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Summary

Robots have recently become ubiquitous in many aspects of daily life. For
in-house applications there is vacuuming, mopping and lawn-mowing robots.
Swarms of robots have been used in Amazon warehouses for several years.
Autonomous driving cars, despite being set back by several safety issues, are
undeniably becoming the standard of the automobile industry. Not just being
useful for commercial applications, robots can perform various tasks, such as
inspecting hazardous sites, taking part in search-and-rescue missions. Regardless
of end-user applications, autonomy plays a crucial role in modern robots.
The essential capabilities required for autonomous operations are mapping,
localization and navigation. The goal of this thesis is to develop a new approach
to solve the problems of mapping, localization, and navigation for autonomous
robots in agriculture. This type of environment poses some unique challenges such
as repetitive patterns, large-scale sparse features environments, in comparison
to other scenarios such as urban/cities, where the abundance of good features
such as pavements, buildings, road lanes, traffic signs, etc., exists.

In outdoor agricultural environments, a robot can rely on a Global Navigation
Satellite System (GNSS) to determine its whereabouts. It is often limited to
the robot’s activities to accessible GNSS signal areas. It would fail for indoor
environments. In this case, different types of exteroceptive sensors such as (RGB,
Depth, Thermal) cameras, laser scanner, Light Detection and Ranging (LiDAR)
and proprioceptive sensors such as Inertial Measurement Unit (IMU), wheel-
encoders can be fused to better estimate the robot’s states. Generic approaches
of combining several different sensors often yield superior estimation results
but they are not always optimal in terms of cost-effectiveness, high modularity,
reusability, and interchangeability. For agricultural robots, it is equally important
for being robust for long term operations as well as being cost-effective for mass
production.

We tackle this challenge by exploring and selectively using a handful of
sensors such as RGB-D cameras, LiDAR and IMU for representative agricultural
environments. The sensor fusion algorithms provide high precision and robustness
for mapping and localization while at the same time assuring cost-effectiveness
by employing only the necessary sensors for a task at hand. In this thesis, we
extend the LiDAR mapping and localization methods for normal urban/city
scenarios to cope with the agricultural environments where the presence of slopes,
vegetation, trees render the traditional approaches to fail. Our mapping method
substantially reduces the memory footprint for map storing, which is important
for large-scale farms. We show how to handle the localization problem in dynamic
growing strawberry polytunnels by using only a stereo visual-inertial (VI) and
depth sensor to extract and track only invariant features. This eliminates the
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Summary

need for remapping to deal with dynamic scenes. Also, for a demonstration
of the minimalistic requirement for autonomous agricultural robots, we show
the ability to autonomously traverse between rows in a difficult environment
of zigzag-liked polytunnel using only a laser scanner. Furthermore, we present
an autonomous navigation capability by using only a camera without explicitly
performing mapping or localization. Finally, our mapping and localization
methods are generic and platform-agnostic, which can be applied to different
types of agricultural robots.

All contributions presented in this thesis have been tested and validated on
real robots in real agricultural environments. All approaches have been published
or submitted in peer-reviewed conference papers and journal articles.
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Sammendrag

Roboter har nylig blitt standard i mange deler av hverdagen. I hjemmet har
vi støvsuger-, vaske- og gressklippende roboter. Svermer med roboter har blitt
brukt av Amazons varehus i mange år. Autonome selvkjørende biler, til tross
for å ha vært satt tilbake av sikkerhetshensyn, er udiskutabelt på vei til å bli
standarden innen bilbransjen. Roboter har mer nytte enn rent kommersielt bruk.
Roboter kan utføre forskjellige oppgaver, som å inspisere farlige områder og
delta i leteoppdrag. Uansett hva sluttbrukeren velger å gjøre, spiller autonomi
en viktig rolle i moderne roboter. De essensielle egenskapene for autonome
operasjoner i landbruket er kartlegging, lokalisering og navigering. Denne type
miljø gir spesielle utfordringer som repetitive mønstre og storskala miljø med få
landskapsdetaljer, sammenlignet med andre steder, som urbane-/bymiljø, hvor
det finnes mange landskapsdetaljer som fortau, bygninger, trafikkfelt, trafikkskilt,
etc.

I utendørs jordbruksmiljø kan en robot bruke Global Navigation Satellite
System (GNSS) til å navigere sine omgivelser. Dette begrenser robotens
aktiviteter til områder med tilgjengelig GNSS signaler. Dette vil ikke fungere
i miljøer innendørs. I ett slikt tilfelle vil reseptorer mot det eksterne miljø
som (RGB-, dybde-, temperatur-) kameraer, laserskannere, «Light detection
and Ranging» (LiDAR) og propriopsjonære detektorer som treghetssensorer
(IMU) og hjulenkodere kunne brukes sammen for å bedre kunne estimere
robotens tilstand. Generisk kombinering av forskjellige sensorer fører til
overlegne estimeringsresultater, men er ofte suboptimale med hensyn på
kostnadseffektivitet, moduleringingsgrad og utbyttbarhet. For landbruksroboter
så er det like viktig med robusthet for lang tids bruk som kostnadseffektivitet
for masseproduksjon.

Vi taklet denne utfordringen med å utforske og selektivt velge en håndfull
sensorer som RGB-D kameraer, LiDAR og IMU for representative landbruksmiljø.
Algoritmen som kombinerer sensorsignalene gir en høy presisjonsgrad og robusthet
for kartlegging og lokalisering, og gir samtidig kostnadseffektivitet med å
bare bruke de nødvendige sensorene for oppgaven som skal utføres. I denne
avhandlingen utvider vi en LiDAR kartlegging og lokaliseringsmetode normalt
brukt i urbane/bymiljø til å takle landbruksmiljø, hvor hellinger, vegetasjon og
trær gjør at tradisjonelle metoder mislykkes. Vår metode reduserer signifikant
lagringsbehovet for kartlagring, noe som er viktig for storskala gårder. Vi
viser hvordan lokaliseringsproblemet i dynamisk voksende jordbær-polytuneller
kan løses ved å bruke en stereo visuel inertiel (VI) og en dybdesensor for å
ekstrahere statiske objekter. Dette eliminerer behovet å kartlegge på nytt for å
klare dynamiske scener. I tillegg demonstrerer vi de minimalistiske kravene for
autonome jordbruksroboter. Vi viser robotens evne til å bevege seg autonomt
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Sammendrag

mellom rader i ett vanskelig miljø med polytuneller i sikksakk-mønstre ved bruk
av kun en laserskanner. Videre presenterer vi en autonom navigeringsevne ved
bruk av kun ett kamera uten å eksplisitt kartlegge eller lokalisere. Til slutt viser
vi at kartleggings- og lokaliseringsmetodene er generiske og platform-agnostiske,
noe som kan brukes med flere typer jordbruksroboter.

Alle bidrag presentert i denne avhandlingen har blitt testet og validert med
ekte roboter i ekte landbruksmiljø. Alle forsøk har blitt publisert eller sendt til
fagfellevurderte konferansepapirer og journalartikler.
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Preface
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Chapter 1

Introduction

Agriculture has been undergoing drastic changes during the past years. The
modernization of agricultural product manufacturing has adopted autonomous
robots with increasing demands. One of the main reasons for this wide acceptance
is the heavy burden of amplifying production in the near future. By 2050, the
human population is expected to peak at 9.8 billion according to the United
Nations 1. Food supply security is a non-negotiable matter for each and every
country. The agriculture industry may have to double its production to keep
up with demands [7]. The industry also faces several problems. Changes
in diet in diverse cultures require a high amount of investments in different
sectors. Farmland allocated to agriculture worldwide has almost saturated.
Resources such as water, energy and greenhouse gas emission constrain place
another challenge for agricultural activities. Last but not least, climate change
exacerbates and threatens all of the human efforts.

All of those challenges lead to this future of farming and agriculture in general:
precision, efficiency, and sustainability. Traditional agricultural machinery
simply can not satisfy these requirements. One example is the exceeding usage
of pesticide/herbicide has led to exposure impact on human, water and soil
contamination, the evolution of pesticide/herbicide-resistant weeds and harmful
insects [1]. Agricultural robots equipped with advanced sensing devices, on the
other hand, provide a higher level of precision in weed detection and classification
[2, 9, 12]. Even more, they offer an alternative physical method to chemical
solution for weeding managements [4]. On efficiency, agricultural robots might
be able to solve labor shortages and high production costs problems [3]. A
particular example is strawberry harvesting. The global strawberry market was
reported at 9.2 million tons in 2016, which saw a 5% increase in comparison to
2015. The numbers were collected by the market research company IndexBox.
Yet, nowadays most strawberry harvesting operations are done manually by
human pickers. As the cost of labor work increases and other factors, such
as human pickers can only work in daylight, it is clear that relying on labor
forces for harvesting strawberry would soon become cost-prohibitive. Hence,
autonomous agricultural robots present a noteworthy solution to the human
labor shortage problem in agricultural production.

Agricultural robots have been researched and developed for the past several
years. The current market offers different kinds of robots in all shapes and forms.
They include both unmanned ground vehicles (UGV) and unmanned aerial
vehicles (UAV). While the ground mobile platform is suitable for heavy duties
with additional equipment such as plows, arm manipulators, spraying systems,

1https://www.un.org/development/desa/en/news/population/world-population-
prospects-2017.html
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1. Introduction

(a) Multipurpose Robotti. Image courtesy
of https://agrointelli.com//

(b) Crop monitoring and mapping
Tom robot. Image courtesy of
https://smallrobotcompany.com

(c) E-series strawberry harvesting robot.
Image courtesy of https://agrobot.com/

(d) Scouting UAV. Image courtesy of
https://american-robotics.com/

(e) Autonomous tractors. Image courtesy
of https://bearflagrobotics.com/

(f) Autonomous weed control. Image cour-
tesy of http://bluerivertechnology.com/

Figure 1.1: Some available agricultural robots.

etc., aerial platforms are mainly used for crop monitoring. Some available
agricultural robots are shown in Fig.1.1.

Regardless of the platform and assigned tasks, agricultural robots or
autonomous robots, in general, must always be able to answer three questions:

1. What does the world look like?

2



Motivation and Objectives

2. Where is the robot in that world?

3. How can the robot get to its goal in that world?

These questions constitute the fundamental functionalities of an autonomous
robot. They relate to the core technologies of modern robots: mapping,
localization and motion planning. Mapping and localization provide spatial
awareness and knowledge of the global pose to the robotic platforms, a sine qua
non requirement for motion planning.

This thesis aims to address these questions by designing mapping, localization
and planning solutions that work together to allow fast and robust operations on
autonomous agricultural robots. Furthermore, we specifically tackle the unique
challenges in agricultural environments: sparse features, repetitive patterns,
mixed-mode indoor-outdoor activities and more importantly we want to build
a minimalistic system that does not incur any heavy cost for agricultural
production.

1.1 Motivation and Objectives

Full autonomy has been achieved in several agricultural robotics systems for
outdoor environments such as some commercialized products depicted in Fig.1.1.
However, agricultural activities are not exclusive to outdoors but also including
greenhouses, polytunnels, farmhouses, etc., Most available systems currently
depend on GNSS solutions, which is not universal for every task. Hence, a more
complex task at hand would require additional sensors, which may, in turn,
require a custom-designed solution for each robot. This makes extensions to
different platforms difficult. Hence, the main objective of this thesis is to develop
autonomous agricultural robots that have such properties:

GNSS-independent operations Since our targeted working environments are
a mix of indoor and outdoor scenes, and some may be completely GPS-
denied such as polytunnels, we cannot rely on external global positioning.
Our goal is to build a pose estimation system that can complement existing
GNSS solutions that enable robots to work seamlessly in various scenarios
and also work independently.

Minimalistic system Stacking up different sensor modalities may yield better
pose estimation. However, it also complicates the whole platform and
makes it difficult to extend to other robots. It also places a cost burden
on the applicability of a robot. We want to use as few sensors as possible
and a common sensor that can be used in various environments should be
supported.

Scalability We want our system to apply to general platforms. We want to
build a system that can support both ground and aerial robots. Even
though the usage of aerial robots in agriculture is still limited, we believe
a good system should be able to operate regardless of the platform it is

3



1. Introduction

attached to. Therefore, we specifically target 6 degree-of-freedom (DOF)
pose estimation, which can be applied to wheeled robots (moving on
rough/uneven terrains) and aerial robots. We do not tailor to any specific
sensors. All proposed algorithms can work with different brands of sensors
(LiDARS, cameras, RGB-D cameras, IMUs, etc.,). We also guarantee the
compatibility by developing on Robot Operating System (ROS). ROS is
widely adopted and supported by robotics companies around the world.
Compatibility with this framework will greatly extend our system usage.

Assistance to human operator Finally, the system should be able to comple-
ment and assist human operators if necessary. This is ensured by having
map representations that are easy for a human to inspect, infer and in-
tervene so that high-level decision making from a human can be given to
robots.

Fig. 1.2 shows examples of three sensor setups on an agricultural robot, Thorvald
[8]. We advocate for the selective usage of sensors for specific tasks so that it is
unnecessary to stack too many sensor modalities on one robot. Specifically, a
3D LiDAR is suitable for tasks such as a robot moving from an open field to
storage on a large-scale farm. For cluttered environments such as polytunnels,
we show that we can use only one RGB-D stereo VI sensor for localization.

1.2 Approach

Our approach presents contributions in three main areas: a complete online 3D
SLAM system for agricultural robots that can handle sparse features, repetitive
patterns problems in agricultural environments, a minimalistic global localization
system for agricultural robots in cluttered polytunnel environments, and a simple
yet efficient system for autonomous navigation in a challenging polytunnel.

For mapping, we aim to solve a problem of mapping sparse feature and/or
repetitive pattern environments, for which, traditional methods of 3D LiDAR
mapping such as [14] cannot be applied directly. Moreover, we also want to have
an easy-to-read map so that a human operator would not struggle to understand
a current situation that a robot is currently in. Octomap [10] is a popular
occupancy grid mapping representation. However, it is hard to interpret from a
voxel-like map since a voxel obscures fine details of objects it represents. Noted
that, by having a detail map does not mean we need to suffer a high-memory
consumption for map storage. By leveraging the semantic segmentation of 3D
pointcloud [5], we are able to reduce the memory footprint for map storage by
60%, in comparison to state-of-the-art method [14].

For localization, we developed two methods: an NDT-based method [13]
to localize a robot in a prior large-scale 3D map, such as a farm, where it is
reasonable to assume most features (storage, barns, fences, big trees, etc.,) are
static; a machine learning (ML) based approach [11] to extract invariant features
from a dynamic environment in a polytunnel with growing strawberry. The
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Description of experimental environments

(a) Agricultural robot Thorvald with a 2D
LiDAR sensor

(b) Agricultural robot Thorvald with a
RGB-D Stereo VI sensor

(c) Agricultural robot Thorvald with a 3D
LiDAR sensor

Figure 1.2: Three minimalistic sensor setups used for this thesis.

extracted features helps the robot localize inside a polytunnel, where traditional
methods relied on visual features would likely fail.

For navigation, we demonstrated that using only one 2D laser scanner and
exploiting the geometric structure of a polytunel, a simple pure pursuit algorithm
[6] can safely navigate a robot autonomously between rows in a challenging
zigzag-like polytunnel. This also emphasizes our minimalist design strategy.

1.3 Description of experimental environments

For all of our works, we conducted experiments on real-world fields. These fields
include a mock-up polytunnel, a strawberry polytunnel, NMBU’s campus Ås,
and NMBU’s orchards. A strawberry polytunnel is a plant-growing area covered
by polymer material. A common structure of a strawberry polytunnel consists

5



1. Introduction

(a) A strawberry polytunnel at NMBU (b) A mock-up polytunnel at our lab

(c) A test area of NMBU’s campus at Ås.
Image is taken from Google Map

(d) A test area of NMBU’s orchards at Ås

Figure 1.3: Environments for experiments used in this thesis.

of several evenly-spaced sets of poles, on top of which hold table-trays. A pole
usually has a cylinder shape and made of steel. Poles are firmly inserted into the
ground. Strawberry plants are grown in plastic pots and placed on top of those
table-trays. An illustration of our strawberry polytunnel at NMBU is shown in
Fig. 1.3a. A mock-up polytunnel is an over-simplified version of a polytunnel.
A mock-up polytunnel consists only of poles, which are evenly-spaced to mimic
a real polytunnel. We built our mock-up polytunnel for fast prototype-testing.
Our mock-up polytunnel is shown in Fig. 1.3b. We also use our NMBU’s campus
at Ås for testing as shown in Fig. 1.3c. A Google Map image of our testing
area at NMBU’s campus is shown in Fig. 1.3. And finally, we utilize NMBU’s
orchards for experiments. An image of our orchards is shown in Fig. 1.3d.
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Chapter 2

Background

This chapter contains a survey of prior works on robotics mapping and localization
and applications for agricultural robots. We start with a review of recent
achievements in robotics for mapping and localization, where we also discuss
in detail relevant techniques that are similar to what we have developed in our
papers. We then focus on sensor fusion applications in agricultural robotics,
including notable research projects and relevant applications.

2.1 Robotics mapping and localization

Mapping and localization are the two core functions of autonomous robots. A map
can be seen as a distinct representation of an environment. The representation
may be in the form of landmark positions, semantic segmentation of objects
such as obstacles, walls, ceiling, etc., A purpose of a map is to describe an
environment, in which the robot is currently in. It may also provide visualization
to a human supervisor so that one can provide high-level commands to a remote
robot. Localization, on the other hand, is the robot’s capability to recognize
where it is in an environment. For the majority of use-cases, knowledge of the
precise location of a robot is of utmost importance. For example, robots interact
with humans on a factory floor. Usually, a robot is localized inside a map. That
map may be a priori or may be built online. Due to the complementary nature
of mapping and localization processes, they are often combined in a process
called Simultaneous Localization and Mapping or SLAM.

There is a vast collection of SLAM work about robotics mapping in literature.
Thrun et al. [89] provide the classical textbook about mapping among other
topics. Durrant-Whyte and Bailey provide a thorough review of probabilistic
approaches and data association methods in [25]. More recently, Stachniss et
al. describe three main SLAM formulations in [85]. Also, other works focus on
selective aspects of the SLAM problem. Aulinas et al. offer a review of filtering
approaches [1]. Grisetti et al. discussed about SLAM back-end [37]. Huang
and Dissanayake analyze consistency, and convergence problems of EKF-based
SLAM in [47]. Scaramuzza and Fraundofer describe advances in visual odometry
methods [29, 81]. Saeedi et al. discuss the challenges in multi-robot SLAM
[79]. Lowry et al. focus on the visual place recognition problems [58]. Huang
and Dissanayake give an updated review of the theoretical understanding of
fundamental SLAM problems in [46].
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2. Background

Figure 2.1: An example of a feature-based map. Features are represented as 3D
points in space (right most image). Those feature are detected and matched
between left and right images (left most and middle images).

2.1.1 Map representations

We start by discussing a simple map representation in 2D environments. For this
type of environment, one can represent a map as a set of landmark locations or in
a form of occupancy grids. The former is trivial to understand, while the latter
discretizes the world into cells and each cell is marked by a probability of being
occupied. Note that, a landmark-based representation can also be conceived
as a feature map. Features can be lines, corners for pure 3D features to other
invariant forms detected by a sensor such as a camera or a 3D sensor. Both
representations have advantages and disadvantages.

Feature (landmark) maps are mostly sparse and useful for localization by
feature (landmark) matching. They are less visually intuitive for environment
reconstruction and not easy for human perception. An example of a feature map
is shown in Fig.2.1.

On the other hand, occupancy grid maps are more popular. They can
represent both static and dynamic environments. An occupancy grid map is
originally built in 2D [89], but it can be extended to 3D in a form of Octomap
[44]. In this thesis, we mainly use the 2D version of an occupancy grid map in
Paper III. Hence, we discuss in-depth the 2D occupancy grid map next.

Occupancy grid maps describe a world in a set of cells. Each cell is assigned
a number that represents the probability of being occupied. The map then
gets updated with new incoming measurements, where the probability of being
occupied can be changed. An occupancy grid map is built given known poses of
a robot and sensor measurements in those poses. Fig.2.2 shows an example of
an occupancy grid map.

The target environment is then categorized into empty space or occupied by
obstacles. A probabilistic value of being occupied p(c) is assigned to each cell
s. A sequence of observations z1:t obtained from the robot at poses x1:t is used
to update the map as the robot traverses the environment. The subscript 1 : t
denotes a time series. The map is then updated by the Bayes’ rule:

p(c|x1:t, z1:t) = p(zt|c, x1:t, z1:t−1)p(c|x1:t, z1:t−1)
p(zt|x1:t, z1:t−1) (2.1)

To compute the posterior probability of occupancy, one can assume that all
the cells are independent. This allows us to simply formulate the probability of
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Robotics mapping and localization

Figure 2.2: An example of an occupancy grid map. Left: a floor plan; right: a
built occupancy grid map of the same floor using 2D range sensor. Black color
denotes cells being occupied, white color denotes empty spaces and gray colors
mean unknown. Image courtesy of Thrun et al. [89].

the map m is a product overall probabilities of individual cells c:

p(m) =
∏
c∈m

p(c) (2.2)

Assuming that zt is independent from x1:t−1, z1:t−1, we can rewrite Eq.2.1
as:

p(c|x1:t, z1:t) = p(zt|c, xt)p(c|x1:t, z1:t−1)
p(zt|x1:t, z1:t−1)

p(zt|c, xt) = p(c, xt, zt)p(zt|xt)
p(c|xt)

(2.3)

Besides, we can also assume an arbitrary pose x does not affect the map cells
c if there is no observation z at the the same timestamp. It is trivial to make
this assumption as we can only infer about the environment only if we have
new observation about it. It reflects the fact that if the robot does not move
but continue to receive measurements of its current location, other parts of the
environment (that are not contained in the current measurements) should not
be updated. Hence, we can write:

p(c|x1:t, z1:t) = p(c|xt, zt)p(zt|xt)p(c|x1:t, z1:t−1)
p(c)p(zt|x1:t, z1:t−1) (2.4)

Each cell of the map is assumed to be either free or occupied, therefore, we
can also write the negation of Eq.2.4:

p(¬c|x1:t, z1:t) = p(¬c|xt, zt)p(zt|xt)p(¬c|x1:t, z1:t−1)
p(¬c)p(zt|x1:t, z1:t−1) (2.5)

Combining Eq.2.4 and Eq.2.5, we have:

p(c|x1:t, z1:t)
p(¬c|x1:t, z1:t)

= p(c|xt, zt)p(¬c)p(zt|x1:t, z1:t−1)
p(¬c|xt, zt)p(c)p(zt|x1:t, z1:t−1) (2.6)
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With p(¬c) = 1− p(c), Eq.2.6 becomes:

p(c|x1:t, z1:t)
p(¬c|x1:t, z1:t)

= p(c|x1:t, z1:t)
1− p(c|x1:t, z1:t)

= p(c|xt, zt)
1− p(c|xt, zt)

· 1− p(c)
p(c) · p(c|x1:t−1, z1:t−1)

1− p(c|x1:t−1, z1:t−1)

(2.7)

Combining Eq.2.4, 2.5, 2.6, 2.7, we have the occupancy update formula as
follows:

p(c|x1:t, z1:t) =
[

1 + 1− p(c|xt, zt)
p(c|xt, zt)

· p(c)
1− p(c) ·

1− p(c|x1:t−1, z1:t−1)
p(c|x1:t−1, z1:t−1)

]−1

(2.8)

Eq.2.8 shows us how the occupancy probability of a grid cell map is updated
given observations. In practice, one can initialize an occupancy prior of 0.5 to
all the map cells.

Obvious, to compute the occupancy probability p(c|xt, zt), one needs to apply
to a specific sensor model that is being used. This model needs to be defined
manually for each type of sensor. Interested readers are referred to [89] for more
details on sensor models.

Occupancy grid maps enjoy widespread usages for indoor robotics applications
due to its simple yet compact representation. However, as the world is not only in
2D, different forms of maps in 3D are required to better describe the environment.
Before the arrival of cost-effective 3D LiDAR sensors such as Velodyne VLP-16
1 and more recently Ouster 2, cameras are the most common sensor that is used
for building 3D map, in the form of feature-based maps.

Feature maps as in Fig.2.1 even though they are less perception-friendly, but
has been researched for a long time, especially in the computer vision community.
The obvious bottleneck of the feature-based map is the computational burden of
feature detection, tracking, and matching process. Davidson is the first to present
a real-time visual SLAM (VSLAM), called MonoSLAM, in [20]. MonoSLAM
uses a mono camera to detect and match sparse keypoints and recovers the scene
geometry in an Extended Kalman Filter (EKF) based framework. Civera et al.
later extend it by including a parametrization in inverse depth in [15]. Klein
and Murray paved the way for Parallel for Tracking and Mapping, or PTAM, in
[52], which is the first to parallelize the tracking and mapping tasks in different
threads, demonstrating the viability of using a bundle adjustment (BA) scheme
is to maintain a persistent map. Since then, feature-based mapping attracted a
tremendous amount of research in the form of VSLAM problems. LSD-SLAM
in [27] is the first direct monocular visual odometry for large-scale environments.
LDSO in [31] extend the direct sparse odometry (DSO) [26] by enabling loop
closure property. Here, one might notice that the difference between a state
estimation problem and a full VSLAM problem is whether or not one includes a
loop closure function to achieve a persistent map.

1https://velodynelidar.com/
2https://ouster.com/
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A lot of effort has been put into bridging the gap between computer vision
and robotics mapping. For example, Signed Distance Fields (SDFs) have been
used extensively for representing 3D volumes in computer vision [30, 32]. They
have also been used for offline 3D object reconstructions [18] from the mid-90s.
A derived form of SDF, namely Truncated Signed Distance Fields (TSDFs), has
spurred a new wave of research with the new RGB-D Kinect sensor and the
pioneering work KinectFusion by Newcombe et al. [69]. This method enabled
real-time running, high-resolution, and accurate 3D reconstructions from an
RGB-D camera. It relied on a GPU for fast computation and used TSDF as
the main map representation. The authors also introduced a SLAM framework,
which estimated the pose of the camera at the same time as reconstructing
the scene. Since then, various adaptations have been made to extend this
approach. Whelan et al. proposed Kintinuous, which allowed scanning much
larger spaces in [99]. Steinbrucker et al. eliminated the need for GPU for online
reconstruction by leveraging an octree-style voxel grid representation. They
called it FastFusion [87]. Henry et al. used a different 3D representation, called
surfels, which are small planar units with size, color, and surface normal), to
produce a high resolution online mapping approach using RGB-D camera [42].
Surfel is a volumetric analog to sparse point clouds. ElasticFusion in [98] also
used surfel and leverage SLAM techniques for sparse keypoint-based maps to deal
with distorting geometry. More recently, Wang et al. introduced an online dense
surfel mapping for a large scale environment [95]. Most notably, Oleynikova et al.
introduced Voxblox as a replacement for Octomap, where the authors employed
Euclidean Signed Distance Fields (ESDF) for a fast, compact online mapping
and planning framework for aerial robots.

In general, feature-based mapping approaches can be considered mature with
a long history of success. The current new direction of research for feature-
based mapping moves beyond primitive geometric representation to high-level
object-based representations or semantic-aware mapping. Early techniques in
object-based reasoning were described by Salas-Moreno et al. [80] in SLAM++;
Civera et al. in Semantic SLAM [16] and Dame et al. focusing in 3D object
shapes [19]. Recently, Grinvald et al. introduced a framework built upon Voxblox
for incrementally building volumetric object-centric maps during online scanning
with an RGB-D camera. The built maps contain information about the individual
object instances observed in the scene with accurate geometry. The proposed
framework can retrieve the dense shape and pose of recognized semantic objects,
as well as of newly discovered, previously unobserved object-like instances. The
authors assume that the camera pose estimation is provided. Rosinol et al.
propose a complete semantic-aware SLAM system in [76]. The system is called
Kimera-Semantics. It includes four key components: a module for visual-inertial
odometry estimation (VIO) for camera pose estimation, a module of robust
pose graph optimizer for global trajectory estimation, a module of lightweight
3D mesher for fast mesh reconstruction and finally, a module for dense 3D
metric-semantic reconstruction.

As shown in Fig. 2.3, semantic-aware mapping offers a magnitude of
advantage over classical methods, which are based on primitive geometric
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2. Background

Figure 2.3: An example of Kimera-Semantics: (a) - camera pose estimation; (b)
- low latency local mesh of the scene; (c) - a global semantically annotated 3D
mesh; (d) - scene ground truth model. Image courtesy of [76].

representations. It enhances robustness for robot operations by moving from
path-planning to high level of task-planning. A robot may be able to “perceive” a
difference between a wall and a chair, not just a plain classification of “obstacles”
as before. Certainly, a high level of task-driven concepts demands more complex
semantics concepts. For example, an agricultural robot may be given a task
to “going into polytunnel number 3”. The coarse concept of roads, doors might
suffice for performance. However, a more complex task such as “harvesting
strawberry” demands finer categories of table-top, tray, ripeness, etc., The joint
SLAM and semantics inference research have spawned a significant and ongoing
body of work in both computer vision and robotics communities.

2.1.2 Sensor fusion for localization

A robot can only perceive its surrounding environment via its sensors
measurements. More often, those measurements are noisy and imperfect.
Hence, the fundamental challenge is to correctly model and infer from sensory
measurements. Khalegi et al. categorized sensor imperfections into uncertainty,
outliers, conflicting data, correlated errors, and other effects [51]. As mentioned
in the previous section, probability theory can be used to deal with uncertainty
for localization as well as mapping [89]. Note that, not only a probabilistic
theory can be applied for sensor fusion. Murphy proposed Dempster-Shafer
evidence theory, which focuses on ambiguity in sensory data [68]. Goodman
et al. offer a different approach to data ambiguity based on random sets [34].
The probabilistic approach, however, is much more intuitive to understand and
easier to implement. Hence, in this thesis, we focus on probabilistic approach
for localization in Paper I, Paper II.

Generic sensor fusion has been applied to other fields rather than localization.
Munz et al. proposed a sensor fusion method for multi-target tracking in [67].
In this thesis, we mainly concern with sensor fusion for pose estimation. Moore
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Robotics mapping and localization

(a) Online IEKF: runs online and iterates at the current time step, but
contains only the current state variable. Without iteration, it is a classical

online EKF

(b) Fixed-lag smoothing: runs online and iterates over the set of most
recent states variables

(c) Offline batch estimation: iterates over all state variables

Figure 2.4: Example of iterative state estimation methods. Image courtesy of
[2].

and Stouch proposed an EKF-based for pose estimation in [65]. Ratasich et al.
introduced a general EKF-based pose estimation using unsynchronized sensors
in [75]. Lynen et al. proposed a famous generalized pose fusion framework,
called Multi-Sensor-Fusion or MSF in [59]. MSF uses an Iterative Extended
Kalman Filter or IEKF for state propagation based on IMU measurements.
Cucci and Matteucci discussed a multi-sensor pose tracking and calibration in
[17]. Their system uses a pose-graph based approach. Recently, a factor graph
framework, named GTSAM, has been widely used for pose estimation [21, 83].
Chiu et al. model sensor readings as constraints in a factor graph and develop a
strategy for selecting a subset of optimal sensor readings in [14]. Hertzberg et al.
introduce a pose representation on manifold for generic sensor fusion algorithms
[43]. Interestingly, on manifold computation attracted subsequent important
work for IMU preintegration [28], which in turn, leads to an impressive real-time
optimization-based approach for visual-inertial pose estimation [72].

Pose estimation can be related to localization tasks in the sense of a state
estimation problem with respect to a reference frame and its uncertainty over time.
Filtering-based approaches for pose estimation are the most widespread usage in
literature. It follows by smoothing-based approaches. Both directions seek to
estimate the maximum likelihood of a state, given noisy sensor measurements.

In Fig.2.4, we illustrate some iterative scheme of state estimation techniques.
These techniques along with other variants are discussed in-depth by Barfoot
[2]. Interested readers are therefore referred to this excellent textbook for more
details. Next, we will briefly discuss filtering-based methods and smoothing-based
methods.
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Most filtering-based approaches are derived from the Kalman filter (KF). The
classical KF consists of two steps: prediction and correction, which can happen
in any order. To better model real-world physical properties, the Extended
Kalman filter (EKF) is used. The EKF is the extension of KF to a nonlinear
system, where the linearization of non-linear observation and dynamic equations
about the current state to fit the linear KF. Kubelka et al. propose an error
state EKF. The filter fuses IMU, wheel encoders, visual odometry, and 2D laser
scanner for pose estimation in [53]. Weiss et al. introduced an EKF framework
for IMU, GPS, and visual odometry fusion for pose estimation in [97]. The state
propagation relies on IMU measurements. The authors claim that their filter can
keep up to state estimation at a very high rate, approximately 1 kHz, while it also
can deal with various time delays between sensors. Note that in case of delayed
measurements arrival, one needs to repropagate all affected states. While this
is feasible to state vector, it is intractable for the state covariance matrix. The
IEKF is another popular variant of EKF, where the prediction and correction
steps are iterated until converged to minimize the influence of linearization errors.
The MSF framework by Lynen et al. [59] was built upon an Iterative EKF
(IEKF). Another variant of EKF is the Extended Information Filter (EIF). The
EIF is the dual of an EKF, in which the state belief is represented as information
vector and information matrix. The textbook by Dan Simon [84] provides more
in-depth discussions about KF and its variants. Kalman filter-based approaches
have enjoyed several decades of development and implementation. Recently, a
drastic change to the EKF structure was introduced by Bourmaud et al. [10].
The authors introduce a new EKF on Lie groups, called LG-EKF. Instead of
the traditional Euclidean state representation, the state is now projected on Lie
groups. State predictions and corrections are now performed on the pertaining
Lie algebra. The reason for moving from classical Euclidean space to Lie groups
is because robot poses (and landmark poses) in 3D inherently reside on manifolds,
specifically a Special Euclidean group or SE(3):{(

R T

0 1

)
, R ∈ SO(3) and T ∈ R3 (2.9)

where R, T is rotation matrix and translation vector, respectively. SO(3) is the
Special Orthogonal group that a rotation matrix lives on while the translation
vector belongs to the Euclidean space R3. Details on mathematical operations on
groups are beyond the scope of this work. Interested readers are referred to this
primer and references therein [7]. Armed with the correct pose representation
in Lie groups, LG-EKF is able to respect the geometry of the state space, thus
achieving greater estimation accuracy of both the mean and the covariance.
A similar approach using the Unscented Kalman filter (UKF) is proposed by
Hertzberg et al. [43]. It is then followed by the continuous-discrete EKF on Lie
groups by Bourmaud et al. [9], and invariant filters on Lie groups in [3] by Barrau
and Bonnabel. More recently, Ćesić et al. introduce Extended Information Filter
on Lie groups or LG-EIF (a dual of LG-EKF), which the authors claim that
has boosted up the performance of the SLAM framework to the same level as
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existing state-of-the-art methods.
Note that for all the mentioned method of KF-based pose estimation, one

must assume that all state variables lie in a unimodal distribution. The particle
filter (PF) resolves this restriction by using a non-parametric distribution
representation to approximate the multimodal distributions [89]. The main
advantage of PF is that we do not have to worry about linearization errors, while
its main drawback is the high dimensionality of the state space. Montemerlo et al.
propose FastSLAM in [64] using PF for the SLAM back-end and resolve the high
dimensional state space by applying Rao-Blackwell marginalization. Mattern et
al. introduce a PF-based pose estimation system fusing wheel odometry, GPS
data, and landmark matching from a camera and a given digital map.

We continue with a discussion about smoothing-base approaches for pose
estimation. Similar to filtering-based methods, smoothing-based approaches
consider the state as a sequence of state variables and they try to solve the
maximum likelihood estimation of the state given noisy sensor measurements.
In contrast to filtering-based methods, smoothing approaches use non-linear
least square optimization to estimate the state maximum likelihood. The
optimization problem may be in the form of a Markov random field or a
factor graph. In robotics, factor graphs are used dominantly. As illustrated
in Fig.2.4c an optimization problem can consider several measurements at a
time for optimization or all the measurements. Obviously, optimize over all
measurements - or offline batch optimization can only be done offline. A slightly
different version of batch optimization that can be done online, is to continuously
add arrival measurements for optimizing. Certainly, in this way, the optimization
problem grows unbounded over time and quickly becomes intractable for online
computation. One strategy to alleviate the burden of repeatedly optimizing over
the whole state vectors whenever a new measurement arrives is to only consider
recompute the parts of the state vector that are affected by new measurements.
This technique is called incremental smoothing. Kaess et al. first introduce the
incremental smoothing and mapping technique, called iSAM in [49]. Later, they
propose an upgrade version called iSAM2 [50], in which a new Bayes tree data
structure is used. Indelman et al. apply this incremental technique to a factor
graph with multiple odometry and pose sources in [48].

Another smoothing method is to only consider a restricted number of
variables of a state vector at a time for optimization to bound the computational
requirement. This is called a fixed-lag smoothing technique [60]. Note that,
this is different from filtering methods. In filtering methods, the state vector is
restricted to the most recent state, which means all the previous (computed)
states are marginalized. This prevents new measurements to change previous
states, or it is impossible to relinearize past states. Also, the current state
is usually not relinearized and its Jacobians are evaluated only once. This
is pointed out by Strasdat et al. in [88] as the main reasons why filtering
approaches are suboptimal to optimization methods for pose estimations. For
fixed-lag smoothing techniques, a state is estimated over a sliding window of
time as shown in Fig.2.4b. The number of state vectors in the optimization
problem defines the size of the sliding window. One might choose to use the
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(computed) state vector at the beginning or the end of the sliding window as the
final estimation. Note that this smoothing technique is not only for non-linear
least square optimization problem. Ranganathan et al. in [74] apply the fixed-
lag smoothing principle to a forward-backward smoothing EKF [74]. Barfoot
considers this similar to an IEKF with an augmented state vector [2]. Indeed,
mathematically speaking, iterated prediction, and correction steps of an IEKF
are similar to the Gauss-Newton problem [5].

For keeping a fixed size of the sliding window, old states must be marginalized
out. One can totally ignore the old states and only integrate new ones. This
usually leads to overconfidence. A more common approach is to convert the
marginalized states into a prior for the next optimization cycle, equivalently
removing old states from the estimation but still keep their information.
Marginalization strategy can be either exact or approximate. In computer vision,
Schur complement are the most commonly used for exact marginalization
[90]. In term of probability densities, if we have a joint density p(x, y) over two
variables x, y, marginalize out the variable x is equivalent to integrate over x,
which gives us a density p(y) over the remaining variable y:

p(y) =
∫
x

p(x, y) (2.10)

If the density is given in information form with information vector η and
information matrix Λ as follows:

p(x, y) = N
(

Λ−1
(
ηx
ηy

)
,

(
Λxx Λxy
ΛTxy Λyy

)−1
)

(2.11)

then the information matrix for y after marginalization is given by the Schur
complement of Λxx in the matrix Λ, which is equivalent to Λt = Λyy−ΛTxyΛ−1

xxΛxy.
Note that Λt is the target information prior after marginalization for the next
optimization cycle. Unfortunately, exact marginalization with Schur complement
introduces fill-in, a phenomenon in which the original sparse information matrix
becomes dense because of additional non-zero entries in the otherwise zero
entries. A dense prior poses as a computational burden to optimization problems.
Marginalization hence degrades computational efficiency.

Leutenegger et al. [56] and Qin et al. [72] work around this issue by selectively
discard measurements to keep the sparsity structure of the pose graph. For
their keyframe-based visual-inertial odometry optimization methods, namely
OKVIS and VINS-MONO, respectively, landmarks that are not observed in
the recent frames are marginalized out altogether with the marginalized IMU
states. This approximation strategy, while being able to maintain the sparsity
of the graph, potentially loses information. The marginalized variables are
no longer optimizeable. The solution to the after marginalization problem is
no longer optimal with respect to the original problem. In order to preserve
the marginalized information, Vial et al. propose a conservative sparsification
scheme for the information matrix [94]. This technique tries to minimize the
Kullback-Leibler divergence while enforcing certain edges to be removed. Later,
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Wang et al. formulate the sparsification problem also by minimizing Kullback-
Leibler divergence in a lase-based SLAM application [96]. Carlevaris-Bianco
et al. propose a generic linear constrain which utilizes the Chow-Liu tree to
approximate the information of the Markov blanket, which is a collection of
incident states variables to marginalized variables. Mazuran et al. introduce
a general framework called nonlinear factor recovery [61], which uses specified
nonlinear factors to approximate the dense prior by Kullback-Leibler divergence
optimization. This spurred the pioneering work of information sparsification in
fixed-lag visual-inertial odometry by Hsiung et al. [45]. The authors claim that
the proposed method maintains the original visual-inertial odometry problem
while preserving most of the information and sparse structure. Most recently,
Usenko et al. introduce a complete visual-inertial odometry and mapping
framework with nonlinear factor recovery [91].

We have surveyed several distinct methods of sensor fusion for pose
estimations. Note that, if the pose estimation is relative to some fixed reference
frame, this is also a localization problem. A consecutive of estimated poses
constitutes the robot trajectory while it is moving. On the other hand,
localization also means the ability to recognize previous visited places. In a SLAM
context, this is a loop closure detection capability. Although vision-based methods
have advantages in loop closure detection as it is being extensively researched
in the computer vision community, they are suffered in degeneration cases such
as dark environment or strong viewpoint changes. These disadvantages make
vision-only methods less reliable. Hence, we explore LiDAR-based localization
methods, which using a high-resolution 3D LiDAR sensor to capture fine details
of an environment at a long-range. This is also suitable for agricultural robots
where they usually work on large scale environments.

The most classical method for finding a transformation between two LiDAR
scans is called iterative closest point (ICP) method [6]. This method tries
to align the two point clouds at point-wise level iteratively until converged.
Inherently, the efficiency of the ICP method is disproportional to the number of
points in the target and source point cloud. Various adaptations to the original
ICP method have been proposed. Chen and Medioni introduced the point-to-
plane ICP method, which matches points to local planar patches. Segal et al.
proposed generalized-ICP that matches local planar patches from both point
clouds. On computational efficiency, Nücher uses parallelized computation for
accelerating scan matching. Qiu et al. [73] and Bauer et al. [4] use GPU
for improving computational efficiency. Moving from the point-wise level,
feature-based approaches tackle the alignment problem without demanding
high computational resources. Rusu et al. proposed Point Feature Histograms
(PFH) [78] and Viewpoint Feature Histograms (VFH) [77] as feature detectors.
They extract such features from targeted point clouds using simple and efficient
methods. Li and Olson propose a Kanade-Tomashi corner detector for extracting
general-purpose features from point clouds in [57]. Sefarin et al. introduced
line and plane features detector from point clouds in [82]. Many techniques for
point cloud registration using features have also been studied. Bosse and Zlot
in [8] propose a keypoint selection algorithm that calculates point curvature in
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a local cluster. The selected keypoints are then used for matching and place
recognition methods. Steder et al. in [86] also select high curvature feature
points for matching and place recognition but doing so by projecting the original
point cloud onto a range image and analyzing the second derivative of the depth
values. Another method exploits the characteristic of a specific environment
such as plane dominant to propose a plane-based registration algorithm [35]. A
collar line segments method is proposed by Velas et al. in [93]. This method
randomly generates lines using points from two consecutive “rings” of a scan.
This generates two line clouds and can be used for registration. This is illustrated
in Fig.2.5. Most recently, Yang et al. introduce a fast and certifiably-robust

Figure 2.5: An examples of collar line segment registration. Left - two unaligned
scans, middle - sampled by line segments to produce line clouds and right -
alignment results. Image courtesy of [93].

point cloud registration called TEASER++ [101]. It leverages a powerful siamese
deep learning architecture and fully convolutional layers 3DSmoothNet [33] to
detect correspondences between point clouds. Given those correspondences, an
optimization-based method is used to solve a rigid body transformation problem
with a reformulated truncated least square cost. The authors provide theoretical
bounds on estimation errors, hence the certifiably-robust solution.

In a SLAM context, Dubé et al. in [24] propose a 3D pointcloud-based
modular for place recognition, called SegMatch. Incoming 3D LiDAR point

Figure 2.6: Block diagram of Segmatch, a modular algorithm for 3D place
recognition. Image courtesy of [23].
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clouds are first segmented into distinct clusters. Then for each cluster, a feature
vector is calculated based on the cluster eigenvalues and shape histograms. For
matching, a random forest algorithm is used to match a source and a target cloud.
By matching between consecutive scans, one can estimate a robot’s odometry.
While matching between a scan and a prior 3D map, one can perform a place
recognition for localization and/or for loop closure detections. Zhang et al. on
the other hand, propose a low drift and real-time LiDAR odometry and mapping
(LOAM) framework in [102, 103]. LOAM assigns points to either edge or plane
features to find correspondences between scans. Features are calculated based
on point “roughness score” in its local region. The points with high roughness

Figure 2.7: An example of extracted edge points (yellow) and planar points (red)
from a 3D LiDAR scan. Image courtesy of [102]

scores are classified as edge features, while points with low roughness scores
are considered planar features. Real-time performance is achieved by dividing
the estimation problem into two sub algorithms. One algorithm runs at high
frequency and estimates sensor velocity with low accuracy. The other algorithm
runs at low frequency but returns high accuracy motion estimation. The two
estimations, fast sensor velocity estimation and slow motion estimation, are fused
to produce a single motion estimate at both high frequency and high accuracy.

2.2 Applications in agricultural robotics

The application of autonomous robotics systems in agriculture has been
drastically increased over the past years. Autonomous agricultural robots
have shown promising impacts on food security, sustainability, resource use
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efficiency, reduction of chemical treatments, minimization of human effort,
and maximization of yield. As agricultural activities are varied: crop fields,
poultry, animal farms, aquaculture, etc., it is impossible to survey all aspects
of applications of autonomous robots in those fields. Therefore, we will focus
only on the following areas, where we believe the usage of autonomous robots is
demanding: crop monitoring, weed detection, and harvesting.

Using images for crop monitoring has been studied for decades. Moulin
et al. in [66] use multi-spectral and hyper-spectral satellite images for field
monitoring. However, relying on satellite images are unreliable as they are limited
in term of resolution as well as coverage in space and time. One solution is to
manually collect color and spectral images from aircraft flying at low altitudes.
Nonetheless, this method shares some similar problems satellite images as images
are infrequently updated and do not provide important information such as crop
height, maturity, yield estimation, etc., Recently, Carlone et al. propose a 4D
crop analysis framework in [11]. The system provides a 3D reconstructions of
a crop field with the ability to associate other data such as shape and plant
appearance overtime into one unified 3D map. The system does not only provide
a 3D view but also information on plant growth. Potena et al. introduce
AgriColMap, which is an aerial-ground collaborative 3D mapping solution for
precision farming in [71]. The system relies on both ground and aerial robots
for 3D mapping of the environment. An effective map registration pipeline that
averages a multimodal field representation and casts the data association problem
as a large displacement dense optical flow estimation is developed. An example
of such maps is shown in Fig.2.8. Chebrolu et al. tackle the visual ambiguity
problem of strong appearance changes in crop fields for robust long term mapping
registration in [12]. The authors propose a scale-invariant, geometric feature
descriptor that encodes the local plant arrangement geometry and uses these
descriptors for image registrations.

We continue our review on crop and weed detection. Given a detailed map of
a crop field, the next step is to efficiently monitor it, namely, we must be able to
classify weeds from crops for suitable treatments. For classification problems, a
majority of solutions leverage the recent power of machine learning/deep learning
(ML/DL) techniques. Lottes and Stachniss propose a semi-supervised online
approach using camera images for classification of crops and weeds by exploiting
additional arrangement information of the crops in order to adapt the visual
classifier. Later, they present a convolutional neural network (CNN) for plant
classification in [63], called Bonnet. The network is able to segment plants,
weeds, and background using only RGB images. Similarly, Sa et al. propose
weedNet, a fully convolutional neural network (FCN) for image classification to
detect weeds from aerial images. The widespread usage of ML/DL techniques
demands a huge amount of labeled data for training the networks. Di Cicco et
al. propose an automatic, model-based dataset generation solution in [22]. The
proposed model can generate large synthetic training datasets by randomizing
the key features of the required environment. The authors model a leaf of a
selected plant by means of kinematic chains that span from the stem toward the
leaf’s principal veins, applied over RGB textures taken from real-world plant
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Figure 2.8: An example of AgriColMap, an aerial-ground collaborative mapping
solution for precision farming. The final map (left corner) is merged from an
aerial view (blue area) and ground view (red area) via an affine transformation.
Image courtesy of [71].

Figure 2.9: An example of a generated RGB image of plants and weeds. Image
courtesy of [22].

pictures. Several other information is also incorporated to produce photorealistic
images including ambient occlusions, normals and height maps, etc., An example
of such images is shown in Fig.2.9. Chebrolu et al. publish a dataset for plant
classification, localization, and mapping on sugar beat fields in [13]. The dataset
contains multi-spectral images, RGB-D images, 3D point cloud, wheel encoder,
RTK-GNSS system from Leica, and a low price GNSS receiver from uBlox. The
dataset was recorded over a period of three months. A small portion of RGB
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(a) RGB image (b) Mask image (c) Annotated image

Figure 2.10: An example of annotated data for crop/weed classification from a
public dataset of [38]. Red color denotes plants and green color denotes weeds.

images is manually labeled for sugar beet plants and different types of weed. The
authors also provide a terrestrial scan of a whole sugar beet field using a FARO
X130 scanner. Haug and Ostermann publish a crop/weed filed image dataset of
carrot plants and weeds in [38]. However, the dataset is rather small, containing
only sixty images. All images are annotated for the classification of carrot plants
and weeds. The authors also provide a binary mask for background/foreground
segmentation. Pire et al. publish dataset for localization and mapping on soybean
fields in [70]. This dataset is mostly similar to the one published by Chebrolu et
al. [13]. However, it does not provide any annotated images for classification.
Overall, public datasets for agricultural robotics are very few, in comparison to
those for autonomous driving, point cloud registrations, visual-inertial odometry,
etc.,

Traditional fruit productions demand high manual labor costs and contain
mostly tedious tasks. Hayashi et al. in [40] shows that in Japan, protected
horticulture production in small greenhouses has been moving toward large-
scale greenhouses. This change requires substantial changes in productivity and
employment. With the advance of technology, harvesting robots has been raised
as a research focus. Although harvesting robots show encouraging results in
increased productivity, the overall performance is still insufficient in comparison
to manual operations [36]. Bac et al. evaluate the performance of a sweet pepper
harvesting robot, in which the robot achieved a success rate between 26%− 33%.
Lehnert et al. develop a different sweet pepper harvesting system, called Harvey
in [54]. The robot achieved a 46% success rate of harvesting for unmodified crops
and 58% for protected crops with an average picking time per pepper around
35− 40s. Later, an upgraded version of Harvey is introduced in [55] with an
improved success harvesting rate at 76.5%. Autonomous harvesting has also
been introduced to different types of fruit. Henten et al. design an autonomous
cucumber harvesting system in [92]. Mehta and Burks introduce a robotic
manipulator system for citrus harvesting in [62]. Hayashi et al. and Xiong et al.
propose autonomous strawberry picking system in [39] and [100], respectively.
The mentioned strawberry, sweet pepper, and cucumber harvesting systems rely
on vision-based sensors such as RGB camera, depth camera, etc., to detect and
localize a fruit target. Then an end-effector needs to approach the target for
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cutting and retrieving. For different types of fruits such as apples, a vibratory
harvesting system is more suitable. He et al. propose an adaptive vibratory
system for apple harvesting in [41]. The system identifies the optimal shaking
frequencies for different tree branches. Zhang et al. develop a shake-and-catch
system for apple harvesting. The proposed system can detect and identify target
for the shaker with 72.7% acceptance rate in comparison to a human expert’s
input.

References

[1] Aulinas, J. et al. “The SLAM Problem: A Survey”. In: Proceedings of
the International Conference of the Catalan Association for Artificial
Intelligence. IOS Press, 2008, pp. 363–371.

[2] Barfoot, Timothy D. State estimation for robotics. Cambridge University
Press, 2017.

[3] Barrau, Axel and Bonnabel, Silvere. “Intrinsic filtering on Lie groups with
applications to attitude estimation”. In: IEEE Transactions on Automatic
Control vol. 60, no. 2 (2014), pp. 436–449.

[4] Bauer, Sebastian et al. “Real-time RGB-D Mapping and 3-D Modeling on
the GPU using the Random Ball Cover”. In: Consumer Depth Cameras
for Computer Vision. Springer, 2013, pp. 27–48.

[5] Bell, Bradley M and Cathey, Frederick W. “The iterated Kalman filter
update as a Gauss-Newton method”. In: IEEE Transactions on Automatic
Control vol. 38, no. 2 (1993), pp. 294–297.

[6] Besl, Paul J and McKay, Neil D. “Method for registration of 3-D shapes”.
In: Sensor Fusion IV: Control Paradigms and Data Structures. Vol. 1611.
International Society for Optics and Photonics. 1992, pp. 586–607.

[7] Bloesch, Michael et al. A Primer on the Differential Calculus of 3D
Orientations. 2016. arXiv: 1606.05285 [cs.RO].

[8] Bosse, Michael and Zlot, Robert. “Keypoint design and evaluation for
place recognition in 2D lidar maps”. In: Robotics and Autonomous Systems
vol. 57, no. 12 (2009), pp. 1211–1224.

[9] Bourmaud, Guillaume et al. “Continuous-discrete extended Kalman filter
on matrix Lie groups using concentrated Gaussian distributions”. In:
Journal of Mathematical Imaging and Vision vol. 51, no. 1 (2015), pp. 209–
228.

[10] Bourmaud, Guillaume et al. “Discrete extended Kalman filter on Lie
groups”. In: 21st European Signal Processing Conference (EUSIPCO
2013). IEEE. 2013, pp. 1–5.

[11] Carlone, Luca et al. “Towards 4D crop analysis in precision agriculture:
Estimating plant height and crown radius over time via expectation-
maximization”. In: ICRA Workshop on Robotics in Agriculture. 2015.

25

https://arxiv.org/abs/1606.05285


2. Background

[12] Chebrolu, Nived, Läbe, Thomas, and Stachniss, Cyrill. “Robust long-term
registration of UAV images of crop fields for precision agriculture”. In:
IEEE Robotics and Automation Letters vol. 3, no. 4 (2018), pp. 3097–3104.

[13] Chebrolu, Nived et al. “Agricultural robot dataset for plant classification,
localization and mapping on sugar beet fields”. In: The International
Journal of Robotics Research vol. 36, no. 10 (2017), pp. 1045–1052.

[14] Chiu, Han-Pang et al. “Constrained optimal selection for multi-sensor
robot navigation using plug-and-play factor graphs”. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2014, pp. 663–670.

[15] Civera, Javier, Davison, Andrew J, and Montiel, JM Martinez. “Inverse
depth parametrization for monocular SLAM”. In: IEEE transactions on
robotics vol. 24, no. 5 (2008), pp. 932–945.

[16] Civera, Javier et al. “Towards semantic SLAM using a monocular camera”.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2011, pp. 1277–1284.

[17] Cucci, Davide Antonio and Matteucci, Matteo. “A Flexible Framework
for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration.” In:
ICINCO (2). 2013, pp. 361–368.

[18] Curless, Brian and Levoy, Marc. “A volumetric method for building
complex models from range images”. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. 1996, pp. 303–
312.

[19] Dame, Amaury et al. “Dense reconstruction using 3D object shape priors”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2013, pp. 1288–1295.

[20] Davison, Andrew J et al. “MonoSLAM: Real-time single camera SLAM”.
In: IEEE transactions on pattern analysis and machine intelligence vol. 29,
no. 6 (2007), pp. 1052–1067.

[21] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction.
Tech. rep. Georgia Institute of Technology, 2012.

[22] Di Cicco, Maurilio et al. “Automatic model based dataset generation
for fast and accurate crop and weeds detection”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2017, pp. 5188–5195.

[23] Dubé, Renaud et al. “SegMap: 3D Segment Mapping using Data-Driven
Descriptors”. In: arXiv preprint arXiv:1804.09557 (2018).

[24] Dubé, Renaud et al. “Segmatch: Segment based place recognition in 3d
point clouds”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2017, pp. 5266–5272.

[25] Durrant-Whyte, H. F. and Bailey, T. “Simultaneous Localisation and
Mapping (SLAM): Part I”. In: vol. 13, no. 2 (2006), pp. 99–110.

26



References

[26] Engel, Jakob, Koltun, Vladlen, and Cremers, Daniel. “Direct sparse
odometry”. In: IEEE transactions on pattern analysis and machine
intelligence vol. 40, no. 3 (2017), pp. 611–625.

[27] Engel, Jakob, Schöps, Thomas, and Cremers, Daniel. “LSD-SLAM: Large-
scale direct monocular SLAM”. In: European conference on computer
vision. Springer. 2014, pp. 834–849.

[28] Forster, Christian et al. “On-Manifold Preintegration for Real-Time
Visual–Inertial Odometry”. In: IEEE Transactions on Robotics vol. 33,
no. 1 (2016), pp. 1–21.

[29] Fraundorfer, F. and Scaramuzza, D. “Visual Odometry : Part II:
Matching, Robustness, Optimization, and Applications”. In: IEEE
Robotics Automation Magazine vol. 19, no. 2 (2012), pp. 78–90.

[30] Frisken, Sarah F et al. “Adaptively sampled distance fields: A general
representation of shape for computer graphics”. In: Proceedings of the
27th annual conference on Computer graphics and interactive techniques.
2000, pp. 249–254.

[31] Gao, Xiang et al. “LDSO: Direct sparse odometry with loop closure”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 2198–2204.

[32] Gibson, Sarah F Frisken. “Using distance maps for accurate surface
representation in sampled volumes”. In: IEEE Symposium on Volume
Visualization (Cat. No. 989EX300). IEEE. 1998, pp. 23–30.

[33] Gojcic, Zan et al. “The Perfect Match: 3D Point Cloud Matching with
Smoothed Densities”. In: International conference on computer vision
and pattern recognition (CVPR). 2019.

[34] Goodman, Irwin R, Mahler, Ronald P, and Nguyen, Hung T. Mathematics
of data fusion. Vol. 37. Springer Science & Business Media, 2013.

[35] Grant, W Shane, Voorhies, Randolph C, and Itti, Laurent. “Finding
planes in LiDAR point clouds for real-time registration”. In: Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE. 2013, pp. 4347–4354.

[36] Grift, Tony et al. “A review of automation and robotics for the bio-
industry”. In: Journal of Biomechatronics Engineering vol. 1, no. 1 (2008),
pp. 37–54.

[37] Grisetti, G. et al. “A tutorial on graph-based SLAM”. In: vol. 2, no. 4
(2010), pp. 31–43.

[38] Haug, Sebastian and Ostermann, Jörn. “A crop/weed field image dataset
for the evaluation of computer vision based precision agriculture tasks”.
In: European Conference on Computer Vision. Springer. 2014, pp. 105–
116.

[39] Hayashi, Shigehiko et al. “Evaluation of a strawberry-harvesting robot in a
field test”. In: Biosystems engineering vol. 105, no. 2 (2010), pp. 160–171.

27



2. Background

[40] Hayashi, Shigehiko et al. “Robotic harvesting technology for fruit
vegetables in protected horticultural production”. In: Information and
Technology for Sustainable Fruit and Vegetable Production (2005), pp. 227–
236.

[41] He, Leiying et al. “In-situ identification of shaking frequency for adaptive
vibratory fruit harvesting”. In: Computers and Electronics in Agriculture
vol. 170 (2020), p. 105245.

[42] Henry, Peter et al. “RGB-D mapping: Using Kinect-style depth cameras
for dense 3D modeling of indoor environments”. In: The International
Journal of Robotics Research vol. 31, no. 5 (2012), pp. 647–663.

[43] Hertzberg, Christoph et al. “Integrating generic sensor fusion algorithms
with sound state representations through encapsulation of manifolds”. In:
Information Fusion vol. 14, no. 1 (2013), pp. 57–77.

[44] Hornung, Armin et al. “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees”. In: Autonomous Robots vol. 34, no. 3 (2013),
pp. 189–206.

[45] Hsiung, Jerry et al. “Information sparsification in visual-inertial odome-
try”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2018, pp. 1146–1153.

[46] Huang, Shoudong and Dissanayake, Gamini. “A critique of current
developments in simultaneous localization and mapping”. In: Inter-
national Journal of Advanced Robotic Systems vol. 13, no. 5 (2016),
p. 1729881416669482.

[47] Huang, Shoudong and Dissanayake, Gamini. “Convergence and consis-
tency analysis for extended Kalman filter based SLAM”. In: IEEE Trans-
actions on robotics vol. 23, no. 5 (2007), pp. 1036–1049.

[48] Indelman, Vadim et al. “Factor graph based incremental smoothing in
inertial navigation systems”. In: 2012 15th International Conference on
Information Fusion. IEEE. 2012, pp. 2154–2161.

[49] Kaess, Michael, Ranganathan, Ananth, and Dellaert, Frank. “iSAM:
Incremental smoothing and mapping”. In: IEEE Transactions on Robotics
vol. 24, no. 6 (2008), pp. 1365–1378.

[50] Kaess, Michael et al. “iSAM2: Incremental smoothing and mapping using
the Bayes tree”. In: The International Journal of Robotics Research vol. 31,
no. 2 (2012), pp. 216–235.

[51] Khaleghi, Bahador et al. “Multisensor data fusion: A review of the state-
of-the-art”. In: Information fusion vol. 14, no. 1 (2013), pp. 28–44.

[52] Klein, Georg and Murray, David. “Parallel tracking and mapping for small
AR workspaces”. In: 2007 6th IEEE and ACM international symposium
on mixed and augmented reality. IEEE. 2007, pp. 225–234.

28



References

[53] Kubelka, Vladimır et al. “Robust data fusion of multimodal sensory
information for mobile robots”. In: Journal of Field Robotics vol. 32, no. 4
(2015), pp. 447–473.

[54] Lehnert, Christopher et al. “Autonomous sweet pepper harvesting for
protected cropping systems”. In: IEEE Robotics and Automation Letters
vol. 2, no. 2 (2017), pp. 872–879.

[55] Lehnert, Chris et al. “A sweet pepper harvesting robot for protected
cropping environments”. In: arXiv preprint arXiv:1810.11920 (2018).

[56] Leutenegger, Stefan et al. “Keyframe-based visual–inertial odometry
using nonlinear optimization”. In: The International Journal of Robotics
Research vol. 34, no. 3 (2015), pp. 314–334.

[57] Li, Yangming and Olson, Edwin B. “Structure tensors for general purpose
LIDAR feature extraction”. In: 2011 IEEE International Conference on
Robotics and Automation. IEEE. 2011, pp. 1869–1874.

[58] Lowry, S. et al. “Visual Place Recognition: A Survey”. In: vol. 32, no. 1
(2016), pp. 1–19.

[59] Lynen, Simon et al. “A robust and modular multi-sensor fusion approach
applied to mav navigation”. In: 2013 IEEE/RSJ international conference
on intelligent robots and systems. IEEE. 2013, pp. 3923–3929.

[60] Maybeck, Peter S. Stochastic models, estimation, and control. Academic
press, 1982.

[61] Mazuran, Mladen, Burgard, Wolfram, and Tipaldi, Gian Diego. “Nonlinear
factor recovery for long-term SLAM”. In: The International Journal of
Robotics Research vol. 35, no. 1-3 (2016), pp. 50–72.

[62] Mehta, SS and Burks, TF. “Vision-based control of robotic manipulator for
citrus harvesting”. In: Computers and Electronics in Agriculture vol. 102
(2014), pp. 146–158.

[63] Milioto, Andres, Lottes, Philipp, and Stachniss, Cyrill. “Real-time
semantic segmentation of crop and weed for precision agriculture robots
leveraging background knowledge in CNNs”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 2229–
2235.

[64] Montemerlo, Michael et al. “FastSLAM: A factored solution to the simul-
taneous localization and mapping problem”. In: Aaai/iaai vol. 593598
(2002).

[65] Moore, Thomas and Stouch, Daniel. “A generalized extended kalman
filter implementation for the robot operating system”. In: Intelligent
autonomous systems 13. Springer, 2016, pp. 335–348.

[66] Moulin, S, Bondeau, Alberte, and Delecolle, R. “Combining agricultural
crop models and satellite observations: from field to regional scales”. In:
International Journal of Remote Sensing vol. 19, no. 6 (1998), pp. 1021–
1036.

29



2. Background

[67] Munz, Michael, Dietmayer, Klaus, and Mählisch, Mirko. “Generalized
fusion of heterogeneous sensor measurements for multi target tracking”.
In: 2010 13th International Conference on Information Fusion. IEEE.
2010, pp. 1–8.

[68] Murphy, Robin R. “Dempster-Shafer theory for sensor fusion in au-
tonomous mobile robots”. In: IEEE Transactions on Robotics and Au-
tomation vol. 14, no. 2 (1998), pp. 197–206.

[69] Newcombe, Richard A et al. “KinectFusion: Real-time dense surface
mapping and tracking”. In: 2011 10th IEEE International Symposium on
Mixed and Augmented Reality. IEEE. 2011, pp. 127–136.

[70] Pire, Taihú et al. “The Rosario dataset: Multisensor data for localization
and mapping in agricultural environments”. In: The International Journal
of Robotics Research vol. 38, no. 6 (2019), pp. 633–641.

[71] Potena, Ciro et al. “AgriColMap: Aerial-ground collaborative 3D mapping
for precision farming”. In: IEEE Robotics and Automation Letters vol. 4,
no. 2 (2019), pp. 1085–1092.

[72] Qin, Tong, Li, Peiliang, and Shen, Shaojie. “Vins-mono: A robust and
versatile monocular visual-inertial state estimator”. In: IEEE Transactions
on Robotics vol. 34, no. 4 (2018), pp. 1004–1020.

[73] Qiu, Deyuan, May, Stefan, and Nüchter, Andreas. “GPU-accelerated
nearest neighbor search for 3D registration”. In: International Conference
on Computer Vision Systems. Springer. 2009, pp. 194–203.

[74] Ranganathan, Ananth, Kaess, Michael, and Dellaert, Frank. “Fast 3D
pose estimation with out-of-sequence measurements”. In: 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2007,
pp. 2486–2493.

[75] Ratasich, Denise et al. “Generic sensor fusion package for ROS”. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2015, pp. 286–291.

[76] Rosinol, Antoni et al. “Kimera: an Open-Source Library for Real-Time
Metric-Semantic Localization and Mapping”. In: IEEE Intl. Conf. on
Robotics and Automation (ICRA). 2020.

[77] Rusu, Radu Bogdan et al. “Fast 3d recognition and pose using the
viewpoint feature histogram”. In: Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on. IEEE. 2010, pp. 2155–2162.

[78] Rusu, Radu Bogdan et al. “Learning informative point classes for the
acquisition of object model maps”. In: Control, Automation, Robotics and
Vision, 2008. ICARCV 2008. 10th International Conference on. IEEE.
2008, pp. 643–650.

[79] Saeedi, S. et al. “Multiple-Robot Simultaneous Localization and Mapping:
A Review”. In: vol. 33, no. 1 (2016), pp. 3–46.

30



References

[80] Salas-Moreno, Renato F et al. “Slam++: Simultaneous localisation and
mapping at the level of objects”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2013, pp. 1352–1359.

[81] Scaramuzza, D. and Fraundorfer, F. “Visual Odometry [Tutorial]. Part I:
The First 30 Years and Fundamentals”. In: vol. 18, no. 4 (2011), pp. 80–92.

[82] Serafin, Jacopo, Olson, Edwin, and Grisetti, Giorgio. “Fast and robust
3d feature extraction from sparse point clouds”. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 4105–4112.

[83] Shan, Tixiao and Englot, Brendan. “LeGO-LOAM: Lightweight and
Ground-Optimized Lidar Odometry and Mapping on Variable Terrain”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 4758–4765.

[84] Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[85] Stachniss, C., Thrun, S., and Leonard, J. J. “Simultaneous Localization
and Mapping”. In: Springer Handbook of Robotics. Ed. by Siciliano, B.
and Khatib, O. 2nd. 2016. Chap. 46, pp. 1153–1176.

[86] Steder, Bastian, Grisetti, Giorgio, and Burgard, Wolfram. “Robust place
recognition for 3D range data based on point features”. In: 2010 IEEE
International Conference on Robotics and Automation. IEEE. 2010,
pp. 1400–1405.

[87] Steinbrücker, Frank, Sturm, Jürgen, and Cremers, Daniel. “Volumetric 3D
mapping in real-time on a CPU”. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2014, pp. 2021–2028.

[88] Strasdat, Hauke, Montiel, José MM, and Davison, Andrew J. “Visual
SLAM: why filter?” In: Image and Vision Computing vol. 30, no. 2 (2012),
pp. 65–77.

[89] Thrun, Sebastian. “Probabilistic robotics”. In: Communications of the
ACM vol. 45, no. 3 (2002), pp. 52–57.

[90] Triggs, Bill et al. “Bundle adjustment—a modern synthesis”. In:
International workshop on vision algorithms. Springer. 1999, pp. 298–372.

[91] Usenko, V. et al. “Visual-Inertial Mapping With Non-Linear Factor
Recovery”. In: IEEE Robotics and Automation Letters vol. 5, no. 2 (2020),
pp. 422–429.

[92] Van Henten, Eldert J et al. “An autonomous robot for harvesting
cucumbers in greenhouses”. In: Autonomous robots vol. 13, no. 3 (2002),
pp. 241–258.

[93] Velas, Martin, Spanel, Michal, and Herout, Adam. “Collar Line Segments
for fast odometry estimation from Velodyne point clouds.” In: ICRA.
2016, pp. 4486–4495.

31



2. Background

[94] Vial, John, Durrant-Whyte, Hugh, and Bailey, Tim. “Conservative
sparsification for efficient and consistent approximate estimation”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2011, pp. 886–893.

[95] Wang, Kaixuan, Gao, Fei, and Shen, Shaojie. “Real-time scalable dense
surfel mapping”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 6919–6925.

[96] Wang, Yue et al. “Kullback-leibler divergence based graph pruning in
robotic feature mapping”. In: 2013 European Conference on Mobile Robots.
IEEE. 2013, pp. 32–37.

[97] Weiss, Stephan et al. “Versatile distributed pose estimation and sensor
self-calibration for an autonomous MAV”. In: 2012 IEEE International
Conference on Robotics and Automation. IEEE. 2012, pp. 31–38.

[98] Whelan, Thomas et al. “ElasticFusion: Dense SLAM without a pose
graph”. In: Robotics: Science and Systems. 2015.

[99] Whelan, Thomas et al. “Kintinuous: Spatially extended kinectfusion”. In:
(2012).

[100] Xiong, Ya et al. “An autonomous strawberry-harvesting robot: Design,
development, integration, and field evaluation”. In: Journal of Field
Robotics (2019).

[101] Yang, Heng, Shi, Jingnan, and Carlone, Luca. “TEASER: Fast and
Certifiable Point Cloud Registration”. In: (2020). arXiv: 2001.07715
[cs.RO].

[102] Zhang, Ji and Singh, Sanjiv. “LOAM: Lidar Odometry and Mapping in
Real-time.” In: Robotics: Science and Systems. Vol. 2. 2014, p. 9.

[103] Zhang, Ji and Singh, Sanjiv. “Low-drift and real-time lidar odometry and
mapping”. In: Autonomous Robots vol. 41, no. 2 (2017), pp. 401–416.

32

https://arxiv.org/abs/2001.07715
https://arxiv.org/abs/2001.07715


Chapter 3

Contribution
This chapter details the contributions of each of the papers presented as parts of
this cumulative thesis. We will describe the context of the work, contributions,
and finally how the paper relates to the rest of the thesis.

We present the papers in the following order: mapping algorithm, localization
algorithm, and autonomous navigation. We consider our last paper on supervised
learning solution for row following task in horticulture as a part of autonomous
navigation.

3.1 Paper I

Tuan Le, Jon Glenn Omholt Gjevestad and Pål Johan From, “Online 3D
Mapping and Localization System for Agricultural Robots”, 6th IFAC Conference
on Sensing, Control and Automation Technologies for Agriculture, Sydney,
December, 2019.

Context

This paper attempted to solve the problem of large-scale mapping in
agriculture using a 3D LiDAR sensor. Many methods have been studied for
LiDAR mapping in the literature [4, 6, 8, 10]. One popular and is considered as
the state-of-the-art method is LiDAR odometry and mapping (LOAM) by Zhang
et al., [8]. While this method works well in urban/city scenarios, it likely fails to
work in agricultural environments. An agricultural environment is inherently
different from an urban/city scene. The latter contains an abundant amount of
visual features such as planes (buildings, walls, roads, etc.,), edges (windows,
street lights, lane signs, etc.,). These features are easy to detect and track, hence
mapping in urban/city environments is most problematic with dynamic object
detection (pedestrians, moving vehicles, etc.,). On a farm, the existence of those
features is scarce. Moreover, the scene is likely dominated by trees, leaves, grass,
etc., whereas they might offer corner or edge features, they are extremely hard
to track. We aim to develop a 3D LiDAR mapping and localization method that
can specifically handle agricultural environments.

Contribution

We highlight the contributions of this work as follows:

• a complete online 3D LiDAR mapping and localization system for
autonomous agricultural robots

• high quality built map for a human operator and subsequent reuse
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• an evaluation of the proposed system on both simulation and real
experiments

We notice that existing methods such as LOAM can store its built map and
use it for relocalization purposes. However, the authors of LOAM does not focus
on this functionality. Hence, our proposed system fills in the gap for agricultural
applications. Even though our method is not suitable for crop field environments,
where the appearance of plants gradually changes, it is still applicable for other
agricultural tasks such as product transportation between fields and storage,
or between polytunnels/greenhouses. Therefore, we argue that our proposed
system is still useful.

Interrelation

This paper suggests a better mapping and localization approach for
agricultural robots on large-scale farms. This paper exhibits our desired
properties of agricultural robots discussed in Chapter 1. Specifically, the robot
can operate in GNSS-denied environments since it does not rely on any external
localization system. It demonstrates a minimalistic design by using only one 3D
LiDAR sensor and an IMU. It is platform agnostic. Even though we did not
explicitly test our system on aerial robots, the fact that we always estimate 6-
DOF poses means our SLAM system can directly apply to aerial robots without
any modification. It is scalable. Our approach was developed on the ROS
framework. Finally, it can assist a human operator by providing a finer map
than traditional methods.

3.2 Paper II

Tuan Le, Jon Glenn Omholt Gjevestad and Pål Johan From, “A Cost-Effective
Global Localization System for Precision Agriculture Tasks in Polytunnels”,
IEEE 16th International Conference on Automation Science and Engineering,
Hongkong, August, 2020.

Context

This paper focused on the localization problem for agricultural robots in
dynamical agricultural environments such as growing strawberry in polytunnels.
A strawberry polytunnel is a plant-growing area covered by polymer material. A
common structure of a strawberry polytunnel consists of several evenly-spaced
sets of poles, on top of which hold table-trays. We aim to build a global
localization system that can handle challenging environments such as strawberry
polytunnel. In this type of environment, highly repetitive patterns from plants,
structures, etc., dominates the scene. They render traditional methods relying
on visual features such as SIFT, ORB, BRISK [5, 7] fail to work. Moreover, even
though there might be some distinct features detected from the scene such as
a specific leave or fruit, those features are unstable due to the growing process
of the plants. Hence, we tackle this problem of ambiguity by leveraging the
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power of object recognition using machine learning. In a polytunnel, the most
invariant objects are the poles. We train a convolutional neural network (CNN)
to segment the poles from a captured image and use them for localizing. Also,
we target to build a cost-effective and platform-agnostic system. We only require
an Intel Realsense camera D435i, which gives us a stereo visual-inertial system
and an RGB-D camera in a compact form. The localization system provides a
full 6DOF pose estimation in a prior global map.

Contribution

The main contribution of this paper is a cost-effective global localization
system for agricultural robots deployed in polytunnels. Our system is able to:

• localize with the required accuracy for the robot to navigate between
table-top rows in strawberry polytunnels

• provide an alternative method to GNSS-based localization system which
might suffer from signal outages in GNSS-denied environments such as e.g.
polytunnels

• perform robust localization over extended periods of time across plant
season without remapping the environment.

Interrelation

This paper built the second block of an autonomous agricultural robot, which
is the localization functionality. The combination of the mapping system in the
first paper and the localization system in this paper provides a robot with the
full perception capability. The robot now knows where it is in an environment
and what that environment looks like. The localization system again exhibits
our desired properties of agricultural robots.

3.3 Paper III

Tuan Le, Ponnambalam, V. R., Jon Glenn Omholt Gjevestad and Pål Johan From,
“A low cost and efficient autonomous row following robot for food production in
polytunnels”, Journal of Field Robotics 37.2 (2020): 309-321.

Context

This paper aimed to solve a navigation problem in a tightly space-constraint
agricultural environment such as a strawberry polytunnel. We wanted to build a
system that is simple to set up and easy to operate. A 2D laser scanner is chosen
as the only perception sensor. The reason for this selection is that we want a
robust system that tackles degenerated environments such as low-light, sparse
features, etc., A camera must rely on illumination to capture a scene. Hence,
cameras suffer to work in harsh environments or in tasks that have to be operated

35



3. Contribution

at night time, for example, UV-light treatment. Besides, the target environment
is more challenging than those that are commonly found in agriculture, namely
the rows are curved or zigzagged-like. Traditional methods of row following have
been well-studied [1, 2, 3, 9]. However, they did not explicitly deal with this
challenging environment of curved rows.

Contribution

The main contributions of this paper are as follow:

• a minimal system consists of one 2D laser scanner that can freely navigate
an agricultural robot inside a polytunnel

• a robust navigation system that can handle challenging situations in
polytunnel environments such as curved/zigzagged rows

Interrelation

This paper completed the final piece of an autonomous system: navigation.
After perceiving about the surrounding environment and know where it is
in that environment, an agricultural robot can now safely move to its goals
while performing its task, such as providing UV-light treatment to plants. The
navigation strategy is simple but yet efficient for the task at hand. The system
also follows our desired properties. Noted that in this paper, the motion planning
algorithm is platform-specific. However, this is common to have different motion
plannings for different robotic platforms. Hence, we argue that this paper is still
related to our desired properties of autonomous agricultural robots.

3.4 A supervised learning solution for row following tasks
in horticulture

Tuan Le, Vignesh Raja Ponnambalam, Jon Glenn Omholt Gjevestad, Pål Johan
From, “A supervised learning solution for autonomous row following tasks in
horticulture” Submitted to IROS 2020 Workshop on Perception, Planning,
and Mobility in Forestry Robotics (WPPMFR 2020), Las Vegas, Nevada, USA,
October, 2020.

Context

Row following is one of the key activities in horticulture. Regardless of specific
agricultural environments, e.g indoor (polytunnels, greenhouses) or outdoor
(crop fields, orchards) and activities (UV light treatment, weeding, pollination,
harvesting), a robot should be able to follow rows. A lot of work have been done
to enable this capability, including two of our published works. However, most
of them are tailored to some specific setups, including environments (indoor or
outdoor), activity (centerline following or sideline following), and robot size. We
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aim to develop a method that can be used as an alternative solution to existing
ones for row following, regardless of targeted environments and robot platform.

Contribution

This work attempts to solve a key task in horticulture - row following. We
propose a solution using only RGB-D images. We train a convolutional neural
network (CNN) for segmenting parts of an image suitable for robot movements.
We label those segmented areas as traversable. As different from existing methods,
we train our network on an inclusive dataset, which contains both indoor and
outdoor horticultural environments. Hence, it can be used for a variety of row
following tasks (centerline or sideline following) in different environments. This
work serves as a baseline comparison for our future work on releasing a data set
on autonomous navigation for agricultural robots to the agricultural robotics
community.

Interrelation

In this work, we explore one tool that has been widely used in computer
vision and robotics communities - supervised learning method, on solving a
key task for autonomous agricultural robots in horticulture - row following. As
supervised learning-based techniques are now ubiquitous, one can consider them
as off-the-shelf products. Hence, we are intrigued to explore the possibility of
applying them to solve row following tasks in horticulture. We have created
an inclusive dataset for autonomous row following tasks and have achieved
promising results. We plan to continue working on releasing our data set to the
agricultural research community.
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Chapter 5

Conclusion and Outlook
This thesis provides three parts that as a sum, constitute a complete autonomous
agricultural system. We aimed to solve the three fundamental problems of
autonomous robots, including mapping, localization, and navigation. We are
specifically tackling the challenge of highly repetitive patters, sparse visual
features and dynamically changing agricultural environments. Note that, even
though we used different sensors for different tasks, we did not explicitly require
any specific sensor configuration. All developed algorithms can work with
general range sensors, such as 2D laser scanner, RGB-D cameras, stereo VIO,
and any 360°LiDAR without adaptation to individual sensor models. The
core contributions of this thesis revolve around the three basic functions of an
autonomous robot:
3D mapping in agricultural environments We proposed a 3D mapping sys-

tem that can be substituted for any existing GNSS solutions. Our system
leverages a 3D LiDAR sensor to build a large-scale map of agricultural
environments with a minimum memory-footprint for storage. Our system
is different from other 3D mapping methods, which mostly focus on ur-
ban/city scenarios. In comparison to state-of-the-art methods, our system
provides a finer map quality and lower size for map storage. Also, our
system can provide a good localization using the previously built 3D map,
which makes it completely independent of any external global positioning
system.

Localization in a highly dynamic agricultural environment A polytunnel is
a challenging environment for a robot. It exhibits highly repetitive patterns
for visual features, dynamic change over a short time. For example, a
strawberry polytunnel undergoes rapid changes during a season. We
proposed a system that can extract an “invariant” feature from such an
environment and be able to localize robustly over a long period without
the need to remap the environment. This is beneficial for agricultural
production such that a prior map can be used over time in a dynamic
scene without updating.

Autonomous navigation in a challenging polytunnel Row following is one
of the most basic tasks an agricultural robot has to perform. We developed
a navigation system that allows a ground agricultural robot traversing
along rows inside a polytunnel. We addressed the corner case of a
typical agricultural polytunnel, curved or zigzagged rows. This challenging
environment makes existing methods unsuitable.

And finally, all designed and developed systems in this thesis support our desired
properties for an agricultural robot: GNSS-independent operations, minimalistic
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system, platform-agnostic (except for the motion planning, which must be
platform-specific), scalability and assistance to a human operator.

5.1 Future work

There are many avenues for future work to truly enable autonomous robots in
agriculture. We will discuss some future work that can be built directly upon
our current system.

Human safety As agricultural robots would often share the same workspace
with human workers, safety is a non-negotiable issue. The current
designed systems have been well-tested but only in non-human interaction
environments. Hence, it is important and non-trivial to incorporate human
safety features into agricultural robots before deploying to productions.
One might adapt well-established safety guidelines for autonomous driving
cars into agricultural scenarios.

Motion planning in tightly constraint environment Motion planning is a
hard problem for autonomous robots. It is even more troublesome in
agricultural domains. For example, in a polytunnel, the free space for
trajectory generation is severely limited. On the other hand, for open
fields, it is more relaxed when a robot moves off-field and again becomes
more restricted when moving on-field (row following). Hence, it is difficult
to have a generic motion planning for agricultural robots.

Exploration Regardless of operation modes (performing online or offline),
mapping is the first step that one should perform before letting a robot
doing tasks. The current mapping system currently requires a human
supervisor for the whole process even though the mapping is done online.
The robot should be able to perform exploration into the assigned
agricultural environment and return the complete map of that environment
autonomously. Exploration is not new for autonomous robots. However,
in agricultural domains, special safety checks must be enforced.

Coordinations of multiple robots It is most likely that several robots would
be needed for tasks on large farms. For example, harvesting on multiple-
hectare fields or UV-light treatments for multiple polytunnels. Multiple
robot coordination offers speed-up in production. Deploying multiple
robots requires research works on communication, safety, production costs,
etc., Our desired properties directly benefit for building fleets of robots.

Public data sets for research communities In computer vision community
and autonomous driving sectors, the readiness of publicly available data
sets has brought several benefits for the research communities. In the
agricultural robotics community, the number of public data sets is still
small. We plan to work on and release our own data sets focusing on safety
and autonomous navigation for agricultural robots.
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Paper I

Online 3D Mapping and
Localization System for
Agricultural Robots

Tuan Le, Jon Glenn Omholt Gjevestad, Pål Johan From
Published in 6th IFAC Conference on Sensing, Control and Automation
Technologies for Agriculture, December 2019, Volume 52, Issue 30, pp. 167–
472. DOI: 10.1016/j.ifacol.2019.12.516.

I

Abstract

For an intelligent agricultural robot to reliably operate on a large-scale
farm, it is crucial for the robot to accurately estimate its pose. In large
outdoor environments, 3D LiDAR is a preferred sensor. Due to the
inherent difference in characteristic of urban and agricultural scenarios,
where the latter contains many poorly defined objects such as grass
and trees with leaves that will generate noisy sensor signals. While
state-of-the-art methods of state estimation using LiDAR, such as Lidar
odometry and mapping (LOAM), works well in urban scenarios, they
will fail in the agricultural domain. Hence, we propose a mapping and
localization system to cope with challenging agricultural scenarios. Our
system maintains a high quality global map for subsequent reuses of
relocalization or motion planning. This is beneficial as we avoid the
unnecessary repetitively mapping process. Our experimental results show
that we achieve comparable or better performance in state estimation,
localization, and map quality when compare to LOAM.

I.1 Introduction

For the last couple decades, we have witnessed an unprecedented advance in
technologies like mobile robotics and artificial intelligence. These technologies
bring positive effects on our daily lives: autonomous cars, service robots for
elderly care and precise agricultural robots for food production. Among various
applications, agricultural robots currently attract a lot of attention due to

All authors are with Faculty of Science and Technology, Norwegian University of Life
Sciences
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its important role in solving a vital problem: the demand for increased food
production.

Different types of agricultural robots have been developed in recent years.
Multi-wheel mobile robots [2, 10, 22, 24], is widely adopted due to its high
capacity of transportation and outfit with multiple sensors. Multi-rotor flying
robots are also used in agriculture [1, 20, 21], though their utility are limited to
short-term operations because of short battery life and low computation capacity.

LiDAR mapping and localization has been widely studied in the literature [16,
18, 28]. However, most focus on indoor, urban or city scenarios. The difference
in characteristic of urban and agricultural scene is significant. In an urban
scene such as a city, sufficient features such as lines, planes, corners from houses,
pavements, etc., can be extracted for scan registration. In an agricultural scene,
objects such as grass, tall trees, tree leaves can not provide reliable features
for detection to the same extent. For example, a tree leaf is unlikely to be
observed twice in two consecutive scans. The ground in a farm is more likely
to be rugged and not flat as a city street. These challenges prevent directly
applying conventional method such as LOAM.

In this work, we propose a complete online 3D mapping and localization for
our agricultural mobile robotic platform Thorvald II [11]. The robot is capable
of i) incrementally build and localize in a 3D map using 3D point cloud data,
ii) the global built map can be stored for subsequent reuse. Specifically, an
optimization-based approach is used for estimating the robot odometry. We also
employ loop-closure detection to ensure the large built 3D map is consistent
and usable for later tasks without rebuilding it every time. For relocalization
in a pre-built 3D map, we employ a normal distribution transformation (NDT)
scan matching method. Both processes (map building and relocalization) are
guaranteed to run online on the robot onboard computer. In summary, we
highlight the contributions of this work as follows:

• a complete online 3D LiDAR mapping and localization system for
autonomous agricultural robots

• high quality built map for human operator and subsequent reuse

• an evaluation of the proposed system on both simulation and real
experiments

We notice that existing methods such as LOAM can store its built map and
use it for relocalization purposes. However, the authors of LOAM does not focus
on this functionality. Hence, our proposed system fills in the gap for agricultural
applications. Even though our method is not suitable for crop field environments,
where the appearance of plant gradually changes, it is still applicable for other
agricultural tasks such as product transportation between fields and storage,
between polytunnels. Therefore, we argue that our proposed system is still
useful.

The paper is organized as follows: In section II, we review related work.
Section III depicts our hardware system overview. Section IV and V discuss the
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3D LiDAR map building and localization. Experimental results are presented in
Section V and conclusions are discussed in Section VI.

I.2 Related Work

Several works on mapping and localization in agricultural domain have been
focused on crop field environment. Early work by Khanna et al., [15] proposed a
simple mapping solution by using a stereo camera for generating 3D pointcloud
but using a commercial software. Albani et al., [1] proposed a decentralized multi-
UAV system for crop field mapping and weed detection. However, the system
was only tested in simulation without any validation from real field. Popović
et al., [21] proposed a Gaussian Process model for generating a multiresolution
map for biomass monitoring. More recently, Chebrolu et al., [19] combined aerial
images and ground images for localizing in a prebuilt-aerial map of a sugar beet
field. The aerial map is continuously updated after each session to maintain a
high localization accuracy.

Beside crop fields, a robot might need to travel to other parts of a farm. For
example, the robot might need to transport harvested products from crop fields
to storage. For this task it also requires a good 3D map since the terrain on a
farm is unlikely to be globally flat. Therefore, in this work, we aim to solve a
3D mapping and localization problem using 3D LiDAR for agricultural logistics
application.

We focus on geometry approach for LiDAR odometry estimation. The state-
of-the-art method, LOAM, is presented in [28, 29]. The method leverages point
feature to edge/plane scan-matching for scan registrations. The state estimation
is further divided into a cascade system: velocity is estimated with low accuracy
but at high frequency and motion estimation runs at low frequency but returns
high accuracy estimation. The fused output of the system is a high frequency
and high accuracy motion estimation. The result of odometry estimation by
LOAM is still by far the best on the KITTI odometry benchmark1.

We notice a couple drawbacks that prevent us from directly implementing
the original LOAM method. First, LOAM needs to iterate through every point
in a given point cloud to compute features for scan matching. This poses a
computational bottle neck. Second, an agricultural robot is likely to work in an
environment filled with trees, grass, which makes detected features unreliable.
For example, an edge feature from a tree leaf is unlikely to be observed twice for
matching. Or grass with uneven height on the ground might give inconsistent
planar features. And lastly, since LOAM focuses solely on odometry estimation,
no loop closure or saving built map functionality is implemented. This prevents
an agricultural robot from operating efficiently since it needs to rebuild a map
of a large scale environment every time it is turned on. The work in [25] is the
most similar to ours, however, like the original LOAM, the authors focus on
odometry estimation only.

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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(a) Simulated robot (b) Real robot

Figure I.1: Hardware system overview.

CSIRO group proposes several handcraft descriptors for place recognition
such as DELIGHT [6], ISHOT [12] and keypoint voting [4]. These descriptor
can be used to localize in a prior 3D map with LiDAR point cloud. However,
they are computationally expensive and require the robot to stand still for
localization. Caselitz et al. [5] utilize a monocamera to reconstruct a local 3D
map and match it against a prior 3D map for localization. Even though the
localization result is promising, the use of camera limits a robot to operate only
at daylight time. We are inspired by an NDT-based approach for localization
in [23]. However, the authors in [23] use a 2D-3D matching while we directly
perform a 3D-3D matching. We argue that for agricultural environments, where
features are sparse, the use of 2D LiDAR would severely limit the matching
process for localization. Hence, we prefer a 3D-3D matching method.

I.3 System Overview

I.3.1 Hardware system overview

The robotic system used in this work is an agricultural mobile platform Thorvald
II [11]. The robot is four wheel drive with a modular design. Unlike other fixed
size agricultural robots such as the BonniRob [22] or Harvey [17], Thorvald II is
easily size-reconfigurable for different tasks and domains [9, 27].

The robot is equipped with a 3D LiDAR Velodyne VLP-16 and a commercial
grade IMU Xsens MTi-30. The complete hardware system is shown in Fig.I.1b.
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Figure I.2: Block diagram of map building.

I.3.2 Software system overview

The 3D mapping process is divided into three steps. First, incoming LiDAR
measurement is preprocessed to separate a set of ground points from non-ground
points. The set of non-ground points is further segmented into different clusters,
each cluster contains points from one single object. Both set of ground points
and object clusters are used for extracting edge and planar features. Second,
extracted features are then used to match and estimate pose between consecutive
LiDAR scans at scan rate. Pose estimations are further refined at a lower rate
by registering those features to a global map. Finally, both pose estimations are
fused to give the final pose estimation. Loop closure detection is also executed
to guarantee a consistent global map. When the mapping process is done, the
final global map is saved for later use.

For localization in a pre-built 3D map, we iteratively perform 3D-3D scan
matching between LiDAR scan and the 3D map using the NDT representation
of the map. Details of mapping and localizing procedure are further discussed in
the next section.

I.4 3D LiDAR Mapping

I.4.1 Data Preprocessing

The original LOAM method [28, 29] works well in indoor environments.
The authors also confirmed that feature matching is less reliable in outdoor
environment due to worse feature extraction [29]. We adopt the approach in
[3, 25] to preprocess the raw point cloud data before extracting its features.
In particular, the ground points are first removed from the point cloud and
the remaining points are segmented into clusters where each cluster contains
points of one object. The whole segmentation process is based on the projected
range image from the raw 3D point cloud for fast performance. We notice that
Shan et al. [25] employs the ground removal strategy from [13] and require a
heuristic predefined number of ground scans to perform ground detection. We
find that the ground removal method by Bogoslavskyi et al. [3] is more robust
and implement this approach.

Let Pk, k ∈ Z+ be set of point cloud at measurement k. After preprocessing,
a set of ground point Gk and non-ground point Qk (Gk, Qk ⊂ Pk) are obtained
for feature extraction. Notice that, Pk, Qk also contain label for their points,
i.e, ground label for ground points and unique label for each cluster and its
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points. We also eliminate clusters containing less than forty points. The idea
of separating and labelling points is to further improve the feature matching
process by matching only points with corresponding labels. For example, ground
points are never used to match with edge features, which most likely come from
non-ground points.

I.4.2 Odometry Estimation and Mapping

The LiDAR odometry estimation process is executed in the following order.
First, we extract features from the currently received LiDAR scan Pk.

Following [29], we also use a threshold to identify edge and planar features.
However, to avoid iterating through 3D points, we perform this process using
the projected range image as in [3, 25]. Let S be the set of all points pi on the
same row of the range image of Pk. The roughness c of pi is evaluated in Eq.I.1,
where ‖·‖ is the Euclidean distance and |·| is the number of points:

c =
‖
∑
j∈S,j 6=i(rj − ri)‖
|S| · ‖ri‖

(I.1)

The point pi is classified as edge feature if its roughness c score is greater than
a threshold, or else it is considered as planar feature. Let Ek,Hk be the sets
of all extracted edge and planar features, respectively. [29] performs several
condition checks to reject outliers feature points for scan matching. In contrast,
by leveraging the label associated with each point, we still can ensure reliable
scan matching result between scan Pk and Pk−1 as follows. For each type of
extracted features, we select a small subset of edge features Ek, Ek ⊂ Ek with
maximum c score a small subset of planar features Hk, Hk ⊂ Hk with minimum
c score. Then for finding correspondences, we only match points from Ek with
points of the same label from Ek−1 and similarly for Hk and Hk−1.

Second, after finding the correspondences of the feature points, the distance
between a point in the kth scan and its correspondence is used to estimate the
LiDAR motion, denoted as

xk =[R,T]
Tk =[tx, ty, tz]T

Rk =[roll, pitch, yaw]T
(I.2)

where Tk and Rk is translational and rotational part, respectively. Stacking all
the equations describe the geometric relationship between an edge points pi and
its corresponding edge line, we have:

fE(xk,i) = dE, i ∈ Ek (I.3)

Similarly, we can obtain another set of equations for planar points and their
corresponding planar patches:

fH(xk,i) = dH, i ∈ Hk (I.4)
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The detail derivation of dE, dH is exactly as in [29] and omitted here for brevity.
While in [29], the authors combine fE(xk,i), fH(xk,i) into one system of non
linear equations and apply the Lavenberg-Marquardt (LM) method to solve
it, we follow the approach in [25] to obtain the motion estimation in a more
efficient way. We first solve Eq.I.4 using the same LM method. Notice that
Eq.I.4 estimates transformation between planar patches, the estimation of roll,
pitch angles and translation in z direction is more accurately estimated than
other components. We then use the three components as constraints to solve
Eq.I.3. Again, for edge lines in Eq.I.3, translation in x, y and yaw angles are
estimated more robustly and we selectively choose these components. Finally, we
fuse these six components together to achieve the final 6-DOF pose estimation.

Let Gk−1 be the set of point clouds in the global map accumulated up to
the LiDAR (k − 1)th scan . We implement the similar method in [29] to match
the points in Ek,Hk to Gk−1 to further refine the pose estimation. Readers
are referred to [29] for the details. We notice the difference here is that we
explicitly aim for a consistent and reusable large-scale map, not just accurate
odometry estimation. Hence, we implement a pose-graph SLAM with loop
closure detection in [7, 14] to obtain the fine map. Specifically, the pose obtained
in the odometry estimation step is considered a node in the graph. A loop is
detected by matching between Ek,Hk and Ek−1,Hk−1. If a match is found, it is
added as a new constraint to the graph. The graph is efficiently updated using
iSAM2 library [14].

I.5 Localization in A Prior 3D LiDAR Map

Given a 3D LiDAR map built in the previous section, the robot can estimate
its pose as the sensor ego-motion. We adopt an NDT-based scan matching
for localization. In comparison to the ICP method, 3D NDT scan matching is
faster and at least as accurate as the state-of-the-art ICP method [26]. It is
especially beneficial for the robot to localize itself on a large scale map. Instead
of performing heavy computation scan matching by iterating through every
point, the robot only needs to compare between the much smaller estimated
Gaussian components, which represent the map and the received LiDAR scans.
In addition, the robot might experience abrupt changes on uneven terrain, which
in turn causes a large displacement between consecutive scans.

Let xt = [pt,qt,vt,bωt ]T be the state vector at time t that we need to estimate,
where pt is the position, qt is the rotation vector in quaternion representation,
vt is the velocity and bωt is a constant bias for raw gyroscope measurements
ω̂t from an IMU, that is rigidly attached to the LiDAR sensor frame. Since
the robot normally runs at low speed, we can assume a constant translational
velocity for the motion model. Employing a standard Extended Kalman filter,
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Lidar

3D Map

IMU

NDT Correction

Prediction

Pose
estimation

EKF

Figure I.3: Block diagram of localization system.

the prediction step is defined as follows:

xt =[pt−1 + vt−1 · δt,qt−1 · δqt,vt−1,bωt−1]T

δqt =[δt2 ω
x
t ,
δt

2 ω
y
t ,
δt

2 ω
z
t , 1]

ωt =ω̂t − bωt−1

(I.5)

where δt is a time step, δqt is the rotation during δt with the bias-compensated
angular velocity ωt. The predicted pose xt,qt are used as initial guess for
the NDT process to match the observed point cloud to the global map. The
correction step then uses the NDT estimation result to correct the final state
estimation.

I.6 Experiments

We validate our proposed system on both simulated and real datasets. Here, we
provide quantitative evaluations on: position drift while mapping, relocalization
on previously built 3D LiDAR map and map quality comparison.

We first validate the proposed system using the simulation built on gazebo2

for our project3. The simulated scene consists of two polytunnels and food
processing storage. The scene is shown in Fig.I.6a. The simulated Thorvald
robot is configured to physically match the real one. It is equipped with a
simulated Velodyne VLP-164 and a 2D LiDAR Hokuyo. Currently, 2D LiDAR
with gmapping SLAM5 is used for building map. The de-facto AMCL6 is

2http://gazebosim.org/
3https://rasberryproject.com/
4https://github.com/LCAS/velodyne_simulator
5http://wiki.ros.org/gmapping
6http://wiki.ros.org/amcl
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Figure I.4: Position drift when mapping in simulation.
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Figure I.5: Position drift when mapping in real scene.

(a) Simulated scene (b) Top down view of the
3D built map

(c) Side view of the 3D built
map

Figure I.6: Built map in simulation. Color indicates the height. Best view in
color.
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Figure I.7: Quantitative localization comparison between amcl and proposed
method in simulation. The ground truth is taken from gazebo.

(a) 3D view from Google
map

(b) Built 3D map overlay on
top of Google map. Color

indicates the height.

(c) Top down view of sharp
corners of buildings. Color

indicates intensity for
viewing.

Figure I.8: Result of 3D mapping. Best view in color.

used for localization in a pre-built 2D map. Hence, we directly compare the
localization results from two different sensor modalities and show that we can
achieve comparable or better results. The ground truth is taken from gazebo.

In the simulation test, the robot is first manually driven around the scene
while both gmapping and the proposed 3D LiDAR mapping are running to
build the 2D and 3D map of the scene, respectively. The built maps are then
saved for localization test. The 3D built map is shown in Fig.I.6b,I.6c. The 2D
map is omitted here due to space constraint. After building maps, the robot is
again driven manually through the scene using the previously built maps for
localization. Both AMCL and the proposed localization method are running
to estimate the robot pose. Both estimation results are recorded and analyzed
following [30]. Position drift when mapping with LiDAR is shown in Fig.I.4.
The relative errors in translation and rotation (yaw) are shown in Fig.I.7a,I.7b,
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Figure I.9: Quantitative localization comparison of proposed method with a real
dataset.

respectively. The relative errors also show a consistently low median translational
error of the proposed method (less than 0.5%). For relative rotation (yaw) errors,
the proposed method shows a smaller median error in comparison with amcl for
long trajectories.

We conduct another test with a real dataset. The robot (Fig.I.1b) is driven
manually around our campus. Starting in front of our lab, which is served as
a storage, the robot moves to our mockup polytunnel and back. The total
trajectory is 500 meters. The ground truth in this test is obtained via a RTK-
GNSS Septentrio AsteRx4 system. Notice that, we solely use the RTK-GNSS for
ground truth comparison. To further challenge the proposed localization method,
only half of the dataset is used for mapping. For localization in a built 3D map,
the robot uses the whole dataset, in which half of the dataset contains LiDAR
scans from the opposite moving direction when mapping. This mimics a scenario
where we want to perform a fast mapping process and the robot can reliably
use the built map for localization. We also achieve a low drift in position as
shown in Fig.I.5. The relative pose error is shown in Fig.I.9. The robot achieves
a small median translation error (< 2%) for the whole trajectory. However, we
encounter accumulating drift in rotation estimation, which is contributed by
our assumption about constant bias of angular velocity and inconsistency of the
EKF filter.

Finally, we compare the quality of the built map between our proposed
method and the original LOAM. We follow [8] to calculate the mean map entropy
(MME) from the mapped points P = {p1, ..., pn}. The mean map entropy H(P)
is used as the crispness/sharpness metric of the map. A map with lower entropy
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(a) Built map by LOAM

(b) Built map by our method

Figure I.10: Qualitative comparison of built maps. Color indicates intensities
for viewing. Notice the difference of the building walls. Our method produces

sharper map than LOAM’s. Best view in color.

has higher quality. The mean map entropy is defined in Eq.I.6.

h(pk) =1
2 ln |2πeΣ(pk)|

H(P) = 1
n

n∑
k=1

h(pk)
(I.6)

where h(pk) is the entropy of the mapped point pk, Σ(pk) is the sample covariance
of the mapped point pk in a local radius r = 0.3m around pk, and H(P) is
averaged over all n mapped points.

The result of MME of built maps is listed in Table.I.1.
We illustrate the differences in quality of the built maps by two methods in

Fig.I.10. Notice that, for fair comparison, we apply the same configuration for
both methods, including using the same half of the dataset for mapping, the
same downsample constants for point cloud filtering. LOAM retains more points
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Table I.1: MME of built maps (lower is better)

Method MME Map size
LOAM -0.19 27.7 MB
Ours -0.22 8.2 MB

in its map but the quality of the map is lower than ours. Our method produces
a sharper map with less memory consumption for storage.

The video of experiments is available online: https://youtu.be/05sTYF8AKaY

I.7 Conclusions

In this work, we propose a complete online 3D mapping and localization system
for intelligent agricultural robots. Existing method, such as the state-of-the-art
LOAM, primarily focuses on odometry estimation. We provide an additional
localization method to make use of an accurate 3D built map, which is vital for
an agricultural robot to work on a large scale farm without remapping before
operating. The proposed system is tested using simulated and real datasets.

We notice, that by applying segmentation on input point clouds, we
achieve more robust and better point cloud registration. Hence, future work
involves further exploitation of point cloud segmentation to deal with dynamic
environment. In addition, we plan to improve the localization system to further
reduce drifts in rotation estimation caused by the inconsistency of the EKF
filter.
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II
Abstract

Precision agriculture tasks demand highly efficient and accurate actions
performed by autonomous robots. In order to carry out such actions,
a prerequisite for a robot is to accurately localize itself in its working
environments, such as crop fields, greenhouses, polytunnels, etc. Agri-
cultural environments usually present unique challenges to localization
tasks such as the highly repetitive structure of a polytunnel or a crop field
leading to visual aliasing and changing appearance over time. This makes
it challenging for the robot to localize. In this paper, we develop a 6DoF
localization system for precision agriculture tasks in polytunnels. The
system only requires a cost-effective stereo RGB-D camera and a prebuilt
3D map. The system allows an agricultural robot to robustly localize over
multiple stages of a strawberry season despite the strong dynamic and
changes in the appearance of the environment caused by growing plants.
Experiments are carried out on a real strawberry polytunnel over a period
of several weeks to evaluate the system. The results show that our system
provides adequate localization accuracy for agricultural robots to perform
tasks that require a high level of accuracy.

II.1 Introduction

Multi-wheel mobile robots [3, 9, 22, 23] and multi-rotor flying robots [2, 18, 19]
are widely adopted in agriculture for a variety of precision tasks such as weeding,
harvesting and crop monitoring. Ground robots are suitable for heavy-power
tasks such as plowing and carrying UV lights, while aerial robots are more used
for monitoring and surveillance.

All authors are with Faculty of Science and Technology, Norwegian University of Life
Sciences.
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Regardless of the platform, an autonomous robot has to localize itself
accurately to navigate and perform its assigned tasks in a given environment.
Agricultural environments usually exhibit highly repetitive structures such as
similar crop rows on an open field or similar table-top rows in a polytunnel. Fig.
II.2 depicts an example of one such environment. Repetitive structures give
rise to the well-known computer vision problem of visual aliasing. This causes
strong ambiguity in determining the robot location. Another inherent problem of
agricultural scenes is that the appearance of the scene is gradually changed over
time as plants grow. These problems make the localization task more challenging
over extended periods of time, which is a requirement of autonomous agricultural
robot - robust long term operations.

Currently, high precision real time kinematic GNSS systems can provide highly
accurate localization in open fields. However, such systems might suffer in GNSS-
denied environments such as polytunnels or greenhouses. Other localization
methods relies on visual features such as ORB [21] or other hand-crafted features
[12, 13] tends to fail when dealing with appearance-changing environments.

Figure II.1: Localization in polytunnels. The red dots denote a particle set.
Green line denotes the robot trajectory.

A common structure of a typical strawberry polytunnel consists of several
evenly-spaced sets of poles, on top of which hold table-trays. Strawberry plants
are grown in plastic pots and placed on top those table-trays. The plant-growing
area is covered by polymer material. The polytunnel provides optimum conditions
for strawberry plants to grow [10] and therefore, their demand is growing on the
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Related Work

market.
In this paper, we propose a localization approach for autonomous agricultural

robots operating in strawberry polytunnels. Our system only requires a cost-
effective stereo depth camera (Intel RealSense D435i), which is a stereo visual
inertial odometry sensor with additional depth sensing module. We also assume
that a 3D reference map of the polytunnel is available. A reference map can
be obtained by performing an offline mapping process once. The main idea of
our method is to exploit the semantic information of the polytunnel to serve
as invariant features across a strawberry season, even in scenario where the
environment undergoes substantial changes through-out the growing season. We
extract the poles’ shape to capture the inherent geometry of the polytunnel and
use it as the invariant feature for measuring.

The main contribution of this paper is a cost-effective global localization
system for agricultural robots deployed in polytunnels. Our system is able to:

• localize with the required accuracy for the robot to navigate between
table-top rows in strawberry polytunnels

• provide an alternative method to GNSS-based localization system which
might suffer from signal outage in GNSS-denied environments such as
indoor polytunnels

• perform robust localization over extended periods of time across plant
season without remapping the environment.

The paper is organized as follows: In section II, we review related work.
Section III presents our localization method. Experimental results are showed in
Section IV and conclusions are discussed in Section V.

II.2 Related Work

A particle filter (PF), usually referred as Monte-Carlo localization (MCL), is
a well-studied method for mobile robots. Thrun et al. [24] introduced MCL
and analyzed its performance for planar, laser-based equipped mobile robot
using a 2D occupancy grid maps. While most MCL method is intended to use
with laser-base scanner sensor, Dellaert et al. [5] was the first to introduced
vision-based MCL for mobile robots. Wolf et al. [26] proposed a MCL framework
for a vision guided robot that extracts and matches invariant features from
images but also requires a 2D occupancy grid maps for visibility computations.

Incorporating RGB-D cameras into a MCL framework enables 6DoF
localization in a 3D map. Fallon et al. [7] proposed a 6DoF MCL system
using RGB-D camera. This method heavily relied on planar features of the
environment for the PF to converge. An interesting work by Winterhalter et
al. [25] also proposed a 6DoF MCL system for indoor localization leveraging
a RGB-D camera with a 2D floor plan. The authors generate a 3D map by
constructing 3D walls as vertical planes, floors and ceilings as horizontal planes
whose geometric characteristics are available from a given 2D floor plan. Other

63



II. A Cost-Effective Global Localization System for Precision Agriculture Tasks
in Polytunnels

(a)

(b)

Figure II.2: Different environments to grow strawberry (a) on an open field, (b)
in a polytunnel.
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work such as [4, 14] employed a prior global 3D pointcloud map and used Iterative
Closest Point (ICP) based method to match current pointcloud to the global
map. [17] transformed the point-based 3D map into a Normal Distribution
Transform (NDT) representation while [6] chose a Gaussian Mixture Model
(GMM) representation of the 3D map. The reason behind these choices of
different map representations is to overcome the inaccuracy representation of
the traditional grid-based map, which are discretized by definition [24].

Localization in agricultural domain has received little attention from the
robotic community. Even though MCL method can naturally deal with sparse
feature indoor environments such as long corridor by considering multiple
hypotheses, its application in agriculture with similar ambiguous representation
(repetitive and/or sparse features) is limited. We are inspired with the recent work
by Chebrolu et al., [16], where the authors incorporated a semantic exploitation
scheme into a MCL framework for their mobile robot to localize on a sugar
beet field over a long period. The authors explained that the locations of plant
stems and weeds, as well as the gaps between plants’ clusters can be considered
as “invariant" features of the map to build their MCL framework. In contrast,
we target a totally different type of agricultural field, polytunnels, where those
features are much harder to detect and track (plants are grown in trays on a
table top, which significantly eliminate the existence of weeds and gaps). Hence,
we exploit a different type of semantic features in the polytunnel to tackle the
ambiguity problem.

II.3 Global Localization in A Prior 3D Map

II.3.1 A prior 3D reference map

In this work, we do not aim to solve a SLAM problem. As it is inefficient to
perform mapping and localization every time we assign tasks to a robot, we
assume we already have a built 3D map by using our previous work [11] or
any other existing methods such as employing a terrestrial laser scanner. The
reference 3D map of our polytunnel used in experiments is shown in Fig. II.3.

II.3.2 Poles as stable landmarks

Similar to open field scenarios, visual features detected using hand-crafted
descriptors such as SIFT, ORB or BRISK are not consistent over the season due
to large differences in the appearance of the plants over the crop season. Hence,
we deliberately choose the poles in a polytunnel as a type of consistent landmarks
since they are not physically changed across seasons. In order to detect poles, we
use an end-to-end trainable convolutional neural network (CNN) and fine-tune
with our annotated image dataset. We use the popular framework as described
in [15] and omit the detailed description here. The output of the network is
a mask image of poles and we use it to extract depth information of detected
poles from the corresponding-aligned depth image. Notice that depth-images are
aligned and synchronized with RGB images on hardware-level. The extracted

65



II. A Cost-Effective Global Localization System for Precision Agriculture Tasks
in Polytunnels

Figure II.3: The reference 3D map. Point’s size is inflated for clarity.

depth information of poles serve as measurements in the MCL framework that
will be discussed next. Examples of poles detection are shown in Fig. II.4.

II.3.3 Monte Carlo Localization

A recursive Bayesian filtering scheme is used to estimate the robot’s pose
x = (x, y, z, ϕ, ϑ, ψ) in its environment. We prefer this probabilistic localization
to deal with the repetitive structural nature of the polytunnel. The main idea is
to maintain a probability density p(xt|z1:t,u1:t,m) of the robot’s pose xt at time
t in the provided map of the environment m along with given sets of observations
z1:t and motion control commands u1:t up to time t. This posterior is updated
recursively as follows:

p(xt|z1:t,u1:t,m) ∝ ηp(zt|xt,m)·∫
xt−1

p(xt|xt−1,ut)p(xt−1|zt−1,ut−1,m)dxt−1
(II.1)

The motion model p(xt|xt−1,ut) denotes the probability of state xt given the
motion command ut in state xt−1. The sensor model p(zt|xt,m) denotes the
likelihood of getting the observation zt with the pose xt and the map m. η is
the normalization constant. To implement the filter, we follow the sample-based
approach described in [24]. The belief update as described in Eqn. II.1 is
executed by the following two alternating steps: 1) a prediction step, where
we draw for each particle with weight w[i] a new particle according to w[i] and
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(a)

(b)

Figure II.4: Poles detection at different moment of time: (a) session 2, (b) session
4.
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to the prediction model p(xt|xt−1,ut) and 2) a correction step, where a new
observation zt arrives, a new weight w[i] is assigned to each particle according
to the sensor model p(zt|xt,m).

MCL maintains a set of weighted particles to represent the belief about
the system and update the belief by sampling from the motion model when
new odometry measurements arrive. The weight of each particle is calculated
proportionally to the observation likelihood of the measurement given the
corresponding state of the particle. The particle set need to be resampled
according to the assigned weights to obtain a good approximation of the pose
distribution with a finite number of particles.

Next, we discuss our choice of estimating the 6DoF absolute localization.
The first reason is that we aim to develop a cost-effective system. We want it
to be generic and platform-agnostic, meaning it is applicable on both ground
and aerial platforms. Second, for the environment that we target it almost
always exhibit non-planar terrain. Hence, a design choice of conventional 3DoF
(translation in x, y and yaw rotation) is inefficient.

II.3.4 Motion model

Fig. II.5 shows our robot with the sensor setup. The Intel RealSense D435i
camera is a cost-effective stereo visual inertial (VI) sensor with an additional
depth sensor module. We assume that the VI sensor is calibrated and the relative
transformation from the robot base to the camera TC

B is known. Hence, the
local pose estimation in the VI sensor frame can be transformed to the robot
base. For local pose estimation, we adopt the existing joint optimization-based
visual inertial odometry (VIO) algorithm described in [20].

The VIO estimates a 6DoF poses in IMU frames and features’ depth within
a sliding window. For the local pose estimation, we denote the states as follows:

Sl = [s0, s1, · · · , sn, λ0, λ1, · · · , λm]
sk = [plbk

,vlbk
,qlbk

,ba,bg], k ∈ [0, n]
(II.2)

where the k-th IMU state sk includes the position plbk
, velocity vlbk

, orientation
qlbk

of the center of the IMU with respect to the local reference frame l, ba and
bg are accelerometer and gyroscope biases respectively. A reference frame is the
first IMU pose. Detected features in stereo images are parameterized by their
inverse depth λ when first observed in the camera frame. The pose estimation is
solved as a nonlinear least square problem:

min
Sl

{∥∥rp −HpS
∥∥2 +

∑
k∈B

∥∥rB(ẑbk

bk+1
,S)
∥∥2

Pbk
bk+1

+

∑
(l,j∈C)

ρ
(∥∥rC(ẑcj

l ,S)
∥∥2

P
cj
bl

)} (II.3)

where rB(ẑbk

bk+1
,S) and rC(ẑcj

l ,S) denote inertial and visual residuals respectively.
rp,Hp are prior terms containing information about past marginalized states.
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Figure II.5: Robot setup for experiments.

ρ(·) is a robust Huber norm and C is the set of features that have been observed
at least twice in the current sliding window. The Ceres solver [1] is used for
solving this problem. Notice that the estimated odometry is slowly drifted but
it can be corrected by the global localization.

The VIO provides the odometry measurement of the robot. However, we also
need to model the uncertainty of the odometry estimation, hence we directly
corrupt the odometry estimation with a small amount of normally distributed
noise. We note that because of our choice of joint optimization-based method of
odometry estimation, we cannot directly obtain the uncertainty measurement,
i.e covariance estimation. Instead, one can choose to implement a filter-based
method so that the covariance estimation can be used as uncertainty measurement
for the motion model.

Finally, we can express our motion model as:

xt = xt−1 + ut + et et ∼ N(0, σ2
m) (II.4)

where the motion control ut is the relative transformation estimated from the
VI sensor.

Note that in practice, depending on the type of the robot and the ground
floor, the motion noise standard deviation σm should be chosen accordingly, i.e
for smooth and continuous motions on a fairly even terrain, a small noise is
adequate. While for fast motions or traversing on a rough terrain, the noise
should be inflated.
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II.3.5 Observation Model

In this section, we derive our sensor model to determine the likelihood of a
measurement z given the pose x in the map m.

The raw range measurements likely contains many false positives, i.e from
leaves, fruits, water pipes etc., Hence, we extract only the depth information
of the poles, which are detected by our trained CNN network and use them as
measurements. When a new measurement arrives, K range measurements are
randomly sampled from the pole-depth image and converted into a measurement
3D pointcloud Z. For computational efficiency, we apply the endpoint observation
model described by Thrun et al. in [24].

We denote zj as the j-th measurement of Z. We model the likelihood of an
observed measurement as a Gaussian distribution. The likelihood of a single
depth measurement based on the scan point z′j corresponding to zj transformed
into the map frame with the robot pose x and on the closest corresponding point
in the map mj ∈ m:

p(zj |x,mj) = f(z′j ,mj) = 1√
2πσd

exp
(
−

(z′j)2

2σ2
d

)
(II.5)

where σd is the standard deviation of the sensor depth noise.
We assume all beams are independent thus the integration of one full

measurement is computed as the product of the each beam likelihood:

p(z|x,m) = f((z′1,m1), · · · , (z′K ,mK)) ∝
K∏
j=1

f(z′j ,mj) (II.6)

Note that unlike the conventional laser range finder sensor, which can give
highly accurate range measurement, the depth measurements from a RGB-D
camera are noisier with increasing measurement distances. Hence, we increase the
value of σd along with the measurement distance to account for this characteristic
in our observation model.

We want to highlight here the semantic exploitation of our approach. In
other works that also use RGB-D camera for MCL [7, 25], the authors relied on
dense-depth images to randomly sample depth measurements from wall, ground
floors, etc., This approach is not suitable for our case since the polytunnel
environment lacks those features, i.e the wall is not always visible and the ground
floor is covered with grass and depth images are dominated by plant as shown
in Fig. II.6. Hence, by extracting only the depth measurement from poles,
we guarantee that all sampled depth measurements do not contain unreliable
measurements, i.e avoiding depth measurements from leaves, fruits, etc., which
are subjected to change daily.
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(a)

(b)

Figure II.6: A typical example of a depth image dominated by plant (a) and its
extracted poles mask in binary (b). This was recorded in session 3, mid-season.
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II.4 Experiments

II.4.1 Experimental results

We performed the experiments at our research polytunnel, where we grew three
rows of strawberry plants. The dimension of the polytunnel is 30 m by 5 m. The
off-line built 3D reference map of the polytunnel is shown in Fig.II.3.

The robot is equipped with an Intel RealSense camera D435i. We calibrate
the depth sensor module with high accuracy and medium resolution preset 1.
Depth images are aligned with RGB images on camera hardware level. Depth
measurement error of the D435i is typically less than 1cm with measurement
range up to 1.5m and quickly raises to 3.5cm error with measurement range up
to 3m. Hence, we give a small noise σd for range data that is less than 1.5m and
triple the noise value for range data greater than 1.5m. We simply discard range
measurements that are more than 4m.

For visual inertial odometry estimation, we use two mono image streams
from the infrared cameras with emitter module turned off. The integrated IMU
provides synchronous measurements with the mono image streams. For training
the CNN network, we collected and manually labeled images of our polytunnel
for poles using the same camera. As CNN is considered as a off-the-shelf product
due to its popularity, we omit the details of our training process here. We
achieved a mean accuracy and a mean Jaccard index (mIoU) as 98.8% and
84.8%, respectively, from our trained network. We observe that our trained
network has difficulty for segmenting far-off poles. However, since we discard
depth measurements that are greater than 4 meters, as we will discuss in detail
later, this level of segmentation accuracy does not affect our localization system.

We recorded four datasets of our mobile robot traversing the polytunnels
at different time during the 2019 strawberry season. The first three datasets
were approximately a week apart and the fourth was recorded at the end of the
season. The robot was manually controlled with an average speed of 0.7m/s.

We initialize the filter with 1000 particles with an initial standard deviation of
1m around a starting position. Here we take advantage of our specific application
of UV light treatment in a polytunnel, i,e our robot always starts up at a known
position. Hence, we can obtain a very good estimation of the robot’s first pose to
initialize the MCL filter. This eliminates the needs of a high number of particles
to cover the whole map, which in a 3D map may be intractable.

In Fig. II.7, II.8 we show qualitative results of a robot traversed through the
polytunnel. It is easy to see that the VIO drifted quickly.

Notice that for our MCL framework, we only extracts the depth measurements
of poles, hence, the particle filter diverges when the robot get out of the
polytunnel, where it can not receive any meaningful measurements as shown in
Fig. II.8a. But as soon as it rediscovers the poles, the particles converge again
as shown in Fig. II.8b.

Unfortunately it is impossible to directly obtain 6DoF ground truth of
trajectory for localization accuracy comparison. More over, the localization

1https://github.com/IntelRealSense/librealsense/wiki/D400-Series-Visual-Presets
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(a) With 3D map

(b) 3D map removed for clarity

Figure II.7: Odometry from VI sensor (yellow) drifts while the MCL (green) can
maintain the robot’s poses. Best viewed in color.

accuracy quickly degrades whenever the robot heads out of the polytunnel.
Therefore, the best quantitative comparison of localization accuracy we can get
is in xy-plane, where we use a Leica Total Station TCA 1100 to get the ground
truth of the robot’s positions inside the polytunnel.

Table II.1 shows the qualitative evaluation of localization during different
recording sessions. Giving the width of a row is 1.5m and the robot’s width is
1m, the robot localized within a row with a maximum error being 23cm. This
error is less than the safety upper bound error, which is 25cm. It shows that the
robot achieves the safety requirement to navigate inside the polytunnel.
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(a) The filter diverges when the robot getting out of the polytunnel

(b) The particles converge when the robot receive measurements from poles

Figure II.8: MCL can recover the global localization.

Session Distance Mean error Max error
1 75.2m 0.205m 0.225m
2 74.6m 0.194m 0.233m
3 74.1m 0.207m 0.227m
4 75.7m 0.211m 0.231m

Table II.1: Localization accuracy for different recording sessions.
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II.4.2 Discussion

Even though our MCL approach shows promising results, it still has some
drawbacks:

II.4.2.1 MCL implementation

The current implementation of the MCL is not optimized. A better sampling
strategy such as a KLD sampling by Fox [8] would help by allowing particles
generation on demand, while keeping the particle set small.

II.4.2.2 Defining noise characteristics

Relying only on depth measurements from poles gives a benefit of avoiding false
measurements when sampling measurements from dense depth images. As a
trade-off, we have less number of measurements and from experiments, the noise
values in both motion model and observation model have greater impact on
the localization accuracy. Currently, we define those noise values empirically.
However, the tuning process mentioned in [25], where the authors determine the
value of noise characteristics using a motion capture system can be applied.

And finally, since our CNN only detects poles, our system would not work
for different types of polytunnels, such as those, where plant trays are being
hung down from the ceiling.

A video of our experiments is available at: https://youtu.be/EL8uBg3nr6g

II.5 Conclusions

In this paper, we presented a cost effective localization system using only an Intel
RealSense D435i camera. Our method avoids false measurements by exploiting
the stable features of a polytunnels - poles. This allows us to localize successfully
over multiple sessions of a strawberry season. We performed evaluations in a real
polytunnel to demonstrate the effectiveness of our system. We have discussed
some limitations of our current system. However, we argue that our system is
still useful for precision tasks in agriculture such as UV light treatment. Future
work involves developing a better initialization process for the MCL filter as well
as adopting better sampling strategies.
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Abstract

In this paper, we present an automatic motion planner for agricultural
robots that allows us to set up a robot to follow rows without having
to explicitly enter waypoints. In most cases, when robots are used to
cover large agricultural areas, they will need waypoints as inputs, either
as pre-measured coordinates in an outdoor environment, or as positions
in a map in an indoor environment. This can be a tedious process as
several hundreds or even thousands of waypoints will be needed for large
farms. In particular, we find that in unstructured environments such as the
ones found on farms, the need for waypoints increases. In this paper, we
present an approach that enables robots to safely traverse not only between
straight rows but also through curved rows without the need for any pre-
determined waypoints. Most types of infrastructure found in agriculture,
such as polytunnels, are built on uneven terrain, thus containing a mix
of straight and curved plant rows, for which traditional methods of row
following will fail. Different from traditional approaches of row following
that only consider straight-line-of-sight rows, our approach identifies the
rows on each side with the goal of staying in the middle of the rows, even if
the rows are not straight. Waypoints are only needed on the very extreme
of the rows, and these will be automatically generated by the system. With
our approach, the robot can just be placed in the corner of the field and
will then determine the trajectory without further input from the user.
We thus obtain an approach that can reduce the installation time from
potentially hours to just a matter of minutes. The final autonomous system

*These authors contributed equally to this work. All authors are with Faculty of Science
and Technology, Norwegian University of Life Sciences.
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Figure III.1: A design model of the Thorvald robot carrying UV light bulbs

is low cost and efficient for various tasks that requires moving between
plant rows inside a polytunnel. Several experiments were performed and
the robot demonstrates 1.4% position drift over 21 meters of navigation
path.

III.1 Introduction

In this paper, we address the problem of autonomous row following for an
agricultural robot in a tightly constrained space such as polytunnels. This work
is part of a larger project 1, in which we develop agricultural robots to automate
food production [9, 10, 12]. The Thorvald II robot has been used for different
purposes in food production such as phenotyping [13] and strawberry picking
[26]. The Thorvald II robot is a highly versatile robot due to its unique modular
design 2. The robot for example can be retrofitted to carry UV light bulbs for
UV light treatment tasks, as shown in Fig. III.1. Currently, the model robot has
been actively employed at a cucumber greenhouse to provide UV-light treatment
[11], in addition to strawberry polytunnels.

In this paper we address the problem of autonomous navigation in
commonly found agricultural domains such as polytunnels or greenhouses. A
polytunnel/greenhouse is a structured agricultural environment, where plants
are grown in trays, which are organized as rows on top of several poles along
the polytunnel. The rows are evenly spaced and spanned across the polytunnel
and create a tightly constrained environment. For polytunnel-related tasks, the
robot is usually required to navigate between plant rows. In a tightly constrained
space such as polytunnels, curved rows make navigation more challenging.

We specifically aim to develop a low-cost and efficient autonomous system
that is able to traverse through a polytunnel while performing assigned tasks
without human intervention. The robot is equipped only with a planar laser
scanner. The 2D laser scanner exploits the structured environment to provide
navigation cues for the robot. In order to move along a row, a carefully designed

1https://rasberryproject.com/
2https://sagarobotics.com/
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RANSAC algorithm [8] is used to filter laser scans and reliably detect two parallel
straight lines, which represent a part of the plant row on both sides of the robot.
Note that a row comprises of several straight lines locally, which together form a
curved row. A pure pursuit controller is implemented to make the robot follow
the row. When the laser scanner cannot detect any parallel lines, the robot
assumes it has reached the end of a row. It then switches to row transition
mode to turn and enter the next row. The proposed navigation method has been
tested in both simulations and in a mock-up polytunnel.

The main contribution of this paper is a novel autonomous navigation system
that allows the robot to operate freely in a polytunnel. It is a low-cost and
efficient system using only one type of sensor, a planar laser scanner. Even
though row following methods have been proposed in earlier work [1, 2, 4, 5, 14,
18, 22, 28], they might not be suitable for challenging constrained environments
such as polytunnels.

This paper is organized as follows. In section 2, related works are discussed.
Section 3 provides details about the system including line detection and
navigation. Simulated and experimental results are presented in section 4.
Conclusions are discussed in section 5.

III.2 Related work

Autonomous navigation systems are popular research areas, not limited to any
particular fields or type of robots. Most systems, for example [5, 6, 21] depend
on several types of sensors such as: inertial measurement units (IMU), high
precision RTK GNSS, 3D lidar, etc. Systems with high precision RTK GNSS
sensor navigate well only in open environments. Its performance will suffer inside
a polytunnel because GNSS signals may be blocked. Inclusion of IMU will help
with localization. Admittedly, fusion of multiple sensor types might yield better
results in navigation, however it also incurs a higher budget to the end users.
Hence, in this work, we aim to develop a low cost and efficient system.

There has been a lot of research on autonomous systems in agricultural
applications, such as [3, 19, 25] to name a few. Among those, autonomous row
following has attracted interest [1, 2, 4, 5, 14, 18, 22]. In [1, 2], even though the
authors also develop autonomous systems for navigating between rows, they rely
on cameras to perform a Hough transform for row detection. In [14], a different
method based on a particle filter to extract lines from images is proposed to
detect row lines. The usage of computer vision for robotic applications has a long
history. The main draw back for camera-based navigation systems is that they
are totally dependent on lighting conditions. For example, UV light treatment
needs to be carried out in a dark environment so that the effect of UV radiation
is not nullified by sunlight or any other white light sources. In that situation,
camera-based navigation fails. Hence, a laser-based sensor is the most suitable
candidate for navigation because it is independent of lighting conditions.

Navigation with 2D planar scanners has been a research topic for the last
decades. One of the most extensively used solutions for autonomous navigation
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for ground mobile robots is move_base, a package that is implemented in ROS3.
In order for the robot to move, one must provide a goal for the robot to reach.
Topological navigation [17] is one way to automatically generate goal points for
the robot. However, the process to produce a topological map, which contains
all the necessary goal points, is tedious and time consuming because one must
manually add all the goal points. Given the fact that a typical polytunnel is
60-120 by 9 meters, the total number of goal points can be easily in the hundreds,
which makes topological navigation unsuitable for the task.

Figure III.2: A polytunnel for growing strawberry in Norway.

Our proposed solution, on the other hand, does not rely on any a priori goal
points. By detecting the two parallel lines in front of the laser scan, the robot
follows the path between those lines. When it reaches the end of that path, it
will continue to detect another set of parallel lines in front of it to follow. In case
it can not detect any more lines, the robot will try to determine if it is possible
to transit to the next row. First, the robot detects the number of poles currently
in the field of view of the scanner. If the number of poles are more than two,
the robot will go into transition mode, which makes it enter the next row. If the
number of detected poles are less than two, the robot will stop moving because it
has already reached the end of the polytunnel. With this solution, the robot can
automatically traverse between all the rows inside a polytunnels, for example to
deliver a UV light treatment. The desired number of rows to traverse can also
be predefined for the robot, so that the robot will cover only a specific area of a
polytunnel.

We found that the work in [22], [4] and [20] are similar to ours. [22] also
use a 2D laser scanner in combination with a camera for row following in a
citrus grove. However, a challenging tightly space constrained condition like a
polytunnel does not apply to their environment. [4] also use 2D lase scanner to
navigate in rows in tree fruit orchards but required reflective landmarks for row

3http://wiki.ros.org/move_base
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transition, which we do not. Similar to [22], the robot in [4] does not have to
deal with tightly space constrained environment. In [28], the authors employ a
spinning 2D laser scanner to detect 3D positions of tree rows and tree trunks in
orchards for row following. The spinning 2D laser scanner generates 3D point
cloud for registration. In comparison, a tree trunk is much bigger than a steel
pole used in a polytunnel. Hence, 3D detection might not detect poles. Further
more, like previously mentioned methods, orchards environment is not tightly
space constraint as polytunnels. In [20], the authors developed a similar low
cost system of row following using only a 2D laser scanner but did not explicitly
address the problem of following curved rows.

III.3 Navigation inside a polytunnel

In order to navigate inside a polytunnel, the robot must be able to localize itself
inside a given environment. We employed Adaptive Monte-Carlo Localization
(AMCL)4 [24], the de facto SLAM method for 2D laser scanner without further
development. The navigation strategy for the robot inside a polytunnel is as
follows. The robot is positioned in front of a row. The robot can only see
the poles, and not the tables placed on the top of the poles or the plants. By
detecting virtual lines between poles, the robot traverses plant rows by following
the central path between them. When the robot reaches the end of a row, e.g
it can not detect any more lines, the transition row module is activated to get
the robot to the next row. The navigation system as in Fig.III.3 comprises of
row following and row transition module that can operate seamlessly in and
out of the poly-tunnel rows. The robot localizes itself relative to poles using
a pre-built map. The laser scanner will monitor consistently for the static or
the dynamic obstacle in front of the robot and make an emergency stop if an
obstacle is detected within the boundary region. The robot will remain stopped
until the detected obstacle is moved by itself or by the nearby worker since there
is not an adequate area for avoiding them.

III.3.1 Line detection and following

The laser scanner can detect the poles that are aligned along every polytunnel’s
rows. This section of poles can be coupled together as virtual lines so the robot
can navigate by following the generated trajectory between them as illustrated
in Fig. III.4. A RANSAC algorithm [23] is implemented in order to fit a pair
of poles as individual line features ln. Unlike the solid walls, the laser scanner
observes the poles in the poly-tunnels as a cluster of points at equal distant from
each other. This scenario makes it challenging for the line detection algorithm
and consequently, a bounding box is established with a designated boundary
region R of length 6 meters and width 2 meters in size (Figure III.5b). The
designated search boundary region R is constructed for the sake of eliminating
the scan points from another rows as best line fits. From the laser scanner data,

4http://wiki.ros.org/amcl
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Figure III.3: Modules of navigation

a data set ant = [a1
xt
, a1
yt
, a2
xt
, a2
yt
, ..., anxt

, anyt
] is generated which contains the x

and y axis position of n number of scan points that are extracted from the laser
scan range and bearing values within the boundary region R.

Figure III.4: The proposed line detection algorithm identifies two lines (blue)
from the laser scanner points using a Hokuyo laser which is mounted on the
robot. The standard RANSAC algorithm is used for line extractions. The robot
detects only 2 poles on each side.

In order to execute the line detection algorithm, let us suppose that the
line model Lt can be expressed as a function f(St) which depends on randomly
generated subset of points in St taken from the set ant as:

Lt = f(St) (III.1)

where St = [p1
xt
, p1
yt
, p2
xt
, p2
yt

] ⊆ ant comprises the position of the two randomly
generated points p1 and p2 from the set ant at time t respectively. The function
f(St) computes the model line parameters such as slope mt and y-intercept bt
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based on the two randomly selected points p1
(xt,yt) and p2

(xt,yt) is given by:

mt =
p2
yt
− p1

yt

p2
xt
− p1

xt

,

bt = p1
yt
−mtp

1
xt
.

(III.2)

When the line model parameters are computed, let E(Lt, ant ) be the objective
function constructed using the least squares method for line fitting [27]. The
objective function E(Lt, ant ) proclaims the sum of all the residual values for
each point belonging to the set ant with respect to the estimated line model Lt.
Therefore minimizing the objective function E(Lt, ant ) will eventually minimize
the residual values so that the estimated line will be close enough to most of the
points from set ant . The optimal set of line model parameters mt and bt are need
to be found as per least squares method for minimizing the residuals. Hence the
objective function minimizing the sum of the the squared normal distances from
each point takes on the form:

E(Lt, ant ) =
n∑
p=1
‖(apyt

−mta
p
xt
− bt)‖2. (III.3)

The standard RANSAC algorithm has few parameters defined beforehand as
pre-conditions that are suitable for the polytunnel environment. For minimizing
the objective function E(Lt, ant ), a threshold parameter d is introduced which
represents the threshold distance from the two chosen random points for fitting
the remaining scan points as inliers (see Fig. III.5a). The parameter k describes
the total iterations required to determine the best line fit and therefore it will
keep updating the best line fit if the better line feature with more inliers are found
for the entire kth number of iterations. The parameter inliersmin represents
the minimum number of inliers to be necessitated for finalizing the estimated
line as a best line model. The RANSAC estimates the line after the pre-defined
conditions are satisfied. Thus the parameters for the pre-conditions are tuned in
such a way that it fits the parametric line model is given as:

E(Lt, ant ) ≤ d
where d = 0.05(m), k = 100, inliersmin = 10

(III.4)
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(a) Two randomly selected laser points
(green) classifies the remaining laser points

within d limits as inliers (red)

(b) Detected pair of lines (blue) and desired
path (red) within the bounding box region

(white)

Figure III.5: Row following module: line detection methodology

The RANSAC will run twice such that after satisfying the parameters in the
pre-conditions, two best line fits will be estimated. Thus the points from the set
St are incorporated as line features l1 and l2. For the sake of simplicity, we don’t
include time t in the line feature equations. As soon as the RANSAC algorithm
identifies the lines l1 = [lx1

1 , ly1
1 , lx2

1 , ly2
1 ] and l2 = [lx1

2 , ly1
2 , lx2

2 , ly2
2 ] by satisfying

the pre-defined conditions, some additional constraints are considered to avoid
multiple detections, overlaps and other false positives (see Fig. III.6). The false
detections are ignored. If no pair of lines is detected, the algorithm uses the
previous detections until the new set of lines appears. These constraints aid in
fitting the best line features for the entire navigation system. The first constraint
is the minimum distance between the end points (p1

(xt,yt), p
2
(xt,yt)) for each of the

two detected lines (lt1, lt2) that has to be always more than the threshold value
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(a) False line detections
covering not more than one

pole (black circled)

(b) Cross line detections (c) Overlaps in line
detections

Figure III.6: Line detection for polytunnels: false detections.

τ as in Eq. III.5. This particular constraint avoids the possibility of detecting
the incorrect best line fit when more inliers are stacked up together at one place
(the black circled area in Fig.III.6a) and it is expressed as:√

(lx1
1 − l

x2
1 )2 + (ly1

1 − l
y2
1 )2 > τ√

(lx1
2 − l

x2
2 )2 + (ly1

2 − l
y2
2 )2 > τ.

(III.5)

While traversing through the inclined shaped rows, the robot can also find the
line features diagonally between two parallel rows as the best line fit at the
same time (Fig.III.6b). For avoiding this situation, the constraint based on the
angle between two end-points of the detected line is introduced. This angle is
presumed to be less than Φ which is assigned as 15 degrees at maximum so that
it can still detect the curved shaped poles but it can also avoid finding cross line
detections at the same time. The second constraint can be written as:

arctan ly2
1 − l

y1
1

lx2
1 − l

x1
1

< Φ

arctan ly2
2 − l

y1
2

lx2
2 − l

x1
2

< Φ.
(III.6)

There is another possibility of false detection in which the RANSAC could detect
the already chosen best line fit as second best line fit again (see Fig. III.6c)
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because the line detection will keep finding the two best line fit l1 and l2 at time
t and this case will also satisfy the first and second constraints as well. Therefore
the third constraint is proposed as:

lx1
1 6= lx1

2 ly1
1 6= ly1

2 lx2
1 6= lx2

2 ly2
1 6= ly2

2 . (III.7)

This added constraint as given in Eq. III.7 will avoid the situation where both
the detected lines do not overlap each other. If the overlapping is detected
using this constraint, then this pair of lines from the concerned iteration in
RANSAC are rejected. After fulfilling all the three proposed constraints, the two
lines lt1 and lt2 will be extracted on both sides of the robot in order to navigate
between them. The desired trajectory has been derived as an average of the two
estimated lines as in the Figure III.5b. Once the desired trajectory has been
estimated, a low level controller is used for sending the necessary velocities as
joint commands. The linear velocity Vt is constant and it moves at 0.3m/s for
safety reasons. In order to steer the robot, a low level pure pursuit controller [7]
is used to calculate the respective steering velocity ωt for following the center
line based on two estimated lines lt1 and lt2 by the line detection algorithm as in
the Figure III.5. The steering velocity ωt equation is written as

ωt = arctan
(
2Rl

sin eθt

e(xt,yt)

)
(III.8)

where Rl, eθt
, e(xt,yt) are the total length of the robot, errors along its rotation

angle and its position with respect to the current goal at the time t respectively.

III.3.2 Row transition

Once the row following module could not detect any more new lines, the robot
will navigate till the end of the current desired trajectory using the last pair
of detected lines. When it reaches the end of the current desired trajectory, it
shifts autonomously to the row transition module. The operation of the row
transition comes to an end when the robot progressed to the beginning of the
next row and switches back to the row following module. In this module, the
pole detection algorithm identifies the closest 3 poles which comprises of two
poles on one side and another one pole on the other side of the robot based
on its next course of direction. For instance, if the robot needs to transit to
the new row on the right-hand side then the pole detection algorithm will give
the pair of closest poles on right-hand side (Fig. III.7b) and one pole on the
left-hand side or vice-versa for the turning to the next row on the left-hand side
condition. Thus the virtual goal points are generated by taking the average
between the three detected poles and adding a constant offset to it as seen in
Fig. III.7. Then the pure pursuit controller is designed in such a way that it
will navigate the robot to the first virtual goal point from the current row and
makes a 90 degree-turn around that first goal point. Furthermore, it repeats
the same process for the second virtual goal point (Fig. III.7a) in order to shift
into the new row. Therefore the course of the turning direction should be given
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(a) Robot assigned to reach goal points
(G1,G2) and make (+/-) 90 degree turn
around the goal points for transiting into
new row.

(b) Poles at end of the row (blue) are
detected and generate goal points (green)
by implying an offset to it.

Figure III.7: Row transition module: row transition methodology

input : 2D laser scan measurements, number of rows to traverse
while the end of the polytunnel is not reached do

for each laser scan measurement do
Perform RANSAC fitting for 2 lines l1 and l2;
if no lines are detected then

Check whether the robot has reached the end of the last row;
if true then

Stop;
else

Initialize row transition;
Transits to next row;

end
else

Compute the middle trajectory between l1 and l2;
Follow the middle trajectory;

end
end

end
Algorithm 1: Navigation algorithm
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beforehand such that the robot can navigate any polytunnels which has a larger
number of rows. Moreover, the row transition module brings the integration with
the row following module and makes a complete autonomous navigation system
exclusively for polytunnels like environments. The pseudo-code (algorithm 1)
exhibits the integration of both the navigation modules for both the straight
and curved shaped poly tunnels.

III.4 Experimental Results

III.4.1 Simulations

The proposed method is verified in simulation and field trials. We show that our
system can move along rows efficiently. We also discuss how our system can be
extended to different environments, such as polytunnels that hang plant trays
instead of using poles. The simulated environment (Fig.III.8) is created using

(a) Curved Poles Environment in
Gazebo

(b) 2D Map of polytunnel Environ-
ment

Figure III.8: Experiments in simulated environments

Gazebo to mimic the real poly-tunnel environment. It consists of a plane ground
and several sets of cylinders with plant trays on top. The spacing between each
set of cylinders can be modified to match reality. In this environment, the robot
is tasked to traverse all the rows, while in reality, it might not have to do so
due to the requirement of UV light treatment, e.g. not every row requires UV
light treatment. In the simulated environment, the robot is fixed at an initial
known position in front of one of the rows. The row-following module in the
navigation system begins traversing through the initial row that it perceives first

90



Experimental Results

0 100 200 300 400 500

Time (Seconds)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

e
 (

ra
d
ia

n
s
)

Steering error by controller (simulation)

Row Following

Row Transition

Figure III.9: Steering controller error in simulated polytunnel. Steering errors
when the robot follows rows are shown in blue. Steering errors when the robot
changes rows are shown in red. Best view in color.

in the environment. The robot can find the curved shaped rows and extract
the trajectory lines by the line detection technique at every time step t. Then
the robot can steer in both clockwise and counter-clockwise directions and can
revert back to straight row following with the lesser amount of steering as shown
in Fig. III.10.

The pure pursuit controller in both the row-following module and the row-
transition module assist the robot to steer between and outside the rows of the
poly-tunnels. The error in the graph indicates the angular difference between
the current robot position and current dynamic goal position that the controller
should correct at each time step t. The controller maintains the required steering
angle error to be less than 0.15 radians in row-following and 0.01 radians in
row-transition modules. They can maintain the error close to zero as shown in
Fig. III.9 throughout the entire trajectory. The steering error increases whenever
the robot needs to traverse through curved areas in the rows but it reduces again
over time. In the row transition module, the controller makes the robot move
along the two virtual goal points with the given steering commands and transit
to the beginning of the next row

III.4.2 Navigating in a mock-up polytunnel

The robot used in the field test is shown in Fig. III.13. We constructed a mock-up
polytunnel, which is 24 meters long by 9 meters wide. The mock-up polytunnel
has 32 poles, which create three long rows. We deliberately added constant
displacements to 12 middle poles (inside the square) as shown in Fig.III.12a. In
Fig.III.12, we show how the robot detects parallel lines and moves in the center
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(a) Clockwise Turning Move-
ment

(b) Anti-Clockwise Turning
Movement

(c) Return to Straight Line
Movement

Figure III.10: Snapshots of the robot movement in simulation.

of a row. The curved lines are detected and shown on Fig.III.12d, III.12e, III.12f,
III.12g. Transition points (two green circles) are shown in Fig. III.12i. They are
automatically computed when the robot reaches the end of the row and detects
three poles (blue circles) in front of it. The whole trajectory is shown in Fig.
III.12j.

The robot is tasked to traverse through every row. We evaluate the robot
navigation quality by two metrics, including displacement to centering lines and
distances to poles on both sides of the robot. We explain these metrics in details
next.

a) Translation error: all the poles’ positions are carefully measured using
a Leica Total Station TCA1100 with distance measurement accuracy ±1mm.
These measurements are for computing virtual centering line segments on each
row, which are considered ground truth. We evaluate the quality of navigation
by calculating the deviation of the actual trajectory from the ground truth.
For each segment of a row, we first compute the Euclidean distance of each
robot position measured by the Leica to the ground truth. The average of these
distances is considered as the robot translation error on that segment. For the
whole row, we again average all the translation errors of all segments. The reason
we choose this metric is that it provides insight into how the robot performs on
each segment of a row.

b) Distance to poles error: we measure the distances from the center of the
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robot body to the poles on both of its sides when passing them. The distance
from the robot body center to each pole on the left and right side of the robot
are taken by a laser measurement Uni-T UT390B+ with ±2mm accuracy. These
measurements are used to evaluate how well the robot stays in-between poles.

We collect our metric measurements by letting the robot run autonomously
through the mock-up tunnel ten times. The final result is averaged over these
ten trials.

The result of ground truth comparison is shown in Fig. III.14. The ground
truth trajectory (blue line) consists of line segments representing the ideal
trajectory that stays exactly in the middle of rows.

The translation errors are shown in Table III.1. We ignore the robot trajectory
that is outside rows. Given the average path of each row is 21 meters, the
maximum mean error is only 29.3 cm, which yields a relative small 1.4% drift
over a travelled distance.

Translation errors (m)
Min Average Max

Ours [15] Ours [15] Ours [15]
Row 1 0.052 0.024 0.117 0.128 0.165 0.169
Row 2 0.101 0.101 0.213 0.187 0.293 0.292
Row 3 0.063 0.131 0.154 0.237 0.203 0.386

Table III.1: Translation errors per row. Bold numbers indicate best results.

Distance to poles (m)
To left poles d` To right poles dr | d` − dr |
Ours [15] Ours [15] Ours [15]

Row 1 0.257 0.272 0.226 0.215 0.031 0.057
Row 2 0.282 0.214 0.193 0.257 0.089 0.043
Row 3 0.235 0.321 0.251 0.147 0.016 0.174

Table III.2: Mean errors of distance from the center of the robot body to poles
on both sides. Bold numbers indicate best results.

In Table III.2, the results of staying in-between poles are presented. The
distance between 2 poles on each side of a robot is 1.5 meter. The robot width is
1 meter. It means the robot needs to stay at least 25 cm away from poles on each
side. The maximum mean distance to poles on the right side is approximately
25.1 cm, and to the left side is 28.2 cm. This shows that the closest distances
the robot gets to a left and a right pole are approximately 24.9 cm and 22.8 cm,
respectively, which are well within the ideal safety distance. Also, the maximum
difference between the mean distances on both sides of the robot is 8.9 cm. It
shows that the robot well maintains its position at the center along rows by
keeping the same distances to poles on both sides of a row.
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Figure III.11: Steering controller error in mock-up polytunnel. Steering errors
when the robot follows rows are shown in blue. Steering errors when the robot
changes rows are shown in red. Best view in color.

The pure pursuit controller in field tests behaves in a similar way to the
simulation. Unlike the simulated environment, the poles are not aligned perfectly
straight with respect to each other in real fields. The lines that are detected
from line detection algorithm are not exactly straight as well, hence the steering
error in the real-field tests is higher than the one in the simulation. As in Fig.
III.11, the curved areas are evident in which the steering error peaks in each row
along the mock-up polytunnel. In the row transition module, the steering error
is kept to a low value even in the uneven terrain that are similar to simulations.

We also compare our proposed method with [15]. The topological navigation
approach proposed in [15] is currently being used in our RASBerry project5. In
order to use topological navigation, one needs to manually create topological
nodes that connect each other to form a topological map as shown in Fig. III.15.
Given a topological map, the robot can move from one arbitrary node to another.
This method relies on AMCL for localization, which is similar to ours.

We run ten trial tests and collect the same metric measurements for
comparison. The final result of topological navigation is averaged over ten
runs and shown in Table III.1, III.2 altogether with our proposed system for
comparison. Bold numbers indicate better results. Our method on average
achieves better result in both metrics.

We also note that the topological navigation requires creating topological
nodes, which must be done manually and therefore unsuitable for a large
polytunnel. This is one of the motivations of our proposed method. One

5https://rasberryproject.com/
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(a) Poles inside the square are offset

(b) (c)

(d) (e)

(f) (g)

(h) (i)

(j)

Figure III.12: Results of autonomous navigation between rows in a mock-up
polytunnel. Blues lines are virtual lines between detected poles. Red lines are
the central paths between rows. Yellow line is the complete actual trajectory.

95



III. A Low-Cost and Efficient Autonomous Row-Following Robot for Food
Production in Polytunnels

Figure III.13: Robot setup, a 2D Hokuyo laser scanner UST-20 LX is mounted
in front of the robot as shown in the highlight area.
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Figure III.14: Qualitative analysis of trajectories.
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might argue that a sparse topological map would be easier to make. However, we
found that in practice, a tightly constrained space requires a dense topological
map for the robot to travel safely. In addition, by relying on a cost map for
planning, the robot is prone to make dangerous path planning such as in Fig.
III.16, whereas our method does not. Furthermore, the use of cost map makes
the system more sensitive to faulty reading from sensor. As shown in Fig. III.16,
an artificial obstacle due to noisy laser scanner was added to the cost map and
forced the robot to move out of the row. This is a dangerous behavior. The
robot is likely to collide with other poles because there is not enough space
for rotation. Hence, we claim that our proposed system is better suited for
polytunnel environment.

Figure III.15: Topological map for navigation. This method proposed by [15]
relies on move_base for motion planning. All the topological nodes were manually
created.

Figure III.16: Topological navigation attempts a dangerous movement. The
black line shows the planned trajectory. Notice the artificial obstacle between
the poles was incorrectly perceived due to noisy laser scanner readings. It forces
the robot to move around.

A video of the robot moving in the mock-up polytunnel is available online :
https://youtu.be/xkSpEkcBXaU.
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III.4.3 Discussion

One key aspect of our system is low-cost. However, we have shown that
autonomous navigation in tightly constrained agricultural domains such as
polytunnels can be carried out efficiently. Our system works well in the
challenging environment of polytunnels, where features for laser scanner detection
are sparse. Our system can be easily adapted to different types of polytunnels
without much effort. For example, plant trays might be hanged using cables
instead of sitting on poles. In this case, if those cables are smalls and can not be
reliably detected by the laser scanner, we can adjust to mount the laser scanner
to directly detect the trays. Our system can continue to work normally without
any further changes. The line detection will be easier since laser scanner detects
more points from trays.

Another practical consideration is how to determine the window size for pole
detection. In our implementation, the window size is fixed and its value is set
upon the applied standard polytunnel structure, i.e the distance between two
consecutive poles in a row is approximately 3 meters the row width is 1.5 meters.
These values can be preset once with respect to the actual environment before
letting the robot move. It might sound preferable to have an automatically
adaptive window size, but in fact, we rarely see a polytunnel with different
spacing between poles. For most cases, polytunnels are built in compliance
with a standard, for which we argue that a corresponding fixed size window is
adequate.

It is obvious that our system makes strong assumptions about the environment
such as the distance between poles is constant, number of poles on each side of
a row is equal. Our proposed system may fail to operate if those assumptions
are not satisfied. However, we argue that those assumptions are reasonable, i.e
it is uncommon to find a polytunnel with asymmetrical structure. Therefore our
proposed system is useful for most cases.

III.5 Conclusions

In this paper, a simple but efficient navigation solution of row following for an
agricultural robot is presented. Our main goal is to develop an efficient but also
cost effective system that can work reliably in polytunnels, which are the typical
space constrained agricultural environment. We deliberately employ one 2D
laser scanner. Using only this type of sensor, the robot is able to move between
rows while keeping equidistant to both sides of a row. We claim this is important
for several tasks, in which the robot must stay in the middle of a row, such as
delivering UV light treatment, or autonomous transporting harvested products
in and out of a polytunnel.

Experimental testing in both simulation and a mock-up polytunnel were
performed to evaluate the quality of navigation. The results show a small drift
of 1.4% over total travelled distance per row and the robot maintains the same
distance to poles on both sides.We compare our proposed row following method
with an existing one in [15]. We show that our method achieves better results.
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We have discussed how our system can be easily adapted to different types
of polytunnels. In rare cases, where the structure of a polytunnel is irregular,
i.e distances between poles are different, number of poles on each side of a row
are not equal, our system will fail. However, it is unusual to have a structure
like that. Our proposed solution replaces the traditional and other way point
based methods such as topological navigation [16] and thus simplifies the robot
operation process. For future work, we aim to develop a full scale SLAM based
navigation system. More navigation and safety sensors will also be employed on
the robot for the human aware navigation in the future that can cooperate along
human labourers and also in respect to the safety standards in the polytunnels.
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A Supervised Learning Solution
for Autonomous Row Following
Tasks in Horticulture

Tuan Le, Vignesh Raja Ponnambalam, Jon Glenn Omholt
Gjevestad, Pål Johan From

IV

Abstract

Precision agriculture is the key to sustainable farming. The usage of
autonomous robotics systems in agriculture is rising. Similar to other
mature areas of applied robots, agricultural robots must be able to
robustly navigate in their working places (polytunnel, crop fields, etc.,).
In horticulture, row following is one of the key tasks that autonomous
agricultural robots must perform. Several studies had been done to address
this problem. However, existing methods are tailored to their specific
environments. This work aims to provide a CNN approach to row following
tasks that can be used for both indoor (polytunnel-liked) and outdoor
(orchard-liked) environments.

IV.1 Introduction and Motivation

A common practice for growing vegetation in horticulture is to form row-like
structures. For outdoor environment, orchards mostly use row-liked structures
for growing. For fruits such as apples and oranges, the most common row
structure is a tree wall, e.g a row is formed by placing trees on both sides of a
path. However, for fruits such as grapes, pears and kiwi, a pergola structure
is more common. In a pergola, rows are formed by trees and supporting poles.
For indoor environment such as polytunnel, rows are formed either by lines
of table-trays placing on poles or being hung from the roof. We show three
examples of polytunnel, open orchard and pergola in Fig. IV.1, respectively.

For open fields like orchards, classical navigation methods relying on external
position sensors such as GNSS were fully developed [3]. For greenhouses or
polytunnels, existing navigation methods from the robotics community using a
2D laser scanner can be directly applied [5]. Obviously, these classical methods

All authors are with Faculty of Science and Technology, Norwegian University of Life
Sciences
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(a) A strawberry polytunnel (b) An open orchard

(c) A kiwifruit orchard with pergola struc-
ture. Image courtesy of [11]

Figure IV.1: Different types of horticultural environments.

may suffer in some specific conditions: blockage of GNSS signals (in pergolas
where dense canopies usually exist), uneven ground floor distorts 2D laser scanner,
or in case of missing trees in a row (Fig. IV.1c) might also confuse the laser
scanner reading. Several works have been done to address these problems, which
specifically avoid using any external position sensor or assuming a flat terrain.
Zhang et al. in [12] used a rotating 2D laser scanner for augmenting 3D scans to
detect tree trunk and traverse along tree rows in an orchard. Bell et al. in [1]
propose a navigation approach using a 3D LiDAR sensor to navigate inside a
kiwifruit pergola, where GNSS signals are blocked by dense canopies.

We are motivated by the structural variations that we have in our test fields
at NMBU. We have a strawberry polytunnel, in which three rows of tabletop
trays are placed on poles. The row width is 1.5 meters (Fig. IV.1a). On the
other hand, we have an open orchard where three different types of structure
are utilized: a) standard rows, where trees are roughly spaced 2 meters apart, as
shown in Fig. IV.1b, b) trees with supporting poles, which are roughly 2 meters
apart, as shown in Fig. IV.2a, c) small trees with large supporting poles, where
poles are roughly 2.3 meters apart, as shown in Fig. IV.2b. On some rows, one
tree or several trees might be missed as shown in Fig IV.2c. The row width in our
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(a) Trees with supporting poles (b) Plant bushes with supporting poles

(c) A row with missing trees

Figure IV.2: Different types of orchard environments at NMBU.

orchard is much wider than the one in our polytunnel. Moreover, different types
of row following tasks may be performed on these environments. For example,
UV light treatment in polytunnel or tree watering on orchards are classified
as centerline following tasks, meaning a robot needs to maintain equidistant
to both sides. An example of centerline following in UV light treatment in a
polytunnel is shown in Fig. IV.3.

For orchard with a wide row in harvesting season, a robot may need to stay
close to one side of a row while moving along that row for fruit harvesting. This
is classified as sideline following task.

We are inspired by the work of Bell et al. in [2], in which the authors
trained a fully convolutional neural network (FCN) for segmenting drivable
areas for row following in a kiwifruit pergola. Drivable area means the area a
robot can translate to from its current position without collision. We believe
this approach is more generic and applicable than existing methods relying on
external position sensor (high cost for RTK-GNSS devices), artificial landmarks
(burden on infrastructure for placing and maintaining) or laser scanner sensor
(being confused in the presence of missing/additional objects). More over, it uses
a low-cost camera sensor, which keeps the whole robotic system cost-efficient.

We argue that our work is different from the one in [2] by a magnitude of
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Figure IV.3: A design of Thorvald robot for UV line treatment inside a polytunnel.
The robot is required to perform centerline following.

generalization. The authors in [2] were only concerned about centerline following
for harvesting tasks in a specific kiwifruit pergola. We train our network for
segmenting traversable ground on an inclusive dataset containing both indoor
(a strawberry polytunnel) and outdoor (orchards with three different types of
row structure) environment. We also cross-validate our network performance
on different network architectures, including ResNet [6], Darknet [8], MobileNet
[10] and ERFNet [9]. Hence, we can evaluate how our network performs in
different types of environments with different network architectures. In addition,
for outdoor environment, we also have three different types of structures. Hence,
our network is suitable for many types of environments, which makes it more
generic.

IV.2 Description of Dataset and Training Process

For data collection, we use the popular Intel Realsense Camera D435i. We
mount the Realsense camera on our ground robot [4] as shown in Fig. IV.4. We
manually joystick the robot along rows in our strawberry polytunnel and our
open orchard. We made sure to capture as many different scenarios as possible:
a) our strawberry polytunnel recordings contain our robot moving along rows
with in-row rotations that are not considered dangerous b) for our open orchard,
our robot undergoes different moving directions while traversing rows - straight
line, rotating, diagonally c) data is being recorded under various light conditions.
We select 500 images of size 640x480 pixels for training and 57 images of the
same size for testing. For labeling images, we manually label each pixel either
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Figure IV.4: Robot setup for data collection.

traversable or non-traversable. The human expert who controlled the robot
during data collection decides which pixel areas can be considered traversable.
The human expert follows a similar definition of “traversable” as in [2], in which
traversable area is defined as a space that the robot might get to from its current
position by following a straight line and without collisions. This definition means
that in cases, where the robot can observe several rows from its current position,
the network should not classify neighbor row areas as traversable.

Figure IV.5: An illustration of a network architect that we use. This is similar
to the structure of ERFNet in [9]. Red layers - downsample module, Yellow
layers - variable receptive field, Purple layers - upsample module.

We train our network using the training tool in [7] with a Zotac Mini Gaming
PC equipped with an Nvidia Geforce GTX 1070K, 16GB memory, and a quad-
core Intel i5-7500T CPU. A sample architecture based on ERFNet, which we
use, is shown in Fig. IV.5.

We also show examples of annotated data that we use for training in Fig.
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IV.6.

(a) (b)

Figure IV.6: Screenshots of annotated images for training, where red areas depict
traversable areas.

IV.3 Experimental Results and Discussions

IV.3.1 Results

We report our training results, including types of network architecture, the
average accuracy (mAcc), mean Jaccard index (mIoU), and the mean Jaccard
index of “traversable” class (mIoU of class 1) in Table IV.1. Note that for each
network, we average the results of the best three trained models and report
those values. As illustrated in Fig. IV.7, our trained network is able to segment
traversable areas, which is the part of a row our robot is currently in and can
safely translates to without collisions. Some test results including corner cases are
presented in Fig. IV.7, where the network correctly ignores “traversable” areas
of neighbor rows. Note that in case of a row with missing trees as in Fig. IV.7d,
we explicitly do not want our robot to make a cross movement to a neighbor
row, even it is safe to do so in this case. Obviously, for indoor environment, we
do not want our robot to make any cross movement from one row to another.
Our trained network was able to correctly identify the traversable areas inside
our polytunnel (Fig. IV.7j-k).

We also report the average inference time (infer. time) per image in
milliseconds by each network architecture when interfacing in ROS in Table IV.1.
From experiments, we see that ERFNet gives us the fastest inference time at
roughly 48 ms, which is approximately 20Hz. The slowest FPS is reported at
approximately 5Hz using Darknet 53. Since our robot moves at a relatively low
speed of 0.7 m/s, this inference rate is sufficient for row following performances.
We do not observe significant differences in segmentation accuracy between
different network architectures. Hence, it is up to an end-user to select a specific
network architecture.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure IV.7: Segmentation test results. Best viewed in color.
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Architecture mAcc mIoU mIoU of class 1 Infer. time
ResNet 18 0.986 0.941 0.899 ∼ 54ms
ResNet 50 0.987 0.946 0.906 ∼ 142ms
ResNet 152 0.985 0.939 0.895 ∼ 190ms
Darknet 21 0.985 0.938 0.892 ∼ 118ms
Darknet 53 0.987 0.947 0.908 ∼ 206ms
ERFNet 0.986 0.941 0.898 ∼ 48ms

Mobilenet V2 0.984 0.935 0.888 ∼ 55ms

Table IV.1: Report of training

IV.3.2 Discussions

Currently, we have two main drawbacks in our work:

• We only consider traversable areas for in-row movements. We observe
that headland areas are much different than in-row areas. Incorporating
headland into our current network actually worsens its performance. Hence,
we leave between-rows transition as a separate problem to solve.

• Ground truth determination is our bottleneck. Relying on a human expert
for ground truth labeling is time-consuming and error-prone. However, to
our knowledge, there are not any publicly available datasets that we can
use for training or compare with. We envision a good ground truth must
come from professional terrain surveying services, for which we plan to
do in the future. Nonetheless, we want to stress at the current state, our
network can accurately segment traversable areas on par with a human
expert.

IV.4 Conclusions

In this work, we propose a unified solution for row following tasks in horticulture.
Using a low cost camera, our solution is suitable for a wide range of agricultural
robots. We present our approach to collect and train a fully convolutional neural
network for segmenting traversable areas, which can be subsequently used for
motion planning. We show that our trained networks are well generalized to
different environments than existing methods. We also show that the inference
time of our network is sufficiently fast for motion planning tasks. For future
work, we plan to achieve a professional ground truth data for labeling traversable
area using terrain surveying services and release our dataset to our agricultural
robotics community.
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