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Abstract

This thesis treats ambient vibration testing of civil engineering structures with a special
attention given to timber structures. It presents an open-source Python module that
allows to perform two very much used output-only dynamic identification techniques.
One of the reasons behind the open-source release of the module is the hope to attract
other persons willing to help extending the module’s capabilities also to continuous
monitoring applications. Furthermore, the work presents and discusses the application of
Operational Modal Analysis methods to three case studies, highlighting the usefulness
and potential of such methods. The cases are a prestressed short span concrete girder, an
eight storey CLT building and a lightweight timber floor sub-assembly. Through the
applications it is shown how Operational Modal Analysis may be of use not only to
theoretical research oriented applications, but also very practical tasks. For instance
in the framework of maintenance plans it is shown how ambient vibration testing
results may be used to infer on the state of health of a bridge. Moreover, experimental
modal properties are used to perform sensitivity analysis, update finite element models
and draw comparison with analytical solutions. In fact, it is also shown how ambient
vibration testing can be a viable and cheaper alternative to force vibration tests.

All in all the goals of this work are to highlight the importance and potential of
output-only identification methods and broaden the data-base present with applications
to timber structures.
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Preface

The present work has been submitted to the Norwegian University of Life Sciences
(NMBU) as fulfilment of the degree of Philosophiae Doctor (PhD). It has been carried
out at the faculty of Science and Technology under the supervision of Prof. Ing. Roberto
Tomasi. It is a paper-based thesis containing an introductory part (the so-called "Kappe"),
that summarises the research questions and provides the context to the four articles,
submitted to international scientific journals, that constitutes the main results of this
work.
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1 Introduction

1.1 Background and Motivation

It is several years now, that the global interest towards timber buildings is experiencing a
constant increase. The global climate change crisis and the well-known carbon storing
properties of timber buildings ([1, 2, 3, 4]) are certainly playing a big role in the renewed
interest towards wooden products. Moreover, positive effects on the indoor air quality
connected to the moisture-buffering behaviour of timber products are also well known
and documented ([5, 6, 7]). Some studies ([8, 9, 10]) have also found a positive effect on
the psychological and physical well-being of occupants related to the usage of wooden
products in indoor spaces. All these reasons are contributing to the increasing interest
timber is receiving from stakeholders and architects for the realisation of new buildings.

From a mechanical point of view, the excellent stiffness-to-mass ratio of wood,
at least in its strong direction (along the fibres), has been known for a long time.
Unfortunately its intrinsic high variability (due to knots, defects etc.) has meant that for
engineering applications lower design values had to be used. The advent of new highly
engineered wood products such as Cross Laminated Timber (CLT) and Laminated Veneer
Lumber (LVL), just to name the most popular, have partially overcome this limitation,
and led the way to a "timber renaissance". New technologies are allowing these materials
to be produced and shaped into more complex forms and manufactured more efficiently.
Moreover, this high degree of prefabrication also means that buildings can be constructed
in a far shorter timescale. What is also increasingly apparent is that CLT and other
types of timber constructions are finally moving from their more established use in the
residential sector to be applied on large commercial buildings. Consequently the need to
minimise the building’s footprint, in the increasingly overcrowded urban agglomerate,
calls for tall timber buildings.

The idea of a wooden high-rise or even mid-rise building would have been laughable
thirty years ago. Today, even though we are still in a preliminary phase, dealing with
demonstration buildings, some countries seem to have been caught up in a race to
build the world’s tallest timber building [11, 12, 13, 14]. Historically one of the biggest
obstacles to the growth in height of wooden structures has been the commonly spread
misconception that large scale timber buildings have a greater risk of burning down.
Building codes and fire regulations in many countries have for decades severely limited
the maximum height achievable by timber structures. However, even though gradually
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codes are moving in the direction of allowing for taller wood structures, there are a lot
of open issues that need to be addressed.

The experience accumulated during the last twenty years has shown that for CLT
structures there is a kind of "sweet spot" at 8-9 storeys for cost-effectiveness reasons.
Due to considerations such as cross-grain crushing of floor panels, which are thought to
limit the capacity of the vertical load resisting system in such cases, it is unlikely that
massive timber panels can be used as the exclusive load bearing system for buildings
above the mentioned limit. Post and beams type of structures seem to be the way to go
in such circumstances.

Besides the obvious problems posed by the fact that wood is a living material that
shrinks and swells when subjected to humidity content variations, going up in height
poses a lot of stability-related challenges. One of the major concerns is in fact related to
the accelerations level induced by dynamic loads on top floors of mid- and high-rise
buildings. The dynamic behaviour of tall timber buildings is definitely still an open issue.
This is true both from a serviceability point of view, e.g. that could cause discomfort to
the occupants, and also from an ultimate limit state perspective, which aims at providing
life safety measures for extreme loading scenarios. Moreover, the need for open, flexible
interior spaces in office buildings worsens the already known issue of walk-induced
vibration problems in timber floor decking. In fact, a much more known issue, largely
investigated in the past, is the assessment of the vibration performance of timber floors.
However, this still remains a very topical subject.

One of the "hot topics" in structural engineering that has gained a lot of attention and
produced a considerable amount of literature during the last twenty years, is Operational
Modal Analysis (OMA) and its applications. OMA allows the identification of the modal
parameters (natural frequencies, mode shapes and damping ratios) of the tested structure
from ambient vibration in operational conditions. OMA is a response-only technique,
meaning no input forces are measured during the test, as opposed to the classical
Experimental Modal Analysis (EMA). Modal testing is not a new field, mechanical and
aeronautical engineers, for example, have for decades tested components and smaller
structures, using well-established input-output techniques, to gain knowledge over their
dynamic behaviour. The difficulties connected to giving a measurable and controlled
excitation to massive civil engineering structures, such as buildings and bridges, have
somehow limited the diffusion of such techniques in the structural engineers community.
The advent of OMA techniques, which completely bypass these difficulties, have
completely changed the situation and opened up for modal testing of huge and massive
structures. Undoubtedly, its most widespread application is ambient-vibration-based

2



Structural Health Monitoring (SHM), which basically consists in a constant and auto-
mated application of output-only identification algorithms to a continuous stream of
data from the monitored structure. However, several useful considerations can also be
drawn from once-only tests. The results of OMA may be used, for example, to enhance
numerical models of the structure under investigation. The development and refinement
of new OMA techniques have encouraged copious research activities, which span
from theoretical investigations to practical applications [15, 16, 17, 18, 19, 20, 21, 22].
However, research applications onto timber structures are still scarce, and therefore
constitutes the main object of this work.

1.2 Scope and contributions

Presently some good commercial software and Matlab toolbox implementing OMA
methods and algorithms can be found. However, being proprietary software or needing
additional licenses, these are closed environments that are sold at high prices. On the
other hand open source software has gained a lot of attention and popularity during
these last years. The open source model has even become a successful business model
adopted by several companies, not only for its obvious cost-saving reasons, but also
because of several other factors. A major advantage to open-source code is the ability
for a variety of different people to edit and fix problems and errors, and this results for
instance: in faster development, more flexibility and higher reliability of the code.

The author implemented a set of routines written in Python programming language
to perform OMA on data acquired from ambient measurement tests. The programming
language Python was chosen because of its high versatility, ease of use and because it is
a free-software license, characteristics that have made it very popular in the academic
field. Since several efforts were spent preparing and testing the code in order to make it
as easy as possible to use, it was decided to share the work done and send the code to be
reviewed by the Journal of Open Source Software. A Git hub repository was created to
host the source code under a GNU General Public License. The objective is to make the
tool available to everyone who is interested in the subject, thus helping in spreading the
use of dynamic identification methods in civil engineering, with the hope that other
individuals will contribute making improvements to the tool.

As already mentioned, few works can be found in the literature that deal with
the identification of the modal parameters of timber structures, or components, from
ambient vibration tests. One of the goals of this work is therefore to broaden the current
data-base present in the literature for such kind of applications. A better understanding
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of the dynamic behaviour of mid-rise and high-rise timber buildings is of paramount
importance in order to design future buildings more efficiently. Unfortunately it was
not possible to set up a permanent monitoring system of a building during the time
frame of this PhD project, however some interesting conclusions could already be drawn
from the one-time test performed, the results of which will be introduced in one of the
enclosed papers. It is the opinion of the author that monitoring mid-rise and high-rise
timber structures represents a big opportunity for the whole branch. This will aid in
learning important lessons and enhance the confidence of the engineering community
towards the use of this material. Furthermore OMA methods can also be employed as a
cheaper alternative to EMA methods for tests in a laboratory controlled environment,
since vibration shakers or impact hammers are not needed anymore. These kinds of tests
have also been successfully used by the author to validate Finite Element (FE) models of
a timber flooring systems and will be presented in another of the enclosed papers.

Moreover, the usefulness of once-only dynamic identification test is also highlighted
with an application to short-span bridges made of prestressed concrete box girders. To
this day, in fact, dynamic-based Non-destructive Damage Evaluation (NDE) techniques
do not have a meaningful role in the arrangement of the maintenance plans by the
managing body of bridges. A simple reliability-based procedure for the probabilistic
assessment (with a Bayesian updating method) of the elastic modulus from the natural
frequency of the first bending mode, is presented in the last of the enclosed papers.

To conclude, this work aims at showing the performance of laboratory tests and
full-scale applications, and obtain evidences of their usefulness. Only in this way
designers, constructors and owners can be convinced of the potentiality and relevance of
dynamic identification and monitoring.

1.3 Structure of the thesis

Beside the first introductory chapter, the work is organised as follows:

• In the second chapter the basic mathematical background to understand OMA methods
is given. Firstly the fundamental assumptions in OMA are presented, then the basic
concepts behind random data measurements are given. Subsequently the models
of structural dynamical systems are summarised. Particular attention is given to
state-space models since its formulation, which origins from control theory, adopts
advanced mathematical tools and is not treated in standard civil engineering study
programs. Finally, two of the most widely used algorithms to perform OMA are
presented and discussed.
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The third chapter presents the developed Python module and introduces to the research
cases that were studied during the time frame of this PhD project:

• The first section describes the functionalities of the uploaded Python module, PyOMA.
The program’s main functions are presented through an application to a simulated
data set. The simulated data set consists in the acceleration time-history responses
obtained from a five Degrees of Freedom (DoF) system, with user defined properties.
The solution of the equation of motion is obtained and then polluted with a random
white noise source. The data is then imported and analysed with the functions of the
developed module so as to demonstrate its good functioning.

• In the second section the application of ambient vibration tests (AVT) to a prestressed
short span concrete bridge is presented. The paper delivers a reliability-based
method for the assessment of the Module of Elasticity (MoE) of concrete in simply
supported girders from dynamic identification tests. The correlation between the
natural frequencies of the first bending modes and the concrete MoE supports the
use of the first natural frequency as a predictor of the MoE value. In the presented
application, the MoE of seven girders provides the prior state of knowledge about
the considered bridge class. The identified natural frequencies update the prior
probability distribution of the MoEs using Bayes inference. The resulting probability
of exceeding a specific MoE value expresses the degree of belief of the inspector
in the obtained MoE. The posterior probability, compared to a proper threshold,
could be used in decision-making processes when prioritising the interventions in the
maintenance plans.

• The third section presents the results of the dynamic identification of an eight-storey
CLT building. A simplified shear-type analytical model was built and calibrated to
match the experimental modal parameter by minimising a proper objective function.
To test the hypothesis of a continuum-like behaviour of the panels, with a negligible
effect of the connections, and the assumption of a shear-type behaviour, opposed to a
cantilever behaviour, an indirect approach was chosen. The storey-masses were the
chosen optimisation parameters, and the following reasoning drove the process: let us
assume a continuum-like behaviour of the building (hypothesis); the connections are
neglected in the model updating process (test); if the updated masses match with the
expected ones, the hypothesis is proven (proof). Furthermore, the nonlinear effects
of connections over the building’s response to higher displacements are discussed,
and some simplified and practice-oriented correlations for the first natural frequency
estimation are given and compared to other structural systems.
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• The fourth section focuses instead on the dynamic identification of a timber flooring
system made of glulam beams and plywood decking. Timber floors, compared to
other materials, are more prone to exhibit vibration levels that cause discomfort
to the occupants. The authors carried out multiple experimental tests of the single
components and the entire structural assembly via output-only identification. Then,
several finite element (FE) models were developed to assess the impact of the
modelling choices on the model updating process. Two optimisation algorithms led to
the selection of the best modelling parameters. Specifically, the authors chose the
MoE, as the parameters to be optimised. Further, the outcomes of a covariance-based
sensitivity analysis of the adopted objective function drove a conclusive discussion
about the different modelling strategies.
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2 Background

2.1 Introduction to OMA

Modal testing is nowadays a well established field. Through the use of frequency
response functions, which basically are the ratio of the output response to the input
excitation, it is possible to estimate the modal properties (natural frequencies, modal
shapes and modal damping ratios) of the structure under investigation. This way of
estimating modal properties is also known as Experimental Modal Analysis (EMA).

The identification of the modal properties is very useful as it can be used for various
tasks, e.g.: check, and if necessary update, numerical models of real structures; assess the
health state, evaluate the safety of a structure; plan and design rehabilitation intervention;
design special vibration control devices as tuned mass dampers. The identification of the
modal properties can be performed on the measured response of the structure under
different types of controlled excitation. The most used devices to generate such input
forces are impact hammers and modal shakers. The first generate a known impact force,
that allows to measure the free decay of the structure. The second instead generate a
continuous dynamic harmonic force that excite the resonant frequencies of the structure.
These type of tests are usually referred to as Forced Vibration Tests (FVT).

In the context of civil engineering, it is not always easy to generate and measure
a controllable input on a structure, as these can be huge and massive. Fortunately,
in the last two decades, new techniques that allow the identification of the modal
properties from ambient excitation, have been devised and refined. These type of tests
are designated as Ambient Vibration Tests (AVT), and the techniques used to extract the
modal properties are referred to as Operational Modal Analysis (OMA).

In the following sections we will first cover the basic assumptions behind OMA,
then basic notions of random data analysis and signal processing will be given. This first
step is useful to introduce the widely used Correlation functions and Power Spectral
Density functions. In the section section we will briefly cover the basic mathematical
procedures to model structural dynamic systems. Finally, in the last section, two very
popular OMA algorithms will be presented.
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2.1.1 Fundamental assumptions

The assumptions behind OMA methods vary depending on the different techniques
that are used. However, there are a few main assumptions that are common to all the
methods:

– Uncorrelated white noise input forces, both in time and space.
– Linearity. The system is linear and superposition’s principle applies.
– Stationarity. The system’s characteristics do not change over time, the system is time

invariant.
– Observability. The sensor layout has been properly designed to observe the modes of

interest.

The first assumption is needed to ensure that all the modes of the system are excited
(uncorrelated inputs), theoretically with the same energy over a broad frequency band
(white noise). In reality this is seldom the case, since the excitation has a spatial and
spectral distribution of its own. The second assumption is fundamental for all the modal
analysis techniques, since only if the system is linear the modal superposition of the
most relevant modes can provide a good approximation of the total dynamical response
of a certain system. The last assumption is necessary to distinguish, during the system
identification phase, between the dynamic properties and the noise. In general, if and
only if, the system is stationary the system will behave in a deterministic way with
respect to the stochastic behaviour of the noise.

As explained in [23, 24], the fundamental idea of OMA testing techniques is that the
structure to be tested is being excited by some type of excitation that has approximately
white noise characteristics, that is, it has energy distributed over a wide frequency range
that covers the frequency range of the modal characteristics of the structure. However, it
does not matter much if the actual loads do not have exact white noise characteristics,
since what is really important is that all the modes of interest are adequately excited so
that their contributions can be captured by the measurements.

In Fig. 1 (from [23]) the basic idea behind OMA is shown through a graphical
depiction of the so-called "combined system". Even if the loading does not have a flat
spectrum the output of the loads can be considered as the output from an imaginary
loading filter loaded by white noise. It has been proved [25] that including an additional
filter describing the colouring of the loads does not change the physical modes of the
system. The combined system concept shows that in general what we are estimating in
OMA is the modal model for “the whole system” including both the structural system
and the loading filter. When interpreting the modal results, this has to be kept in mind,
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Fig. 1. Combined System.

because, some modes might be present due to the loading conditions and some might
come from the structural system.

2.1.2 Random data

Oftentimes external loads imposed on a structure are treated as deterministic, and in such
cases these can be expressed through explicit mathematical relationships. Furthermore,
also the free vibration response of a system (under a set of initial conditions) is
an example of deterministic data, since it is governed by mathematical expressions
depending on the mass and stiffness of the system. On the contrary, random data cannot
be described by explicit mathematical relationships and they must be described in
probabilistic terms.

A random (or stochastic) process X(t), is the collection of all possible N physical
realisations of the random phenomenon (i.e contains N number of realisations xk(t)). A
sample function is a single time history representing the random phenomenon and, as
such, is one of its physical realisations (i.e. each realisation xk(t), represent an individual
time series, that can be thought as the observed result of a single experiment). The
collection of realisations from a random process is defined as an ensemble. In Fig. 2 a
graphical representation of an ensamble (from [26]) is shown.

Said xk(t) the kth function in the ensemble, at a certain time instant t the mean value
of the random process can be computed from the instantaneous values of each function
in the ensemble at that time as follows:

µX (t) = lim
N→∞

1
N

N

∑
k=1

xk(t) (1)

9



Fig. 2. Ensemble of time history records defining a random process.

In a similar way the auto-correlation function can be computed by taking the
ensemble average of the product of instantaneous values at time instants t and t + τ:

Rxx(t, t + τ) = lim
N→∞

1
N

N

∑
k=1

xk(t)xk(t + τ) (2)

When Eq.(1) and (2) do not vary with the time instants t, the random process is said
to be weakly stationary. For weakly stationary random processes, the mean value is
independent of the time t and the auto-correlation depends only on the time lag τ (i.e.
µX (t) = µX , and RXX (t, t + τ) = RXX (τ)).

When a random variable assumes values in the range (−∞,+∞), its mean value (or
expected value) can be computed from the product of each value with its probability of
occurrence as follows:

E[xk] =
∫ +∞

−∞

xp(x)dx = µx (3)
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where E[•] indicates the expected operator, and p(x) is the probability density function.
In a similar way it is possible to define the mean square value as:

E[x2
k ] =

∫ +∞

−∞

x2 p(x)dx = Ψ
2
x (4)

and the variance:

E
[
(xk−µx)

2]=
∫ +∞

−∞

(xk−µx)
2 p(x)dx = Ψ

2
x−µ

2
x = σ

2
x (5)

The covariance function of two random variables x and y is defined as:

Cxy = E[(xk−µx)(yk−µy)] =
∫∫ +∞

−∞

(xk−µx)(yk−µy)p(x,y)dxdy (6)

When dealing with finite records of the structural response, an exact knowledge of
parameters, such as mean and variance, and, therefore, of probability density functions
is generally not available. Only estimates based on finite datasets can be obtained.
Thus, it is desirable to get high quality estimates from the available data. The unbiased
estimators for the mean and variance given by:

µ̂x =
1
N

N

∑
i=1

xi (7)

σ̂
2
x =

1
N−1

N

∑
i=1

(xi− µ̂x)
2 (8)

where the hat ˆ(•) indicates that the quantities are estimates of the true values based on a
finite number of samples.

Correlation functions

In Eq.(2) the correlation function Rxx was introduced. These functions play a primary
role in output-only modal identification. For two stationary random processes, xk(t) and
yk(t), the auto-correlation functions, Rxx and Ryy, and the cross-correlation function, Rxy,
are defined respectively as:

Rxx(τ) = E [xk(t)xk(t + τ)] , Ryy(τ) = E [yk(t)yk(t + τ)] (9)

Rxy(τ) = E [xk(t)yk(t + τ)] (10)
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The assumption of stationary random processes yields mean values, µx and µy,
and covariance functions, Cxx(τ), Cyy(τ) and Cxy(τ), that are also independent of t. If
the mean values are both equal to zero, the covariance functions coincide with the
correlation functions. When the mean values are not zero, covariance functions and
correlation functions are related by the following equations:

Cxx(τ) = Rxx(τ)−µ
2
x , Cyy(τ) = Ryy(τ)−µ

2
y (11)

Cxy(τ) = Rxy(τ)−µxµy (12)

It can be shown [26] that two processes are uncorrelated when Rxy(τ) = 0 for all
τ only if also either µx or µy equals zero. Furthermore the maximum values of the
auto-correlation and auto-covariance functions occur at τ = 0 and they correspond to the
mean square value and variance of the data (Rxx(0) = E

[
x2

k(t)
]
, and Cxx(0) = σ2

x ).
When the mean values and covariance (correlation) functions of the considered

stationary random processes can be computed by means of time averages on an arbitrary
pair of sample records instead of computing ensemble averages, the two stationary
random processes are said to be ergodic. In other words for ergodic random processes,
the time-averaged mean value and auto-correlation function (as well as all other time-
averaged properties) are equal to the corresponding ensemble-averaged values. To sum
up we have:

µx(k) = µx = lim
T→∞

1
T

∫ T

0
xk(t)dt (13)

Cxx(τ,k) =Cxx(τ) = lim
T→∞

1
T

∫ T

0
(xk(t)−µx)(xk(t + τ)−µx)dt

= Rxx(τ)−µ
2
x

(14)

Rxx(τ,k) = Rxx(τ) lim
T→∞

1
T

∫ T

0
xk(t)xk(t + τ)dt (15)

where the index k denotes that the kth sample function has been chosen for the com-
putation; since the processes are ergodic, the results are independent of this choice
(µx(k) = µx, Cxx(τ,k) =Cxx(τ), Rxx(τ,k) = Rxx(τ)). Similar relations can be defined
for µy, Cyy, Cxy, Ryy and Rxy, see [26].

Ergodic random processes are definitely an important class of random processes.
Since the time-averaged mean value and correlation function are equal to the ensemble-
averaged mean and correlation function respectively, a single sample function is sufficient
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to compute those quantities instead of a collection of sample functions. Fortunately, in
practice, random data representing stationary physical phenomena are generally ergodic.

For a stationary record with zero mean (µ = 0) and uniformly sampled data at ∆t the
unbiased estimate of the auto-correlation function at the time delay r∆t is given by:

R̂xx(r∆t) =
1

N− r

N−r

∑
n=1

xnxn+r (16)

where r is also called the lag number and m denotes the maximum lag.

Spectral density functions

Power Spectral Density (PSD) functions are the frequency domain counterparts of the
correlation functions. Given the same pair of sample records xk(t) and yk(t) of finite
duration T from the previously defined stationary random processes X(t) and Y (t), the
two-sided auto-spectral and cross-spectral density functions are defined as:

Sxx( f ) = lim
T→∞

E
[

1
T

X∗k ( f ,T )Xk( f ,T )
]

(17)

Syy( f ) = lim
T→∞

E
[

1
T

Y ∗k ( f ,T )Yk( f ,T )
]

(18)

Sxy( f ) = lim
T→∞

E
[

1
T

X∗k ( f ,T )Yk( f ,T )
]

(19)

where the operator (•)∗ denotes the complex conjugate; the expected value operation is
working over the ensemble index k. Two-sided means that S( f ) is defined for values of
the frequency f in the range (−∞,+∞). Eqs.(17, 18 and 19) give the two sided spectrum,
the one sided auto-spectral and cross-spectral density functions, G( f ), that is with f
varying in the range (0,+∞), can be determined from the two sided spectrum through
the relation: Gxx( f ) = 2Sxx( f ).

For a zero mean processes, the correlation and PSD functions are Fourier transform
pairs, also known as the Wiener-Khinchine relations:

Sxx( f ) =
∫ +∞

−∞

Rxx(τ)e−i2π f τ dτ (20)

The auto-spectral density functions are real-valued functions, while the cross-spectral
density functions are complex-valued. In practical applications, PSDs can be obtained
by computing the correlation functions first and then Fourier transforming them. This
approach is known as the Blackman-Tukey procedure.

Another very used approach is known as the Welch’s method. In this procedure the
original data segment is split up into nDS data segments of length T = N∆t, overlapping
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by D points. After the data is split up into overlapping segments, the individual nDS data
segments have a window applied to them in the time domain. Then, the periodogram is
calculated by computing the discrete Fourier transform, and then computing the squared
magnitude of the result. The auto-spectral densities are finally calculated through an
ensemble averaging operation over the nDS subsets:

Ĝxx( f ) =
2

nDSN∆t

nDS

∑
i=1
|Xi( f )|2 (21)

The number of data values N in each segment is often called the block size for
the computation of each FFT; it determines the frequency resolution of the resulting
estimates. The number of averages nDS, instead, determines the random error of the
estimates.

Data acquisition and signal processing

High-quality measurements are one of the most important components in OMA, in
fact the quality of the acquired data will greatly influence the success of the modal
identification. The main components in a modal analysis test are:

– the structure under investigation
– a certain number of motion transducers
– a data acquisition device
– a data processing system (i.e. a Personal Computer)

In an ambient vibration test, the micro tremors of a structure are registered by the
motion sensors (usually accelerometers). The motion sensors have the task to convert a
physical quantity into an electrical one, typically voltage. Then, the electrical signal
in the form of voltage is transferred to the data acquisition hardware for digitisation.
Finally, the digitised recorded data is processed and the modal information extracted.

The initial task in dynamic measurement planning is the selection of the sensor
locations, directions, and total number of measurements. The choice can be based on
experience or can also be based on computer simulations using finite element models of
the structure to be tested, or on predictions of the dynamic response of the structure
based on simple beam, plate, or shell theories. For all types of measurements, each
transducer should be as small and lightweight as possible in order to minimise the
influence of the added mass from the sensors. And the sensors should be sensitive
enough to pick up the expected operating signals. After measurement numbers, locations,
and directions have been selected, the next task is to establish the frequency range for
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each measurement, that is, the maximum and minimum frequencies to be recorded and
analysed. This parameter usually has the greatest impact on the total data or system
bandwidth and on the various instruments of the measurement system.

First of all, when dealing with discrete signals it is worth noting that the sampling
interval ∆t is the inverse of the sampling frequency fs and represents the rate by which
the analog signal is sampled and digitised:

∆t =
1
fs

(22)

In order to extract valid frequency information, digitisation of the analog signal must
occur at a certain rate. Shannon’s sampling theorem states that the sampling rate must
be greater than twice the desired frequency to be measured:

fs > 2 fmax (23)

For a time record of T seconds, since T = N∆t (where N is the number of samples),
the lowest frequency component measurable is:

∆ f =
1
T

=
1

N∆t
(24)

The frequency resolution ∆ f can only be improved at the expense of the resolution
in time ∆t, and vice versa. As a consequence, for a given sampling frequency, a small
frequency spacing ∆ f is always the result of a long measuring time T (large number of
samples N). Assuming that the signal x(t) has been sampled at N equally spaced time
instants and that the time spacing ∆t has been properly selected, the obtained discrete
signal is given by:

xn = x(n∆t) n = 0,1,2, . . . ,N−1 (25)

Taking into account Eq.(24), the discrete frequency values for the computation of
X( f ) are given by:

fk =
K
T = k

N∆t k = 0,1,2, . . . ,N−1 (26)

A very important role in signal processing is given to the Discrete Fourier Transform
(DFT) algorithm, which allows to analyse the frequency content of a signal and determine
if particular frequencies are more predominant. A very efficient version of the algorithm,
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known as Fast Fourier Transform, was developed by [27].
The DFT and its inverse are defined by:

Xk =
N−1

∑
n=0

xne
−i2πkn

N k = 0,1, ...,N−1 (27)

xn =
1
N

N−1

∑
k=0

Xke
i2πkn

N n = 0,1, ...,N−1 (28)
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2.2 Structural dynamics models

This section is meant to provide a brief overview of the basic notion necessary to
understand the dynamic identification techniques used in this work. It is assumed that
most of those concepts, especially in the first sub-sections, are known to the reader
since they are usually well covered during structural dynamics courses in most of
civil engineering degrees programmes. Moreover, a few sections of a PhD thesis
can not do justice to the breadth and complexity of the subject, and several excellent
textbooks are present in the literature that treat the subject [28, 29, 30, 31, 26, 32].
Nevertheless, the basic concepts behind classical modal analysis are briefly presented,
along with the concept of impulse response and frequency response function (or transfer
function). More attention is devoted to the representation of dynamic systems by
state-space models, which is unfamiliar to most structural engineers. These techniques
are formulated using concepts and ideas which origin from control theory, and adopt
mathematical tools which are more difficult to interpret, an effort will be done in order
to highlight the physics behind such methods.

2.2.1 Finite element models

The dynamic response of a discrete multi degree of freedom (MDOF) system, composed
by Nm masses, can be described by a set of linear, second order differential equations,
expressed in matrix form:

[M]{q̈(t)}+[C]{q̇(t)}+[K]{q(t)}= { f (t)}= [B]{u(t)} (29)

where ([M], [C], [K]) ∈ RNm×Nm are the mass, damping and stiffness matrices, respec-
tively; ({q̈(t)},{q̇(t)},{q(t)}) ∈ RNm×1 are respectively the acceleration, velocity, and
displacement vectors; { f (t)} ∈ RNm×1 is the force vector, but since usually not all the
Degrees of Freedom (DOF) of the system are excited, a load vector u(t), of an inferior
dimension (ni < Nm) is often used. This load vector contains the time evolution of
the ni applied inputs and it is multiplied by a matrix [B] ∈ Rni×Nm composed of ones
and zeros that maps the ni inputs with the Nm DOF of the system. Usually the model
described by Eq.(29) is called spatial model because it describes the dynamic system by
its mass, stiffness, and damping, distributions in the structure. Eq.(29) leads to a system
with coupled second order differential equations that need to be solved simultaneously.
Coupling, means that the motion of one element affects the motion of the adjacent
connected element.

Modal analysis contemplate the transformation of the Nm coupled equations of
motion into Nn decoupled single degree of freedom (SDOF) systems, using a convenient
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transformation of the coordinates q(t), possible due to the eigenproperties of the system.
It can be shown [28] that the eigenvalues, λn, and eigenvectors, {ψ}n, are intimately
tied to the square of the angular natural frequencies, ω2

n , and the mode shapes, φn, of the
systems, respectively. If we consider the undamped free vibration case the eigensolution
is written as:

[K][Ψ] = [M][Ψ]diag(λn) (30)

where diag(•) stands for a diagonal matrix, whose entries starting in the upper left
corner are λ1, ...,λn. The decoupling of the equation of motion lies in the orthogonality
property of the eigenvector matrix (also called modal matrix) with respect to the mass
matrix and stiffness matrix, implying that each eigenvector of the modal matrix is
independent from others. If we pre-multiply and post-multiply the mass, damping (only
true for proportional damping) and stiffness matrices respectively by the transpose of the
modal matrix and the modal matrix we are able to diagonalise them. The modal matrix
is also used to transform the physical space to the modal space: {η(t)}= [Ψ]−1{q(t)},
fM(t) = [Ψ]T [B]{u(t)}. We obtain therefore:

[MM]{η̈(t)}+[CM]{η̇(t)}+[KM]{η(t)}= { fM(t)} (31)

where [MM], [CM], [KM] are the (diagonalised) modal mass, modal damping and modal
stiffness, respectively; {η(t)} is the modal coordinates vector, and { fM(t)} is the modal
force. The formulation in Eq.(31) is usually known as modal model, it allows for an
efficient way to solve linear dynamic problems and it provides probably the best physical
understanding from an engineering point of view.

It is common practice nowadays to solve models of large civil engineering structures
with the aid of Finite Element (FE) software: the structure is divided in elements and
from the geometry and material properties of the elements, the global mass matrix
[M] and stiffness matrix [K] are assembled. The presence of the damping term is
partially based on physical observation and partially on mathematical convenience. In
the following only the special case of proportional damping, the so-called Rayleigh
damping, is considered. In this case also the damping matrix is diagonalised by the
eigenvectors, and can be expressed as a linear combination of the mass and stiffness
matrices ([C] = α[M]+β [K]). As already said, it is very difficult to quantify the true
structural damping mechanisms. Therefore one is often satisfied with the mathematically
simple proportional damping assumption in a FE analysis [28].

To conclude this brief overview, the Duhamel’s integral, which is a way of calculating
the response to arbitrary time-varying external loads, is reported. It can be shown [28]
that if f (t) is a Dirac delta function (an unit-impulse at instant t = τ), then fundamental
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solution for a single degree of freedom (SDOF) system is:

h(t− τ) =
1

mωD
e−ξ ωN(t−τ)sin [ωD(t− τ)] with t ≥ τ (32)

where ξ = c/(2
√

km) is the damping ratio, ωN =
√

k/m is the natural angular frequency
of the undamped system (when c = 0), ωD = ωN

√
1−ξ 2 is the damped frequency,

m,k,c are respectively the mass, stiffness, damping of the system, and h(t− τ) is known
as the unit-impulse response function. Considering the superposition of effects one
obtains the general solution (Duhamel’s integral):

q(t) =
∫ t

0
f (τ)h(t− τ)dτ =

1
mωD

∫ t

0
f (τ)e−ξ ωN(t−τ)sin [ωD(t− τ)] dτ (33)

2.2.2 Frequency response models

Unfortunately, the spatial (and modal) model, although giving the best physical under-
standing from an engineering point of view, is not used in experimental dynamic. Due to
the high non linearity of its inverse problem it is not adequate to be directly fitted to
experimental data. Consequently, dynamic systems are often modelled with the aid of
the so-called Frequency Response Function (FRF).

The application of the Laplace transform to the second order differential equation
(29) assuming zero initial conditions, leads to the following algebraic equation:

(
s2[M]+ s[C]+ [K]

)
{Y (s)}= {F(s)} (34)

where s is the Laplace variable, and {Y (s)} and {F(s)} are the Laplace transforms of
{q(t)} and { f (t)}, respectively. Defining the dynamic stiffness matrix Z(s):

s2[M]+ s[C]+ [K] = [Z(s)] (35)

we can then rewrite Eq.(35) as:

[Z(s)]{Y (s)}= {F(s)} (36)

The inverse of the dynamic stifness matrix [Z(s)] gives the system transfer matrix:

[H(s)] = [Z(s)]−1 =
adj([Z(s)])
|Z(s)| =

[A(s)]
|Z(s)| (37)

with ad j([Z(s)]) and |Z(s)| the adjoint matrix and the determinant of the dynamic
stiffness matrix, respectively. The system transfer function is a complex valued surface,
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the numerator of this equation is [A(s)], which is referred to as the residue matrix; the
denominator of this equation is det[Z(s)], which is a scalar quantity and is called the
characteristic equation. The solution of the characteristic equation (det[Z(s)] = 0)
yields 2Nm solutions where Nm is the number of equations. If the damping is less than
critical damping then the solution to this equation contains roots that are referred to as
the poles of the system and occur in complex conjugate pairs given by:

λk,λ
∗
k =−σk± iωd,k =−ξk ·ωk + i ·

√
1−ξ 2

k ·ωk (38)

The real part depends on the natural frequency and on the modal damping ratio,
whereas the imaginary part coincides with the damped natural frequency, which is close
to the natural frequency when damping is small. The Frequency Response Function
(FRF) is the transfer function substituting s with iω (which effectively takes a slice out
of the transfer function surface (see Fig. 3 from [31]), and can be expressed in terms of
modal parameters through a partial fraction expansion (see [29]):

[H(ω)]s=iω =
Nm

∑
k=1

[Ak]

iω−λk
+

[Ak]
∗

iω−λ ∗k
=

Nm

∑
k=1

Qk{φk}{φk}T

iω−λk
+

Q∗k{φr}∗{φk}∗T
iω−λ ∗k

(39)

where Nm denotes the number of modes, {φk} is the mode shape, Qk = 1/(2imkωd ,k) is
the the modal scaling factor, and λk is the, previously defined, pole of the kth mode. The
operator (•)∗ denotes the complex conjugate of a matrix or vector, the operator (•)T

indicates the transpose of a matrix or vector.

Fig. 3. System Transfer Function, S-plane and Frequency Response Function for a SDOF
system.

The structure of the FRF matrix expressed by Eq.(39) highlights some useful results
for modal analysis. First of all, it shows that each mode gives a contribution to the
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response of the system at any frequency. However, near a resonance this summation can
be approximated by the term related to the corresponding mode. SDOF identification
methods are based on this assumption. Moreover, Eq.(39) shows that every element
of the FRF matrix has the same denominator. Thus, the eigenvalues (poles) of the
system are given by the common denominator and they can be estimated either from any
individual FRF or from multiple FRFs measured on the same structure. The selected
approach leads to the classification of modal analysis techniques as local or global,
respectively. The residue matrix [Ak], which is a complex-valued matrix holds the
information about mode shapes. It can be shown that [H(s)], when it is evaluated at a
pole, is singular and of rank = 1 and can be decomposed as:

[H(s)]s=λk
= {φk}

Qk

s−λk
{φk}T (40)

From this a relationship between the residue matrix and the mode shapes of the
system can be written as:

[Ak] = Qk{φk}{φk}T (41)

The relation between input and output through the FRF matrix:

{Y (ω)}= [H(ω)]{F(ω)} (42)

can be manipulated to obtain a fundamental equation of OMA. In fact, taking into
account the definition of Power Spectral Density (PSD) function (see [26]) and the
properties of transpose, the product Y (ω)∗Y (ω)T can be computed and the following
relation between PSD matrix of the output and FRF matrix can be obtained:

[SYY (ω)] = [H(ω)]∗[SFF(ω)][Hω)]T (43)

Assuming that the PSD matrix of the input is constant (in OMA the input to the
combined system is a stationary, zero mean Gaussian white noise), the output PSD
matrix carries the same information and can be expressed in pole-residue form as the
FRF matrix:

[SYY (ω)] =
Nm

∑
k=1

{φk}{γk}T

iω−λk
+
{φk}∗{γk}H

iω−λ ∗k
+
{γk}{φk}T

−iω−λk
+
{γk}∗{φk}H

−iω−λ ∗k
(44)

where the operator (•)H denotes the Hermitian of a matrix (transpose of complex
conjugate); {γk} is the operational reference vector associated to the kth mode, that
corresponds to the modal participation vector Qk{φk}T in the pole-residue form of the
FRF matrix but, unlike this, it depends on all the modal parameters of the system, the
input locations, and the input correlation matrix [33]. In Eq.(44) the poles hold the
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information about natural frequencies and damping ratios, while the residues hold the
information about the mode shapes. However, since the input is not measured, only
un-scaled mode shapes can be obtained. Equation (44) clearly shows that, for each
mode, the output PSD provides four poles in complex conjugate pairs (λk, λ ∗k , −λk,
−λ ∗k ). Taking into account that FRF and IRF on one hand, and spectral density functions
and correlation functions on the other hand are Fourier transform pairs, similar analogies
are possible between IRFs and correlation functions in the framework of OMA.

Eq.(32) can be rearranged considering the previously defined quantity, into:

[h(t)] =
Nm

∑
k=1

(
[Ak]eλkt +[Ak]

∗eλ ∗k t
)

(45)

Eq.(45) shows evident analogies with the mathematical structure of the FRF reported in
Eq.(39). The poles hold the information about natural frequencies and damping ratios,
while the information about the mode shapes is in the [Ak] matrices.

2.2.3 State-space models

The idea at the core of this type of models is to represent the dynamic by system states.
A state is the smallest set of variables that are able to completely define the system
behaviour, or rather the energy of the system. For the second order equation, used to
model mechanical systems, 2 states are needed: displacements and velocities of the
system. In this way, on one hand we are able to reduce the second order differential
equation to a first order differential equation, on the other hand we are doubling the
system dimension.

Continuous state-space model

The second order equation (29) can be converted into a system of two first-order
equations (the state equation and the observation equation) using a so-called state-space
model. These type of models allow to describe a diverse range of dynamical systems
and are very popular in control engineering.

Firstly we rewrite Eq.(29) as:

{q̈(t)}+[M]−1[C]{q̇(t)}+[M]−1[k]{q(t)}= [M]−1[B]{u(t)} (46)

Then we define the state vector:

{s(t)}=
{
{q(t)}
{q̇(t)}

}
(47)

22



and we substitute it in the set of equations consisting of Eq.(46) and the identity
[M]{q̇(t)}= [M]{q̇(t)}, yielding:

{ṡ(t)}=
[

[0] [I]
−[M]−1[K] −[M]−1[C]

]
{s(t)}+

[
[0]

[M]−1[B]

]
{u(t)} (48)

From Eq.(48) the state matrix [Ac] ∈ R2Nm×2Nm and the input influence matrix [Bc] ∈
R2Nm×ni can be defined as follows:

[Ac] =

[
[0] [I]

−[M]−1[K] −[M]−1[C]

]
(49)

[Bc] =

[
[0]

[M]−1[B]

]
(50)

and the state equation can be written as:

{ṡ(t)}= [Ac]{s(t)}+[Bc]{u(t)} (51)

where the pedix (•)c denotes continuous time.
The observation equation, instead, establishes the relation between a subset of l

measured outputs organised in the vector {y(t)} and the displacement, velocity and
acceleration associated with all DOF. Under the assumption that measurements of
the structural response are taken at l locations and the sensors are accelerometers,
velocimeters, and displacement transducers, we have:

{y(t)}= [Ca]{q̈(t)}+[Cv]{q̇(t)}+[Cd ]{q(t)} (52)

[Ca], [Cv] and [Cd ] ∈ Rl×2Nm are the output location matrices for acceleration, velocity,
and displacement, respectively. It is worth emphasizing that, while a real structure is
characterised by an infinite number of DOFs (which becomes a finite but large number in
the lumped mass models usually set for numerical analyses), in a practical vibration test
this number decreases down to a few dozens or even less. Substitution of the expression
for {q̈(t)} obtained from Eq.(46) into Eq.(52) yields the following equation:

{y(t)}=
(
[Cd ]− [Ca][M]−1[K]

)
{q(t)}

+
(
[Cv]− [Ca][M]−1[C]

)
{q̇(t)}

+
(
[Ca][M]−1[B]

)
{u(t)}

(53)

from Eq.(53), taking into account the definition of state vector Eq.(47) and the following
definitions:

[Cc] =
[
[Cd ]− [Ca][M]−1[K] [Cv]− [Ca][M]−1[C]

]
(54)
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[Dc] = [Ca][M]−1[B] (55)

where [Cc] is the output influence matrix and [Dc] is the direct transmission matrix. We
can then write the observation equation as:

{y(t)}= [Cc]{s(t)}+[Dc]{u(t)} (56)

The state equation Eq.(51) and the observation equation Eq.(56) define the continuous-
time state-space model:

{ṡ(t)}= [Ac]{s(t)}+[Bc]{u(t)}
{y(t)}= [Cc]{s(t)}+[Dc]{u(t)}

(57)

Once the model has been constructed, the modal parameters of the dynamic system can
be extracted from the state matrix [Ac]. In [33] it is shown that the matrices with the
eigenvalues and eigenvectors of [Ac] ([Λc] and [Ψ] , respectively) have the following
structure:

[Ac] = [Ψ][Λc][Ψ]−1

[Λc] =

[
Λ 0
0 Λ∗

]
, [Ψ] =

[
Φ Φ∗

ΦΛ Φ∗Λ∗

]

[Λ] =




. . .
λk

. . .


 , [Φ] = [. . . Φk . . . ] k = 1, . . . ,Nm

(58)

[Λc] ∈ C2Nm×2Nm and [Ψ] ∈ C2Nm×2Nm , while Λ, Φ are the eigenvalues and egenvectors
of the original second order equation (29).

A very important property of the state-space model is that it is not unique, there exist
an infinite number of representations that produce the same input-output description
[30]. An alternative model can be established by the application of a transformation
to the state vector: {x(t)}= [T ]{z(t)}, where [T ] is an arbitrary non-singular square
matrix. This property is known as similarity transformation, and leads to:

{ż(t)}= [T ]−1[Ac][T ]{z(t)}+[T ]−1[Bc]{u(t)}
{y(t)}= [Cc][T ]{z(t)}+[Dc]{u(t)}

(59)

the matrices [T ]−1[Ac][T ], [T ]−1[Bc], [Cc][T ], [Dc] describe the same relationships as the
matrices [Ac], [Bc], [Cc] and [Dc]. However, unlike {y(t)} the new state vector {z(t)}
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has not the meaning of physical displacements and velocities [33]. This means that
a state-space model identified from experimental data is one over an infinite number
of possible models that are able to describe the given data. One can obtain the modal
state-space form, as shown in [33], by substituting [T ] with [Ψ].

Discrete state-space model

In practical applications the signal recorded by the sensors is taken at discrete time
instants, while all the equations considered up to now were written in continuous
time. The continuous-time state-space model needs, therefore, to be converted into a
discrete-time model. For a given sampling period ∆t, the continuous-time equations can
be discretized and solved at all discrete time instants tk = k∆t, k ∈ N. An assumption
about the behaviour of the time-dependent variables between two samples has to be
made to this aim. For instance, the Zero Order Hold (ZOH) assumption states that
the input is piece-wise constant over the sampling period. Under this assumption the
continuous-time state-space model can be converted to the discrete-time state-space
model:

{sk+1}= [A]{sk}+[B]{uk}
{yk}= [C]{sk}+[Dc]{uk}

(60)

where {sk} = {s(k∆t)} is the discrete-time state vector yielding the sampled dis-
placements and velocities; {uk} and {yk} are the sampled input and sampled output,
respectively; [A] is the discrete state matrix, [B] is the discrete input matrix, [C] is the
discrete output matrix and [D] is the direct transmission matrix. The relations between
continuous-time matrices and the corresponding discrete-time matrices are:

[A] = e[Ac]∆t (61)

[B] = ([A]− [I]) [Ac]
−1[Bc] (62)

[C] = [Cc] (63)

[D] = [Dc] (64)

The interested reader can refer to the literature [30] for more details.

Stochastic state-space model

The model expressed by Eq.(60) is a deterministic model since the system is driven
by a deterministic input {uk}. Stochastic components have to be included in order to
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describe actual measurement data. When stochastic components are included in the
model, the following discrete-time combined deterministic-stochastic state-space model
is obtained:

{sk+1}= [A]{sk}+[B]{uk}+wk

{yk}= [C]{sk}+[Dc]{uk}+ vk
(65)

where {wk} ∈ R2Nm is the process noise due to disturbances and model inaccuracies,
while {vk} ∈ Rl is the measurement noise due to sensor inaccuracies.

In the context of OMA, structures are excited by immeasurable inputs. Since the
information about the input {uk} is not available, the measured system response {yk}
is generated only by the two stochastic processes {wk} and {vk}, and the following
discrete-time stochastic state-space model is obtained:

{sk+1}= [A]{sk}+{wk}
{yk}= [C]{sk}+{vk}

(66)

In the absence of {uk}, its role is implicitly modelled by process noise and measure-
ment noise. In particular, the process noise becomes the input that drives the dynamics
of the system, while the measurement noise accounts for the direct disturbance of the
response of the system. Thus, when a stochastic state-space model is adopted, the
objective is the determination of the order No = 2Nm of the unknown system and of
a realisation of the matrices [A] and [C] from a large number of measurements of the
output {yk} generated by the system itself. The state matrix [A] transforms the current
state of the system {sk} in the next state {sk+1}, while the product of the observation
matrix [C] with the state vector provides the observable part of the dynamics of the
system. More precisely, the response vector {yk} is given by the observable part of the
state plus the measurement noise. The process noise and the measurement noise are
both immeasurable. They are assumed to be zero mean, stationary white noise processes
with covariance matrices given by:

E

[{
{wp}
{vp}

}
〈{wq}T{vq}T 〉

]
=






 [Qww] [Swv]

[Sww]T [Rvv]


 p = q

[0] p 6= q

(67)

where p and q are two arbitrary time instants. The estimation of the matrices [Qww],
[Rvv] and [Swv] is also part of the identification process. The assumption of white noise
for {wk} and {vk} is fundamental in the proof of SSI methods (see [32] for more details).
Thus, if the unmeasured input includes some dominant frequency components, they
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appear as poles of the state matrix [A] together with the eigenvalues of the system.
This is equivalent to the identification of the dynamic properties of both the structure
under investigation and the excitation system forming the combined system (driven
by stationary, zero mean Gaussian white noise as input) that is the generally assumed
objective of identification in OMA. In agreement with the stochastic framework of
OMA, the system response in the state-space model is represented by a zero mean
Gaussian process. The output covariance matrices are given by:

[Ri] = E
[
{yk+1}{yk}T ] (68)

and they carry all the information to describe the process. A covariance equivalent
model can be then defined as the estimated state-space model characterised by correct
covariance and, therefore, able to describe the statistical properties of the system
response. The estimator producing this model is referred to as an optimal estimator. The
state {sk} is also a zero mean Gaussian process described by its covariance (which is
independent of the time instant k):

[Σ] = E
[
{sk}{sk}T ] (69)

and it is uncorrelated with the process noise and the measurement noise:

E
[
{sk}{wk}T ]= [0]

E
[
{sk}{vk}T ]= [0]

(70)

The "next state - output" covariance matrix (covariance between the response of the
system {yk} and the updated state vector {sk+1}), is defined as:

[G] = E
[
{sk+1}{yk}T ] (71)

Taking into account the previous assumptions about the noise terms, the system
response and the state, mathematical manipulations of the state-space equations (66)
lead to the following fundamental relations:

[Σ] = [A][Σ][A]T +[Qww] (72)

[R0] = [C][Σ][C]T +[Rvv] (73)

[G] = [A][Σ][A]T +[Swv] (74)

[Ri] = [C][A]i−1[G] (75)

The property expressed by Eq.(75) is very important, in fact since the output
covariance sequence [Ri] can be directly estimated from the measured data (eq. 68), its
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decomposition according to Eq.(75) permits the estimation of the state-space matrices
and the solution of the system identification problem. For stochastic systems, the
matrices ([A], [G], [C], [R0]) play the role of the deterministic system matrices ([A], [B],
[C], [D]). Thanks to this equivalence, input-output impulse-response-driven identification
methods are easily translated into output-only covariance-driven methods.

An alternative formulation for stochastic systems, is the so-called forward innovation
model, which is obtained by the application of the so-called steady-state Kalman
filter[33, 24]. The forward innovation model is written as:

{ŝk+1}= [A]{ŝk}+[K]{ek}
{yk}= [C]{ŝk}+{ek}

(76)

where [K] is the Kalman gain. The aim of the Kalman filter is to produce an optimal
prediction for the state vector by making use of observations of the outputs up to time
k−1 and the available system matrices together with the known noise covariances. In
this formulation the predictor of the state vector {ŝk}, replaces the state vector {sk}, and
the two processes {wk} and {vk} are converted into a single process, the innovation,
{ek}. The one-step-ahead predictor of the state vector {ŝk}, is defined as the conditional
mean of {sk} given all previous measurements:

{ŝk}= E
[
{sk}|[Y k−1]

]
(77)

The system’s response can be optimally predicted if an optimal predictor of the states is
available. The quality of the predictor of the states is quantified by the state prediction
error:

{εk}= {sk}−{ŝk} (78)

In a similar way it is possible to define the innovation:

{ek}= {yk}−{ŷk} (79)

where the one-step-ahead predictor {ŷk} is defined as the conditional mean of {yk}
given all previous measurements:

{ŷk}= E
[
{yk}|[Y k−1]

]
= E

[
([C]{sk}+{vk}) |[Y k−1]

]
= [C]{ŝk} (80)

Given the initial state estimate {ŝ0}, the initial covariance of the state estimate [P0] =

E[{ŝ0}{ŝ0}T ] = [0] and the output measurements [Y k−1], the nonsteady-state Kalman
state estimate at time tk can be obtained from the following recursive formulas that
provide the Kalman state estimate, the Kalman gain, and the Kalman state covariance,
respectively:

{ŝk}= [A]{ŝk−1}+[Kk−1] ({yk−1}− [C]{ŝk−1}) (81)
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[Kk−1] =
(
[G]− [A][Pk−1][C]T

)(
[R0]− [C][Pk−1][C]T

)−1
(82)

[Pk] = [A][Pk−1[A]T+
(
[G]− [A][Pk−1][C]T

)(
[R0]− [C][Pk−1][C]T

)−1 (
[G]− [A][Pk−1][C]T

)T
(83)

Eq.(83) is known as the Ricatti equation. Obtained the Kalman state covariance matrix
[Pk] the covariance of the innovation can be computed as:

E
[
{ek}{ek}T ]= [R0]− [C][Pk][C]T (84)

The presented discussion can not be considered complete and exhaustive, the
interested reader is therefore invited to refer to [30, 32, 33, 24, 29] for more details.
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2.3 Output-only modal identification

In this section two of the most widely used identification algorithms are presented and
discussed:

• Frequency Domain Decomposition
• Stochastic Subspace Identification

The first is a non-parametric identification method implemented in the frequency
domain, as the name suggest; while the second is a parametric (a model is fitted to the
experimental data) time domain method.

2.3.1 Frequency domain decomposition

Frequency domain methods, as the name suggest, refers to the analysis of mathematical
functions or signals with respect to frequency, rather than time. They have been known
and used by engineers since the 1960′s, and were developed mainly to simplify the
mathematical analysis. In fact, as explained in the previous sections, converting the
description of the system from the time domain to a frequency domain, converts the
differential equations to algebraic equations.

The most simple method for output-only modal parameter identification is the basic
frequency domain method, also known as the Peak-Picking method (PP). It is based on
the computation of auto-spectra and cross-spectra and it has been used in the past also
for output-only modal identification purposes [34]. The name of the method comes
from the fact that the modes are identified by picking the maxima in the power spectral
density (PSD) plots. The frequency-domain decomposition (FDD) (introduced in [35])
takes the classical frequency-domain approach some steps further. The technique is
based on the Singular Value Decomposition (SVD) of the Spectral Density matrix and
allows to concentrate all information in the plot of singular values of the SD matrix. A
way to present the method is from the modal expansion of the structural response:

{y(t)}= [Φ]{η(t)} (85)

where [Φ] is the eigenvectors matrix and {η(t)} is the vector of modal coordinates.
Using the definition of Correlation Function matrix one obtain the following expression:

[Ryy(τ)] = E
[
{y(t + τ)}{y(t)}T ]= lim

T→∞

1
T

∫ T

0
{y(t + τ)}{y(t)}T dt

= E
[
[Φ]{η(t + τ)}{η(t)}T [ΦT ]

]
= [Φ][Rηη(τ)][Φ]T

(86)
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where [Rηη(τ)] is the Correlation Function matrix of modal coordinates; E[•] is the
expected value operator. Taking the Fourier transform one can obtain the PSD matrix:

{Gyy(ω)}= [Φ][Gηη(ω)][Φ]H (87)

where {Gyy(ω)} is the SD matrix of the modal coordinates, which is both diagonal and
positive valued assuming that the modal coordinates are uncorrelated. Applying the
Singular Value Decomposition of the PSD matrix at a certain frequency ω leads to the
following:

{Gyy(ω)}= [U ][Σ][U ]H (88)

The comparison between Eq.(87) and Eq.(88) suggests that it is possible to identify
a one-to-one relationship between singular vectors and mode shapes; moreover, the
singular values are related to the modal responses and they can be used to define the
spectra of equivalent SDOF systems characterised by the same modal parameters as the
modes contributing to the response of the MDOF system under investigation.

Since the SVD provides the singular values arranged in descending order, near a
resonance the first singular value contains the information about the dominant mode at
that frequency. Moreover, since the number of nonzero elements in [Σ] equals the rank
of the PSD matrix at the considered frequency, this property can be used to identify
closely spaced or even coincident modes. In fact, the number of dominant singular
values (defining the rank of the output PSD matrix) at a certain frequency equals the
number of modes that give a significant contribution to the structural response at that
particular frequency [24]. Assuming that only one mode is dominant at the frequency ω ,
and that the selected frequency is associated to the peak of resonance of the kth mode,
the PSD matrix approximates to a rank one matrix with only one term on the right side
of Eq.(88):

[Gyy(ω)] = σ1{u1}{u1}H , ω → ωk (89)

In such a case, the first singular vector {u1} represents an estimate of the mode
shape of kth mode:

{φ̂k}= {u1(ωk)} (90)

and the corresponding singular value σ1 belongs to the auto spectral density function
of the equivalent SDOF system corresponding to the mode of interest. An equivalent
SDOF PSD function can be identified as the set of singular values around a peak that are
characterised by similar singular vectors. Because the SVD given by Eq.(88) does not
correspond completely to the theoretical decomposition of the SD matrix, see Eq.(44),
the FDD is always an approximate solution.
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In the first generation of FDD technique [35] only the natural frequencies and
associated mode shapes could be identified. The method was therefore enhanced by [36]
so that also damping ratios estimate could be extracted. The basic idea of this enhanced
version is to isolate the auto-spectral densities, near a resonance frequency (peak), that
can be associated to an equivalent SDOF PSD function. In order to extract this so-called
equivalent PSD bell function, the singular vectors associated to the singular values near
the resonance peack, are compared with {φ̂k}, through the so-called Modal Assurance
Criterion (MAC, [37]), defined as:

MAC(φi,φ j) =
|{φ H

i }{φ j}|2
(
{φ H

i }{φi}
)(
{φ H

j }{φ j}
) (91)

The singular values whose singular vectors are above a user-defined MAC rejection
level (typically around 0.8) define the equivalent SDOF PSD function. By definition,
the MAC is a scalar in the range [0,1]; it is equal to zero when the vectors under
comparison are orthogonal, and equal to 1 when the vectors differ by a scale factor
only. The inverse Fourier transform of the equivalent SDOF PSD function yields an
approximated correlation function of the equivalent SDOF system. Thus, an estimate of
the modal damping ratio is obtained in the time domain through a linear regression
on the logarithmic decrement. In a similar way, an estimate of the natural frequency
independent of the frequency resolution can be obtained through a linear regression on
the zero crossing times.

A further improvement of the algorithm is due to [38], and is known as Frequency-
Spatial Domain Decomposition (FSDD). The idea behind this version of the FDD is to
isolate the modal coordinates by modal filtering. An enhanced output PSD ∆Ĝe

yy,m is
obtained performing pre- and post-multiplication with a principal vector corresponding
to the mth natural frequency. In this way only the contribution from the considered
mode, and not from the other modes, defines the estimated modal response for the
considered mode.

∆Ĝe
yy,m(ωk) = {uH

1 (ωk)}{Gyy(ωk)}{uH
1 (ωk)} (92)

As for EFDD, the estimated SDOF PSD function can be taken back to time domain,
performing the inverse Fourier transform, obtaining the auto-correlation function
associated to the SDOF from which the damping ratio and a frequency resolution
independent estimate of the natural frequency. An example of a Singular Value plot is
shown in Fig.4a, while in Fig.4b the results extracted for a mode using FSDD are shown.

To sum up, the FDD method is a very popular, user friendly, frequency domain
based, non-parametric technique. One of the reasons of its popularity is due to the
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(a) Typical SV plot of the PSD matrix (from real mea-
surement data).

(b) SDOF bell function, associated auto correlation
function, portion used for the fit and results of the
fit for a mode of the system.

Fig. 4. Typical results of EFDD method

fact that one works directly on spectral densities, which are familiar objects to most
engineers. However, the method is more reliant on good quality data compared to SSI
methods (the variance of the estimates decrease with increasing length, resolution and
signal-to-noise ratio of the data), but can also be affected by close or complex modes of
the structure.

2.3.2 Stochastic sub-space identification

The Covariance-driven Stochastic Subspace Identification (SSI-cov) method and the
Data-driven Stochastic Subspace Identification (SSI-dat) address the stochastic realisa-
tion problem, that is to say the problem of identifying a stochastic state-space model
from output-only data [33]. In the following only the version of SSIcov as presented in
[24] is reported. In this version of the algorithm all the measured output channels l
are used in the calculations, as opposed to the algorithm reported in [33] where the
covariances between the outputs and a limited set of reference outputs, r < l, are used.
The sthocastic sub-space model introduced in Eq.(66) describes the problem. It is
repeated here for convenience:

{ṡk+1}= [A]{sk}+{wk}
{yk}= [C]{sk}+{vk}

The SSI-cov method can be classified as a time-domain, parametric, covariance
driven procedure for OMA. It starts from the computation of output correlations:

[R̂i] =
1

N− i
[Y(1:N−i)][Y(i:N)] (93)
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where [Y(1:N−i)] is obtained from the data matrix [Y ] ∈ Rl×N by removal of the last i
samples (l is the number of output, N is the number of data points), while [Y(i:N)] is
obtained from [Y ] by removal of the first i samples; [R̂i] is the estimate of the correlation
matrix at time lag i (also known as number of block row) based on a finite number
of data. The estimated correlations at different time lags are gathered into the block
Toeplitz matrix [T1|i]. A block Toeplitz matrix is a special block matrix, which contains
blocks that are repeated down the diagonals of the matrix.

[T1|i] =




[R̂i] [R̂i−1] . . . [R̂1]

[R̂i+1] [R̂i] . . . [R̂2]
...

...
. . .

...
[R̂2i−1] [R̂2i−2] . . . [R̂i]




(94)

Each correlation matrix has dimensions l× l; thus, the block Toeplitz matrix has
dimensions li× li. Applying the factorisation property given by Eq.(75) to the block
Toeplitz matrix we obtain:

[T1|i] =




[C]

[C][A]
...

[C][A]i−1



[
[A]i−1[G] . . . [A][G] [G]

]
= [Oi][Γi] (95)

[Oi] =




[C]

[C][A]
...

[C][A]i−1




(96)

[Γi] =
[
[A]i−1[G] . . . [A][G] [G]

]
(97)

where [Oi] ∈ Rli×n and [Γi] ∈ Rn×li are the observability matrix and the reversed
controllability matrix, respectively. The number of block rows i has to fulfill the
condition li > No, where No is the model order, and if the system is observable and
controllable, the rank of the li× li Toeplitz matrix equals No, since it is the product of a
matrix with N0 columns, [Oi], and a matrix with No rows, [Γi]. Assuming that the order
of the system has been estimated and taking into account that the number of outputs l is
a constant of the identification problem, a value for i larger than or equal to No/l can be
set. The adopted value for i is basically a user’s choice and it is definitely based on a
physical insight of the problem.
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The SVD of the block Toeplitz matrix provides its rank, which equals the number of
nonzero singular values:

[T1|i] = [U ][Σ][V ]T =
[
[U1] [U2]

]
[

[Σ1] [0]
[0] [0]

][
[V1]

T

[V2]
T

]
(98)

If the zero singular values and the corresponding singular vectors are omitted,
Eq.(98) yield:

[T1|i] = [Oi][Γi] = [U1][Σ1][V1]
T (99)

where the matrices [U1] ∈ Rli×No and [V1]
T ∈ RNo×li and the diagonal matrix [Σ1] ∈

R+No×No holds the positive singular values arranged in descending order. The matrices
[Oi] and [Γi] can be computed by splitting the SVD in two parts as follows:

[Oi] = [U1][Σ1]
1/2[T ] (100)

[Γi] = [T ]−1[Σ1]
1/2[V1]

T (101)

where [T ] ∈ Cn×No is a non-singular matrix which plays the role of a similarity transfor-
mation applied to the state-space model (see Eq.(59)); [T ] can simply be set equal to the
identity matrix [T ] = [I]. Taking into account the definitions of observability matrix
(Eq.(96)) and controllability matrix (Eq.(97)), the output influence matrix [C] and the
next state-output covariance matrix [G] can be easily obtained as the first l rows of [Oi]

and the last l columns of [Γi], respectively. Written in Python notation:

[C] = Oi[ : l, : ] (102)

[G] = Γi[ : , l : ] (103)

The state matrix [A] can be computed according to different approaches. One is
based on the decomposition property of the one-lag shifted Toeplitz matrix:

[T2|i+1] =




[R̂i+1] [R̂i] . . . [R̂2]

[R̂i+2] [R̂i+1] . . . [R̂3]
...

...
. . .

...
[R̂2i] [R̂2i−2] . . . [R̂i+1]



= [Oi][A][Γi] (104)

Introducing Eq.(100) and (101) into Eq.(104), taking into account that [T ] = [I], and
solving for [A], the following expression for the state matrix is obtained:

[A] = [Oi]
+[T2|i+1][Γi]

+ = [Σ1]
−1/2[U1]

T [T2|i+1][V1][Σ1]
−1/2 (105)

where (•)+ denotes the Moore-Penrose pseudo-inverse of a matrix.
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As an alternative, the state matrix [A] can be estimated by exploiting the shift
structure of the observability matrix [33].

[A] = [O↑i ]
+[O↓i ] (106)

where [O↑i ]
+] and [O↓i ] are obtained from the matrix [Oi] by removal of the last and the

first l rows, respectively.

Once the matrix [A] is found the identification problem is theoretically solved: the
system order N is found as the number of non-zero singular values in Eq.(98) and the
system matrices [A], [G], [C] can be computed as in Equations (50), (51) and (53) or (54).
The fourth system matrix [R0] is simply the zero-lag output covariance matrix.

The two matrices [A], [C] are sufficient to compute the modal parameters. As
discussed in section 2.2.3), the Eigenvalue Decomposition (EVD) of the matrix [A]
provides the modal parameters of the system (see Eq.(58)), in fact, the discrete poles
and the observed mode shapes are computed as:

[A] = [Ψ][Λ][Ψ]−1

[Φ] = [C][Ψ]

After the conversion from discrete-time to continuous-time, which is found by inserting
the eigenvalue decomposition of the continuous state matrix [Ac] into Equation (61):

[A] = e[Ac]∆t = e[Ψ][Λc][Ψ]−1∆t = [Ψ]e[Λc]∆t [Ψ]−1 = [Ψ][Λd ][Ψ]−1 = [Ψ]

[. . .
µk . . .

]
[Ψ]−1

The discrete eigenvectors are equal to the continuous ones and the discrete eigenval-
ues, µk are related to the continuous eigenvalues by:

µk = eλk∆t ⇔ λk =
ln(µk)

∆t

The natural frequencies, the damped modal frequencies, and the damping ratios can
then be estimated:

fn,k =
|λk|
2π

fd,k =
Im(λk)

2π

ξk =
Re(λk)

|λk|
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As can be seen the method needs the user to specify some parameters for the
analysis: the model order No, and the time lag i. Theoretically the system order No can
be determined by inspecting the number of non-zero singular values of Eq.(98). In
practice however, the estimated covariance Toeplitz matrix [T1|i] is affected by noise
leading to singular values that are all different from zero. As a consequence, even
if a minimal realisation of a system of order No can be theoretically identified, the
determination of the correct order of the system is usually a very complex task. Thus,
the rank of [T1|i] is “approximately” No, and the truncation of the smallest singular
values leads to a certain error in the estimation of the statespace matrices. As explained
in [33], various noise sources, such as modeling inaccuracies and measurement noise,
leads to the absence of clear gaps in the singular values.

Practical experience with parametric models in modal analysis applications has
shown that it is better to over-specify the model order No and to eliminate spurious
numerical poles afterwards. The use of stabilization diagrams is a great tool to achieve
this goal. The poles corresponding to a certain model order are compared to the poles of
a one-order lower model. If the eigenfrequency, the damping ratio and the related mode
shape differences are within preset limits, the pole is labelled as a stable one.

In case of the SSI-cov method, an efficient construction of the stabilization diagram
is achieved by computing the SVD of the covariance Toeplitz matrix, Eq.(98), only once.
Models of different order are then obtained by including a different number of singular
values and vectors in the computation of Oi and Γi, Eq.(96) and Eq.(97), from which the
system matrices and the modal parameter are deduced. An example of stabilization
diagram is shown in Fig.5.

Typical stability requirements are expressed by the following inequalities:

| f (n)− f (n+1)
f (n)

< 0.01

|ξ (n)−ξ (n+1)
ξ (n)

< 0.05

1−MAC({φ(n)},{φ(n+1)})< 0.02

where (n) and (n+1) are the nth and nth +1 model order, f is the natural frequency, ξ

is the damping, and φ is the mode shape vector. In other words the scatter between the
estimates of the modal properties at two subsequent model orders has to be lower than a
user defined limit value for a pole to be labelled as stable.
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Fig. 5. Typical Stabilisation Diagram. The modes of the system appear as stable lines of
poles for increasing model order.

The other parameter that plays an important role in the identification process is the
number of block rows, i, (also called time lag or time shift). It has been shown that the
estimates of the modal properties (especially damping ratios) are sensitive to variations
of the parameter i. As remarked in [39] if a system has a low eigenfrequency compared
to the sampling frequency, and if i has a low value, it is possible that only few cycles
of the response are included in the block matrix (time lag), and as a consequence the
eigenfrequency is not well identified. The authors define a "rule of thumb" to determine
a minimum value of i:

i≥ max
(

fs

2 f0
;

No

l

)
(107)

where fs is the sampling frequency, f0 the lowest frequency of interest, No is the
maximum model order and l is the number of output.

However Eq.(107) ensures only that the system is identifiable but does not provide a
range of values where quality of the fit and clearness of the stabilisation diagram are
optimised [40]. In fact, generally, larger values of i are necessary in order to achieve a
convergence in terms of damping estimations. Usually, sensitivity analysis are performed
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to find optimised modal parameter estimates. For instance, once defined the model order,
the effects induced by different choices of i can be analysed, as done in [40]. Other
helpful recommendations for finding the best choice for the user defined parameters i
and N can be found in the literature [41, 42, 40, 18].
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3 Application of ambient-vibration testing

In this chapter the benefits of ambient vibration testing are shown trough some appli-
cations. Firstly, to demonstrate the potential and good functioning of the developed
module, a benchmark case, where the modal properties of the system are known on
beforehand, is analysed. Then three very different applications of ambient vibrations
tests are presented and discussed
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3.1 PyOMA: a Python module to perform Operational Modal
Analysis

As already mentioned, the author developed a set of Python functions that allow for fast
analysis of data from ambient vibration tests. These functions have been uploaded and are
hosted on a public repository on GitHub (url: https://github.com/dagghe/PyOMA)
under a GNU General Public License.

GitHub is a popular provider of internet hosting for software development. Its main
purpose is to facilitate software development, allowing users to collaborate on projects
offering distributed version control, source code management functionalities and other
collaboration features. GitHub offers its basic services free of charge, and free accounts
are commonly used to host open-source projects.

The code has been made open-source with the hope that other individuals can
help in making improvements and expanding its functionalities. A major advantage to
open-source code is in fact the ability for a variety of different people to edit, adjust,
improve the code, and fix problems and errors that have occurred. Naturally, since there
are more people who can edit the material, there are more people who can help make the
information more credible and reliable. The open-source mission statement promises
better quality, higher reliability, more flexibility and lower cost.

Fig. 6. Flowchart for the use of the module’s functions.

For a complete description of the functions (input parameters, returned output) refer
to the wiki pages at the provided web page, where all the functionalities of the module
are described.
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The case study is a simple 5 DOF system, taken from [28]. It is shear type
frame (the floor stiffness is assumed significantly larger than the stiffness of the
columns) with lumped mass m = 25.91 [Ns2/mm] at each floor, and same storey stiffness
k = 10000 [N/mm] to all stories. The mass and stiffness matrix have the structure:

[M] = m




1
1

1
1

1



, [K] = k




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




Solving the eigenvalue problem, ([M]−λ [K])[Φ] = 0, gives the (undamped) natural
frequencies and the mode shapes of the system. The damping is added considering a
constant, proportional damping ratio of ξk = 2.0% applied to all modes. Accordingly,
the damping matrix is obtained finding first the diagonal entries of the modal damping
matrix and then finding the system’s damping. In Tab.1 the exact results for the system
are reported. Since OMA methods allow to find only un-scaled mode shape (the mass
matrix is not known), in this example the mode shapes have been normalised to unity
maximum displacement.

Table 1. Exact values of frequencies, damping and mode shapes of the system

fk [Hz] ξk [%] φ1 φ2 φ3 φ4 φ5

0.890 2.0% 0.2846 -0.7635 1 0.9190 -0.5462
2.598 2.0% 0.5462 -1 0.2846 -0.7635 0.9190
4.095 2.0% 0.7635 -0.5462 -0.9190 -0.2846 -1
5.261 2.0% 0.9190 0.2846 -0.5462 1 0.7635
6.000 2.0% 1 0.9190 0.7635 -0.5462 -0.2846

The artificial signals, corresponding to the acceleration time history at each floor can
be found following multiple approaches. One of the most used methods to solve the
equation of motion is Newmark’s integration method (see [28]). However, it is also
possible to solve the system using state-space models introduced in Section 2.2.3. For
instance, PyOma provides a function, EXdata(), that generates the simulated data of
this system using a state-state approach, and is very computational efficient. In order to
satisfy the broadband excitation requirement, all the 5 DOF are excited by a Gaussian
white noise input. The results from each response are then polluted with a random noise
source (the signal-to-noise ratio is SNR = 10). The time histories were generated with a
sampling frequency of fs = 100 Hz, and the duration of the simulation was set to 30
minutes, see Fig.7.
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Fig. 7. Time history of the accelerations at each floor

After the dataset has been imported (either using the module’s function or importing
the txt file), preliminary operations such as detrend, decimation, normalisation may be
performed, if needed. For this example the data has been decimated (by a factor of 5),
given that the sampling rate is 100 Hz and the highest frequency is ' 6 Hz. The pyOMA
module’s functions can now be used to process and extract the modal information. Firstly
the standard FDD algorithm is performed on the artificial data simply by calling the
function: FDDsvp(data, fs, df=0.01, pov=0.5, window=’hann’). The needed parameters
by the function are the dataset and the sampling frequency. The optional parameters
allow to select the desired frequency resolution (for the PSD) and setting the options for
the window. The PSD matrix is estimated using Welch’s method, in this case using a
Hanning filtering window, with a 50% overlap between the segments.

In the singular values plot, reported in Fig.8a, the five peaks corresponding to the
natural frequencies of the system can easily be identified. Using the standard FDD
algorithm [35], only frequencies and mode shapes can be extracted. In order to get
also damping estimates (and frequencies estimates independent from the frequency
resolution of the PSD) the so-called Enhanced Frequency Domain Decomposition [36],
and the Frequency Spatial Domain Decomposition, variation of the algorithm may be
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(a) Singular Values plot of the PSD matrix
(b) MAC matrix between exact mode shapes and es-
timated according to FSDD method

Fig. 8. Results of the identification

used [38]. To run the frequency domain identification algorithms with PyOMA we can
simply run the functions:

– FDDmodEX(freq, FDD[1]) to run FDD
– EFDDmodEX(freq, FDD[1], method=’EFDD’, MAClim = 0.95, npmax=25, sppk=3)

to run EFDD
– EFDDmodEX(freq, FDD[1], method=’FSDD’, MAClim = 0.95, npmax=25, sppk=3)

to run FSDD

The arguments of the functions f req and FDD[1] are respectively an array containing
the frequency values identified in the SV plot, and a dictionary containing the results
from the previously called function FDDsvp(). The other parameters used for EFDD
and FSDD, are the MAC rejection limits (to extract the SDOF bell function), and the
number of peaks to consider, npmax, and to skip, sppk, when calculating the modal
properties from the autocorrelation functions.

In Fig.9 the results for the first and second mode extracted according the EFDD and
FSDD method are shown for comparison. Tab.2 reports the results of both methods
in terms of both natural frequencies and damping ratios, moreover the mode shapes
returned by FSDD are also reported. The great accordance between the exact mode
shapes of the system and the results extracted from the identification algorithms, is also
evidenced by the MAC matrix shown in Fig.8b.

When it comes to Time domain methods, PyOMA allows to perform both SSI-dat
[32] and SSI-cov [33] algorithms. To analyse the data with these time domain parametric
procedures one can run the following functions:

– SSIcovStaDiag(data, fs, br, ordmax=None, lim=(0.01,0.05,0.02,0.1)) to run SSI-cov
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(a) EFDD (b) FSDD

Fig. 9. Results of the identification

– SSIdatStaDiag(data, fs, br, ordmax=None, lim=(0.01,0.05,0.02,0.1)) to run SSI-dat

For these functions the needed parameters are the dataset, the sampling frequency and
the number of block rows. The optional parameters permit to define the maximum
model order, and the limit values to be used for the stability criteria of the poles in the
stabilisation diagram, see Sec. 2.3.2. For this simulated dataset the number of block
rows was set to br = 15, and the maximum model order was set to 30. Both methods
return very clear stabilisation diagrams, where the alignment of the stable poles is very
clear and easy to read, see Fig.10.

Once the identified frequencies have been collected in an array, it is possible to
extract the estimates of the modal properties. To do so one can run the function
SSIModEX(freq, SSI[1]), where f req is the array collecting the identified frequency
lines in the stabilisation diagram, and SSI[1] is a dictionary containing the results from

Table 2. Results of the identification in the frequency domain

EFDD FSDD
fk [Hz] ξk [%] fk [Hz] ξk [%]

0.887 2.96% 0.887 2.94%
2.595 2.02% 2.595 2.01%
4.107 1.80% 4.107 1.78%
5.280 1.67% 5.280 1.66%
5.977 1.63% 5.977 1.62%

φ1 φ2 φ3 φ4 φ5

0.287 0.737 1 0.916 0.530
0.546 1 0.283 -0.758 -0.895
0.752 0.558 -0.881 -0.288 1
0.927 -0.291 -0.534 1 -0.795

1 -0.889 0.745 -0.546 0.298
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(a) SSI-cov (b) SSI-dat

Fig. 10. Stabilisation Diagrams

the previously called functions (SSIcovStaDiag() and/or SSIdatStaDiag(). The estimated
frequencies and damping ratios found with the two methods are reported in Tab.3,
moreover the mode shapes estimated with SSI-cov are also reported.

Table 3. Results of the identification in the time domain

SSI− cov SSI−dat
fk [Hz] ξk [%] fk [Hz] ξk [%]

0.889 2.49% 0.889 2.58%
2.598 2.12% 2.598 2.13%
4.095 1.89% 4.094 1.91%
5.266 2.03% 5.267 2.01%
5.996 2.00% 5.994 2.03%

φ1 φ2 φ3 φ4 φ5

0.283 0.750 1 0.908 0.552
0.533 1 0.304 -0.754 -0.937
0.750 0.560 -0.904 -0.284 1
0.926 -0.292 -0.552 1 -0.791

1 -0.901 0.767 -0.546 0.297

From a comparison of the results in Tab.1, Tab.2 and Tab.3, it is clear that both FDD
and SSI methods return very good estimates of the natural frequencies. Moreover, the
mode shape estimates show also very good agreement with the exact shapes. However,
SSI methods stem for the more precise estimates of the damping ratios, whereas FDD
methods are more susceptible to frequency resolution, duration of the acquisition, user
defined parameters, noise and other issues.
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3.2 The A-24 motorway case study

Bridges are a classical example of civil engineering structures that benefit from the
advantages of ambient vibration tests (AVT). As already underlined, one of the biggest
advantages of OMA methods over EMA methods, is that structures can be tested while
in use without the need to interrupt their functions. For instance, the vehicular traffic on
a bridge would only have to be limited to permit the safe operations of the technicians at
work, without the need of completely closing it off. This is a very attractive feature for
infrastructures of strategic importance, where the interruption of the service heavily
affects the users, and is usually unwanted by the managing body because of the costs it
implies. Furthermore all the logistic hassles and costs related to bringing and operating
the massive devices needed to control the input forces given to the structure in forced
vibration tests (FVT) are completely avoided. Not to mention the fact that the excitation
devices are normally very massive and therefore need to be accounted for when studying
the dynamic behaviour. For all these reasons, bridges are probably the most studied
kind of structures since the advent and consolidation of the more recent and advanced
identifications techniques [18, 43, 20, 41, 44].

After the first pioneering ambient-vibration tests [45, 46, 47, 48], the development
of more sophisticated identification algorithms have been of help in spreading the
use of modal testing throughout the academic community. Moreover, the incredible
technological advancements of the two last decades have contributed to making the
installation and operation of temporary or permanent monitoring systems more practical
and economical. There is, however, an incongruous discrepancy between the number of
academic investigations on the one hand, and the adopted and codified procedures for
the inspection of bridges, maintenance, and monitoring by governments and managing
bodies on the other hand. The mistrust of governments and managing bodies towards
the adoption of non-desctructive examination (NDE) techniques based on dynamic
measurements may be related to the absence of codified procedures or publicly available
guidelines. The field of academic investigations is still felt hazy, abstract and a waste of
money by the government officials when it comes to practical applications. The tragic
recent events of Genoa’s Morandi bridge collapse have nevertheless contributed in rais-
ing the interest towards temporary and permanent ambient-vibration based monitoring
solutions. The need of controlling a huge number of structures that are reaching their
critical age, and also the necessity of validating the performance of new structures with
high levels of complexity, call for a widespread use of dynamic testing and monitoring.
In this context researchers should aim at developing straightforward, reliable methods
capable of convincing that dynamic-based NDE techniques give useful knowledge,
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which surely complete and do not supplant visual inspections.

The appended paper delivers a reliability-based method for the assessment of the
MoEs of simply supported concrete girders from dynamic identification. The method is
quite simple and exploits the correlation between the natural frequencies of the first
bending modes and the MoE in simply supported beam-like structures. Firstly, the
concrete MoEs were assessed using both static tests on the whole bridge stock and tests
on concrete samples extracted by core drilling. This set of results provides the prior
state of knowledge about the considered bridge class. Furthermore, the identified natural
frequencies update the prior probability distribution of the MoEs using Bayes inference.
The resulting probability of exceeding a specific MoE value expresses the degree of
belief of the inspector in the obtained MoE. The posterior probability, compared to a
proper threshold, could be used in decision-making processes when prioritising the
interventions in the maintenance plans.

Fig. 11. Location and views of the A24 "Autostrada dei Parchi" motorway
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In 2019 the University of L’Aquila carried out a thorough testing campaign on a
stock of viaducts belonging to the A24 motorway "Strada dei Parchi" in Italy [49, 50].
The A24 motorway was built during the 70s of last century, it connects Rome to Teramo,
crossing the Appennines and passing through "Gran Sasso and Monti della Laga"
National Park. The complex morphology of the ground necessitated the construction of
a large amount of viaducts, some of which have over 50 spans, see Fig.11. Several of
these viaducts are now ageing and are in a non-optimal state of preservation, especially
the piers.

Both dynamic and static tests were conducted, and in addition some concrete
samples were extracted and tested in the lab. Selected spans, labelled according to the
name of the viaduct they belong to, were tested: Biselli, Cerchiara No. 4, Cerchiara
No. 7, Cretara, Le Grotte, San Nicola and Temperino. The tested stock belongs to
the part of the motorway facing the Adriatic side of the Appenines. All the bridges’
spans have the same design and are nominally identical: the concrete girders have
a trapezoidal cross-section, 2.3m high with two cantilevered wings 3.85m wide, see
Fig. 12, prestressed by bonded post-tensioned tendons. The are two types of bearings
supporting the girder: rack and roller supports, or pot rubber bearings. A pair of piers,
whose centre distance is about 40 m, sustains each bridge span. The concrete piers have
a hollow cross-section, reinforced at their corners.

Fig. 12. Cross-section

The notorious L’Aquila earthquake of 2009 caused damages to some girders due
to the excessive slipping of the supports. This induced the managing body to install
anti-sliding devices, which consist of a steel frame around the original supports 2-5 mm
below the underside of the deck, to all girders with rack and roller supports.

The AVT were conducted with ten force balanced accelerometers arranged on two
lines in correspondence with the inclined webs of the box girder. The first two and
the last two accelerometers were placed close to the expansion joint to investigate
the response of the bearings. The tests were carried out under similar environmental
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conditions so that the influence of temperature and humidity on modal parameters can be
considered negligible. The testing days were sunny and the temperature was on average
15°C. The time series is about 40 minutes long. The processing of the acquired data
allowed to identify at least three modes in the bandwidth 0−10Hz for all the bridges: a
bending mode at nearly 2.5Hz, a torsional mode at almost 6Hz and a second torsional
mode at approximately 8.5Hz.

Even though the bridges are identical in design, they manifested a varied dynamic
response, imputable to several factors. Some discrepancies may originate from when
the bridges were constructed, due to geometrical irregularities and unlike concrete
curing. Others may descend from the time-degradation, soil-substructures interactions
and other modifications in the boundary restraints, like the substitution of the original
rack and roller bearings with multi-directional pots. The first bending mode shapes are
negligibly affected by the specific bearing, and the corresponding natural frequencies
have a marked dependence on the values of the MoE, obtained from static load tests
and tests on the concrete samples. The Least-Squares fit, see Fig. 13a, between the
results from static load tests and the first natural frequency matches with the expression
of a simply-supported beam model in Equation (108). Equation (108) presents the
expression of the natural frequency of the first bending mode and that of the two
torsional frequencies corresponding to the first two torsional modes with extreme
rotation prevented.

f1,theor. =
π

2l2

√
EI
m

f2,theor. =
1
2l

√
GJ
Iα

f3,theor. =
1
l

√
GJ
Iα

(108)

On the other side, the second mode shape, which is mainly torsional, is likely to be
more sensitive to the bearing’s state of preservation. This fact induced Aloisio [49] to
endeavour to estimate the values of two equivalent torsional springs representative of the
actual restraint conditions. He exploited the detected discrepancies between analytical
and experimental mode shapes and estimated the equivalent torsional spring yielding the
maximum correlation between the modes. The analytical mode shape is the solution of
the equation of motion for free torsional vibration, with warping stiffness and warping
inertia both neglected. The obtained values reported as the ratio between torsional
stiffness of the boundary spring and the torsional stiffness of the beam cross-section
yield the estimate of the vertical restraint offered by the two different typologies of
bearings [49]. This observation corroborates the fact that an inspection of the mode
shapes from a dynamic test can yield very useful information.

Among the bridge population under consideration, Le Grotte and Temperino bridges
present higher MoEs, but lower frequencies. The MoEs from static load tests are likely
representative of the actual moduli, and other phenomena, not related to the quality of
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(a) first (bending) mode (b) second (torsion) mode

(c) third (torsion) mode

Fig. 13. Correlation between the elastic modulus and the natural frequencies of the first three
modes. The dashed lines indicate the interpolation curves; The solid lines the theoretical
predictions according to Equation (108). The grey region indicates the confidence bounds
(+2σ/−2σ ) of the Least Squares fit.

concrete, may have lowered the identified natural frequencies. This observation supports
the need for probabilistic rather than deterministic models when assessing the MoE
from the natural frequencies. The outcomes of dynamic identification can properly drive
probabilistic, not deterministic, inferences about the state of the bridge, which could be
improved by additional information about the bridge, possibly using Bayesian updating
methods. The prediction of the two torsional frequencies is widely inaccurate. For this
reason, the authors did not report the curve derived from Equation 108, which stands far
beyond the experimental findings. The analytical prediction largely overestimates the
natural frequencies: in the considered cases, the bearings are deformable and allow
significant rotation, as already discussed [49].

At this point the authors attempted to deliver a Bayesian updating method for the
probabilistic assessment of the concrete’s MoE values. A common interpretation of
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Bayes’s theorem is that it gives us a way to update the probability of a hypothesis, H, in
light of some body of data, D [51]. Bayes’s theorem, in its general form and in the one
adopted in this application, can be written as:

P(H|D) =
P(D|H)P(H)

P(D)
; P(E < Ê| f < f̂ ) =

P( f < f̂ |E < Ê)
P( f < f̂ )

P(E < Ê) (109)

where:

– P(H) is the probability of the hypothesis before we see the data, called the prior
probability.

– P(H|D) is what we want to compute, the probability of the hypothesis after we see
the data, called the posterior.

– P(D|H) is the probability of the data under the hypothesis, called the likelihood.
– P(D) is the probability of the data under any hypothesis, called the normalising

constant.

In this application P(E < Ê| f < f̂ ) is the posterior probability, i.e. the probability of
observing an MoE below a certain treshold, E < Ê, if the expected first natural frequency,
f , is below the measured one, f̂ ; P( f < f̂ |E < Ê) is the likelihood distribution; P(E < Ê)
is the prior; P( f < f̂ ) is the normalising constant.

The authors assumed a normal distribution to describe the statistics of the MoEs
and natural frequencies: P(E)≈N (µE ,σE), and P( f )≈N (µ f ,σ f ), where µE , µ f

and σE , σ f are the mean and variance of E and f respectively. The bivariate Normal
distribution describes, instead, the likelihood of observing certain natural frequencies
given the MoE values: P(E, f )≈N ({µ}, [Σ]), where {µ} and [Σ] are:

{µ}=
[

µE

µ f

]
=

[
26885.714

2.684

]
(110)

[Σ] =

[
σ2

E ρσEσ f

ρσEσ f σ2
f

]
=

[
53418095.238 −966.540
−966.540 0.128

]
(111)

Figure 14 represents the density and cumulative probability distributions (PDF,
CDF) of P(E, f )≈N ({µ}, [Σ]). The dots indicate the experimental couples (E- f ).

Assuming some threshold values, Equation (109) can then be used to calculate
the posterior probability by varying both Ê and f̂ . The resulting contour plot, derived
from the Bayesian updating of the probability distribution in Figure 14b, is displayed
in Figure 15a. Figure 15a reveals the probability of observing MoEs lower than the
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(a) Bivariate normal density distribution (b) Bivariate cumulative distribution

Fig. 14. Distributions of the elastic moduli and natural frequencies of the first bending
modes.

(a) Posterior distribution
(b) Superposition of the prior distribution (dash-dot)
and two section cuts of the posterior in (a)

Fig. 15. Results of the Bayesian updating.

threshold Ê, given natural frequencies below a specific threshold f̂ . Thus, Figure 15a
must be interpreted through section-cuts, as shown in Figure 15b. For this reason, the
CDF approaches one for every value of the natural frequency, while the CDF in Figure
14b reaches one only when both thresholds of the MoE and natural frequency raise. It is
worth to notice in Figure 15a, the stationary behaviour of the posterior probabilities for
frequency values below 2Hz and exceeding 4Hz, also depicted in Figure 15b by the grey
shaded area. Specifically, the authors represented two sample cases: the probabilities of
observing MoE given estimated frequencies, f̂ , below 2.5Hz and 2.9Hz, indicated by
the red solid and dashed line, respectively in Figure 15a. The black dash-dot line, in
Figure 15b, on the other hand, represents the CDF of the prior probability P(E < Ê). In
the considered case, the experimental evidence, given by the estimated frequencies,
always yields a probability reduction. Assuming a specific threshold Ê = 23000 MPa,
indicated by the blue vertical dashed line in Figure 15b. The probability of observing
E < 23000 MPa is 0.3. The estimation of a natural frequency below 2.5 Hz determines
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a decrease to 0.17, i.e. the inspector would obtain a lower probability of observing
E < 23000 MPa. If the natural frequency stands below 2.9 Hz, the probability would
further reduce to 0.10.

In conclusion, dynamic identification provides useful information; Specifically,
the case study enlightened two aspects: the inspection of the mode shapes returns
knowledge about potential malfunctioning of the bearings, and the natural frequency of
the first bending is correlated to the MoE value. This latter evidence drove the authors
to develop a reliability-based estimation of the MoE in the context of maintenance
plans. The first step involves an experimental campaign: the dynamic identification
of the entire bridge stock. The controller must examine the resulting mode shapes to
evidence possible anomalies, which would require more in-depth investigations. If no
abnormalities emerge, the inspector must define a threshold for the MoE and estimate
the posterior probability of observing MoEs higher than the limit, given the estimated
frequency value. If the probability surpasses the accepted reliability threshold, the
bridge span could be declared as verified. If not, further investigations, like tests on
concrete specimens, must guide a careful decision-making process. The presented
method might be elementary, but it attempts to comfortably include NDE techniques in
the world of maintenance, which lacks the regular presence of dynamic identification in
the decision-making process.

Recent years have evidenced a worrying state of deterioration of existing bridges
in Italy. There is a widespread lack of knowledge about these structures due to the
absence of historical project documentation, the lack of inspections on a timely basis
and the need for ordinary and extraordinary maintenance interventions. Currently visual
inspection activities are the only assessment methods in most parts of the country. These
methods, although essential to estimate a bridge’s state of deterioration, could and should
be completed by the undoubtedly more objective data coming from systematic dynamic
tests. This would guarantee a greater control over the structural materials’ durability.
Needless to say, the managing bodies need to be more rigorous in the follow-up of the
ordinary maintenance interventions, if tragedies like the one in Genoa are to be avoided.

55



3.3 The Palisaden CLT building case of study

Even though the popularity of timber structures has grown a lot during recent years,
the engineering knowledge concerning the dynamic behaviour of tall timber buildings
is still limited. In taller, more slender and flexible timber buildings, serviceability
considerations associated with lateral movement assume increased importance compared
to low-rise buildings, where strength is usually the governing design criterion. For
instance, the wind imposed forces on a tall and slender building, while they may not
damage any structural element, may cause deformation or vibration in the building which
could cause discomfort to occupants, damage non-structural elements, or otherwise
prevent the normal operation of the building [52].

Both recent technological developments and increased use of engineered wood
products reflect in deficiency of current timber codes and lack of knowledge by
professional engineers. As engineers strive to take multi-storey timber buildings to new
heights, it is necessary to understand how existing buildings, and current construction
systems, are behaving in-service, and how their performance relates to what predicted at
the design stage [53].

Probably the first ambient vibration tests (AVT) on a timber-frame building was
performed by Ellis and Bougard [54]. The tests were conducted on a full-size, six-storey
timber framed structure constructed inside BRE’s Cardington laboratory. They performed
both Forced Vibration Tests (FVT) and AVT at different stages of construction, which
allowed to evaluate the contribution to the global stiffness of the timber frame alone,
the contribution of the staircase, and that of the finishing and cladding (bricks). The
AVT were performed using a long-range laser interferometer developed for measuring
vibrations in-line with the laser beam [54], and the modal properties were extracted
through the peak picking (PP) method. The results of their research indicates that the
building’s non-structural components play a large role in the contribution to the lateral
stiffness of the building at service levels.

More recently, some other researcher have attempted to extract the modal properties
of mid-rise timber buildings [53, 52, 55, 56] using OMA methods. The research
conducted by T. Reynolds and colleagues constitutes probably the largest database of
AVT performed on timber structures in Europe to date. They tested different types
of timber structural archetype: post and beam, timber-framed, pure CLT and hybrid
timber-concrete structures. For most of the buildings tested the random decrement
(RD) technique was used to extract the autocorrelation function, then the Ibrahim Time
Domain (ITD) method was used to extract modal parameters from the set of random
decrement signatures. It is also worth to mention the tests performed in Germany and
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Austria on eight timber observation towers (with a height up to 45m), a 100m tall wind
turbine and on three multi-storey residential timber buildings (with a height up to 26m)
[56]. The findings of all these testing campaigns have allowed to assess the simplified
relationship between height and natural frequency for multi-storey buildings given in
Eurocode 1 [57]. The 14-storey, 50m tall, Treet building in Bergen, already tested by
Reynolds, has also been re-tested by two students from NTNU in their master thesis
[58]. Along with Treet they also tested a 9-storey CLT building in Trondheim, where the
ground floor is made of concrete and the superstructure of CLT panels.

In North-America, where there is a great tradition in wooden frame housing, efforts
have been made to understand the dynamic behaviour of smaller low-rise residential
buildings [59, 60]. These researches, which performed both AVT and FVT using shake-
table testing, highlighted the highly non-linear response of timber framed shear-walls to
the amplitude of the excitation and motion induced by FVT. More recently, in Canada,
researchers from FPI innovation [61, 62], and in the U.S., researchers from Oregon
University [63], have tested multy-storey residential and commercial timber structures,
up to six storey, using OMA methods.

The results of these campaigns have shed some light on the dynamic behaviour of tall
timber buildings providing viable information concerning stiffness and damping of the
tested structures to designers and stakeholders. However, in order to support the current
growing trend of larger, taller and more complex timber buildings, not only an update
of the building codes is needed (and of course a higher volume of engineered wood
products production), but also skilled carpenters, tradespeople and designers with proper
education and training on timber constructions. Thus, also regulation and guidelines
in the area of execution and construction supervision of timber buildings should be
improved [64]. Interviews, conducted during autumn 2014 by I. Edskar [65], with
structural engineers/designers, suppliers, and development managers in Scandinavia,
highlighted a need to raise the awareness towards the both the limits and potentials of
mid- and high-rise buildings made with engineered wood products, especially in relation
to their dynamic behaviour and serviceability limit states.

To help filling this gap in knowledge, the authors present the dynamic identification
of an eight-storey CLT building with a CLT core. The estimate of the modal parameters
of multi-storey CLT buildings’ response under operational conditions from in situ
tests is useful to understand the gap between the possibly linear dynamic response to
service loading and nonlinear behaviour under seismic excitation. The main objectives
of the presented research were: (i) the estimation of the modal parameters of an
eight-storey CLT building from Output-Only dynamic identification; (ii) the updating of
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an elementary analytical model of the building to the experimental modal parameters;
(iii) the assessment of the role of the connection non-linearity on the building’s dynamic
response in operational conditions; (iv) the derivation of simplified and practice-oriented
correlations useful for the assessment of natural frequencies of CLT buildings at a
low-level response.

On October 25, 2019, the authors tested a student housing building located in the
NMBU campus, in Ås, Norway, Fig.16.

Fig. 16. Location and views of Palisaden building.

The building has eight storeys with a total height of 26.9 m and is rectangular in
plan (23.21 m × 15.11 m), with a CLT core at the centre. The structure is built using a
platform frame approach, meaning that walls are erected and braced, before floor panels
are lowered onto them and fixed. A plan view of the building is shown in Fig. 17. The
CLT wall panels are monolithic (doors and windows opening have been cut off in the
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factory), with quite high length-to-height ratios. Only the designated shear walls in
the longitudinal and transverse directions are connected (to each other and to the floor
elements) with hold-down/tie-downs, shear connectors and self-tapping screws, whereas
the other panels (both for internal partition and external envelope) are connected only
with self-tapping screws. The thickness of the wall panels is reduced with the height of
the building, as is commonly done to reduce the total weight of a building. The main
characteristics of the building are summed up in Table 4.

Fig. 17. Plan view of the building.

The processing of the acquired data permitted to clearly identify the first three natural
frequencies of the building, as evidenced in Fig. 18, where the Singular Values plot of
the PSD matrix is shown beside the stabilisation diagram returned by SSIcov algorithm.
The first two modes are translational: the very first, Fig. 19a(a), is a translation parallel
to the direction of minor inertia of the building; the second mode is a translation in the
orthogonal direction, Fig. 19b(b); the third mode is the first torsional mode, Fig. 19c(c).
The results in terms of frequencies and damping ratios are summarised in the caption of
Fig. 19.

A simple 3D numerical model of the structure was then built to further investigate
the results of the AVT. Given the high values of the experimental eigenfrequencies,
and the considerable in-plane stiffness of the CLT floors, it was decided to consider all
the walls of the building, not only the designated shear-walls, and to use a shear-type
behaviour for the model. The equations of motion of a generic 2D storey were derived,
then the resulting mass and stiffness matrices were assembled into the mass and stiffness
matrices of the whole structure. The compatibility equations were written assuming the
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Table 4. Basic characteristics of the tested building [66].

Parameter Value Unit
Lenght 23.21 m
Width 15.11 m
Height 26.9 m
No. of floors 8
Rooms 127
Net area /floor 350.55 m2

Net area /building 2804.4 m2

CLT wall panels 3 layers-90 mm
5 layers-100,120,130,

140,160,180 mm
CLT floor panels 5 layers-180,220 mm
CLT roof panels 5 layers-200 mm
Wood amount-total 907.62 m3

Hold-downs steel plates 6225.73 Kg
Shear steel plates 1919 Kg
Self-tapping screws 6124
Steel brackets ≈390
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(b) Stabilisation diagram from SSIcov

Fig. 18. Results of the dynamic identification

(a) f1 = 1.913[Hz]; ξ1 = 1.216% (b) f2 = 2.414[Hz]; ξ2 = 1.916% (c) f3 = 2.688[Hz]; ξ3 = 1.921%

Fig. 19. Natural frequencies, damping factors and mode shapes of the three stable modes
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diaphragm-like behaviour of each floor, while the constitutive equations were based on
the estimation of two shear stiffness values in the x and y directions concentrated in the
centre of mass of each wall. The computation of the equivalent rigidity of the CLT
walls was based on the longitudinal and shear elastic moduli of the CLT, assuming the
connections (Hold-downs and angle brackets) as infinitely rigid. The bending stiffness
was calculated considering only the vertical layers and an equivalent shear modulus
takes into account the torsional deformation of the lamellae. Specifically, both the shear
and the bending deformation of the walls were taken into account:

kCLT =

(
h3

12 EI
+

1.2h
GA

)−1

(112)

where h is the inter-storey height, E the Elastic modulus, G the shear modulus and
A the cross sectional area of the wall. The natural frequency and mode shapes were
then calculated solving the eigenvalue problem. The complete description of the
model, comprising equilibrium, constitutive and compatibility equations, is given in the
appended paper.

In order to assess the role of the connections, taking into account the results from the
AVT, an updating routine was applied to the model. To find the optimal parameters, a
cost function that measures the differences in terms of frequencies and of mode shapes
was minimised:

C =
M

∑
i=1

γi

(
f m
i − f c
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f m
i

)2

+
M

∑
i=1

βi (1−MAC(Φm
i ,Φ

c
i )) (113)

where the apex ()m indicates a measured variable, the apex (∗)c a calculated variable, fi

is the ith natural frequency, Φi is the mode shape vector, M is the number of modes,
MAC is the Modal Assurance Criterion, while γi and βi are weighting factors.

The optimisation of both stiffness and mass, based on the natural frequencies and un-
scaled mode shapes, may stand as an undetermined problem since the eigenfrequencies
depend on the ratio between rigidity and weight. Theoretically, infinite couples of
rigidity and weight values could be possible candidates for the optimisation. To reduce
the number of unknowns, the mass of the storeys and of the roof were the assumed
unknown variables. The authors estimated the minimum of the objective function
by evaluating it on a discretised domain with a 0.1 KN step. The contour plot of the
objective function is shown in Fig. 20.

Operating in this way allowed to evaluate the validity of the modelling hypotheses
using and indirect approach. The indirect method derives from proving hypothesis
through tests. Let us assume a continuum-like behaviour of the building (hypothesis):
the connections are neglected in the model updating process (test). If the updated masses
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Fig. 20. Contour plot of the objective function.

match with the expected ones, the hypothesis is proven (proof). The results of the
updated mass are summarised in Tab. 5, while a comparison between the experimental
and the numerical modal parameters are reported in Tab. 6. It should be noted that the
diaphragm behaviour of the floor panels (and thus shear-type rather than the cantilevered
model) could have been more rigorously assessed taking also measurements in the
out-of-plane direction of the floor.

Table 5. Weight values estimated from updating.

Description kN kN/m2

Roof 365.6 1.042
j-th storey 797.7 2.275
Self Weight of the j-th storey 350.7 1.000
Variable and permanent of the roof 14.9 0.042
Variable and permanent load of the j-th floor 447.0 1.275

Since the self-weight contribution to the total mass of a storey is known, subtracting
this part from the values found by the optimisation should yield the variable and
permanent portion of the load. As it is shown in Tab. 5 this yields an estimated variable
and permanent load of 1.275kN/m2 to the generic storey and an almost negligible one to
the roof. These indeed seem to be reasonable values since, during the tests, the building
was fully furnished and in use, and since the only extra load on the roof was coming
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Table 6. Comparison between the experimental and numerical modal parameters.

Experimental Numerical
Mode shapes f [Hz] ξ [%] f [Hz] MAC
1st translational mode 1.913 1.216 1.867 0.99
2nd translational mode 2.414 1.916 2.543 0.98
1st torsional mode 2.693 1.921 2.712 0.92

from the ventilation system. Furthermore, comparing the measured natural frequencies,
and mode shapes, with those from the updated numerical model, the good match is
pretty evident (see Tab. 6).

The results seem to confirm that the connections do not significantly contribute to
the low-amplitude dynamics of mid-rise CLT buildings, and that the panels behave
elastically as continuous elements. However, it is possible that a CLT building may
exhibit a non-linear behaviour, with possibly important frequency shifts, even at low-
level dynamics. This fact could be easily estimated from continuous monitoring under
different operational conditions (e.g. wind speed).

Several building codes allow to perform a simplified static seismic analysis if the
structure of interest complies with some limitations (e.g. on the maximum height, on
the structural regularity in plan or height, etc.); in these cases only the first mode of
the structure is considered and the seismic base shear force will be proportional to the
ordinate of the design response spectrum (at the specified period), and needless to say to
the mass of the building. To estimate the first natural period, T1 (i.e. 1/ f1), the following
equation is used:

T1 =C1H
3
4 (114)

where C1 is a constant that depends on the typology of the building (e.g. steel framework,
RC framework, etc.). The authors therefore compared the results of the measured first
natural frequency to the simplified equation (114), available in ASCE 7-16 [67] and in
the former Italian building code NTC08 [68]. Interestingly, it turned out that the C1

found is very close to the one adopted for masonry structures by the two codes, and
this might be due to the sharing of a wall-based, box-type structural layout in both
typologies.
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3.4 Tests in laboratory

Beside the relatively new and barely explored problem of assessing the dynamic
behaviour of taller timber buildings, a much more known, dynamic related, issue is
the assessment of the vibration performance of timber floors. This serviceability issue
is, most of the time, related to the perception of annoying oscillations, caused by the
transmission through the floor of walking-induced vibrations, prompted by the users of
the building. The "live" feel of timber floors is familiar to many, especially to those
living in single family housing with timber framework. However, this problem is not
limited to timber-framed residential buildings, since even in those countries where
masonry buildings are common, floor systems are very often constructed with timber
floor joists. A considerable amount of research works have been carried out concerning
the assessment of the dynamical properties of timber floors, especially in northern
Europe and North-America, where timber flooring systems are very common. However,
new construction practices have had a profound impact on the dynamic characteristic of
some timber floors. Unfortunately, the trend of seeking large, open-spaced, architectural
layouts, that favour the needs of commercial buildings, obviously does anything but
help in enhancing the performance. For these reasons the assessment of the dynamical
performance, and ability to predict the behaviour of flooring systems, remains still a
particularly topical subject.

As already mentioned, the most common source of excitation on floors is human
activities such as walking, running or jumping. Except from the activity, the force
from a step also depends on the characteristic of the person (weight and walking style)
and the floor characteristics. It has been observed that the range of possible walking
frequency is 1.5−2.5 Hz [69]. The dynamic force from walking has been found to
excite frequencies up to the fourth harmonic of the walking frequency, and sometimes
even higher [70, 71, 72]. The shape of force-time history of a single step presents two
peaks that correspond to the contact force caused by the heel impact and the push-off
by the toes, respectively. A very thorough review on experimental identification and
analytical modelling of human walking forces can be found in [73]. Evidence has shown
that depending on the value of the fundamental natural frequency of a floor, the response
to forces from walking will differ. Low-frequency floors with natural frequencies below
8−10 Hz, that coincide with the harmonics of walking frequency, have been found to
respond to walking excitation with resonant vibrations. The amplitudes will build up
and the resulting vibration will be dominated by the natural frequency of the floor that is
excited the most by the walking frequency and its harmonics [74]. On the other hand, in
high-frequency floors, with natural frequencies above 8−10 Hz, the response is not
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influenced by the walking frequency and its harmonics, but is dominated by a train of
impulses, which correspond to the heel impacts of the walker [74].

Another important aspect is the human sensitivity to vibrations, numerous efforts
have been made to identify factors affecting human response to vibrations, which are
reflected in several international standards [75, 76, 77, 78]. Besides the vibrations felt by
our body, vibrations may also be perceived as visual effects or audible sounds made by
moving objects [79]. Moreover the degree of annoyance depends on the activity carried
out by the person that is disturbed and his or her relation to the source of disturbance e.g.
if the person is moving, resting or reading, or if the disturbance is caused by a known
source or by an unknown source.

For many years, limiting static deflection to a proportion of the span has been a
spread safeguard against most of serviceability aspects of floors, including vibration
serviceability. However, predicting the behaviour of a timber floor is not an easy task,
and using prescriptive construction practices or simple engineering design methods often
yields inaccurate result. Over the years several studies have investigated the correlation
of satisfaction ratings to quantitative measurements, that can be estimated with simple
formulations, such as static deflection under gravity load and first natural frequency
[80, 81, 82, 79]. For instance the vibration performance design of timber floors according
to EC5 is largely based on the results of the findings of Ohlsson [83, 84, 85]. The
guidelines applies for floors that have a fundamental natural frequency higher than 8 Hz,
to avoid resonant situations. The designer must first check the instantaneous vertical
deflection caused by a vertical concentrated force, and then check the impulse velocity
response corresponding to the maximum initial value of the vertical floor vibration
velocity caused by a unit impulse of 1Ns. The impulse velocity response also takes into
account the presence of higher order modes in the bandwidth of interest (i.e < 40 Hz)
[84, 86]. However, numerous different national application rules for the EC5 exist [87].

More advanced guidelines are the one published by The Concrete Center and
developed by Arup [88], and the one from the Steel Construction Institute [74]. The
guidelines present refined methods for evaluating the walking induced vibrations caused
by pedestrians where the design parameters are the (frequency weighted) root mean
square (rms) acceleration and the Vibration Dose Value (VDV). The latter parameter is
based on the fourth power of the acceleration and accounts for the duration of vibration
and how often it occurs. Both methods are based on modal analysis and have been
calibrated and refined with verification measurements taken on completed structures
over several years.

Unfortunately, an universal agreement on acceptance levels and design procedures
has not been achieved, and there is still need for appropriate engineering code and
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standard provisions. Moreover, vibration serviceability of timber floors continues to be
a very relevant topic and efforts are in progress within the European Committee for
Normalisation (CEN) to update code methods and testing standards. Modal testing has
been a popular approach to assess the modal properties of timber floors over the years,
and recently a new document that specifies test methods for the determination of natural
frequencies, damping, unit point load deflection and acceleration of timber floors has
been released in Europe [89]. Forced vibration tests are the only ones referenced in the
standard, however the refinement and consolidation of OMA methods, suggests that AVT
could also be used with confidence by engineers both for laboratory tests and in situ tests.

Even if some application of AVT to timber floors can be found in the literature
[90, 91, 92], FVT and EMA methods remain the most known and used procedures to
estimate modal properties through testing. In order to demonstrate the potential of OMA
methods also in laboratory experiments, in the appended paper the authors present
the results of a testing campaign on a timber floor. AVT were performed on each of
the floor components and on the assembled floor, the results were used as basis for a
sensitivity analysis so as to find the best modelling choices. High fidelity FE models
were then obtained tuning the numerical models to the experimental results through
automated updating procedures suitably programmed by the authors. The research aims
at clarifying and discussing the issues related to dynamic testing of timber elements
under operational loads in laboratory environment. Furthermore it is shown how the
use of "black box" automated optimisation algorithms can yield FE models that better
represent the data obtained through testing.

The authors tested a timber floor made by two beams and decking above, see Fig. 21.
Firstly, each one of the floor components were tested separately, then the floor was
assembled and tested. The two beams are made of Glulam GL30c, they are 5 m long and
have a 115 x 315 mm cross-section. Both beams presented some defect at delivery: one
had two cracks, approximately 15 cm and 20 cm wide, on both faces at one end; while
the other had a hole on one face that was filled with silicone. The decking consists of
1.5x1.5m sheets, 21 mm thick, made of plywood veneers. The beams were tested both as
simply supported and as freely suspended, but due to the laboratory conditions, the
free boundary conditions were achieved using a small piece of Rockwool insulation
placed under the beams at mid-span. The plywood decking was tested only as freely
suspended using the same technique of placing a small piece of Rockwool to support
the board at the centre. The floor system was only tested as simply supported. Two
metal cylinders, spaced 4.8 m, supported each beam, with a 600 mm centre-to-centre
distance. The decking of the floor was made of the three square boards, placed one
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a b

Fig. 21

next to the other. The insertion of connectors, to fix the boards to the beams, would
have altered/damaged each component, thus undermining the efforts to identify the
dynamics of each of them accurately. Therefore, the authors devised an alternative
solution to study the entire structural arrangement without the need for connectors. They
placed a reusable putty-like pressure-sensitive adhesive, which guarantees the joint
response of the beams and the decking in the vertical direction. Even if in a real building
the decking would be fixed to the beams, thus enhancing the composite interaction
and the overall stiffness, the floor would also be much thicker and heavier, due to the
finishing. The structural assembly does not represent a realistic situation, it is a structural
archetype useful for the accurate calibration of simplified models for the prediction of
walked-induced vibrations.

Before the testing the authors developed a set of numerical models, with the FE
program SAP2000, for each sub-assembly using standardised values for the material
properties. These models provided an expected response, which was useful to derive
a proper setup and instrumentation plan. Two models reproduced the dynamics of
the beams. The former derived from the one-dimensional "Frame elements" based on
the Timoshenko beam theory, the latter originated from the use of "Solid elements",
which are eight-node elements for modelling three-dimensional structures. The material
property was defined as orthotropic to model the glulam. Thin "shell elements" modelled
the decking, with the plywood of the boards idealised as an orthotropic material.

The measurement chain was composed by ten seismic ceramic shear piezoelectric
accelerometers, an HBM QuantumX data acquisition unit (24-bit analogue-to-digital
converter) and a laptop pc. Shielded polyurethane coaxial cables made the connection
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between the sensors and the acquisition unit. More information on the measuring chain
and on the different test set-up are given in enclosed the paper. The ambient vibrations
measurements were then processed and the modal properties extracted using the EFDD
and the SSI-cov algorithms. A slight and random brushing was applied to the tested
structures using a wooden stick in order to improve the signal-to-noise ratio of the
measurements [23]. Interestingly, it was found that exciting the tested structure did
undoubtedly help to increase the signal to noise ratio, but it also partially masked the
presence of spurious harmonics. As already explained in the background chapter, the
structure under test may show dominant frequency components which do not represent
natural frequencies but derive from deterministic signals superimposed to the stochastic
response (e.g., rotating equipment) and particular attention must be paid in order to
identify them.
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(a) SVP Beam 1 Torsional set-up
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(b) Stabilisation diagram Beam 1 Torsional set-up
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(c) SVP Plywood plate
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(d) Stabilisation diagram Plywood plate

Fig. 22. Results of the dynamic identification

The processing of the data yielded very clear PSD plot and stabilisation diagrams,
see Fig. 22, and allowed to extract useful information regarding the modal properties of
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both the single components and the floor assembly. Namely: ten modes were identified
with the free-free test of the beams, and three with the pin-pin test; seven modes from
the testing of the plywood board; and two modes (in the bandwidth 0−40 Hz) from the
floor assembly. More information regarding the estimated results can be found in the
enclosed paper. It is worthwhile to point out that the higher bending mode shape were
increasingly sensitive to damages, only when the beams were tested as simply supported.
The damage locations are quite evident, especially in the third bending mode shape of
the simply supported beam. On the other hand the effects of the damages were not
detectable when the beams were tested under free-free boundary conditions. The results
of the simply supported beam and those of the floor system were also compared with the
results of the analytical solution of the Euler-Bernoulli beam model, which constitutes
the basis for the simplified calculation formulas of building codes.

After the identification phase, the authors used SAP2000 Open Application Program-
ming Interface (OAPI) in combination with the open-source programming language
Python to develop the routines for the automatic sensitivity analysis and model updat-
ing. The OAPI allows third-party products, like Python, to interact with SAP2000,
allowing the users to create custom applications. Firstly, a Sobol sensitivity analysis
[93] evidenced the role of each term of the flexibility matrix of an orthotropic finite
element. Namely, the analysis returned the sensitivity indices of the three MoE, EX EY

EZ , the three Shear Moduli, GXY GXZ GY Z , and three Poisson’s ratios, νY X νZX νZY on
the output (modal properties). Then, the FE models were tuned to better reflect the
measured data using two global optimization algorithms for "black box" functions, the
Differential Evolution (DE) [94] and the Particle Swarm Optimization (PSO)[95]. The
script for the model updating process was written in Python using SAP2000 OAPI along
with the Python module PySwarms [96] (to run PSO), and the popular Python toolkit
SciPy [97](to run DE). The same cost function as the one used in Paper III is used to
find the optimal parameters 113.

Both the sensitivity analysis and the model updating process confirm that the simple
beam model predicts very well the dynamic behaviour of slender elements such as
glulam beams. Moreover, the sensitivity analysis shows that the most significant material
properties for such structural elements are the MoE along the fiber direction and the
shear modulus for the strong axis of the cross-section. Even though numerical models
should be as representative of the real structure as possible, in this case the use of solid
elements has proved not to be worth the much greater computational time. Once all the
single structural elements had been updated, the model of the assembled floor was built.
It was quickly found that to get modal properties comparable with those from the tests,
the model detailing needed to be high: for example, the decking’s boards were modelled
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separately with a little gap in between them, and their plane was "lifted" with respect to
the one identified by the beams’ axes. The final model of the floor was obtained by also
updating the stiffness of the springs representing the metal cylinder support.

(a) Floor Mode I

(b) Floor Mode II

Fig. 23. Finite element mode shapes

As shown by other researchers [98] predicting the dynamic response of complicated
substructures as floor systems is often beyond the capabilities of traditional engineering
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approaches. Also in this case the discussed findings weigh against the applicability of
simplified design practices reported in building codes. Only very detailed FE models
seem able to predict fairly well the behaviour of their real counterparts. Even though
simplified approaches are very useful at preliminary project phases, they become
unreliable if a higher performance of the floor is desired. Today’s engineers have
however "new weapons" in their repertoire: modal testing based on ambient vibrations,
automatic model updating algorithms, sensitivity analysis methods, and other techniques,
are all valuable aids in the difficult task of creating representative models of the studied
structure.
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4 Conclusions

This thesis discusses and reports various methods of Operational Modal Analysis.
It presents an open-source Python module that allows to perform two of the most
widely used output-only dynamic identification techniques. Furthermore it presents
and discusses the application of OMA methods to three case studies, highlighting the
usefulness and potential of such methods.

The Python module consists of a set of functions that allows to quickly and easily
perform OMA on output-only data. The programming language Python was chosen
because of its high versatility, ease of use and because it is a free-software license.
The module is hosted on a public repository on the popular provider GitHub, under
a GNU license. The author hopes in this way to attract other individuals interested
in the topic and willing to help in further developing the module. The ambition is to
provide a comprehensive set of tools to help researchers analysing ambient vibration data
sets. The author has already started to implement two other identification procedures:
poly-reference least square complex frequency algorithm (p-LSCF, also known under the
commercial name PolyMAX) and second order blind identification algorithm (SOBI).
Furthermore, he wishes to achieve a natural development of the module, extending its
capabilities to continuous monitoring applications. The very first step to reach this goal
has already been taken, with the implementation of an automated version of the SSI-cov
algorithm, however there is still a long way to go.

When it comes to the findings of the research, the studied cases prove that AVT
and OMA are effective tools for the identification of the dynamic characteristics of
the tested object, provided that an appropriate (capable of capturing the "interesting"
dynamics embedded in the noise) acquisition chain is used in the tests. In addition, the
work shows that the results of such tests may be used in multiple useful ways.

Specifically, the A24 motorway case study reveals two aspects: the inspection of the
mode shapes may be used as an indicator for potential malfunctioning of the bearings,
and the natural frequency of the first bending is correlated to the modulus of elasticity.
This latter evidence encouraged the authors to develop a reliability-based procedure to
estimate the module of elasticity of short span pre-stressed concrete bridges, in the
context of maintenance plans. The presented method might be elementary, but it attempts
to include non-destructive techniques in maintenance procedures, which currently
lack the regular presence of dynamic identification in the decision-making process. In
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fact, visual inspection activities are the only assessment methods adopted currently in
most parts of Italy. These methods, although essential to estimate a bridge’s state of
deterioration, could and should be completed with the undoubtedly more objective data
coming from systematic dynamic tests. This would guarantee a greater control over the
structural materials’ durability.

Dynamic tests were also performed on an eight-storey CLT building in Norway. To
this date very few research works treating AVT and OMA applied to mid- and high-rise
timber buildings can be found in the literature, thus the presented work proposes to add
some knowledge to this subject. A simplified analytical model was constructed to test
different modelling assumptions. The research found that, at least for low amplitude of
vibrations, the connections between the panels do not show a significant influence on the
response of the building, so that the panels can be considered as continuous elements;
furthermore, a shear-type behaviour of the building, with the floor panels acting as rigid
diaphragms, describes in a better way the obtained results from the output-only tests
than a cantilever behaviour. In order to test the hypotheses on the stiffness, an indirect
approach was followed: the conclusions were drawn from an updating procedure on the
building’s masses instead of the stiffness. However, to better understand the contribution
of the connections to the global dynamics, a continuous monitoring of a CLT building
would be of great help. In this way the response of the building to different levels of
excitation will allow to ascertain if higher amplitude vibrations result in an activation
of the connections, with a consequent frequency shift of the modes. Moreover, the
research found that the first eigenfrequency matches well with that estimated from
empirical relations tuned to masonry structures: this may be due to the shear wall-based
construction typology, recurring in both masonry and CLT structures.

Finally, some AVT were conducted in a laboratory controlled environment, on
smaller timber structural components, to investigate the potential of OMA methods as a
cheaper replacement to traditional input-output techniques. Two glulam beams and a
plywood board were tested first separately and then assembled into a lightweight floor
system. Furthermore, the influence of the boundary condition was also studied. The
results from the ambient vibration testing were used to perform a sensitivity analysis on
the numerical models. Not surprisingly, it was found that for the beams the longitudinal
module of elasticity is the most important parameter, followed by the shear modulus
along the strong axis. Since all the other parameters are almost negligible, there is no
point in using other elements than the standard "frame element" to model glulam beams,
despite wood’s orthotropic nature. The numerical models were then updated (tuned to
the experimental data) using two automated optimisation algorithms. This allowed to
build high fidelity numerical models much more representative compared to the "starting
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ones". Simplified analytical approaches were also compared to the test results and to
the numerical models. Unfortunately, predicting the dynamic response of complicated
substructures such as floor systems is often beyond the capabilities of traditional engi-
neering approaches. The discussed findings weigh against the applicability of simplified
design practices reported in building codes. Only very detailed FE models were found
able to predict well the behaviour of their real counterparts. Even though simplified
approaches are very useful at preliminary project phases, they become unreliable if a
higher performance of the floor is desired.

To conclude, the results achieved by this research confirm the high quality OMA
methods applied to simple and complex structures, to traditional constructions in
reinforced concrete and to that innovative generation of sustainable and technological
buildings made of timber. The methods, increasingly widespread in the academic
community, have proven reliable and flexible and should be more often used by
practitioners. They are not completely mature, but they open new horizons to the
sector both for the design of new buildings and for the monitoring and maintenance of
pre-existing structures.
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Abstract

This paper delivers a reliability-based method for the assessment of the elastic mod-

ulus (EM) of concrete in simply supported girders from dynamic identi�cation. The

correlation between the natural frequencies of the �rst bending modes and the con-

crete EM supports the use of the �rst natural frequency as a predictor of the EM

value, which is a well-acknowledged indicator of the concrete state. In the current

application, the EMs of seven girders provide the prior state of knowledge about the

considered bridge class, possibly to be obtained by more samples in working applica-

tions. The identi�ed natural frequencies update the prior probability distribution of

the EMs using Bayes inference. The resulting probability of exceeding a speci�c EM

value expresses the degree of belief of the inspector in the obtained EM. The poste-

rior probability, compared to a proper threshold, could be used in decision-making

processes when prioritizing the interventions in the maintenance plans.

Keywords: Reliability and Risk analysis; Concrete structures; Bridge maintenance;

Beams and girders; Concrete elastic modulus; Bayesian inference; Dynamic Tests.

1. Introduction

According to the UNI EN 13306 (2018), maintenance encompasses all technical,

administrative actions, including supervisions, aiming at maintaining or taking an

object in a state suitable for its right functioning. Most of the Italian maintenance

plans descend from the outcomes of periodical visual inspections, which yield the
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so-called defect cards, well explained in the CIAS1 manual (Ceccotti et al.,2002).

The defect cards attempt to numerically express the severity (i), extension (ii)

and intensity (iii) of a defect using the following expression:

DR =
∑

i

(Gi ·Ki,1 ·Ki,2) (1)

where DR is the relative defectivity, Gi the severity of the ith defect, Ki,1 and Ki,2

the corresponding extension and intensity coe�cients respectively. The Gi values

span in the range 1-5 depending on the associated risk: actual, potential, induced

or economical. The Ki,1 and Ki,2 coe�cients can assume the following discretized

values: 0.2, 0.5 and 1.

Particularly risky defects require further investigations and, if additional pieces of

evidence con�rm their inherent risk, they are considered "non-conformities" and

the Managing Body will adopt the needed precautionary actions. There are as

many defect cards as the number of structural components (piers, abutments, e.g.),

further classi�ed according to the constituent material (steel, concrete, timber,

e.g.).

This method endeavours to deliver an objective and straightforward proce-

dure for the arrangement of maintenance plans. However, it has weaknesses

which may deserve enhancements: namely, the prevalence of visual inspections

over non-destructive damage evaluation (NDE) techniques (i), the absence of a

probability-based reliability framework (ii), the potential unobjective choice of the

K1 and K2 coe�cients (iii). (i) NDE techniques attempt to enlighten defects hidden

to the human eye.

Speci�cally, dynamic-based NDE techniques, which �nd extensive use in aca-

demic investigations, do not have a meaningful role in the actual maintenance plans.

(ii) There are exceptions: since 2004, the Autonomous Province of Trento, Italy,

has adopted a Bridge Management System entirely based on reliability concepts

(Zonta et al., 2007). However, most of Italy bridge stock lacks a reliability-based

maintenance plan. (iii) The choice of the intensity and extension coe�cients mostly

depends on the experience and interpretation of the inspector.

This paper shows a possible and quite-straightforward application of dynamic-

based NDE techniques. The scienti�c literature soundly proved the potentialities

of �nite element analysis with on-site measurement through �nite element model

updating. Several researchers developed diverse model updating methods to esti-

1CIAS (Centro Sperimentale Aggiornamento Sperimentale-Scienti�co) a is non-pro�t organiza-
tion that carries out a scienti�c dissemination activity and development of experimentation in the
structural and geotechnical �eld of civil engineering.



mate the model parameters reliably (model-driven estimation) (Schlune et al.,2009;

Aloisio et al., 2020d). Oppositely, other researchers endeavoured to determine the

structural parameters via sole experimental investigations (data-driven estimation)

(Aloisio et al., 2020b; Aloisio et al., 2019a; Aloisio et al., 2019b; Di Egidio et al.,

2019).

In this paper, the authors implemented a data-driven probabilistic framework

for the assessment of the EM values, calibrated on the results of the dynamic

identi�cation of seven simply supported Prestressed Concrete (PSC) girders of the

A24 motorway. The A24 motorway crosses the Apennines range in Central Italy;

Many girders were poured on-site in harsh environmental conditions, resulting in

scattered qualities of the concrete pastes. Improper curing conditions, especially

in frozen times, yield shallow EMs. In a few cases, the consequences of creep and

low EMs required the installation of external prestressing cables. Hence, EM is a

signi�cant control parameter in the current application.The method of core drilling

is the principal method for accurate, quick and economical identi�cation of the

EM of concrete. Though, the estimate a�ects a speci�c specimen extracted in a

limited location of the structure. The mechanical properties of concrete may not

be uniform within the structure. Nevertheless, the extraction of multiple speci-

mens to achieve satisfactory statistics may be complicated in Prestressed Concrete

Structures, where extreme prudence must be needed to avoid interference with the

prestressing cables. Dynamic identi�cation provides a sort of homogenized EM of

the entire structure directly, without relying on multiple concrete specimens.The

natural frequency of the �rst bending mode evidences a signi�cant correlation with

the EM, almost coinciding with the theoretical prediction for a simply supported

beam. The relationship between the �rst natural frequency and EM validates the

use of the �rst natural frequency as a predictor of the EM value, which is an

essential control parameter. However, the dispersion of the results requires the use

of a reliability-based procedure.

The paper is organized as follows: the second and third sections present the case

study and the results of the dynamic identi�cation. The fourth section discusses

the correlation between EM and the �rst natural frequency. The �fth and sixth

sections present and discuss the Bayesian framework for the assessment of the EM

from the �rst natural frequency.

2. Case study: the A24 motorway

The University of L'Aquila carried out static and dynamic tests on the A24 mo-

torway. The entire experimental campaign lasted from February to June 2019. The



Autostrada A24 or "Parks Motorway", in Abruzzo (Italy), connects Rome to the

Adriatic Sea. Starting from GRA2 and ending to Teramo, the A24 created a new

historical linkage between Rome and the Apennines mountains. The A24 motorway

has a consistent number of viaducts due to the complex orography. Many of them

consist of single-span simply supported PSC beams.

The girders have a trapezoidal cross-section, depicted in Figure 1(a), 2.3m high

(a)

(b) (c)

Figure 1: (a) Cross-section; (b) Detail of the rack and roller (RR) bearing; (c) Multidirectional
Pot (MP) bearing.

with two cantilevered wings 3.85m wide, prestressed by bonded post-tensioned ten-

dons. A pair of piers, whose centre distance is about 40 m, sustains each bridge

span. The concrete piers have a hollow cross-section, reinforced at their corners.

In the last decade, the managing body of the A24 motorway in Italy replaced

several worn rack and rollers bearings with pot ones. Since 2009, the demand for seis-

mic safety arose as an almost emotional tide after the 2009 earthquake in L'Aquila

(Aloisio et al., 2019d; Aloisio et al., 2019c; Aloisio, 2020), which caused damages

to some girders: they slid more than the length's support. This event induced the

managing body to install an anti-sliding device to all girders with rack and rollers

supports: it consists of a steel frame around the original supports 2-5 mm below the

underside of the deck.

Figure (2) details the experimental setup. Ten Force Balance Accelerometers

(FBA) measured the deck's response to ambient excitation. The accelerometers

2Grande Raccordo Anulare (GRA):is a toll-free, ring-shaped 68.2 kilometres (42.4 mi) long
orbital motorway that encircles Rome.



were arranged into two measurement chains, each one driven by a master recording

unit connected to a Wi-Fi access point and synchronized by GPS3 sensors. The

(a)

(b) (c)

(d)

Figure 2: (a) Layout of the experimental setup, where Pi indicates the positions of the accelerom-
eter; (b) Experimental setup; (c) Force-Balance accelerometer used in the current experimental
campaign; (d) Sample of a stabilization diagram.

dynamic tests were carried out under similar environmental and weather conditions

so that the in�uence of temperature and humidity on modal parameters can be con-

sidered negligible.The time series is about 40 minutes long.

The modal parameters are estimated from Output-Only Experimental Modal

Analysis (EMA) using the Covariance-driven Stochastic Subspace Identi�cation

(Peeters and De Roeck, 2001). The data were sampled at a rate of 200 Hz. The

3Global Positioning System.



cut-o� frequency of the anti-aliasing �lter was set to 40 Hz. The Stochastic Sub-

space Identi�cation (Reynders et al., 2008; Antonacci et al., 2020) method yields

eigenfrequencies, damping ratios and mode shapes for each setup (Figure 2). The

parameters used for the identi�cation are i = 7, n = 20 and nb = 70 (Reynders

et al., 2008).

3. Results: dynamic identi�cation

The authors tested the following bridge spans, labelled according to the viaduct

they belong to: namely, Biselli, Cerchiara No 4, Cerchiara No 7, Cretara, Le

Grotte, San Nicola, Temperino. The pictures of the �rst three mode shapes follow

henceforth, where f indicates the natural frequency and ξ the modal damping.

(a) (b) (c)

Figure 3: Mode shapes representation of the �rst three stable modes of the Biselli bridge span.

(a) (b) (c)

Figure 4: Mode shapes representation of the �rst three stable modes of the Cerchiara 4 bridge
span.

Three mode shapes arise from the stabilization diagrams (Figure 2(d)): a bending

mode at nearly 2.5Hz, a torsional mode at almost 6Hz and a second torsional mode

at approximately 8.5Hz. The three modes are detectable in all tested con�gurations.

The authors extracted, for each mode, the torsional angle and the vertical dis-

placement of �ve �ctitious points, equidistant from the two rows P1-P5 and P6-P10



(a) (b) (c)

Figure 5: Mode shapes representation of the �rst three stable modes of the Cerchiara 7 bridge
span.

(a) (b) (c)

Figure 6: Mode shapes representation of the �rst three stable modes of the Cretara bridge span.

(a) (b) (c)

Figure 7: Mode shapes representation of the �rst three stable modes of the Le Grotte bridge span.

(a) (b) (c)

Figure 8: Mode shapes representation of the �rst three stable modes of the San Nicola bridge span.



(a) (b) (c)

Figure 9: Mode shapes representation of the �rst three stable modes of the Temperino bridge span.

(Fig.2(a)). The considered points belong to an equivalent 3d beam possibly repre-

sentative of the actual spatial structure. The following measures enable to shortly

evaluate the torsional and bending fractions of the modal response.

v0 =
vPi

+ vPj

2
; vr =

vPi
− vPj

2
→ ψ =

vr
L

(2)

The Bending (B) and Torsional (T) fractions for the ith point are:

B =
v0

v0 + vr
; T =

vr
v0 + vr

(3)

The �rst mode is, on average, more than 95% bending, while the two torsional

Figure 10: Decomposition od the response into a translational and rotational component.

modes have a signi�cant bending component, see the Appendix. The torsional-

bending coupling generally derives from the discrepancy between the elastic and

mass axis (Banerjee and Williams, 1992; Di Nino and Luongo, 2020). The cross-

section is symmetric, and the four bearings are nominally identical. Except for the

in�uence of substructures (piers and soil), two reasons may lay behind the detected

coupling: (i) the eccentricity of the load distribution due to the presence of a row of

Jersey barriers along one side of the deck; (ii) asymmetry of the boundary conditions

due to possible installation faults, like micro-metric levelling defects.

Speci�cally, the Biselli, Cerchiara No 4, Cerchiara No 7, Le Grotte, San Nicola

and Temperino bridge spans have an almost pure bending mode. The Cretara

bridge span has a coupled �rst mode, with a nearly 30% torsional component. Such

coupling may derive from the reason mentioned above: a possible asymmetry of



the boundary condition. In the considered cases, there is more di�erence in

terms of natural frequencies than mode shapes. Concerning the damping ratios, the

�rst mode has a damping ratio approximately close to 5%, which is consistent with

the intrinsic concrete damping. The higher modes have damping lower than 5%.

Still, although modal frequencies and mode shapes can be measured con�dently and

quite easily using dynamic tests, accurate identi�cation of damping ratios requires

further development (Rainieri et al., 2010; Aloisio et al., 2020e; Aloisio et al., 2020a).

For this reason, the authors will entrust to future investigations a valid damping

identi�cation.

4. Discussion: Correlation between the elastic modulus and the �rst nat-

ural frequency

The similarity between mode shapes con�icts with the scattered values of the

natural frequencies. Concerning the �rst modes, the bearings show a negligible in-

�uence over the mode shapes, which induce to believe the same irrelevant e�ect over

the natural frequencies. Conversely, the EM signi�cantly varies between girders, see

Tab.1. The discrepancy of the EM may originate from the construction time when

di�erent curing and environmental conditions a�ected the concrete hardening.

Tab.1 collects the EM estimated from static load tests and the outcomes of con-

crete samples. Figure 11 reports the correlations between the EM and the natural

Table 1: Correlation between the elastic modulus obtained from static load tests and concrete
samples and the natural frequencies of the �rst three modes.

Viaduct Span
elastic modulus [MPa] Natural Frequencies [Hz]

Static Tests Concr. Samp. 1st Mode 2nd Mode 3rd Mode

Biselli 12 24900 / 2.652 6.080 8.610
Cerchiara 4 15000 19361 2.247 5.670 8.152
Cerchiara 7 23700 23299 2.638 6.303 8.355
Cretara 9 26000 26416 3.413 6.734 8.628
Le Grotte 5 36000 / 2.661 6.291 8.307
San Nicola 10 26700 29978 2.693 6.892 8.836
Temperino 6 35900 / 2.483 5.406 7.922

frequencies of the �rst three modes. The values of the EM derive from static load

tests and experimental tests on concrete specimens, indicated in Table 1 by "Static

Tests" and "Concr. Samp" respectively. Static load testing is used to assess if the

mechanical performance and carrying capacity of the tested structure agrees with

design criteria. The adopted test load arrangement followed the recommendations

of the Italian technical provisions [15]. Table 1 reports the outcomes of static

load tests compared to the EM identi�cation from concrete specimens, carried out



(a) (b)

(c)

Figure 11: Correlation between the elastic modulus obtained from static load tests and concrete
samples and the natural frequencies of the �rst three modes. The dotted lines indicate the inter-
polation curves; The solid lines the theoretical predictions according to Equation (4). The grey
region indicates the con�dence bounds (+2σ/−2σ) of the Least Squares �tting.

following the UNI EN 12504-1 [24] and averaged over three specimens.The values

are quite dispersed, but an evident increasing trend descends from the relationships

with the �rst mode. The authors adopted the following polynomial: f = k × E 0.5,

where k is the unknown coe�cient obtained from Ordinary Least Squares, f and E

are expressed in Hz and MPa respectively.

The curves con�rm the expected trend; higher EM yield higher natural frequen-

cies. Speci�cally, the �rst correlation in Figure 11(a) closely follows the expected

curve for a simply supported beam in Equation (4). Equation (4) presents the

expression of the natural frequency of the �rst bending mode and that of the two

torsional frequencies corresponding to the �rst two torsional modes with extreme

rotation prevented.

f1,theor. =
π

2l2

√
EI

m
f2,theor. =

1

2l

√
GJ

Iα
f3,theor. =

1

l

√
GJ

Iα
(4)



The theoretical curve of the �rst bending mode closely matches with the experimen-

tal �tting.

Among the considered bridge population, Le Grotte and Temperino bridges

present higher EMs, but lower frequencies. The EMs from static load tests are likely

representative of the actual EM and other phenomena, not related to the quality

of concrete, may have lowered the identi�ed natural frequencies. This observation

supports the need for probabilistic rather than deterministic models when assessing

the EM from the natural frequencies. The outcomes of dynamic identi�cation can

properly drive probabilistic, not deterministic, inferences about the bridge state,

which could be improved by additional information about the bridge, possibly using

Bayesian updating methods.

The prediction of the two torsional frequencies is widely inaccurate. For this reason,

the authors did not report the curve derived from Equation (4), which stands far

beyond the experimental �ndings. The analytical prediction largely overestimates

the natural frequencies: in the considered cases, the bearings are deformable and

allow signi�cant rotation.

5. Bayesian framework for the assessment of the elastic modulus

This section delivers a Bayesian updating method for the probabilistic assessment

of the EM values from dynamic tests.

5.1. Background

Bayes' theorem describes the probability of an event, based on prior knowledge of

conditions possibly related to the event (Gelman et al., 2013; Aloisio et al., 2020c).

The probability of having the EM below a given value Ê, indicated as P (E < Ê),

updated to the experimental evidence from dynamic tests can be written as:

P (E < Ê|f < f̂) =
P (f < f̂ |E < Ê)

P (f < f̂)
P (E < Ê) (5)

where P (E < Ê|f < f̂) is the posterior probability, i.e. the probability of observing

E < Ê if the expected �rst natural frequency f is below the measured one f̂ ; P (f <

f̂ |E < Ê) is the likelihood distribution, i.e. the probability of observing natural

frequencies f below f̂ ; P (E < Ê) is the prior distribution, i.e. the probability of

observing E below Ê; P (f < f̂) is the marginal likelihood.

5.2. Application

The authors attempted to choose suitable probability distributions to represent

the statistical correlation between EM and natural frequencies. A reliability-oriented



method would require the use of Weibull distributions for the EM (Xie and Lai,

1996). Nevertheless, the Normal distributions of the natural frequency and the EM

mostly agree with the associated Weibull probability distributions, see Figure 12.

Consequently, the authors assumed Normal distributions to describe the statis-

tics of the EM and natural frequencies:

P (E) ≈ N (µE, σE) (6)

P (f) ≈ N (µf , σf ) (7)

where µE, µf and σE, σf are the mean and variance of E and f respectively. The

(a) (b)

(c) (d)

Figure 12: (a)-(b) Probability Density Functions (PDF) and Cumulative Density Functions (CDF)
of the elastic Moduli in terms of Gaussian and Weibull statistics; (c)-(d) PDF and CDF of the
natural frequencies of the �rst bending modes in terms of Gaussian and Weibull statistics;

parameters of the marginal probabilities in Equations (6)-(7) derive from a scarce

statistical sample: the number of data (seven) may be inadequate for a sound sta-

tistical population. Yet, the authors used all accessible experimental data. The

bivariate Normal distribution describes the likelihood of observing certain natural



frequencies given the EM values.

P (E, f) ≈ N (µ,Σ) (8)

The parameters of Equation (8) are the following:

µ =

[
µE

µf

]
=

[
26885.714

2.684

]
(9)

Σ =

[
σ2
E ρσEσf

ρσEσf σ2
f

]
=

[
53418095.238 −966.540
−966.540 0.128

]
(10)

where µ is the mean vector and Σ the covariance matrix. Figure 13 represents

the density and cumulative probability distributions in Equation (8). The dots in-

dicate the experimental couples (E-f). The joint density distribution leads to

(a) (b)

Figure 13: Bivariate normal density (a) and cumulative (b) distribution of the elastic Moduli and
natural frequencies of the �rst bending modes.

the likelihood function in Equation (8). Figure 14(a) represents the contour plot of

the posterior distribution in Equation (5), obtained by varying both Ê and f̂ . Fig-

ure 14(a) illustrates the Bayesian updating of the probability distribution in Figure

13(b). Figure 13(b) expresses the increment in probability when increasing both the

ranges of EM and natural frequency. Probabilities close to 1 correspond to values

of the natural frequency and the EM approximately higher than 40000 MPa and 3

Hz respectively. Conversely, the Bayesian updating in Figure 14(a) carries a piece

of di�erent information: it reveals the probability of observing EMs lower than the

threshold Ê, given natural frequencies below a speci�c threshold f̂ . Hence, Figure

14(a) must be read by section-cuts, as Figure 14(b), by assuming frequency values.

As a consequence, the Cumulative Density Functions (CDF) approaches one for each

value of the natural frequency, while the CDF in Figure 14(b) reaches one only when



both thresholds of the EM and natural frequency raise.The posterior CDF has a pe-

culiar pattern: the probabilities below 2Hz and exceeding 4Hz are stationary along

the frequency axis, though increasing for higher Ê values. Conversely, estimated

frequencies f̂ in the range 2-4Hz yield diverse probability values: the probability of

observing an EM underneath a given value Ê decreases for growing values of the

�rst natural frequency. This fact is consistent with the expected behaviour: higher

natural frequencies descend from higher EM. Still, the meaning of the Bayesian up-

dating attains the section cuts along the frequency axis.

Figure 14(b) shows the grey region of CDF between the two asymptotic distri-

butions below 2Hz and beyond 4Hz. All possible posterior distributions stand in

the grey region. Speci�cally, the authors represented two sample cases: the prob-

abilities of observing EM given estimated frequencies below 2.5 and 2.9, indicated

by the solid and dashed line, respectively. The dash-dot line represents the CDF of

the prior probability P (E < Ê). In the considered case, the experimental evidence,

given by the estimated frequencies, always yields a probability reduction.

Let us assume a speci�c EM threshold Ê=23000MPa, indicated by a vertical

dashed line in Figure 14(a). The probability of observing EM below 23000MPa is

0.3. The estimation of a natural frequency below 2.5Hz determines a decrease to

0.17, i.e. the inspector would obtain a lower probability of observing EM below

23000MPa. If the natural frequency stands below 2.9Hz, the probability would fur-

ther reduce to 0.10.

Figure 15 depicts the complement to 1 of Equation (5). It expresses a comple-

mentary concept: the probability of exceeding a given EM value Ê if the estimated

natural frequency exceeds f̂ .

The same threshold at Ê=23000MPa intersects the prior distribution and the

two posterior distributions at 2.5Hz and 2.9Hz. The prior probability of observing

EM exceeding 23000MPa is 0.7. Supposed frequencies higher than 2.5 and 2.9Hz

determine an increment up to 0.83 and 0.9 individually. Figure 14(b) and Figure 15

reveals the same idea: the estimated natural frequency raise the degree of belief of

the inspector in the EM values. The procedure, shown for a 23000MPa threshold,

can be extended to any EM value and could represent a relatively simple reliability-

based method for the assessment of the EM using the outcomes of dynamic tests.

In the next section, the authors provide a simpli�ed �ow chart of the procedure.

6. Discussion

Dynamic identi�cation provides useful information; Speci�cally, the case study

enlightened two aspects: the inspection of the mode shapes returns knowledge about



(a)

(b)

Figure 14: (a) Posterior bivariate cumulative distribution in Equation (5); (b) Superposition of
the prior distribution (dash-dot) and two section cuts of the posterior in (a).

potential bearing malfunctioning (see the Cretara bridge span in Figure 6(a)), and

the natural frequency of the �rst bending is correlated with the EM value.

Hence, the implementation of a reliability-based assessment of the bridge state

would need the de�nition of a proper threshold for the EM, below which the bridge

is estimated unreliable and the selection of an adequate reliability threshold, which

represents the admitted uncertainty in the decision-making process. Figure 16 out-

lines the logical development of a possible reliability-based estimation. The �rst step

involves an experimental campaign: the dynamic identi�cation of the entire bridge

stock.

The controller must examine the resulting mode shapes to evidence possible

anomalies, which would require more in-depth investigations. If no abnormalities



Figure 15: Superposition of the prior distribution (dash-dot) and two section cuts of the posterior
in terms of exceeding probability.

Figure 16: Flow chart of the proposed reliability-based procedure.



emerge, the inspector must de�ne a threshold for the EM and estimate the posterior

probability of observing EM higher than the limit, given the estimated frequency

value. If the probability surpasses the accepted con�dence level, the bridge span

could be declared as veri�ed. If not, further investigations, like tests on concrete

specimens, must drive a careful decision-making process. The presented �owchart

might be elementary, but it attempts to comfortably include NDE techniques in the

world of Mantainace, which still lacks the regular presence of dynamic identi�cation

in the decision-making process. The Managing Bodies regularly report on the state

of the infrastructures via annual and trimestral reports. A check on the EM via

dynamic identi�cation could be an additional parameter included in the technical

report. The technical reports founds the decision-making process and the draft-

ing on maintenance plans. If the inspector observes suspectingly low EM, further

con�rmed by additional investigations (concrete samples, e.g.), the bridge under

investigation must be object of maintenance plan.

7. Conclusions

The paper presents a reliability-based method for the probabilistic assessment of

the elastic modulus values from the natural frequencies of the �rst bending mode.

The procedure is calibrated over the seven simply supported girders of the A24 mo-

torway. The results of the performed dynamic identi�cation evidenced a signi�cant

empirical correlation between the EM values, obtained from static tests and the �rst

natural frequency. The correlation agrees with the expected theoretical relationship

between frequency and EM for a simply supported beam. This evidence supports

the use of the �rst natural frequency as a predictor of the EM within a Bayesian

updating framework.

The �rst natural frequency could be used as a predictor of the EM of low/mid-

span bridges, like the ones which were the object of this investigation. However, the

extension of this method to more complex or larger bridges is not straightforward.

The dynamics of long-span bridges generally a�ects the �elds of nonlinear dynam-

ics, and the framework of linear dynamics could be inadequate to derive direct and

meaningful correlations between material properties and modal parameters.

The procedure enables to assess the probability of exceeding given EM thresh-

olds by estimating the natural frequency of the �rst mode. The probability value,

compared to a proper reliability threshold, possibly drive a decision-making process

concerning the choice of more in-depth investigations. The authors discussed the

method by examining two section-cuts of the cumulative posterior probability, which

represent two possible situations. A �ow-chart of the procedure further explain the



logical sequence of actions required for the reliability-bases assessment.

The Managing Bodies of the Italian motorways, except for a few exceptions, lack

an organic, systematic use of dynamic identi�cation in the arrangement of main-

tenance plans. The prioritization of interventions would bene�t from the proposed

method, which attempts to balance saving and the need for more reliable infras-

tructures. The current proposal precedes an accurate fragility estimate based on

experimental observations. The authors will aim at developing probabilistic capac-

ity models (Gardoni et al., 2002) of the considered concrete girders based on the

estimate of the �rst natural frequency. The current application relies on a limited

data set, which does not provide a genuinely statistical sample. However, the paper

delivers a method, which, in working applications, should be based on a considerably

higher number of samples.
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9. Appendix

Table 2: Components of the identi�ed mode shapes. The last columns indicate the torsional and
bending fraction of the total displacement.

Biselli

First mode f=2.655Hz

Position v[m] Position v[m] Position v0[m] vr[m] Bending [%] Torsion [%]
P1 0.006 P10 -0.003 C1 0.011 -0.005 68.18% 31.82%
P2 0.362 P9 0.340 C2 0.359 0.003 99.27% 0.73%
P3 0.507 P8 0.495 C3 0.501 0.006 98.83% 1.17%
P4 0.346 P7 0.356 C4 0.343 0.003 99.06% 0.94%
P5 -0.006 P6 0.016 C5 -0.005 -0.002 73.95% 26.05%

Second mode f=6.080Hz

P1 0.077 P10 0.004 C1 0.014 0.063 18.64% 81.36%
P2 0.219 P9 -0.164 C2 0.085 0.134 38.87% 61.13%
P3 0.06 P8 -0.126 C3 -0.033 0.093 26.18% 73.82%
P4 -0.12 P7 -0.049 C4 -0.143 0.021 87.38% 12.62%
P5 0.023 P6 -0.049 C5 0.013 0.009 58.75% 41.25%

Third mode f=8.61Hz

P1 -0.12 P6 0.012 C1 -0.106 -0.016 86.65% 13.35%
P2 -0.54 P7 0.455 C2 -0.474 -0.064 88.09% 11.91%
P3 0.01 P8 0.045 C3 0.028 -0.018 61.24% 38.76%
P4 0.551 P9 -0.410 C4 0.503 0.048 91.29% 8.71%
P5 0.028 P10 -0.090 C5 0.020 0.008 71.63% 28.37%

List of Figures
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2 (a) Layout of the experimental setup, where Pi indicates the positions

of the accelerometer; (b) Experimental setup; (c) Force-Balance ac-
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5 Mode shapes representation of the �rst three stable modes of the

Cerchiara 7 bridge span. . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Mode shapes representation of the �rst three stable modes of the
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Table 3: Components of the identi�ed mode shapes. The last columns indicate the torsional and
bending fraction of the total displacement.

Cerchiara No 4

First mode f=2.967Hz

Position v[m] Position v[m] Position v0[m] vr[m] Bending [%] Torsion [%]
P1 0.030 P10 -0.015 C1 0.029 0.001 96.75% 3.25%
P2 0.350 P9 0.323 C2 0.358 -0.008 97.84% 2.16%
P3 0.506 P8 0.530 C3 0.518 -0.012 97.73% 2.27%
P4 0.312 P7 0.366 C4 0.317 -0.005 98.41% 1.59%
P5 -0.017 P6 0.028 C5 -0.016 -0.001 93.46% 6.54%

Second mode f=5.670Hz

P1 0.128 P10 0.045 C1 0.072 0.056 56.32% 43.68%
P2 -0.337 P9 0.163 C2 -0.074 -0.263 21.97% 78.03%
P3 -0.621 P8 0.246 C3 -0.188 -0.433 30.22% 69.78%
P4 -0.470 P7 0.189 C4 -0.153 -0.316 32.67% 67.33%
P5 -0.060 P6 0.016 C5 -0.008 -0.053 12.57% 87.43%

Third mode f=8.152Hz

P1 0.091 P6 -0.003 C1 0.069 0.022 75.95% 24.05%
P2 0.454 P7 -0.516 C2 0.462 -0.007 98.47% 1.53%
P3 -0.064 P8 -0.095 C3 -0.080 0.016 83.68% 16.32%
P4 -0.477 P9 0.469 C4 -0.497 0.019 96.27% 3.73%
P5 -0.017 P10 0.047 C5 -0.010 -0.007 59.40% 40.60%

Table 4: Components of the identi�ed mode shapes. The last columns indicate the torsional and
bending fraction of the total displacement.

Cecrchiara No 7

First mode f=2.678Hz

Position v[m] Position v[m] Position v0[m] vr[m] Bending [%] Torsion [%]
P1 0.001 P10 -0.006 C1 0.006 -0.006 53.19% 46.81%
P2 0.347 P9 0.336 C2 0.355 -0.009 97.64% 2.36%
P3 0.502 P8 0.514 C3 0.508 -0.006 98.86% 1.14%
P4 0.340 P7 0.364 C4 0.338 0.002 99.42% 0.58%
P5 -0.008 P6 0.012 C5 -0.007 -0.001 90.51% 9.49%

Second mode f=6.303Hz

P1 -0.022 P10 0.067 C1 0.010 -0.032 23.66% 76.34%
P2 -0.343 P9 0.266 C2 -0.050 -0.293 14.47% 85.53%
P3 -0.528 P8 0.374 C3 -0.077 -0.451 14.55% 85.45%
P4 -0.368 P7 0.244 C4 -0.051 -0.317 13.89% 86.11%
P5 -0.051 P6 0.042 C5 0.008 -0.059 11.69% 88.31%

Third mode f=8.355Hz

P1 0.090 P6 0.068 C1 0.072 0.018 80.05% 19.95%
P2 -0.206 P7 0.414 C2 -0.240 0.034 87.46% 12.54%
P3 0.119 P8 0.115 C3 0.117 0.002 98.08% 1.92%
P4 0.302 P9 -0.274 C4 0.358 -0.056 86.49% 13.51%
P5 0.005 P10 0.054 C5 0.036 -0.031 53.76% 46.24%



Table 5: Components of the identi�ed mode shapes. The last columns indicate the torsional and
bending fraction of the total displacement.

Cretara

First mode f=3.564Hz

Position v[m] Position v[m] Position v0[m] vr[m] Bending [%] Torsion [%]
P1 -0.022 P10 0.025 C1 -0.041 0.019 68.16% 31.84%
P2 -0.287 P9 -0.108 C2 -0.270 -0.017 94.05% 5.95%
P3 -0.407 P8 -0.277 C3 -0.342 -0.065 83.99% 16.01%
P4 -0.263 P7 -0.253 C4 -0.185 -0.078 70.47% 29.53%
P5 -0.112 P6 -0.060 C5 -0.044 -0.069 38.86% 61.14%

Second mode f=6.734Hz

P1 -0.078 P10 0.095 C1 -0.012 -0.065 16.06% 83.94%
P2 -0.392 P9 0.295 C2 -0.083 -0.309 21.13% 78.87%
P3 -0.497 P8 0.355 C3 -0.071 -0.426 14.28% 85.72%
P4 -0.290 P7 0.226 C4 0.002 -0.293 0.84% 99.16%
P5 0.007 P6 0.053 C5 0.051 -0.044 53.50% 46.50%

Third mode f=8.628Hz

P1 0.039 P6 0.090 C1 0.065 -0.025 71.76% 28.24%
P2 0.360 P7 -0.338 C2 0.323 0.037 89.66% 10.34%
P3 -0.054 P8 -0.124 C3 -0.089 0.035 71.82% 28.18%
P4 -0.390 P9 0.285 C4 -0.364 -0.026 93.38% 6.62%
P5 -0.094 P10 0.090 C5 -0.002 -0.092 1.92% 98.08%

Table 6: Components of the identi�ed mode shapes. The last columns indicate the torsional and
bending fraction of the total displacement.

Le Grotte

First mode f=2.661Hz

Position v[m] Position v[m] Position v0[m] vr[m] Bending [%] Torsion [%]
P1 0.025 P10 0.007 C1 0.021 0.004 83.87% 16.13%
P2 0.361 P9 0.347 C2 0.360 0.002 99.56% 0.44%
P3 0.500 P8 0.493 C3 0.496 0.004 99.29% 0.71%
P4 0.351 P7 0.358 C4 0.349 0.002 99.47% 0.53%
P5 0.006 P6 0.017 C5 0.007 -0.001 87.14% 12.86%

Second mode f=6.291Hz

P1 -0.037 P10 0.064 C1 -0.075 0.038 66.30% 33.70%
P2 0.009 P9 -0.107 C2 -0.103 0.112 47.90% 52.10%
P3 0.017 P8 -0.247 C3 -0.115 0.132 46.51% 53.49%
P4 0.051 P7 -0.215 C4 -0.028 0.079 26.14% 73.86%
P5 0.069 P6 -0.113 C5 0.067 0.002 96.47% 3.53%

Third mode f=8.307Hz

P1 0.019 P6 0.167 C1 -0.074 0.093 44.30% 55.70%
P2 -0.275 P7 0.567 C2 -0.425 0.149 73.98% 26.02%
P3 0.011 P8 0.014 C3 0.013 -0.002 88.10% 11.90%
P4 0.237 P9 -0.574 C4 0.402 -0.165 70.92% 29.08%
P5 -0.054 P10 -0.167 C5 0.057 -0.110 33.90% 66.10%
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Abstract

So far, few in situ tests have been carried out to estimate the modal parameters of

multi-storey Cross-Laminated-Timber (CLT) buildings: the understanding of their

dynamic behaviour under operational conditions is still an open issue. In this paper,

the results of the dynamic identi�cation of an eight-storey CLT building are reported

and interpreted in the light of a simpli�ed shear-type analytical model. The struc-

tural model is calibrated on the experimental modal parameters, which are assessed

using the Stochastic Subspace Identi�cation (SSI). The SSI provides mode shapes,

natural frequencies and damping factors of the structures in its �rst linear response

range; The minimum of a modal-based objective function gives an estimation of

the unknown parameters of the structural model. Given the results of the dynamic

identi�cation, the storey-masses are the chosen optimization parameters: the values

of the experimental eigenfrequencies likely reveal a continuum-like behaviour of the

building without connections. The identi�ed storey masses are indeed realistic and

con�rm the negligible role of the connections in the low-amplitude dynamic response.

The nonlinear e�ects of connections over the building response to higher displace-

ments are discussed, providing simpli�ed and practice-oriented correlations for the

�rst natural frequency estimation.

Keywords: Dynamic Identi�cation; Model Updating; CLT buildings; Nonlinear

response

1. Introduction

Developments at the beginning of the 20th century made it possible to use rein-

forced concrete economically, and traditional timber constructions [1, 2] (log or stave
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Email addresses: angelo.aloisio1@graduate.univaq.it (Angelo Aloisio),

dag.pasquale.pasca@nmbu.no (Dag Pasca), roberto.tomasi@nmbu.no (Roberto Tomasi),
massimo.fragiacomo@univaq.it (Massimo Fragiacomo)



construction or lattice work) were successively superseded by the mineral-based solid

construction materials concrete and brick, at least in Europe [3]. However, over the

last 10 years or so, timber has recaptured market shares from the mineral-based

solid construction materials, in particular in the �elds of residential buildings, o�ce

buildings and schools but also other �elds of construction. One reason for this

development is the increasing interest in high-rise structures: the so-called "tall

buildings". They require a higher level of seismic performance, leading to the use

of massive and more e�ective systems, such as Cross-Laminated Timber (CLT) [4].

However, for the construction of larger and taller CLT buildings, it is necessary

to understand their dynamic behaviour: movements, which may be acceptable for

small heights and spans, are magni�ed in large structures, and may cause discomfort

to building occupants, damage to non-structural elements, or increased loads on

elements [5].

Aside from a few studies [5�8], the majority of research into the dynamic response

of multi-storey CLT buildings has been under seismic loading: experiments and nu-

merical modelling of CLT have been deeply investigated [4, 9�12], but the response

to small-amplitude vibration is still an open issue. Reynolds et al. [5] obtained the

modal parameters of a �ve-storey CLT building with an internal RC core. To �ll a

gap in knowledge, the authors present the dynamic identi�cation of an eight-storey

CLT building with a CLT core.

The estimate of the modal parameters of multi-storey CLT buildings' response under

operational conditions from in situ tests is useful to understand the gap between the

possibly linear dynamic response to service loading and nonlinear behaviour under

seismic excitation. This gap is much wider for CLT buildings rather than concrete

or steel buildings since the bearing resistance to lateral loads is concentrated in the

connections (hold-downs and angle brackets e.g.), which are used for the building

assemblage. The main objectives of this paper are: (i) the estimation of the modal

parameters of an eight-storey CLT building from Output-Only dynamic identi�-

cation; (ii) the updating of an elementary analytical model of the building to the

experimental modal parameters; (iii) the assessment of the role of the connection

nonlinearities on the building's dynamic response in operational conditions; (iv) the

derivation of simpli�ed and practice-oriented correlations useful for the assessment

of natural frequencies and damping factors of CLT buildings at a low-level response.



2. Test building description

The eight-story case study building (Fig.1(a)) is in the NMBU campus (Norwe-

gian University of Life Science), located in Ås, Norway. It has eight storeys with

a total height of 26.9 m and is rectangular in plan (23.21 m × 15.11 m), with a

CLT core at the centre. A plan of the building, indicating its structure, is shown in

Fig.1(c), and an elevation showing the �oor levels is given in Fig.1(b).

The tested building is made of large monolithic walls with high length-to-height

ratios, assembled by tie-downs and shear connectors.

Table 1: Basic characteristics of the tested building [13].
Parameter Value Unit

Lenght 23.21 m
Width 15.11 m
Height 26.9 m
No. of �oors 8
Rooms 127
Net area /�oor 350.55 m2

Net area /building 2804.4 m2

CLT wall panels
3 layers-90 mm
5 layers-100,120,130,
140,160,180 mm

CLT �oor panels 5 layers-180,220 mm
CLT roof panels 5 layers-200 mm
Wood amount-total 907.62 m3

Hold-downs steel plates 6225.73 Kg
Shear steel plates 1919 Kg
Self-tapping screws 6124
Steel brackets ≈390

The total lengths of the designated shear walls in the longitudinal and transverse

directions are approximately 21,5m and 25m, respectively, excluding the partition

walls, see Fig.1(d) [13]. Shear forces are being distributed using shear plates and

brackets while long steel plates, ranging from the foundation to the roof, are placed

at each end of the shear walls [13]. The main characteristics of the building are

reported in Tab.1. The building currently houses student apartments in eight �oors

of similar layout.

3. Dynamic identi�cation

The Stochastic Subspace identi�cation method is used for the estimate of modal

parameters from Output Only measurements [14�16].
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Figure 1: (a) North view of the building; (b) Prospects and plan (c)-(d) of the building.



3.1. Theoretical background

The SSI technique is a classical covariance-driven stochastic realization algo-

rithm, namely the Principal Component algorithm [17, 18], also known as the

covariance-driven SSI algorithm (SSIcov), that was generalized to a reference-based

version (SSI-cov/ref) by Peeters and De Roeck [19�22].

State-space representation of output-only vibration-based structural monitoring cor-

responds to the following discrete time model

xk+1 = Axk + vk

yk = Cxk + wk

(1)

with the states xk ∈ Rn, the outputs yk ∈ Rr , the state transition matrix A ∈ Rn×n

and the observation matrix C ∈ Rr×n, where r is the number of sensors and n is the

system order. The excitation vk is an unmeasured Gaussian white noise sequence

with zero mean and constant covariance matrix Q = E(vkv
T
k )

def

= Qδ(k − k′), where
E (·) denotes the expectation operator and wk is the measurement noise.

The algorithm starts with the construction of a block Toeplitz matrix of output

covariance matrices, constructed with the l measured outputs and the r reference

outputs:

Lref
l,i

def

=




Λref
i Λref

i−1 . . . Λref
1

Λref
i+1 Λref

i . . . Λref
2

...
...

. . .
...

Λref
2i−1 Λref

2i−2 . . . Λref
i



, Lref

l,i ∈ Ril×ir (2)

where Λref
j = E(yky

ref T
k ) is the covariances between all outputs yk and some reference

outputs. This matrix decomposes as

Lref
l,i

def

=




C

CA
...

CAi−1




[
Ai−1Gref Ai−2Gref . . . Gref

]
def

= OiC
ref
i (3)

where Oi ∈ Ril×n is called the extended observability matrix, Cref
i ∈ Rn×ir the

reference-based stochastic controllability matrix, Gref = AΣCrefT , Σ = E[xkx
T
k ] and

n is the system order. The system matrices A ∈ Rn×n and C ∈ Rn×l can be derived

as follows:
A = (S2Oi)

†(S1Oi)

C = S3Oi

(4)



where S1, S2 and S3 are selection matrices:

S1 = [0(i−1)l×lI(i−1)l];S2 = [I(i−1)l0(i−1)l×l];S3 = [Il0l×(i−1)l] (5)

The system's modal parameters (eigenfrequencies, damping ratios and mode shapes)

can be calculated from the identi�ed system description A, C.

A = ΨΛΨ−1, Aψi = λψi (6)

The undamped eigenfrequencies fi and damping ratios ξi in % can be calculated

from the dicrete-time poles λci:

λci =
ln(λi)

∆T
, fi =

|λci|
2π

, ξi = −100
λRci
|λci

(7)

where | · | denotes the complex modulus and λci = λRci + iλIci. The observed part of

the eigenvectors ψi leads to the experimental mode shapes φi:

Φ = CΨ, φi = Cψi (8)

3.2. Experimental setup

On October 25, 2019, the structure was subject to ambient vibration measure-

ments. A set of 10 piezoelectric accelerometers was used Fig.2(a): 6 accelerometers,

which provided a reference location [23], were placed on the rooftop, see Fig.2(c),

while the other 4 were placed in the inferior �oors in the 1 and 2 measurement

points, Fig.2(c). Speci�cally, four tests were then carried out and �ve �oors were

tested, from the roof to the 5th elevation. The accelerometers were arranged to

measure acceleration in two orthogonal directions, Fig.2(b). In order to con�rm the

(a) (b) (c)

Figure 2: (a) Signal conditioner and DAQ system of the 10 IEPE piezoelectric accelerometers; (b)
View of a couple of accelerometers measuring in two orthogonal directions; (c) Schematic view of
the experimental setup of the rooftop.

assumption of horizontal rigid diaphragms, a redundant number of measurements



points on each �oor was used.

The accelerometers PCB model 393B12 have a sensitivity of approximately 10000

mV/g, a frequency range from 0.15 Hz to 1000 Hz and a measurement range up to 10

m/s2. The data were sampled at a rate of 100 Hz. The cut-o� frequency of the anti-

aliasing �lter was set to 10 Hz. The number of samples was set to N=360000, which

resulted in a measurement time of 1 hour. Data from multi-setup measurements (4

setups) were then merged following the approach recalled in. [24].

3.3. Results

Three stable frequencies clearly arise from the stabilization diagram [19] in the

frequency range 0-10 Hz, Fig.3(d). The �rst three modes are evidenced by the peaks

of the FFT of the signals in two orthogonal sensors, Fig.3(b)-(c). The variance of

the acquired signal is approximately equal to 1.4 × 10−5 m/s2 Fig.3(a): the low

excitation is due to the wind, which blew at an approximate speed of 6Km/h with

a NNE direction. The �rst two modes are translational: the very �rst at 1.913Hz,

(a) (b)

(c) (d)

Figure 3: (a) Acceleration time-history of a reference accelerometer placed on the rooftop; (b)-(c)
FFT of the signals in two orthogonal directions; (d) Stabilization diagram of the merged signals.
The stabilization criteria are: δfi ≤ 1%, δξi ≤ 1%, MAC<1% [25].

Fig.4(a), is a translation parallel to the direction of minor inertia of the building;

The second mode at 2.414Hz is a translation in the orthogonal direction, Fig.4(b).

The third mode at 2.688 Hz can be regarded as the �rst torsional mode, Fig.4(c).

The damping factors range between 1.2-1.9%: the �rst modes are less damped than

the other two, whose damping is almost close to 2%. Besides, a 2% damping can be

considered in accordance with the standards predictions [26]. Two relevant aspects

should be remarked:



(a) 1st mode1.913 Hz; ξ =
1.216%

(b) 2nd mode 2.414 Hz; ξ =
1.916%

(c) 3rd mode 2.688 Hz; ξ =
1.921%

Figure 4: Natural frequencies, damping factors and mode shapes of the three stable modes in the
frequency range 0− 10Hz corresponding to the roof setup.

(a) 1st mode (b) 2nd mode (c) 3rd mode

Figure 5: Natural frequencies, damping factors and mode shapes of the three stable modes in the
frequency range 0− 10Hz corresponding to merged data sets.

� The CLT �oors behave like rigid diaphragms;

� As later evidenced by the model updating, the natural frequencies are very

high, as if the global sti�ness of the building was due to the in-plane deforma-

bility of the sole CLT panels, without the contribution of the connections.

At a very low vibration level, the building may behave like a rigid "box-like"

structure: the amplitude of the excitation might not be enough to activate the

uplift of the tie-downs nor to overcome the initial slip of the shear connectors.

The behaviour of timber structural systems and their connections is substantially

nonlinear at low loads as well as high [6], as evidenced by experimental cyclic tests

on CLT panels; However, very low excitation levels, like the ones of the current tests,

are not considered in experimental cyclic tests [9]: below a certain displacement

threshold, the CLT building may behave almost linearly, like a continuum.

However, the assessment of the nonlinear or possibly non-stationary behaviour of

CLT buildings in operational conditions cannot be derived from dynamic identi�-

cation tests. A continuous monitoring would be needed to appreciate the actual

behaviour at low vibration levels under di�erent values of the excitation (wind,

e.g.). So far, there is a lack of knowledge on the Structural Health Monitoring



(SHM) of high-rise CLT buildings and more researches on this topic are needed.

Given the diaphragm-like behaviour of the CLT �oors, a linear analytical model

is used to interpret the experimental results and better understand the aspects

remarked in this section. Detailed modelling of the CLT building is an important

issue to be investigated in future researches, but it is not the purpose of this paper.

4. Model updating

An elementary shear-type 3-D building model [27] is presented and then cali-

brated to the experimental results by minimizing a proper objective function. The

values of the experimental eigenfrequencies and the considerable in-plane sti�ness of

the CLT �oors drove the choice towards the sti�est structural model: the shear-type

one. However, the availability of accelerometers in the out-of-plane �oor direction

would have let to rigorously assess the approximation in using the shear-type rather

than the cantilevered model. In practical situations, the selection of the structural

model can profoundly a�ect the prediction of dynamic properties [28, 29], yielding

a wide range of natural frequencies. For this reason, the designer should carefully

ponder the choice of the model based on the expected structural response in relation

with the considered limit state and the type of excitation (wind, seismic load, e.g.).

4.1. Model description

The equations of motion of a generic 2D storey are derived, then the resulting

mass and sti�ness matrices are assembled into the mass and sti�ness matrices of the

whole structure.

It is assumed that a generic storey is supported by N structural elements. The

Figure 6: Plan view of a general con�guration of the bearing walls of the j-th storey.

equilibrium (Eq.9), compatibility (Eq.10) and constitutive (Eq.11) equations of a



j-th storey can be written as:

∑N
i=1 Vx,ij +

∫
Aj

ρj(x, y) üj(x, y) dA = 0

∑N
i=1 Vy,ij +

∫
Aj

ρj(x, y) v̈j(x, y) dA = 0

−∑N
i=1 Vx,ijyi +

∑N
i=1 Vy,ijxi +

∫
Aj

ρj(x, y) y üj(x, y) dA−
∫
Aj

ρj(x, y) x v̈j(x, y) dA = 0

(9)

uj(x, y) = u0j − θjy
vj(x, y) = v0j + θjx

(10)

Vx,ij = kx,ij (uj(xi, yi)− uj−1(xi, yi))
Vy,ij = ky,ij (vj(xi, yi)− vj−1(xi, yi))

(11)

where Vx,ij and Vy,ij are the shear components in the x and y direction of the

i-th wall of the j-th storey, ρj(x, y) is the mass per unit square, uj(x, y) and vj(x, y)

are the displacement components in the x and y direction, dA is the in�nitesimal

element area and Aj the total area of the storey, Fig.(6).

The compatibility equations are written assuming the diaphragm-like behaviour of

each �oor, while the constitutive equations are based on the estimation of two shear

sti�ness values in the x and y directions, kx,ij and ky,ij respectively, concentrated in

the centre of mass of each wall. The undamped equilibrium equations of the j-th

storey in terms of displacements can be then written as follows:

Mj ϋj +Kjυj = 0 (12)

υj =



u0,j

v0,j

θj




T

Mj =



Mxx,j 0 −Mxy,j

0 Myy,j Myx,j

−Mxy,j Myx,j IM,j


 Kj =



Kxx,j 0 −Kxy,j

0 Kyy,j Kyx,j

−Kxy,j Kyx,j IK,j




(13)

where Mxx,j = Myy,j =
∫
Aj

ρj(x, y)dA, Mxy,j =
∫
Aj

yρj(x, y)dA, Myx,j =
∫
Aj

xρj(x, y)dA,

IM,j =
∫
Aj

(x2 + y2) ρj(x, y)dA, Kxx,j =
∑N

i=1 x
2
i kx,ij, Kyy,j =

∑N
i=1 y

2
i ky,ij, IK,j =

∑N
i=1 (x2i kx,ij + y2i ky,ij), Kxy,j =

∑N
i=1 xiyikx,ij, Kyx,ji =

∑N
i=1 yixiky,ij.

If L is the number of storey, the equilibrium equations in terms of the displacement

vector are:

Mϋ +Kυ = 0 (14)



υ =




υ1
...

υL




T

M =




M1 0 . . . 0

0 M2 . . . 0
...

...
. . .

...

0 0 . . . ML



K =




K1 −K2 . . . 0

−K2 K1 +K2
. . .

...
...

. . . . . . −KL−1

0 . . . −KL−1 KL




(15)

The modal parameters of this model are obtained from the eigenstructure of Eq.(14).

4.2. Model updating

To measure the distance between the estimated modal parameters and the nu-

merical ones, the following objective function is used [30]:

C =
M∑

i=1

γi

(
ωm
i − ωc

i

ωm
i

)2

+ β
M∑

i=1

(1− diag(MAC(Φm
i ,Φ

c
i))) (16)

where the apex (∗)m indicates a measured variable, the apex (∗)c a calculated vari-

able, Φi is the mode shape vector, M is the number of modes, MAC is the modal

assurance criterion [31], while γi and β are weighting factors. The weighting factors

are set equal to one. Since the storeys are almost identical among each other, except

for the roof, the mass of a generic storey Mstorey, and that of the roof Mroof are set

as estimand parameters in the optimization. The main reasons for this choice are:

� The mass is known with greater uncertainty than the geometry and sti�ness

of the CLT walls, whose properties are known from the producer. Except for

the self-weight of the CLT �oors, the variable load (people, furniture, e.g.) is

almost unknown and non-stationary;

� The optimization of both sti�ness and mass, based on the natural frequen-

cies and un-scaled mode shapes, may stand as an undetermined problem: the

eigenfrequencies depend on the ratio between rigidity and weight; Theoreti-

cally, in�nite couples of rigidity and weight values could be possible candidates

for the optimization.

The computation of the equivalent rigidity of the CLT walls [32�34] is based on

the longitudinal and shear elastic moduli declared by the producer. The bending

sti�ness is calculated considering only the vertical layers and an equivalent shear

modulus takes into account the torsional deformation of the lamellae. Speci�cally,

both the shear and the bending deformation of the walls are taken into account in

the following:

kCLT =

(
h3

12 EI
+

1.2h

GA

)−1
(17)



where h is the inter-storey height, E the Elastic modulus, G the shear modulus and

A the cross sectional area of the wall.

To reduce the number of modelling simpli�cations, the entire mass of the storeys

is assumed unknown (Mstorey e Mroof ). The authors estimated the minimum of the

objective function by evaluating the objective function in a discretized domain with

a 0.1 KN step. The contour plot of the objective function is shown in Fig.7, the "X"

indicates the minimum of the function. The optimized parameters are itemized in

Tab.4.

Figure 7: Contour plot of the objective function.

Table 2: Weight values estimated from updating.
Mass

Description KN KN/m2

Roof 365.6 1.042
j-th storey 797.7 2.275
Self Weight of the j-th storey 350.7 1.000
Variable and permanent of the roof 14.9 0.042
Variable and permanent load of the j-th �oor 447.0 1.275

Table 3: Comparison between the expected and estimated Self-Weight of the roof
Description Estimated value Expected value

Self Weight of the j-th storey [KN/m2] 1.000 1.100

To evaluate the portion of the storey mass due to the variable and permanent

load, the self-weight of the CLT �oors is assumed known and subtracted from the

Mstorey and Mroof values, Tab.4.

Tab.3 reports the estimated and expected values of the self-weight of the generic

�oor: the two values are almost coincident. The self-weight of j-th generic �oor is



Table 4: Comparison between the experimental and numerical modal parameters.
Experimental Numerical

Mode shapes f[Hz] ξ [%] f[Hz] MAC

1st translational mode 1.913 1.216 1.867 0.99
2nd translational mode 2.414 1.916 2.543 0.98
1st torsional mode 2.693 1.921 2.712 0.92

close to the estimated mass of the roof. This is true, since the sole extra load on

the roof was due to the thermal insulation coating and the ventilation system.

5. Discussion

Direct methods or indirect methods can drive the assessment of the role of the

connections. The direct method directly estimate the sti�ness of the connections by

updating all modelling parameters. The indirect method, followed in this paper, de-

rives from proving hypothesis through tests. Let assume a continuum-like behaviour

of the building (hypothesis): the connections are neglected in the model updating

process (test). If the updated masses match with the expected ones, the hypothesis

is proven (proof). In the following part, the authors discuss the causes of the ob-

tained results. Most of the scholars pursue a direct and more conventional approach:

a Finite Element Model of the building would have driven the optimization of both

the storey masses and the sti�ness of the connections. The obtained parameters

would have then provided a direct assessment of the role of the connections.

5.1. The role of connections

Comparing the measured natural frequencies with those calculated from the nu-

merical model, it appears that the connections do not signi�cantly contribute to

the low-amplitude dynamics. The modal parameters of the numerical model with

in�nitely rigid connections, in fact, are in great accordance with the experimental

ones.

Theoretically, the possible nonlinear response of the building could be evidenced at

a very low-level response, when the uplift of the CLT walls arises. Recurring to the

experiments by Gavric et al. [9, 35], the ratio between the uplift sti�ness at a very

�rst stage, estimated by the tangent to zero of the backbone curve in Fig.8, and the

elastic rigidity estimated from Eq.(17) is approximately:

r =
kuplift
kelastic

≈ 11606 KN/m
39387 KN/m

= 0.29% (18)



It follows that the CLT building may exhibit important frequency shifts even at the

low-level dynamics. This phenomenon (uplift, rocking [36, 37] e.g.) could be easily

(a) (b) (c)

Figure 8: (a) Layout of the CLT panels tested by Gavric et al. [9]; (b) Hysteresis loops of the
tested panel; (c) Representation of the �rst steps of the cyclic tests shown in (b): the dotted line
is the tangent to zero.

estimated from continuous monitoring under di�erent operational conditions (e.g.

wind speed). Besides, given the di�erence between the elastic and the uplift rigidity

Fig.9, the model updating with a ≈ 0.3% of the elastic sti�ness would lead to an non-

realistic increment of the storey masses. Fig.9 is an oversimpli�cation, analytical

Figure 9: Schematic representation of the CLT wall panel behaviour.

prediction models were discussed by [9, 38]. According to Gavric et al. [9] the

lateral displacement on top of a CLT wall can be divided into several contributions:

(i) rocking deformation, (ii) sliding deformation, (iii) bending deformation, (iv) shear

deformation. However, the incremental deformation due to vertical elongation of the

wall anchorage, which is further considered by the Canadian Standard Association

[39], is likely to be negligible in operational conditions.

5.2. Correlations to the building height

As evidenced in the previous section, several factors, peculiar of the considered

CLT building, may determine the eigenfrequencies in Tab.4:

� Negligible in�uence of the connections in the very low intensity dynamics;

� High sti�ness to weight ratio of CLT panels;



� Redundancy of structural components [13].

The straightforward estimation of the �rst natural frequency may be important for

practitioners: to perform static seismic analyses, in fact, national codes provide a

simpli�ed equation for estimating the main frequency of a structure.

The formulations proposed by ASCE 07-16 (2017) [40] and the former Italian Seismic

Code [41] are similar (Eq.(19)), while that of the Spanish Code [42] is more complete

Eq.(20):

f1(H) =
1

C1H3/4
(19)

f1(H) =

√
H

C2H
√

H
(2L+H)

(20)

where C1 and C2 are constants, H is the building height in metres, L the plan

dimension along the direction of oscillation in metres. The current Italian Seismic

Code [43] proposes a di�erent formulation:

f1(d) =
1

2
√
d

(21)

where d is the lateral elastic displacement of the highest point of the structure un-

der the seismic action. The constants C1, computed by setting f1 equal to the �rst

experimental eigenfrequency, and C2, estimated from an Ordinary Least Squares

Operator are reported in Tab.5. C1 is very close to the proposed value for masonry

Table 5: Estimated constants of Eq.(19)-(20) based on the results in Tab.4.

C1 0.0443
C2 0.1100

C1 = 0.0488. This might be due to the sharing of a wall-based structure in both

typologies, CLT and masonry. It must be remarked that the use of the �rst eigenfre-

quency based on simpli�ed formulations is mainly devoted to static linear analysis;

Static linear analysis are highly conventional approaches, given the uncertainties

on the seismic action estimation and the linear approximations of the structural

behaviour.

5.3. Damping estimation

The damping factors estimated by Reynolds at al. [5], which span in the range

4.7-7%, are sensibly higher than those in Tab.4. In particular, the damping factors

of the building under test are very close to the damping of timber itself, which is

about 2%. However, the building tested by [5] has a RC core, while the current



building has a CLT one. Hence, the RC core might sensibly increase the damping

factor, from that of CLT to that of concrete.

6. Conclusions

The results of the dynamic identi�cation in operational conditions of an eight-

storey CLT building are interpreted in the light of an elementary analytical

model. Three stable modes are detected, two translational and one torsional:

the diaphragm-like behaviour of the CLT �oors is clearly evidenced by the mode

shapes. The analytical model is calibrated on the experimental eigenstructure

using a proper objective function, whose estimand parameters were the masses

of the storeys. Given the accordance with the analytical model, the building is

likely to behave linearly at a very low vibration level, when the contribution of

the connections is not activated. However, the contribution of the connections to

the global dynamics may possibly be observed by continuous dynamic monitoring

under di�erent vibration-induced levels. The �rst eigenfrequency matches well with

that estimated from empirical relations tuned to masonry structures: this may be

due to the wall-based construction typology, recurring in both masonry and CLT

structures. The damping factors, which span in the range 1.2-1.9%, are very close

to those of timber.

The authors will attempt to further investigate the behaviour of tall CLT buildings

from Continuous Dynamic Monitoring of this structure.
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ABSTRACT
Timber floors are prone to exhibit vibration levels which can cause discomfort to the occupants.

In the last twenty years, ambient vibration tests have become very popular due to the many
advantages they have over traditional forced vibration tests, when dealing with civil engineering
structures. Furthermore, sensitivity analyses and "black box" optimization algorithms can support
the development of refined finite element models that accurately predict the structures’ responses
based on the experimentalmodal parameters. Though, applications of thesemethods and techniques
to timber structures are scarce compared to traditional materials. This paper presents and discusses
the findings of an experimental testing campaign on a lightweight timber floor. At first, each
component of the assembly was tested separately under different boundary conditions. Then the
authors evaluated the behaviour of the whole floor assembly. In a second step, the authors carried
out a covariance-based sensitivity analysis of FE models representative of the tested structures
by varying the different members’ mechanical properties. The results of the sensitivity analysis
highlighted the most influential parameters and supported the comparison between diverse FE
models. As expected, the longitudinal modulus of elasticity is the most critical parameter, although
the results are very dependent on the boundary conditions. Then automatic modal updating
algorithms tuned the numerical model to test results. As a concluding remark, the experimental
and numerical results were compared to the outcomes of a simplified analytical approach for the
floor’s first natural frequency estimate based on Eurocode 5.

INTRODUCTION
Modal testing represents a standard practice in structural engineering. Traditional modal testing

is based on estimating frequency response functions, which basically are the ratio of the output
response to the input excitation. This approach is also known as Experimental Modal Analysis
(EMA). Other ways to obtain modal properties through testing are the so-called Operational Modal
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Analysis (OMA) methods. These approaches are very advantageous in civil engineering, where
the tested object is usually massive.

OMA encouraged copious research activities, which spanned from theoretical investigations
(Aloisio et al. 2020e; Reynders et al. 2012; Reynders et al. 2016) to practical applications (Bedon
and Morassi 2014; Rainieri et al. 2019; Aloisio et al. 2020a; Aloisio et al. 2020c). The scientific
literature documents a considerable amount of applications to civil engineering structures: wind
turbines (Tcherniak et al. 2011; Devriendt et al. 2014), stadiums (Peeters et al. 2007; Magalhães
et al. 2008), dams (Sevim et al. 2011; Pereira et al. 2018), architectural heritages (Kita et al. 2019;
Gentile et al. 2019; Antonacci et al. 2020; Aloisio et al. 2020d). The modal features, obtained
from OMA, bestow a direct insight into the actual structural behaviour and can guide a heedful
assessment about the modelling of the tested structures. A high-quality experimental campaign
can yield a reliable estimation of many modal parameters, valuable in understanding the limits and
advantages of the possible modelling approaches. The matching between the experimental modal
parameters and those obtained from the numerical model endorses the modelling choices. The
search for an optimum matching leads to an optimum model, obtained by optimizing the modelling
variables via the so-called model updating methods (Friswell and Mottershead 2013). Model up-
dating defines the process of refreshing the modelling variables at each step to minimize a proper
objective function, which magnifies the difference between experimental and numerical features.
In the digital era, model updating is gaining popularity due to automated optimization algorithms.
These algorithms lead to an optimum structural model, which best mirrors the experimental re-
sponse. The increasing popularity of model updating methods has alimented considerable research.
Today, a researcher can use numerous optimization algorithms, which are equally feasible in terms
of reliability and computational efforts.

Timber is an excellent construction material with good stiffness-to-mass ratios and carbon-
storing properties. These characteristics made timber very popular in the last years. The interest in
timber structures has risen, especially in the last two decades, due to the advent of new engineering
wood products, like the Cross-Laminated Timber (Ceccotti et al. 2013; Brandner et al. 2016; Izzi
et al. 2018; Aloisio et al. 2020b). The low weight of timber, however, is a double-edged sword
to the dynamic performance. The use of timber elements is beneficial in reducing dead loads
(and inertial forces) on the structure. On the other hand, its low mass makes it prone to reach
a higher amplitude of vibrations. The assessment of timber buildings’ vibration performances
has two primary branches: one focused on evaluating the lateral response(Reynolds et al. 2016;
Mugabo et al. 2019; Aloisio et al. 2020f; Aloisio et al. 2021), the other on assessing walk-induced
vibrations and the comfort requirements for the users (Smith et al. 2007). While the first field
is relatively new, researchers have investigated the second aspect for many years (Ohlsson 1982;
Smith and Chui 1988; Hu et al. 2001; Hamm et al. 2010). The serviceability limit state is related
to the perception of annoying oscillations caused by walking-induced vibrations. The "live" feel
of timber floors is familiar to many, especially in single-family housing with a timber framework.
However, this problem is not limited to timber-framed residential buildings. Timber joists can
support the flooring system even in masonry buildings (Hu et al. 2001). The trend of seeking
large, open-spaced architectural layout and adopting new construction practices certainly affects
timber floors’ serviceability significantly. The ability to predict timber flooring systems’ behaviour
remains a difficult task and a topical subject.

There are some applications of ambient vibration tests on timber floors in the scientific liter-
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ature (Weckendorf and Smith 2012; Weckendorf et al. 2014; Weckendorf et al. 2016). However,
force vibration tests, and EMA methods remain the most known and used procedures to estimate
traditional floors’ modal properties or more innovative solutions (e.g. CLT and Timber concrete
composites) (Casagrande et al. 2018; Xie et al. 2020; Huang et al. 2020). Applications of OMA
methods and automated modal updating procedures to timber structures are still not copious. This
paper presents and discusses ambient vibration test results of a timber floor and the modelling
strategies and techniques adopted to simulate the floor’s dynamic response numerically. Specifi-
cally, the research studies the response of two glulam beams with plywood decking, which are part
of a simply-supported timber floor. At first, each assembly component was tested separately under
different boundary conditions; then, the authors evaluated the whole floor assembly’s behaviour.
In a second step, the authors carried out a covariance-based sensitivity analysis on the FE models
representing the tested structures by varying the Moduli of Elasticity of the different members. The
sensitivity analysis outcomes evidence the significant structural parameter and drive a definitive
comparison between diverse FE modelling methods. The authors used two automated updating
algorithms to refine the numerical model’s parameters better and match the testing results. The
adoption of closed-form analytical solutions is diffuse in engineering practice. Therefore, the
authors compared the well-known Euler-Bernoulli model for the simply-supported beam tests with
the FE numerical predictions.

MATERIALS AND METHODS
The authors tested a timber floor sub-assembly made by two beams and decking above. The

two GL30C beams are 5m long with a 115mm x 315mm cross-section. The nominal average
Modulus of Elasticity (MoE) is 13�%0, while the mean weight is 430:6/<3, according to EN
14080 (EN14080 2013). Both beams presented some defect at delivery, see Fig1. "Beam 1" on
one end had two cracks (approximately 15cm and 20cm wide), on both faces; while "Beam 2" had
a hole on one face that was filled with silicone.

The decking consists of 21 mm thick Plywood 1,5 x 1,5 m sheets made from Birch veneers.
According to the producer declaration of performance (DoP) the self-weight is 650:6/<3, while
the mean values of the MoE span between 6�%0 and 8�%0, depending on loading direction,
perpendicular or parallel to the external layer fibre orientation, respectively.

In modal testing practice, mechanical parts, machinery and other structural components are
tested freely-suspended due to the difficulties in modelling the boundary conditions. Due to the
laboratory conditions, it was not possible to suspend the beams. The authors adopted a compromise
solution, based on the use of a layer of Rockwool insulation placed under the beams, which
successfully simulated the free-free boundary conditions. A single rectangular piece of Rockwool
(300mm x 300mm, 100mm thick) located under the mid-span of the beams, or by the centre of
the plywood boards yielded the best results, in terms of repeatability, consistency and clearness of
both the spectral densities and the stabilisation diagrams. The presence of the Rockwool layer may
affect the results in terms of damping. However, reliable damping estimates are always challenging
to achieve and are not the primary scope of this investigation.

Pinned-pinned boundary conditions characterized the floor assembly in Fig2. Two metal
cylinders, spaced 4.8m, supported each beam, with a 600mm centre-to-centre distance. The
decking was made of three square boards with 1.5m long sides. The beams, being 5m long, were
not covered by the boards for the last 25cm on each side, see Fig2a. Furthermore, no nailed or
screwed connector secured the boards over the beams. Dynamic analyses are susceptible to the
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a b

Fig. 1. Location of the defects on "Beam 1" and "Beam 2".

occurrence of little damage or minimal structural modification. The insertion of the connectors
would have altered/damaged each component, thus vanishing the efforts to identify the dynamics
of each of them accurately. Therefore, the authors devised an alternative solution to study the
entire structural arrangement without the need for connectors. They placed a reusable putty-like
pressure-sensitive adhesive, which guarantees the joint response of the beams and the decking in
the vertical direction. Even if in a real building the decking would be fixed to the beams, thus
enhancing the composite interaction and the overall stiffness, the floor would also be much thicker
and heavier, due to the finishing. The structural assembly is not intended to be representative
of realistic situations, it is a structural archetype useful for the accurate calibration of numerical
models able to predict its vibration performance.

A slight and random brushing of the structures using a wooden stick represented the excitation
source. This method aims to improve the signal-to-noise ratio of the measurements (Brincker and
Ventura 2015). The Enhanced Frequency Domain Decomposition method (EFDD, (Brincker et al.
2001)) and the Stochastic Subspace Identification method (SSI-cov (Peeters and De Roeck 1999),
SSI-dat (Van Overschee and De Moor 2012)), implemented by the authors in Python programming
language, yielded the modal parameters from the acquired data. The EFDD method, which is a so-
called non-parametric, frequency domain procedure, and SSI, which is a parametric, time-domain
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a b

Fig. 2. Floor assembly: left view from above, right view from below.

procedure, are probably among the two most used techniques for OMA.
The numerical characterisation of the dynamic response originated from Finite Element Mod-

elling using the software SAP2000 (SAP2000 1975). The authors developed a set of models for each
sub-assembly (i.e. beams and board) before the testing using standardised values for the material
properties (i.e. from material standard and DoP). These models provided an expected response,
which was useful to derive a proper setup and instrumentation plan. Two models reproduced the
dynamics of the beams. The former derived from the one-dimensional "Frame elements" based
on the Timoshenko beam theory, the latter originated from the use of "Solid elements", which are
eight-node elements for modelling three-dimensional structures. The material property was defined
as orthotropic to model the glulam. Thin "Shell elements" modelled the decking, with the plywood
of the boards idealised as an orthotropic material. Unfortunately, SAP2000 does not perform a
modal analysis of unrestrained objects. Therefore, a "Linear-link" element connected the modelled
structures’ end corners to the ground. An infinitesimal stiffness was assigned to the link elements
to simulate the unrestrained boundary conditions.

The global model of the floor emerged from the sensitivity analysis and model updating of the
structural sub-assemblies, see Fig3. "Linear-link" elements connect the beam’s nodes to the nodes
of the plywood boards. Each element is assumed to be composed of six separate "springs", each
associated with a deformational degree of freedom (DoF). Given the type and source of loading,
the authors assigned an infinite stiffness to the first local axis of the spring, representing the contact
between components (see Fig3).Conversely, the other DoF were kept unrestrained since the boards
were not fixed to the beams. The mesh size of the frame elements (50 mm), the solid elements
(55x25x30 mm) and the shell elements (50x50 mm) derived from a simple convergence test on the
firsts natural frequencies, and represent a possibly satisfactory compromise between accuracy and
computational time.

The SAP2000 Open Application Programming Interface (OAPI) was used in combination with
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Fig. 3. Sap2000 FE model of the floor.

the open-source programming language Python to develop the routines for the sensitivity analysis
and model updating. The OAPI allows third-party products, like Python, to interact with SAP2000,
allowing the users to create custom applications.

A Sobol sensitivity analysis (Sobol 1993) evidenced the role of each term of the flexibility
matrix of an orthotropic finite element. Namely, the analysis returned the sensitivity indices of the
three MoE, �- �. �/ , the three Shear Moduli, �-. �-/ �./ , and three Poisson’s ratios, a.- a/-
a/. on the output (modal properties).

Finally, the FE models were tuned to reflect the measured data better using two global opti-
mization algorithms for "black box" functions, the Differential Evolution (DE) (Storn and Price
1997) and the Particle Swarm Optimization (PSO)(Kennedy and Eberhart 1995). The script for
the model updating process was written in Python using SAP2000 OAPI along with the Python
module PySwarms (Miranda 2018) (to run PSO), and the popular Python toolkit SciPy (Virtanen
et al. 2020)(to run DE). The idea behind PSO is to emulate the social behaviour of birds and
fishes by initializing a set of candidate solutions to search for an optimum. A set of candidate
solutions (called particles) are moved around in the search-space. The movements of the particles
are guided by their own best-known position in the search-space as well as the entire swarm’s
best-known position. Differential evolution is a stochastic population-based method that, at each
step, mutates each candidate solution (called agents) by mixing with other candidate solutions to
create a trial candidate. If the new position is an improvement, then it is accepted and forms part
of the population. Otherwise, the new position is simply discarded.

The following objective functionmeasures the distance between the estimatedmodal parameters
and the numerical ones:

� =
"∑
8=1

W8

(
5 <8 − 5 28
5 <8

)2
+

"∑
8=1

V8 (1 − "�� ({q<}8, {q2}8)) (1)

where the apex (∗)< indicates a measured variable, the apex (∗)2 a calculated variable, 58 is the
8Cℎ natural frequency, q8 is the mode shape vector, M is the number of modes, MAC is the Modal
Assurance Criterion, while W8 and V8 are weighting factors.
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Practitioner usually rely on simplified equation provided by building codes and standards to
design structural elements, rather than rely on cumbersome and time-consuming FE analysis,
especially at early design stages. To reflect this aspect the authors drew some comparisons to
well-known engineering procedures. The bending vibrations of a beam can be described by the
well-known Euler-Bernoulli beam equation:

��
m4I

mG4
+ d�m

2I

mC2
= 0 F8Cℎ 0 < G < ! (2)

where the � is the MoE, � is the second moment of inertia of the cross-section, d is the mass
density (mass per unith length), � is the cross-section area, I is the vertical displacement, ! is the
length of the beam and C is time. The solution for Eq.(2) can be found for example by decomposing
the displacement into a sum of harmonic vibrations I(G, C) = '4[Î(G)4−8lC]. Eq.(2) can then be
rewritten as an ordinary differential equation ��m4 Î/mG4− dl2 Î = 0, which have a general solution
of the form:

Î= = �12>Bℎ(:=G) + �2B8=ℎ(:=G) + �32>B(:=G) + �4B8=(:=G) F8Cℎ := =

(
dl2=
��

)1/4
(3)

where �1 − �4 are constants that depends on the boundary conditions, := is the wave number and
l= is the =Cℎ natural frequency. Eurocode 5 (EN1995 2004) provides a formula to estimate the first
natural frequency of rectangular floor with span !, width �, simply supported along the four edges,
which derives from the temporal component of the solution of Eq.(3):

51 =
c

2!2

√
(��)!
<

(4)

where (��)! is the equivalent bending stiffness along the span direction and < is the mass per unit
floor area.

DYNAMIC IDENTIFICATION

Experimental setup
The measurement chain was composed by ten seismic ceramic shear piezoelectric accelerome-

ters, an HBM QuantumX data acquisition unit (24-bit analogue-to-digital converter) and a laptop
pc. Shielded polyurethane coaxial cables made the connection between the sensors and the acquisi-
tion unit. The accelerometers (PCB, model 393B12) have an approximate 10000<+/6 sensitivity,
a frequency range from 0.15 �I to 1000 �I and a measurement range up to ≈ ± 5 </B2.

The accelerometers measured the beam responses parallel to the principal axes of inertia (strong
and weak) in the free-free condition, according to the setups shown in Fig4a. Mounting studs and
small metal plates screwed to the beams extrados (i.e. top surface) secured the accelerometers to
the elements. The second setup for the weak axis allowed the extraction of the torsional modes of
the beams, see Fig4c. In this case, three different measurements were processed and then merged to
get the mode shapes. The sensors were attached to the beams through adhesive rubber to fasten up
the testing operations. Furthermore, the beams were also tested on two metal supports to simulate
the simply-supported condition; this time, the measurement axes were parallel to the strong axis
of inertia. Fig4b shows the test setup of the decking. The authors tested a single panel out of the
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three plywood sheets. The testing of the structural sub-assembly had the sensors placed by the
intrados of the beams. This choice allowed to leave the space on top of the floor free, see Fig2b.
The accelerometers were evenly distributed along both beams. The distance between the edge
accelerometers was lesser than the beam length due to the presence of the supports.

a

b c

Fig. 4. a)Test setup glulam beams, b)Test setup plywood boards, c)Test setup for torsional modes
glulam beams. (all the dimensions are in mm)

The sampling frequency was set to 1200 �I (the aliasing filter is automatically set by the
software embedded in the logger), and the duration was 5 minutes for every test. The data were first
detrended to remove the DC offset with the application of a digital high-pass filter, then decimated.
Different decimation factors, depending on the frequency bandwidth of interest, were used.

With regards to the EFDDmethod, the Power SpectralDensities (PSD)were estimated according
to the Welch’s method, dividing the data so to get a frequency resolution of 0.1 �I and using a
Hanning windowwith 50% overlap. TheMAC rejection level to estimate the singe-DoF PSD "bell"
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function was set to 0.95. Twenty consecutive peaks were used to estimate the damped frequency and
the damping ratio from the autocorrelation function, ignoring the first 3. For the SSI-cov method,
the number of block rows was set to 15, and the maximum model order to 80. As suggested in
(Rainieri and Fabbrocino 2014), the stability requirements were set to:( | 5 (=) − 5 (= + 1) |

5 (=)

)
< 0, 01 (5)

( |b (=) − b (= + 1) |
b (=)

)
< 0, 05 (6)

[1 − "�� ({q(=)}, {q(= + 1)})] < 0, 02 (7)

where (=) and (= + 1) are the =Cℎ and =Cℎ + 1 model order, 5 is the natural frequency, b is the
damping, and q is the mode shape vector.
Results and discussion

Processing the data yielded nine of the first ten modes of the freely suspended beams in the
bandwidth between 0 �I and 300 �I, the only exclusion being the first flexural mode along the
weak axis. Tab1 shows the results estimated from the EFDD method and SSI-cov, with the results
of the preliminary numerical model. As can be seen from the table, the estimated frequencies are
very close to each other. The mode shape estimates are very consistent, with CrossMAC values
higher than 0.99. Furthermore, the experimental results do not differ too much from the numerical
ones. The only exception being the swapping of position between the 1BC flexural mode along
the strong axis and the 2=3 flexural mode along the weak axis in the measured modes, compared
to the numerical ones. Fig5 shows the experimental modes: the MAC matrix in Fig6 remarks
on the excellent correspondence between experimental and numerical modes. The fact that some
off-diagonal terms have very high values could seem odd at first glance, but with a more careful
look, one can notice how these are the modes that have similar shape along the two orthogonal
axes.

TABLE 1. Results dynamic identification freely suspended beams

SAP2000 Beam 1 SSIcov Beam 1 EFDD Beam 2 SSIcov Beam 2 EFDD
Mode 5=[Hz] 5=[Hz] b[%] 5=[Hz] b[%] 5=[Hz] b[%] 5=[Hz] b[%]
1-Flex-WA 25.81 - - - - - - - -
2-Flex-WA 69.96 62.98 0.72% 63.06 0.59% 65.66 0.61% 65.83 0.60%
1-Flex-SA 67.57 65.50 1.03% 65.98 1.00% 67.77 0.89% 67.54 1.13%
1-Tors 72.78 70.32 1.05% 70.52 1.07% 71.94 1.28% 71.51 0.85%
3-Flex-WA 133.75 124.09 0.99% 124.87 1.01% 129.50 0.89% 129.42 0.92%
2-Tors 146.86 149.15 2.12% 148.99 1.61% 154.37 2.24% 153.44 1.96%
2-Flex-SA 166.79 154.07 0.59% 155.97 0.54% 157.90 0.70% 157.91 0.66%
4-Flex-WA 214.06 194.83 0.59% 195.13 0.53% 202.75 0.65% 202.03 0.65%
3-Tors 223.42 220.05 2.53% 219.88 1.60% 227.53 3.55% 222.68 1.49%
3-Flex-SA 286.77 273.90 0.80% 273.68 0.73% 279.31 0.83% 278.40 0.73%
Flex = Flexural mode; Tors = Torsional mode; WA = Weak Axis; SA = Strong Axis
Numerical and analytical model’s parameters:
�G = 13000 ["%0], �GI = �GH = 650 ["%0]; d = 430 [:6/<3]
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Fig. 5. Experimental modal shapes freely suspended beam.

Three modes were identified in the bandwidth between 0 �I and 300 �I when the two beams
were simply-supported. Tab2 presents the results of dynamic identification compared to the results
of the numerical model and the first three frequency calculated according to Eq.(3). The excellent
crossMACs between analytical and numericalmode shapes confirm that the beam’smeshing size for
the numerical model was appropriately chosen.The experimental mode shapes are depicted in Fig7.
A more significant difference between measured and numerical/analytical results is appreciable for
the II and the III mode, both in terms of natural frequencies and mode shapes. The differences
are probably due to the stiffness of the metal supports, which are not able to restrain the uplift
movement.
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TABLE 2. Results dynamic identification simply supported beams

Mode SAP2000 Analytical Beam 1 - SSIcov Beam2 - SSIcov
5=[Hz] 5=[Hz] 5=[Hz] b[%] 5=[Hz] b[%]

I 32.72 31.42 28.90 0.70% 29.93 0.75%
II 117.77 125.66 90.22 1.76% 92.53 2.04%
III 230.84 282.74 149.50 1.75% 153.73 1.80%

Numerical and analytical model’s parameters:
�G = 13000 ["%0]; �GI = �GH = 650 ["%0]; d = 430 [:6/<3];
 BD??>AC = ∞
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Fig. 7. Experimental modal shapes simply supported beam.

Interestingly, the measured mode shapes, depicted in Fig7, reveal the presence of defects on
both beams, which were not detectable when the beam was tested as freely suspended. The visible
variations recorded by the accelerometers nearby the location of the damages, especially in the III
mode, suggest that higher modes can be used as indicators to localise the presence of damages on
structural elements, as already suggested by other authors (Ciambella et al. 2019; Aloisio et al.
2020e).

The identification of the plywood boards in Tab3 returned seven stable modes in the bandwidth
0 − 100 �I. The numerical model evidenced the presence of some modes, not reported here, that
could not be identified from the chosen setup. These are those modes where all the positions of the
accelerometers correspond to the nodes of the mode shapes (i.e. a point of dynamic equilibrium),
and therefore could not be detected. Out of the seven modes, three show a notable agreement with
the numerical model, namely: mode I, mode VI and mode VII (see Fig8). The others seem to be
more affected by the presence of the Rockwool pad. Looking more carefully at the mode shapes in
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Fig8 one can notice how in mode I, VI and VII, the central point is a node of the modal shape and
accordingly less affected by the presence of the Rockwool. Whereas modes IV and V, where the
centre is an anti-node, are more affected by the insulation piece.Nevertheless, the addition of a small
set of springs at the centre of the numerical model, so to simulate the presence of the Rockwool,
determine mode IV and mode V to exhibit a satisfactory agreement with the experimental data, as
remarked in the following paragraphs.

TABLE 3. Results dynamic identification plywood boards

SAP2000 Plate - SSIcov Plate - EFDD
Mode 5= [Hz] 5= [Hz] b [%] MAC 5= [Hz] b [%] MAC

I 28.04 30.42 0.88% 95.8% 30.50 0.88% 96.0%
II 35.48 37.45 1.39% 51.2% 37.32 1.46% 51.6%
III 39.20 39.96 1.62% 47.8% 40.09 1.21% 48.8%
IV 35.36 46.90 2.80% 30.3% 47.05 1.63% 30.1%
V 61.90 74.29 5.86% 92.9% 74.45 5.24% 91.4%
VI 81.16 88.83 1.40% 98.6% 89.03 0.76% 98.9%
VII 93.56 91.24 1.58% 98.6% 91.08 0.74% 98.8%

Numerical model’s parameters:
�G = 6000 ["%0], �H = 8000 ["%0]; d = 650 [:6/<3]

The dynamic identification of the simply-supported floor assembly returned two stable modes
in the bandwidth 0 − 40 �I, that is the suggested bandwidth of interest for timber floors (EN1995
2004). Mode I is a torsional mode were the two beams move out of phase with each other, while
mode II is the first bending mode, namely the two beams are in phase. Tab4 reports the estimated
frequencies and damping ratios with the results of the numerical model. The particular configura-
tion of the floor, with the board not rigidly fixed to the beams, prompted the numerical model to
exhibit several local modes of the boards that had almost none effect on the beams. Themode shapes
from the numerical model were extracted from the modal displacement of nodes belonging to the
frame elements, so to be faithful to the test setup. The results of the two methods are in excellent
agreement, with CrossMAC values higher than 0.99. In a single instance, the damping ratio of
the II mode from SSIcov was noticeably higher than that estimated from the EFDD. The adoption
of standardized material properties in the numerical model causes a significant error in terms of
frequency, although the mode shapes show a satisfactory correspondence with the experimental.
Moreover, in Tab4 the first bending frequency (mode II) can also be compared to the first bending
frequency calculated according to the analytical Euler-Bernoulli model. The two frequency values
reported correspond to the situation when a complete composite action between the beams and the
decking and only the beams are respectively considered for the calculation of (��)! , in Eq.(4).

It is worthwhile to point out that exciting the tested structure did undoubtedly help to increase
the signal to noise ratio, but it also partially masked the presence of spurious harmonics. Structures
under testmay showdominant frequency componentswhich do not represent natural frequencies but
derive fromdeterministic signals superimposed to the stochastic response (e.g., rotating equipment).
One of the criteria to identify the presence of such spurious harmonics is by looking at the plot of
the singular values of the PSD matrix. The PSD matrix presents a high rank in similar instances,
and the spurious frequency is recognizable in the plot of the singular values, which have a sharp-
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Fig. 8. Experimental and numerical mode shapes of the plywood board.

TABLE 4. Results dynamic identification floor

SAP2000 Analytical Floor - SSIcov Floor - EFDD
Mode 5= [Hz] 5= [Hz] 5= [Hz] b [%] MAC 5= [Hz] b [%] MAC
I 20.09 - 16.76 3.26% 90.9% 16.81 3.28% 92.2%
II 23.44 26.37 / 23.41 20.28 3.96% 91.5% 20.31 2.40% 93.5%

Numerical model’s parameters:
Glulam: �G = 13000 ["%0], �GI = 650 ["%0]; d = 430 [:6/<3]
Plywood: �G = 6000 ["%0], �H = 8000 ["%0]; d = 650 [:6/<3]
Supports:  BD??>AC = ∞
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pointed resonance peak. During the excitation, the peaks in the plot of the singular values could
be misunderstood for natural frequencies. In the current case, a few tests carried out without the
manual excitation revealed the occurrence of the spurious harmonics. Fig9 demonstrates this aspect
by comparing the plots of the singular values of the floor assembly.
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Fig. 9. Singular values plot: left unexcited floor, right excited floor.

SENSITIVITY ANALYSIS AND MODEL UPDATING

Sensitivity analysis
The solid element models of the beams were the base of a variance-based sensitivity analysis.

The analysis allowed decomposing the variance of the output (objective function, and natural fre-
quencies) of the model into fractions which can be attributed to the inputs (mechanical properties).
The first step was setting the inputs sampling range (mean value ±30%) and generate the model
inputs according to the Saltelli’s sampling scheme (Saisana et al. 2005) (# ∗ (2� + 2) model inputs
were generated, where # = 100 is the number of samples, and � = 9 is the number of input
parameters). After running all the model inputs the first-order (S1) and total-order (ST) sensitivity
indices were calculated. S1 and ST measure respectively, the effect of varying a single parameter
alone and the contribution to the output variance of the selected parameter including all variance
caused by its interactions with the other parameters. Since the results were similar for both beams,
Tab5 details those of a single beam. The first two columns express the impact of the mechanical
parameters on the total response. The following columns show the impact of the parameters on
each mode (SA=Strong axis, WA=Weak axis, Tors=Torsional mode).

From Tab5 it is evident that the dynamic behaviour is mainly influenced by �- and �-/ ,
while �-. shows a moderate contribution. The other parameters do not affect the results at all.
For the objective function the differences in the first and total order indexes show some degree of
interaction between �- and �-/ . Furthermore, between all the flexural modes, �- is the most
critical parameter. However, in the dynamic parallel to the strong axis, the shear modulus�-/ gain
importance in higher modes (see SAIII in Tab5). The fact that �-. show very little influence for
the modes along the weak axis agrees with the fact that the cross-section is much higher than wider
(115 x 315 mm). This aspect is also evident in the torsional modes, where �-/ is the most crucial
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TABLE 5. First-order (S1) and total-order (ST) sensitivity indices for beam 1

Obj. Fun. SA I SA II SA III WA II
S1 ST S1 ST S1 ST S1 ST S1 ST

�- 60% 80% 97% 97% 85% 86% 62% 64% 97% 97%
�. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
�/ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a.- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a/- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a. / 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
�-. 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
�-/ 32% 56% 1% 1% 10% 11% 32% 35% 0% 0%
�. / 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

WA III WA IV Tor I Tor II Tor III
S1 ST S1 ST S1 ST S1 ST S1 ST

�- 96% 96% 94% 94% 0% 0% 0% 0% 0% 1%
�. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
�/ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a.- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a/- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
a. / 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
�-. 1% 1% 3% 3% 3% 3% 4% 4% 5% 5%
�-/ 0% 0% 0% 0% 101% 101% 100% 100% 98% 98%
�. / 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

parameter. These observations are in line with what one could expect from the slender nature of
the element, which should indeed follow the assumptions of the beam theory.

The fact that some first-order indices add up to values slightly higher than one may derive from
the reduced number of samples (# = 100). Still, this not affect the substantial interpretation of
the results. A 2=3 order polynomial was fitted to the values of the objective function to provide a
graphical description of the results in the �- and �-/ domain, see Fig10.
Model Updating

Finite element model updating methods aim at tuning a numerical model to the measured
response(Marwala 2010). It is assumed that the measurements are correct, and the model under
consideration will need to be updated to reflect the measured data better.

As already mentioned, two global optimization algorithms headed the model updating process:
particle swarm optimization (PSO) and differential evolution (DE). Eq.(1) was used in both to
minimize the distance between measurements and numerical simulations. The results of the
sensitivity analysis supported the adoption of V equal to 0.1. The choice counterbalanced the
significant contribution of the second part of the objective function (due to theMAC). The swapping
of position between the 1BC flexural mode along the strong axis and the 2=3 flexural mode along the
weak axis resulted, in fact, in very high values of the objective function, see Fig10.

The natural frequencies depend on the ratio between the stiffness and the mass of the system.
The direct weighting of the beams and the panel allowed a straightforward calibration of the FE
model inertia (Beam 1 = 455:6/<3, Beam 2 = 470:6/<3, panel = 680:6/<3). Tab6 and Tab7
report the frequencies of the initial FE models (with the measured mass), with errors to test results,
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Fig. 10. 2=3 order polynomial fit: left 3D view with data points, right contour plot.

referred to the frame and solid element models, respectively. The first update regarded the frame
element. Isotropic material properties are used for these elements by SAP2000 even if the material
is defined as orthotropic. However, the definition of the material as orthotropic allows to separately
define the elastic modulus �- (axial stiffness and bending stiffness) and the shear modulus �-/

(transverse shear stiffness), which were the selected parameters to be updated in this model. The
last columns of Tab6 list the frequencies of the updated FE model, compared to test results. The
averages of the optimal solutions of the two algorithms, used to calculate the modes of the updated
model, are presented in the lower part of Tab6. The tables reveal that the updating process did
improve the agreement between the physical and numerical model. However, the model did not
resolve the already mentioned inconsistency due to the swapping of position between modes.
Furthermore, the updating of Beam 1 showed that there is a reduction of the elastic modulus �-
compared to the mean value of the standards, while that of Beam 2 �- increases slightly. Likely,
the reduction of the elastic modulus �- in Beam 1 derives from the wide crack present by the end
of the beam. The shear modulus�-/ is higher than expected in both beams, more evident in Beam
2 than Beam 1.

In the second step, the updating regarded the solid beam models. Following the results of the
sensitivity analysis, only �- , �-/ and �-. were updated among the nine mechanical properties.
The updating process involved �-. , although the sensitivity analysis showed that this parameter
has minimal effect on the dynamic behaviour in the selected frequency range. Similarly to the
frame element model, Tab7 reports the results of the solid beam models. The last columns show
the frequencies and the error of the updated model, while the lower part of the table reports the
averages of the optimal solutions found by the two algorithms. This model yielded a significant
improvement in the results. Still, as occurred in the frame-like models, the updating did not resolve
the inconsistency due to the swapping of position between modes. There is a similar reduction of
the elastic modulus �- in Beam 1, probably caused by the cracks. Similar observations about the
frame element model are valid about the shear modulus �-/ of both beams. The shear modulus
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TABLE 6. Result of the model updating on the "Frame elements" beam model

Beam 1
Experimental FE Initial model Optimised model

Mode 5=[Hz] 5=[Hz] Error 5=[Hz] Error
1-Flex-SA 65.50 66.14 -0.97% 62.94 3.92%
2-Flex-WA 62.98 68.08 -8.09% 64.61 -2.59%
3-Flex-WA 124.09 129.17 -4.09% 123.76 0.26%
2-Flex-SA 154.07 163.31 -5.99% 157.12 -1.98%
4-Flex-WA 194.83 207.78 -6.65% 198.49 -1.88%
3-Flex-SA 273.90 280.09 -2.26% 272.34 0.57%
Optimal parameters:
�G = 11800 ["%0]; �GI = 670 ["%0]; d = 455 [:6/<3]

Beam 2
Experimental FE Initial model Optimised model

Mode 5=[Hz] 5=[Hz] Error 5=[Hz] Error
1-Flex-SA 67.77 65.21 3.77% 65.01 4.07%
2-Flex-WA 66.24 67.12 -1.33% 66.74 -0.76%
3-Flex-WA 129.86 128.19 1.28% 127.83 1.56%
2-Flex-SA 157.90 161.02 -1.98% 162.40 -2.85%
4-Flex-WA 202.75 204.87 -1.05% 205.07 -1.15%
3-Flex-SA 279.31 276.16 1.13% 281.68 -0.85%
Optimal parameters:
�G = 13100 ["%0]; �GI = 700 ["%0]; d = 467 [:6/<3]

�-. exhibits an increment to values suggested by the standards in the Beam 2. In contrast, there
is a decrease in the shear modulus �-. in Beam 1. The results in terms of MAC are very high
(≈ 0.99), except for the inconsistency between the first modes.

The sensitivity analysis and the model updating process confirm that the "solid elements" model
does not determine a significant enhancement of the results to the "frame elements" model. For
these reasons, the use of "solid elements" for the FE model of the floor assembly is worthless, given
the enormous computational costs related to the use of the "solid elements" model.

The use of low-stiffness linear links (100 #/<<) placed by the middle of the plate, in corre-
spondence of the Rockwool pad, enhance the quality of the results referred to mode IV and V. The
first column of Tab3 and the second column of Tab8 prove this aspect. Conversely, the low-stiffness
linear links did not affect the results of mode I, VI and VII: the centre is a node in these modes.
Accordingly, the authors used only mode I, VI and VII to update the FEmodel with the optimization
algorithms as carried out in the beam models. The last columns of Tab8 summarize the results,
while the lower part of the table reports the optimal solutions (rounded).

The numerical model of the floor assembly descended from the updating of the single structural
components. As already mentioned, frame elements were used to model the beams and shell
elements the plywood boards. The boards were "lifted" to the centre of mass of the beams. Link
elements, with infinite stiffness in the axial direction and zero stiffness to all the others, model
the connection between the elements. The updated parameters of the single sub-assemblies yield
already a good match with the measurements (compare the first columns of Tab9). However, it was
decided to enhance it further, by changing the supports’ stiffness from infinite into a finite value.
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TABLE 7. Results of the updating on the "Solid elements" beam model

Beam 1
Experimental FE Initial model Optimised model

Mode 5=[Hz] 5=[Hz] Error 5=[Hz] Error
1-Flex-SA 65.50 65.76 -0.39% 62.54 4.52%
2-Flex-WA 62.50 68.08 -8.94% 64.35 -2.97%
1-Tors 70.32 70.83 -0.73% 72.15 -2.60%
3-Flex-WA 124.17 130.17 -4.83% 123.12 0.85%
2-Tors 149.15 142.92 4.17% 145.20 2.65%
2-Flex-SA 154.07 162.32 -5.35% 156.52 -1.59%
4-Flex-WA 193.55 208.32 -7.63% 197.20 -1.89%
3-Tors 220.05 217.43 1.19% 219.99 0.03%
3-Flex-SA 273.90 279.08 -1.89% 272.75 0.42%
Optimal parameters:
�G = 11600 ["%0]; �GI = 690 ["%0]; �GH = 620 ["%0];
d = 455 [:6/<3]

Beam 2
Experimental FE Initial model Optimised model

Mode 5=[Hz] 5=[Hz] Error 5=[Hz] Error
1-Flex-SA 67.77 64.84 4.32% 64.71 4.50%
2-Flex-WA 65.66 67.13 -2.24% 66.74 -1.65%
1-Tors 71.94 69.84 2.92% 74.15 -3.07%
3-Flex-WA 129.50 128.35 0.89% 127.86 1.26%
2-Tors 154.37 140.92 8.71% 149.27 3.30%
2-Flex-SA 157.90 160.05 -1.36% 161.62 -2.36%
4-Flex-WA 201.36 205.40 -2.01% 205.14 -1.87%
3-Tors 227.53 214.38 5.78% 226.28 0.55%
3-Flex-SA 279.31 275.17 1.48% 281.06 -0.63%
Optimal parameters:
�G = 12800 ["%0]; �GI = 740 ["%0]; �GH = 700 ["%0];
d = 467 [:6/<3]

TABLE 8. Results of the updating of the Plywood board

Experimental FE Initial model Optimised model
Mode 5=[Hz] 5=[Hz] Error 5=[Hz] Error MAC

I 30.42 28.31 6.9% 29.51 3.0% 99.8%
II 37.45 35.57 5.0% 37.60 -0.4% 47.8%
III 39.96 39.27 1.7% 38.87 2.7% 51.5%
IV 46.90 44.07 6.0% 44.66 4.8% 95.9%
V 74.29 71.02 4.4% 71.58 3.7% 98.9%
VI 88.83 81.39 8.4% 89.23 -0.5% 98.2%
VII 91.24 93.75 -2.8% 92.10 -0.9% 98.3%
Optimal parameters:
�- = 6500 ["%0]; �. = 7500 ["%0]; d = 680 [:6/<3]
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The simplicity of the problem encouraged a manual update based on trial and error. Tab9lists the
results of the updated FE model with the optimal solution. As further validation, the estimated
stiffness value of the supports was applied to the simply-supported beam models. The adoption
of a finite value of stiffness of the supports determine a further enhancement of the results, see
Tab10. It was observed that a higher stiffness for the supports was needed to reduce the frequency
discrepancy further.

The findings of the investigation confirm that the dynamic response of a timber floor is highly
sensitive to every parameters that describe its components and its boundary conditions. Unfortu-
nately predicting accurately the dynamical behaviour of a timber floor with simplified analytical
approach is rarely possible. Even if well-known and understood analytical models are certainly
useful at preliminary design stages, more detailed numerical models are needed if high level of
performance of the floor are desired. It is possible to obtain numerical models very faithful to
reality, however updating every element that compose the system is not feasible in practical appli-
cations. To assess the behaviour of an existing floor in a building, a researcher would need update
all the parameter "at once" with an inevitable loss of detail. A careful examination of the drawings
corroborated by on-site inspections is therefore of paramount importance in order to build a detailed
and representative numerical model. Furthermore the level of detail of the experimental campaign
will set the basis for the success of the updating process.

TABLE 9. Results of the updating of the floor

Experimental FE Initial model Optimised model
Mode 5= [Hz] 5= [Hz] Error 5= [Hz] Error MAC
I 16.76 18.62 -11.11% 17.15 -2.32% 94.0%
II 20.30 21.77 -7.22% 20.30 0.00% 93.5%

Optimal parameters:
Glulam: see Tab6
Plywood: see Tab8
Supports:  BD??>AC = 6000 [#/<<]

TABLE 10. Simply supported beam with updated parameters

Experimental FE Updated FE Updated
Mode Beam 1 Beam 2 Beam 1 MAC Beam 2 MAC

I 28.90 29.93 28.77 99.9% 29.74 100.0%
II 90.22 92.53 90.49 99.8% 92.17 99.5%
III 149.50 153.73 150.48 96.0% 151.67 92.5%

Optimal parameters:
Glulam: see Tab6
Supports:  BD??>AC = 9000 [#/<<]

CONCLUSIONS
This paper investigates the dynamic behaviour of a simply-supported timber floor assembly and

its composing elements. A sensitivity analysis revealed the influence of mechanical parameters on
the dynamic response. As the last step, the numerical models were updated to reflect the findings
of the measurements better. The main findings are:
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• OMA techniques can be used, instead of EMA techniques, to test not only massive civil
engineering structures, but also smaller structural elements, such as floors, beams etc., and
their results can be used to calibrate the parameters of numerical models.

• It is helpful to continuously and randomly excite the tested components, for example, by
rubbing something onto it, to increase the signal-to-noise ratio. Significant attention must,
however, be paid not to mistake spurious harmonics for natural frequencies.

• Small pieces/layers of insulation material, can be used to recreate free-free boundary con-
ditions if the suspension of the element is not possible.

• Higher modes were found more susceptible to damages and defect when the beams were
tested as simply-supported. They could therefore be used as damage indicators to assess
the state of health and/or to localise defects in it. When the beams were tested as freely
suspended, however, the damages seemed not to affect the modal shapes.

• The results of the identification, for any component, are very susceptible to the nature of
the boundary conditions and even small variations in them significantly affect the results.

• The results confirm that the use of the well-known beam model is more than capable of
correctly predicting the behaviour of slender components. The significant computational
time needed for a solid element model is not worth the gain in terms of precision.

This research was preliminary to more-in-depth investigations about the walked-induced vibra-
tion response of timber floors. The authors aim at using the assembled floor system and the updated
numerical model to study different walking models further and compare numerical simulations
with walking tests. This investigation will allow studying the various metrics used by building
codes and relevant standards to evaluate and assess building floor vibrations.
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