
term w0.

2.8.4.3 Lasso regression

Where the Ridge regression penalizes the squared sum of coefficients ∑n
j=1 w

2
j , Lasso

penalises the absolute value of regression coefficients ∑n
j=1 |wj|. Lasso regression can

shrink some of the regression coefficients to zero by increasing the penalisation term α.
This makes Lasso useful as a supervised feature selection technique [33].
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2.8.5 Performance metrics
In the evaluation of regression models, there are many scoring metrics that can be used.
In this thesis the relevant metrics is the mean squared error (MSE) and mean absolute
error (MAE). These are examples of scale dependant errors. These error metrics can be
mathematically expressed as:

MAE =
n∑

i=1

|ŷi − yi|
n

(2.16)

MSE =
n∑

i=1

(ŷi − yi)2

n
(2.17)

where ŷi is the predicted value by the model, and yi is the true target value.

A lower MSE or MAE value indicate a better score.

The mean absolute percentage error is a percentage error metric that allows for easier
comparison between datasets of different scales. It can be calculated as:

MAPE = 1
n

n∑
i=1

|ŷi − yi|
yi

× 100% (2.18)
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Chapter 3

Data and Method

This chapter will present the methodology used in this thesis1. To analyse the rela-
tionship between the production level and the inertia level in the NPS, data were first
acquired from relevant sources. As the following sections will show, the data quality
was questionable, and because of this, considerable time was spent to ensure data going
into the models was of as good quality as possible. Data from the NPS in the period
January 2018 until December 2019 were collected, and it was decided to use data from
Januar 2018 to June 2019 to train models and test the models on data from July and
August 2019. Initially, modelling was done on the entire dataset, but based on the first
results, a decision was made to split the data into regional parts, with separate analy-
ses being performed for each country. The reasoning is that the estimation of system
inertia is performed differently in the four countries.

Python [36] was used for all data processing, analysis and modelling, mostly with Jupyter
notebooks [37], where the data were first unpacked into Pandas data frames. Pandas is
a library that simplifies managing and manipulating numerical tables and time series in
Python [38], [39]. Models were made using Scikit-learn "a Python module integrating a
wide range of state-of-the-art machine learning algorithms for medium-scale supervised
and unsupervised problems" [40]. Graphs and visualisations were created with Plotly
[41], or by inbuilt tools in Pandas, built on top of the Matplotlib [42] library. Seaborn
[43] was used to control figure aesthetics.

This chapter is split into four main sections: Section 3.1 describes how inertia data was
collected and preprocessed. Section 3.2 describes how production data was collected
and preprocessed. Section 3.3 explains the motivation for using linear models, and fi-
nally Section 3.4 describes how the linear models were applied on the data.

Currently, the production and consumption levels in the NPS is commonly stored in
hourly resolution, and although one of the sources of data (Fingrid) offered a more fine-
grained resolution, it was decided to use hourly resolution throughout the work.

1When reading this chapter, keep in mind that most of the work performed in this thesis, including
data collection and preprocessing was done February through April 2020, while the thesis was submit-
ted in February 2022.
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3.1 Inertia data
Inertia, or the kinetic energy of rotating masses connected to the power system can be
estimated by monitoring the real-time telemetry of individual generators. The Nordic
TSOs have since 2015 estimated and stored this data, published openly on two differ-
ent platforms, Fingrid Open data and Energi data service (maintained by Energinet).
In addition, Statnett stores the data in its datawarehouse "Innsikt", in the premade re-
port "SD056 Inertia (time)". However, this data is not openly accessible but requires
user-access via Statnetts internal systems. A brief comparison between these three data
sources is given in Table 3.1. Because of the expected amount of data preprocessing and
early observations on data quality at the start of the thesis work, a decision was made
to focus on data from January 2018 through December 2019. This section describes
how this data was collected and preprocessed.

Table 3.1: Inertia data sources.

Platform Innsikt Fingrid Open data Energi data service
Public access No Yes [44] Yes [45]

Temporal resolution Hour Minute Hour
Inertia by country Yes No Yes

Data available from 2015-03-27 2015-03-27 2019-10-26

3.1.1 Collecting inertia data
The first step towards creating a dataset was to acquire the historical inertia estimates.
As described in section 2.7, the Nordic TSOs estimate and store the current level of ro-
tational kinetic energy, typically in units of GWs or MWs. Access to Statnetts storage
of this data was acquired and Figure 3.1 displays the historical estimates of inertia as
recorded by Statnett in the period January 2018 to December 2019. It is a time series
with recorded hourly inertia values per country. As Figure 3.1 reveals, data from this
source is partly missing. Specifically, data from the Swedish power system (InertiaSE)
is recorded with the value 0 from the beginning of 2018 until June 5, 2018, while data
from the danish power system (InertiaDE) is missing (having no value) during the sum-
mer of 2019, from March 5 until July 23. In addition, there are missing or zero values
spread on the whole dataset. This can be observed as downward spikes in Inertia sum.

Due to the missing data from Sweden and Denmark, other sources of inertia data were
considered. Initially, data downloaded through Fingrids data portal (Kinetic energy of
the Nordic power system - real-time data) [44] looked promising, but during preprocess-
ing, this source was also found to contain missing values and unclear transition from
summertime to standard time. When discussing these matters with the listed contact
person for the dataset, he offered to pull data directly from Fingrids main database as a
workaround [46]. This data was found to be complete without many obvious inaccurate
values. However, the data only had information about the total level of inertia in the
NPS, not split by country. It was decided to combine the dataset obtained from Fin-
grids main database with the Innsikt data to create a complete dataset including the
total Nordic level of inertia, and inertia split by country.
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Figure 3.1: Inertia as stored by Innsikt. The figure displays the kinetic energy in GWs
for Denmark (blue), Finland (yellow), Norway (green) and Sweden (red). The purple
curve is the aggregated total.

As a side note, it is worth mentioning one more source of inertia data, namely the one
published by Energinet in the open data platform Energi data service, named Inertia,
Nordic Synchronous Area [45]. This dataset has stored values split by country since Oc-
tober 26, 2019 and uses the ISO 8601 standard [47] on the time and date-related data
points. It is an ideal data source if one wants to look at data from 2020 and 2021. How-
ever, this is out of scope in this thesis, as the data source was discovered too late in the
work process.

3.1.2 Preprocessing inertia data by combining several sources
Because of the missing data from Sweden and Denmark, it was decided to combine
the time series from Fingrid, and the time series from Innsikt. When comparing these
sources, they were not time-aligned. Following this, the data from all available sources
of inertia data was cross checked, and this revealed that data from Innsikt was lagging
by 1 hour compared to all other data sources.

Cross-checking data and visualizing also identified some irregularities in the time series
that will be discussed below.

3.1.3 Identifying periods with missing values
Missing data

At this point in preprocessing, the two datasets from Fingrid (received 2020-02-04) and
Innsikt were aligned hourly and adjusted to a common timezone, Coordinated Universal
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Time (UTC). Further, to identify time periods with potential problems in the Fingrid
dataset, the hourly change of inertia value was calculated and plotted. Figure 3.2 shows
a visual representation of the resulting time series. This revealed that hourly changes in
the interval [-25, 25] GWs is normal. All changes exceeding these, including the positive
and negative spikes found in late 2018, were further analysed manually by looking at
the higher resolution minute data on the Fingrid website [32]. The following time peri-
ods had missing data, and were consequently removed from the dataset.

• 2018-10-11 hour 8 and 9 UTC

• 2018-11-01 hour 15 to 23 UTC

• 2018-11-08 hour 15 to 2018-11-09 hour 10 UTC

• 2018-11-30 hour 10 to 12 UTC

Figure 3.2: The figure displays the hourly change between inertia values stored in the
Fingrid data. Note the outliers in late 2018.

These time periods were also investigated in the Innsikt data, often revealing missing
data values from one or more countries, indicating that something has gone wrong in
either the estimation or the storage of the values. The conclusion was to remove the
data from these timeslots, preventing this data from being part of model training.

Imputing missing swedish and danish data

The next step was to impute missing values in the hours where such imputations were
possible. The total value for the inertia estimation in the Nordic countries InertiaNordic
is a sum of the inertia estimations from Norway, Sweden, Denmark and Finland.
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InertiaNordic = InertiaNO + InertiaSE + InertiaDE + InertiaFI

Because of this, during the two main periods with missing data from a single country2,
these missing values can be imputed by taking the value of the total kinetic energy, and
subtract the values from the other countries. This will work for every hour where ex-
actly one of the four national inertia estimations is missing.

For instance, the missing inertia values from the swedish data during the first months of
2018 can be estimated the following way:

InertiaSE = InertiaNordic− (InertiaNO + InertiaDE + InertiaFI)

Similarly, the missing danish data during 2019 can be imputed with

InertiaDE = InertiaNordic− (InertiaNO + InertiaSE + InertiaFI) .

These imputations were performed for every timestep where precisely one of the four
countries had missing values and filled most of the missing values in the dataset. The
remaining rows with missing data all included at least two missing measurements. Rather
than using other imputing techniques such as forward or backward filling, it was de-
cided to leave any remaining row with missing data out of modelling, as the number of
rows including missing data were down to 30 out of a total of 17520 rows3.

3.1.4 Final dataset of Nordic inertia
The result after this section was the creation of the file NordicInertiaWithNaN.csv.
There are five variables in the inertia dataset, listed in table 3.2. The index column are
timestamps, representing each hour in the year from 2018-01-01 00:00 to 2019-12-31
23:00. The top 10 rows of the dataset are displayed in Appendix A, Table A.1.

Table 3.2: Columns in the dataset NordicInertiaWithNaN.csv. The column Iner-
tiaNordicGWs is the sum of the other four columns, and all units are in GWs.

Column name Description
InertiaNordicGWs Inertia of production units in the Nordic synchronous area
InertiaDK Inertia of production units in Denmark (Price area DK2)
InertiaFI Inertia of production units in Finland
InertiaNO Inertia of production units in Norway
InertiaSE Inertia of production units in Sweden

2Essentially, swedish data in the first months of 2018, and danish data in the summer of 2019, re-
ferring to Fig. 3.1

3Number of hours in a year = 8760. Number of hours in 2 years = 17520
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3.2 Production data
Data on production in the NPS is also available. As described earlier in section 2.1, the
NPS consist of the power systems of Norway, Sweden, Finland and Eastern Denmark
(Zealand/Sjælland), the price area referred to as DK2. Data on production per gener-
ation type and price area is openly available from the power systems of Sweden, Fin-
land and Denmark, through the platforms listed in Table 3.3. Data on Norway’s total
production and consumption levels are publicly available on Statnett’s home page4, al-
though not split into production per generation type or price areas. However, by user
access to Statnett’s internal datawarehouse "Innsikt", also Norwegian data split into
generation type and price area were acquired.

Table 3.3: Production data sources

Country TSO Dataplatform
Norway (NO) Statnett Innsikt
Sweden (SE) Svenska Kraftnät Elstatistik [48]
Finland (FI) Fingrid Fingrid Open Data [49]
Denmark (DK2) Energinet Energi Data Service [50]

The work performed in collecting production data can be summed up in the following
list and each point will be elaborated upon in the following subsections:

1. Identify data sources and download raw data on production per generation type

2. Do preprocessing, i.e. handle DST issues, rename columns, crosscheck time align-
ment with other sources of data

3. Combine all raw files into a single dataset

3.2.1 Collecting production data
Production data from all TSOs were downloaded via data sources listed in Table 3.3,
and stored as raw files. During the work of combining all the separate data into a sin-
gle dataset two main problems were encountered, in addition to the occasional missing
data:

• File formats - each country store their data in different formats

• Uncertainties regarding timestamps and time alignment

To clarify how the formats and timestamps were interpreted, a short description of the
raw files from each country is described below. In addition, the columns were renamed
to a standard to simplify the making of models and comparing results. When process-
ing and collecting production data, the end goal was to get a dataset with a similar for-
mat as the dataset on inertia, described in section 3.1.4, with the index column repre-
senting hours from 2018-01-01 00:00 to 2019-12-31 23:00.

For Norway, Sweden and Denmark, the data stored were hourly average production val-
ues stored in units of energy per hour (MW h/h). Finland stores a reading of the actual
power output in units of power (MW) from each generation type every three minutes

4https://www.statnett.no/
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in their database. The Finnish production data were therefore resampled to hourly av-
erage production. This was done by taking the average of every three-minute measure-
ment within one hour, storing that value as the power output for that hour. This way,
the Finnish production data could also be expressed as MWh/h.

Norway

Norwegian data on production were acquired from Statnetts data warehouse Innsikt.
The data is hourly average production values for each year in 2018 and 2019. The raw
files were excel sheets from 2018 and 2019, with timestamps in the format DD.MM.YYYY-
00, DD.MM.YYYY-01, where -00 was interpreted as the first hour in the day (produc-
tion between 00:00 and 01:00), -01 is interpreted as hour two (01:00-02:00) and so on.
The available production columns for each of Norway’s five price zones were as named
by Innsikt (English translation in parenthesis):

Ukjent (Unknown)

Vann (Water)

Vind (Wind)

Termisk (Thermal)

For price area NO5, there was no column named Vind (Wind).

By cross-checking with other data sources, the production data from Innsikt were con-
firmed to be stored in Norwegian local time (CET). Regarding daylight saving time
(DST) issues, in the transition back to standard time in October, hour 2 is repeated.
When investigating the data, the values for hour 2 across all columns appeared to have
twice the value as the hours surrounding it. It was decided to solve this by deleting the
abnormal values from the data, creating missing values ensuring that the rows would be
removed when running models.

The columns were renamed to NO1-5 subscripts Unkn (Ukjent), Hydr (Vann), Wind
(Vind) and Thrm (Termisk), and were copied to the final production dataset.

Sweden

Various data from the swedish power system is published through the website of Sven-
ska kraftnät. Excel sheets containing measured values on, among other things, produc-
tion, consumption and power exchange, are published on the page "elstatistik"5 [48]. In
this thesis, production per area and production type are of interest, and the excel sheet
containing this data was "Statistik per elområde och timme" (translated: "statistics per
area and hour"). The data files containing the values from 2018 and 2019 were down-
loaded.

The timestamps in these files were in the format (DD.MM.YYYY 0:00, DD.MM.YYYY
1:00 ...) and were interpreted the same way as the Norwegian data. Because there was
no clear indication of what time zone this time format represented, representatives from
SVK were contacted, and they replied that the data is presented as "Swedish normal
time (CET) not adjusted for daylight saving time" [51].

5The data is only accessible through the Swedish version of the website.
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The data in "Statistik per elområde och timme" includes measured production values
from each of the four price areas in Sweden (SE1-4). The unit is MWh in all columns.
The available production columns are listed in Table 3.4, along with the name the columns
are given in this thesis.

Table 3.4: Available production columns from each of Swedens four price areas through
the excel sheet "Statistik per elområde och timme".

Production column English translation Column name in thesis
Ospecificerad Unspecified production Unkn
Vattenkraft Hydro power Hydr
Vindkraft Wind power Wind
Kärnkraft (Only SE3) Nuclear power Nucl
Värmekraft Thermal power Thrm
Solkraft Solar power Solr

The columns were renamed SE1-4 with subscripts as listed in Table 3.4. Then the columns
were copied to the final production dataset, aligned with the norwegian data.

Denmark

Energinet, the TSO of Denmark, has an excellent datahub called Energi data service
[52], making energy data stored by Energinet available. Hourly data on production per
production type were found in the dataset Electricity Balance [50]. DK2 production
data from 2018 and 2019 were downloaded as excel sheets using the websites data fil-
ters. The metadata clarifies that the timestamps, both UTC and Danish local time fol-
low the ISO 8601 standard [47]. Each row has an Hour UTC index which is the date
and time interval shown in UTC time zone. 00:00 o’clock is the first hour of a given day
(interval 00:00 - 00:59), 01:00 covers the second hour (interval) and so on.

The Danish production dataset had the same problem encountered with Norwegian
data in the transition from summertime to standard time. The recorded measurements
for the repeated hour appeared to be around twice the value of the preceding and trail-
ing hours. It was again decided to delete the production data in these rows, creating
missing values in rows that will later be excluded from modelling.

The available production columns in the Danish data are as follows, with units MWh
per hour:

Local Power Production Sum of production from local Combined Heat and Power
units (CHP).

Offshore wind power Electricity production from offshore wind power.

Onshore wind power Electricity production from onshore wind power

Central production Production from power plants registered as central power plants.

Solar power production Production of electricity from solar cells. To some extent,
this production is estimated by Energinet.
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These columns were renamed DK2_Thrm_Di6, DK2_Wind_Offshore,
DK2_Wind_Onshore, DK2_Thrm_In and DK2_Solr. Then the columns were copied
into the final production dataset.

Finland

The Finnish grid is not divided into price areas. Data on production per production
type in Finland is accessible through the open data platform Fingrid Open Data [49].
As mentioned above, this data source has measurements in units of power (MW), recorded
every 3 minutes, rather than units of energy (MW h) per hour. All data from Finland
were downloaded via API, and the entire script is listed in Appendix B.

Fingrid open data [49] stores real-time measurements of production in datasets with a
unique Variable ID. The available datasets of interest in this thesis are listed in Table
3.5, along with the column name that they are given. The script was used to collect
available data from Fingrid open data between January 2018 and December 2019. The
technical details of how the scripts load the available data into a Pandas data frame
[38], [39] are not of great importance for the thesis. The documentation for Fingrids
open data API states that timestamps are presented in UTC [53]. In order to transform
the data from a power measurement every three minutes to hourly values, Pandas re-
sample tool was used. By taking the mean of all measurements within an hour H, and
use that mean value as the average power production in hour H the production data
from Finland should be of equivalent format to the data collected from the other Nordic
countries.

Table 3.5: Overview of datasets acquired from Fingrid open data [49] used in this thesis.

Variable ID Name of the resource Column name in thesis
188 Nuclear power production FIN_Nucl
181 Wind power production FIN_Wind
191 Hydro power production FIN_Hydr
202 Industrial cogeneration FIN_Thrm_In
201 Cogeneration of district heating FIN_Thrm_Di
205 Reserve power plants and small-

scale production
FIN_Unkn

192 Electricity production in Finland FIN_Prod_tot

Finally, the columns were copied into the production dataset, aligned with the data
from the other Nordic countries.

6The choice of name was based on the Finnish columns, where there also was two thermal produc-
tion columns, named District and Industrial cogeneration.
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3.2.2 Preprocessing of production data
Most of the preprocessing of production data were done regarding to time alignment.
In addition, each country’s production data was compared to data downloaded from
Nordpool [54], both in order to affirm the time alignment, and to look for missing data.
These investigations were brief and indicated that the collected data from Norway and
Finland were time-aligned and complete. Data from Denmark could not be verified this
way because Nordpool data did not include production per price area. Collected data
from Sweden through "elstatistik" [48] did not appear to correspond to data from Nord-
pool. This will be discussed further in Chapter 4. Due to time constraints, it was de-
cided to go forward with creating models based on the data that had been collected.

3.2.3 Final dataset of Nordic production data
The result of the data collection described above was that production data from the
Nordic countries were collected in the CSV-file NordicProductionWithNaN.csv. The in-
dex column are timestamps, representing each hour in the year from 2018-01-01 00:00
to 2019-12-31 23:00. The contents of the production columns are as described in section
3.2.1 the total energy produced in hour H in units of energy (MWh), split into gener-
ation type and price area. Price areas are denoted with NO1-5, SE1-4, FIN and DK2,
and generation types are given subscripts as shown in Table 3.6.

Table 3.6: Production columns collected in the CSV-file NordicProductionWithNaN.csv.

Norwegian production columns Danish production columns
Total 19 columns Total 5 columns
Unkn NO1-5 Thrm_In DK2
Hydr NO1-5 Thrm_Di DK2
Wind NO1-4 (Not NO5) Wind_Offshore DK2
Thrm NO1-5 Wind_Onshore DK2

Solr DK2

Swedish production columns Finnish production columns
Total 21 columns Total 6 columns
Unkn SE1-4 Nucl FIN
Hydr SE1-4 Wind FIN
Wind SE1-4 Hydr FIN
Nucl SE3 Thrm_In FIN
Thrm SE1-4 Thrm_Di FIN
Solr SE1-4 Unkn FIN
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3.3 Motivation for using linear models
As described in Section 2.4, in Eq. 2.6, rewritten here for convenience:

Ek,sys = Sn,sysHsys =
N∑

i=1
SniHi [GWs] (2.6 revisited)

system kinetic energy Ek,sys can be estimated if every generator i connected to the sys-
tem has a known value for the rated apparent power Sni, and inertia constant Hi.

This is the basis for the kinetic energy online estimation in the NPS as presented in
Future system inertia [13]. In "Ensuring future frequency stability in the Nordic syn-
chronous area", an article by Eriksson et. al. [18] this way to estimate kinetic energy is
presented as a bottom-up method. The authors then present the bottom-up method as
a possible way to forecast the kinetic energy level up to D+1 (1 day forward), as that
is the timeframe the TSOs receive production plans from producers. The main goal in
this thesis is to investigate the top-down approach presented in the same article [18].
The top-down approach is based on production per generation type and using a generic
inertia constant. Because forecasts of production per generation type are created on
a longer horizon, Eriksson et. al. recommend a top-down forecasting approach for D-
2 and longer time horizons. The main scope of this thesis is to investigate how closely
such a top-down approach can estimate kinetic energy.

Estimating generic inertia constants with linear regression models

Using linear regression models with production data as explanatory variables to esti-
mate system kinetic energy was discussed with representatives from Statnett [55]. The
top-down approach can be mathematically expressed as

Ek,sys =
∑

p

PpHp [GWs], (3.1)

where Pp is the production per production type, given in MWh/h, and Hp is the generic
inertia constant, in seconds s.

With the data collected in sections 3.1 and 3.2, Equation 3.1 can be further expanded:

Ek,sys =
N∑
n

P∑
p

PnpHnp, (3.2)

with p being the type of production, P is the set of all production types, n being price
area and N is the set of all price areas. A summary of production types and price areas
is given in Table 3.6.

The target, Ek,sys, is the inertia level, with data collected as described in section 3.1.

It was proposed by Statnett [55] first to apply first order regressor models, as described
in section 2.8.1, on the data as a starting point, and to analyse the coefficients and per-
formance metrics of these models to develop an understanding of how linear top-down
models can estimate system kinetic energy.
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As a starting point, it was decided to stick with linear regression models, as they are
simple to implement and easy to understand. More complex models such as decision
tree regression models and neural network models dramatically increase model complex-
ity without necessarily improving the performance of estimation models.

The first model to test out is a simple first-order regressor where the model assigns a
weight to every production type and price area. The interesting part of observing this
model is looking at the coefficients given to each parameter and at the y-axis inter-
cept, which indicates how much of the variations in data the model can pick up. Other
more complex models may not give the possibility to extract this information. Neural
network models, for instance, have extremely many coefficients in various layers and
quickly becomes too difficult to analyse and extract information from. Another prob-
lem with neural networks is that they require the training and test set to be normalized
in order to be able to train properly. This scaling means that the learned coefficients
are hard to interpret, as opposed to the first-order regressor model where all inputs are
physical sizes that are recognisable to those that use the models.

3.4 Models
Following sections 3.1 and 3.2, and motivated by 3.3, the work proceeded to the next
step of developing linear models using subsets of the production data to estimate sys-
tem inertia. These models were made both on a Nordic level and split into countries.
As previously mentioned, data from January 2018 to December 2019 were collected.
Based on the available data, it was decided to use data from January 2018 to June 2019
to train models and test models on data from July and August 2019. The choice of test
set was not arbitrary; July and August are summer months, and the inertia level is low-
est, and consequently most important to estimate correctly in this period.

There was no previous information about what a good model would be when going into
modelling. For this reason, in order to create some basic understanding of the data, it
was decided to create a benchmark estimation/prediction. The creation of these base-
line models is described in section 3.4.1.

Following this, linear regression models using all Nordic production data to estimate the
Nordic kinetic energy were created. This is described further in section 3.4.2. Models
were also created per country because the estimation of system kinetic energy varies
between countries.

3.4.1 Baseline/benchmark
It was decided to create baseline models to create a benchmark of model performance
and develop a basic understanding of the data. These models were naive/persistence
models applied to the testing data.

A naive/persistence forecasting model is a useful tool to forecast future values in a time
series. For instance, the next value in a time series t + 1 can be estimated using the last
stored value of the time series t.

In this thesis, persistence models with a 1h lag, 24h lag and 168h (equivalent to one
week) were tested, meaning that values were "estimated" or "forecasted" using a value
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from the previous hour, or the value for the same hour, the previous day or week.

The naive baseline model was applied on the test set of the Nordic data,
InertiaNordicGWs, as well as all the individual data from each country. The perfor-
mance metrics MAE, MSE, and MAPE were calculated for each of the baseline models,
in addition to the max error.

3.4.2 Models to estimate total inertia
The column InertiaNordicGWs was imported as target variable y, and all available
production columns from all Nordic countries were imported as explanatory variables
X. Linear models as described in chapter 2.8.1 were created, using the training set of
Inertia and production values (January 2018 to June 2019) to train models, and then
applying the trained model on production values from the test set (July and August
2019), creating estimated inertia values ŷ. The models’ performance metrics were then
calculated, and the estimated values ŷ were graphed together with the true target val-
ues y, to visualize the performance of the top-down models. The regression coefficients
wj each correspond to a production column, and the relative sizes of these coefficients
were also looked at.

The modelling approach was exploratory. The first model applied started off very basic
without constraints, and further models applied included more and more constraints.
Models without an intercept term were of interest from a physical point of view, as the
zero intercept term has the physical interpretation as "kinetic energy level if there is
no production". Non-negative least square models, forcing the coefficients w to be zero
or positive, were also tested. In the power system, every connected generator or power
electronics delivering power to the grid is assumed to either contribute or not contribute
with inertia, but no generating unit should lower the amount of kinetic energy.

The last models applied on the total Nordic data tested model performance if certain
production columns were held out or aggregated together.

3.4.3 Models to estimate inertia per country
During modelling, it became clear that it was beneficial to look at each country individ-
ually. For each of the four countries in the NPS, inertia data were imported as target
variable Y and production data from that country were imported as explanatory vari-
ables X. Different linear models were then applied on the data, and the performance
metrics on the training and test set were recorded and compared to the baseline models
applied in that country. Further details for each country are included in the respective
subchapters in Chapter 4, where the results are presented and discussed.
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Chapter 4

Results and Discussion

This chapter presents the findings of the modelling on the data. As this thesis is of ex-
ploratory character, some of the discussion will follow the presented results. At the end
of the chapter, there is a section with an overall discussion.

4.1 Linear regression models on the total Nordic
dataset

The work started with exploring the results of the baseline models on the total inertia
level of the NPS, followed by the training of linear models on the training data. Then
the performance on the test set was recorded. For some models, the coefficients found
by the linear models are discussed because their relative sizes can be used to identify
if a model is overfitting (as explained in subsection 2.8.2). Initially, all columns were
used as input to the models. Later, the models were tested where some columns were
removed to investigate the impact on the overall model performance. Table 4.1 sum-
marises the metric results of the models run on the Nordic level of inertia. The differ-
ent model variations are described in the following, while the results of models run per
country are shown in later subsections.

Table 4.1: Results of models trained and tested using the Nordic level of inertia as target
variable.
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4.1.1 Baseline results - Nordic inertia
Figure 4.1 displays the total Nordic kinetic energy level (InertiaNordicGWs) estimated
in the NPS, as well as two of the baseline models, the naive 1 hour and 24-hour model.
The first nine days in the test set is displayed. With July 1, 2019 being a Monday, it
can be observed that the InertiaNordicGWs time series has a repeating weekly seasonal
pattern, with a higher inertia level on the weekdays compared to the weekends. It also
has a daily pattern where the inertia level peaks in the morning and afternoon, with
crests at nighttime. As shown in Figure 4.1 the Naive_1h model drawn in red is hard
to differentiate from the actual inertia value InertiaNordicGWs. The Mean Abso-
lute Percentage Error (MAPE) on the test data is 2.130 %. The Naive_24h model
shown in light green deviates more from the target, especially at the start of the week
and at weekends. On the test data this model achieves a MAPE of 5.532 %. Not shown
in Figure 4.1 is the Naive_week model which achieved a MAPE of 4.716 % on the test
set. Also, the MSE, MAE and max error of these models were recorded for the test set
listed in Table 4.1.

Figure 4.1: Baseline models applied on the Nordic inertia time series. Naive 1h and 24h
models are displayed along with the kinetic energy level in the NPS the first nine days in
the chosen test set. July 1, 2019 was a Monday.

Comment regarding the baseline models

The Naive_1h baseline model appears to be a good estimator. This is because the in-
ertia level is not a very volatile time series but has a relatively smooth profile, especially
in the day-hours. In those hours, estimating the inertia level next hour appears easy
as the level will often remain the same. The areas where the 1h baseline model devi-
ates the most are the morning and afternoon periods where the production level in the
power system rises or falls significantly, thereby the inertia level.

Compared to the Naive_1h model, we expect the Naive_24h model to predict these
ramping periods better. However, because of the difference between weekdays and week-
ends, the 24h model will generally fail to predict the inertia level on Saturdays and
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Mondays. This is also seen in Figure 4.1, where July 6 is a Saturday, and July 8 is a
Monday. Because Saturdays typically have a lower level of inertia than Fridays, the 24h
baseline model will tend to overestimate the inertia level on Saturdays, exemplified with
Figure 4.1. Mondays are the opposite, where using Sundays values will lead to an un-
derestimation.

The Naive_week model should capture the weekly trend of a higher inertia level on
weekdays and a lower inertia level at weekends, but will struggle more with weekly level
changes. Table 4.1 indicate that the weekly model performs better than the 24h model.

4.1.2 Linear regression
The result of applying a linear regression model using all available production columns
in the NPS (listed in Table 3.6) as explanatory variables is shown in Figure 4.2. This
model is referred to as lr_prod. The blue line is the "true" target value, while the or-
ange line is the estimated inertia value by the model lr_prod. At the start of the test
period, the model appears to estimate the inertia value with high accuracy. Around
July 17, the model underestimates the inertia level until around August 5. It then re-
turns to a close fit for a week before again appearing to be underestimating the inertia
level by roughly 5-10 GWs for the rest of August. The model appears to underestimate
rather than overestimate the inertia level in the test period.

Metrics: lr_prod

The metrics are listed in Table 4.1. With a MAPE of 1.919 % on the test data, lr_prod
appears more accurate than the best performing baseline model. Compared to the MAPE
on the training data (1.082 %), there is an indication of a model overfitting on the train-
ing data.

The y-intercept of the model was found to be 35.719 GWs. The physical interpretation
of this intercept is inertia level if there is no production. The coefficients w are listed in
Table C.1 (Appendix C), where most columns get a moderate value, with some outliers.
Specifically, production columns with unknown production get high values, both with
positive and negative signs. This is another indication of an overfitting model.

Interpretations

Already, a simple out-of-the-box linear model without constraint appears to outperform
the baseline models. However, both the model coefficients and differences in metrics
calculated on the training and the test set indicate an overfitting model.

In future work, these models are to be extended to forecasting models. Based on this,
having columns with extreme coefficients can be problematic, as they can be potential
sources of significant errors.

The next model to test was a model without an intercept term. From a physical point
of view, it is expected that the inertia level in the system is 0 if there is no production.
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Figure 4.2: Results of applying a linear regression model (lr_prod) on all production
columns.
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4.1.3 Linear regression without intercept
Figure 4.3 displays the results of a linear regression model trained without an intercept
term. This model is called lr_prod_forced0intercept. Also shown in the figure is
the result of the previous model lr_prod. Visually, lr_prod_forced0intercept
appears to follow the same pattern as lr_prod, and tends to underestimate inertia.
The metrics are shown in Table 4.1, and confirms that lr_prod_forced0intercept is
less accurate than lr_prod on both the train and test data.

The coefficients of the model lr_prod_forced0intercept can be found in Appendix
C, Table C.2. This model also gave columns with unknown production significant posi-
tive and negative coefficients.

Figure 4.3: Results of applying a linear regression model with (lr_prod) and without
(lr_prod_forced0intercept) an intercept term on all production columns.
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4.1.4 Non-negative Linear regression
The previous models have allowed columns to get negative coefficients. The physical in-
terpretation of this is that some production contributes to negative inertia in the power
system. Theoretically, this does not make sense. Production should either contribute
with no inertia, or with a positive amount. Therefore, the following models applied
were non-negative least square models. Both a model with intercept, lr_prod_nnls,
and without lr_prod_nnls_forced0intercept were tested. The metric results of
these models can be found in Table 4.1.1

lr_prod_nnls had a lower intercept term than lr_prod, as well as a lower max error
(13.352 GWs, compared to 19.539 GWs).

The coefficients of these models can also be found in Appendix C, Table C.3, and C.4.
Here, several columns were given coefficients of 0, effectively meaning the model does
not include these columns in the inertia estimation. For the most part, the columns
that were given a 0 coefficient were from the production group wind and solar, as well
as unknown production. Surprisingly, some thermal columns were also given 0 coeffi-
cients.

4.1.5 Further models on total data
All models described above used all available production columns, 51 in total, listed in
Table 3.6. Having this many columns to train on increases the tendency of models to
overfit, and based on the relative sizes of coefficients, and the difference in performance
on training and test data, all models tested so far have been overfitting. In an effort
to reduce model complexity, some models were trained where a subset of columns were
held out. lr_prod_noUnkn is a model trained with all unknown production columns
left out, and lr_prod_noUnknSolr also leave out all solar production columns. Re-
ferring to Table 4.1, these adjustments to the models do not alter the performance on
the test set massively, although the number of input columns was reduced from 51 to
36.

Further simplifications were tested in the models lr_prod_noUSgrThm, which in
addition to leaving unknown and solar columns out, grouped the Norwegian thermal
production columns into a single column. lr_prod_noUSgrThm2 was built with the
same logic, giving the Swedish thermal columns the same treatment. These models in-
creased the accuracy of estimation on the test set, and lr_prod_noUSgrThm2 is the
best performing model based on the MAPE of 1.902 % on the chosen test data.

Finally, the same columns input to lr_prod_noUSgrThm2 were used in a non-negative
least square model, which achieved a MAPE of 2.001 %.

4.1.6 General discussion - Nordic inertia models
All linear models tested performed better than the naive 24h and naive_week baseline
models, and achieved around the same scores as the naive 1h baseline model, according
to the metrics in Table 4.1. Removing columns assumed not to contribute with inertia,

1The line plots for further models on the Nordic inertia level appear similar to the line plots al-
ready shown in Figure 4.2 and 4.3 and are not included in this report.
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such as solar production columns, did not appear to lower model performance on the
test set.

Based on the results achieved so far, a top-down approach using production data ap-
pears to estimate the Nordic inertia level with a MAPE of around 2 %, in this spe-
cific case. However, the results are not tested on an independent test set, thus there
is a high chance of information leakage and confirmation bias towards creating a good
performing model on the test set. Therefore, the results of the models above should be
viewed as an introductory feasibility analysis of the method.

Doing feature selection or fitting regularized models such as Ridge or Lasso models on
the Nordic dataset are possible topics for further work. In this thesis it was decided to
proceed by looking at each country individually.
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4.2 Linear regression models for each country

4.2.1 Norway
A very strong correlation between the total power production and inertia level esti-
mated by Statnett was found during preprocessing of Norwegian data. The values for
inertia and total production in Norway for the total dataset in 2018 and 2019 are shown
in a scatter plot in Figure 4.4. Each blue dot is the recorded hourly value of inertia and
total production. The figure shows a clear linear relationship between the two variables,
as the observations appear along a straight line in the diagonal. Some observations ap-
pear in straight horizontal lines in the figure, for inertia values 56 GWs, 66 GWs and
70 GWs. These values are assumed to be outliers caused by problems with the iner-
tia estimation in Norway December 4 and 11, 2018, and October 9, 2019. These dates,
the inertia estimations were observed to have several repeated entries in the data.2 A
dual-axis plot of Norwegian inertia (blue) and production (red) is shown in Figure 4.5.
Subfigure a) displays the entire collected data period from January 2018 to December
2019, and indicates that the two time series of inertia and production are closely linked.
Subfigure b) shows a zoomed-in view of May 2019, picked at random. The figure indi-
cates that the Norwegian inertia estimation follows the total production level in Nor-
way precisely, scaled with some constant. Both time series are seen to follow a yearly
seasonal pattern in subfigure (a), with a general higher level of production in the win-
ter. A weekly and daily pattern can be observed in subfigure (b), where weekdays have
peaks in the morning and afternoons and crests at nighttime. At weekends, the level of
production and inertia is generally lower. (May 7, 2019 was a Tuesday).

Figure 4.4: Scatterplot of hourly measurements of Norwegian inertia InertiaNO, and
total production in Norway.

2These outliers were not removed from the dataset.
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(a) 2018-2019

(b) Zoomed in. May 7, 2019 was a Tuesday

Figure 4.5: Comparing the Norwegian inertia level and the total production in Norway.
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4.2.1.1 Linear models based on production level in Norway

The results of the baseline models, as well as the linear models that were fit on Norwe-
gian data are shown in Table 4.2. Because of the strong correlation between total pro-
duction and inertia level, it was decided to use aggregated production values to create
the models in Norway. This reduced model complexity.

As seen in Table 4.2, the models lr_only_total_prod and lr_prod_forced0intercept
only have one feature (column), the total Norwegian production aggregated across all
generation types and price areas. The two models lr_prod_pr_area and
lr_prod_pr_area_forced used 5 columns as input data. These columns were the
aggregated production in each price area. The model coefficients for all these models
are listed in Table 4.3. Lastly, a model was tested in which all available production
columns in Norway were input to the model, lr_prod. The coefficients for this model
can be found in Appendix C, Table C.5.

The results of lr_prod_forced0intercept, the best performing model on the test
data according to MAPE metrics, is shown in Figure 4.6. The target variable InertiaNO
shown in blue, and the model estimate shown in red follow each other closely, and the
MAPE on the test set is 0.820 %. This model had no intercept term, and the coefficient
value was 3.33, as listed in Table 4.3.

Table 4.2: Results of models trained and tested on the Norwegian data.

Table 4.3: Model coefficients on Norwegian data.

lr_only_total_prod lr_prod_forced0intercept
NO_Prod 3.43 3.33

lr_prod_pr_area lr_prod_pr_area_forced
NO1_Prod 3.13 2.66
NO2_Prod 3.28 3.33
NO3_Prod 3.56 3.41
NO4_Prod 4.17 3.79
NO5_Prod 3.21 3.27

45



Figure 4.6: Results of a linear regression model applied to the test data. The model is
using the total Norwegian production as an explanatory variable to estimate the inertia
level in Norway.

4.2.1.2 Discussion Norway

Although the outliers revealed in Figure 4.4 should have been removed from the train-
ing set, the linear models using production data appear to estimate the inertia level in
the test set with high precision, outperforming the baseline models by a considerable
margin.

Observed in Table 4.2, the linear models received a much higher max error in the train
data than in the test set, and this is caused by the periods in the training set where
the inertia estimation had several repeated entries. Because of time constraints, it was
decided not to investigation these values further, as it is assumed that it would not im-
prove the models.

Comparing the results and coefficients between lr_prod, which had 19 explanatory
columns, and the other models in Norway, with 1 or 5 columns, it is clear that having
more columns do not necessarily equal a better model. With 19 columns given to fit
coefficients, lr_prod overfit to the training data by fitting high positive and negative
coefficient to some columns, in this case, unknown production columns.

The Norwegian results compared to the results of the other Nordic countries are dis-
cussed further in section 4.2.5.
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4.2.2 Sweden
The average Swedish contribution to the kinetic energy level in the NPS was 50 % dur-
ing 2018 and 2019. Swedish inertia is displayed in blue along with the total level of
Swedish production shown in red in Figure 4.7. The resolution of the data is hourly.
Based on the figure, the Swedish inertia level intraday seems to vary within a 20 GWs
band, being typically 100 GWs in the winter period (October to April), and lower in
the summer period. Compared to a similar figure from Norway (Figure 4.5), the corre-
lation between total production and inertia is lower, but there is still a clear tendency
that the inertia level follow the production level.

Figure 4.7: Comparing the Swedish inertia level to the total production in Sweden.

The production columns in Sweden are split into 21 columns, listed in Table 3.6. The
structure of the work in Sweden was similar to the method regarding Nordic inertia,
described in Section 4.1; first exploring the results of baseline models, then applying
linear models, discussing the results including model coefficients. Table 4.4 summarises
the metric results of the models run on Swedish data.

Table 4.4: Results of models trained and tested on the Swedish data.
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4.2.2.1 Baseline results - Swedish inertia

Figure 4.8 displays the Swedish inertia level in a nine day period in the test set, August
2019. August 4 was a Sunday. Similar to the Nordic inertia level shown in Figure 4.1,
the Swedish inertia level also has weekly and daily seasonal patterns. The inertia level
peaks in the morning and afternoon and has crests at nighttime. The inertia level is
lower at the weekends, with only minor variations throughout the day. The Naive_1h
model gets a MAPE of 1.880 % on the Swedish test set (Table 4.4). In Sweden, the re-
sults of a 2h persistence model (Naive_2h) was also recorded as a baseline, achieving
a MAPE equal to 3.609 % on the test data. The Naive_24h model is also shown in
the figure and has the same weakness regarding weekends as discussed in Nordic data.
(Overestimating inertia level on Saturdays and underestimating on Mondays). In Swe-
den, the 24h model do however estimate the inertia level better than the Naive_week
model (MAPE of 5.435 % compared to 7.010 %).

Figure 4.8: Baseline models applied on the Swedish data, a week in August. (August 4
2019 was a Sunday).

4.2.2.2 Linear models - Sweden

The work proceeded to test linear models where all 21 production columns in Sweden
(listed in Table 3.6) were used as explanatory variables. Figure 4.9 displays the results
of lr_prod and lr_prod_forced0intercept on the Swedish test data. The target
variable InertiaSE is shown in blue, the lr_prod estimation is shown in orange, and
lr_prod_forced0intercept is the green line. For the first couple of weeks in July,
the models estimate inertia with good precision, but July 17, the target value InertiaSE
rises abruptly with around 10 GWs. This is not captured by the models, which continue
to estimate at a level around 10 GWs less than the target value for one and a half day.
Also, the last week in August, starting the 26th, the models seem to estimate a value of
around 10 GWs lower than the target. Throughout the test period, the models tend to
underestimate the inertia level.

The coefficients of both models are listed in Appendix C, Table C.6, and they indicate
overfitting to the training set, where especially solar and unknown columns were given
high positive and negative coefficient values. Another remark is that in both models,
three out of four thermal columns got a negative coefficient.

48



Figure 4.9: Result of applying linear regression models on Swedish data. Both models
use all production columns as explanatory variables, and lr_prod_forced0intercept is
trained without fitting an intercept.

4.2.2.3 Non-negative Linear regression

As mentioned earlier, negative column coefficients do not make sense from a physical
point of view. Therefore, models with a non-negative coefficient constraint were tested
in Sweden.
lr_prod_nnls is displayed in Figure 4.10 in red, together with the other linear models
described above. The figure reveals that the different models in Sweden are producing
more or less the same output. The metrics from Table 4.4 reveals that lr_prod_nnls
had a marginally higher MAPE on the test data than lr_prod.

The coefficients for lr_prod_nnls are listed in Appendix C, Table C.7. Only seven
production columns got a non-zero coefficient; nuclear production, hydro production
in price areas 1, 2 and 3 and solar production in price areas 1, 3 and 4. No thermal
columns were given a non-zero coefficient. This was a surprising result as theoretically
solar columns should not contribute to the inertia level, while thermal columns should.
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The last model tested in Sweden was an extension of the NNLS model. A ridge regres-
sion model was applied to the Swedish data to shrink the coefficients, while keeping the
constraint of non-negative coefficients. This model was called rr_prod_nnls, and was
trained with regularization parameter α = 1. Figure 4.11 compares this model to the
unrestricted model lr_prod and shows that these two models produce estimations of
inertia that are difficult to distinguish on the test set.

The coefficients for rr_prod_nnls are listed in Appendix C, Table C.8. The columns
given a non-zero coefficient are the same as in the previous model lr_prod_nnls, nu-
clear production and hydro production in price areas 1, 2 and 3. In this model, solar
production columns were given small coefficients.

Figure 4.10: Applying a non-negative linear regression model on Swedish data. The other
Swedish models are also shown for comparison.

4.2.2.4 Discussion Sweden

The results of the Swedish models indicate that inertia can be estimated with a MAPE
below 3 % by using only a subset of the available production columns; nuclear and hy-
dro production columns. The contribution of solar production columns is minor. It is
assumed that solar production columns are included in the model because the inertia
level generally is higher at daytime. This is also the nature of solar production, which
has values of 0 at night, and are positive at daytime.
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Figure 4.11: Applying a ridge regression model on Swedish data.

The exclusion of thermal columns in the NNLS models was of more significant con-
cern, and a possible explanation of this can be the data collection and preprocessing
of Swedish data. As mentioned in Section 3.2.2, the production values downloaded from
SvKs "elstatistik" [48] did not correspond to historic market data from other data sources,
such as Nordpool [54]. At an earlier point in the thesis work, considerable effort was
made to ensure correct time alignment of Swedish data, including comparing the time
series of production as recorded by SvK to production values downloaded from Volue
[56], a leading forecast and consulting service provider in the Nordic Power System.
When comparing production data from these sources, time alignment and volume dis-
crepancies were found. When plotting comparable time series of production values stored
by Volue and "elstatistik" in the transition from standard time to daylight savings time,
some production columns were visually found to lose time alignment. The access to
Volue data was unfortunately lost early in the thesis work, which is why models were
applied to the downloaded data from "elstatistik".

It is heavily recommended that future work redo the data collection of Swedish data,
perhaps using another data source, such as Volue [56]. Despite these concerns regarding
Swedish data, all linear models tested on Swedish data were performing better than the
24h and week baseline models.

51



Nuclear power production

Going into modelling, it was expected that nuclear power units were a significant con-
tributor to the amount of kinetic energy in the system. Nuclear power units are often
decoupled in the summer period for planned maintenance. Table 4.5 lists the nuclear
unavailability for the summer period of 2019. Forsmark 3 ended its maintenance period
on July 17, 2019. In Figure 4.9, the inertia level in Sweden InertiaSE is suddenly in-
creasing by around 10 GWs this date. None of the tested models appears to pick up this
sudden increase in inertia level that is assumed caused by the addition of Forsmark 3 to
the grid.

A possible explanation could be that nuclear power units are ramping down their power
output before they are decoupled, and vice versa, after reinsertion to the grid, the power
output is ramped up. However, the inertia such power units contribute is available as
long as they are connected synchronously to the grid. Because nuclear power plants
usually operate at full capacity, this is a source of error in the top-down estimation.
This could be why linear models do not "see" the inertia contribution of nuclear units
before they are disconnected or after they are reconnected.

Table 4.5: Major outages (>5 days) and maintenance dates of nuclear power in the
NPS, summer 2019. Data on outages is available at Nordic Unavailability Collection Sys-
tem [57].

Name Start End Duration
Sweden
Forsmark 2 29.07.2019 13.08.2019 15 days
Forsmark 3 01.07.2019 17.07.2019 16 days
Ringhals 1 19.07.2019 18.08.2019 30 days
Ringhals 4 29.08.2019 15.10.2019 47 days
Oskarshamn 3 31.08.2019 24.09.2019 24 days
Finland
Olkiluoto 1 02.06.2019 11.06.2019 9 days
Olkiluoto 2 02.05.2019 26.05.2019 24 days
Loviisa 1 08.09.2019 28.09.2019 20 days
Loviisa 2 19.08.2019 13.09.2019 25 days
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4.2.3 Denmark
The kinetic energy of online generation units in Denmark is contributing around 7-10
GWs. Compared to the total level of Inertia in the NPS, which is in the range of 140-
220 GWs, the Danish contribution is close to 5 %. Before further details, the reader is
also reminded that part of the test set in Denmark is imputed, as described in the last
part of Section 3.1.3.

Pre-analysis and baseline models for Danish inertia

Figure 4.12 displays the Danish inertia time series from 2018 to 2019, compared to the
total level of Danish production. Compared to the Norwegian data shown in Figure 4.5,
the inertia and production curves look far less related in Denmark. In general, the iner-
tia level in Denmark appears to have very defined steps. It is also clear from the figure
that the inertia level during summer 2018 is different to 2019. While the inertia stays at
a level of around 4 GWs in the summer of 2018, it remains at a level of around 8 GWs
in 2019. 2019, in general, appears to have a much higher base value and less variation
during the year.

Figure 4.12: Comparing the Danish inertia level to the total production in Denmark.

Figure 4.13 displays the inertia level in the test set, July and August 2019. This figure
further exemplifies the step-like nature of the inertia level in Denmark. In the test pe-
riod, the inertia level has a flat base value of around 7.5 GWs, with sudden steps raising
the inertia level to around 9 GWs.

Baseline models were applied to the Danish data, and in addition to the naive baseline
models introduced in section 3.4.1, another baseline model was proposed - estimating
the inertia value in the test set as the mean value of the inertia level during the training
set. The metric results are listed in Table 4.6 along with the results of the linear models
tested on the Danish data. These linear models are presented in the following.
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Figure 4.13: The Danish inertia level in the test data, July and August 2019.

4.2.3.1 Linear models based on production level in Denmark

Figure 4.14 displays the results of the model lr_only_total_prod on the Danish
dataset. This model had a single column as an explanatory variable, the total produc-
tion in Denmark (price area DK2). The metric results on the training and test data
are listed in Table 4.6. The intercept term of the model was high, 5.38 GWs compared
to the average inertia level in the training period which was 7.49 GWs. The coefficient
given to Danish production was 2.15. The model performance on both the training data
and test data is poor; the MAPE was 19.958 % on the test set, which is much worse
than all baseline models.

Three more models based on production columns were tested on Danish data. lr_prod
and lr_prod_forced0intercept (trained without an intercept term) used all available
columns on production in Denmark, five columns in total. The model lr_thrm used
the data from Denmark’s two thermal production columns as input. The model coeffi-
cients can be found in Appendix C, Table C.9.

Table 4.6: Results of models trained and tested on the Danish data.
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Evident from the results in Table 4.6 these models do not precisely estimate the inertia
level in Denmark. The performance metrics on both test and train data are poor com-
pared to baseline models. The estimations of the three models applied to the test set
are shown in Figure 4.15. All three models underestimate the inertia level in the test
set. The two models trained with an intercept term, lr_prod and lr_thrm, appear
to give an estimation of around 6 GWs the entire test period, with no tendency to pick
up the steplike increase in inertia level. lr_prod_forced0intercept, which had no
intercept term, appears highly volatile and nowhere close to the actual inertia level.

4.2.3.2 Discussion Denmark

When applying linear models to problems, the underlying assumption is that linear re-
lationship exists between input and target variables. The results of linear models ap-
plied to Danish data suggests that such a linear relationship does not exist in this data.

The inertia level in Denmark varies in steps. A possible explanation for this is that the
number of generators in Denmark, price area DK2, is relatively low compared to the
other Nordic countries. 25 generators are monitored by CB status, and 22 generators by
MW output, according to Future system inertia 2 [15]. With such a limited number of
connected generators, it is easy to identify in Figure 4.12 the coupling or decoupling of
a unit as either a sharp rise or drop in the InertiaDE value.

Looking for possible relationships between production and inertia level, wind and so-
lar production in Denmark appeared to have no relevance at all. This is as expected,
as these generating units are not connected synchronously to the power system, there-
fore not contributing with inertia. A closer look at the test data revealed a clear re-
lation between thermal production columns and inertia, as visualized in Figure 4.16.
The two thermal production columns DK2_Thrm_Di (Local power production) and
DK2_Thrm_In (Central production) are shown as a stacked area plot. The inertia
level in price area DK2 is displayed on the secondary axis. During the period, the power
production from local power production units is averaging 100 MWh/h. The power
production from central producing units is close to zero for much of the summer, with
some exceptions. From July 14, to around July 25, the contribution from central power
units increases to around 70 or 80 MWh/h, and coincides perfectly with the increase
in inertia value from 7.5 to 9 GWs. This relation is also visible in 4 periods in August.
This indicates that some useful information regarding inertia level can be extracted
from the thermal production data, but linear models do not capture it. It is possible
that other regression models, such as tree-based regression models or nearest neigh-
bour models can be applied to this data, but those are topics for further work and out
of scope in this thesis.

The reason that the inertia level was much higher in 2019 than in 2018 is that En-
erginet kept Amager power plant, one of the larger combined heat and power plants,
online throughout summer 2019. Because of ongoing line work on the power grid around
Copenhagen, the power plant remained in standby to ensure N-1 security in the power
grid, according to a representative from Energinet [58].
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Figure 4.14: Results of a linear regression model using the total Danish production as
explanatory variable.

Figure 4.15: Results of more linear models run on Danish data
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Figure 4.16: Stacked area plot of thermal production compared to the Danish inertia level
during two months in summer 2019.
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4.2.4 Finland
From 2018 through 2019, the average Finnish contribution to the kinetic energy level in
the NPS was 19 %. The mean value in the period was 38 GWs, with a minimum value
of 22.8 GWs and a maximum value of 50.6 GWs. Finnish inertia is displayed in blue
along with the total level of Finnish production shown in red in Figure 4.17. The in-
ertia level in Finland appears to stay on a level of about 45 GWs in the winter period,
peaking at 50 GWs. In the summer period of 2018 and 2019, the inertia level was typi-
cally 30-35 GWs.

Figure 4.17: Comparing the Finnish inertia level to the total production in Finland.

4.2.4.1 Baseline models - Finland

As described in section 3.4.1, baseline models were applied to the test set, and these
models are shown in Figures 4.18 and 4.19. Figure 4.18 displays the Finnish inertia
level InertiaFI shown in blue, along with Naive_1h (red) and Naive_24h (green).
July 1, 2019 was a Monday. The typical inertia weekly and daily seasonal patterns
are now well established, although the daily inertia level variations often appear more
dampened in Finland. Weekends do also differ less from normal work days.

Figure 4.19 displays the inertia level (blue) in August 2019, the second month in the
test data. In this figure, the Naive_24h model (red) and Naive_week model (green)
are also shown. This figure illustrates the weaknesses of naive models, clearly exem-
plified August 13, and later, where the inertia level rises suddenly for a couple of days
before entering a week with lower inertia. As indicated by the model names, the 24h
model can only react to these changes a full day after the inertia changes, while the
week model first underestimates inertia for a whole week, before completely overesti-
mating the inertia level the next week, starting August 18th. The result of baseline
models applied to the Finnish test data can be found in Table 4.7, along with the re-
sults of the linear models described below.
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Figure 4.18: Baseline models applied to the Finnish test data. Naive 1h and 24h models
are displayed along with the kinetic energy level in Finland InertiaFI the first nine days in
the test set. July 1, 2019 was a Monday.

Figure 4.19: Baseline models applied to the Finnish test data. The Naive_24h and
Naive_week models are displayed along with the kinetic energy level in Finland InertiaFI
in August 2019 (the second month in the test set). August 4, 2019 was a Sunday.
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Table 4.7: Results of models trained and tested using Finnish level of inertia as target
variable.

4.2.4.2 Linear models Finland

Using total production as an explanatory variable

The first model tested out in Finland was lr_only_total_prod, which used only 1
column as an explanatory variable - total production in Finland. In terms of MAPE,
listed in Table 4.7, this model achieved similar results on the training and test set, scor-
ing 5.804 % and 5.747 % respectively. However, this result is worse than all baseline
models applied to the test data in Finland. The intercept for this model was 11.58 GWs,
and the coefficient given to the explanatory column was 3.54. Figure 4.20 displays the
model estimate as an orange line compared to the target value InertiaFI shown in blue.
The model estimate often exaggerates peaks and crests, and the estimates are in peri-
ods constantly underestimating inertia, such as the period between July 15 and 29. The
model does not estimate the significant increase in inertia August 13, but stays at the
same level. The model also estimates inertia at the same level when InertiaFI drops
to a lower level the last two weeks in August. This drop in InertiaFI is assumed to
be caused by the disconnection of the nuclear power plant block Loviisa 2 for planned
maintenance on August 19th (Table 4.5).

Using all available production columns as explanatory variable

The production data in Finland is split into six columns (production types), listed in
Table 3.6. These columns were explanatory variables in the lr_prod and
lr_prod_forced0intercept models. Compared to the model using total production,
both models scored a better estimation of inertia in the test set, achieving MAPE of
4.970 % and 5.401 %, respectively. The intercept of lr_prod was 9.85 GWs. The coeffi-
cients for these models can be found in Appendix C, Table C.10, and for both lr_prod
and lr_prod_forced0intercept, the production column unknown is given a high co-
efficient. The results of these models on the test data is displayed in Figure 4.21, where
the target value InertiaFI is displayed in blue, lr_prod in orange, and
lr_prod_forced0intercept is the green line. The general trend throughout the whole
period is that both models overestimate inertia. Both models capture the increase in
inertia on August 13th, but overestimate inertia for the rest of the test set.
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Figure 4.20: Result of applying a linear regression model using the total production in
Finland as an explanatory variable to estimate Finnish inertia.
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Figure 4.21: Result of applying linear regression models using all available pro-
duction columns in Finland as explanatory variables. lr_prod is trained with, and
lr_prod_forced0intercept is trained without an intercept term.
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Leaving out production columns in Finland

Two more models were tested in Finland, where production columns were left out. The
first model excluded unknown production, lr_prod_no_unkn. This models perfor-
mance on test data was a MAPE of 5.053 % (Table 4.7), while the fit on training data
had a MAPE of 4.052 %. Compared to lr_prod, the metric results on the training
data dropped significantly, indicating that Finland’s unknown column does include pro-
duction that contribute with inertia.

The second model excluded the wind production column, lr_prod_no_wind. For
this model, the metric results on the training data were close to unaltered compared to
lr_prod, both models getting the same results across all metrics. For the test set, this
model got a MAPE of 5.050 %.

Model coefficients for these models are listed in Appendix C, Table C.10. Thermal columns
got higher coefficients as a result of leaving out the unknown production. When leaving
out wind production, the other production coefficients were mostly unchanged.

The results of these models applied to the test set are displayed in Figure 4.22. The
target value InertiaFI is shown in blue. lr_prod is shown as a reference in orange,
lr_prod_no_unkn is shown in green and lr_prod_no_wind is shown in red. There
are two key observations: The orange and red lines are hard to distinguish, meaning the
two models produce similar inertia estimates. Reviewing production data, there were
considerable changes in wind production, also in the test set. Wind production, there-
fore, does not seem to contribute additional information to the top-down inertia estima-
tion in Finland. The other key observation from the figure is that lr_prod_no_unkn
shown in green fail to capture the peak in inertia that occurs on the 13th and 14th of
August. lr_prod and lr_prod_no_wind, which include unknown production as an
explanatory variable are estimating this peak.

4.2.4.3 Discussion Finland

In Finland, no linear models trained on production data were able to produce a bet-
ter estimation than naive persistence baseline models on the chosen test set. The best
performing model on the test set was lr_prod using all six production columns, but
removing the wind column as an explanatory variable did not lead to significant differ-
ences in the estimated inertia.

Listed in Table 4.5, the nuclear reactor Loviisa 2 went into maintenance on August 19.
After this date, InertiaFI fell to a daily level of 25-30 GWs. This period of low-level
inertia was not picked up by any linear model, which is a potential problem as it is
exactly situations with low-level inertia that are necessary to predict, when TSOs are
planning for future operation.

The results on Finnish data indicated that the production column "Unknown" was im-
portant for the linear models’ inertia estimation. When investigating this, it was dis-
covered that the naming of the column was misleading - in the raw data, the naming
of this production column is "Electricity production, reserve power plants and small-
scale production - real-time data". While some small scale production is estimated and
included in this production data, which was the reason for naming the column "Un-
known", it also includes real-time measurement of data from the Finnish reserve power
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Figure 4.22: Result of applying linear regression models where production columns from
unknown and wind production were held out.

plants. Fingrid owns power plants with a total of 927 MW capacity and leases reserve
power plants with 291 MW capacity [59]. To investigate why linear models gave the
column such a high coefficient, "Unknown" production and inertia were compared in a
dual-axis line plot shown in Figure 4.23. In (a) and (b), InertiaFI is shown in blue,
while FIN_Unkn is shown in red. In (a), a period in the training set chosen arbitrarily,
FIN_Unkn has a base value of around 50 MWh/h but also spikes to values of 300 MWh/h
in several periods. In those same periods, the inertia level becomes significantly higher.3
The same can be observed in the test period, August 13 and 14, shown in (b).

3The period with high inertia between May 6-14 shown in (a) does, however, not seem related to
FIN_Unkn.
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(a) Finnish production column FIN_Unkn and Finnish inertia in May and June 2018.

(b) Finnish production column FIN_Unkn and Finnish inertia in the test data, July and August 2019.

Figure 4.23: Comparing the Finnish inertia level to the production column FIN_Unkn.
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4.2.5 Discussion of results per country
After running models per country, this subsection discusses some general observations.

Norwegian inertia estimation

The results on the Norwegian data differ significantly compared to the other countries,
and there appears to be a stronger correlation between production and inertia level in
Norway than in the other countries. Norway was the only country where using only to-
tal production as an explanatory variable could estimate inertia better than the base-
line models.

The results indicate that the estimation of kinetic energy implemented in Norway was
based on a different model than in the other countries. According to Future System In-
ertia 2 "the online kinetic energy estimation is based on the total production level in
each of eight consumption areas, scaled with an average inertia constant, 3.44 s, fac-
tor for inertia, operation point, and power factor." [15]. The coefficients of some of the
Norwegian models in this thesis are listed in Table 4.3, and the model coefficients are
comparable to the average inertia constant (3.44), that [15] reports.

The inertia estimations of the other countries in the NPS are all based on circuit breaker
status and inertia values per generator to estimate inertia, which is previously described
as a bottom-up method in section 3.3 and in "Ensuring future frequency stability in the
Nordic synchronous area" [18]. The Norwegian estimation appears to be a top-down ap-
proximation already. Because of this, there is no reason to do further investigation on
the Norwegian data unless the Norwegian inertia estimation is changed to a bottom-up
method. If the current Norwegian estimation of inertia is accurate enough, then fore-
casting of inertia based on forecasted production values appears to be ready for imple-
mentation in Norway.

Because the Norwegian inertia estimation is based on total production, the model co-
efficients given to individual production columns in Norway are meaningless to discuss,
and therefore, the following discussion will be based on the results from Sweden, Den-
mark and Finland.

Swedish models

Sweden accounts for around 50 % of the Nordic inertia, and the results of models in
Sweden implies that top-down estimations using production data can estimate inertia
more accurately than day-ahead forecasting with persistence models. It is also possi-
ble that the Swedish model can be further improved, as thermal production columns
appeared to not contribute in the NNLS models in Sweden that both had a MAPE of
below 2 % on training data and 3 % on test data. The results from Denmark and Fin-
land indicate that thermal columns do contribute with inertia, and thermal production
plants use generators that are synchronously connected to the grid. Based on this, it is
likely that the quality of data on Swedish production, especially data on thermal pro-
duction, is of poor quality.
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Danish models

The Danish results indicate that the production level alone includes too little informa-
tion to estimate the inertia level in Denmark, as linear models had poor performance
both on the training data and the test data. There appears to be little to no value in
applying this method in future work of creating a forecasting tool of Danish inertia, as
the naive persistence models far outperformed linear models results.

Finnish models

The results of models in Finland are somewhere in between the results from Sweden
and Denmark. These models got a MAPE of roughly 3 % on training data, but this
metric fell to 5 % on the test data, which is worse than all the tested baseline persis-
tence models. In Finland, linear models also performed poorly on periods in test data
with the lowest inertia level. In these periods, the models were overestimating the in-
ertia level. In future work, this issue should be addressed - the low inertia hours are
the essential periods from a forecasting perspective, as it is in these periods that FFR
need is calculated. If forecasts of inertia are too high, it can lead to TSOs not procuring
enough FFR, which threatens system stability in case of an underfrequency event.

General remarks

As a general trend, the tested models were more accurate when the underlying data
included more production. This could be due to the assumption of linearity - more pro-
duction units lead to a closer linear relation between production and inertia level.

Sweden and Finland both include nuclear power units. Nuclear production columns are
given stable high coefficients (around 8 in Sweden, and 5-6 in Finland) in all models
where they are part of the explanatory variables. However, linear models seem unable
to immediately pick up variations in inertia caused by nuclear units being decoupled for
maintenance in the test data. With the number of nuclear units in the NPS being lim-
ited, the inertia contributions from these units can possibly be estimated and forecasted
stand alone, as these units typically run at full capacity except for planned maintenance
periods, usually with several weeks notice. To see how the models are affected, it could
be interesting to re-run the models tested in this thesis with the inertia contribution
from nuclear units excluded from the data.

Regarding other types of production, the results from Sweden and Finland indicate that
production from hydro power plants are included in the models, usually getting coef-
ficient values of around 2-4. While some thermal production columns in Sweden were
given negative coefficients, and later were left out by NNLS models, results from Fin-
land indicate that this type of production is also contributing in the models, with coeffi-
cients also in the range 2-4.

Wind production columns were in Sweden given coefficients close to 0 in models which
allowed negative coefficients, and was set to 0 in nnls models. Leaving this production
type out in Finland and Denmark made little to no difference to model performance.
This is as expected, wind turbines are not connected synchronously to the grid, and
are presumably not included in the Nordic TSOs estimation of inertia. Solar produc-
tion columns were interestingly included in Swedish nnls models, indicating a positive
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correlation with inertia. For future modelling, however, it should be safe to leave solar
production out, as the contribution in the production mix is minor.

Unknown production was left out of Swedish NNLS models, which indicates that those
columns were unimportant. This type of production is often not forecasted. In Finland,
the results indicated that linear models were using the Finnish unknown production
in the estimation. As discussed in section 4.2.4.3 this column includes estimated small
scale production and electricity production from Finland’s reserve power plants. Thus,
the naming of the unknown column in Finland was not appropriate.

4.3 General Discussion
Creating a good forecasting model of inertia will enable a more secure calculation of
the amount of FFR needed, which will enable TSOs to more accurately secure enough
fast reserve capacity in the grid. From an economic point of view, it is important that
the correct amount of reserves is procured. Buying too little reserves increases the risk
of frequency falling out of system limits and causing blackouts that can have high eco-
nomic and social consequences, but at the same time, securing sufficient reserves is also
costly - Statnett bought FFR at the cost of 4.6 MNOK in the demonstration project in
2020 [30], and 22.5 MNOK4 in 2021 [31].

This work has been a step towards creating a model to forecast inertia in the NPS. So
far, historical values on production have been found to be able to estimate inertia with
some precision through linear models. The same models can be used to forecast inertia.
This could be done by simply substituting the input data to the created models with
forecasted production values. Provided the forecasted production columns are compa-
rable regarding production type and area, the models will generate forecasts of inertia.
The evaluations of such forecasts are topics for further work.

Strengths and weaknesses of method
Strengths

Using linear methods are straightforward, and it is transparent what goes into the model
and what comes out. Further, the computations are not resource demanding. When
training and testing, the coefficients are calculated quickly and applying the model on
previously unseen data to create estimates are also done in seconds. Because data go-
ing into the models are not transformed or scaled in any way, expanding the models to
be forecasting models only requires a good data source that provides forecasted values
of production data. It could be the case that forecasts are being made using different
geographical ranges, or generation types. In this case, the models must be tuned or re-
trained with data of the same geographical area as the forecasts.

Weaknesses

Because inertia is not a value easily measured, but a calculated value done by each
TSO, it is not necessarily the case that the estimated inertia values that are used to
train the linear models are the actual inertia values in the power system at all times.

4The actual cost is not stated. This value is calculated with the given details in [31].
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The implementation of the inertia estimation is described briefly in Section 2.7, based
on the reports Future System Inertia 1 [13] and 2 [15]. The proposed method of fore-
casting inertia requires the inertia estimation by the TSOs to be good. Changes in how
inertia is estimated might significantly impact the results of the work performed in this
thesis.

A specific weakness with the method in this thesis is regarding the test set chosen as
July and August 2019. While this period was chosen because it is typically a period of
low inertia, testing the models on a single limited test period is only giving an indica-
tion of the model quality. The results of the models will likely be different if another
test set is used. To further assess model quality, it is recommended to expand both
the training and test set. Notable events in the power grid during summer 2019 might
have had a big impact on the test set results. Therefore, the results in this thesis are
exploratory and preliminary, and will require further verification and testing on more
data before conclusions can be made regarding model accuracy.

Linear models assume that a linear relation exists between production power output
and inertia level. This assumption might hold for a system with many generators that
operate near total capacity when connected to the grid. However, if many generators
operate with reduced capacity or are running idle, they still contribute with inertia. In
this case, the assumption of linearity might not hold. E.g. the same observed power
output can be associated with different inertia level estimations in hours one and two, if
a power plant running idle in hour one is disconnected in hour two.

Ideas of improvement

It is likely that system condition changes throughout the year. For this work, the iner-
tia level during the summer, especially the periods with the lowest amount of inertia,
is of interest. The models tested so far have been trained on data throughout an entire
year, that includes both high and low values of production and inertia. A possible mod-
ification could be to train models specifically on low inertia hours and address if this
improves the estimations in the summer periods.
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Chapter 5

Conclusion and further work

5.1 Conclusion
The main goal in this thesis was to (M) develop linear models using production data to
estimate the amount of kinetic energy in the Nordic Power System. During the work
of the thesis, this goal has been addressed, and models have been applied both on a
Nordic level, and later per country. These linear models were compared to naive per-
sistence models to evaluate the performance if estimations are extended to forecasts in
further development of the method.

On a Nordic level, the models got a MAPE of around 2 % on the test set in July and
August 2019. This result was around the same precision as a naive persistence model
using 1h lagged values to estimate inertia and much better than such persistence mod-
els with longer time horizons (24h or week) that both had a MAPE of around 5 %. The
Norwegian implementation of inertia estimation was found to be already based on a
top-down approach that uses production level rather than generator circuit breaker sta-
tuses to estimate inertia. In Sweden, using data on nuclear and hydro power production
resulted in estimations of the inertia level with a MAPE of below 3 % on the test set.
This is slightly less accurate than a 1h persistence model, which scored a MAPE below
2 %, but better than 24h and weekly persistence models. For Denmark, linear models
performed poorly both on the training and test set. Forecasting inertia in Denmark
will likely require other input data or models. In Finland, all generation types except
wind contributed to a model that achieved a MAPE just above 5 % on test data, which
means they do not estimate inertia better than persistence models applied to Finnish
data. In addition, all linear models tested in Finland overestimated periods of low iner-
tia.

Nuclear production was usually given a high stable coefficient in the various models,
but in the test data, there was a tendency that variations in inertia caused by nuclear
power plants being decoupled for planned maintenance was not picked up immediately.
Also, hydro and thermal production were given stable positive coefficients in the mod-
els, while VRES production columns (wind and solar) were found to have little impact
on model performance.
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5.2 Further work
Because of the differences in production mix and data availability, it is recommended
to proceed with models split per country when developing forecasting models. Even
though the results of the models applied to the total Nordic level of inertia showed good
results in terms of MAPE on the test set, domain-specific knowledge of power plants,
as well as differences in the power mix within each country suggests that the best way
forward is to proceed with individually estimating/forecasting inertia values per coun-
try. Further, the data used for the training of the models is calculated as the sum of
four separate inertia estimations performed in Norway, Sweden, Denmark and Finland.
Therefore, contributions to inertia by the generators in each country can technically
only be observed in that respective country’s inertia estimation.

Based on the results of this work, the continuation could focus on developing the Swedish
and Finnish models further, and begin to map the performance of such models used in
forecasting.

The estimation method currently in place for Norwegian data is already based on a top-
down approach. Inertia forecasts can also be made in Norway, by providing forecasts of
production. However, the evaluation of such forecasts will only measure how accurate
the production forecasts are. Statnett is recommended to implement an estimation of
inertia similar to that of the other countries in the NPS. Once a new bottom-up estima-
tion of inertia is in place, it would be interesting to redo the methodology, and explore
the results with the Norwegian power mix.

In Denmark, other models of forecasting should be tested, not based on a linear rela-
tion of production and inertia level. Other types of data, for instance the number of
connected synchronous generators in Denmark, could be a better estimator than power
measurements.
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Appendix A

Collected data on production and
inertia

The collected data used for modelling can be downloaded at the github repository
https://github.com/larspand/data_master_thesis. Table A.1 displays the top 10
rows in the dataset NordicInertiaWithNaN.csv.
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Appendix B

Script to download inertia and
production data from Fingrid open
data

B.1 Collecting data from Fingrid
The following script was used to download data from Fingrid open data [49].

In order to run the script you must edit the script inserting a personal API code you re-
cieve when registering as a user.1 The recieved API code should be put inside the quo-
tation marks in line 29 in the script below.

Code B.1: The script that was used to download Finnish data.
1 # −∗− coding : utf−8 −∗−
2 " " "
3 Created on Wed Jan 15 0 8 : 4 0 : 4 1 2020
4
5 @author : l a r s a n 1
6 " " "
7 import pandas as pd
8 import requests
9

10 timeseries_prodFI = [ ( 1 8 8 , ' FIN_Nucl ' ) ,
11 (181 , 'FIN_Wind ' ) ,
12 (191 , 'FIN_Hydr ' ) ,
13 (202 , 'FIN_Thrm_In ' ) , #I n d u s t r i a l cogen
14 (201 , 'FIN_Thrm_Di ' ) , #D i s t r i c t cogen
15 (205 , 'FIN_Unkn ' ) ,
16 (192 , ' FIN_Prod_tot ' ) ,
17 (193 , ' Fin_Cons_tot ' ) ]
18
19 timeseries_inertiaFI = [ ( 2 6 0 , ' InertiaNordicGWs ' ) ]
20
21 de f get_timeseries ( start_time , end_time , variable_id , timeseries_name=None ) :
22 " " "
23 C o l l e c t s a l l events from a time s e r i e s with var iab l e_id <var iab le_id >
24 from start_time to end_time from F i n g r i d s open data plat form .
25 " " "

1The form for registering a user is available at https://data.fingrid.fi/open-data-forms/
registration/.
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26 url = " https : // api . f i n g r i d . f i /v1/ v a r i a b l e / " + s t r ( variable_id ) + " / events / j son "
27 headers = {
28 ' Accept ' : ' a p p l i c a t i o n / j son ' ,
29 'x−api−key ' : ' ' #<−−− per sona l API code from f i n g r i d goes here
30 }
31
32 params = (
33 ( ' start_time ' , start_time ) ,
34 ( ' end_time ' , end_time ) ,
35 )
36
37 q = requests . get ( url , headers=headers , params=params ) #query text
38
39 df = pd . DataFrame ( q . json ( ) )
40 de l df [ ' end_time ' ]
41 df [ 'UTCtime ' ] = pd . to_datetime ( df [ ' s tart_time ' ] )
42 df = df . set_index ( 'UTCtime ' )
43 df . drop ( [ ' s tart_time ' ] , axis=1, inplace=True )
44 i f timeseries_name :
45 df = df . rename ( columns={" value " : timeseries_name })
46 re turn df
47
48
49 de f get_month_timeseries ( year , month , variable_id , timeseries_name=None , resample_hourly←↩

=False ) :
50 date = s t r ( year ) + ' / ' + s t r ( month ) + ' /1 '
51 date = pd . to_datetime ( date )
52 start = s t r ( date ) . replace ( ' ' , 'T ' ) + 'Z '
53
54 end_date = date + pd . DateOffset ( months=1) − pd . DateOffset ( seconds=1)
55 end = s t r ( end_date ) . replace ( ' ' , 'T ' ) + 'Z '
56
57 df = get_timeseries ( start_time=start ,
58 end_time=end ,
59 variable_id=variable_id ,
60 timeseries_name=timeseries_name )
61 re turn df
62
63
64 de f collect_timeseries_from_tuple_per_month ( timeseries_tuple , year , month ) :
65 df = pd . DataFrame ( )
66 resample_hourly = None
67 f o r varID , name in timeseries_tuple :
68 df = pd . concat ( [ df ,
69 get_month_timeseries ( year ,
70 month ,
71 varID ,
72 name ,
73 resample_hourly ) ] ,
74 axis=1)
75 re turn df
76
77 de f collect_timeseries_year ( timeseries_tuple , year ) :
78 df = pd . DataFrame ( )
79 f o r month in range (1 , 13 ) :
80 p r i n t ( 'Now g e t t i n g month : '+s t r ( month ) )
81 df = pd . concat ( [ df ,
82 collect_timeseries_from_tuple_per_month ( timeseries_tuple ,
83 year ,
84 month ) ] ,
85 axis=0)
86 re turn df
87
88 i f __name__ == "__main__" :
89 " " "
90 I f s c r i p t i s run d i r e c t l y − downloads t i m e s e r i e s on product ion l i s t e d in
91 t imeser i e s_prodFI a s w e l l as i n e r t i a t i m e s e r i e s from 2018 and 2019 and
92 s t o r e s both high r e s o l u t i o n and hour ly r e s o l u t i o n data as csv f i l e s .
93 " " "
94 df2018 = collect_timeseries_year ( timeseries_prodFI , year =2018)
95 df2019 = collect_timeseries_year ( timeseries_prodFI , year =2019)
96
97 df_combined = pd . concat ( [ df2018 , df2019 ] , axis=0)
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98 df_combined . to_csv ( ' finnish_prod_con_data_2018_2019_minute_from_API . csv ' ,
99 sep=' ; ' ,

100 decimal=' , ' )
101 df_hourly = df_combined . resample ( 'H ' ) . mean ( )
102 df_hourly . to_csv ( ' finnish_prod_con_data2018_2019_hourly_from_API . csv ' ,
103 sep=' ; ' ,
104 decimal=' , ' )
105
106 inertiadf2018 = collect_timeseries_year ( timeseries_inertiaFI , year =2018)
107 inertiadf2019 = collect_timeseries_year ( timeseries_inertiaFI , year =2019)
108
109 inertiadf_combined = pd . concat ( [ inertiadf2018 , inertiadf2019 ] , axis=0)
110 inertiadf_combined . to_csv ( ' fingrid_inertia_data_2018_2019_minute_from_API . csv ' ,
111 sep=' ; ' ,
112 decimal=' , ' )
113 inertiadf_hourly = inertiadf_combined . resample ( 'H ' ) . mean ( )
114 inertiadf_hourly . to_csv ( ' fingrid_inertia_data_2018_2019_hourly_from_API . csv ' ,
115 sep=' ; ' ,
116 decimal=' , ' )
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Appendix C

Model Coefficients

C.1 Coefficients from LR models on the Nordic dataset
Table C.1: Model coefficients for the model lr_prod
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Table C.2: Model coefficients for the model lr_prod_forced0intercept

Table C.3: Model coefficients for the model lr_prod_nnls
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Table C.4: Model coefficients for the model lr_prod_nnls_forced0intercept
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C.2 Coefficients from LR models on Norwegian data

Table C.5: Model coefficients for the model lr_prod on the Norwegian dataset.
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C.3 Coefficients from LR models on Swedish data
Table C.6: Model coefficients for lr_prod and lr_prod_forced0intercept on the
Swedish dataset.
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Table C.7: Model coefficients for lr_prod_nnls on the Swedish dataset.

Table C.8: Model coefficients for rr_prod_nnls on the Swedish dataset.
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C.4 Coefficients from LR models on Danish data
Table C.9: Model coefficients for models on the Danish dataset.

C.5 Coefficients from LR models on Finnish data
Table C.10: Model coefficients for models on the Finnish dataset.
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