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As a general trend in industrial robotics, an increasing number of safety functions are 
being developed or re-engineered to be handled in software rather than by physical 
hardware such as safety relays or interlock circuits. This trend reinforces the importance 
of supplementing traditional, input-based testing and quality procedures which are widely 
used in industry today, with formal verification and model-checking methods. To this 
end, this paper focuses on a representative safety-critical system in an ABB industrial 
paint robot, namely the High-Voltage electrostatic Control system (HVC). The practical 
convergence of the high-voltage produced by the HVC, essential for safe operation, is 
formally verified using a novel and general co-verification framework where hardware and 
software models are related via platform mappings. This approach enables the pragmatic 
combination of highly diverse and specialised tools. The paper’s main contribution includes 
details on how hardware abstraction and verification results can be transferred between 
tools in order to verify system-level safety properties. It is noteworthy that the HVC 
application considered in this paper has a rather generic form of a feedback controller. 
Hence, the co-verification framework and experiences reported here are also highly 
relevant for any cyber-physical system tracking a setpoint reference.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The liberation of industrial robots from traditional metal cages and steadily increasing number of co-bots working side 
by side with humans are illustrative examples of a general trend in industrial robotics. In the wake of this, more and 
more safety-critical functions are now being developed to be handled by software and/or firmware components instead 
of hardware safety relays or interlock circuits. Modern industrial robots are heavily dependent on software-implemented 
safety signals to monitor and control various critical subsystems such as current/voltage supervision and emergency stop 
or short circuit interrupts. This trend brings several distinctive advantages such as cost-reduction and increased flexibility. 
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Fig. 1. In electrostatic painting, high-voltage (approximately 40-90 kV) charges the paint particles at the applicator. The particles follow the lines of the 
electrostatic field from the applicator (cathode) to the earthed workpiece (anode).

Nevertheless, it also introduces or reinforces negative side-effects, most notably in the form of higher system complexity, 
vulnerability and dependability [1].

To set the stage for and address this ongoing industrial trend, this paper advocates use of formal verification techniques, 
which can provide an extra level of assurance by verifying the logic of a system. The application of formal methods in the 
robotics industry will ideally help to identify potential pitfalls at a much earlier phase of the development cycle [2] and 
serve as an important supplement to the traditional testing and safety risk identification and mitigation actions which are 
already employed [3]. Obtaining sufficiently high testing coverage in complex industrial systems can be time-consuming and 
expensive. In practice, it is most often not viable to account for every scenario, which means that testing can fail to reveal 
potential safety-critical issues.

The HVC system considered in this paper provides a perfect example of this. As described in [4], a previous version of 
the HVC software (SW) has been shown to contain some errors, e.g., failure to properly follow the given setpoint. These 
errors are described in more detail in [4] and went undetected despite passing rigorous and certified quality assurance and 
testing procedures. These included a priori and systematic identification of risk mitigation plans (e.g., using HAZID/HAZOP), 
as well as thorough testing procedures consisting of static code analysis, unit testing, component testing and system test I 
and II. Here, system test I encompasses hardware tests with the Integrated Painting System (IPS) and HVC active, while 
system test II entails testing of the entire robotic system using actual paint.

The robotic spray booth in, e.g., a car factory, may contain flammable solvent and paint particles in the air. Hence, 
paint robots are certified for operation in potentially explosive atmospheres in accordance with regional ATEX/NFPA/IECEx 
standards (ATEX Directive – 2014/34/EU, IEC 60079). The paint version of the ABB Industrial Robot Controller unit, denoted 
IRCP, is certified with respect to the ISO 10218 standard for safety requirements for industrial robots. Paint robots using 
HVC are also certified according to the EN50176 standard for using high-voltage in explosive environments, while the paint 
atomiser is certified in accordance to ISO 9001 and ISO 14001.

Industrial paint robots use high-voltage to perform electrostatic painting, where particles are electrically charged and 
attracted to the grounded paint object, as seen in Fig. 1 [5,6]. In this way, painting quality is ensured while paint consump-
tion and costs are minimised. However, the use of high-voltage also poses certain risks of electric shock and ignition. Fire 
in the painting cell may result in costly production delays, as well as damage to the equipment. Therefore, it is of great 
importance that the HVC works as intended.

The HVC example illustrates the fact that the complete elimination of all errors is most often not practical (due to cost 
and/or time constraints) or even possible. Formal verification provides us not only with a mathematically sound formalism 
for the specification and verification of robotic systems which ensures correctness, but also provides evidence for safety 
certification purposes. In fact, a survey on safety-critical robot systems [1] recognises formal verification and correct-by-
construction control synthesis as two main areas needed to develop safe robot systems.

Robot control systems, like the HVC, have rather natural and generic properties that are expected to be fulfilled by any 
feedback controller tracking a setpoint reference. Formally verifying that overall the setpoint is followed, a system property, 
however, requires reasoning over the combined, time-dependent behaviour of software and hardware. For pragmatic reasons 
these are often modelled using diverse languages and formalisms, making holistic reasoning challenging.

Inspired by co-simulation approaches [7], in this paper we propose a novel and generic co-verification approach for 
pragmatic verification of system properties. Models of the software and hardware are coupled through platform mappings 
that define how the inputs and outputs of the software are connected to those of the hardware, in terms of its sensors 
and actuators. With our approach, behavioural properties of individual models – that may be established using separate 
domain-specific tools – can be combined to support the verification of system properties, using practical techniques, such 
as model checking [8].

To illustrate the use of co-verification in a representative industrial case study, the HVC software is modelled in 
RoboChart [9–11], while the hardware is modelled in Simulink [12]. RoboChart is a domain-specific language for model-
based software engineering of robotics, with a formal semantics encompassing timed and functional aspects, that is tailored 
for formal verification. Simulink, on the other hand, is a de facto standard for control engineering, as typically used in in-
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dustry for dynamic simulation. For co-verification we use the MathWorks Simulink Design Verifier (SDV) toolbox [12], and 
the CSP model-checker FDR [13], as integrated into RoboTool [9–11].

Importantly, we demonstrate the value of our approach in identifying errors that existed in an early-phase HVC software 
version as described in [4]. In the next phase, once the identified software shortcomings had been rectified, we were able 
to show that it satisfies all safety properties of concern. Namely, that overall the system tracks the high-voltage setpoint as 
set by an operator, and that the software resets the setpoint and disables the high-voltage if it senses that the power supply 
is unstable. This serves as a testimony of the strength and suitability of using formal verification methods for industrial 
safety-critical systems.

Some initial and preliminary results of our work regarding formal verification of HVC of industrial paint robot have been 
previously published in [4]. This paper extends that work by addressing some fundamental and important aspects, most 
notably by:

1. taking into account the timed aspects of the HVC controller using the timed semantics of RoboChart.
2. replacing the simplified, binary representation of the output voltage following the setpoint, with a real representation 

and considering timed and dynamic convergence towards the setpoint signal.
3. providing a crisp dichotomy between control software and physical hardware parts of the HVC system, together with 

detailed platform mapping in-between [14,15].
4. modelling the system dynamics of the hardware in Simulink [5,6].
5. using a novel approach to co-verification to combine the results from hardware simulations in Simulink with the model-

checking capabilities of RoboTool [16] to verify that the high-voltage produced by the HVC follows the setpoint, a 
system-level safety property.

The remainder of this paper is structured as follows. Section 2 discusses related work. Section 3 provides an overview 
of the HVC system, contains formulations of the properties to be formally verified (Section 3.1) and presents a simplified 
finite state machine of the HVC (Section 3.2). Section 4 constitutes the main body of the current paper. It details the co-
verification framework and explains how the state machine was modelled in RoboChart and combined with Mathworks SDV 
simulation and verification results in order to verify the system-level safety property concerning the high-voltage. Section 5
reports on the verification of software properties. Finally, Section 6 provides some discussion and conclusions, as well as 
suggestions for further research.

2. Related work

The survey on safety-critical robot systems in [1] identifies seven areas that need further focus and research in order to 
develop safe, dependable robotic systems. It is notable that at least five of these areas are relevant in the context of this 
paper, namely: adaptive safety monitoring, modelling and simulation for safety analysis, formal methods for verification, 
correct-by-construction control, and certification.

A recent survey [17] maps and lists the current challenges, used formalisms, tools, approaches, as well as limitations 
when considering formal specification and verification of autonomous robotic systems. The main results reveal that temporal 
logic, state-transition and model checking are the main formalisms and approaches used during the last decade. At the 
same time, the lack of appropriate tools and sheer resistance to adopting formal verification methods in robotic systems 
development are recognised as the main limiting factors for wider impact. Likewise, the lack of interoperability and need to 
capture the essence of complex, industrial robotic systems using several formalisms and tools is recognised.

Simulation plays an important role in the development of robotic systems, and more widely in the domain of cyber-
physical systems (CPS). However, current practice makes it difficult to soundly reason across models of the software, 
simulation, and hardware, which can exacerbate the reality gap. Co-simulation approaches [7,18] bridge the heterogene-
ity of tools via orchestration, for example, using a common API as advocated in the FMI standard [19]. Besides the issue 
of code portability between tools, robotics simulators [20] tend to use different physics engines. A related approach [15] to 
our work on co-verification, extends the diagrammatic simulation language RoboSim [21] with facilities to cover physical 
modelling of robotics and establish formal links between sensors, actuators, and the software, via platform mappings.

Kawahara et al. [22] address the co-simulation of Simulink and a subset of SysML [23], where data is exchanged between 
models via input/output ports modelled as S-Functions in Simulink. Their focus is on testing of simulations against timed 
constraints expressed via sequence diagrams using the UML-MARTE [24] profile. Cavalcanti et al. [18] give semantics to a 
version of INTO-SysML [25], a SysML profile suitable for co-simulation using FMI, where RoboChart is used with Simulink 
in the co-simulation of a chemical detector robot. Bernardeschi et al. [26] use timed automata, encoded for reasoning in 
the PVS theorem prover [27], in co-simulation with a Simulink model of a cardiac pacemaker. Our focus, however, is on 
(co-)verification.

Recognising the broad range of aspects in the engineering of robots, the use of specialised, and complementary, verifica-
tion techniques is widely reported in the literature. Webster et al. [28] propose a “corroborative” approach where agreement 
is sought between different verification techniques with respect to functional requirements, including model checking with 
PRISM [29], simulation-based testing and user validation.
3
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Fig. 2. Block diagram of one part of the paint robot, containing the HVC.

Cardoso et al. [30] use different methods to verify components of a simulation of NASA’s Curiosity rover, where high-
level control is driven by a Beliefs-Desires-Intentions (BDI) agent. The agent is verified using the Agent Java Path Finder 
(AJPF) model checker [31], while its interface with the environment is verified using Dafny [32]. FDR is used to verify a CSP 
model of the action library nodes that implement control methods following the publish-subscribe paradigm of the Robot 
Operating System (ROS) [33]. The emphasis is on verification of components with formal models guiding the generation of 
runtime monitors.

Related, Bourbouh et al. [34] report on the combined use of several methods and tools in the development of an as-
surance case for an inspection rover, which is modelled in AADL [35], Simulink and Event-B [36]. Functional requirements 
are stated using the structured natural language accepted by FRET [37], with semantics given in Linear Temporal Logic 
(LTL) suitable for analysis with Lustre [38] models generated from Simulink via CoCoSim [39], a framework for design, code 
generation and analysis of discrete dataflow models. Simulink blocks modelling the rover architecture are annotated with 
assume-guarantee contracts based on component requirements formalised in FRET. System-level properties are then verified 
via model checking with Kind2 [40], while some components are verified using Event-B instead.

The literature is rich in approaches for formal verification of Simulink models. Reicherdt and Glesner [41] propose 
translating discrete-time Simulink models into Boogie [42] for verifying the absence of common error classes, such as 
overflows, underflows, division-by-zero and range violations. CoCoSim follows on from previous work [43] targeting Lustre 
and SCADE [44]. Boström and Wiik [45] propose a compositional approach for verifying Simulink blocks annotated with 
assume-guarantee contracts.

Applications of formal verification methodologies within the control and CPS community have mainly adopted the hy-
brid system and automata framework of Alur et al. [46,47]. In this setting, finite- and infinite-time reachability constitute 
the main verification tools, but unfortunately turn out to be an undecidable problem in general, leaving conservative set 
approximation as the only viable approach [48,49]. Hybrid automata also assumes having infinite accuracy and instanta-
neous reaction which serves as a noticeable discrepancy to the real system and implementation; potentially invalidating the 
verification results [50].

Focusing on formal verification of industrial robot applications, in [3], industrial robot- and PLC-programs are compiled 
into PROMELA models as input for the SPIN model checker [51]. The work is however restricted to LTL formulas. It further 
differs from our work by solely considering deadlocks, collisions and kill-switch violations. Narrowing down to industrial 
paint robots, [52] considers formal verification of paint spraying using the ARIADNE tool for reachability analysis. The focus 
here is solely on parametric design verification.

3. High-voltage control (HVC)

A simplified block diagram of the HVC part of the paint robot can be seen in Fig. 2. The HVC module runs the control 
software loops and associated control logic. Here, the r(t) = H V _Set Point signal is a function of time, t, and used as a priori
given reference for the desired voltage level on the HVC, while the 24 V power signal provides the HVC with electrical 
power. The u(t) = P W M_O utput signal serves as input signal to the Pulse Width Modulation (PWM) hardware. It is a 
percentage, from 0 to 100%, mapped to an analog 0 to 10 voltage signal, which is then increased in the transformer. In 
the Cockcroft–Walton (CW) cascade generator, there are several voltage doubling circuits, and the voltage is rectified and 
further increased, before arriving to the applicator, see Fig. 3. Finally, ȳ(t) = [I M; H V _Actual]T denote current and voltage 
4
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Fig. 3. The cascade modelled in Simulink with Simscape components, with the transformer, resistors and the Cockroft Walton voltage multiplier circuit.

Fig. 4. Setup for experimental testing with paint using ABB robot. Photo courtesy ABB, from [5].

measurements, respectively, which are fed back into the HVC. It is further noticeable that from a paint robot application 
point of view, it is given that HV_SetPoint ∈ 0 ∪ [30 90], kV, that is, once the high-voltage is activated and turned on, it 
requires values larger than 30 kV, and that the r(t) = HV_SetPoint reference value does not change very often, and never 
faster than within 10 seconds from the previous change. These facts will be used subsequently in order to formally capture 
and verify some basic properties for HVC.

Following the line of thought in [14,15], in order to distinguish and describe both the control software and physical 
hardware components of the HVC system, a faithful model of the PWM hardware is needed. The PWM hardware comprises 
the components inside the dashed blue box in Fig. 2, that is, the transformer, CW cascade block and resistors. Fig. 3 depicts 
the diodes, capacitors and resistors defining a CW cascade block as modelled in Simulink Simscape, which allows modelling 
of physical components and systems. It is noteworthy that by design, each section of the CW block will double the input 
voltage so that the output voltage of a CW cascade with N sections will equal 2N V in . The Simulink models used in this 
work are based on and extracted from experimental laboratory tests performed in [5,6] on real ABB paint robots as depicted 
in Figs. 4 and 5. This serves as a back-drop and starting point for our work.

The paint robot HVC application has some further distinguishable structure and dynamics that will need to be considered 
and incorporated into our formal verification scheme. As detailed in [5,6], the PWM hardware model and cascade controller 
are based on three distinct modes as graphically illustrated in Fig. 6:

• Charge: when a new external setpoint, HV_SetPoint(t), with higher value than the current one arrives and the PWM 
hardware is ramping up the control signal, u(t) = P W M_O utput(t), in order to increase the value of HV_Actual(t).

• Running (steady-state): when HV_Actual has converged to HV_SetPoint and reached a steady state.
• Discharge: when the external HV_SetPoint is set to a lower value and PWM hardware is discharging so that HV_Actual

converges to HV_SetPoint.
5
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Fig. 5. Schematic overview of the lab setup for testing ABB paint robot. Photo courtesy ABB, from [5].

Fig. 6. The HVC hardware and controller has three distinct modes: Charge, Running (steady-state) and Discharge. The Integrated Painting System (IPS) 
parameters RampLimit and TauPeriod provide upper limits on the duration of the Charge and Discharge modes respectively. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

It is further noticeable that by design [53], there are additional limits on peak deviation between HV_Actual and HV_Set-
Point as well as the time duration of the Charge and Discharge modes. Namely, a parameter RampLimit determines the 
maximum time in seconds that it will take to ramp up the high-voltage from minimum to maximum level, i.e., from 0 to 
90 (kV). The default value of RampLimit is 2 seconds. Likewise, it is known that it will take TauPeriod seconds for HV_Actual
to reach a level of 30% above a new lower HV_SetPoint value. The default value of TauPeriod is 3 seconds. Additionally, there 
are maximum allowed over and under voltage limits. As mentioned earlier, the HVC application, once activated and turned 
on, requires high-voltage values larger than 30 kV, so that HV_SetPoint ∈ 0 ∪ [30 90] kV. Consequently, the aforementioned 
limits are only specified at 30 and 90 kV and over/under limits at other voltage levels can be calculated using simple linear 
interpolation between these values. All of these parameters are used for safety supervision purposes and are hence set in a 
conservative manner. In the next section, these parameters will be used to formulate and later formally verify the practical 
convergence property of the HVC controller to a new high-voltage setpoint.

3.1. Properties for formal verification

In this section, the set of four properties that are to be formally verified is presented. Recognising that the HVC has a 
rather generic form of a feedback controller, it is notable that most of the properties in this section are rather natural and 
generic properties to be fulfilled by any feedback controller tracking a setpoint reference.
6
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Property P1. To start with, it is natural to require that the measured process value, which in the case of the HVC is dependent 
on time, t, and denoted y(t) = HV_Actual(t), should converge to the reference- or setpoint value, r(t) = HV_SetPoint(t). To 
formalise this, it is noted that both voltage signals are non-negative time-series and that convergence may be defined by 
setting

e(t) = |r(t) − y(t)| = |HV_SetPoint(t) − HV_Actual(t)|, (1)

and equivalently considering (asymptotic) Lyapunov stability of the error term, e(t), to origin.
Taking the particular structure and dynamics of the HVC application as discussed previously into account, this setpoint 

convergence property can in practice be decomposed into considering a 10 second time-interval directly after a new setpoint 
arrives, within which practical convergence of HV_Actual to a narrow interval centred around the new external setpoint 
(HV_SetPoint) can be shown. To ease the notation and provide symmetry between the Charge/Discharge modes, let

τ = τ0 + max(RampLimit, T au Period), (2)

where τ0 denotes the time instance when a new setpoint arrives. Also conservatively, set the peak deviation from new 
HV_SetPoint as 30% of the setpoint value. The width of this narrow interval, as well as schematic time changes and evolution 
of HV_SetPoint and HV_Actual are depicted in Fig. 6.

This system-level property involves both hardware and software components and can be formally specified as follows:

P1: Practical convergence of the actual system voltage, HV_Actual, to the external setpoint, HV_SetPoint:

∀t ≥ τ =⇒ e(t) < 0.3 × max(HV_SetPoint(t),1).

Property P2-P3. To avoid residual effects and windup behaviours in the HVC, it is also reasonable to verify that both 
PWM_Output and the software internal representation of HV_SetPoint, denoted mSetPoint, are set to 0 whenever the 24 V
power signal, and thereby the HVC-module, is switched off. Here, mSetPoint is distinguished from HV_SetPoint which is a 
software extrinsic signal set a priori by a human operator or application engineer.

These two properties can be formulated as follows:

P2: That PWM_Output is set to 0 whenever the 24 V power signal is off:

24V _Power = 0 =⇒ P W M_O utput = 0

P3: That mSetPoint is set to 0 when the 24 V power signal is switched off:

24V _Power = 0 =⇒ mSet Point = 0

Property P4. Finally, in order to increase the confidence in the correctness of the model, it is customary to verify that the 
HVC state machine is not able to go into deadlock.

P4: That the HVC software is not able to go into deadlock.

These are the four properties that collectively need to be formally verified for the HVC application. System-level property
P1 is verified using our co-verification approach, which is the subject of Section 4, while the verification of properties P2-
P4, that only concern the software, is discussed in Section 5. Next we present an overview of the overall behaviour of the 
HVC software.

3.2. Finite state machine overview

In order to perform model checking on the HVC, its functionalities were modelled as a finite state machine. This section 
presents the general finite state machine as depicted in Fig. 7. This high-level state machine was given by ABB and then 
further detailed and modelled in RoboTool. This is the topic of Section 4.2.2.

In the state GateDriverRamping, which is the state that the HVC first enters when it is switched on, the PWM duty-
cycle is ramped up gradually to ensure stability and gradual increasing of current and voltage. Then, in the Initialization
state, initial parameters are set, as well as upper and lower limits for the high-voltage.

After the GateDriverRamping and Initialization steps are successfully finished, the state machine enters the
Wait24VPower state. When the HVC has 24 V power switched on and is stable, the system enters the ClosedLoop state. 
This is the ideal state for operation, and is where the controller is regulating the voltage in relation to the setpoint. If the 
voltage breaches the upper or lower limits, the state machine moves from ClosedLoop to ErrorMode.

There is also a possibility to enter ErrorMode from the ClosedLoop and Wait24VPower states, if certain variables are set 
or any watchdogs or interrupts are triggered. For instance, an interrupt is triggered if the supply voltage is below a certain 
threshold, and another is triggered if HV_Actual is above or below the upper and lower limits, respectively. Getting out of
ErrorMode requires manual acknowledgement of the occurred errors.
7
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Fig. 7. Finite state diagram of the high-voltage Controller (HVC), showing its states and the conditions for transitioning between them. The ClosedLoop
state is the ideal state for operation, and is where the controller is regulating the voltage in relation to the setpoint.

4. Hardware/software co-verification

To reason about system properties, such as Property P1, it is necessary to consider the behaviour of both software 
and hardware. We propose a novel approach, where properties are established by co-verification of models connected via 
platform mappings that relate the inputs and outputs of software and hardware, via sensors and actuators. Providing a crisp 
and systematic separation between hardware and software has some distinct advantages. To start with, with this approach, 
behavioural properties of individual models – that may be established using domain-specific tools – can be combined to 
support the verification of system properties. Also, our approach enables explicit recording and capturing of all dependencies 
and relations between hardware and software, which, when neglected, are implicitly assumed to be the identity mapping. 
Further, and as previously mentioned, the ongoing industrial trend is moving an increasing number of safety functions from 
physical hardware to software implementation. Still, the reliability, dependability and trust levels are very different between 
hardware and software components in an industrial robotic system. This framework hence sets the stage for more realistic 
and refined safety and risk handling procedures. Finally, the framework invites for combined approaches to modelling both 
discrete and continuous aspects in an integrated way while allowing the time-scale separation that typically exists between 
hardware and software components.

As an illustrative example, in our case study, the software is modelled in RoboChart, while the hardware is modelled in 
Simulink. RoboChart [10] is a domain-specific language for the model-based engineering of control software for robotics, 
that caters for timed and functional aspects. Its formal semantics is tailored for reasoning, namely using the CSP [54] model 
checker FDR [13]. However, it currently lacks facilities to specify the behaviour of the hardware. Simulink [12], on the other 
hand, is a de facto standard for control engineering, typically used for dynamic simulation in the industrial setting of the 
HVC [5,6] system.

For modelling, we use Simulink and RoboTool [11,9], that allows the graphical creation of RoboChart models, and for 
verification we use Simulink Design Verifier (SDV) [12] and FDR. System Property P1 is co-verified by model-checking, 
using the formal semantics of the control software, as calculated by RoboTool, and an abstract specification of the hardware 
behaviour, as established using SDV. These are formalised in tock-CSP [54,55], the discrete-timed process algebraic semantics 
of RoboChart, for checking with FDR.

The complete system behaviour is considered at a suitable level of abstraction for verification by: (1) defining a platform 
mapping; (2) using a specification of the hardware that captures at an abstract level the relation between its inputs and 
outputs, as verified using SDV; (3) formalising these in tock-CSP. We depict the approach in Fig. 8 and explain it in detail 
in the next Section 4.1. In Section 4.2 we discuss the co-verification of system properties, modelling of the hardware and 
software, and the mechanisation in CSP of the overall framework. In Section 5 verification of properties of the software is 
also discussed.
8
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Fig. 8. Co-verification framework, with arrows indicating the direction of the information flow between inputs and outputs, of the software and hardware 
models. The platform mapping captures the relation between the software and hardware model on either side.

4.1. Framework overview

In our framework, the software and hardware models are coupled via interfaces that capture their inputs and outputs, 
with connections between models specified via platform mappings. On the left-hand side of Fig. 8 we consider the interface 
of the HVC control software, defined as a robotic platform (RP1) in RoboChart, that specifies the inputs and outputs as 
(possibly typed) events, indicated by solid boxes.

On the right-hand side we have a high-level description of the hardware platform, that captures its sensors and actuators. 
In our abstraction of the HVC platform, that comprises the cascade in Fig. 2, the hardware receives an input voltage, via
RPInputV_out, and produces a high-voltage via RPActualHV_out.

We also annotate important assumptions about the hardware that are of relevance for analysis: sensors are perfect, 
and, in particular, the voltage produced via RPActualHV_out is assumed to be the same as that sensed via RPActualHV. The 
relation between RPInputV_out and RPActualHV_out is established by the Simulink model as detailed in Section 4.2.2, but 
abstracted for verification, as explained later in Section 4.2.4. The input signals RPerrorAck and RPsetPoint are an abstraction 
over the inputs available to a human operator, whose interaction with the software is realised via the platform.

The relation between the software and hardware model is specified by the platform mapping, as illustrated in the middle 
of Fig. 8. It records how the inputs and outputs of the software are connected to sensors and actuators of the hardware plat-
form, as realised by low-level code and physical interfaces. The mappings for the software inputs ext_ActualHV, ext_errorAck
and ext_newSetPoint are trivial, as the software reads directly from these idealised sensors. The input ext_pow24VStatus, of 
type Power, has the value On if the reading from the hardware, via RPpow24V_in is between 18 and 24 Volts, and otherwise 
has the value Off.

The software outputs int_dutyCyclePWM1 and int_enablePWM are used to determine whether a voltage is produced via
RPInputV_out. If the value set via int_enablePWM is true, then the value of RPInputV_out is determined by the value of
int_dutyCyclePWM1, otherwise it is 0. This captures the fact that the PWM needs to be enabled in order to produce a 
voltage. Here, the function duty2volt maps a percentage, from 0 to 100% to the range of the analog 0 to 10 voltage signal as 
previously mentioned in Section 3.

More generally, when the connection between software and hardware is realised directly via reading and writing to reg-
isters of sensors and actuators, a platform mapping can be specified by a relation. As in the case of the input RPpow24V_in, 
a voltage is related to a discrete set of values On and Off. On the other hand, if inputs of the software are interpreted as 
event-driven interrupts, a more appealing approach is to define when an event is available [15] using a predicate over the 
output of one or more sensors. Similarly, an input to an actuator may be constrained, for example, by a predicate over one 
or more software outputs.

4.2. System verification

Using the co-verification framework as illustrated in Fig. 8, in this section we address the formal verification of system 
Property P1. As described in Section 3.1, it requires practical convergence of the high-voltage (RPActualHV_out) to the 
value of the setpoint as set by the user (RPsetPoint). Since the software is modelled in RoboChart, and the hardware 
in Simulink, our pragmatic verification strategy consists of: (1) capturing P1 as a specification in tock-CSP; (2) showing 
practical convergence of the hardware output RPActualHV_out in relation to its input RPInputV_out using SDV; (3) casting 
the result obtained from SDV as a tock-CSP specification; (4) checking with FDR that, when combined with the semantics 
9
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Table 1
tock-CSP operators as used in a Timed section, with basic processes at the top, followed by composite processes: P and Q are metavariables that stand for 
processes, a, c, and d for events, g for a condition, and X for a set of events.

Process Description

SKIP Terminating process
WAIT(d) Delay: terminates exactly after d units of time have elapsed
STOP Deadlock: no events are offered, but time can pass
USTOP Timelock: no events are offered and time cannot pass
a -> P Prefix operator: initially offers to engage in the event a while permitting any amount of time to pass, and then behaves as P
if g then P else Q Conditional: behaves as P if the predicate g is true, and otherwise as Q
P [] Q External choice of P or Q made by the environment
P ; Q Sequence: behaves as P until it terminates successfully, and, then it behaves as Q
P \ X Hiding: behaves like P but with all communications in the set X hidden
P |\ X Project: behaves like P but with all communications not in the set X hidden
P ||| Q Interleaving: P and Q run in parallel and do not interact with each other
P [| X |] Q Generalised parallel: P and Q must synchronise on events that belong to the set X
P[[ c <- d]] Renaming: replaces uses of channel c with channel d in P
P /\ Q Interrupt: behaves as P until an event offered by Q occurs, and then behaves as Q
P [| X |> Q Exception: behaves as P until P performs an event in X, and, then behaves as Q
TRUN(X) Continuously offers the events in the set X to the environment, while time can pass
timed_priority(P) Maximal progress: behaves as P with internal behaviour given priority over tock, so that internal behaviour takes no time

of the RoboChart model, via a mechanisation of the framework depicted in Fig. 8, P1 is satisfied. That overall property P1
holds is justified by the timed process algebraic semantics of RoboChart and the abstract specification (2-3) as established 
using SDV, and captured in CSP. A full account of the CSP specifications for all of the properties considered in this paper 
can be found online.1

Formal semantics. The formalism that we use, tock-CSP, is a dialect of the process algebra CSP, where the event tock marks 
the passage of discrete time. As CSP adopts a reactive paradigm, interactions with the environment are specified using 
events, and that includes the passage of time in the case of tock-CSP. Importantly, it allows the specification of timed 
budgets and deadlines, and has a denotational semantics for refinement [55]. Relevant for our work, the model checker FDR 
has tailored support for tock-CSP.

In Table 1 we summarise the tock-CSP operators that we use in our work. To illustrate the notation we present a simple 
CSP specification of a one-place timed buffer in Listing 1 written in CSPM , the machine-readable version of CSP accepted by 
FDR. The declaration on line 1 introduces a named type data whose values are defined by the set of integers between 0 and 
2. Line 2 declares two typed channels named in and out, that can be used as event constructors using the dot notation, 
for example, in.0 and out.1. Related, the set of events generated by one or more event constructors can be specified as an 
enumerated set, so that, for example, {|in|} is equal to {|in.0,in.1,in.2|}, the set of all in events.

Processes defined within a Timed section2 (lines 6-9) are interpreted to be timed: tock events are automatically added to 
allow time to pass when waiting for interactions with the environment, and the passage of time is uniform across interacting 
processes. The function OneStep, defined on line 4 to be 0 for every event in its domain (indicated by the underscore in 
its signature), is passed as a parameter (line 6) to the Timed section to ensure that no time is added implicitly after every 
synchronisation with the environment.

The behaviour of the timed buffer is that defined by the process Example (line 7) that behaves as TimedBuffer
with timed_priority applied, a function over processes, provided by FDR to calculate the correct timed semantics [55]. 
TimedBuffer (line 8) initially offers to receive a data value via a prefixing on the channel in, and then offers an external 
choice ([]) to the environment between accepting a new value, via the recursion on TimedBuffer, or delaying the output 
of the current value, via prefixing on out after the sequential composition (;) with a delay of one time unit (WAIT(1)). We 
observe that an external choice is not resolved by the passage of time, but rather by synchronisation on events. Here, in?x
is syntactic sugar for accepting events in.x where x ranges over the type data. The prefixing on out!x takes the value of 
x as introduced into context by the prefixing on in?x.

Specification. Following the description of P1 in Section 3.1, here we construct a discrete version in tock-CSP, as shown 
in the RoboChart timed csp block named SpecP1 in Listing 2. It declares two channels (line 2), e and RPsetPoint, of 
type core_real. The event e is used to model the absolute difference between ActualHV_out and RPsetPoint, so that the 
specification can capture the relation between changes in RPsetPoint and the absolute difference.

The behaviour of SpecP1SpecP1 is that of Follow, a process with a single parameter d, defined on lines 6-12 as an 
external choice ([]) over accepting events e or RPsetPoint, via prefixing (?x ->). Synchronisation on RPsetPoint, with 
any value, or e, with value 0, is followed by a recursion on Follow. Whenever the event e carries a value that is not 0 (lines 
8-9), then Follow behaves as the process ADeadline({|e|},{|e.0|},d), that ensures an event e with a value of 0 can only 
be observed within d time units (instantiated as 3 s for SpecP1), and afterwards behaves as TRUN({|e.0|}). This behaviour 

1 https://github .com /UoY-RoboStar /hvc -case -study.
2 https://cocotec .io /fdr /manual /cspm /definitions .html #csp -timed -section.
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1 nametype data = {0..2}
2 channel in, out : data
3
4 OneStep(_) = 0
5
6 Timed(OneStep) {
7 Example = timed_priority(TimedBuffer)
8 TimedBuffer = in?x -> (TimedBuffer [] (WAIT(1) ; out!x -> TimedBuffer))
9 }

Listing 1: Example of a one-place buffer that is always prepared to receive a value, but which delays its output by one time 
unit.

1 timed csp SpecP1 csp-begin
2 channel e, RPsetPoint : core_real
3
4 Timed(OneStep) {
5 SpecP1 = timed_priority(Follow(s(3)))
6 Follow(d) = e?x -> (if x == 0
7 then Follow(d)
8 else ((ADeadline({|e|},{|e.0|},d) ; TRUN({|e.0|}))
9 /\ RPsetPoint?x -> Follow(d))

10 )
11 []
12 RPsetPoint?x -> Follow(d)
13
14 -- Allows time to advance by ’d’ units while events from ’S’ are performed
15 -- until an event from ’S’ that is in ’E’ is performed.
16 ADeadline(S,E,d) = EndBy(TRUN(S),d) [|E|> SKIP
17
18 -- Built into RoboTool: deadline for ’P’ to terminate within ’d’ units.
19 EndBy(P,d) = P /\ (WAIT(d);USTOP)
20 }
21 csp-end

Listing 2: Specification for Property P1 defined within a RoboChart assertions’ process block named SpecP1.

can be interrupted (/\on line 9) at any time by a new RPsetPoint. We observe that for the purpose of model-checking the
reals, modelled by the type core_real, are instantiated in the discrete domain 0 to 2, so here we consider the difference 
e(t), encoded via the event e, to be 0, without loss of generality.

The auxiliary process ADeadline(S,E,d), defined on line 16, takes three parameters, two sets of events, S and E, where 
S is expected to be a subset of E, and a natural number d. It continuously offers events in the set S, but time can only 
advance by up to d units, unless an event from the set E happens, in which case the process terminates. It is defined using 
the exception operator of CSP ([|E|>), where initially the behaviour is that of EndBy(TRUN(S),d), that continuously offers 
events in set S, and allows time to advance by up to d time units. Thus, within the exception, if TRUN(S) performs an event 
that is in E, then the process behaves as SKIP, that terminates immediately.

We observe that the auxiliary processes TRUN and EndBy are included with the RoboTool distribution for convenience. 
EndBy(P,d), reproduced on line 19, is a deadline over process P to terminate within d time units. It behaves as P, but 
because time is uniform in tock-CSP it requires the right-hand side process WAIT(d);USTOP to agree on the passage of time. 
That process, however, is only prepared to let d time units to pass before it timelocks, effectively imposing a deadline. Next, 
we focus on the hardware model.

4.2.1. Hardware modelling and verification in Simulink Design Verifier (SDV)
Both the co-verification regime detailed in Section 4.1, as well as verification of the system-level properties, require 

a distinct and systematic separation between hardware and software components of the HVC system. Fig. 8 provides an 
overview of this separation and the steps toward implementing this have been set forward in the ingress of Section 4. 
To this end, the focus of this section is centred around hardware modelling, specification, abstraction and verification of 
hardware properties in SDV. All of these components are naturally combined in order to co-verify system-level properties.

Simulink is widely adopted as a tool for traditional, input-driven simulation, and the modelling in SDV is similar to 
regular modelling used for simulation [12]. SDV uses Prover Plug-In® products from Prover® Technology to do model-
checking and prove the model properties [56]. It is built upon Gunnar Stålmarck’s proof procedure, which uses tautology 
checks to prove that an assertion holds true in every possible interpretation [57]. In Property Proving mode, SDV offers three 
different proof strategies, Prove, FindViolation and ProveWithViolationDetection where the latter is merely a serial 
combination of the two first mentioned. In this work, both Prove and FindViolation have been used. Prove performs 
an unbounded property proof, while FindViolation searches for property violations within the number of steps specified 
by the Maximum violation steps option, which specifies the maximum number of steps that SDV searches for property 
violations. Thus, verification with increasingly large Maximum violation steps will help to increase confidence in the 
property.

The Simulink model. The hardware model in Simulink was created based on previous models found in [5,6]. These models 
have been validated both theoretically and empirically by several lab experiments, and correspond well to the real-world 
system. In order to do formal verification with SDV however, the model had to be converted from continuous to discrete 
11
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Fig. 9. Overview of the hardware verification model. The grey box includes the modelling of the cascade, while the green box contains the property for 
verification.

Fig. 10. Simulink model of the total CW-cascade hardware complementing the ideal model with loss and ripple terms [6].

time, since SDV does not support continuous time. In this process, in addition to converting transfer functions specified 
in continuous time using Laplace transform (S-domain) to discrete time Z-domain, some of the Simulink blocks specific 
to continuous time were replaced with their discrete counterparts. Fig. 9 shows the overview of the hardware verification 
model in SDV where the input/output signals, i.e., RPInputV_out and RPActualHV_out denote the same signals as previously 
introduced in Section 4.1 and Fig. 8. The mapping and transfer function between these two signals, and formal verification 
of certain hardware properties treated in this section, then correspond naturally to the extension and scope of the dashed 
grey box on the upper right side of Fig. 8.

It is noteworthy that, the input, RPInputV_out, ranges over the discrete domain, {0, 1, 2}, and is multiplied by a constant 
factor 5 in Simulink, effectively corresponding to having the set of possible values of {0, 5, 10} volt being fed into the PWM 
hardware model. This means that duty2volt maps a percentage, from 0 to 100% to the entire range of the analogue [0 10]
voltage signal as previously mentioned in Section 3. It also implies that the convergence results obtained in this section 
using {0, 5, 10} volt as input, will also be valid for the real PWM hardware system. This is because its input set, [0 10], is a 
superset of {0, 5, 10}.

The test data used to create the model was collected from structured experiments running at many different HV set-
points, frequencies, distances and number of stages in the CW-cascade, providing a rich data-set to represent how the actual 
hardware will behave in the real environment. As detailed in [5,6] and depicted in Fig. 10, the Simulink model will, in addi-
tion to the ideal transfer function, have two additional terms describing the cascade loss and ripple effects. Using the Matlab 
System Identification Toolbox, state-space models and transfer-functions are fitted to the lab test data to provide the best 
description of the PWM hardware dynamics; both during the charge and discharge modes of operation. The resulting trans-
fer functions and model components in continuous time can be seen in Fig. 10. Additionally, a Simulink model describing 
the bell-cup inside the applicator that will effect the electrical field at a plane at a given distance, d, from the paint robot, 
has been derived in [5] and used here.

In order to be able to formally verify the system-level property, P1, the mapping and relational properties between
RPInputV_out and RPActualHV_out, effectively describing the hardware, is needed. This allows us to obtain a well-defined 
“closed circuit” mapping between all of the components in the co-verification framework of Fig. 8. To this end, the System 
Identification Toolbox was used to model the transfer function describing the relation between these two signals (see 
Fig. 11). This resulted in a standard, second order transfer function model:

G(s) = K p

(1 + T p1s)(1 + T p2s)
, (3)

having the following specific parameters

K p = 1.1196

T p1 = 0.087821

T p2 = 0.02042.
12
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Fig. 11. Simulink model of the ideal cascade including the mode model selector and the two transfer functions describing the charging and discharging 
modes respectively [6].

Fig. 12. SDV implementation of the PWM hardware convergence property, PHW as detailed in Eq. (4).

This model was then analysed in Simulink with particular attention to time dynamics, stability and convergence properties 
as defined by, e.g., rise and settling-time. Of particular interest in the following, is the settling time, ts , which was found to 
be ts = 0.3668 s.

Formal verification of hardware properties. Based on the developed Simulink model, next, we will be verifying a low-level 
property that will then be used in the co-verification scheme in order to verify Property P1.

Referring back to the definition of Property P1, the error term Eq. (1) as well as the notion of practical convergence
in Section 3.1, the following hardware property will be considered and verified in this section:

PHW: Practical convergence of actual hardware output voltage, RPActualHV_out, to the hardware input signal, RPIn-
putV_out, within settling time, ts:

∀t ≥ tsp + ts =⇒
E(t) = |RPInputV_out(t) − RPActualHV_out(t)| − 0.15 × max(RPInputV_out(t),1) ≤ 0. (4)

Here, tsp denotes the time instance where an update to the input, RPInputV_out, is received in PWM hardware. It is 
notable that while Property P1 is a system-level property, involving both software and hardware components, Property PHW
as defined by Eq. (4) serves as a low-level hardware property. Another important distinction, stems from the difference 
in value between the settling time, ts = 0.3668 s, in Eq. (4) and τ = 3 s in Eq. (1) which implies that PHW incrementally 
contributes towards fulfilment of corresponding equations to verify the overall convergence Property P1. This fact also 
underlies and explains the difference in peak deviation limit (0.15 and 0.3 respectively) between the two properties.

The Simulink implementation to verify this property lies within the green Verification Subsystem in Fig. 9 and has been 
depicted in Fig. 12. The upper part containing the Detect Change block and an integrator function, works as a timer that 
is reset every time there is a change in RPInputV_out. This in order to capture the t ≥ tsp + ts constraint in Eq. (4). The 
lower part takes the absolute value of the error between RPInputV_out and RPActualHV_out and subtracts the accepted 
error, which is set to 0.15 × max(RPInputV_out(t), 1). Finally, the last function on the right, denoted evaluation, gives out 
false if Eq. (4) is not fulfilled at any time instance, t ≥ tsp + ts . Otherwise it gives out true. This is verified with the proof 
assumption block, which shows if the property is fulfilled or violated.
13
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Table 2
Results of the verification of the hardware, using FindViolation and different values for Maximum violation steps.

Maximum 
violation steps

Fixed-step size 
(fundamental sample time)

Result Elapsed time

1,000 1e−6 Valid within bound 0:47:49
1,000,000 1e−6 Valid within bound 0:46:44
1,000,000,000 1e−6 Valid within bound 0:47:15
2,147,483,647 1e−6 Valid within bound 0:47:15

Fig. 13. RoboChart model components: robotic platform ( RP1), interfaces (named IOps, IEvents_RP1, IEvents_ext, and SharedVars_all), enumerated (Power

and State) and given (duty) data types. is an event, is a variable, and is associated with an operation. is used to record that an interface is 
provided, while is a used interface.

After creating the model and the specification, the Prove strategy was used in order to verify the property. It was run 
both using MATLAB online and on a Windows laptop with Intel® Core© i5 CPU @ 2.71 GHz. The online version and the 
desktop version were both used in order to run two verifications in parallel, to see if one would produce a result faster than 
the other. However, after running both continuously for 10 days without producing a result, the verification was manually 
terminated, with the assumption that the complexity had resulted in a state-space explosion that made Simulink unable 
to verify the specification. It was instead decided to gain increased confidence in the verification by using FindViolation
with increasing Maximum violation steps. The results of the verification by using FindViolation can be seen in Table 2. 
The Maximum violation steps option was gradually increased, until reaching the maximum value of 2,147,483,647, which 
is the maximum value for data type int32. As seen in the table, SDV was able to prove that the property was valid within 
bound in all cases.

4.2.2. Software modelling in RoboChart
In this section, we present the RoboChart model of the software, that is a formalisation of the sketch previously shown 

in Fig. 7. The robotic platform (RP1) – a specification of the services available to the software in terms of variables, events 
and operations – is fully specified in Fig. 13. Its events are defined in the interface IEvents_RP1. RP1 also provides the 
interface SharedVars_all, that declares all of the shared variables that are used in the model. The interface IOps specifies the 
signature of the software operations that are used, and defined, in the RoboChart model. In addition to employing built-in 
data types, such as reals, naturals, and booleans, three data types are declared: the enumerated types Power and State, and 
the given type duty. Two functions ms and s are used to construct time units corresponding to milliseconds and seconds, 
respectively. RoboChart adopts the type system of Z [58,59]. For a full account of the language and its formal semantics we 
refer the reader to [11,16,9]. Here, we describe the RoboChart constructs as we use them to model our example.

Module and controllers. The top-level component of the software model is defined by the RoboChart module mod_sys, shown 
in Fig. 14. It associates the robotic platform with four controllers (ctrl0-3), that capture specific behaviours. Controller ctrl0, 
shown in Fig. 15, contains the main State_machine, that is a recast of that presented in Fig. 7, ctrl1 captures the behaviour 
of the watchdogs, and controllers ctrl2-3 are used to relay events. Controller ctrl2 relays the input event ext_pow24VStatus
from RP1 to controllers ctrl0-1, and ctrl3 relays the output events int_dutyCyclePWM1 and int_enablePWM from ctrl0 and ctrl1
to RP1, as RoboChart event connections are point-to-point. Due to their simple nature, the full definition of all controllers 
is deferred to an on-line report.3 In RoboChart, connections with the platform are always asynchronous, indicated by the 

3 https://robostar.cs .york.ac .uk /case _studies /hvc/.
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Fig. 14. RoboChart module mod_sys defining the connections between controllers and the robotic platform. Controller ctrl0 contains the main State_machine, 
a recast in RoboChart of the state machine presented in Fig. 7. The watchdogs have been combined into one state machine, defined inside controller ctrl1. 
Controller ctrl2 relays the event ext_pow24VStatus to controllers ctrl0 and ctrl1, while controller ctrl3 is used for relaying the events int_enablePWM and
int_dutyCyclePWM1 to RP1.

Fig. 15. Controller ctrl0, showing its inputs and output connections to State_machine, and references of operations.

keyword async, as interactions with the platform cannot be refused, only ignored [10, p. 3110]. The connections between 
all controllers ctrl0-3, however, are set as synchronous.

State machine. The core behaviour of the HVC controller is captured by the State_machine in Fig. 16. In RoboChart, state 
machines are self-contained by explicitly stating the required ( ) variables and operations, and the used ( ) events. In 
this case, State_machine requires the software operations declared in IOps, and the shared variables in IVars_seqSM_shared. 
It also declares: local variables via the interface IVars_seqSM, a constant cycleTime with a default value of 10 milliseconds, 
and a clock ( ) Cl1. It uses the events of interface IEvents_ctrl0, that are also explicitly listed on the left-hand side of Fig. 16.
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Fig. 16. Main State_machine corresponding to that of Fig. 7 recast in RoboChart.

The execution flow of State_machine starts at the initial junction, followed by a transition whose action, specified af-
ter the dash (/), initialises the value of the variables mSetPoint and HVEnabled, by assigning 0 and false in sequence 
(;), respectively. It then waits for cycleTime units before entering state Init. This initial delay is a simplification of the
GateDriverRamping behaviour depicted in Fig. 7, which does not concern the properties of interest for verification. In 
state Init there is an entry action that calls the software operation AdjustLimits which calculates the value of variables over-
Limit and underLimit and is defined by a state machine as shown in Fig. 17. The required variables of AdjustLimits, as listed in 
interface IVars_adjustLimits, are provided by State_machine in the context of the call to AdjustLimits, effectively sharing the 
state.

After the initialisation is complete, the execution proceeds to the composite state Wait24Vpower on the next cycle. Its 
entry action explicitly records that the state has been entered by setting the variable currentState. The transition to Closed-
Loop is only enabled when the current value of setPoint is 0, the 24 V power is stable (pow24VStatus==Power::On), and the
ErrorMode is not activated, as indicated by the transition’s guard. The body of Wait24Vpower monitors the relevant inputs 
periodically as part of the cycle of transitions between the junctions. Firstly, the operations disableHV and supplyVoltCheck, 
as defined in Fig. 17, are called. disableHV disables the high-voltage, while supplyVoltCheck checks the input ext_pow24VS-
tatus and updates the value of the variable pow24VStatus. Secondly, the value of the variable setPoint is also updated via a 
reading (ext_setPoint?setPoint) through event ext_setPoint, with a deadline (<{0}) of zero time units. In RoboChart budgets 
and deadlines must be specified explicitly, and so here the deadline indicates that the reading takes a negligible amount of 
time.
16
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Fig. 17. Software operations modelled in RoboChart with their behaviour defined by state machines: disableHV disables the high-voltage by writing false to
int_enablePWM and setting the duty cycle to zero via int_dutyCyclePWM1; enableHV enables the high-voltage; AdjustLimits calculates voltage limits, overLimit
and underLimit, based on the current value of mSetPoint; and supplyVoltCheck checks whether the 24 V power is stable via the input ext_pow24VStatus, and 
if unstable calls disableHV.

Fig. 18. Watchdog state machine. Initially there is a delay of 4 milliseconds before engaging in a cyclic behaviour. First AdjustLimits is called, and after 2 
milliseconds supplyVoltCheck is called, with same behaviour repeated after a delay of a further 8 milliseconds. The call to supplyVoltCheck can disable the 
high-voltage if the 24 V power is not stable, as shown in Fig. 17.

The critical phase of HVC operation is captured in state ClosedLoop, that controls the PWM. Initially the user-defined 
setpoint, ext_SetPoint, is read into the variable setPoint. If the value is zero, then disableHV is called to ensure that the high-
voltage is disabled. Afterwards, if the value is non-zero and the high-voltage has not been enabled yet (HVEnabled==false),
HVEnabled is set to true, the supply voltage is checked by calling supplyVoltCheck(), and the high-voltage is enabled by calling
enableHV. While the high-voltage is enabled, the internal setpoint (recorded in variable mSetPoint) is adjusted by calling
setPointRamping(setPoint). The PWM duty-cycle is adjusted by PID_Control that outputs a percentage via int_dutyCyclePWM1, 
according to the difference between mSetPoint and ActualHV, the measured high-voltage via the input ext_ActualHV. In 
state s0 of ClosedLoop, the flow of execution may be interrupted by transitioning to ErrorMode when currentState is set to
State::ErrorMode. The error can be acknowledged via the event ext_errorAck within the current cycleTime, after which there 
is a transition to Wait24Vpower.

The variable currentState may be set to State::ErrorMode by calling disableHV(true), either while in Wait24Vpower, or from 
within operations checkLimits or supplyVoltCheck, that checks whether the input 24 V power is stable. The latter is called 
regularly in states ClosedLoop and Wait24Vpower of State_machine, and also by the watchdog, which, as will be explained 
next, is modelled in another state machine.

Watchdog. The watchdog, shown in Fig. 18, executes, over time, in alternation with the main State_machine, that executes 
on a 10 millisecond cycle, as specified by the constant cycleTime. Therefore, the watchdog’s behaviour is initially delayed 
by 4 milliseconds. In state s0 there is a call to AdjustLimits(), and 2 milliseconds later, the operation supplyVoltCheck() is 
called. We observe that the transition between s1 and s0 takes 8 milliseconds, and it is during this time that State_machine
actually executes its cyclic behaviour.
17
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1 timed csp HVC_Platform csp-begin
2 nametype Power_Voltage = {0,24} -- Data type used to characterise input RPpow24V
3
4 channel RPActualHV_out : core_real -- ’Actuator’ output
5 channel RPInputV_out : core_real -- Output from software via mapping
6 channel RPActualHV, RPActualHV_in : core_real -- Sensor input and platform mapping
7 channel RPpow24V, RPpow24V_in : Power_Voltage -- Sensor input and platform mapping
8 channel RPsetPoint_in : core_real -- Sensor platform mapping
9 channel RPerrorAck, RPerrorAck_in -- Untyped input and platform mapping

10
11 channel get_HV, set_HV, change : core_real -- Used for abstraction of the hardware
12
13 Timed(OneStep) {
14 HVC_Platform = timed_priority((HV(0)[[ get_HV <- RPActualHV_out ]]
15 [| {|set_HV|} |]
16 HVC_Hardware)\{|set_HV|}
17 )
18
19 HV(x) = set_HV?nv -> HV(nv) [] get_HV!x -> HV(x)
20
21 HVC_Hardware = (Detector [| {| change, get_HV |} |] StatefulEvolution)\{|change, get_HV|}
22
23 Detector = RPInputV_out?nv -> get_HV?x -> (if nv != x
24 then (change!nv -> Detector)
25 else Detector)
26
27 StatefulEvolution = (Evolution [| {| change |} |] HV(0)[[ set_HV <- change ]])
28
29 Evolution = change?x -> ((WAIT(ms(370)); set_HV!x -> Evolution) [] Evolution)
30 }
31 csp-end

Listing 3: Mechanisation of the HVC_Platform.

4.2.3. Framework mechanisation
Having developed models of the software and hardware, in this section we mechanise the co-verification framework out-

lined in Fig. 8 with the aim of verifying system Property P1. We start by defining a CSP process that captures Property PHW . 
This is followed by the complete mechanisation of the platform and its mapping, and the composition with the semantics 
of the RoboChart model, as calculated by RoboTool.

Platform. The hardware platform is specified within the csp block named HVC_Platform, shown in Listing 3. It defines, first 
of all, the CSPM events of the sensors and actuators (lines 4-9), following the naming conventions of Fig. 8. The process 
HVC_Platform is a discrete, and reactive, model of the hardware, constructed from the Property PHW established in Sec-
tion 4.2.1. It is defined as a parallel composition ([| |] on lines 14-16), synchronising on event set_HV, of HV(0), that 
models the current value of the high-voltage, and HVC_Hardware, that captures how the value of RPActualHV_out may 
change over time in response to changes in RPInputV_out. The process HV(x), defined on line 19, offers the event set_HV
to change the value, and the event get_HV to query the current value x. It is specialised on line 14 as HV(x)[[ get_HV <-
RPActualHV_out ]] by renaming the event get_HV to RPActualHV_out. The event set_HV is hidden (\), as it is an artefact 
of the CSP model.

The evolution of the value available via RPActualHV_out is modelled by the process HVC_Hardware. It is defined on 
line 21 as the parallel composition of the process Detector, synchronising on the events change and get_HV, and the 
process StatefulEvolution. The latter models how changes to the voltage evolve over time, while Detector, named anal-
ogously to the SDV block in Fig. 12, models how an input via RPInputV_out may affect the behaviour. First it offers to receive 
a new value nv via RPInputV_out, and then synchronises with StatefulEvolution on get_HV to query the current value 
x being targeted. If the value is different, it synchronises on change with value nv, otherwise it behaves as Detector.

The core of the hardware property PHW is abstractly captured by the process StatefulEvolution. It is defined on 
line 27 as the parallel composition of Evolution, synchronising on event change, with HV(0) where the channel set_HV is 
renamed to change. Evolution accepts a change event at anytime, and afterwards waits 370 milliseconds, a conservative 
natural approximation of the settling time of the Simulink model of the hardware, before synchronising on set_HV, which 
is used to update the high-voltage, whose value is available via RPActualHV_out, as modelled by the process HV(0) in 
HVC_Platform. Thus, a change via RPInpuV_out leads to a change in the value available via RPActualHV_out over time, 
mirroring property PHW as established in Section 4.2.1. Next, we describe the mechanisation of the platform mapping.

Platform Mapping. The process PlatformMapping, defined on line 7 of the csp block in Listing 4, captures the non-trivial 
mapping between int_dutyCyclePWM1, int_enablePWM, and RPInputV_out, and between RPpow24V_in and ext_pow24VStatus. 
It is an interleaving (|||) of two processes, Pow24V_Map, that models the mapping between RPpow24V_in and the software 
input ext_extPow24VStatus, and the prefixing on RPInputV_out with value 0 followed by the behaviour of PWM_Map. Here 
the prefixing initialises the hardware with value zero. PWM_Map, defined on lines 10-15, models the mapping between the 
outputs int_dutyCyclePWM1 and int_enablePWM, and the input to the platform RPInputV_out.

PWM_Map is parametrised to keep track of whether the PWM has been turned on or off. The first process in the external 
choice (lines 11-12) allows this value to be toggled depending on whether int_enablePWM.out is received with value 
false, in which case the value zero is passed to the platform via RPInputV_out, and otherwise there is a recursion on 
PWM_Map(x) with the updated value of x. In the second process (lines 14-15), values received via int_dutyCyclePWM1.out
18
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g

1 timed csp PlatformMapping csp-begin
2 -- Function that maps the duty cycle percentage to the value expected by RPInputV_out.
3 duty2volt(x) = if member(x,{0..19}) then 0
4 else (if member(x,{20..60}) then 1
5 else (if member(x,{61..100}) then 2 else 0))
6 Timed(OneStep) {
7 PlatformMapping = timed_priority((RPInputV_out!0 -> PWM_Map(false)) ||| Pow24_Map(true))
8
9 -- Platform mapping of duty cycle and PWM to RPInputV_out.

10 PWM_Map(pwm) =
11 mod_sys::int_enablePWM.out?x ->
12 ((if x == false then RPInputV_out!0 -> SKIP else SKIP) ; PWM_Map(x))
13 []
14 mod_sys::int_dutyCyclePWM1.out?x ->
15 ((if pwm == true then RPInputV_out!duty2volt(x) -> SKIP else SKIP); PWM_Map(pwm))
16
17 -- Platform mapping from RPpow24V_in to ext_pow24VStatus.
18 Pow24_Map(pwr) =
19 RPpow24V_in?x:{x | x <- Power_Voltage, (x <= 24 and x >= 18)} -> Pow24_Map(true)
20 []
21 RPpow24V_in?x:{x | x <- Power_Voltage, (not (x <= 24 and x >= 18))} -> Pow24_Map(false)
22 []
23 (if pwr==true
24 then mod_sys::ext_pow24VStatus.in!Power_On -> Pow24_Map(pwr)
25 else mod_sys::ext_pow24VStatus.in!Power_Off -> Pow24_Map(pwr))
26 }
27 csp-end

Listing 4: Mechanisation of the Platform Mapping.

1 timed csp MappedSystem csp-begin
2 Timed(OneStep) {
3 -- Defined over the semantics of the RoboChart module ’mod_sys’ calculated by RoboTool.
4 Software = mod_sys::O__(0,ms(10),1) [[ mod_sys::ext_ActualHV.in <- RPActualHV_in,
5 mod_sys::ext_errorAck.in <- RPerrorAck_in,
6 mod_sys::ext_setPoint.in <- RPsetPoint_in ]]
7 Software_PMap =
8 (Software
9 [|{|mod_sys::int_enablePWM.out,

10 mod_sys::int_dutyCyclePWM1.out,
11 mod_sys::ext_pow24VStatus|}|]
12 PlatformMapping)
13 \{|mod_sys::int_enablePWM.out,mod_sys::int_dutyCyclePWM1.out,mod_sys::ext_pow24VStatus|}
14
15 MappedSoftware = Software_PMap[[ RPActualHV_in <- RPActualHV,
16 RPerrorAck_in <- RPerrorAck,
17 RPpow24V_in <- RPpow24V,
18 RPsetPoint_in <- RPsetPoint ]]
19
20 MappedSystem = timed_priority(MappedSoftware
21 [| {| RPInputV_out, RPActualHV |} |]
22 (HVC_Platform[[ RPActualHV_out <- RPActualHV_out,
23 RPActualHV_out <- RPActualHV]])
24 \{|RPInputV_out,RPActualHV|})
25 }
26 csp-end

Listing 5: Complete mechanisation of the Platform Mapping.

are passed to the platform via RPInputV_out, mapped via the function duty2volt, if the value of pwm is currently true. 
This function, defined on lines 3-5, maps a percentage to a voltage, which, as previously discussed in Section 4.1, encodes 
three possible values.

The CSP process Pow24_Map is defined analogously on lines 18-25 to model the mapping between the sensor of the 
24 V voltage, and the input ext_pow24VStatus of the software, whereby a value between 18 and 24 is considered as On and 
otherwise as Off. The value that x can take on the prefixings on the channel RPpow24V_in, on lines 19 and 21, is constrained 
using set comprehensions. This concludes the non-trivial mappings, which are used in the definition of the overall system 
next.

Mapped system. The complete system, as envisioned in Fig. 8 is modelled by the process MappedSystem within the csp
block of Listing 5. It is defined on lines 20-24 as the parallel composition of MappedSoftware and HVC_Platform, defined 
in Listing 3, synchronising on the events RPInputV_out and RPActualHV. Here HVC_Platform is relationally renamed [54, 
p. 105], so that the event RPActualHV_out is both an output of the platform and also a sensor input, with the same value, 
via RPActualHV, as depicted in Fig. 8. The hiding on RPInputV_out and RPActualHV completes the abstraction.

The process MappedSoftware, defined on lines 15-18, captures the connections between the composition of the platform 
mapping and the software, as established by Software_PMap, and the platform, by renaming the events of the former to 
the latter. The sensors of the platform, in particular, are assumed to be perfect, and so in this abstraction the functional 
renaming is a record of their ideal functional behaviour.

Software_PMap, defined on lines 7-13, captures the composition of the RoboChart CSP semantics, and the PlatformMappin
, as defined earlier in Listing 4. It is a parallel composition of the processes Software and PlatformMapping, synchronising 
on int_enablePWM.out, int_dutyCyclePWM1, and ext_pow24VStatus, corresponding to events of the RoboChart model. The 
19
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1 timed csp SpecP1 csp-begin
2 Timed(OneStep) {
3 SpecP1 = timed_priority(Follow(s(3)))
4 Follow(d) = e?x -> (if x == 0
5 then Follow(d)
6 else ((ADeadline({|e|},{|e.0|},d) ; TRUN({|e.0|}))
7 /\ RPsetPoint?x -> Follow(d))
8 )
9 []

10 RPsetPoint?x -> Follow(d)
11 }
12 csp-end
13
14 // Actual check for P1
15 timed assertion P1 : ImplP1 refines SpecP1 in the traces model

Listing 6: Recall of SpecP1 as previously defined in Listing 2 and the RoboChart assertion for verification.

process Software, which explicitly instantiates the RoboChart model semantics, is defined analogously to MappedSoftware, 
whereby the trivial mappings are captured via renaming. The hiding on line 13 completes the abstraction.

The process mod_sys::O__(0,ms(10),1), used on line 4, is an explicit instantiation of the CSPM semantics of mod_sys, 
automatically calculated by RoboTool, where 0 is a default identifier, ms(10) is the value of constant cycleTime of State_ma-
chine, and 1 the value of constant rampStep of operation setPointRamping. Events in the CSP semantics of RoboChart are 
named according to the model hierarchy, where :: is a delimiter, and have a parameter in or out to indicate whether an 
event is an input or output.

4.2.4. Formal verification of system-level Property P1
With the framework outlined in Fig. 8 mechanised in CSP, in this section we address the verification of Property P1. 

Its specification in CSP, described in Section 4.1, is reproduced in Listing 6 for convenience. Verification of Property P1
is stated as a refinement assertion P1 in the traces model of CSP (line 15), that ensures safety [54, p. 36]. That is, 
an implementation P refines Spec, if, and only if, every behaviour of the implementation is a behaviour permitted by the 
specification. While RoboChart assertions are translated by RoboTool into CSPM refinement assertions, they can also directly 
reference elements of the RoboChart model to facilitate the checking of basic properties, such as deadlock freedom and 
termination [10, p. 3129]. For assertion P1, SpecP1 is the specification and ImplP1 is the implementation. As previously 
discussed in Section 4.1, SpecP1 is stated in terms of a new event e, that is not part of Fig. 8 but useful to specify Property
P1 in terms of the absolute difference between the value of output RPActualHV_out and input RPsetPoint. To facilitate 
verification, process ImplP1, is defined next to relate events e and RPActualHV_out, and RPsetPoint, based on the process 
MappedSystem, previously defined in Listing 5.

System interface for verification of P1. We observe that in SpecP1, the event RPsetPoint is used as an interrupt, which emerges 
naturally in the reactive CSP setting. However, the event RPsetPoint as used so far in the definition of MappedSystem
models readings of a sensor, that can be performed periodically despite no change in the actual value. Therefore, to relate 
SpecP1 and ImplP1, in Listing 7 we define a suitable mapping for the RPsetPoint event. We also capture the relationship 
between the event e and the current value of both the setpoint and the actual high-voltage, as required for the comparison 
with SpecP1.

Moreover, we also explicitly capture three assumptions, that are implicitly required for the verification of P1: (1) the 
24 V power is stable, as reported via the input RPpow24V (2) no error is to be acknowledged via RPerrorAck (3) the HVC 
control software is correctly initialised, that is, RPsetPoint has a value of zero during the first two cycles of State_Machine, 
so as not to trigger an error, and that the value of RPsetPoint changes no more often than once per second. It should be 
noted that this third assumption regarding the frequency of change of RPsetPoint, is more conservative than necessary, as
RPsetPoint is known to never change faster than within 10 seconds from the previous change, as mentioned in Section 3. 
These assumptions together define the normal working behaviour of the HVC, where the State_machine operates within the
ClosedLoop state, during which P1 is required to hold.

Process ImplP1 is defined on line 49 of Listing 7 as the parallel composition of ESystemP1, synchronising on event 
RPsetPoint with Assumption_SetPoint (line 9). The latter captures the first assumption by requiring that initially the 
setpoint is set to zero, with immediate effect, via the use of the EndBy construct of tock-CSP, and where, after 22 millisec-
onds, its value can change arbitrarily, at most once per second, as defined by the process RPChange on line 10. Here 22 ms 
corresponds to at least two cycles of the execution of State_machine, given that for verification we consider each time unit 
as encoding 2 ms, and that cycleTime is instantiated as 10 ms. The process ESystemP1 introduces the event e in the context 
of the system behaviour, as defined by RPSystemP1 on line 19, that captures the other two assumptions and relates the 
RPsetPoint of Fig. 8, a sampled input, with the RPsetPoint of SpecP1, which is used as an interrupt for the purpose of 
specification.

ESystemP1 is defined on lines 43-46 as the parallel composition of RPSystemP1 and two processes Error and Sampler, 
that are also composed in parallel, synchronising on RPsetPoint and RPActualHV_out. The process Error synchronises 
on these events so that it offers to synchronise on event e with a value given by the absolute difference, specified by 
the application of abs_diff on line 35. This follows the definition of Property P1 as presented in Section 3.1. The process 
Sampler ensures that the actual high-voltage, read via RPActualHV_out, and the difference, via e, are updated exactly 
20
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1 timed csp ImplP1 csp-begin
2 channel int_RPsetPoint : core_real
3 abs_diff(x,y) = if (x-y >= 0) then (x - y) else (y - x)
4
5 Timed(OneStep) {
6 -- Assumptions required of the system input and outputs for P1 to hold.
7 Assumption_RPerrorAck = STOP
8 Assumption_RPpow24V = RPpow24V!24 -> STOP
9 Assumption_SetPoint = EndBy(RPsetPoint.0 -> SKIP,0); WAIT(ms(22)); RPChange

10 RPChange = RPsetPoint?x -> WAIT(s(1)); RPChange
11
12 -- Composition of MappedSystem and model of Assumptions 1-2.
13 SystemP1 = (((MappedSystem [| {| RPerrorAck |} |] Assumption_RPerrorAck)\{|RPerrorAck|})
14 [| {| RPpow24V |} |]
15 Assumption_RPpow24V)\{| RPpow24V |}
16
17 -- Subsequent composition with process RPEventMapping that relates the event RPsetPoint
18 -- with an interrupt-driven version, suitable for comparison with SpecP1.
19 RPSystemP1 = (SystemP1[[ RPsetPoint <- int_RPsetPoint ]]
20 [| {|int_RPsetPoint|} |]
21 RPEventMapping(0))\{|int_RPsetPoint|}
22
23 -- RPEventMapping holds the current value of the setpoint, as set via RPsetPoint, and that
24 -- can be obtained via int_RPsetPoint.
25 RPEventMapping(x) = RPsetPoint?nv -> RPEventMapping(nv)
26 []
27 int_RPsetPoint!x -> RPEventMapping(x)
28
29 -- Process that synchronises on RPsetPoint and RPActualHV_out to offer their absolute
30 -- difference via channel e.
31 Error(actualhv,setpoint) = RPsetPoint?x -> Error(actualhv,x)
32 []
33 RPActualHV_out?x -> Error(x,setpoint)
34 []
35 e!abs_diff(actualhv,setpoint) -> Error(actualhv,setpoint)
36
37 -- Process that every time unit requires immediate synchronisation on RPActualHV_out
38 -- followed by e.
39 Sampler = EndBy(RPActualHV_out?x -> e?x -> SKIP,0); WAIT(1); Sampler
40
41 -- Composition of RPSystemP1 and Error and Sampler, that relate the channels:
42 -- RPsetPoint, RPActualHV_out and e.
43 ESystemP1 = (RPSystemP1
44 [| {|RPsetPoint,RPActualHV_out|} |]
45 (Error(0,0) [| {|RPActualHV_out, e|} |] Sampler)
46 )\{|RPActualHV_out|}
47
48 -- Composition of ESystemP1 with the model of Assumption 3.
49 ImplP1 = timed_priority(ESystemP1 [| {|RPsetPoint|} |] Assumption_SetPoint)
50 }
51 csp-end

Listing 7: System interface for verification of SpecP1.

every time unit. This is specified by imposing a deadline of zero time units on the prefixing of RPActualHV_out and e, 
using a deadline, followed by a delay of exactly one time unit. This is a modelling mechanism to ensure that the events 
corresponding to sampled inputs or outputs, namely RPActualHV_out, are updated regularly without introducing erroneous 
Zeno behaviours, that is, to prevent the CSP model from making an infinite number of updates within a finite amount of 
time.

The process RPSystemP1 is defined as a parallel composition (line 19) of the process SystemP1, where the event 
RPsetPoint is renamed to a new event int_RPsetPoint, used in the synchronisation set, with RPEventMapping(0). The 
latter process takes in new values via RPsetPoint, and then offers to synchronise on int_RPsetPoint with the same 
value. The hiding of event int_RPsetPoint makes it possible for SystemP1 to query the setpoint value periodically via 
int_RPsetPoint, rather than directly via RPsetPoint, as required for the comparison with SpecP1. This is a modelling 
mechanism to ensure the event RPsetPoint can be treated in the interrupt style of SpecP1.

Finally, SystemP1, defined on lines 13-15, is the composition of the behaviour established by the co-verification frame-
work, that accounts for the software and hardware modelling, as defined by MappedSystem and processes
Assumption_RPerrorAck and Assumption_RPpow24V that capture the second and third assumption for the purpose of 
verifying Property P1. Here Assumption_RPpow24V (line 8) initially sets the input RPpow24V to the value 24, while 
Assumption_RPerrorAck (line 7) refuses to acknowledge any error via RPerrorAck by behaving as STOP, the process 
that deadlocks. As before, the use of hiding, on lines 13 and 15, completes the abstraction as the events RPerrorAck
and RPpow24V are not relevant for refinement checking of SpecP1. Next, we report on the use of FDR for checking the 
timed assertion P1.

Verification parameters and results. For model-checking with FDR, not only constants of the RoboChart model have to be 
instantiated, but the domain of the data-types must also be defined as discrete finite sets. These are defined in a special 
csp block named Instantiations, reproduced in Listing 8.

Besides, in this block we also give a CSPM definition for all of the functions declared in the RoboChart model. overLimitF
and underLimitF, used by the software operation AdjustLimits, ensure that the result is closed under the type. Since in the 
software model all time units are divisible by 2, the smallest time unit is chosen as encoding 2 milliseconds, thus the 
function ms, halves the argument, and s, encoding seconds, is defined analogously.
21
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1 timed csp Instantiations csp-begin
2 nametype core_nat = { 0..1}
3 nametype core_real = { 0..2}
4 nametype core_int = { 0..1}
5 nametype core_boolean = Bool
6 nametype duty = { 0..100}
7
8 overLimitF(x) = if x > 2 then 2 else x
9 underLimitF(x) = if x < 0 then 0 else x

10
11 ms(t) = t1/2
12 s(t) = t1*1000/2
13 // ...
14 csp-end

Listing 8: Instantiation of data-types as finite sets, and definition of functions used in the RoboChart model, required for 
model-checking with FDR.

1 timed csp SpecP2 csp-begin
2 Timed(OneStep) {
3 SpecP2 = timed_priority(PWM_off)
4
5 -- A duty cycle value can be received via int_dutyCyclePWM1.
6 PWM_Behaviour = mod_sys::int_dutyCyclePWM1.out?x:{x | x <- duty, x > 0} -> PWM_on
7 []
8 mod_sys::int_dutyCyclePWM1.out.0 -> PWM_off
9

10 -- If the duty cycle is 0, then the PWM can also be turned off.
11 PWM_off = PWM_Behaviour [] mod_sys::ext_pow24VStatus.in.Power_Off -> PWM_off
12
13 -- If the duty cycle is currently greater than 0, then if the ext_pow24VStatus goes Off,
14 -- so should the PWM within 10ms.
15 PWM_on =
16 PWM_Behaviour
17 []
18 mod_sys::ext_pow24VStatus.in.Power_Off ->
19 ADeadline({|mod_sys::ext_pow24VStatus.in.Power_Off,mod_sys::int_dutyCyclePWM1.out|},
20 {|mod_sys::int_dutyCyclePWM1.out.0|},ms(10)) ; PWM_off
21 }
22 csp-end
23
24 timed csp mod_sys_pwm associated to mod_sys csp-begin
25 Timed(OneStep) {
26 mod_sys_pwm =
27 timed_priority(
28 mod_sys::O__(0,ms(10),1)
29 |\ {|mod_sys::ext_pow24VStatus.in.Power_Off,mod_sys::int_dutyCyclePWM1.out,tock|})
30 }
31 csp-end
32
33 timed assertion P2 : mod_sys_pwm refines SpecP2 in the traces model // Actual check for P2.

Listing 9: Specification for Property P2 and assertion P2.

The reals are instantiated as the set {0, 1, 2} as this is a realistic representation of the different inputs and outputs, 
namely RPsetPoint, where values from 0, 1 and 2 naturally map to high-voltage values 0, 40 and 80 kV. Recall that, from 
a paint robot application point of view, it is given that once the high-voltage is activated and turned on, it requires values 
larger than 30 kV, i.e., H V _Set Point ∈ 0 ∪ [30 90], kV. Hence by switching between the values 0, 40 and 80 kV, we are able 
to capture all possible qualitative combinations for HV setpoint changes (i.e., charge/discharge as well as increase/decrease 
in setpoint). Based on this, it is observed that the set {0, 1, 2} provides a rich enough representation of the system inputs.

The timed assertion P1 is successfully verified by FDR. On a dual AMD EPYC 7501 32-core machine with 1TiB of RAM, 
it took FDR 2850 s overall to verify that the property holds (1456 s to compile the Labelled Transition System (LTS), and 
1394 s to verify the refinement), having visited 126,481,225 states and 517,333,656 transitions. For comparison, in Table 3, 
we include this result together with those concerning only the verification of software properties, which we address next.

5. Formal verification of software properties

In what follows we discuss the verification of properties P2-P4 of Section 3.1, which concern only the software. Prop-
erty P4 concerning deadlock freedom can be specified directly using the assertion language provided by RoboTool. Properties
P2 and P3, on the other hand, are specified directly in CSPM .

Property P2. Taking into account the RoboChart model, P2 can be restated as requiring that the observation of the input
ext_pow24VStatus with value Power::Off is followed by the output int_dutyCyclePWM1 with value 0. As CSP adopts a reactive 
paradigm, the process SpecP2, specified in Listing 9, is defined in terms of events. It considers the case when the output
int_dutyCyclePWM1 has been set to a value other than zero and subsequently ext_pow24VStatus is observed with value
Power::Off.

The behaviour of SpecP2 is that of PWM_off, defined on line 11 as an external choice over behaving as PWM_Behaviour or 
accepting the event mod_sys::ext_pow24VStatus.in.Power_Off, followed by the recursion on PWM_off. PWM_Behaviour
tracks the changes of the output int_dutyCyclePWM1 by offering a value greater than 0 and then behaving as PWM_on, or, a 
22
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1 timed csp SpecP3 csp-begin
2 Timed(OneStep) {
3 SpecP3 = timed_priority(mSetPoint_zero)
4 mSetPoint = mod_sys::set_mSetPoint?x:{x | x <- core_real, x > 0} -> mSetPoint_non_zero
5 []
6 mod_sys::set_mSetPoint.0 -> mSetPoint_zero
7
8 mSetPoint_zero = mSetPoint [] mod_sys::ext_pow24VStatus.in.Power_Off -> mSetPoint_zero
9

10 mSetPoint_non_zero =
11 mSetPoint_zero
12 []
13 mod_sys::ext_pow24VStatus.in.Power_Off ->
14 ADeadline({|mod_sys::ext_pow24VStatus.in.Power_Off,mod_sys::set_mSetPoint|},
15 {|mod_sys::set_mSetPoint.0|},ms(10)) ; mSetPoint_zero
16 }
17 csp-end
18
19 // Constrained form of mod_sys for P3
20 timed csp mod_sys_setpoint associated to mod_sys csp-begin
21 Timed(OneStep) {
22 mod_sys_setpoint =
23 timed_priority(
24 mod_sys::AS_O__(0,ms(10),1)
25 |\ {|mod_sys::ext_pow24VStatus.in.Power_Off,mod_sys::set_mSetPoint,tock|})
26 }
27 csp-end
28
29 // Actual check for P3
30 timed assertion P3 : mod_sys_setpoint refines SpecP3 in the traces model

Listing 10: Specification for Property P3.

1 //P4: Checks if the model is deadlock free
2 timed assertion P4 : mod_sys is deadlock-free
3
4 // State reachability checks
5 timed assertion Reach_Init : State_machine::Init is reachable in mod_sys
6 timed assertion Reach_Wait24VPower : State_machine::Wait24Vpower is reachable in mod_sys
7 timed assertion Reach_ClosedLoop : State_machine::ClosedLoop is reachable in mod_sys
8 timed assertion Reach_ErrorMode : State_machine::ErrorMode is reachable in mod_sys
9 timed assertion Reach_Watchdog_s0 : Watchdog::s0 is reachable in mod_sys

10 timed assertion Reach_Watchdog_s1 : Watchdog::s1 is reachable in mod_sys

Listing 11: Deadlock freedom and state reachability checks.

value of 0, and then behaving as PWM_off. In PWM_on (lines 15-20) we capture the core of Property P2, where, following 
the event mod_sys::ext_pow24VStatus.in.Power_Off we require mod_sys::int_dutyCyclePWM1.out.0 to be observed 
within 10 milliseconds (matching the cycleTime used by State_machine) using the process ADeadline, after which the 
process behaves as PWM_off again as specified by the sequential composition on line 20.

The assertion for verifying Property P2 is written as the timed assertion P2, on line 33 of Listing 9. It is stated as a 
refinement assertion in the traces model. The process mod_sys_pwm is defined on lines 26-29 by constraining the timed 
semantics of mod_sys and hiding every CSPM event other than those mentioned by SpecP2 (including the implicit tock) 
using the projection operator (|\) so that the comparison is meaningful.

Property P3. The next property, P3, is specified in CSPM by the process SpecP3, defined in Listing 10. The structure is similar 
to SpecP2, and it also uses the event ext_pow24VStatus. Unlike SpecP2, however, the process SpecP3 tracks changes in 
the assignment of values to the shared variable mSetPoint, encoded in the RoboChart semantics via events set_mSetPoint. 
We observe that since mSetPoint is a variable of the software, rather than an output of mod_sys, such an assignment is not 
visible in the semantics of a RoboChart module. Instead, we use a tailored version of the semantics, calculated by RoboTool, 
that supports this type of analysis, in a similar way to how state reachability checks are implemented. The actual check for 
Property P3 is specified by assertion P3, a refinement that considers the process mod_sys_setpoint, a constrained form 
of mod_sys, defined similarly to process mod_sys_pwm in assertion P2.

Property P4. The fourth property requires that the software is deadlock free. This is directly specified using the RoboChart 
assertion is deadlock-free on line 2 of Listing 11.

A timed deadlock manifests when the system refuses to perform any event, but time may pass indefinitely. Its absence is 
checked in FDR in the failures-divergences semantic model of CSP, using a technique inspired by Roscoe [60], that effectively 
checks that no state configuration is reached whereby an infinite amount of time can pass while refusing to perform every 
regular event.

Moreover, as a sanity check, we also verify that all of the states of State_Machine and Watchdog are reachable, using the 
assertions on lines 5 to 10 of Listing 11.

Similarly to the verification of Property P3, for checking reachability, RoboTool uses a tailored version of the semantics 
whereby the entrance of states is visible, as detailed in [10].

Verification results. The results of model-checking are summarised in Table 3. The time elapsed is the sum of the time 
taken to compile and verify the Labelled Transition System (LTS), as calculated by FDR, on a dual AMD EPYC 7501 32-core 
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Table 3
Results of model-checking Properties P1-P4, as well as reachability analysis using FDR.

Assertion Result Elapsed time Complexity

Compilation Verification Total States Transitions

P1 � 1456 s 1394 s 2850 s 126,481,225 517,333,656
P2 � 1456 s 247 s 1703 s 1,460,749 3,855,659
P3 � 1539 s 248 s 1787 s 1,452,829 3,831,246
P4 � 1253 s 334 s 1587 s 1,920,070 5,795,521
Reach_Init � 789 s 1.07 s 790.07 s 3,292 12,455
Reach_Wait24VPower � 789 s 5.51 s 794.51 s 2,229,843 9,672,801
Reach_ClosedLoop � 789 s 11.62 s 800.62 s 8,148,391 35,349,260
Reach_ErrorMode � 789 s 10.38 s 799.38 s 6,756,722 29,260,634
Reach_Watchdog_s0 � 789 s 0.60 s 789.06 s 352 976
Reach_Watchdog_s1 � 789 s 0.80 s 789.08 s 1,420 4,667

machine with 1 TiB of RAM. Complexity is broken down into number of states and transitions visited when verifying the 
assertions. Compilation takes longer than verification as the CSPM automatically generated by RoboTool employs compression 
functions to minimise the LTS. The compression algorithms used by FDR are largely sequential, whereas verification can 
exploit multiple cores efficiently. Verification of P1 is more complex than the verification of software-only properties, due 
to the mechanisation of both the framework and the hardware abstraction.

6. Concluding remarks and future work

Co-simulation, e.g., effectively combining various types of models and simulation tools in order to reach system-level 
results, is a rather well-known and established industrial practice that has received recent attention [61]. This paper advo-
cates extension of the same school of thought and practice into the formal verification domain. Centring the focus around 
the paint robot HVC application, this paper guides the reader through an industrial use-case of co-verification where mod-
elling and verification results from different tools are lifted into a unifying framework, thereby allowing the verification of 
system-level properties.

In our case study, we have used RoboChart for modelling the software, and Simulink for hardware modelling. RoboChart 
models are typically of a higher abstraction level than those used for dynamic simulation. Therefore, abstractly capturing the 
behaviour of low-level software, like that of the HVC, can be challenging, especially for practitioners who are more familiar 
with dynamic simulation. Another aspect of practical concern is finding the right level of abstraction to achieve computa-
tionally tractable results for model-checking. Simulink, on the other hand, is convenient for modelling and simulation of 
dynamics, but is limited in the ability to perform verification. Continuous blocks need to be discretized for use with SDV, 
and, on a more practical level, it is not always clear whether counter-example generation is feasible.

Because of the general form of our approach, we envision that the principle of connecting various hardware and software 
components, coupled via platform mappings, also advocated in [15], could constitute a useful, and pragmatic, basis for use 
with other formal verification tools and techniques. An avenue for future work could include the complete formalisation and 
mechanisation of decomposition patterns using a unifying semantic framework like the UTP [62], that caters for multiple 
paradigms, with support for interactive theorem proving available via Isabelle/UTP [63].

Another possibility for generalisation is based on the observation that the HVC application considered in this paper has 
a rather generic form of a feedback control system and as such, has rather natural and generic properties that are expected 
to be fulfilled. Hence, the co-verification framework and experiences reported on here are also highly relevant for any 
cyber-physical system tracking a setpoint reference.

On a more practical level, we anticipate that the automatic generation of proof models from a declarative notation 
capturing the framework outlined in Fig. 8, namely for model-checking as we do in our case study, could be useful for 
practitioners. Such work could also address the dichotomy between the use of events to represent sampling of inputs, and 
their use as interrupts in the style of CSP, that facilitates the specification of properties like P1. Not surprisingly, this is 
a paradigm shift also seen in the conformance relation between RoboChart and the closely-related simulation language 
RoboSim [21].

The results presented in this paper, extend those provided in [4] by performing verification against an older version of 
the HVC software, which was known to be faulty, e.g., had been observed in practice to generate solutions contradicting 
some of the properties listed in Section 3.1. Our new results revealed that neither Property P2 nor P3 were satisfied. This 
gives credence to our ability to successfully capture the critical behavioural aspects of the HVC. Moreover, as these errors 
went undetected by traditional testing methods in an earlier version of the software, the results in this paper also serve 
as a testimony of the strength and suitability of using formal verification methods for industrial safety critical systems. The 
interested reader is referred to consult [4] for more detailed information about these previous errors.

Related to our motivation in addressing the ongoing industrial trends in robotics, where an increasing number of safety 
features and functions are handled by software, we also acknowledge the emergence of adaptive or learning-based soft-
ware components. The use of machine learning methods, and their inherent opaqueness, presents significant challenges in 
fulfilling certification requirements and obtaining wide-scale market acceptance. To push forward the socio-technical re-
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search frontier drastically and improve current practices of robotic system design, analysis and verification is scope of future 
research.

Related work is ongoing, for example, to provide facilities in RoboChart to capture properties of neural networks at a 
suitable level of abstraction, which could be a useful basis in the future to extend our co-verification approach. In addition, 
for RoboChart models featuring probabilistic junctions [64,65], RoboTool also supports the generation of reactive modules for 
analysis with PRISM [29], which features both probabilistic and statistical model-checking. In the future, we plan to explore 
this avenue for verification, namely for reasoning in the presence of faults and uncertainty.
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