

Norges miljø- og biovitenskapelige universitet Fakultet for veterinærmedisin og biovitenskap Institutt for kjemi, bioteknologi og matvitenskap

Masteroppgave 2015 30 stp

Derivatisering av acylglyserider for MS-analyse, og bestemmelse av relative responsfaktorer (RRF) til fettsyremetyletylestere ved GC-MS

Derivatization of acylglycerides for MS-analysis, and determination of relative response factors (RRF) using GC-MS

Marianne Stokka

Forord

Forord

Denne masteroppgaven ble utført ved Instituttet for kjemi, bioteknologi og matvitenskap (IKBM) ved Norges miljø- og biovitenskaplige universitet (NMBU). Denne oppgaven utgjør 30 studiepoeng og er den avsluttende delen av masterprogrammet sivilingeniør i kjemi og bioteknologi. Oppgaven ble utført våren 2015 i perioden januar til mai, og alt praktisk arbeid i oppgaven ble utført ved IKBM.

Jeg vil gjerne takke min hovedveileder, førsteamanuensis Dag Ekeberg for hjelp med utforming av oppgaven og all støtte og engasjement for oppgaven. Han har alltid hatt døren åpen for å svare på spørsmål og jeg vil gjerne takke for all konstruktiv kritikk og tilbakemelding ved gjennomlesning av oppgaven. Jeg vil også gjerne takke min medveileder Dr. Hanne Marie Devle for god opplæring på laboratoriet og for gode tilbakemeldinger ved gjennomlesning av oppgaven og gode svar på spørsmål. En stor takk til Carl Fredrik Næss-Andresen for gode pedagogiske spørsmål og gjennomlesning av oppgaven. En stor takk vil jeg også sende til min mor Ingrid Stokka for gjennomlesning av oppgaven, og til slutt vil jeg også takke venner og familie for god støtte i denne perioden.

Norges miljø- og biovitenskaplige universitet

Ås, mai 2015

Marianne Stokka

Sammendrag

Sammendrag

I del 1 av denne oppgaven ble det utført en derivatisering av acylglyserid ved hjelp av metyljodid, etyljodid, propyljodid og trimetylklorsilan. Ved utførelsen av derivatisering med jodidderivatiseringsreagens ble løsningen refluksert i 8, 2 og 0.5 timer. Løsningen ble analysert ved infrarød-spektroskopi og direkte innføring på MS. I metoden utviklet for trimetylklorsilan ble acylglyseridet tilsatt et reagensrør sammen med pyridin og trimetylklorsilan. Denne løsningen sto under nitrogenatmosfære i 60-90 min. Løsningen ble analysert ved direkte innføring på MS.

Observasjonene sett i IR- og MS-spekteret til alkylderivatet ga ingen tydelig tegn til at en hadde det derivatiserte acylglyseridet tilstede i prøven en analyserte. Metoden ga indikasjon til at det hadde skjedd noen derivatisering. I MS-spekteret får trimetylklorsilan ble det observert et mulig molekylion. Fragmenteringen en observerte ga også indikasjon til at en hadde molekylion tilstede i prøven, men metoden ga tegn til lavt utbytte av molekylion.

I del 2 av denne oppgaven ble det utført en analyse av an R37 FAME mix. Det ble tilsatt tre internstandarder for å kunne regne ut relativ responsfaktor. Det ble laget 4 prøver med 4 ulike konsentrasjoner av R37 og internstandard. En brukte C7:0, C9:0 og C19:0 som internstandard. Prøvene hadde en konsentrasjon for R37 lik 150 µg/mL, 300 µg/mL, 600 µg/mL og 1200 µg/mL og konsentrasjon for internstandarder lik 5 µg/mL, 10 µg/mL, 25 µg/mL og 50 µg/mL. Prøvene ble analysert ved GC-MS og resultatet ble detektert som et totalt-ione-kormatogram

Det ble regnet ut relativ responsfaktor for alle FAMEs i R37 blandingen. C7:0 ble brukt til å finne RRF til FAME-ne C4:0, C6:0, C8:0, C10:0, C11:0, C12:0 og C13:0. C9:0 ble brukt til å finne RRF til FAME-ne C14:0, C14:1 *Cis* 9, C15:0, C15:1 *Cis* 10, C16:0 og C16:1 *Cis* 9. C19:0 ble brukt til å finne RRF til de resterende komponentene i R37 FAME mix, C17:0-C24:1 Cis 15. RRF intervallene utregnet for de ulike internstandardene for henholdsvis TIC og RIC var, C7:0: 0.69-1.59 og 1.13-5.59, C9:0: 0.77-0.94 og 0.95 -1.67 og C19:0: 0.66-2.17 og 0.70-5.68.

Kromatogrammene for prøvene viser variasjon i arealene detektert. Det var mulig å detektere disse variasjonen i arealene når en regnet ut konsentrasjon på hver FAME og når en regnet ut % avvik av konsentrasjonen i forhold til oppgitt konsentrasjon. Denne variasjonen ble detektert ved utregnet standardavvik.

III

Abstract

In Part 1 a derivatization of acylglycerides was preformed using methyl iodide, ethyl iodide, propyl iodide and trimethylclorosilane. In the method developed the acylglyceride and iodide derivatization regent was refluxed for 8, 2 and 0.5 hours. The solution was analyzed by IR and direct application on MS. In the method developed for trimethylchlorosilane acylglyceridet was added to a test tube together with pyridine and trimethylchlorosilane. This solution stood under nitrogen atmosphere for 60-90 min. The solution was analyzed by direct application on a mass spectroscopy instrument.

The observations seen in IR and MS spectra gave no clear indication that one had the derivatized acylglyseridet present in the analyzed sample. The method gave indication that there had been any derivation. In MS spectrum of trimethylchlorosilane a possible molecular ion was observed. The fragmentation that was observed also gave indications that there was molecular ion present in the sample, but the method gave signs of low yield of molecular.

In Part 2 an analysis of an R37 FAME mix was preformed. Internal standards was added in order to calculate the relative response factor. 4 samples was made with 4 different concentrations of R37 and internal standard. C7:0, C9:0 and C19:0 was used as internal standard. The samples had a concentration of R37 equals 150 mg/mL, 300 mg/mL, 600 mg/mL and 1200 mg/mL and concentration of the internal standards equal to 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL. The samples were analyzed by GC-MS and the result was detected as a total ion chromatogram.

Relative response factors was calculated for all FAMEs in R37 mixture. C7:0 was used to find RRF to FAMEs C4:0, C6:0, C8:0, C10:0, C11:0, C12:0 and C13:0. C9:0 was used to find RRF to FAMEs C14:0, C14:1 Cis 9, C15:0, C15:1 cis 10, C16:0 and C16:1 Cis 9. C19:0 was used to find RRF to the remaining FAMEs in R37 mixture, C17:0-C24:1 Cis 15. The calculated intervals for RRF for the various internal standards respectively TIC and RIC was, C7:0: 0.69 to 1.59 and from 1.13 to 5.59, C9:0: 0.77 to 0.94 and 0.95 -1.67 and C19:0: 0.66 to 2.17 and from 0.70 to 5.68 .

Chromatograms for the samples show variety in areas detected. It was possible to detect these variations when the concentration of each FAME was calculated and when a % deviation of the concentration was calculated, the variation was detected by computed standard deviation

IV

Innhold

Forord	II
Sammendrag	III
Abstract	IV
1. Innledning	7
1.1. Hensikt	7
2. Teori	8
2.1. Acylglyserid	
2.2. Derivatisering	8
2.2.1. FAME	9
2.2.2. Silylering	10
2.3. Gasskromatografi	10
2.4. Massespektrometri	14
Ionekilde	14
Massefilter	15
Detektor	17
2.5. Infrarød-spektroskopi	
2.6. SN2-reaksjon	
2.7. Responsfaktor og relativ responsfaktor	
3. Materialer og metoder	21
3.1. Del 1 Derivatiserig	21
3.1.1. Materialer	21
3.1.2. Metoder	24
3.2. Del 2 Relativ responsfaktor	
3.2.1. Materialer	
3.2.2. Metoder	27
4. Resultater	
4.1. Del 1 Derivatisering	
Etyljodid	
TMCS	
4.2. Del 2 Relativ responsfaktor	41
5. Diskusjon	
5.1. Del 1 Derivatisering	

I	Etylderivat4	19
]	Γrimetylsilanderivat5	51
5.2	. Del 2 Relativ responsfaktor	52
6. H	Konklusjon5	55
6.1	. Del 1 Derivatisering	55
I	Etylderivat5	55
]	Frimetylsilanderivat5	55
6.2	. Del 2 Relativ Responsfaktor	56
7. V	Videre arbeid5	57
Del	1 1. Derivatisering	57
J	Jodidreagenser5	57
]	ГMCS reagens5	57
Del	1 2 Relativ responsfaktor5	57
8. H	Referanser5	58
9. V	Vedlegg	50

Innledning

1. Innledning

Glyserider kan være utfordrende å analysere på en GC, da disse ofte har et høyt kokepunkt som gjør at de har vanskeligere for å være i gassfase. For bedre å kunne analysere glyserider er derivatisering et alternativ. Ved derivatisereing vil de ikke danne hydrogenbindinger og en vil få en vesentlig mindre grad av adsorpsjonsproblemer.

I del 1 av denne oppgaven er har jeg undersøkt muligheten for å derivatisere acylglyserider ved hjelp av metyljodid, etyljodid, propyljodid og trimetylklorsilan (TMCS). Teorien som ligger til grunn for denne metoden er at en skal, ved hjelp av en SN2-reaksjon, klare å feste acylglyseridet til alkylderivatet eller TMCS. Dette vil endre på de kjemiske og fysiske egenskapene til glyseridet. TMCS derivat vil være det mest gunstige å bruke, og vil gi den beste flyktigheten til stoffet, men alkylderivatene vil også gi en god flyktighet. Ved å gjøre glyseridet mer flyktig vil det være mulig å identifisere og kvantifisere på GC.

1.1. Hensikt

Hensikten med denne oppgaven er å utvikle en metode som gjør det mulig å analysere intakte monoacyl- og diacylglyserider. En har et ønske om å kunne bruke denne metoden til å finne ut hvilke monoacyl- og diacylglyserider en har ved fordøyelsen av triacylglyserider. En ønsker også å kunne finne ut hvor fettsyregruppen er festet til glyserolstammen.

Hensikten med å finne relativ responsfaktor er at en ønsker å kunne bruke dem til kvantitativ analyse. En ønsker å kunne bruke de relative responsfaktorene en kommer frem til i denne oppgaven til andre analyser som blir foretatt ved et senere tidspunkt.

- 2. Teori
- 2.1. Acylglyserid

Figur 1 En illustrasjon av hvordan et acylglyserid er bygget opp. Det er bygget opp av en glyserolstamme. Denne stammen vil ha 3 ulike R-grupper bundet til seg. Disse R-gruppene kan være fettsyrer, eller et hydrogen. [1]

Over 99% av fettsyrer som en finner i planter og dyr er bundet til glyserol med en esterbinding. En finner fett og oljer i form av triglyserid, men en finner også acylglyserid i form av monoacyl- og diacylglyserider. Den mest vanlige av disse er triacylglyserider. [2] Et triacylglyserid vil se ut som figur 1 hvor hver av R-gruppene er en fettsyre. Disse kan være like eller ulike, og vil da danne ulike triglyserider. Monoacyl og diacylglyserider har henholdsvis en og to fettsyrekjeder på glyserolstammen. Fettsyrekjedene kan være både mettede eller umettede og vil danne ulike former for fett og oljer. [3]

Acylglycerider er ofte navngitt etter fettsyresammensetning. Om kjedene er samme fettsyre, navngis glyseridet etter denne fettsyren og vil ha endelsen -in, som for eksempel tristearin. Acylglyserider som består av ulike fettsyrekjeder navngis også etter fettsyrene den består av men vil ha endelsen –oyl. Et acylglyserol som består av disse tre fettsyrene stearinsyre, palmitinsyre og oleinsyre vil hete stearoyl-palmitoyl-oleoyl-glyserol. [2]

2.2. Derivatisering

Derivatisering er en metode som er mye brukt i kjemiske, biokjemiske og rettsmedisinske laboratorium. Derivatisering er en metode en bruker for å forandre på de kjemiske og fysikalske egenskapene til et stoff. Derivatet som dannes vil ha andre egenskaper som vil være gunstige for analysemetoden. Dette kan være egenskaper som flyktighet, løselighet og fordampningstemperatur. For GC-analyse er det først og fremst flyktigheten en ønsker å forbedre. Ved å endre på flyktigheten vil det være mulig å analysere stoffer på GC og MS som en tidligere ikke har kunnet. Med utviklingen av ulike derivatiseringsmetoder kan en nå ta i bruk den særdeles effektive analysemetoden GC-MS på stoffer som acylglyserider og fettsyrer. [4]

Flyktighet til et stoff påvirkes blant annet av muligheten for å danne hydrogenbindinger og de funksjonelle gruppene OH, NH og SH er eksempler som kan gi stor grad av hydrogenbindinger. Det kan dannes intermolekylære bindinger mellom et hydrogen og et annet molekyl i løsningen, dette kan skape flyktighetsproblemer spesielt i små molekyler. Det kan også dannes hydrogenbindinger til kolonneveggen, og dette vil skape adsorpsjonsproblemer. For å endre på flyktigheten til stoffer med slike grupper, kan en utføre en derivatisering. Da vil en bytte ut hydrogenet i disse gruppene med en annen gruppe som gjør at hele stoffet blir mer flyktig. Et diacylglyserid har en OH-gruppe festet til glyserolkjeden. Ved derivatisering av et slikt molekyl vil en fjerne hydrogenet og feste på en gruppe som gjør hele diacylglyseridet mer flyktig. Derivatisering kan også brukes til å gjøre et stoff mindre flyktig, dette gjøres i tilfeller hvor molekylet en ønsker å analysere har for stor flyktighet. Derivatisering gjør det også mulig å analysere fettsyrer på GC. Ved derivatisering av fettsyrer endrer en på polariteten og kokepunktet. En endrer polariteten ved å endre på den polare syregruppen. Når en skal analysere fettsyrer er det vanlig å derivatisere dem og analysere dem som FAMEs. [4, 5]

2.2.1. FAME

Fettsyre-metyl-estere, FAMEs, er fettsyrer som er derivatisert. En slik derivatisering kan skje ved å foreta en omestring av fettsyrene i et glyserid til andre estere. En slik omestring kan skje ved en base-katalysert eller syre-katalysert reaksjon. En base-katalysert reaksjon er en rask og effektiv måte å omestre triacylglyserider på. [6] I en omestring kan en bruke natriummetanolat til å omestre en fettsyre. Natrium vil fungere som en katalysator for å få reaksjonen til å skje fortere. Når en utfører en omestring av en fettsyre vil dette føre til at en får et nytt molekyl som vil ha lettere for å komme over i gassfase og vil da være kompatibel med GC-analyse. [7]

Den mest vanlige analysemetoden for FAMEs er med gasskromatografi med flammeionisasjonsdetektor, GC-FID. Men på grunn av en økt sensitivitet og selektivitet har

9

en benyttet et massespektrometer som detektor istedenfor en FID. [8]

2.2.2. Silylering

Silylering er et begrep som brukes når en legger til en silylgruppe til et molekyl. Dette skjer ofte ved substituering av et hydrogen. Ved å legge til en silylgruppe til et molekyl som skal analyseres på GC, vil nøyaktigheten av analysen forbedres ved å forbedre oppløsningen og symmetrien til toppene. Blant annet viste Vandenheuvel og Horning, ved analyse av silylderivater av estrone og estradiol, at en har bedre separasjon og mindre «tailing» enn det ikke-derivertiserte molekylet. Silylerte molekyler kan en for eksempel analysere ved GC og tynnsjiktskromatografi. [9]

I 1956 ble det første forsøket på å silylere et sukker utført av Schwarz, Baronetzky og Schöller og Henglein. Etter forsøket i 1956 ble det utviklet en enkel teknikk for derivarisering av sukker. Denne teknikken ble utviklet av Sweeley, Bentley, Makita og Wells [10]. De derivatiserte over 100 sukkermolekyler ved bruk av heksametyldisilasan (HMDS) og trimetylklorsilan (TMCS) i pyridine og analyserte sukkermolekylene på GC. Denne teknikken ble publisert og er blitt mye brukt til å utvikle silysleringsmetoder for andre grupper, og er blant annet brukt i denne oppgaven. [9]

2.3. Gasskromatografi

Kromatografi er en analysemetode som brukes til å separere ulike komponenter i en løsning. Kromatografi baserer seg på teorien om at ulike komponenter vil bevege seg gjennom en kolonne med ulik hastighet, og av den grunn separeres. Det finnes flere ulike metoder en kan bruke for å separere ulike komponenter i en løsning. Eksempler på dette er tynnsjiktskromatografi og væskekromatografi, men det kommer til å være gasskromatografi som er fokuset i dette kapittelet. [11]

I et GC-instrument har en et kapillærrør. Dette er et tynt, langt rør med en mobil og en stasjonær fase. Den stasjonære fasen vil være på innsiden av kapillærrøret og den mobile fasen, som i en GC er en gass, vil bevege seg gjennom kolonnen. [11]

De mest brukte og populære mobile fasene er helium, hydrogen og nitrogen, men en kan også bruke argon og karbondioksid. Gassen en velger som mobilfase må være inert og ren. Det at gassen skal være inert vil si at den ikke må reagere med prøven en appliserer på instrumentet.

10

Valg av mobilfase baseres på hvor inert bæregassen er i forhold til prøven, og ut i fra effektiviteten til gassen. Helium er den mest brukte mobile fasen siden den er kompatibel med de fleste detektorer. Helium er også ofte brukt på grunn av sin høye effektivitet ved høye hastigheter, dette kan en se ut i fra van Deemters plot som er vist i figur 2. Ulempen med å bruke helium er at dette er en dyr gass. Dette har ført til at hydrogen har blitt mer populær å bruke. Hydrogen er en billig gass og den vil gi god seperasjon, men hydrogen er en eksplosiv gass og det må tas ekstra sikkerhetshensyn ved bruk av denne. Nitrogen blir ofte brukt sammen med flammeionisasjonsdetektor, FID, siden denne gassen har en høyere sensitivitet med en FID detektor enn helium. [11]

Figur 2. Grafen viser van Deemters plot. En har platehøyde på y-aksen og lineærhastighet på x-aksen. Grafen viser hvordan de tre ulike bæregassene N_2 , He og H_2 fungerer som mobilfase. Ved lave og høye hastigheter vil bæregassene ha mindre effektivitet. [12]

I et GC-instrument brukes det kapillærkolonner. Det er ulike typer kapillærkolonner en kan velge mellom; «wall coated open tubular» (WCOT), «support coated open tubular» (SCOT), «porous layer open tubular» (PLOT). Det som skiller disse ulike typene kolonner fra hverandre er den stasjonære fasen. I WCOT-kolonner er den stasjonære fasen en væskefilm på innsiden av røret. SCOT-kolonner har en stasjonærfase som er sammensatt at to deler, en fastfase og en væskefase på innsiden av røret. PLOT-kolonner har en fastfase på innsiden av røret. Disse tre ulike kolonnevariantene er illustrert i figur 3. [11]

Figur 3: Illustrerer snitt av de tre kolonnevariantene. En kan se de tre ulike typene stasjonærfaser. WCOT har en væskefilm på innsiden av røret, SCOT har en væskefase og en fastfase som stasjonærfase og PLOT har en fastfase på innsiden av røret.

Alle disse tre variantene av kolonner er en form for «open-tubular», OT, kolonner. Slike OTkolonner har ofte silikapartikler på kolonneveggen. Silikapartikler er ofte brukt på grunn av deres inerte egenskaper. WCOT er den mest brukte kolonne-varianten. Denne type kolonne har et lavt trykk sammenlignet med pakkede kolonner og har en liten stasjonærfase. Det finnes også en type kalt «mega-bore» WCOT-kolonne. Denne kolonnen har en større diameter enn den vanlige WCOT kolonnen, og er ofte brukt til prøver som har lavt kokepunkt. Denne kolonnen vil kunne romme mer prøvemateriale enn en vanlig WCOT kolonne, og brukes ofte istedenfor SCOT kolonner siden den er mer stabil og lettere å bruke. PLOT-kolonner brukes ofte for permanente gasser. [11]

En kan også ha pakkede kolonner. Pakkede kolonner har små partikler som den stasjonære fasen er dekket med. Disse kolonnene gir som regel lavere oppløsning enn kapillærkolonner. Slike kolonner er for det meste brukt til preperative analyser i GC. [11]

Mikrosprøyter brukes til å applisere en prøve på et GC-instrument. Dette kan enten skje manuelt, eller av en autosampler, en maskin som tar ut noen mikroliter med prøve og appliserer den på instrumentet. Prøven kan appliseres som en gass, men også som en væske. Om prøven er i væskeform vil denne injiseres og raskt fordampe. En har tre ulike injiseringsmetoder; Splitt-, splitless- og direkte-på-kolonnen (on coloumn)-injisering. Splittinjisering vil si at prøven som blir applisert på instrumentet vil splittes. Hele prøven vil derfor ikke bli ført inn på kapillærkolonnen. Kun 0,1-10% av prøven vil gå inn på kolonnen

mens resten vil føres til avfall. I splittless-injeksjon vil alt prøvemateriale gå inn på kolonnen. Det samme gjelder for direkte-på-kolonnen-injeksjon, men her vil en injisere direkte på kolonnen, og ikke inn i en injektor eller for-kolonne. Disse metodene har ulike bruksområder. Kapillærkolonner kan ikke romme store prøvemengder og splitt brukes derfor ofte sammen med slike kolonner. Splitt brukes i tillegg ofte når en har en skitten prøve siden hele prøvevolumet ikke går inn på kolonnen. En velger ofte en splittless-injeksjon når en skal foreta en sporanalyse. I slike analyser har en ofte ikke mye prøvemateriale, og bruk av splittinjeksjon vil derfor ikke være gunstig. En splittless-injeksjon vil kunne gi høyere sensitivitet da et større volum av prøven blir ført inn på kolonnen, men denne metoden er tidkrevende siden en må starte med en kald kolonne. Ved direkte-på-kolonnen-injeksjon vil prøven appliseres i et kaldt inlet-kammer eller direkte på en kald kolonne. Prøven blir så varmet opp og ført over i gassfase, denne injeksjonsmetoden kan minimere båndspredning og er som splittless-injeksjon god til sporanalyser. [11]

Det finnes flere ulike detektorer en kan bruke sammen med et GC-instrument. I denne oppgaven har en blant annet brukt den populære metoden massespektrometri. Men en har også andre populære detektorer en kan bruke. Flamme-ionisasjons-detektor, FID, er en av de mest populære å bruke. [11]

Et kromatogram er signalet som blir sendt til en datamaskin etter seperasjon og analysen er fullført. Dette signalet blir oversatt av en datamaskin til et kromatogram som kan tolkes. Et slikt kromatogram er i de fleste tilfeller presentert som totalt-ione-kromatogram (total ion chromatogram, TIC). I et TIC-spekter vil alle ionene detekteres, i motsetning til et rekonstruert-ione-kromatogram, RIC, spekter. Et eksempel på et TIC-spekter kan sees i figur 20. [11]

Ved å bruke RIC kan en fjerne noe av bakgrunnsstøyen som finnes i et kromatogram. En kan velge ut ioner en ønsker å se i spekteret. For å finne relativ responsfaktor har en brukt utvalgte ioner presentert i tabell 9. Disse ionene er valgt for å representere de ulike FAMEs basert på massespekteret til hver av toppene. [13]

13

2.4. Massespektrometri

Massespektrometri, MS, er en særdeles god analysemetode brukt innen kjemi. Den har god sensitivitet, lav deteksjonsgrense og det er en rask metode. Et massespektrometer er et instrument som kan brukes til å ionisere og finne massen til en forbindelse. Resultatet en får fra en analyse på MS vil gi et massespekter. Dette spekteret kan en bruke til å finne struktur til en forbindelse. Et massespektrometer består av flere komponenter. En ionekilde, et massefilter og en detektor. Et MS-instrument kan ha ulike ionekilder, massefilter og detektorer. I denne oppgaven er det brukt EI ionekilde, EBE massefilter og elektronmultiplikator som detektor. [13]

Ionekilde

Figur 4. Oversikt over de ulike komponentene i en elektronionisasjons kilde. Et varmt filament, katode, vil sende ut en elektronstrøm. Det er satt på en elektronspenning som vil gi elektronene en energimengde på 70 eV. Elektronene vil bevege seg mot anoden i andre anden av ionekilden. En repeller vil være plassert inne i ionekilden. Ionene vil bli skjøvet ut av ionekilden av repelleren. Akselerasjonsspenning på 8000 V vil øke hastigheten av ionene inn til massefilteret.

En EI ionekilde fører ofte til mye fragmentering og molekylionet dukker av den grunn ikke alltid opp i spekteret. Om en ønsker mindre fragmentering kan en bruke en kjemisk ionekilde, CI. Prøven en ønsker å analysere kan komme fra en GC og inn i ionekilden. Om en væskeprøve blir direkte applisert på MS-instrumentet, vil denne bli oppvarmet for å øke fordampningstrykket før prøven føres inn i EI ionekilden i gassfase. Inne i en EI ionekilde vil en ha et varmt filament, dette kan sees i figur 4. Dette filamentet vil sende ut elektroner som vil bevege seg gjennom ionekilden i en elektronstrøm mot en anode i andre enden av kilden. Denne elektronstrømmen vil ha en heliks formet bane gjennom kilden for å lettere kunne treffe molekylene. Inne i ionekilden vil prøven, i form av gassmolekyler, bli bombardert av

elektroner fra filamentet. Et elektron inne i ionekilden vil ha et energinivå på 70eV. Når et slik elektron treffer et molekyl inne i kilden vil molekylet miste et elektron og bli ionisert. Dette vil skje gjennom reaksjonen beskrevet i ligning 1 [13]

$$M + e \rightarrow M + \bullet + 2e \rightarrow (Ligning 1)$$

Det er nå blitt dannet et molekylion. Dette molekylionet kan enda ha en del energi som kan føre til videre fragmentering til mindre ioner. Etter fragmentering vil ioner bli sendt ut av kilden ved hjelp av en repeller. Utenfor kilden vil det være en akselerasjonsspenning på 8000 V, denne vil øke hastigheten på ionene og føre dem videre inn i massefilteret. [13]

Massefilter

I et massefilter vil ioner bli separert basert på masse/ladning (m/z) forhold. De ulike massefiltrene har forskjellige fordeler og ulemper. Det finnes flere ulike massefiltrer en kan bruke. I denne oppgaven er MS-instrumentet satt opp med EBE-geometri. EBE betyr at massefilteret er satt sammen av to elektrostatiske filtre og en magnet. Alle massefiltrer har en form for elektrisk eller magnetisk felt som de utnytter på ulike måter for å oppnå seperasjon av ioner. I både en elektrostastisk og en magnetisk analysator vil et ion ha den kinetiske energien E_k . [13]

$$E_k = \frac{mv^2}{2} = qV_s$$

(Ligning 2)

Hvor m er massen til elektroner, v er farten til ioner, q er ladningen og V_s er akselerasjonsspenningen.

Elektrostatisk analysator

I en elektrostatisk analysator, E, er det to plater som har motsatt ladning av hverandre. Disse to ladningene vil danne et elektrisk felt. Et ion vil komme fra en ionekilde med den kinetiske

energien E_k inn i massefilteret og bli påvirket av dette elektriske feltet. Ionet vil ha ladning q og masse m. Ionet vil bevege seg gjennom det elektriske feltet når den elektrostatiske kraften er lik sentrifugalkraften. [13]

$$qE = \frac{mv^2}{r}$$
 (Ligning 3)

Om en setter sammen ligning 2 og 3 vil en få en ny ligning, ligning 4.

$$r = \frac{2V}{E}$$
 (Ligning 4)

Hvor r er radius til den sirkulære banen til ionet, V er akselerasjonsspenningen og E er det elektrostatiske feltet.

En elektrostatisk analysator tar ikke hensyn til masse, slik at dette massefilteret er ikke en masseanalysator. En elektrostatisk analysator tar hensyn til kinetisk energi. Når ionet beveger seg gjennom en elektrostatisk analysator vil de ikke bli separert basert på masse og ladning, men med hensyn på den kinetiske energien. Dette vil si at en elektrostatisk analysator er en kinetisk energi analysator. [13]

Magnetisk analysator

I en magnet har vi et magnetfelt, B. I et slikt magnetfelt vil ionene bli separert med hensyn på ionets moment (mv). Når ionene fra ionekilden beveger seg inn i massefilteret vil disse bli påvirket av en magnetisk kraft (F_m) hvor ionene vil ha ladning q og hastighet v. [13]

 $F_m = qvB$

(Ligning 5)

I et magnetfelt vil ionene bli avbøyd og ha en sirkulær bane. Denne banen vil ha en radius, r, og vil bevege seg gjennom massefilteret slik at den magnetiske kraften vil være lik sentrifugalkraften. [13]

$$qvB = \frac{mv2}{r}$$
 (Ligning 6)

Ionene i en magnetisk analysator vil separere ioner basert på deres momentum (mv) som kan sees i ligning 6, men en kan også separere ioner basert på m/z i en slik analysator. Om en ser på ligning 1 kan denne skrives om slik at en får ligning 7. [13]

$$mv^2 = 2qV_s$$
 (Ligning 7)

Om en setter sammen ligning 6 og 7 vil en kunne få ligning 8

$$\frac{m}{z} = \frac{r^{2B2}}{2Vs}$$
(Ligning 8)

Her kan en se at en magnetisk analysator kan detektere ioner basert på m/z verdi. Det er vanlig å kombinere en elektrisk analysator og en magnet i et dobbeltfokuserende instrument. [13]

Detektor

I likhet med massefilter og ionekilde finnes det flere mulige detektorer, f.eks. elektronmultiplikator og foto-multiplikator.

Ionene fra massefilteret vil bli sendt inn i elektronmultiplikatoren. De vil treffe en vegg, også kalt dinode, i detektoren. Ionet omdannes til et elektron. Dette elektronet vil treffe en ny dinode og det vil bli dannet 3 elektroner. Disse 3 elektronene vil bli dratt mot en ny dinode, når de kolliderer med denne vil de dannes 9 elektroner. Slik vil det fortsette helt til enden av

elektronmultiplikatoren. I enden av multiplikatoren vil elektronene detekteres og et signal vil bli sendt til en datamaskin som vil oversette signalet til et massespekter som kan tolkes. [13]

2.5. Infrarød-spektroskopi

Dette er en analysemetode som er mye brukt til å analysere kjemiske forbindelser, spesielt innen feltet organisk kiemi. Det er i område 625 cm⁻¹ og 4000 cm⁻¹ en finner organiske forbindelser i et IR-spekter. Ved infrarødt-spektroskopi vil bindingene i forbindelsene en ønsker å analysere vibrere. Båndene til de ulike funksjonelle gruppene vil vibrere ved en gitt frekvens. De vibrerende gruppene vil ta opp infrarød stråling ved samme frekvens som de vibrerer, og en vil kunne detektere absorpsjonsbånd. Instrumentet vil sende et signal til en datamaskin som vil oversette det til et infrarødt spekter. IR er en mye brukt metode på grunn av den karakteristiske vibreringen de ulike funksjonelle gruppene har. Dette gjør det lett å kunne se de ulike funksjonelle gruppene til et molekyl i et IR-spekter. Et molekyl som blir analysert ved IR vil vibrere, hver funksjonell gruppe vil ha en spesifikk vibrasjon som en kan gjenkjenne i et IR-spekter. Alle båndene i et molekylet vil gi molekylet en spesifikk vibrasjon. De funksjonelle gruppene vil vises i et IR-spekter over 1500cm⁻¹. Området under 1500 cm⁻¹ er fingeravtrykkregionen. Utslag i denne delen vil være vibrasjonene til hele molekylet og vil da være individuelt for hvert molekyl. IR kan brukes til å se hvilke funksjonelle grupper en har i en prøve med ukjent innhold. I denne oppgaven ser en etter OH-grupper, disse vil gi utslag i et IR-spekter ved 3500 cm⁻¹. [14]

2.6. SN2-reaksjon

En SN2-reaksjon er en reaksjon som i motsetning til en SN1-reaksjon skjer i ett steg. I en slik reaksjon vil en nukleofil angripe et substrat, se figur 5. Dette vil føre til en reaksjon hvor nukleofilen vil binde seg til substratet. Det vil oppstå en overgangsfase, dette regnes ikke som et eget steg i reaksjonen. I denne overgangsfasen vil både nukleofilen og avspaltningsgruppen være bundet til substratet, men denne overgangsfase er en midlertidig tilstand og vil raskt avvikles. En vil få dannet et produkt og avspaltningsgruppen har forlatt substratet. [3]

18

Figur 5: Reaksjonen viser en SN2-reaksjon mellom et diacylglyserid og etyljodid. Denne illustrasjonen vil gjelde for alle derivatiseringsreagensene. Substratet vil bli angrepet av et negativt acylglyserid, en nuklofil. Det vil dannes en overgansfase før en vil få dannet et produkt og avspaltningsgruppen jod vil ha en negativ ladning.

Det er to grupper som er involvert i reaksjonen, nukleofilen som angriper og substratet som blir angrepet. En kan også se at strukturen til reaksjonen blir invertert etter at reaksjonen er fullført. Dette er et resultat av måten nuklofilen angriper substratet på. Nukleofilen vil ikke overta plassen til avspaltningsgruppen, men vil binde seg til karbonatomet på omvendt side av avspaltningsgruppen. [3]

I en derivatiseringsreaksjon mellom et acylglyserid og en jodidreagens vil det skje en SN2reaksjon. Teorien bak derivatisering med jodid er at karbon og jodid er svakt kovalent bundet til hverandre. Karbon-jod bindingen er svakere bundet sammen enn karbon-hydrogen bindingen, og det vil av den grunn være enkelt å bryte denne bindingen. I en SN2-reaksjon mellom et diacylglyserid, og etyljodid vil diacylglyseridet være den angripende nuklofilen, og etyljodid være substratet som blir angrepet i reaksjonen. Diacylglyseridet vil ha mistet et hydrogen atom og derfor være negativ. Etyljodid blir angrepet, og det vil oppstå en overgangsfase. I denne tilstanden vil det karbonatomet som er bundet til jodid også være bundet til en metylgruppe, to hydrogen og diacylglyseridet samtidig, dette er illustrert i figur 5. Denne tilstanden vil avvikles og jodid vil forlate molekylet. Ved enden av denne reaksjonen har en da fått diacylglyserid bundet til etyl og et negativt jodid. Hvordan denne SN2-reaksjonen foregår er illustrert i figur 5. [15]

En måte å kunne se om en SN2-reaksjon er gunstig er å se på hvor basisk et atom er. Et atom vil være mindre basisk jo høyere elektronegativitet og større diameter et atomet har. En svak base vil være en god avspaltningsgruppe. Jodid er en svak base, og er derfor en god avspaltningsgruppe. [16]

2.7. Responsfaktor og relativ responsfaktor

Responsfaktor er definert som forholdet mellom konsentrasjonen av et stoff som blir analysert og responsen som blir detektert av dette stoffet i analysen. Responsfaktor uttrykker sensitiviteten til en detektor for en gitt løsning i forhold til en standard løsning. [17]

Responsfaktor kan en matematisk finne ved hjelp av ligning 9.

 $Respons faktor = \frac{Areal \ av \ topp}{Konsentrasjon \ av \ toppen}$

(Ligning 9)

Responsfaktor henger ofte sammen med relativ responsfaktor (RRF), da relative responsfaktor ofte regnes ut ved hjelp av responsfaktor. I en kvantitativ analyse er det vanlig å bruke RRF og en intern standard for å eliminere variasjon av responsfaktor. Relativ responsfaktor er instrumentet sin respons på analytt sammenlignet med en internstandard. Relativ responsfaktor kan en bestemme ved å analysere standarder og er brukt til å kalkulere konsentrasjon av analytt i prøven. [18]

En kan matematisk kalkulere RRF ved hjelp av ligning 10. Her brukes responsfaktor for å regne ut RRF.

 $RRF = \frac{Respons \ faktor \ til \ en \ tilsatt \ standard}{Respons \ faktor \ til \ analytt}$

(Ligning 10)

Ved å regne ut relativ responsfaktor kan en kompensere for ulikheter som blant annet kan skje ved manuell injisering av prøve på et GC-instrument. Om en tilsetter en standard til prøvene en injiserer, vil disse også bli påvirket av injiseringsulikhetene og arealet i kromatogrammet vil bli påvirket. En standard som en tilsetter vil være av kjent volum og konsentrasjon og kan derfor brukes til å justere resultatet til analytten.

3. Materialer og metoder

3.1. Del 1 Derivatiserig

3.1.1. Materialer

Derivatiseringsreagenser

I denne oppgaven ble det brukt ulike derivatiseringsreagenser. Disse vil bli presentert i hvert sitt underpunkt.

Metyljodid

Figur 6: Figuren viser struktur til metyljodid. En metylgruppe vil være kovalent bundet til jodid.

Metyljodid er et flyktig stoff med den kjemiske formelen CH₃I. Forbindelsen er en fargeløs og flyktig ved normal temperatur og trykk. [19]

Tabell 1: Viser kjemisk og fysisk informasjon om metyljodid [19]

IUPAC navn	Iodomethane
Molekylvekt	141,93899 g/mol
Molekylformel	CH ₃ I
Eksakt masse	141,927948 g/mol
Farge	Fargeløs, brun ved lys eksponering
Lukt	Eterlignende lukt
Kokepunkt	42,5 °C
Smeltepunkt	-66,5 °C

Etyljodid

Etyljodid har den kjemiske formelen C₂H₅I og er en brennbar og fargeløs løsning. [20, 21]

Tabell 2: Vise	r kjemisk	og fysisk ir	nformasjon	om etyljodid.	[21]
----------------	-----------	--------------	------------	---------------	------

IUPAC navn	Iodoethane
Molekylvekt	155,96557 g/mol
Molekylformel	C ₂ H ₅ I
Eksakt masse	155,943598 g/mol
Farge	Fargeløs, mørk ved lys eksponering
Lukt	Karakteristisk lukt
Kokepunkt	72 °C
Smeltepunkt	-108 °C

Propyljodid

Figur 8: Denne figuren viser struktur til propyljodid. Jodid vil være kovalent bundet til jodid.

Propyljodid er en fargeløs og brennbar løsning med kjemisk formel C₃H₇I. [22]

Tabell 3: Viser kjemisk og fysisk informasjon om propyljodid. [22, 23]

IUPAC navn	1-iodopropane
Molekylvekt	169,99215 g/mol
Molekylformel	C ₃ H ₇ I
Eksakt masse	169,959248 g/mol
Farge	Fargeløs
Kokepunkt	101,6 °C
Smeltepunkt	-101,40 °C

Materialer og Metoder

Trimetylklorsilan

Trimetylklorsilan også kalt trimetylsilylklorid er en fargeløs og flyktig løsning som har den kjemiske formelen (CH3)3SiCl. [24]

Tabell 4: Viser kjemisk og fysisk informasjon om trimetylklorsilan. [25]

IUPAC navn	Chloro(trimethyl)silane
Molekylvekt	108,64206 g/mol
Molekylformel	C ₃ H ₉ ClSi
Eksakt masse	108,016205 g/mol
Farge	Fargeløs
Lukt	Saltsyrelignende lukt, skarp
Kokepunkt	57 °C
Smeltepunkt	-58 °C

Løsninger

Navn	Summeformel	Kvalitet	Cas-nr	Produsent
Metanol	CH ₃ OH	CHROMASOLV®	67-56-1	Sigma Aldrich
		For HPLC		
		≥99.9%		
Heksan	$C_{6}H_{14}$	CHROMASOLV®	110-54-3	Sigma Aldrich
		For HPLC		
		≥97.0% (GC)		
Pyridine	C5H5N	99.8%	110-86-1	Sigma Aldrich
Metyljodid	CH ₃ I	≥99.0% (GC)	74-88-4	Sigma Aldrich
Etyljodid	C_2H_5I	ReagentPlus®	75-03-6	Sigma Aldrich
		99%		
Propyljodid	C ₃ H ₇ I	99%	107-08-4	Sigma Aldrich
Trimetylklorsilan	C ₃ H ₉ SiCl	≥99.0% (GC)	75-77-4	Sigma Aldrich
Dicaprin	$C_{23}H_{44}O_5$	99%		Larodan
(Didecanoin)				

Tabell 5. Løsninger som er brukt i Del 1 Derivatisering. Tabellen sier noe om navnet til løsningen, summeformel, kvalitet, produsent og cas.nr om det er oppgitt.

3.1.2. Metoder

Alkyleringsreaksjoner

Det ble veid opp 0,5 mg av et acylglyserid og 1,6 mg av tørkingsmiddelet CaCO₃. Begge disse oppveide komponentene ble overført til en 25 mL pærekolbe. Tørkingsmiddelet ble tilsatt for å hjelpe til med å fjerne hydrogenet en ønsker å erstatte med en alkylgruppe. Pærekolben ble tilsatt 1,5 mL av utvalgt derivatiseringsreagens. Før oppsettet ble montert, ble det også tilsatt et par kokstein for å hindre støtkoking. Pærekolben ble koblet til et kjølerør som ble festet til et oppheng. En varmemantel ble plassert på en labbjekk under pærekolben. Kjølerøret ble koblet til en vannkran. Vannet og varmen ble skrudd på. Når løsningen begynte å koke ble varmen skrudd ned slik at en hadde en rolig og stabil koking. Løsningen reflukserte i 8 timer før varmen ble skrudd av og oppsettet demontert.

Løsningen i pærekolben ble dampet inn til tørrhet ved N₂ innblåsing. Når all væske var fordampet ble det resterende i pærekolben løst opp i 500 μ L heksan. Denne løsningen ble vasket 3 ganger med 500 μ L metanol. Den organiske fasen ble tatt vare på etter hver vask. Etter 3. vask ble løsningen dampet inn til tørrhet før den ble reløst i 500 μ L heksan.

Prøven ble analysert ved IR-analyse og direkte-innføring på MS.

Denne prosedyren ble fulgt ved alle tre jodidderivatiseringsreagensene. Prosedyren ble fulgt ved tre ulike runder med etyljodid hvor en valgte å endre på reflukseringstiden til 8, 2 og 0.5 timer.

Ikke-derivatisert acylglyserid til IR-analyse

Det ble laget to løsninger med ikke-derivatisert acylglycerid. Disse to løsningene hadde $5*10^{-3}$ mol/L og 0,05 mol/L. Disse to løsningene ble laget ved å veie opp acylglyserid og løse det opp i heksan. Det ble laget en stamløsning med konsentrasjon 0,05 mol/L, denne stamløsningen ble laget ved å veie opp 10 mg acylglyserid, dette ble løst i 500 µL. Det ble laget en fortynnet løsning med konsentrasjon $5*10^{-3}$ mol/L. Denne ble laget med å blande sammen en løsning med forholdet 10 µL stamløsning/100µL heksan.

Trimetylklorsilan reagens

Det ble veid ut 0,5 mg av et acylglyserid. Det oppveide acylglyseridet ble overført fra et veieskip til et reagensrør. Det ble tilsatt pyridin og trimetylklorsilan (TMCS) i et forhold på 2:12. Dette ble gjort i 2 ulike omganger. Først ble 200 μ L pyridin tilsatt under nitrogen atmosfære. Reagensrøret ble overført til et begerglass med isvann. Nitrogenatmosfæren ble beholdt mens røret ble overført til isvannet. Mens reagensrøret sto på isbad ble det sakte og forsiktig tilsatt 1200 μ L av TMCS. Ved for rask tilsetning av TMCS oppsto det en reaksjon som begynte å danne røyk og små krystaller på inndampningssprøyten.

Denne løsningen sto i romtemperatur under nitrogenatmosfære i 60-90 min uten at løsningen tørket ut. Det er viktig å passe på at løsningen ikke tørker ut før etter 60. En opplevde problemer med dette under denne prosedyren. Det ble da tilsatt mer pyridin og TMCS i samme prosedyre som er beskrevet ovenfor.

Etter 60-90 min skal løsningen dampes inn til tørrhet ved N_2 og reløses i 500 µL heksan.

Prøven ble analysert ved direkte innføring på MS.

Eksperimentelle parametere for MS analyse

Analysen av fettsyremetylester ble utført på en Autospec Ultima (Micromass Ltd. Manchester, England) med programmet MassLynx V4.0. Massespektrometeret var et trippelsektorinstrument med EBE geometri, et elektrostatisk filter-magnet-elektrostatisk filter.

Materialer og Metoder

Denne hadde en oppløsning på 1200 og et masseområde på 40 til 600 m/z. Instrumentet hadde en elektrostatisk ionekilde. EI-ionekilden produserte elektroner med energimengden 70 eV og hadde en akselerasjonsspenning på 8000 V. Skanntiden var 0,3 sekunder og ventetiden mellom hver skann var 0,2 sekunder.

Temperaturprogrammet til GC-instrumentet startet med en temperatur på 65 °C (3 min). Temperaturen ble økt til 150 °C (13 min) med en gradient på 40°C/min, deretter økte temperaturen igjen til 151 °C (20 min) med en gradient på 2 °C/min, og deretter til 230 °C (10 min) med en gradient på 2 °C/min. Temperaturen ble for en siste gang økt til 240 °C (0,5 min) med en gradient på 50 °C/min. Totaltiden av analysen på GC-MS var 84 min.

3.2. Del 2 Relativ responsfaktor

3.2.1. Materialer

Løsninger

Tabell 6. Løsninger til del 2 relativ responsfaktor er beskrevet i tabellen. Det er oppgitt navn, summeformel, kvalitet, produsent og Car.nr om det var oppgitt.

Navn	Summeformel	Kvlitet	Cas-nr	Produsent
Heptan	C7H16	Riedel-detlaën	142-82-5	Sigma Aldrich
		≥99% n-		
		heptane basis		
		(GC)		
Metylheptanoate	$C_8H_{16}O_2$	≥99.8% (GC)	106-73-0	Sigma Aldrich
(C7:0)				
Methyl nonanoate	$C_{10}H_{20}O_2$	≥99.8% (GC)	1731-84-6	Sigma Aldrich
(Metylpelargonate)				-
(C9:0)				
Metylnonadecanoate	$C_{20}H_{40}O_2$	≥99%		Larodan
(C19:0)				
Dicaprin	$C_{23}H_{44}O_5$	99%		Larodan
(Didecanoin)				
R37 FAME mix				Restek
				Corporation

Eksternstandard og internstandard

Til del 2 Relativ Responsfaktor ble det brukt en 37-komponents blanding av fettsyremetylestere (Food Industry Fame Mix, Restek, Bellefonte, PA, USA). Denne FAME mix-en hadde en totalkonsentrasjon på 30 mg/mL. Vektprosent av hver FAME i denne blandingen er gitt i tabell 9.

Til denne blandingen ble det tilsatt 3 internstandarder. C7:0, C9:0 og C19:0; metyl heptanoate, metyl nonanoate (metylpelargonate), metyl nonadecanoate. Stamløsningen som ble laget av hver internstandard hadde konsentrasjon lik 1 mg/mL.

3.2.2. Metoder

Stamløsningene som ble benyttet ble laget som beskrevet i tabell 7. For å lage disse stamløsningene ble det ble veid ut 5 mg av hver FAME. Dette ble overført til en 5 mL målekolbe og løst opp i 5 mL heptan for å lage en stamløsning med konsentrasjon 1 mg/mL.

Tabell 7: Viser konsentrasjonen til fire ulike stamløsninger en trenger for å lage R40 FAME-mix.

FAME	Stamløsning [mg/mL]
R37	30
C7:0	1
C9:0	1
C19:0	1

Tabell 8 ble brukt til å lage 4 prøver med ulik konsentrasjon. En lager disse ved å tilsette de oppgitte mengdene av hver stamløsning og R37 FAME mix til en GC-vial. Det ble deretter tilsatt oppgitt mengde med heptan eller heksan.

Tabell 8: De ulike tilsetningsvolumene og konsentrasjon i ferdiglaget løsning er beskrevet i tabellen, med heksan eller heptan som løsningsmiddel

Konsentrasjon R37 [µg/mL]	Konsentrasjon C7:0, C9:0 og C19:0 [µg/mL]	Tilsatt mengde R37 [μL]	Tilsatt mengde C7:0, C9:0 og C19:0 [µL]	Tilsatt mengde løsningsmiddel [µL]
150	5	5	5	980
300	10	10	10	960
600	25	20	25	905
1200	50	40	50	810

Eksperimentelle parametere for GC-MS analyse

Analysen av fettsyremetylester ble utført på en Agilent 6890 gasskromatograf (Agilent Technology, Wilmington, DE, USA). Denne var koblet til en Autospec Ultima (Micromass Ltd. Manchester, England) med programmet MassLynx V4.0. Massespektrometeret var et trippelsektorinstrument med EBE geometri, et elektrostatisk filter-magnet-elektrostatisk filter.

Materialer og Metoder

Denne hadde en oppløsning på 1200 og et masseområde på 40 til 600 *m/z*. Instrumentet ble satt i skannmodus med en elektronionisasjonskilde, EI-ionekilde. EI-ionekilden produserte elektroner med energimengden 70 eV og hadde en akselerasjonsspenning på 8000 V. Skanntiden var 0,3 sekunder og ventetiden mellom hver skann var 0,2 sekunder. Kolonnen brukt i gasskromatografen var en Rtx-2330 (90% biscyanopropyl polysiloxane) kolonne fra restek. Kolonnen har en legde på 60 m, med ID 0,25 mm og en filmtykkelse på 0,2 µm. Helium (6.0, AGA, Norge) ble brukt som bæregass. Bæregassen hadde en konstant flow på 1 mL/min. Det ble benyttet en splittinjektor med splittratio på 10/1. Injektoren hadde et injeksjonsvolum på 1 µL og injektoren hadde en temperatur på 245 °C. Temperaturprogrammet til GC-instrumentet startet med en temperatur på 65 °C denne (3 min). Temperaturen ble økt til 150 °C (13 min) med en gradient på 40°C/min, deretter økte

temperaturen igjen til 151 °C (20 min) med en gradient på 2 °C/min, og deretter til 230 °C (10 min) med en gradient på 2 °C/min. Temperaturen ble for en siste gang økt til 240 °C (0,5 min) med en gradient på 50 °C/min. Totaltiden av analysen på GC-MS var 84 min.

4. Resultater

4.1. Del 1 Derivatisering

Etyljodid

Det ble i første omgang laget en prøve med etylderivatet av diacylglyseridet dicaprin. Denne prøven hadde refluksert i 8 timer. Prøven ble analysert med et IR-instrument for å bekrefte tilstedeværelsen av synteseproduktet.

Resultatet fra IR-analysen av prøven kan en se i figur 10. Spekteret viser flere topper som sier noe om de funksjonelle gruppene som er tilstede i prøven. I et IR-spekter vil karbonyl (C=O) komme ut ved ca 1700 cm⁻¹, OH-gruppe gi en bred topp ved ca 3500cm⁻¹, karboksylsyregrupper gi utslag ved 3500-2500 cm⁻¹. Aromat og karbondobbeltbinding vil komme ut ved ca 3030-3140 cm⁻¹. Karbon-hydrogen bånd ved ca 2850-3000 cm⁻¹. [3]

Dicaprin vil ha to karbonylgrupper, en OH-gruppe og to lange alifatiske kjeder. Karbonylgruppene kan en se i spekteret ved 1738.05 cm⁻¹. De to toppene ved 2849.46 cm⁻¹ og 2917.65 cm⁻¹ er utslag på karbon-hydrogen bånd. En kan ikke en topp ved 3500 cm⁻¹, dette tyder på at en ikke har noe OH-gruppe tilstede i prøven.

For å ha et sammenligningsgrunnlag ble det også laget to prøver med ikke-derivatisert acylglyserid. IR-spektrene fra disse to prøvene er vist i figur 11 og 12. Figur 11 er spekteret til en prøve med lav konsentrasjon av ikke-derivatisert acylglyserid. Konsentrasjonen til denne prøven er 5*10-3 mol/L.

Figur 11. IR-spekteret til prøven med lav konsentrasjon av ikke-derivatisert diacyglyserid. Konsentrasjonen av diacylglyseridet er $5*10^{-3}$ mol/L.

I figur 11 kan en se flere av de samme toppene som er tilstede i figur 10. Det som også er mulig å se er en liten topp ved 3500 cm⁻¹. Denne toppen har ikke gitt noe tallutslag i spekteret, som tyder på at signalet ikke er stort nok til at instrumentet detekterer det, men det kan se ut som om det er et lite utslag for OH i prøven med lav konsentrasjon.

I figur 12 kan en se IR-spekteret til prøven med høyere konsentrasjon av ikke-derivatisert acylglyserid. Konsentrasjonen til denne prøven er 0,05 mol/L. I spekteret kan en se fingeravtrykkområde med mange topper. En kan se en tydelig topp for de to karbonylgruppene i dicaprin. En kan også se flere utslag for karbon-hydrogen bånd, og en topp ved 3500 cm⁻¹ som er OH-gruppen i molekylet.

Figur 12. IR-spekter til prøve med høy konsentrasjon av diacylglyserid. Konsentrasjon av diacylglyseridet er 0,05 mol/L.

Prøven med derivatisert acylglyserid ble dampet inn til ca. halve volumet for å øke konsentrasjonen. IR-analysen fra prøven etter inndamping er vist i figur 13.

Figur 13. IR-spekter til prøve med etylderivat etter inndamping.

I figur 13 er det flere av de samme toppene som i figur 10 i tillegg til en del andre topper nede i fingeravtrykkområde. Det som også vises i dette spekteret er en liten topp ved 3500 cm⁻¹. Dette tyder på at en har OH-gruppe tilstede i prøven. Det er et lite utslag som vises i spekteret, og en bestemte seg derfor for å kjøre direkte MS på prøven. En hadde et ønske om å kunne få et nærmere innblikk i komposisjonen til prøven. MS vil gi fragmentering, og dette kan brukes til å finne strukturen til molekylet i prøven. Resultatet fra direkte innføring på MS er vist i figur 14.

Resultater

Figur 14. Spekter a), b), og c) er spekter fra derivatisering med etyljodid. Spektrene a), b) og c) viser spekter fra prøver som har refluksert henholdsvis i 8, 2, og 0.5 timer.

I figur 14 kan en se resultatet fra tre ulike prøver. Disse tre ulike prøvene ble laget ved derivatisering av dicaprin med etyljodid, disse sto og reflukserte i 8, 2 og 0.5 timer. I vedlegg Figur V.1. kan en se et større spekter som viser tydeligere retensjonstid.

Molekylionet en ønsker å se etter analysen er illustrert i figur 15. Figuren viser også forventet fragmentering av molekylionet dicaprin. Molekyleionet, om det er stabilt nok, skulle en finne ved m/z 428. Det ble ikke funnet noe signal tilsvarende molekylionet i noen av de 3 spektrene a), b) og c) i figur 14.

I figur 14 kan en se flere tydelige topper som går igjen i alle 3 spektrene; m/z 57, 111, 125, 155, 368, 381. Mulig fragmentering på disse toppene kan en se i figur 15. En har kommet frem til disse fragmentene ved å ta utgangspunkt i hvordan molekylionet skal se ut, molekylionet vises i figur 15.

Toppen på m/z 57 er 100 % toppen. Denne toppen kan svare til etyl bundet til oksygen som også er bundet til karbon. 29 + 16 + 12 = 57. Dette gir tegn til at det er etyl bundet til derivatisert dicaprin i prøven. Det er også en tydelig topp ved m/z 155. Dette fragmentet kan stemme med C₉H₁₉ bundet til karbonyl. Alle tre spektrene har en litt mindre topp på m/z 125. Dette fragmentet vil stemme med selve fettsyrekjeden, C₉H₁₉. 12 *9 + 1*19 = 127, og kan ha mistet et par hydrogener og vises ved m/z 125. Dette fragmentet kan være et resultat av videre fragmentering til m/z 155. En har også en topp på m/z 111. 125-111 = 14. Det kan være fragmentering hvor C₉H₁₉ har fragmentert og mistet en CH₂ gruppe.

En finner også to topper ved m/z 367 og 368. Dette kan være mulig fragmentering på begge fettsyrekjedene bundet til glyserolkjeden. Dette fragmentet har en masse på 369. Det er mulig at dette fragmentet også har mistet et par hydrogen og kommer ut ved m/z 367 og 368. Fragmentet m/z 367 kan være mulig fragmentering av fragmentet m/z 381, det som skiller disse to fragmentene er en masse på 13, et hydrogen og et karbonatom.

Figur 15. Viser molekylion en forventer å se i spekteret av en prøve hvor en har derivatisert dicaprin med etyljodid. Kan se mulig fragmentering av molekylionet.

TMCS

Det ble i tillegg til ulike jodidreagenser brukt trimetylklorsilan som derivatiseringsreagens. Det ble laget tre ulike prøveparalleller med dette derivatet. Resultatet fra 2 av disse prøveparallellene kan en se i figur 16 og 17.

Figur 16: MS-spekter fra første prøveparallell av TMS-derivat. Kan en se mulig molekylion ved m/z 471,7
Resultater

Figur 17 Viser MS-spekter fra andre prøveparallell av TMS-derivatet. Kan se mulig molekylion ved m/z 471.

Molekylionet en ønsker å finne i spekteret vil ha molekylvekt på 472 g/mol. I figur 16 kan vi se en topp ved m/z 471.7, denne er tilnærmet lik 472. Dette tyder på at en har fått et molekylion. Denne toppen kan en se i den delen av spekteret som har en oppløsning på 100x, det vil si at denne delen av spekteret er blitt forstørret 100 ganger.

MS-spekteret en kan se i figur 17 viser resultatet fra den andre prøveparallellen av TMSderivat. I dette spekteret kan en se en topp ved 471, som en tror er molekylion. I dette spekteret er ikke denne delen forstørret 100x, slik som spekteret i figur 16.

I figur 16 og 17 kan en se flere av de samme fragmentene. Begge spektrene har topper ved m/z lik 73, 129, 155, 229, 286, 300, 457. Mulig fragmentering av disse toppene er vist i figur 18.

Topp m/z 73 kommer ut som litt over 50 % i figur 17, og litt under i figur 16. Massen m/z 73 stemmer overens med fragmentet trimetylsilan. Topp m/z 129 stemmer med fragmentet av glyserolstammen bundet til trimetylsilan, uten noen fettsyrekjeder, dette fragmentet kan være dannet av videre fragmentering fra m/z 300. Fragmentet ved m/z 155 er 100% topp i begge spektrene. En har brukt diacylglyseridet dicaprin i begge derivatiseringsmetodene, alkylderivat og TMCS-derivat metoden, og dette fragmentet vises også i MS-spekteret i figur 14. Dette gir tydelig tegn på at dette fragmentet stemmer overens med fettsyrekjedene.

Fragmentet ved m/z 229 kan være fragmentet vist i figur 18. Fragmentet som kommer ut ved m/z 286 vil stemme overens med massen til fragmentet trimetylsilan og en av fettsyrekjedene bundet til glyserolkjeden. Det fragmentet kan være et resultat av videre fragmentering av fragment 300. Fragment 300 vil være lik dette med en ekstra CH.

Fragmentet som kommer ut som topp m/z 457 vil nesten stemme overens med molekylion, men mangler en metylgruppe.

Figur 18. Viser mulig molekylion en forventer å se i en prøve hvor en har derivatisert dicaprin med TMCS. Kan se mulig fragmentering av molekylionet.

Figur 19: a) utklipp fra figur 16 viser isotopfordeling i spekteret, b) viser isotopfordelingen en forventer å se i et spekter med TMS.

Figur 19 b) viser isotopfordelingen en forventer å se i et spekter med et TMS-derivat. Figur 19 a) er et utklipp fra figur 16.

4.2. Del 2 Relativ responsfaktor

Det ble laget 3 prøveparalleller med tillaget R40 mix. Disse prøveparallellene ble laget som beskrevet i tabell 8. I figur 20 kan en se et av kromatogrammene av disse prøvene. I vedlegg figur V.2, V.3, V.4 og V.5 er det lagt ved kromatogram for hver av de 4 prøvene med ulik konsentrasjon.

Det ble brukt GC-MS i skannmodus for å identifisere de 40 FAME-ne i blandingen. Den kjemiske strukturen til de 40 ulike komponentene ble bekreftet ved hjelp av retensjonstid og ved å sammenligne massespektrene til hver topp med NIST database. Kromatogrammet over R40 FAME mix kan sees i figur 20.

Av de 3 prøveparallellene som ble kjørt med 2 injeksjonsparalleller kan en se at det er en liten forandring i retensjonstiden. I vedlegg tabell V.7-V9 kan en se at retensjonstiden for C22:6 *Cis* 4, 7, 10, 13, 16, 19 varierer med 10 sek. I første prøveparallell i den første injeksjonsparallellen var retensjonstiden 73.16 min, mens i den tredje prøveparallellen i den andre injeksjonsparallellen var den 73.06 min.

Resultater

Figur 20. Kromatogram over R40 FAME mix. Det ble laget en R40 FAME mix av en innkjørt R37 mix som ble tilsatt 3 internstandarder, C7:0, C9:0 og C19:0.

FAME	Retesjonstid [min]	Prosentandel (vekt) av	Ioner brukt til å finne
		hver FAME i R37 mix	RRF til RIC
C4:0	5.12	4	71, 74, 87, 102
C6:0	6.58	4	74, 87, 99, 101
C7:0	7.27		74, 87, 101, 113
C8:0	7.92	4	87, 115, 127, 129
C9:0	8.59		129, 141, 143, 172
C10:0	9.33	4	143, 155, 157, 186
C11:0	10.23	2	143, 157, 169, 200
C12:0	11.39	4	171, 183, 185, 214
C13:0	12.95	2	185, 197, 199, 228
C14:0	15.10	4	199, 211, 213, 242
C14:1 Cis 9	17.12	2	166, 208, 209, 240
C15:0	18.08	2	213, 225, 227, 256
C15:1 Cis 10	20.78	2	180, 222, 223, 254
C16:0	22.11	6	227, 239, 241, 270
C16:1 Cis 9	25.05	2	194, 236, 237, 268
C17:0	27.73	2	241, 253, 255, 284
C17:1 Cis 10	31.68	2	208, 250, 251, 282
C18:0	35.57	4	255, 267, 269, 298
C18:1 Trans 9	38.86	2	222, 264, 265, 296
C18:1 Cis 9	39.93	4	222, 264, 265, 296
C18:2 Trans 9, 12	44.40	2	220, 262, 263, 294
C19:0	44.63		227, 269, 281, 312
C18:2 Cis 9, 12	46.13	2	220, 262, 263, 294
C18:3 Cis 6, 9, 12	49.61	2	175, 177, 194, 220
C20:0	51.17	4	143, 227, 283, 326
C18:3 Cis 9, 12, 15	51.81	2	223, 236, 261, 292
C20:1 Cis 11	53.47	2	250, 292, 293, 324
C21:0	56.29	2	283, 297, 309, 340
C20:2 Cis 11, 14	57.26	2	290, 291, 309, 322
C20:3 Cis 8, 11, 14	59.57	2	222, 263, 289, 320
C22:0	60.60	4	311, 323, 325, 354
C20:4 Cis 5, 8, 11, 14	61.19	2	203, 207, 219, 233
C20:3 Cis 11, 14, 17	61.19	2	264, 289, 291, 320
C22:1 Cis 13	62.35	2	278, 320, 321, 352
C23:0	64.36	2	325, 337, 368, 369
C20:5 Cis 5, 8, 11, 14, 17	64.90	2	175, 180, 201, 220
C22:2 Cis 13, 16	65.27	2	318, 319, 320, 350
C24:0	67.75	4	339, 351, 382, 383
C24:1 Cis 15	69.25	2	306, 348, 349, 380
C22:6 Cis 4, 7, 10, 13, 16, 19	73.11	2	105, 119, 133, 145

Tabell 9. Viser en oversikt over retensjonstid til hver FAME i R40 mix prøven. Tabellen viser også en oversikt over prosentandel (vekt) av hver FAME i R37 mix. Internstandardene er ikke oppgitt i kolonnen «prosentandel (vekt) av hver FAME i R37 mix» siden disse ikke er en del av R37 mix.

Tabell 9 viser de ulike retensjonstidene til alle FAME-komponentene i R40 mix som ble analysert ved GC-MS. For å finne relativ responsfaktor er det brukt en R37 mix tilsatt 3 internstandarder, C7:0, C9:0 og C19:0. I tabell 9 kan en også se navn på alle FAMEkomponentene i blandingen, inkludert internstandardene. Tabellen viser også prosentandel masse av hver FAME i R37 mix og ionene som er brukt til å finne RRF til RIC.

De oppgitte prosentandelene sier at C20:4 *Cis* 5, 8, 11, 14 og C20:3 *Cis* 11, 14, 17 skal være 2 % hver. Toppen som kommer ut ved retensjonstid 61.19 min ble funnet til å være C20:4 *Cis* 5, 8, 11, 14. I kromatogrammet i figur 20 kan en se at toppen ved retensjonstid 61.19 min tilsvarer 4%. I kromatogrammet i figur 20 kan en kun se 39 topper, det vil si at en mangler en av de 40 toppene en skal se. Når en utførte et biblioteksøk av starten og slutten av toppen ved retensjonstid 61.19 min fant en et treff på hver av disse to FAME-ne og ikke bare C20:4 *Cis* 5, 8, 11, 14 som en gjorde ved første biblioteksøk av hele toppen. Det er betingelsene i instrumentet sitt temperaturprogram som gjør at disse to toppene kommer ut ved samme retensjonstid. Oversikt over retensjonstid til alle 3 prøveparallellene og prøveinjeksjonene for TIC og RIC kan sees i vedlegg tabell V.1-V24.

En har funnet RRF til TIC og RIC, en kan se disse tallene i tabell 10. For å finne RRF ble det brukt tre internstandarder. C7:0 ble valgt til å finne RRF til FAME C4:0, C6:0, C8:0, C10:0, C11:0, C12:0 og C13:0. C9:0 ble brukt til å finne RRF til FAME C14:0-C16:1 *Cis* 9, og C19:0 ble brukt til å finne RRF til de resterende FAME-komponentene. De enkelte internstandardene ble valgt for de ulike komponentene i blandingen basert på standardavviket til % avvik av tilbakeregnet konsentrasjon. Det er ønskelig med et lavt standardavvik. For å få et lavt standardavvik må den oppgitte konsentrasjonen være tilnærmet lik den tilbakeregnete konsentrasjonen.

For å regne ut RRF brukte en den generelle ligningen gitt i ligning 11.

$$RRF = \frac{Stigningstall\ internstandard}{Stigningstall\ til\ valgt\ FAME}$$

(Ligning 11)

En detaljert oversikt over tallene brukt til å regne ut RRF for TIC og RIC kan en se i vedlegg tabell V.25 og tabell V 26. I vedlegg figur V.6 a)-m) kan en se en oversikt over alle grafene en har brukt til å finne stigningstall til alle FAME-ne.

Stigningstallene er funnet ved å lage en graf med oppgitt konsentrasjon langs x-aksen og areal langs y-aksen. Grafene laget fra arealene funnet i TIC og RIC-spekteret kan henholdsvis sees i Vedlegg Figur V.6 a)-m) og Figur V.7 a)-n). En har brukt stigningstallet til å finne RRF for hver FAME.

I tabell 10 kan en se at RRF for TIC er relativt like hverandre, og ligger rundt 1, mens RRF for RIC har større variasjon. Dette kan en se ut i fra at C8:0 har en RRF på 0.396 og C20:5 *Cis* 5, 8, 11, 14, 17 har en RRF på 5.10. Mens variasjonen til RRF for TIC er C20:4 Cis 5, 8, 11, 14 med en RRF lik 0,66 og C22:6 Cis 4, 7, 10, 13, 16, 19 med en RRF lik 2,17.

Tabell 10. Viser en oversikt over alle relative responsfaktorer til alle komponentene i FAME-mixen.
Det er funnet relativ responsfaktor til både TIC og RIC. Internstandarden C7:0 ble valgt til å finne
RRF til C4:0, C6:0, C8:0, C10:0, C11:0 C12:0 og C13:0. C9:0 ble brukt til å finne RRF til C14:0-
C16:1 Cis 9, og C19:0 ble brukt til å finne RRF til de resterende komponentene.

FAME	RRF til TIC	RRF til RIC
C4:0	1,59	1,67
C6:0	1,11	1,13
C7:0	1,00	1,00
C8:0	1,02	0,40
C9:0	1,00	1,00
C10:0	0,87	0,96
C11:0	0,86	1,03
C12:0	0,79	1,04
C13:0	0,80	1,00
C14:0	0,78	0,96
C14:1 Cis 9	0,89	1,46
C15:0	0,84	1,07
C15:1 Cis 10	1,02	1,51
C16:0	0,77	0,95
C16:1 Cis 9	1,01	1,44
C17:0	0,99	1,01
C17:1 Cis 10	1,08	1,57
C18:0	0,96	0,96
C18:1 Trans 9	1,15	1,66
C18:1 Cis 9	1,02	1,40
C18:2 Trans 9, 12	1,26	2,73
C19:0	1,00	1,00
C18:2 Cis 9, 12	1,22	2,88
C18:3 Cis 6, 9, 12	1,29	5,06
C20:0	1,05	0,70
C18:3 Cis 9, 12, 15	1,32	4,59
C20:1 Cis 11	1,26	1,65
C21:0	1,24	1,20
C20:2 Cis 11, 14	1,36	3,50
C20:3 Cis 8, 11, 14	1,44	4,70
C22:0	1,20	1,09
C20:4 Cis 5, 8, 11, 14	0,66	5,68
C20:3 Cis 11, 14, 17	0,66	4,06
C22:1 Cis 13	1,46	1,76
C23:0	1,51	1,22
C20:5 Cis 5, 8, 11, 14, 17	1,57	5,10
C22:2 Cis 13, 16	1,52	3,62
C24:0	1,46	1,07
C24:1 Cis 15	1,70	1,94
C22:6 Cis 4, 7, 10, 13, 16, 19	2,17	1,38

FAME	TIC	TIC	RIC	RIC
	Gjennomsnitt	Standardavvik	Gjennomsnitt	Standardavvik
	[%]	[%]	[%]	[%]
C4:0	0	6,4	-1,2	6,5
C6:0	-1	5,6	-0,6	6,1
C7:0	0	0,0	0,0	0,0
C8:0	-1	5,9	-0,4	6,0
C9:0	0	0,0	0,0	0,0
C10:0	0	6,0	-3,6	11,3
C11:0	2	6,7	-7,2	22,2
C12:0	2	6,5	2,8	6,5
C13:0	4	7,9	5,4	8,7
C14:0	6	10,3	4,9	9,3
C14:1 Cis 9	5	10,5	5,2	11,0
C15:0	5	11,1	6,9	11,2
C15:1 Cis 10	6	11,3	7,5	13,0
C16:0	5	10,6	6,4	11,8
C16:1 Cis 9	7	12,7	8,5	13,9
C17:0	-8	8,4	-9,4	13,0
C17:1 Cis 10	-7	10,2	-6,8	14,6
C18:0	-4	7,8	-7,6	12,3
C18:1 Trans 9	-3	12,6	3,2	18,6
C18:1 Cis 9	-5	6,3	-5,9	12,1
C18:2 Trans 9, 12	-3	9,0	6,1	18,2
C19:0	0	0,0	0,0	0,0
C18:2 Cis 9, 12	-3	7,0	5,0	18,6
C18:3 Cis 6, 9, 12	-3	8,9	-11,7	23,6
C20:0	-1	5,7	-4,1	15,4
C18:3 Cis 9, 12, 15	-2	5,5	9,0	21,7
C20:1 Cis 11	0	8,1	-18,4	103,0
C21:0	0	11,9	1,0	13,7
C20:2 Cis 11, 14	-2	10,4	4,7	16,3
C20:3 Cis 8, 11, 14	0	10,1	8,1	19,1
C22:0	3	9,0	0,7	13,5
C20:4 Cis 5, 8, 11, 14	2	6,1	-89,7	377,1
C20:3 Cis 11, 14, 17	2	6,1	9,0	20,1
C22:1 Cis 13	4	12,6	6,1	17,4
C23:0	4	14,1	4,0	18,1
C20:5 Cis 5, 8, 11, 14, 17	0	8,4	-7,3	48,2
C22:2 Cis 13, 16	6	15,2	12,9	20,6
C24:0	6	14,8	7,9	20,6
C24:1 Cis 15	5	22,0	5,7	20,7
C22:6 Cis 4, 7, 10, 13, 16,	-15	67,2	-4,4	33,0
19				

Tabell 11. Tabellen viser gjennomsnitt og standardavvik til % avvik av tilbakeregning av konsentrasjon. Tabellen presenterer standardavvik og gjennomsnitt for både TIC og RIC, og vil ha benevning %.

I vedlegg tabell V.27 og tabell V.28 kan en se tilbakeregning av konsentrasjon for TIC og RIC. Oppgitt konsentrasjon kan en se i vedlegg tabell V.31. Tilbakeregning av konsentrasjon er regnet ut ved hjelp av den generelle ligning 12.

Areal av valgt FAME*Oppgitt konsentrasjon til internstandard Areal til internstandard*invert RRF

(Ligning 12)

(Ligning 13)

Det er regnet ut % avvik ut i fra de oppgitte konsentrasjonene. En har regnet ut gjennomsnitt og standardavvik ut i fra % avvik. % avvik kan sees i vedlegg tabell V.29 og tabell V.30. En har regnet ut % avvik ved hjelp av den generelle ligningen i ligning 13.

Ut i fra tabell 11 kan en se at TIC har 20 FAMEs som har et standardavvik under 10 % og resten ligger over. Av de standardavvikene som ligger over, er de fleste av dem rett over, og vil ligge som 10.5 og 11. Standardavvikene av TIC som skiller seg ut og som ligger over 10 % er C22:2 *Cis* 13, 16, C24:0, C24:1 *Cis* 15 og C22:6 *Cis* 4, 7, 10, 13, 16, 19. Disse har henholdsvis standardavvik på 15.2, 14.8, 22.0 og 67.2.

I tabell 11 kan en også se gjennomsnittet som er regnet ut av % avvik. En har kun en uteligger for TIC, det er gjennomsnittet til C22:6 *Cis* 4, 7, 10, 13, 16, 19 som er på -15. For RIC kan en se ut i fra tabell 11 at en har en del flere FAMEs som er over 10 %, det er kun 6 av 37 som er under 10% avvik. Det er en del her som ligger rett rundt 10 % men noen som ligger rundt 20 %. De FAME-ne som opptrer som uteliggere er C20:1 *Cis* 11 og C20:4 *Cis* 5, 8, 11, 14 som har et standard avvik på 103.0 og 377.1. To andre som også har et høyere standardavvik en de fleste FAME-ne er C20:5 *Cis* 5, 8, 11, 14, 17 og C22:6 *Cis* 4, 7, 10, 13, 16, 19 som har et standardavvik på 48.2 og 33.0. En kan også se at C20:4 *Cis* 5, 8, 11, 14 har et gjennomsnitt på -89,7. Om en ser i vedlegg tabell V.13-V24. kan en se at arealene til disse toppene har stor variasjon.

5. Diskusjon

5.1. Del 1 Derivatisering

Hensikten med denne oppgaven var å finne en metode for å derivatisere monoacyl- og diacylglyserider ved hjelp av tre ulike jodidreagenser og TMCS. Prøvene som ble analysert ble laget ved hjelp av metodene som er beskrevet under punkt 3.1.2. Metoder.

Etylderivat

Etter å ha utført syntesen hadde en et ønske om å kunne få et bilde over hvilke funksjonelle grupper en hadde i prøven. En var spesielt interessert i å kunne se etter OH grupper. Etter derivatisering skal denne gruppen byttes ut med etyl. For å kunne se på hvilke funksjonelle grupper en hadde i prøven ble det bestemt at en skulle utføre en IR-analyse. IR-spektrene i figur 10 og 13 viser spekter av prøve før og etter inndamping til halvt volum. En analyserte prøven med IR. Etter at en hadde sett og analysert IR-spekteret til prøven med derivatisert acylglyserid, bestemte en seg for å lage to løsninger med ikke-derivatisert acylglyserid. En laget disse to løsningene med to ulike konsentrasjoner etter metoden beskrevet under punkt 3.1.2. Metoder. En bestemte seg for å ikke bare å lage en prøve men to prøver med ulik konsentrasjon. En hadde et ønske om å kunne danne et sammenligningsgrunnlag. Ved å kjøre en IR analyse på ikke-derivatisert acylglyserid vil en kunne se hvordan dette spekteret ser ut i forhold til prøven med derivatisert acylglyserid. En hadde en teori om at konsentrasjon kunne påvirke signalet IR-instrumentet plukker opp, og en bestemte seg da for å lage to prøver med ikke-derivatisert acylglyserid. Det ble tydelig av resultatet gitt i figur 11 og 12 at konsentrasjon har en effekt på IR-spekteret. Det er mulig å se en liten topp ved 3500 cm⁻¹ i figur 11, men denne toppen har ikke datamaskinen gitt noe tallutslag på. Det tyder på at konsentrasjonen av OH ikke gir et stort nok signal til deteksjon. I figur 13 derimot kan en tydelig se et utslag ved 3500 cm⁻¹ som er hvor OH-gruppen vil vises i spekteret. Om en sammenligner figur 11 og 12 kan en også se at konsentrasjon har en generell effekt på alle signaler fra detekterte vibrasjoner av båndene i molekylene. Det er tydelig flere topper i figur 12 enn i figur 11.

Ut i fra resultatene her ble det bestemt å dampe prøven inn til omtrent halve volum for å øke konsentrasjonen til derivatisert acylglyserid i prøven. Resultatet etter inndamping er vist i figur 13. Her kan en se et lite signal ved 3500 cm⁻¹. Dette gir tegn til at en har en OH-gruppe

Diskusjon

tilstede i prøven. I spekteret kan en også se signal på karbon-hydrogen binding og karbonylgrupper. Disse er forventet å se i et IR-spekter og en slik prøve. Siden IR-spekteret ikke gir noe mer informasjon om struktur og innhold i prøven, ble det bestemt å kjøre direkte MS på prøven. Et MS-spekter vil kunne gi fragmentering av molekylene i løsningen og vil kunne gi et bedre bilde på hva som er i løsningen. Siden en ikke var sikker på hvor god derivatiseringen var, bestemte en seg for å kjøre direkte MS istedenfor GC-MS. Tolking av et MS-spekter hvor en har en prøve med ukjent innhold er mye synsing. En har ingen fasit å kunne konsultere med, og MS spektrene i denne oppgaven er tolket etter beste evne.

I figur 14 a), b) og c) kan en se MS-spekter fra etylderivat som har stått å refluksert i henholdsvis 8, 2 og 0.5 timer. Mulig fragmentering av disse spektrene er presentert i figur 15. Fragmentene presentert i denne figurene er funnet i alle tre spektrene a), b) og c) i figur 14.

En har i denne figuren en topp m/z 57. Denne har en sagt i figuren kan være etylgruppen bundet til oksygen og karbon. Dette vil gi oss; 29 + 16 + 12 = 57. Men det finnes også andre muligheter for fragmentering for dette fragmentet. Dette fragmentet kan også bare være fragmentering av fettsyrekjeden; 15 + 14 + 14 + 14 = 57. En valgte å undersøke fragmentering basert på etylkjeden en ønsker å feste til glyserolkjeden og det ble av den grunn valgt å fremstille topp m/z 57 som den med etylderivatet. De andre fragmenteringene presentert i figuren har ikke etyl med. En fant ingen fragmentering med etyl som kunne passe til disse massene i spekteret, og valgte da andre mulige fragmenteringer å fremstille.

I figur 14 a), b) og c) ønsker man å se et molekylion. Dette vil ha masse m/z 428. Det er ingen topp som gir signal her. Det vil si at en ikke har noe molekylion. En trenger ikke alltid ha noe molekylion i et MS-spekter, men uten et molekylion trenger man å se tydelige tegn på at en har det ønskede molekylet i prøven.

Skannområde går ikke lavere enn 40, det vil av den grunn ikke være noen etyltopp å se i spekteret. Det en forventet å se var en topp på m/z 45, det er ingen tydelige tegn på en slik topp. En kan se noen små topper i figur 14 a), b) og c) som kan være m/z 45. En har en topp med m/z 44 og 43 og noen mindre etter disse. Det er mulig at disse to toppene er etyl bundet til oksygen, som har mistet et hydrogen og to. Men det er også muligheter for at topp m/z 43 er; 15+14+14 = 43. Dette kan også være fragmentering av fettsyrekjeden. Det som en kommer frem til er at de tegnene en har for etyl i prøven også kan være fragmentering av fettsyrekjeden. Problemet med slik tolkning er at det finnes flere muligheter en kan komme frem til.

Det finnes muligheter for at toppene nevnt inneholder etyl fra jod reagensen, men det er også mulig at disse toppene er fragmentering av fettsyrekjeden. Det en kommer frem til i denne tolkningen er at en ikke klarer å se noen tydelige tegn på at en har klart å derivatisere acylglyseridet. En har verken molekylion eller andre tydelige fragmenteringer i spekteret som peker på at en har etyl bundet til acylglyseridet dicaprin.

Trimetylsilanderivat

I tillegg til derivatisering med jodidreagenser, ble det utført en derivatisering med TMCS. I figur 16 og 17 kan en se MS-spekter fra direkte innføring på MS av henholdsvis prøveparallell 1 og 2. Mulig fragmentering av disse spektrene er vist i figur 18. Det er kun valgt å ta med fragmentering som en finner i begge spektrene.

Det en kan se i begge spektrene er noe som tyder på at en har molekylion tilstede i prøven. Molekylionet en forventer å se vil gi signal i spekteret ved m/z 472. Både i figur 16 og 17 kan en se en topp ved m/z 471, det er mulig at dette er et molekylion. I figur 16 måtte en ha en oppløsning på 100x for å se denne toppen, mens en i figur 17 kan se en liten topp uten noen oppløsning. Generelt når en sammenligner disse to spektrene ser det ut som om toppene i spekteret i figur 17 gir et større signal enn i spekteret i figur 16. En kan se størrelsen på signalet langs y-aksen, der signalene vises i prosentandel i prøven. Siden alle toppene gir et større utslag i figur 17, kan en da forvente at en vil kunne se det mulige molekylionet som et større signal og da uten noen oppløsning. En har tegn på molekylion, men med tanke på størrelsen til denne toppen er det også mulig at dette kan være bakgrunnsstøy.

I spektrene kan en se en topp ved m/z 73, dette fragmentet vil stemme overens med massen til molekylet trimetylsilan. I de andre fragmenteringsforslagene har en tatt utgangspunkt i trimetylsilan, og hvordan fragmentering kan se ut med denne gruppen bundet til glyserolstammen. En har valgt å gå frem på denne måten siden en ser etter muligheten for at derivatiseringsmetoden har vært suksessfull.

I figur 18 kan en se flere mulige fragmenteringer hvor TMS er bundet til glyserolkjeden. Dette gir klare tegn på at en har en mulig derivatisering av acylglyseridet. En har i tillegg til topp m/z 73 topper ved m/z 300, 226, 129 og 447. Alle disse fragmentene har TMS bundet til glyserolkjeden. En har i tillegg til disse en topp ved m/z 155. Denne toppen finner en også i MS-spekteret til alkylderivatet. Dette gir tydelige tegn på at en også har fettsyrekjeden tilstede

Diskusjon

i prøven. Enda et tegn på at en har molekylionet tilstede i prøven er figur 19. Figur 19 b) viser isotopfordelingen en forventer å se i et MS-spekter med en prøve som har TMS. Figur 19 a) viser et utklipp av spekteret i figur 16. Det vil si at en har den forventede isotopfordelingen tilstede i spektret av prøven. Det er flere tegn på at en har et derivatisert acylglyseridet i prøven, en har et mulig molekylion, en har forventet isotopfordeling tilstede i spekteret og en har fragmentering som kan stamme fra det ønskede molekylionet.

5.2. Del 2 Relativ responsfaktor

For å finne RRF ble det valgt å bruke C7:0, C9:0 og C19:0 som internstandard. En har valgt å bruke disse internstandardene for å tilstrekkelig kunne regne ut RRF til alle 37 FAMEs i blandingen. Når en skal gjennomføre en analyser for å finne RRF til FAMEs, må en velge ut en gunstig internstandard. Valg av internstandard baseres på hvilke FAMEs som er i prøven en skal analysere, og hvilken størrelse disse har. I analysen utført i denne oppgaven hadde man en blanding med FAMEs fra C4:0 til C24:1 Cis 15. Det er av den grunn valgt å bruke noen internstandarder som er korte og en som er lengre, der C7:0 og C9:0 er korte, og C19:0 er lengre.

I oppgaven har en regner ut tilbakeregnet konsentrasjon. Det vil si den konsentrasjonene en kommer frem til ved å bruke den utregnede RRF. De tilbakeregnede konsentrasjonene for TIC og RIC kan en se i vedlegg tabell V.27 og V.28. En har også regnet ut % avvik av tilbakeregnet konsentrasjon. En kan se tallene for % avvik for TIC og RIC i vedlegg tabell V.29 og V.30. % avvik er regnet ut med å se på differansen mellom oppgitt konsentrasjon og tilbakeregnet konsentrasjon. Det er % avvik en har regnet ut standardavvik og gjennomsnitt. For å finne ut hvilke internstandarder som var gunstige til å bruke til de ulike FAMEs i R37 mix, så en på standardavvikene. En valgte først å bruke C9:0 til blant annet FAME-ne C8:0, C10:0, C11:0, C12:0 og C13:0. Når en sammenlignet standardavviket en fikk ved bruk av C9:0 og C7:0, så en at det ville være mer gunstig å bruke C7:0 som internstandard for å finne RRF til disse enn C9:0, siden standardavviket ble mindre ved bruk av C7:0. Etter å ha utført flere utregninger av standardavvik med ulike internstandarder kom en frem til at det ville være mest gunstig å bruke C7:0 til C4:0, C6:0, C8:0, C10:0, C11:0, C12:0 og C13:0. Bruke C9:0 til C14:0-C16:1 *Cis* 9, og C19:0 til de resterende komponentene i R37 FAME blandingen.

I RIC-spekteret ble det valgt ut ioner som var unike, stabile og ga stort signal i MS-spekteret. Molekylionet ble valgt som et av ionene og de 3 andre var ioner som lå nær molekylionet og i den øvre delen av MS-spekteret. Ionene ble valgt ut på denne måten for å forsikre seg om at en får et RIC-spekter over riktig FAME. RIC-spekteret ble basert på TIC-spekteret datamaskinen ga etter GC-MS analysen. En fant RIC-spekteret ved å søke etter de valgte ionene i tabell 9.

I kromatogrammet i figur 20 kommer FAME-ne C20:4 *Cis* 5, 8, 11, 14 og C20:3 *Cis* 11, 14, 17 ut ved retensjonstid 61,19 min. Det at disse to FAME-ne komme t ut ved samme retensjonstid 61.19 ser ut til å ha hatt en effekt på arealene funnet i RIC-spekteret. Det er variasjon i arealene detektert, og dette har gitt variasjon i tilbakeregnet konsentrasjon og % avvik. For RIC kan man blant annet se at C20:4 *Cis* 5, 8, 11, 14 har et gjennomsnitt på -89.7 % og et standardavvik på 377.1 %. For RIC kan en se flere uteliggere i tillegg til C20:4 *Cis* 5, 8, 11, 14. En har også uteliggere som C20:1 *Cis* 11, C20:5 *Cis* 5, 8, 11, 14, 17 og C22:6 *Cis* 4, 7, 10, 13, 16, 19, disse har et standardavvik på henholdsvis 103.0, 48.2 og 33.0. I tillegg til det høye standardavviket har C20:4 *Cis* 5, 8, 11, 14 et gjennomsnitt på -89.7. I vedlegg tabell V.30 kan en se at det er variasjoner i % avvik, for alle disse 4 FAME-ne kan en se at % avvik varierer en del. Bandt annet for C20:4 *Cis* 5, 8, 11, 14 har man på det laveste et % avvik lik - 1795.0. I vedlegg tabell V.13-V24 kan en se at det er flere av FAMEs som har varierende areal for de ulike konsentrasjonene.

Gjennomsnittet og standardavviket en har regnet ut er regnet ut fra % avvik. % avvik er regnet ut fra sammenligningen av oppgitt konsentrasjon og tilbakeregnet konsentrasjon. Tilbakeregnet konsentrasjon er regnet ut basert på invertert RRF som igjen er regnet ut basert på stigningstallet en fikk fra å plotte areal mot oppgitt konsentrasjon. Det vil si at det er en sammenheng mellom gjennomsnittene og standardavvikene regnet ut far % avvik og areal. Det vil si at om det er varierende areal for de ulike FAME-ne, vil det være variasjon i % avvik. Dette er grunnen til at en får høyere standardavvik enn det en forventer å se.

I tabell 11 er gjennomsnitt og standardavvik for % avvik presentert. For TIC kan en se at de fleste tallene oppgitt i både gjennomsnitt- og standardavvik-kolonnen er generelt like. TIC har en uteligger; C22:6 *Cis* 4, 7, 10, 13, 16, 19. Denne har et standardavvik på 67.2. Når en ser på gjennomsnitt regnet ut for TIC har en kun 1 av 40 som er over 10 %, og det er for FAME-n C22:6 *Cis* 4, 7, 10, 13, 16, 19, gjennomsnittet til denne er på -15. Å se på gjennomsnitt i seg selv trenger ikke nødvendigvis si noe om hvor god analysen har vært. Gjennomsnitt for TIC

Diskusjon

og RIC tar hensyn til alle tallene i vedlegg tabell V29 og tabell V30. En FAME kan ha høye negative og positive tall og fortsatt ha et gjennomsnitt lik 0. Derfor må en i tillegg se på standardavvik for å kunne avgjøre hvor mye tallene avviker fra hverandre. En kan se på FAME C21:0 som eksempel. Denne har et gjennomsnitt lik 0, men et standardavvik lik 11,9. Når en ser nærmere på tallene alene, kan en se at en på det laveste har -33,5 og på det høyeste har 15,4. En har flere høye tall på 12, 14, 15 i tillegg til en del andre negative tall. Disse tallene vil gi et gjennomsnitt på lik 0, men på grunn av stor forskjell fortsatt ha et standardavvik lik 11,9.

Grunnen til at C22:6 *Cis* 4, 7, 10, 13, 16, 19 opptrer som en uteligger er at det ene tallet for % avvik utregnet for C22:6 *Cis* 4, 7, 10, 13, 16, 19 er på -310.9 %. En kan se ut i fra ligning 13 at dette tallet har sammenheng med tilbakeregnet konsentrasjon. Den tilbakeregnede konsentrasjonene for denne FAME ligger på 12 μ g/mL. Denne konsentrasjonen er oppgitt til å være 3 μ g/mL. Grunne til at tilbakeregnet konsentrasjon er mye høyere enn oppgitt konsentrasjon er at arealet til akkurat denne er 474, mens de andre arealene for denne FAME innen samme konsentrasjon ligger mellom 66-166.

Det er ønskelig å finne lave standardavvik. Det som hadde vært ønskelig å se var at alle standardavvikene var lik 0. I en kjemisk analyse kan en forvente å se noe avvik på grunn av flere faktorer om virker inn på analysen, og noe avvik er av den grunn akseptabel.

Ut i fra noen av standardavvikene regnet ut for RIC kan det være gunstig å vurdere om en burde bruke RRF til TIC når en skal kvantifisere FAME-ne C20:4 *Cis* 5, 8, 11, 14 og C20:1 *Cis* 11. TIC har en uteligger C22:6 *Cis* 4, 7, 10, 13, 16, 19. På grunn av det høye standardavviket av denne FAMEs kan det være gunstig vurdere om en burde bruke RRF til RIC istedenfor RRF til TIC når en skal utføre en kvantitativ analyse for denne FAME-n.

6. Konklusjon

6.1. Del 1 Derivatisering

Etylderivat

I resultatene har en både IR spektre og MS spektre av etylderivat. IR-spektrene gir tegn til OH-gruppe tilstede i prøven. Det er ingen tegn til OH gruppe i spekteret før inndampning, men det er noe tegn til OH i spekteret til prøven etter inndampning.

Fragmenteringen gitt i MS-spektrene er tolket etter beste evne, og en har ikke funnet noe tydelige tegn på at en har etylderivatet i prøven. Fragmenteringen en har tyder på at en har dicaprin tilstede med fragmentering. Men ingen tydelige tegn på at en har etyl i prøven. Når en ikke har molekylion må en finne andre tegn til at en har et spekter uten molekylion, men slike tegn har en ikke funnet. Det er små tegn som kanskje kan tyde på et en har noe etyl tilsted, men toppene kan også være fragmentering av fettsyrekjeden. Uten noen tydelige tegn på molekylion i fragmenteringen er det vanskelig å si at en har derivatisert dicaprin tilstede i prøven. Om en har klart å derivatisere dicaprin vil en si at utbytte av molekylionet er lavt. Om metoden var gunstig ville en sett klarere tegn på fragmentering av molekylet og også sett et mulig molekylion.

Ut i fra disse resultatene vil jeg konkludere med at metoden utviklet i denne oppgaven ikke er en metoden en kan bruke for å derivatisere et acylglyserid.

Trimetylsilanderivat

For metoden beskrevet i punkt 3.1.2 Metoder kan en se positive resultater. En har flere tegn på at en har trimetylsilan i prøven analysert med direkte MS. I figur 18 kan en se mulig fragmentering som kan passe sammen med spekteret i figur 16 og 17. Flere av fragmentene i figur 18 har TMS bundet til glyserolkjeden i tillegg til TMS i seg selv ved m/z 73. En har også i begge spektrene tegn på molekylion. Men dette er en liten topp og det kan hende at det er bakgrunnsstøy. En har gode tegn på fragmentering som kan stemme med molekylionet og den forventede isotopfordelingen, og det kan da tyde på at den lille toppen ved m/z 471 er molekylion og ikke bakgrunnsstøy. Ut i fra disse resultatene ser det ut som om en har klart å utvikle en metoden som kan derivatisere et glyserid. Men om en har en metode som fungerer og et molekylion i spekteret ville en forventet å se en større topp som molekylion. En hadde

forventet å se en større prosentandel molekylion i prøven. 100 % toppen i spekteret er ikke et av fragmentene med TMS bundet til glyserolkjeden. Enn om en har tydelige tegn til molekylion har en ikke tegn på at metoden gir et godt utbytte av molekylion. En vil derfor konkludere med at en har klart å utvikle en metoden som kan brukes til derivatisering av et acylglyserid, men også en metode som ikke er gunstig å bruke med tanke på det lave utbytte av molekylion.

6.2. Del 2 Relativ Responsfaktor

En kan se de utregnede tallene av RRF til TIC og RIC i tabell 10. En kan se utregnet standardavvik og gjennomsnitt i tabell 11. Ut i fra resultatene ser en gode muligheter for å kunne bruke RRF funnet til TIC til kvantifisering av FAME-ne. Når en ser på resultatene funnet til RIC bør man være mer selektiv for hvilke RRF en kan bruke til kvantifisering. En kan se store standardavvik til noen av FAME-ne for RIC, som C20:4 *Cis* 5, 8, 11, 14 og C20:1 *Cis* 11 hor standardavvikene funnet er henholdsvis 377.1 og 103.0, og disse FAME-ne burde en kanskje bruke RRF for TIC til kvantifisering. En burde også vurdere om en bør bruke RRF for RIC når en skal utføre en kvantitativ analyse av C22:6 *Cis* 4, 7, 10, 13, 16, 19, da denne har et standardavvik på 67.2. En vil konkludere med å si at en kan bruke RRF regnet ut for TIC og de fleste av RRF regnet ut for RIC til kvantitativ analyse.

7. Videre arbeid

Del 1. Derivatisering

Jodidreagenser

Teorien som ligger til grunn for bruk av jodidreagenser som derivatiseringsreagens tilsier at dette burde være en reaksjon som kan fungere. Teoretisk kan en ikke se noe problemer med denne reaksjonen. Hvorfor metoden utviklet i oppgaven ikke har fungert kan jeg ikke si noe om. Det er mulig å prøve å komme med noen teorier om hvorfor, men uten egentlig å vite noe har jeg ikke lyst til å komme med noen forslag til videre arbeid.

TMCS reagens

Det er blitt utviklet en metode som kan brukes, men som ikke gir stor andel av produkt. Altså dette er ikke en gunstig metode. Hva kan gjøres for å forbedre metoden? Dette vil også bare være teorier, og uten noen konkret begrunnelse. Jeg vil si at det er muligheter for å kunne prøve å utvikle metoden, men jeg har ikke noen gode forslag til hvordan metoden kan forbedres. Grunnen til at det ikke ble valgt å gå videre med å utvikle en ny metode var på grunn av liten tid. Syntese av organiske molekyler tar tid, og for å kunne ha noe mer innhold i oppgaven ble det valgt å fortsette med del 2 av oppgaven.

Del 2 Relativ responsfaktor

Disse tallene skal brukes videre i annet arbeid ved kjemilaboratoriet ved IKBM. Disse tallene skal brukes til kvantitativ analyse i fremtiden.

8. Referanser

- European publication server. 2005 [cited 2015 03 April]; Available from: <u>https://data.epo.org/publication-server/rest/v1.0/publication-</u> <u>dates/20101006/patents/EP1807048NWB1/document.html</u>.
- 2. Fennema, O.R., *Food chemistry*. 1996, New York, NY: Marcel Dekker. XII, 1069 s. : ill.
- 3. Hart, D.J., *Organic chemistry: a brief course*. 2012, [Belmont, Calif.]: Brooks/Cole Cengage Learning. XXVI, 580 s. : ill.
- 4. Knapp, D.R., *Handbook of analytical derivatization reactions*. 1979, New York: Wiley. XVIII, 741 s. : ill.
- 5. *Derivatization of Fatty Acids to FAMEs*. 2015 [cited 2015 03 April]; Available from: <u>http://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html?TablePage=105120181</u>.
- 6. William, C.W. *Methylation of fatty acids a beginner's guide*. 2011 [cited 2015 02
 April]; Available from: <u>http://lipidlibrary.aocs.org/topics/archive/fame.htm</u>.
- William, C.W. Preparation of ester derivatives of fatty acids for chromatographic analysis 1999 [cited 2015 02 April]; Available from: http://lipidlibrary.aocs.org/topics/ester_93/index.htm.
- 8. Devle, H., et al., A GC-magnetic sector MS method for identification and quantification of fatty acids in ewe milk by different acquisition modes. Journal of separation science, 2009. **32**(21): p. 3738-3745.
- 9. Pierce, A.E., *Silylation of organic compounds: a technique for gas-phase analysis.*1968, Rockford Ill.: Pierce Chemical. xiii,487 s. : ill.
- Sweeley, C.C., et al., *Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances*. Journal of the American Chemical Society, 1963.
 85(16): p. 2497-2507.
- 11. Miller, J.M., *Chromatography: concepts and contrasts*. 2005, Hoboken, N.J.: Wiley. XXVI, 490 s. : ill.
- Hydrogen Gives GC Head Start. 2010 [cited 2015 15 Mai]; Available from: http://www.chromatographytechniques.com/articles/2010/06/hydrogen-gives-gc-headstart.

- Hoffmann, E.d. and V. Stroobant, *Mass spectrometry: principles and applications*.
 2007, Chichester: Wiley. XII, 489 s. : ill.
- Williams, D.H. and I. Fleming, Spectroscopic methods in organic chemistry. 2008, London: McGraw-Hill. X, 291 s. : ill.
- Clark, J. *Nucleophilic substitution*. 2000 2004 [cited 2015 03 April]; Available from: <u>http://www.chemguide.co.uk/mechanisms/nucsub/whatis.html</u>.
- 16. Leaving Groups. 2015 [cited 2015 02 April]; 2]. Available from: <u>http://chemwiki.ucdavis.edu/Organic_Chemistry/Reactions/Substitution_Reactions/S</u> <u>N2/Leaving_Groups</u>
- 17. Chakravarthy, V.K., et al., *The role of relative response factor in related substances method development by high preformance liquid chromatography (HPLC)*. Rasayan journal, 2011. **4**(4): p. 919-943.
- What is a Response Factor? 2015 [cited 2015 04 April]; Available from: <u>http://www.chromatographytoday.com/news/gc-mdgc-gc-</u> ms/32/breaking_news/what_is_a_response_factor/31169/.
- Iodomethane. 2005 [cited 2015 30 Mars]; Available from: <u>https://pubchem.ncbi.nlm.nih.gov/compound/iodomethane#section=3D-Conformer</u>.
- 20. *Ethyl iodide*. 2015 [cited 2015 30 Mars]; Available from: <u>http://en.wikipedia.org/wiki/Ethyl_iodide</u>.
- Iodoethane. 2005 [cited 2015 30 Mars]; Available from: <u>https://pubchem.ncbi.nlm.nih.gov/compound/Iodoethane#section=Top.</u>
- 22. *n-Propyl iodide*. 2014 [cited 2015 30 Mars]; Available from: <u>http://en.wikipedia.org/wiki/N-Propyl_iodide</u>.
- 23. *1-Iodopropane*. 2005 [cited 2015 30 Mars]; Available from:
 <u>https://pubchem.ncbi.nlm.nih.gov/compound/1-iodopropane#section=Top</u>.
- 24. *Trimethylsilyl chloride*. 2014 [cited 2015 30 Mars]; Available from: <u>http://en.wikipedia.org/wiki/Trimethylsilyl_chloride</u>.
- 25. *Chlorotrimethylsilane*. 2005 [cited 2015 30 Mars]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorotrimethylsilane.

9. Vedlegg

Figur V.1 Spekter med etylderivat som har refluksert 8, 2 og 0.5 timer.

Figur V.2 Kromatogram av prøven med konsentrasjon R37 150 µg/mL og internstandard 5 ug/mL

Figur V.3 Kromatogram av prøven med konsentrasjon R37 300 ug/mL og internstandard 10 µg/mL

Figur. V.4 Kromatogram av prøven med konsentrasjon R37 600 ug/mL og internstandard 25 µg/mL

Figur V.5 Kromatogram av prøven med konsentrasjon R37 1200 ug/mL og internstandard 50 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.12	366,00	5.13	347
C6:0	6.58	498,00	6.59	521
C7:0	7.27	427,00	7.27	437
C8:0	7.92	642,00	7.93	652
C9:0	8.59	559,00	8.60	580
C10:0	9.33	711,00	9.34	742
C11:0	10.23	367,00	10.24	372
C12:0	11.39	766,00	11.40	784
C13:0	12.95	381,00	12.96	381
C14:0	15.10	705,00	15.11	707
C14:1 Cis 9	17.12	324,00	17.14	304
C15:0	18.08	362,00	18.09	321
C15:1 Cis 10	20.78	315,00	20.80	320
C16:0	22.11	1061,00	22.14	1018
C16:1 Cis 9	25.05	306,00	25.05	304
C17:0	27.73	307,00	27.75	286
C17:1 Cis 10	31.68	309,00	31.71	289
C18:0	35.57	593,00	35.59	557
C18:1 Trans 9	38.86	275,00	38.91	296
C18:1 Cis 9	39.93	582,00	39.99	565
C18:2 Trans 9, 12	44.40	227,00	44.46	264
C19:0	44.63	405,00	44.66	417
C18:2 Cis 9, 12	46.13	246,00	46.15	220
C18:3 Cis 6, 9, 12	49.61	220,00	49.63	252
C20:0	51.17	513,00	51.19	503
C18:3 Cis 9, 12, 15	51.81	200,00	51.84	209
C20:1 Cis 11	53.47	228,00	53.51	212
C21:0	56.29	233,00	56.32	270
C20:2 Cis 11, 14	57.26	196,00	57.29	215
C20:3 Cis 8, 11, 14	59.57	190,00	59.60	211
C22:0	60.60	454,00	60.63	431
C20:4 Cis 5, 8, 11, 14	61.19	389,00	61.21	352
C20:3 Cis 11, 14, 17	61.19	389,00	61.21	352
C22:1 Cis 13	62.35	198,00	62.37	197
C23:0	64.36	201,00	64.38	193
C20:5 Cis 5, 8, 11, 14, 17	64.90	161,00	64.92	197
C22:2 Cis 13, 16	65.27	191,00	65.28	173
C24:0	67.75	397,00	67.77	417
C24:1 Cis 15	69.25	161,00	69.27	226
C22:6 Cis 4, 7, 10, 13, 16, 19	73.11	126,00	73.14	474

Tabell V.1 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 150 μ g/mL og internstandard med konsentrasjon 5 μ g/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	323	5.11	317
C6:0	6.56	486	6.57	477
C7:0	7.24	422	7.25	417
C8:0	7.91	603	7.91	591
C9:0	8.58	423	8.58	424
C10:0	9.31	711	9.32	652
C11:0	10.21	343	10.22	323
C12:0	11.37	719	11.38	695
C13:0	12.94	324	12.95	332
C14:0	15.08	666	15.09	635
C14:1 Cis 9	17.10	300	17.11	263
C15:0	18.06	310	18.07	301
C15:1 Cis 10	20.76	262	20.77	268
C16:0	22.10	974	22.10	950
C16:1 Cis 9	25.03	261	25.04	256
C17:0	27.70	261	27.70	254
C17:1 Cis 10	31.67	232	31.67	236
C18:0	35.55	497	35.55	508
C18:1 Trans 9	38.85	181	38.85	162
C18:1 Cis 9	39.92	489	39.92	473
C18:2 Trans 9, 12	44.40	179	44.42	175
C19:0	44.62	390	44.63	376
C18:2 Cis 9, 12	46.13	184	46.12	195
C18:3 Cis 6, 9, 12	49.59	183	49.61	173
C20:0	51.14	434	51.15	437
C18:3 Cis 9, 12, 15	51.81	177	51.80	173
C20:1 Cis 11	53.47	172	53.46	163
C21:0	56.28	182	56.28	170
C20:2 Cis 11, 14	57.26	165	57.26	198
C20:3 Cis 8, 11, 14	59.57	156	59.58	151
C22:0	60.59	361	60.59	361
C20:4 Cis 5, 8, 11, 14	61.19	316	61.20	335
C20:3 Cis 11, 14, 17	61.19	316	61.20	335
C22:1 Cis 13	62.34	138	62.33	132
C23:0	64.35	140	64.36	132
C20:5 Cis 5, 8, 11, 14, 17	64.89	150	64.90	142
C22:2 Cis 13, 16	65.25	137	65.27	129
C24:0	67.73	275	67.74	294
C24:1 Cis 15	69.23	113	69.23	106
C22:6 Cis 4, 7, 10, 13, 16, 19	73.12	114	73.12	107

Tabell V.2 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 150 μ g/mL og internstandard med konsentrasjon 5 μ g/mL.

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.10	320	5.11	320
C6:0	6.56	471	6.56	467
C7:0	7.24	479	7.24	466
C8:0	7.90	587	7.90	568
C9:0	8.57	481	8.57	478
C10:0	9.31	661	9.31	677
C11:0	10.21	308	10.27	319
C12:0	11.37	682	11.37	670
C13:0	12.92	325	12.92	305
C14:0	15.06	591	15.06	609
C14:1 Cis 9	17.07	275	17.07	250
C15:0	18.03	271	18.02	263
C15:1 Cis 10	20.72	231	20.71	229
C16:0	22.05	905	22.04	896
C16:1 Cis 9	24.97	222	24.97	216
C17:0	27.62	213	27.63	219
C17:1 Cis 10	31.59	181	31.57	179
C18:0	35.44	435	35.44	304
C18:1 Trans 9	38.75	162	38.73	153
C18:1 Cis 9	39.83	373	39.83	378
C18:2 Trans 9, 12	44.34	145	44.33	151
C19:0	44.53	290	44.53	302
C18:2 Cis 9, 12	46.06	154	46.05	144
C18:3 Cis 6, 9, 12	49.54	139	49.54	147
C20:0	51.08	356	51.07	342
C18:3 Cis 9, 12, 15	51.74	141	51.75	138
C20:1 Cis 11	53.42	132	53.42	134
C21:0	56.21	130	56.21	124
C20:2 Cis 11, 14	57.21	130	57.22	133
C20:3 Cis 8, 11, 14	59.52	115	59.52	105
C22:0	60.55	262	60.54	255
C20:4 Cis 5, 8, 11, 14	61.15	262	61.14	253
C20:3 Cis 11, 14, 17	61.15	262	61.14	253
C22:1 Cis 13	62.29	97	62.27	101
C23:0	64.30	101	64.29	94
C20:5 Cis 5, 8, 11, 14, 17	64.85	114	64.85	108
C22:2 Cis 13, 16	65.21	102	65.21	82
C24:0	67.68	194	67.68	172
C24:1 Cis 15	69.19	76	69.18	65
C22:6 Cis 4, 7, 10, 13, 16, 19	73.07	66	73.08	166

Tabell V.3 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 150 μ g/mL og internstandard med konsentrasjon 5 μ g/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.14	708,00	5.12	699,00
C6:0	6.59	991,00	6.58	1062,00
C7:0	7.27	1026,00	7.26	1032,00
C8:0	7.93	1256,00	7.92	1295,00
C9:0	8.60	996,00	8.59	1012,00
C10:0	9.34	1376,00	9.33	1508,00
C11:0	10.24	711,00	10.23	749,00
C12:0	11.41	1538,00	11.40	1609,00
C13:0	12.97	757,00	12.96	780,00
C14:0	15.12	1405,00	15.11	1499,00
C14:1 Cis 9	17.15	648,00	17.13	689,00
C15:0	18.10	692,00	18.09	733,00
C15:1 Cis 10	20.81	625,00	20.80	665,00
C16:0	22.15	2235,00	22.14	2343,00
C16:1 Cis 9	25.07	669,00	25.07	660,00
C17:0	27.77	679,00	27.76	637,00
C17:1 Cis 10	31.74	592,00	31.72	608,00
C18:0	35.63	1280,00	35.62	1331,00
C18:1 Trans 9	38.92	592,00	38.93	550,00
C18:1 Cis 9	40.01	1202,00	40.00	1275,00
C18:2 Trans 9, 12	44.46	493,00	44.47	491,00
C19:0	44.70	909,00	44.68	988,00
C18:2 Cis 9, 12	46.18	500,00	46.17	521,00
C18:3 Cis 6, 9, 12	49.64	492,00	49.63	526,00
C20:0	51.21	1143,00	51.20	1169,00
C18:3 Cis 9, 12, 15	51.85	470,00	51.84	457,00
C20:1 Cis 11	53.52	480,00	53.51	489,00
C21:0	56.33	497,00	56.32	493,00
C20:2 Cis 11, 14	57.31	452,00	57.30	544,00
C20:3 Cis 8, 11, 14	59.62	428,00	59.60	443,00
C22:0	60.65	959,00	60.64	953,00
C20:4 Cis 5, 8, 11, 14	61.22	884,00	61.21	912,00
C20:3 Cis 11, 14, 17	61.22	884,00	61.21	912,00
C22:1 Cis 13	62.39	422,00	62.37	430,00
C23:0	64.40	406,00	64.39	375,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	396,00	64.92	400,00
C22:2 Cis 13, 16	65.29	442,00	65.29	397,00
C24:0	67.78	684,00	67.78	731,00
C24:1 Cis 15	69.29	373,00	69.27	387,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	275.00	73.15	309.00

Tabell V.4 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	687,00	5.11	653,00
C6:0	6.57	983,00	6.57	971,00
C7:0	7.25	874,00	7.25	878,00
C8:0	7.91	1235,00	7.91	1230,00
C9:0	8.58	930,00	8.58	919,00
C10:0	9.32	1438,00	9.31	1391,00
C11:0	10.22	707,00	10.21	690,00
C12:0	11.38	1526,00	11.37	1519,00
C13:0	12.94	721,00	12.94	724,00
C14:0	15.08	1426,00	15.08	1413,00
C14:1 Cis 9	17.10	639,00	17.10	596,00
C15:0	18.06	653,00	18.05	658,00
C15:1 Cis 10	20.76	594,00	20.75	562,00
C16:0	22.10	2286,00	22.09	2134,00
C16:1 Cis 9	25.03	519,00	25.01	556,00
C17:0	27.70	574,00	27.69	573,00
C17:1 Cis 10	31.66	516,00	31.64	511,00
C18:0	35.55	1152,00	35.54	1106,00
C18:1 Trans 9	38.85	454,00	38.84	456,00
C18:1 Cis 9	39.92	1130,00	39.90	1056,00
C18:2 Trans 9, 12	44.40	424,00	44.39	395,00
C19:0	44.63	862,00	44.61	817,00
C18:2 Cis 9, 12	46.11	432,00	46.11	426,00
C18:3 Cis 6, 9, 12	49.60	418,00	49.59	399,00
C20:0	51.15	1017,00	51.14	969,00
C18:3 Cis 9, 12, 15	51.80	418,00	51.80	384,00
C20:1 Cis 11	53.46	409,00	53.46	389,00
C21:0	56.27	422,00	56.27	385,00
C20:2 Cis 11, 14	57.26	381,00	57.26	358,00
C20:3 Cis 8, 11, 14	59.57	359,00	59.57	348,00
C22:0	60.59	837,00	60.58	795,00
C20:4 Cis 5, 8, 11, 14	61.19	749,00	61.19	743,00
C20:3 Cis 11, 14, 17	61.19	749,00	61.19	743,00
C22:1 Cis 13	62.33	335,00	62.33	357,00
C23:0	64.35	327,00	64.35	309,00
C20:5 Cis 5, 8, 11, 14, 17	64.89	333,00	64.89	305,00
C22:2 Cis 13, 16	65.26	310,00	65.25	209,00
C24:0	67.73	667,00	67.73	615,00
C24:1 Cis 15	69.23	276,00	69.23	253,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.12	222,00	73.11	207,00

Tabell V.5 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	.		.	
	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.09	680,00	5.10	685,00
C6:0	6.55	977,00	6.56	974,00
C7:0	7.23	866,00	7.24	867,00
C8:0	7.89	1229,00	7.90	1230,00
C9:0	8.56	1056,00	8.57	1067,00
C10:0	9.29	1388,00	9.30	1395,00
C11:0	10.19	690,00	10.20	704,00
C12:0	11.35	1494,00	11.37	1527,00
C13:0	12.91	694,00	12.92	706,00
C14:0	15.05	1281,00	15.06	1387,00
C14:1 Cis 9	17.05	596,00	17.06	584,00
C15:0	18.01	631,00	18.02	626,00
C15:1 Cis 10	20.71	544,00	20.71	528,00
C16:0	22.03	2094,00	22.04	2068,00
C16:1 Cis 9	24.95	532,00	24.96	528,00
C17:0	27.61	523,00	27.62	530,00
C17:1 Cis 10	31.56	448,00	31.57	456,00
C18:0	35.44	997,00	35.44	1020,00
C18:1 Trans 9	38.73	379,00	38.74	397,00
C18:1 Cis 9	39.80	970,00	39.80	965,00
C18:2 Trans 9, 12	44.31	373,00	44.33	368,00
C19:0	44.51	789,00	44.53	781,00
C18:2 Cis 9, 12	46.03	381,00	46.04	373,00
C18:3 Cis 6, 9, 12	49.50	358,00	49.52	343,00
C20:0	51.07	843,00	51.08	824,00
C18:3 Cis 9, 12, 15	51.73	338,00	51.74	327,00
C20:1 Cis 11	53.40	335,00	53.41	334,00
C21:0	56.21	325,00	56.21	324,00
C20:2 Cis 11, 14	57.19	307,00	57.20	311,00
C20:3 Cis 8, 11, 14	59.51	275,00	59.51	286,00
C22:0	60.53	643,00	60.54	627,00
C20:4 Cis 5, 8, 11, 14	61.12	653,00	61.13	628,00
C20:3 Cis 11, 14, 17	61.12	653,00	61.13	628,00
C22:1 Cis 13	62.26	255,00	62.27	255,00
C23:0	64.29	245,00	64.30	222,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	260,00	64.84	265,00
C22:2 Cis 13, 16	65.19	236,00	65.20	225,00
C24:0	67.67	472,00	67.67	459,00
C24:1 Cis 15	69.18	197,00	69.19	179,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	180.00	73.07	210.00

Tabell V.6 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.13	1427,00	5.13	1435,00
C6:0	6.58	2093,00	6.58	2116,00
C7:0	7.26	2430,00	7.27	2427,00
C8:0	7.93	2635,00	7.93	2680,00
C9:0	8.60	2641,00	8.60	2641,00
C10:0	9.34	3197,00	9.34	3205,00
C11:0	10.24	1577,00	10.24	1610,00
C12:0	11.40	3525,00	11.40	3394,00
C13:0	12.96	1710,00	12.96	1766,00
C14:0	15.11	3479,00	15.12	3368,00
C14:1 Cis 9	17.14	1455,00	17.14	1469,00
C15:0	18.09	1622,00	18.10	1693,00
C15:1 Cis 10	20.80	1414,00	20.81	1457,00
C16:0	22.16	5167,00	22.16	5225,00
C16:1 Cis 9	25.07	1469,00	25.08	1467,00
C17:0	27.77	1481,00	27.76	1543,00
C17:1 Cis 10	31.74	1395,00	31.74	1410,00
C18:0	35.65	2987,00	35.65	3127,00
C18:1 Trans 9	38.95	1245,00	38.94	1332,00
C18:1 Cis 9	40.03	2883,00	40.02	2869,00
C18:2 Trans 9, 12	44.48	1163,00	44.48	1239,00
C19:0	44.71	3042,00	44.72	3023,00
C18:2 Cis 9, 12	46.18	1186,00	46.18	1234,00
C18:3 Cis 6, 9, 12	49.65	1133,00	49.64	1226,00
C20:0	51.22	2934,00	51.22	2994,00
C18:3 Cis 9, 12, 15	51.86	1141,00	51.86	1158,00
C20:1 Cis 11	53.52	1246,00	53.53	1247,00
C21:0	56.34	1223,00	56.34	1306,00
C20:2 Cis 11, 14	57.30	1215,00	57.31	1138,00
C20:3 Cis 8, 11, 14	59.62	1089,00	59.62	1080,00
C22:0	60.66	2517,00	60.66	2588,00
C20:4 Cis 5, 8, 11, 14	61.23	2224,00	61.23	2236,00
C20:3 Cis 11, 14, 17	61.23	2224,00	61.23	2236,00
C22:1 Cis 13	62.39	1036,00	62.39	1057,00
C23:0	64.41	1065,00	64.41	1038,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	968,00	64.93	984,00
C22:2 Cis 13, 16	65.30	1013,00	65.30	1038,00
C24:0	67.80	2159,00	67.80	2160,00
C24:1 Cis 15	69.29	991,00	69.29	1049,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	663,00	73.16	743,00

Tabell V.7 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 For TIC. Prøver med R37 konsentrasjon 600 μg/mL og internstandard med konsentrasjon 25 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	1288,00	5.11	1304,00
C6:0	6.56	1911,00	6.56	1911,00
C7:0	7.24	2202,00	7.24	2160,00
C8:0	7.90	2400,00	7.90	2410,00
C9:0	8.57	2382,00	8.57	2380,00
C10:0	9.31	2750,00	9.31	2828,00
C11:0	10.21	1399,00	10.21	1394,00
C12:0	11.37	3027,00	11.37	3009,00
C13:0	12.93	1493,00	12.93	1460,00
C14:0	15.07	2947,00	15.07	3002,00
C14:1 Cis 9	17.09	1279,00	17.08	1238,00
C15:0	18.05	1357,00	18.04	1352,00
C15:1 Cis 10	20.74	1210,00	20.73	1186,00
C16:0	22.09	4476,00	22.08	4466,00
C16:1 Cis 9	25.01	1189,00	25.00	1188,00
C17:0	27.67	1211,00	27.67	1220,00
C17:1 Cis 10	31.63	1085,00	31.62	1069,00
C18:0	35.54	2462,00	35.52	2472,00
C18:1 Trans 9	38.82	981,00	38.80	1000,00
C18:1 Cis 9	39.90	2389,00	39.89	2348,00
C18:2 Trans 9, 12	44.38	891,00	44.37	892,00
C19:0	44.61	2356,00	44.60	2431,00
C18:2 Cis 9, 12	46.09	951,00	46.08	924,00
C18:3 Cis 6, 9, 12	49.58	855,00	49.57	874,00
C20:0	51.15	2181,00	51.13	2231,00
C18:3 Cis 9, 12, 15	51.79	861,00	51.78	879,00
C20:1 Cis 11	53.45	858,00	53.45	873,00
C21:0	56.26	889,00	56.25	890,00
C20:2 Cis 11, 14	57.25	792,00	57.24	807,00
C20:3 Cis 8, 11, 14	59.56	768,00	59.54	780,00
C22:0	60.59	1847,00	60.58	1816,00
C20:4 Cis 5, 8, 11, 14	61.17	1846,00	61.16	1758,00
C20:3 Cis 11, 14, 17	61.17	1846,00	61.16	1758,00
C22:1 Cis 13	62.32	715,00	62.31	735,00
C23:0	64.34	688,00	64.34	716,00
C20:5 Cis 5, 8, 11, 14, 17	64.88	702,00	64.87	720,00
C22:2 Cis 13, 16	65.24	698,00	65.23	717,00
C24:0	67.73	1430,00	67.73	1454,00
C24:1 Cis 15	69.23	602,00	69.22	583,00
C22:6 Cis 4, 7, 10, 13, 16,	73.10	479,00	73.09	481,00
19				

Tabell V.8 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 600 μg/mL og internstandard med konsentrasjon 25 μg/mL
	Inj.parallell 1	Inj.parallell 2		
FAME	RT	Area	RT	Area
C4:0	5.09	1423,00	5.09	1357,00
C6:0	6.55	2004,00	6.55	1976,00
C7:0	7.23	2089,00	7.23	2126,00
C8:0	7.89	2451,00	7.89	2480,00
C9:0	8.56	2876,00	8.56	2899,00
C10:0	9.29	2859,00	9.29	2863,00
C11:0	10.19	1408,00	10.19	1428,00
C12:0	11.35	3046,00	11.36	3123,00
C13:0	12.91	1498,00	12.91	1511,00
C14:0	15.05	2977,00	15.05	3031,00
C14:1 Cis 9	17.05	1276,00	17.05	1307,00
C15:0	18.01	1378,00	18.01	1397,00
C15:1 Cis 10	20.70	1200,00	20.71	1202,00
C16:0	22.04	4557,00	22.04	4577,00
C16:1 Cis 9	24.95	1170,00	24.94	1207,00
C17:0	27.61	1175,00	27.61	1206,00
C17:1 Cis 10	31.57	1060,00	31.56	1104,00
C18:0	35.45	2372,00	35.44	2436,00
C18:1 Trans 9	38.72	913,00	38.73	964,00
C18:1 Cis 9	39.83	2279,00	39.81	2280,00
C18:2 Trans 9, 12	44.32	834,00	44.32	861,00
C19:0	44.54	2382,00	44.54	2415,00
C18:2 Cis 9, 12	46.04	888,00	46.03	931,00
C18:3 Cis 6, 9, 12	49.52	852,00	49.51	902,00
C20:0	51.08	2064,00	51.08	2086,00
C18:3 Cis 9, 12, 15	51.74	835,00	51.74	848,00
C20:1 Cis 11	53.40	818,00	53.40	1025,00
C21:0	56.21	809,00	56.21	853,00
C20:2 Cis 11, 14	57.20	749,00	57.19	750,00
C20:3 Cis 8, 11, 14	59.51	695,00	59.50	713,00
C22:0	60.55	1655,00	60.54	1699,00
C20:4 Cis 5, 8, 11, 14	61.13	1615,00	61.12	1631,00
C20:3 Cis 11, 14, 17	61.13	1615,00	61.12	1631,00
C22:1 Cis 13	62.27	653,00	62.27	670,00
C23:0	64.29	604,00	64.29	615,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	663,00	64.83	663,00
C22:2 Cis 13, 16	65.20	627,00	65.19	635,00
C24:0	67.68	1252,00	67.68	1324,00
C24:1 Cis 15	69.19	507,00	69.18	510,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	430.00	73.06	418.00

Tabell V.9 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 600 μg/mL og internstandard med konsentrasjon 25 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.13	3109,00	5.12	3291,00
C6:0	6.58	4494,00	6.58	4779,00
C7:0	7.27	5386,00	7.26	5550,00
C8:0	7.93	5708,00	7.92	5907,00
C9:0	8.60	5863,00	8.59	6163,00
C10:0	9.34	6750,00	9.33	6837,00
C11:0	10.24	3492,00	10.23	3516,00
C12:0	11.40	7444,00	11.39	7685,00
C13:0	12.96	3835,00	12.95	3776,00
C14:0	15.12	7689,00	15.11	7897,00
C14:1 Cis 9	17.14	3495,00	17.13	3415,00
C15:0	18.10	3629,00	18.09	3663,00
C15:1 Cis 10	20.81	3305,00	20.80	3356,00
C16:0	22.17	11831,00	22.16	11867,00
C16:1 Cis 9	25-08	3297,00	25.07	3383,00
C17:0	27.78	3399,00	27.76	3444,00
C17:1 Cis 10	31.74	3271,00	31.73	3208,00
C18:0	35.70	7137,00	35.68	7140,00
C18:1 Trans 9	38.97	3066,00	38.95	3104,00
C18:1 Cis 9	40.05	6684,00	40.03	6753,00
C18:2 Trans 9, 12	44.50	2856,00	44.47	2792,00
C19:0	44.76	7090,00	44.75	7163,00
C18:2 Cis 9, 12	46.20	2996,00	46.18	2921,00
C18:3 Cis 6, 9, 12	49.65	2931,00	49.64	2714,00
C20:0	51.26	6774,00	51.25	6639,00
C18:3 Cis 9, 12, 15	51.87	2617,00	51.86	2664,00
C20:1 Cis 11	53.54	2739,00	53.53	2829,00
C21:0	56.35	2952,00	56.34	2979,00
C20:2 Cis 11, 14	57.32	2667,00	57.31	2640,00
C20:3 Cis 8, 11, 14	59.63	2555,00	59.61	2535,00
C22:0	60.69	6112,00	60.68	6121,00
C20:4 Cis 5, 8, 11, 14	61.23	5383,00	61.22	5313,00
C20:3 Cis 11, 14, 17	61.23	5383,00	61.22	5313,00
C22:1 Cis 13	62.39	2588,00	62.39	2572,00
C23:0	64.43	2617,00	64.42	2490,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	2314,00	64.92	2228,00
C22:2 Cis 13, 16	65.31	2470,00	65.30	2425,00
C24:0	67.83	5475,00	67.82	5219,00
C24:1 Cis 15	69.31	2361,00	69.29	2267,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	1731.00	73.15	1719.00

Tabell V.10 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 1200 µg/mL og internstandard med konsentrasjon 50 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.10	2930,00	5.10	2845,00
C6:0	6.55	4123,00	6.55	4145,00
C7:0	7.24	4864,00	7.23	4757,00
C8:0	7.90	5243,00	7.90	5166,00
C9:0	8.57	5174,00	8.56	5119,00
C10:0	9.30	6025,00	9.30	6033,00
C11:0	10.20	3114,00	10.20	3095,00
C12:0	11.37	6746,00	11.37	6661,00
C13:0	12.92	3334,00	12.92	3378,00
C14:0	15.06	6884,00	15.06	7000,00
C14:1 Cis 9	17.08	3093,00	17.07	2997,00
C15:0	18.04	3234,00	18.03	3223,00
C15:1 Cis 10	20.73	2826,00	20.72	2849,00
C16:0	22.09	10368,00	22.09	10494,00
C16:1 Cis 9	24.99	2897,00	24.99	2891,00
C17:0	27.67	2969,00	27.66	2906,00
C17:1 Cis 10	31.63	2709,00	31.62	2703,00
C18:0	35.55	6108,00	35.55	6041,00
C18:1 Trans 9	38.81	2590,00	38.80	2543,00
C18:1 Cis 9	39.90	5877,00	39.90	5758,00
C18:2 Trans 9, 12	44.37	2329,00	44.37	2329,00
C19:0	44.64	5851,00	44.63	5782,00
C18:2 Cis 9, 12	46.08	2388,00	46.07	2341,00
C18:3 Cis 6, 9, 12	49.56	2278,00	49.56	2210,00
C20:0	51.16	5707,00	51.16	5640,00
C18:3 Cis 9, 12, 15	51.77	2246,00	51.77	2206,00
C20:1 Cis 11	53.45	2312,00	53.45	2313,00
C21:0	56.27	2372,00	56.26	2402,00
C20:2 Cis 11, 14	57.24	2193,00	57.24	2147,00
C20:3 Cis 8, 11, 14	59.54	2024,00	59.54	2032,00
C22:0	60.61	5014,00	60.60	4878,00
C20:4 Cis 5, 8, 11, 14	61.16	4638,00	61.16	4454,00
C20:3 Cis 11, 14, 17	61.16	4638,00	61.16	4454,00
C22:1 Cis 13	62.32	2039,00	62.31	1977,00
C23:0	64.35	1917,00	64.35	1913,00
C20:5 Cis 5, 8, 11, 14, 17	64.87	1887,00	64.86	1867,00
C22:2 Cis 13, 16	65.24	1960,00	65.24	1921,00
C24:0	67.76	4027,00	67.75	3936,00
C24:1 Cis 15	69.23	1745,00	69.22	1667,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.09	1364.00	73.09	1332.00

Tabell V.11 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 1200 µg/mL og internstandard med konsentrasjon 50 µg/mL

	Ini.parallell 1		Ini.parallell 2	
FAME	RT	Area	RT	Area
<u> </u>	5.10	2873.00	5.10	2906.00
C6:0	6.55	4083.00	6.54	4135.00
C7:0	7.23	4622.00	7.22	4665.00
C8:0	7.89	5079.00	7.88	5087.00
C9:0	8.56	5936.00	8.55	5901.00
C10:0	9.30	5908,00	9.29	5938,00
C11:0	10.19	2977,00	10.19	3060,00
C12:0	11.36	6446,00	11.35	6667,00
C13:0	12.91	3180,00	12.90	3236,00
C14:0	15.05	6794,00	15.04	6670,00
C14:1 Cis 9	17.05	2867,00	17.04	2903,00
C15:0	18.01	3016,00	18.00	3096,00
C15:1 Cis 10	20.70	2726,00	20.70	2755,00
C16:0	22.05	9889,00	22.04	10108,00
C16:1 Cis 9	24.94	2699,00	24.94	2785,00
C17:0	27.62	2795,00	27.60	2879,00
C17:1 Cis 10	31.56	2536,00	31.55	2593,00
C18:0	35.47	5808,00	35.46	5856,00
C18:1 Trans 9	38.73	2339,00	38.72	2388,00
C18:1 Cis 9	39.83	5358,00	39.82	5570,00
C18:2 Trans 9, 12	44.32	2133,00	44.31	2229,00
C19:0	44.57	6043,00	44.56	6251,00
C18:2 Cis 9, 12	46.03	2209,00	46.02	2247,00
C18:3 Cis 6, 9, 12	49.51	2060,00	49.50	2143,00
C20:0	51.11	5142,00	51.10	5353,00
C18:3 Cis 9, 12, 15	51.73	2050,00	51.73	2142,00
C20:1 Cis 11	53.41	2184,00	53.40	2185,00
C21:0	56.22	2064,00	56.21	2230,00
C20:2 Cis 11, 14	57.20	1919,00	57.19	2041,00
C20:3 Cis 8, 11, 14	59.51	1815,00	59.50	1881,00
C22:0	60.57	4372,00	60.56	4597,00
C20:4 Cis 5, 8, 11, 14	61.13	4105,00	61.11	4319,00
C20:3 Cis 11, 14, 17	61.13	4105,00	61.11	4319,00
C22:1 Cis 13	62.28	1781,00	62.27	1895,00
C23:0	64.31	1721,00	64.30	1762,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	1727,00	64.82	1779,00
C22:2 Cis 13, 16	65.21	1766,00	65.19	1788,00
C24:0	67.71	3479,00	67.70	3682,00
C24:1 Cis 15	69.20	1478,00	69.19	1518,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	1178.00	73.05	1269.00

Tabell V.12 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for TIC. Prøver med R37 konsentrasjon 1200 µg/mL og internstandard med konsentrasjon 50 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.12	154,00	5.13	160,00
C6:0	6.58	229,00	6.59	238,00
C7:0	7.27	201,00	7.27	205,00
C8:0	7.92	126,00	7.93	124,00
C9:0	8.59	41,00	8.60	43,00
C10:0	9.33	54,00	9.34	54,00
C11:0	10.23	27,00	10.24	26,00
C12:0	11.39	43,00	11.40	44,00
C13:0	12.95	23,00	12.96	23,00
C14:0	15.10	43,00	15.11	44,00
C14:1 Cis 9	17.12	15,00	17.14	15,00
C15:0	18.08	20,00	18.09	18,00
C15:1 Cis 10	20.78	13,00	20.80	12,00
C16:0	22.11	61,00	22.14	61,00
C16:1 Cis 9	25.05	14,00	25.05	13,00
C17:0	27.73	17,00	27.75	17,00
C17:1 Cis 10	31.68	11,00	31.71	12,00
C18:0	35.57	35,00	35.59	33,00
C18:1 Trans 9	38.86	9,00	38.91	7,00
C18:1 Cis 9	39.93	23,00	39.99	23,00
C18:2 Trans 9, 12	44.40	5,00	44.46	4,00
C19:0	44.63	23,00	44.66	23,00
C18:2 Cis 9, 12	46.13	4,00	46.15	5,00
C18:3 Cis 6, 9, 12	49.61	5,00	49.63	4,00
C20:0	51.17	48,00	51.19	48,00
C18:3 Cis 9, 12, 15	51.81	3,00	51.84	2,00
C20:1 Cis 11	53.47	49,90	53.51	9,00
C21:0	56.29	13,00	56.32	13,00
C20:2 Cis 11, 14	57.26	4,00	57.29	4,00
C20:3 Cis 8, 11, 14	59.57	3,00	59.60	2,00
C22:0	60.60	29,00	60.63	29,00
C20:4 Cis 5, 8, 11, 14	61.19	4,00	61.21	3,00
C20:3 Cis 11, 14, 17	61.19	3,00	61.21	3,00
C22:1 Cis 13	62.35	8,00	62.37	8,00
C23:0	64.36	14,00	64.38	13,00
C20:5 Cis 5, 8, 11, 14, 17	64.90	4,00	64.92	4,00
C22:2 Cis 13, 16	65.27	3,00	65.28	3,00
C24:0	67.75	30,00	67.77	31,00
C24:1 Cis 15	69.25	8,00	69.27	9,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.11	11.00	73.14	12.00

Tabell V.13 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 150 μg/mL og internstandard med konsentrasjon 5 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	148,00	5.11	152,00
C6:0	6.56	225,00	6.57	220,00
C7:0	7.24	203,00	7.25	196,00
C8:0	7.91	118,00	7.91	115,00
C9:0	8.58	33,00	8.58	32,00
C10:0	9.31	50,00	9.32	49,00
C11:0	10.21	25,00	10.22	23,00
C12:0	11.37	41,00	11.38	40,00
C13:0	12.94	20,00	12.95	19,00
C14:0	15.08	40,00	15.09	38,00
C14:1 Cis 9	17.10	13,00	17.11	12,00
C15:0	18.06	17,00	18.07	16,00
C15:1 Cis 10	20.76	11,00	20.77	11,00
C16:0	22.10	59,00	22.10	57,00
C16:1 Cis 9	25.03	11,00	25.04	11,00
C17:0	27.70	15,00	27.70	15,00
C17:1 Cis 10	31.67	8,00	31.67	8,00
C18:0	35.55	30,00	35.55	30,00
C18:1 Trans 9	38.85	7,00	38.85	7,00
C18:1 Cis 9	39.92	20,00	39.92	19,00
C18:2 Trans 9, 12	44.40	4,00	44.42	3,00
C19:0	44.62	22,00	44.63	23,00
C18:2 Cis 9, 12	46.13	3,00	46.12	2,00
C18:3 Cis 6, 9, 12	49.59	3,00	49.61	3,00
C20:0	51.14	41,00	51.15	40,00
C18:3 Cis 9, 12, 15	51.81	1,00	51.80	2,00
C20:1 Cis 11	53.47	7,00	53.46	7,00
C21:0	56.28	10,00	56.28	10,00
C20:2 Cis 11, 14	57.26	3,00	57.26	3,00
C20:3 Cis 8, 11, 14	59.57	2,00	59.58	2,00
C22:0	60.59	24,00	60.59	24,00
C20:4 Cis 5, 8, 11, 14	61.19	1,00	61.20	46,00
C20:3 Cis 11, 14, 17	61.19	2,00	61.20	2,00
C22:1 Cis 13	62.34	6,00	62.33	6,00
C23:0	64.35	10,00	64.36	10,00
C20:5 Cis 5, 8, 11, 14, 17	64.89	2,00	64.90	4,00
C22:2 Cis 13, 16	65.25	2,00	65.27	3,00
C24:0	67.73	21,00	67.74	22,00
C24:1 Cis 15	69.23	6,00	69.23	6,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.12	10,00	73.12	12,00

Tabell V.14 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 150 μg/mL og internstandard med konsentrasjon 5 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.10	147,00	5.11	149,00
C6:0	6.56	214,00	6.56	215,00
C7:0	7.24	224,00	7.24	219,00
C8:0	7.90	114,00	7.90	112,00
C9:0	8.57	36,00	8.57	36,00
C10:0	9.31	47,00	9.31	48,00
C11:0	10.21	22,00	10.27	23,00
C12:0	11.37	39,00	11.37	39,00
C13:0	12.92	19,00	12.92	18,00
C14:0	15.06	37,00	15.06	37,00
C14:1 Cis 9	17.07	12,00	17.07	11,00
C15:0	18.03	15,00	18.02	15,00
C15:1 Cis 10	20.72	9,00	20.71	9,00
C16:0	22.05	55,00	22.04	55,00
C16:1 Cis 9	24.97	9,00	24.97	9,00
C17:0	27.62	12,00	27.63	13,00
C17:1 Cis 10	31.59	7,00	31.57	8,00
C18:0	35.44	26,00	35.44	25,00
C18:1 Trans 9	38.75	3,00	38.73	4,00
C18:1 Cis 9	39.83	17,00	39.83	16,00
C18:2 Trans 9, 12	44.34	3,00	44.33	2,00
C19:0	44.53	19,00	44.53	17,00
C18:2 Cis 9, 12	46.06	3,00	46.05	3,00
C18:3 Cis 6, 9, 12	49.54	2,00	49.54	2,00
C20:0	51.08	34,00	51.07	33,00
C18:3 Cis 9, 12, 15	51.74	2,00	51.75	1,00
C20:1 Cis 11	53.42	5,00	53.42	5,00
C21:0	56.21	8,00	56.21	7,00
C20:2 Cis 11, 14	57.21	2,00	57.22	2,00
C20:3 Cis 8, 11, 14	59.52	1,00	59.52	2,00
C22:0	60.55	18,00	60.54	16,00
C20:4 Cis 5, 8, 11, 14	61.15	1,00	61.14	1,00
C20:3 Cis 11, 14, 17	61.15	1,00	61.14	2,00
C22:1 Cis 13	62.29	4,00	62.27	4,00
C23:0	64.30	7,00	64.29	6,00
C20:5 Cis 5, 8, 11, 14, 17	64.85	1,00	64.85	1,00
C22:2 Cis 13, 16	65.21	2,00	65.21	1,00
C24:0	67.68	14,00	67.68	14,00
C24:1 Cis 15	69.19	4,00	69.18	3,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.07	7,00	73.08	7,00

Tabell V.15 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 150 μg/mL og internstandard med konsentrasjon 5 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.14	323,00	5.12	324,00
C6:0	6.59	460,00	6.58	474,00
C7:0	7.27	487,00	7.26	491,00
C8:0	7.93	246,00	7.92	251,00
C9:0	8.60	73,00	8.59	76,00
C10:0	9.34	105,00	9.33	107,00
C11:0	10.24	52,00	10.23	53,00
C12:0	11.41	91,00	11.40	92,00
C13:0	12.97	46,00	12.96	46,00
C14:0	15.12	87,00	15.11	91,00
C14:1 Cis 9	17.15	31,00	17.13	34,00
C15:0	18.10	39,00	18.09	41,00
C15:1 Cis 10	20.81	27,00	20.80	27,00
C16:0	22.15	131,00	22.14	139,00
C16:1 Cis 9	25.07	28,00	25.07	28,00
C17:0	27.77	39,00	27.76	38,00
C17:1 Cis 10	31.74	24,00	31.72	25,00
C18:0	35.63	76,00	35.62	83,00
C18:1 Trans 9	38.92	23,00	38.93	22,00
C18:1 Cis 9	40.01	51,00	40.00	54,00
C18:2 Trans 9, 12	44.46	13,00	44.47	14,00
C19:0	44.70	55,00	44.68	60,00
C18:2 Cis 9, 12	46.18	12,00	46.17	13,00
C18:3 Cis 6, 9, 12	49.64	8,00	49.63	10,00
C20:0	51.21	103,00	51.20	70,00
C18:3 Cis 9, 12, 15	51.85	7,00	51.84	8,00
C20:1 Cis 11	53.52	21,00	53.51	22,00
C21:0	56.33	29,00	56.32	31,00
C20:2 Cis 11, 14	57.31	10,00	57.30	11,00
C20:3 Cis 8, 11, 14	59.62	7,00	59.60	8,00
C22:0	60.65	62,00	60.64	64,00
C20:4 Cis 5, 8, 11, 14	61.22	8,00	61.21	7,00
C20:3 Cis 11, 14, 17	61.22	9,00	61.21	9,00
C22:1 Cis 13	62.39	21,00	62.37	20,00
C23:0	64.40	28,00	64.39	28,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	19,00	64.92	8,00
C22:2 Cis 13, 16	65.29	9,00	65.29	10,00
C24:0	67.78	53,00	67.78	56,00
C24:1 Cis 15	69.29	19,00	69.27	19,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	26,00	73.15	18,00

Tabell V.16 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	315,00	5.11	301,00
C6:0	6.57	453,00	6.57	444,00
C7:0	7.25	415,00	7.25	409,00
C8:0	7.91	240,00	7.91	242,00
C9:0	8.58	72,00	8.58	69,00
C10:0	9.32	104,00	9.31	102,00
C11:0	10.22	51,00	10.21	50,00
C12:0	11.38	88,00	11.37	88,00
C13:0	12.94	45,00	12.94	43,00
C14:0	15.08	89,00	15.08	88,00
C14:1 Cis 9	17.10	28,00	17.10	28,00
C15:0	18.06	38,00	18.05	38,00
C15:1 Cis 10	20.76	23,00	20.75	24,00
C16:0	22.10	135,00	22.09	129,00
C16:1 Cis 9	25.03	24,00	25.01	24,00
C17:0	27.70	34,00	27.69	33,00
C17:1 Cis 10	31.66	21,00	31.64	20,00
C18:0	35.55	73,00	35.54	69,00
C18:1 Trans 9	38.85	18,00	38.84	19,00
C18:1 Cis 9	39.92	51,00	39.90	47,00
C18:2 Trans 9, 12	44.40	11,00	44.39	11,00
C19:0	44.63	52,00	44.61	50,00
C18:2 Cis 9, 12	46.11	11,00	46.11	10,00
C18:3 Cis 6, 9, 12	49.60	7,00	49.59	6,00
C20:0	51.15	95,00	51.14	92,00
C18:3 Cis 9, 12, 15	51.80	7,00	51.80	6,00
C20:1 Cis 11	53.46	19,00	53.46	19,00
C21:0	56.27	26,00	56.27	24,00
C20:2 Cis 11, 14	57.26	9,00	57.26	8,00
C20:3 Cis 8, 11, 14	59.57	6,00	59.57	6,00
C22:0	60.59	58,00	60.58	55,00
C20:4 Cis 5, 8, 11, 14	61.19	5,00	61.19	4,00
C20:3 Cis 11, 14, 17	61.19	7,00	61.19	6,00
C22:1 Cis 13	62.33	17,00	62.33	16,00
C23:0	64.35	24,00	64.35	23,00
C20:5 Cis 5, 8, 11, 14, 17	64.89	5,00	64.89	6,00
C22:2 Cis 13, 16	65.26	6,00	65.25	7,00
C24:0	67.73	53,00	67.73	50,00
C24:1 Cis 15	69.23	15,00	69.23	14,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.12	23.00	73.11	35.00

Tabell V.17 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.09	308,00	5.10	328,00
C6:0	6.55	455,00	6.56	452,00
C7:0	7.23	410,00	7.24	415,00
C8:0	7.89	239,00	7.90	241,00
C9:0	8.56	81,00	8.57	81,00
C10:0	9.29	101,00	9.30	103,00
C11:0	10.19	50,00	10.20	50,00
C12:0	11.35	87,00	11.37	89,00
C13:0	12.91	43,00	12.92	43,00
C14:0	15.05	85,00	15.06	85,00
C14:1 Cis 9	17.05	27,00	17.06	27,00
C15:0	18.01	37,00	18.02	37,00
C15:1 Cis 10	20.71	22,00	20.71	22,00
C16:0	22.03	131,00	22.04	126,00
C16:1 Cis 9	24.95	22,00	24.96	23,00
C17:0	27.61	31,00	27.62	31,00
C17:1 Cis 10	31.56	19,00	31.57	18,00
C18:0	35.44	63,00	35.44	63,00
C18:1 Trans 9	38.73	17,00	38.74	16,00
C18:1 Cis 9	39.80	43,00	39.80	44,00
C18:2 Trans 9, 12	44.31	9,00	44.33	9,00
C19:0	44.51	49,00	44.53	48,00
C18:2 Cis 9, 12	46.03	9,00	46.04	9,00
C18:3 Cis 6, 9, 12	49.50	5,00	49.52	5,00
C20:0	51.07	78,00	51.08	77,00
C18:3 Cis 9, 12, 15	51.73	5,00	51.74	5,00
C20:1 Cis 11	53.40	16,00	53.41	16,00
C21:0	56.21	21,00	56.21	21,00
C20:2 Cis 11, 14	57.19	7,00	57.20	7,00
C20:3 Cis 8, 11, 14	59.51	5,00	59.51	5,00
C22:0	60.53	45,00	60.54	43,00
C20:4 Cis 5, 8, 11, 14	61.12	3,00	61.13	29,00
C20:3 Cis 11, 14, 17	61.12	6,00	61.13	6,00
C22:1 Cis 13	62.26	12,00	62.27	12,00
C23:0	64.29	17,00	64.30	16,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	4,00	64.84	5,00
C22:2 Cis 13, 16	65.19	6,00	65.20	6,00
C24:0	67.67	37,00	67.67	36,00
C24:1 Cis 15	69.18	10,00	69.19	10,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	18,00	73.07	16,00

Tabell V.18 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 300 µg/mL og internstandard med konsentrasjon 10 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.13	639,00	5.13	667,00
C6:0	6.58	963,00	6.58	976,00
C7:0	7.26	1166,00	7.27	1157,00
C8:0	7.93	514,00	7.93	522,00
C9:0	8.60	199,00	8.60	201,00
C10:0	9.34	230,00	9.34	228,00
C11:0	10.24	114,00	10.24	116,00
C12:0	11.40	201,00	11.40	197,00
C13:0	12.96	104,00	12.96	104,00
C14:0	15.11	213,00	15.12	209,00
C14:1 Cis 9	17.14	73,00	17.14	69,00
C15:0	18.09	94,00	18.10	96,00
C15:1 Cis 10	20.80	62,00	20.81	62,00
C16:0	22.16	319,00	22.16	318,00
C16:1 Cis 9	25.07	66,00	25.08	65,00
C17:0	27.77	90,00	27.76	92,00
C17:1 Cis 10	31.74	61,00	31.74	60,00
C18:0	35.65	184,00	35.65	194,00
C18:1 Trans 9	38.95	55,00	38.94	55,00
C18:1 Cis 9	40.03	128,00	40.02	132,00
C18:2 Trans 9, 12	44.48	34,00	44.48	35,00
C19:0	44.71	182,00	44.72	189,00
C18:2 Cis 9, 12	46.18	33,00	46.18	32,00
C18:3 Cis 6, 9, 12	49.65	19,00	49.64	21,00
C20:0	51.22	267,00	51.22	279,00
C18:3 Cis 9, 12, 15	51.86	20,00	51.86	21,00
C20:1 Cis 11	53.52	56,00	53.53	58,00
C21:0	56.34	77,00	56.34	82,00
C20:2 Cis 11, 14	57.30	26,00	57.31	27,00
C20:3 Cis 8, 11, 14	59.62	21,00	59.62	21,00
C22:0	60.66	173,00	60.66	177,00
C20:4 Cis 5, 8, 11, 14	61.23	16,00	61.23	17,00
C20:3 Cis 11, 14, 17	61.23	22,00	61.23	23,00
C22:1 Cis 13	62.39	54,00	62.39	54,00
C23:0	64.41	79,00	64.41	81,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	20,00	64.93	20,00
C22:2 Cis 13, 16	65.30	25,00	65.30	26,00
C24:0	67.80	174,00	67.80	172,00
C24:1 Cis 15	69.29	51,00	69.29	51,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	142.00	73.16	66.00

Tabell V.19 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 For RIC. Prøver med R37 konsentrasjon 600 μ g/mL og internstandard med konsentrasjon 25 μ g/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.11	599,00	5.11	602,00
C6:0	6.56	877,00	6.56	884,00
C7:0	7.24	1047,00	7.24	1035,00
C8:0	7.90	469,00	7.90	469,00
C9:0	8.57	184,00	8.57	182,00
C10:0	9.31	202,00	9.31	207,00
C11:0	10.21	102,00	10.21	102,00
C12:0	11.37	175,00	11.37	175,00
C13:0	12.93	91,00	12.93	89,00
C14:0	15.07	185,00	15.07	187,00
C14:1 Cis 9	17.09	60,00	17.08	59,00
C15:0	18.05	80,00	18.04	79,00
C15:1 Cis 10	20.74	51,00	20.73	51,00
C16:0	22.09	280,00	22.08	280,00
C16:1 Cis 9	25.01	53,00	25.00	53,00
C17:0	27.67	75,00	27.67	74,00
C17:1 Cis 10	31.63	47,00	31.62	46,00
C18:0	35.54	155,00	35.52	157,00
C18:1 Trans 9	38.82	44,00	38.80	44,00
C18:1 Cis 9	39.90	109,00	39.89	108,00
C18:2 Trans 9, 12	44.38	25,00	44.37	26,00
C19:0	44.61	151,00	44.60	102,00
C18:2 Cis 9, 12	46.09	25,00	46.08	25,00
C18:3 Cis 6, 9, 12	49.58	15,00	49.57	15,00
C20:0	51.15	208,00	51.13	214,00
C18:3 Cis 9, 12, 15	51.79	15,00	51.78	15,00
C20:1 Cis 11	53.45	42,00	53.45	42,00
C21:0	56.26	57,00	56.25	58,00
C20:2 Cis 11, 14	57.25	19,00	57.24	20,00
C20:3 Cis 8, 11, 14	59.56	14,00	59.54	14,00
C22:0	60.59	132,00	60.58	129,00
C20:4 Cis 5, 8, 11, 14	61.17	12,00	61.16	12,00
C20:3 Cis 11, 14, 17	61.17	17,00	61.16	17,00
C22:1 Cis 13	62.32	39,00	62.31	39,00
C23:0	64.34	54,00	64.34	57,00
C20:5 Cis 5, 8, 11, 14, 17	64.88	13,00	64.87	13,00
C22:2 Cis 13, 16	65.24	18,00	65.23	18,00
C24:0	67.73	116,00	67.73	118,00
C24:1 Cis 15	69.23	33,00	69.22	34,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.10	46,00	73.09	45,00

Tabell V.20 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 600 µg/mL og internstandard med konsentrasjon 25 µg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.09	645,00	5.09	626,00
C6:0	6.55	914,00	6.55	912,00
C7:0	7.23	1006,00	7.23	1013,00
C8:0	7.89	475,00	7.89	486,00
C9:0	8.56	221,00	8.56	222,00
C10:0	9.29	209,00	9.29	211,00
C11:0	10.19	103,00	10.19	104,00
C12:0	11.35	178,00	11.36	179,00
C13:0	12.91	91,00	12.91	91,00
C14:0	15.05	188,00	15.05	189,00
C14:1 Cis 9	17.05	60,00	17.05	62,00
C15:0	18.01	82,00	18.01	86,00
C15:1 Cis 10	20.70	51,00	20.71	52,00
C16:0	22.04	285,00	22.04	227,00
C16:1 Cis 9	24.95	52,00	24.94	54,00
C17:0	27.61	74,00	27.61	76,00
C17:1 Cis 10	31.57	45,00	31.56	47,00
C18:0	35.45	151,00	35.44	155,00
C18:1 Trans 9	38.72	41,00	38.73	43,00
C18:1 Cis 9	39.83	104,00	39.81	104,00
C18:2 Trans 9, 12	44.32	25,00	44.32	24,00
C19:0	44.54	153,00	44.54	156,00
C18:2 Cis 9, 12	46.04	24,00	46.03	24,00
C18:3 Cis 6, 9, 12	49.52	14,00	49.51	14,00
C20:0	51.08	187,00	51.08	199,00
C18:3 Cis 9, 12, 15	51.74	15,00	51.74	16,00
C20:1 Cis 11	53.40	38,00	53.40	41,00
C21:0	56.21	52,00	56.21	54,00
C20:2 Cis 11, 14	57.20	19,00	57.19	19,00
C20:3 Cis 8, 11, 14	59.51	13,00	59.50	13,00
C22:0	60.55	117,00	60.54	119,00
C20:4 Cis 5, 8, 11, 14	61.13	10,00	61.12	11,00
C20:3 Cis 11, 14, 17	61.13	16,00	61.12	16,00
C22:1 Cis 13	62.27	34,00	62.27	36,00
C23:0	64.29	47,00	64.29	48,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	12,00	64.83	12,00
C22:2 Cis 13, 16	65.20	16,00	65.19	17,00
C24:0	67.68	100,00	67.68	104,00
C24:1 Cis 15	69.19	28,00	69.18	27,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	40.00	73.06	40.00

Tabell V.21 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 600 µg/mL og internstandard med konsentrasjon 25 µg/mL

	Ini.narallell 1		Ini.narallell 2	
FAME	RT	Area	RT	Area
<u> </u>	5.13	1387.00	5.12	1441.00
C6:0	6.58	2089.00	6.58	2189.00
C7:0	7.27	2561.00	7.26	2649.00
C8:0	7.93	1131.00	7.92	1155.00
C9:0	8.60	450,00	8.59	471.00
C10:0	9.34	295,00	9.33	497,00
C11:0	10.24	23,00	10.23	256,00
C12:0	11.40	431,00	11.39	448,00
C13:0	12.96	233,00	12.95	233,00
C14:0	15.12	473,00	15.11	488,00
C14:1 Cis 9	17.14	162,00	17.13	161,00
C15:0	18.10	216,00	18.09	217,00
C15:1 Cis 10	20.81	144,00	20.80	145,00
C16:0	22.17	734,00	22.16	733,00
C16:1 Cis 9	25-08	152,00	25.07	144,00
C17:0	27.78	215,00	27.76	214,00
C17:1 Cis 10	31.74	144,00	31.73	141,00
C18:0	35.70	452,00	35.68	455,00
C18:1 Trans 9	38.97	132,00	38.95	136,00
C18:1 Cis 9	40.05	311,00	40.03	314,00
C18:2 Trans 9, 12	44.50	84,00	44.47	84,00
C19:0	44.76	461,00	44.75	457,00
C18:2 Cis 9, 12	46.20	80,00	46.18	78,00
C18:3 Cis 6, 9, 12	49.65	48,00	49.64	47,00
C20:0	51.26	645,00	51.25	634,00
C18:3 Cis 9, 12, 15	51.87	48,00	51.86	50,00
C20:1 Cis 11	53.54	142,00	53.53	137,00
C21:0	56.35	195,00	56.34	197,00
C20:2 Cis 11, 14	57.32	66,00	57.31	65,00
C20:3 Cis 8, 11, 14	59.63	51,00	59.61	50,00
C22:0	60.69	432,00	60.68	426,00
C20:4 Cis 5, 8, 11, 14	61.23	39,00	61.22	39,00
C20:3 Cis 11, 14, 17	61.23	57,00	61.22	55,00
C22:1 Cis 13	62.39	135,00	62.39	134,00
C23:0	64.43	203,00	64.42	196,00
C20:5 Cis 5, 8, 11, 14, 17	64.93	46,00	64.92	45,00
C22:2 Cis 13, 16	65.31	66,00	65.30	67,00
C24:0	67.83	606,00	67.82	424,00
C24:1 Cis 15	69.31	130,00	69.29	129,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.16	158.00	73.15	189.00

Tabell V.22 Oversikt over areal og retensjonstid til prøveparallell 1 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 1200 µg/mL og internstandard med konsentrasjon 50 µg/mL

	Ini.parallell 1		Ini.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.10	1337,00	5.10	1288,00
C6:0	6.55	1925,00	6.55	1925.00
C7:0	7.24	2326,00	7.23	2286,00
C8:0	7.90	1032,00	7.90	1028,00
C9:0	8.57	396,00	8.56	394,00
C10:0	9.30	449,00	9.30	442,00
C11:0	10.20	227,00	10.20	228,00
C12:0	11.37	395,00	11.37	389,00
C13:0	12.92	206,00	12.92	206,00
C14:0	15.06	422,00	15.06	433,00
C14:1 Cis 9	17.08	143,00	17.07	140,00
C15:0	18.04	196,00	18.03	196,00
C15:1 Cis 10	20.73	122,00	20.72	123,00
C16:0	22.09	660,00	22.09	665,00
C16:1 Cis 9	24.99	133,00	24.99	132,00
C17:0	27.67	188,00	27.66	186,00
C17:1 Cis 10	31.63	119,00	31.62	119,00
C18:0	35.55	398,00	35.55	386,00
C18:1 Trans 9	38.81	117,00	38.80	115,00
C18:1 Cis 9	39.90	276,00	39.90	272,00
C18:2 Trans 9, 12	44.37	71,00	44.37	69,00
C19:0	44.64	384,00	44.63	381,00
C18:2 Cis 9, 12	46.08	66,00	46.07	65,00
C18:3 Cis 6, 9, 12	49.56	38,00	49.56	38,00
C20:0	51.16	541,00	51.16	542,00
C18:3 Cis 9, 12, 15	51.77	41,00	51.77	42,00
C20:1 Cis 11	53.45	113,00	53.45	115,00
C21:0	56.27	158,00	56.26	157,00
C20:2 Cis 11, 14	57.24	57,00	57.24	55,00
C20:3 Cis 8, 11, 14	59.54	42,00	59.54	41,00
C22:0	60.61	356,00	60.60	347,00
C20:4 Cis 5, 8, 11, 14	61.16	31,00	61.16	33,00
C20:3 Cis 11, 14, 17	61.16	48,00	61.16	46,00
C22:1 Cis 13	62.32	110,00	62.31	107,00
C23:0	64.35	154,00	64.35	150,00
C20:5 Cis 5, 8, 11, 14, 17	64.87	35,00	64.86	37,00
C22:2 Cis 13, 16	65.24	53,00	65.24	53,00
C24:0	67.76	330,00	67.75	325,00
C24:1 Cis 15	69.23	98,00	69.22	94,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.09	128,00	73.09	130,00

Tabell V.23 Oversikt over areal og retensjonstid til prøveparallell 2 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 1200 μg/mL og internstandard med konsentrasjon 50 μg/mL

	Inj.parallell 1		Inj.parallell 2	
FAME	RT	Area	RT	Area
C4:0	5.10	1297,00	5.10	1318,00
C6:0	6.55	1885,00	6.54	1904,00
C7:0	7.23	1994,00	7.22	2234,00
C8:0	7.89	996,00	7.88	1003,00
C9:0	8.56	456,00	8.55	453,00
C10:0	9.30	442,00	9.29	437,00
C11:0	10.19	219,00	10.19	224,00
C12:0	11.36	374,00	11.35	386,00
C13:0	12.91	196,00	12.90	201,00
C14:0	15.05	419,00	15.04	418,00
C14:1 Cis 9	17.05	135,00	17.04	136,00
C15:0	18.01	182,00	18.00	187,00
C15:1 Cis 10	20.70	117,00	20.70	119,00
C16:0	22.05	624,00	22.04	636,00
C16:1 Cis 9	24.94	124,00	24.94	127,00
C17:0	27.62	177,00	27.60	182,00
C17:1 Cis 10	31.56	113,00	31.55	115,00
C18:0	35.47	376,00	35.46	376,00
C18:1 Trans 9	38.73	106,00	38.72	108,00
C18:1 Cis 9	39.83	253,00	39.82	262,00
C18:2 Trans 9, 12	44.32	64,00	44.31	66,00
C19:0	44.57	400,00	44.56	410,00
C18:2 Cis 9, 12	46.03	61,00	46.02	63,00
C18:3 Cis 6, 9, 12	49.51	35,00	49.50	35,00
C20:0	51.11	493,00	51.10	517,00
C18:3 Cis 9, 12, 15	51.73	38,00	51.73	41,00
C20:1 Cis 11	53.41	103,00	53.40	107,00
C21:0	56.22	137,00	56.21	147,00
C20:2 Cis 11, 14	57.20	48,00	57.19	51,00
C20:3 Cis 8, 11, 14	59.51	34,00	59.50	38,00
C22:0	60.57	309,00	60.56	328,00
C20:4 Cis 5, 8, 11, 14	61.13	29,00	61.11	29,00
C20:3 Cis 11, 14, 17	61.13	43,00	61.11	47,00
C22:1 Cis 13	62.28	95,00	62.27	100,00
C23:0	64.31	138,00	64.30	142,00
C20:5 Cis 5, 8, 11, 14, 17	64.83	33,00	64.82	35,00
C22:2 Cis 13, 16	65.21	47,00	65.19	50,00
C24:0	67.71	289,00	67.70	298,00
C24:1 Cis 15	69.20	85,00	69.19	86,00
C22:6 Cis 4, 7, 10, 13, 16, 19	73.06	110,00	73.05	123,00

Tabell V.24 Oversikt over areal og retensjonstid til prøveparallell 3 injeksjonsparallell 1 og 2 for RIC. Prøver med R37 konsentrasjon 1200 μg/mL og internstandard med konsentrasjon 50 μg/mL

Tabell V.25. Gir en oversikt over alle arealene til de ulike FAME-ne registrert i TIC-spekteret. Tabellen viser stigningstall, RRF og invertert RRF. RRF er regnet ut ved å bruke signingstallet funnet i grafene representert i figur V.6 a)-m). Fargene viser hvilke internstandard som er brukt til hvilke FAMEs. C7:0 – blå, C9:0 – Grønn, C19:0 - Rød

FAME	Area	Area	Area	Area	Area
C4:0	366,00	347	323	317	320
C6:0	498,00	521	486	477	471
C7:0	427,00	437	422	417	479
C8:0	642,00	652	603	591	587
C9:0	559,00	580	423	424	481
C10:0	711,00	742	711	652	661
C11:0	367,00	372	343	323	308
C12:0	766,00	784	719	695	682
C13:0	381,00	381	324	332	325
C14:0	705,00	707	666	635	591
C14:1 Cis 9	324,00	304	300	263	275
C15:0	362,00	321	310	301	271
C15:1 Cis 10	315,00	320	262	268	231
C16:0	1061,00	1018	974	950	905
C16:1 Cis 9	306,00	304	261	256	222
C17:0	307,00	286	261	254	213
C17:1 Cis 10	309,00	289	232	236	181
C18:0	593,00	557	497	508	435
C18:1 Trans 9	275,00	296	181	162	162
C18:1 Cis 9	582,00	565	489	473	373
C18:2 Trans 9, 12	227,00	264	179	175	145
C19:0	405,00	417	390	376	290
C18:2 Cis 9, 12	246,00	220	184	195	154
C18:3 Cis 6, 9, 12	220,00	252	183	173	139
C20:0	513,00	503	434	437	356
C18:3 Cis 9, 12, 15	200,00	209	177	173	141
C20:1 Cis 11	228,00	212	172	163	132
C21:0	233,00	270	182	170	130
C20:2 Cis 11, 14	196,00	215	165	198	130
C20:3 Cis 8, 11, 14	190,00	211	156	151	115
C22:0	454,00	431	361	361	262
C20:4 Cis 5, 8, 11, 14	389,00	352	316	335	262
C20:3 Cis 11, 14, 17	389,00	352	316	335	262
C22:1 Cis 13	198,00	197	138	132	97
C23:0	201,00	193	140	132	101
C20:5 Cis 5, 8, 11, 14, 17	161,00	197	150	142	114
C22:2 Cis 13, 16	191,00	173	137	129	102
C24:0	397,00	417	275	294	194
C24:1 Cis 15	161,00	226	113	106	76
C22:6 Cis 4, 7, 10, 13, 16, 19	126,00	474	114	107	66

Tabell V.25 Fortsetter

Area	Area	Area	Area	Area	Area	Area
320	708,00	699,00	687,00	653,00	680,00	685,00
467	991,00	1062,00	983,00	971,00	977,00	974,00
466	1026,00	1032,00	874,00	878,00	866,00	867,00
568	1256,00	1295,00	1235,00	1230,00	1229,00	1230,00
478	996,00	1012,00	930,00	919,00	1056,00	1067,00
677	1376,00	1508,00	1438,00	1391,00	1388,00	1395,00
319	711,00	749,00	707,00	690,00	690,00	704,00
670	1538,00	1609,00	1526,00	1519,00	1494,00	1527,00
305	757,00	780,00	721,00	724,00	694,00	706,00
609	1405,00	1499,00	1426,00	1413,00	1281,00	1387,00
250	648,00	689,00	639,00	596,00	596,00	584,00
263	692,00	733,00	653,00	658,00	631,00	626,00
229	625,00	665,00	594,00	562,00	544,00	528,00
896	2235,00	2343,00	2286,00	2134,00	2094,00	2068,00
216	669,00	660,00	519,00	556,00	532,00	528,00
219	679,00	637,00	574,00	573,00	523,00	530,00
179	592,00	608,00	516,00	511,00	448,00	456,00
304	1280,00	1331,00	1152,00	1106,00	997,00	1020,00
153	592,00	550,00	454,00	456,00	379,00	397,00
378	1202,00	1275,00	1130,00	1056,00	970,00	965,00
151	493,00	491,00	424,00	395,00	373,00	368,00
302	909,00	988,00	862,00	817,00	789,00	781,00
144	500,00	521,00	432,00	426,00	381,00	373,00
147	492,00	526,00	418,00	399,00	358,00	343,00
342	1143,00	1169,00	1017,00	969,00	843,00	824,00
138	470,00	457,00	418,00	384,00	338,00	327,00
134	480,00	489,00	409,00	389,00	335,00	334,00
124	497,00	493,00	422,00	385,00	325,00	324,00
133	452,00	544,00	381,00	358,00	307,00	311,00
105	428,00	443,00	359,00	348,00	275,00	286,00
255	959,00	953,00	837,00	795,00	643,00	627,00
253	884,00	912,00	749,00	743,00	653,00	628,00
253	884,00	912,00	749,00	743,00	653,00	628,00
101	422,00	430,00	335,00	357,00	255,00	255,00
94	406,00	375,00	327,00	309,00	245,00	222,00
108	396.00	400,00	333,00	305,00	260,00	265,00
82	,	-				
	442,00	397,00	310,00	209,00	236,00	225,00
172	442,00 684,00	397,00 731,00	310,00 667,00	209,00 615,00	236,00 472,00	225,00 459,00
172 65	442,00 684,00 373,00	397,00 731,00 387,00	310,00 667,00 276,00	209,00 615,00 253,00	236,00 472,00 197,00	225,00 459,00 179,00

Tabell V25 fortsetter

| Area |
|---------|---------|---------|---------|---------|---------|----------|
| 1427,00 | 1435,00 | 1288,00 | 1304,00 | 1423,00 | 1357,00 | 3109,00 |
| 2093,00 | 2116,00 | 1911,00 | 1911,00 | 2004,00 | 1976,00 | 4494,00 |
| 2430,00 | 2427,00 | 2202,00 | 2160,00 | 2089,00 | 2126,00 | 5386,00 |
| 2635,00 | 2680,00 | 2400,00 | 2410,00 | 2451,00 | 2480,00 | 5708,00 |
| 2641,00 | 2641,00 | 2382,00 | 2380,00 | 2876,00 | 2899,00 | 5863,00 |
| 3197,00 | 3205,00 | 2750,00 | 2828,00 | 2859,00 | 2863,00 | 6750,00 |
| 1577,00 | 1610,00 | 1399,00 | 1394,00 | 1408,00 | 1428,00 | 3492,00 |
| 3525,00 | 3394,00 | 3027,00 | 3009,00 | 3046,00 | 3123,00 | 7444,00 |
| 1710,00 | 1766,00 | 1493,00 | 1460,00 | 1498,00 | 1511,00 | 3835,00 |
| 3479,00 | 3368,00 | 2947,00 | 3002,00 | 2977,00 | 3031,00 | 7689,00 |
| 1455,00 | 1469,00 | 1279,00 | 1238,00 | 1276,00 | 1307,00 | 3495,00 |
| 1622,00 | 1693,00 | 1357,00 | 1352,00 | 1378,00 | 1397,00 | 3629,00 |
| 1414,00 | 1457,00 | 1210,00 | 1186,00 | 1200,00 | 1202,00 | 3305,00 |
| 5167,00 | 5225,00 | 4476,00 | 4466,00 | 4557,00 | 4577,00 | 11831,00 |
| 1469,00 | 1467,00 | 1189,00 | 1188,00 | 1170,00 | 1207,00 | 3297,00 |
| 1481,00 | 1543,00 | 1211,00 | 1220,00 | 1175,00 | 1206,00 | 3399,00 |
| 1395,00 | 1410,00 | 1085,00 | 1069,00 | 1060,00 | 1104,00 | 3271,00 |
| 2987,00 | 3127,00 | 2462,00 | 2472,00 | 2372,00 | 2436,00 | 7137,00 |
| 1245,00 | 1332,00 | 981,00 | 1000,00 | 913,00 | 964,00 | 3066,00 |
| 2883,00 | 2869,00 | 2389,00 | 2348,00 | 2279,00 | 2280,00 | 6684,00 |
| 1163,00 | 1239,00 | 891,00 | 892,00 | 834,00 | 861,00 | 2856,00 |
| 3042,00 | 3023,00 | 2356,00 | 2431,00 | 2382,00 | 2415,00 | 7090,00 |
| 1186,00 | 1234,00 | 951,00 | 924,00 | 888,00 | 931,00 | 2996,00 |
| 1133,00 | 1226,00 | 855,00 | 874,00 | 852,00 | 902,00 | 2931,00 |
| 2934,00 | 2994,00 | 2181,00 | 2231,00 | 2064,00 | 2086,00 | 6774,00 |
| 1141,00 | 1158,00 | 861,00 | 879,00 | 835,00 | 848,00 | 2617,00 |
| 1246,00 | 1247,00 | 858,00 | 873,00 | 818,00 | 1025,00 | 2739,00 |
| 1223,00 | 1306,00 | 889,00 | 890,00 | 809,00 | 853,00 | 2952,00 |
| 1215,00 | 1138,00 | 792,00 | 807,00 | 749,00 | 750,00 | 2667,00 |
| 1089,00 | 1080,00 | 768,00 | 780,00 | 695,00 | 713,00 | 2555,00 |
| 2517,00 | 2588,00 | 1847,00 | 1816,00 | 1655,00 | 1699,00 | 6112,00 |
| 2224,00 | 2236,00 | 1846,00 | 1758,00 | 1615,00 | 1631,00 | 5383,00 |
| 2224,00 | 2236,00 | 1846,00 | 1758,00 | 1615,00 | 1631,00 | 5383,00 |
| 1036,00 | 1057,00 | 715,00 | 735,00 | 653,00 | 670,00 | 2588,00 |
| 1065,00 | 1038,00 | 688,00 | 716,00 | 604,00 | 615,00 | 2617,00 |
| 968,00 | 984,00 | 702,00 | 720,00 | 663,00 | 663,00 | 2314,00 |
| 1013,00 | 1038,00 | 698,00 | 717,00 | 627,00 | 635,00 | 2470,00 |
| 2159,00 | 2160,00 | 1430,00 | 1454,00 | 1252,00 | 1324,00 | 5475,00 |
| 991,00 | 1049,00 | 602,00 | 583,00 | 507,00 | 510,00 | 2361,00 |
| 663,00 | 743,00 | 479,00 | 481,00 | 430,00 | 418,00 | 1731,00 |

Tabell V25 fortsetter

Area	Area	Area	Area	Area	Stign.tall	RRF	Inv RRF
3291,00	2930,00	2845,00	2873,00	2906,00	61	1,59348635	0,6275548
4779,00	4123,00	4145,00	4083,00	4135,00	88	1,10666378	0,90361681
5550,00	4864,00	4757,00	4622,00	4665,00	97	1	1
5907,00	5243,00	5166,00	5079,00	5087,00	110	0,88497862	1,1299708
6163,00	5174,00	5119,00	5936,00	5901,00	112	1	1
6837,00	6025,00	6033,00	5908,00	5938,00	128	0,7594909	1,31667146
3516,00	3114,00	3095,00	2977,00	3060,00	131	0,74472092	1,34278488
7685,00	6746,00	6661,00	6446,00	6667,00	141	0,68828191	1,45289304
3776,00	3334,00	3378,00	3180,00	3236,00	140	0,6938793	1,44117284
7897,00	6884,00	7000,00	6794,00	6670,00	144	0,77771588	1,28581662
3415,00	3093,00	2997,00	2867,00	2903,00	125	0,89236916	1,12061246
3663,00	3234,00	3223,00	3016,00	3096,00	133	0,83799805	1,1933202
3356,00	2826,00	2849,00	2726,00	2755,00	119	0,93951375	1,06438037
11867,00	10368,00	10494,00	9889,00	10108,00	144	0,7737823	1,29235315
3383,00	2897,00	2891,00	2699,00	2785,00	120	0,93440428	1,07020057
3444,00	2969,00	2906,00	2795,00	2879,00	122	0,99100278	1,0090789
3208,00	2709,00	2703,00	2536,00	2593,00	113	1,0756392	0,92967976
7140,00	6108,00	6041,00	5808,00	5856,00	126	0,96349901	1,03788379
3104,00	2590,00	2543,00	2339,00	2388,00	105	1,15236827	0,86777814
6753,00	5877,00	5758,00	5358,00	5570,00	119	1,01780914	0,98250248
2792,00	2329,00	2329,00	2133,00	2229,00	96	1,26025858	0,79348795
7163,00	5851,00	5782,00	6043,00	6251,00	121	1	1
2921,00	2388,00	2341,00	2209,00	2247,00	99	1,2221348	0,81824034
2714,00	2278,00	2210,00	2060,00	2143,00	94	1,28516271	0,77811159
6639,00	5707,00	5640,00	5142,00	5353,00	116	1,04583513	0,95617365
2664,00	2246,00	2206,00	2050,00	2142,00	92	1,32302518	0,75584351
2829,00	2312,00	2313,00	2184,00	2185,00	96	1,26383427	0,79124298
2979,00	2372,00	2402,00	2064,00	2230,00	98	1,23688187	0,80848465
2640,00	2193,00	2147,00	1919,00	2041,00	89	1,35902728	0,7358204
2535,00	2024,00	2032,00	1815,00	1881,00	84	1,44325722	0,69287719
6121,00	5014,00	4878,00	4372,00	4597,00	101	1,19984155	0,83344338
5313,00	4638,00	4454,00	4105,00	4319,00	184	0,6574064	1,52112909
5313,00	4638,00	4454,00	4105,00	4319,00	184	0,6574064	1,52112909
2572,00	2039,00	1977,00	1781,00	1895,00	83	1,45675776	0,68645593
2490,00	1917,00	1913,00	1721,00	1762,00	80	1,50842857	0,66294156
2228,00	1887,00	1867,00	1727,00	1779,00	77	1,57089514	0,63657973
2425,00	1960,00	1921,00	1766,00	1788,00	80	1,51941912	0,65814625
5219,00	4027,00	3936,00	3479,00	3682,00	83	1,45583005	0,68689336
2267,00	1745,00	1667,00	1478,00	1518,00	71	1,69551771	0,58979036
1719,00	1364,00	1332,00	1178,00	1269,00	56	2,16914924	0,46101023

Figur V.6 a) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 b) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 c) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 d) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Vedlegg

Figur V.6 e) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 f) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 g) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 h) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 i) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 j) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 k) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 l) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.6 m) Figuren viser grafen fremstilt av arealene funnet i TIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Tabell V.26 Gir en oversikt over alle arealene til de ulike FAME-ne registrert i RIC-spekteret. Tabellen viser stigningstall, RRF og invertert RRF. RRF er regnet ut ved å bruke signingstallet funnet i grafene representert i figur V.7 a)-n). Fargene viser hvilke internstandard som er brukt til hvilke FAMEs. C7:0 – blå, C9:0 – Grønn, C19:0 - Rød

FAME	Area	Area	Area	Area	Area
C4:0	154,00	160,00	148,00	152,00	147,00
C6:0	229,00	238,00	225,00	220,00	214,00
C7:0	201,00	205,00	203,00	196,00	224,00
C8:0	126,00	124,00	118,00	115,00	114,00
C9:0	41,00	43,00	33,00	32,00	36,00
C10:0	54,00	54,00	50,00	49,00	47,00
C11:0	27,00	26,00	25,00	23,00	22,00
C12:0	43,00	44,00	41,00	40,00	39,00
C13:0	23,00	23,00	20,00	19,00	19,00
C14:0	43,00	44,00	40,00	38,00	37,00
C14:1 Cis 9	15,00	15,00	13,00	12,00	12,00
C15:0	20,00	18,00	17,00	16,00	15,00
C15:1 Cis 10	13,00	12,00	11,00	11,00	9,00
C16:0	61,00	61,00	59,00	57,00	55,00
C16:1 Cis 9	14,00	13,00	11,00	11,00	9,00
C17:0	17,00	17,00	15,00	15,00	12,00
C17:1 Cis 10	11,00	12,00	8,00	8,00	7,00
C18:0	35,00	33,00	30,00	30,00	26,00
C18:1 Trans 9	9,00	7,00	7,00	7,00	3,00
C18:1 Cis 9	23,00	23,00	20,00	19,00	17,00
C18:2 Trans 9, 12	5,00	4,00	4,00	3,00	3,00
C19:0	23,00	23,00	22,00	23,00	19,00
C18:2 Cis 9, 12	4,00	5,00	3,00	2,00	3,00
C18:3 Cis 6, 9, 12	5,00	4,00	3,00	3,00	2,00
C20:0	48,00	48,00	41,00	40,00	34,00
C18:3 Cis 9, 12, 15	3,00	2,00	1,00	2,00	2,00
C20:1 Cis 11	49,90	9,00	7,00	7,00	5,00
C21:0	13,00	13,00	10,00	10,00	8,00
C20:2 Cis 11, 14	4,00	4,00	3,00	3,00	2,00
C20:3 Cis 8, 11, 14	3,00	2,00	2,00	2,00	1,00
C22:0	29,00	29,00	24,00	24,00	18,00
C20:4 Cis 5, 8, 11, 14	4,00	3,00	1,00	46,00	1,00
C20:3 Cis 11, 14, 17	3,00	3,00	2,00	2,00	1,00
C22:1 Cis 13	8,00	8,00	6,00	6,00	4,00
C23:0	14,00	13,00	10,00	10,00	7,00
C20:5 Cis 5, 8, 11, 14, 17	4,00	4,00	2,00	4,00	1,00
C22:2 Cis 13, 16	3,00	3,00	2,00	3,00	2,00
C24:0	30,00	31,00	21,00	22,00	14,00
C24:1 Cis 15	8,00	9,00	6,00	6,00	4,00
C22:6 Cis 4, 7, 10, 13, 16, 19	11,00	12,00	10,00	12,00	7,00

Tabell V.26 fortsetter

| Area |
|--------|--------|--------|--------|--------|--------|--------|
| 149,00 | 323,00 | 324,00 | 315,00 | 301,00 | 308,00 | 328,00 |
| 215,00 | 460,00 | 474,00 | 453,00 | 444,00 | 455,00 | 452,00 |
| 219,00 | 487,00 | 491,00 | 415,00 | 409,00 | 410,00 | 415,00 |
| 112,00 | 246,00 | 251,00 | 240,00 | 242,00 | 239,00 | 241,00 |
| 36,00 | 73,00 | 76,00 | 72,00 | 69,00 | 81,00 | 81,00 |
| 48,00 | 105,00 | 107,00 | 104,00 | 102,00 | 101,00 | 103,00 |
| 23,00 | 52,00 | 53,00 | 51,00 | 50,00 | 50,00 | 50,00 |
| 39,00 | 91,00 | 92,00 | 88,00 | 88,00 | 87,00 | 89,00 |
| 18,00 | 46,00 | 46,00 | 45,00 | 43,00 | 43,00 | 43,00 |
| 37,00 | 87,00 | 91,00 | 89,00 | 88,00 | 85,00 | 85,00 |
| 11,00 | 31,00 | 34,00 | 28,00 | 28,00 | 27,00 | 27,00 |
| 15,00 | 39,00 | 41,00 | 38,00 | 38,00 | 37,00 | 37,00 |
| 9,00 | 27,00 | 27,00 | 23,00 | 24,00 | 22,00 | 22,00 |
| 55,00 | 131,00 | 139,00 | 135,00 | 129,00 | 131,00 | 126,00 |
| 9,00 | 28,00 | 28,00 | 24,00 | 24,00 | 22,00 | 23,00 |
| 13,00 | 39,00 | 38,00 | 34,00 | 33,00 | 31,00 | 31,00 |
| 8,00 | 24,00 | 25,00 | 21,00 | 20,00 | 19,00 | 18,00 |
| 25,00 | 76,00 | 83,00 | 73,00 | 69,00 | 63,00 | 63,00 |
| 4,00 | 23,00 | 22,00 | 18,00 | 19,00 | 17,00 | 16,00 |
| 16,00 | 51,00 | 54,00 | 51,00 | 47,00 | 43,00 | 44,00 |
| 2,00 | 13,00 | 14,00 | 11,00 | 11,00 | 9,00 | 9,00 |
| 17,00 | 55,00 | 60,00 | 52,00 | 50,00 | 49,00 | 48,00 |
| 3,00 | 12,00 | 13,00 | 11,00 | 10,00 | 9,00 | 9,00 |
| 2,00 | 8,00 | 10,00 | 7,00 | 6,00 | 5,00 | 5,00 |
| 33,00 | 103,00 | 70,00 | 95,00 | 92,00 | 78,00 | 77,00 |
| 1,00 | 7,00 | 8,00 | 7,00 | 6,00 | 5,00 | 5,00 |
| 5,00 | 21,00 | 22,00 | 19,00 | 19,00 | 16,00 | 16,00 |
| 7,00 | 29,00 | 31,00 | 26,00 | 24,00 | 21,00 | 21,00 |
| 2,00 | 10,00 | 11,00 | 9,00 | 8,00 | 7,00 | 7,00 |
| 2,00 | 7,00 | 8,00 | 6,00 | 6,00 | 5,00 | 5,00 |
| 16,00 | 62,00 | 64,00 | 58,00 | 55,00 | 45,00 | 43,00 |
| 1,00 | 8,00 | 7,00 | 5,00 | 4,00 | 3,00 | 29,00 |
| 2,00 | 9,00 | 9,00 | 7,00 | 6,00 | 6,00 | 6,00 |
| 4,00 | 21,00 | 20,00 | 17,00 | 16,00 | 12,00 | 12,00 |
| 6,00 | 28,00 | 28,00 | 24,00 | 23,00 | 17,00 | 16,00 |
| 1,00 | 19,00 | 8,00 | 5,00 | 6,00 | 4,00 | 5,00 |
| 1,00 | 9,00 | 10,00 | 6,00 | 7,00 | 6,00 | 6,00 |
| 14,00 | 53,00 | 56,00 | 53,00 | 50,00 | 37,00 | 36,00 |
| 3,00 | 19,00 | 19,00 | 15,00 | 14,00 | 10,00 | 10,00 |
| 7,00 | 26,00 | 18,00 | 23,00 | 35,00 | 18,00 | 16,00 |

Tabell V.26 fortsetter

| Area |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 639,00 | 667,00 | 599,00 | 602,00 | 645,00 | 626,00 | 1387,00 | 1441,00 |
| 963,00 | 976,00 | 877,00 | 884,00 | 914,00 | 912,00 | 2089,00 | 2189,00 |
| 1166,00 | 1157,00 | 1047,00 | 1035,00 | 1006,00 | 1013,00 | 2561,00 | 2649,00 |
| 514,00 | 522,00 | 469,00 | 469,00 | 475,00 | 486,00 | 1131,00 | 1155,00 |
| 199,00 | 201,00 | 184,00 | 182,00 | 221,00 | 222,00 | 450,00 | 471,00 |
| 230,00 | 228,00 | 202,00 | 207,00 | 209,00 | 211,00 | 295,00 | 497,00 |
| 114,00 | 116,00 | 102,00 | 102,00 | 103,00 | 104,00 | 23,00 | 256,00 |
| 201,00 | 197,00 | 175,00 | 175,00 | 178,00 | 179,00 | 431,00 | 448,00 |
| 104,00 | 104,00 | 91,00 | 89,00 | 91,00 | 91,00 | 233,00 | 233,00 |
| 213,00 | 209,00 | 185,00 | 187,00 | 188,00 | 189,00 | 473,00 | 488,00 |
| 73,00 | 69,00 | 60,00 | 59,00 | 60,00 | 62,00 | 162,00 | 161,00 |
| 94,00 | 96,00 | 80,00 | 79,00 | 82,00 | 86,00 | 216,00 | 217,00 |
| 62,00 | 62,00 | 51,00 | 51,00 | 51,00 | 52,00 | 144,00 | 145,00 |
| 319,00 | 318,00 | 280,00 | 280,00 | 285,00 | 227,00 | 734,00 | 733,00 |
| 66,00 | 65,00 | 53,00 | 53,00 | 52,00 | 54,00 | 152,00 | 144,00 |
| 90,00 | 92,00 | 75,00 | 74,00 | 74,00 | 76,00 | 215,00 | 214,00 |
| 61,00 | 60,00 | 47,00 | 46,00 | 45,00 | 47,00 | 144,00 | 141,00 |
| 184,00 | 194,00 | 155,00 | 157,00 | 151,00 | 155,00 | 452,00 | 455,00 |
| 55,00 | 55,00 | 44,00 | 44,00 | 41,00 | 43,00 | 132,00 | 136,00 |
| 128,00 | 132,00 | 109,00 | 108,00 | 104,00 | 104,00 | 311,00 | 314,00 |
| 34,00 | 35,00 | 25,00 | 26,00 | 25,00 | 24,00 | 84,00 | 84,00 |
| 182,00 | 189,00 | 151,00 | 102,00 | 153,00 | 156,00 | 461,00 | 457,00 |
| 33,00 | 32,00 | 25,00 | 25,00 | 24,00 | 24,00 | 80,00 | 78,00 |
| 19,00 | 21,00 | 15,00 | 15,00 | 14,00 | 14,00 | 48,00 | 47,00 |
| 267,00 | 279,00 | 208,00 | 214,00 | 187,00 | 199,00 | 645,00 | 634,00 |
| 20,00 | 21,00 | 15,00 | 15,00 | 15,00 | 16,00 | 48,00 | 50,00 |
| 56,00 | 58,00 | 42,00 | 42,00 | 38,00 | 41,00 | 142,00 | 137,00 |
| 77,00 | 82,00 | 57,00 | 58,00 | 52,00 | 54,00 | 195,00 | 197,00 |
| 26,00 | 27,00 | 19,00 | 20,00 | 19,00 | 19,00 | 66,00 | 65,00 |
| 21,00 | 21,00 | 14,00 | 14,00 | 13,00 | 13,00 | 51,00 | 50,00 |
| 173,00 | 177,00 | 132,00 | 129,00 | 117,00 | 119,00 | 432,00 | 426,00 |
| 16,00 | 17,00 | 12,00 | 12,00 | 10,00 | 11,00 | 39,00 | 39,00 |
| 22,00 | 23,00 | 17,00 | 17,00 | 16,00 | 16,00 | 57,00 | 55,00 |
| 54,00 | 54,00 | 39,00 | 39,00 | 34,00 | 36,00 | 135,00 | 134,00 |
| 79,00 | 81,00 | 54,00 | 57,00 | 47,00 | 48,00 | 203,00 | 196,00 |
| 20,00 | 20,00 | 13,00 | 13,00 | 12,00 | 12,00 | 46,00 | 45,00 |
| 25,00 | 26,00 | 18,00 | 18,00 | 16,00 | 17,00 | 66,00 | 67,00 |
| 174,00 | 172,00 | 116,00 | 118,00 | 100,00 | 104,00 | 606,00 | 424,00 |
| 51,00 | 51,00 | 33,00 | 34,00 | 28,00 | 27,00 | 130,00 | 129,00 |
| 142,00 | 66,00 | 46,00 | 45,00 | 40,00 | 40,00 | 158,00 | 189,00 |

Tabell V.26 fortsetter

Area	Area	Area	Area	Stign.tall	RRF	Inv RRF
1337,00	1288,00	1297,00	1318,00	28	1,66590497	0,60027434
1925,00	1925,00	1885,00	1904,00	41	1,13106115	0,8841255
2326,00	2286,00	1994,00	2234,00	46	1	1
1032,00	1028,00	996,00	1003,00	22	2,12535863	0,47050883
396,00	394,00	456,00	453,00	9	1	1
449,00	442,00	442,00	437,00	9	5,168925	0,19346382
227,00	228,00	219,00	224,00	8	5,51666567	0,18126892
395,00	389,00	374,00	386,00	8	5,59482045	0,17873675
206,00	206,00	196,00	201,00	9	5,35034889	0,1869037
422,00	433,00	419,00	418,00	9	0,9627021	1,03874293
143,00	140,00	135,00	136,00	6	1,45846899	0,68565051
196,00	196,00	182,00	187,00	8	1,0747356	0,93046141
122,00	123,00	117,00	119,00	5	1,67172694	0,59818382
660,00	665,00	624,00	636,00	9	0,95366748	1,04858352
133,00	132,00	124,00	127,00	5	1,59011336	0,62888598
188,00	186,00	177,00	182,00	8	1,00878498	0,99129152
119,00	119,00	113,00	115,00	5	1,56817029	0,63768585
398,00	386,00	376,00	376,00	8	0,96282315	1,03861234
117,00	115,00	106,00	108,00	5	1,66371015	0,60106624
276,00	272,00	253,00	262,00	6	1,39582054	0,71642448
71,00	69,00	64,00	66,00	3	2,7275968	0,3666231
384,00	381,00	400,00	410,00	8	1	1
66,00	65,00	61,00	63,00	3	2,88103937	0,34709696
38,00	38,00	35,00	35,00	2	5,05633342	0,19777177
541,00	542,00	493,00	517,00	11	0,70242683	1,42363582
41,00	42,00	38,00	41,00	2	4,59185977	0,21777669
113,00	115,00	103,00	107,00	5	1,65303416	0,60494818
158,00	157,00	137,00	147,00	6	1,20493631	0,82991939
57,00	55,00	48,00	51,00	2	3,50036235	0,28568471
42,00	41,00	34,00	38,00	2	4,69564953	0,21296308
356,00	347,00	309,00	328,00	7	1,08646019	0,92042028
31,00	33,00	29,00	29,00	1	5,68493453	0,17590352
48,00	46,00	43,00	47,00	2	4,06186271	0,24619247
110,00	107,00	95,00	100,00	4	1,76372184	0,56698283
154,00	150,00	138,00	142,00	6	1,22402078	0,81697959
35,00	37,00	33,00	35,00	2	5,10105611	0,19603784
53,00	53,00	47,00	50,00	2	3,6158237	0,27656216
330,00	325,00	289,00	298,00	7	1,07422749	0,93090152
98,00	94,00	85,00	86,00	4	1,94407829	0,51438258
128,00	130,00	110,00	123,00	6	1,38275868	0,72319199

Figur V. 7 a) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 b) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Vedlegg

Figur V.7 c) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 d) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 f) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 g) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 h) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 i) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 j) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.
Vedlegg

Figur V.7 k) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 l) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 m) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Figur V.7 n) Figuren viser grafen fremstilt av arealene funnet i RIC-spekteret gitt i figur V.2-V.12, og konsentrasjonen oppgitt i tabell V.31.

Tabell V.27 Viser tilbakeregnet konsentrasjon i TIC. Disse konsentrasjonene er regnet ut ved hjelp av invertert RRF, areal og oppgitt konsentrasjon. Disse tallene kan en henholdsvis se i tabell V.25, tabell V.2-V.12 og tabell V.31. De blå, grønne og røde områdene viser hvilke internstandard en har brukt til de ulike FAMEs. De gule områdene viser de tallene som er over de oppgitte konsentrasjonene.

FAME					
C4:0	6,82922719	6,3265419	6,0982949	6,05677664	5,32271013
C6:0	6,45337898	6,59693171	6,37249525	6,32947992	5,44090441
C7:0	5	5	5	5	5
C8:0	6,65288376	6,60189999	6,32277378	6,27125136	5,42257254
C9:0	5	5	5	5	5
C10:0	6,32316197	6,44785183	6,39808095	5,93750682	5,24032868
C11:0	3,20038149	3,16975039	3,02653172	2,88423092	2,39430109
C12:0	6,1735825	6,17406201	5,86344426	5,73568261	4,8998775
C13:0	3,09564418	3,02480564	2,66370726	2,76220536	2,35397465
C14:0	4,90420119	4,74004418	6,12244414	5,8236979	4,7778595
C14:1 Cis 9	2,58611455	2,33862262	3,16442963	2,76760717	2,55095133
C15:0	2,71337472	2,31894288	3,07067843	2,97449779	2,36068057
C15:1 Cis 10	2,64710942	2,59176208	2,90960524	2,969218	2,25600496
C16:0	7,34331865	6,79060678	8,9085575	8,66855176	7,27934496
C16:1 Cis 9	2,55749294	2,44878364	2,88273662	2,82084312	2,15631758
C17:0	3,75602289	3,39840282	3,31604777	3,34727003	3,63937228
C17:1 Cis 10	4,10336437	3,72733489	3,19933712	3,37567623	3,35673614
C18:0	7,05376433	6,43487945	6,13921803	6,50874328	7,22624254
C18:1 Trans 9	3,91236141	4,08994015	2,67408535	2,48249548	3,21868379
C18:1 Cis 9	7,31314715	6,89522978	6,38088038	6,40191121	6,54556567
C18:2 Trans 9, 12	3,53183578	3,98930775	2,89213188	2,93278261	3,15064646
C19:0	5	5	5	5	5
C18:2 Cis 9, 12	3,71166866	3,22385679	2,88298466	3,16909955	3,24497861
C18:3 Cis 6, 9, 12	3,4905654	3,88322547	3,01518944	2,95655784	3,07995892
C20:0	6,6236225	6,30761476	5,81913394	6,07752596	6,41926391
C18:3 Cis 9, 12, 15	3,26672884	3,31549476	3,00224945	3,04366165	3,21631984
C20:1 Cis 11	3,55745943	3,21262428	2,7869166	2,73942801	2,87631248
C21:0	3,55794413	4,00429381	2,88605769	2,79614251	2,77232142
C20:2 Cis 11, 14	3,28851045	3,50348759	2,8748654	3,57828991	3,04609563
C20:3 Cis 8, 11, 14	3,38541816	3,65140615	2,88651443	2,89802978	2,86163069
C22:0	6,72503784	6,20062001	5,55311283	5,75987767	5,41997391
C20:4 Cis 5, 8, 11, 14 (og C20:3 Cis 11, 14, 17)	3,15717396	2,77 466491	2,66333876	2,92860565	2,9696634
C20:3 Cis 11, 14, 17 (og C20:4 Cis 5, 8, 11, 14)	3,15717396	2,77466491	2,66333876	2,92860565	2,9696634
C22:1 Cis 13	3,56096342	3,44102254	2,57734066	2,5570748	2,43630178
C23:0	3,74313757	3,490728	2,7074359	2,64777356	2,62674631
C20:5 Cis 5, 8, 11, 14, 17	3,1223965	3,7106276	3,02095218	2,96631794	3,08762147
C22:2 Cis 13, 16	3,5828278	3,15179266	2,66872333	2,60645035	2,6720819
C24:0	7,13536456	7,27915025	5,13273415	5,69167599	4,86950051
C24:1 Cis 15	3,3701031	4,59456837	2,45632694	2,38995847	2,22171286
C22:6 Cis 4, 7, 10, 13, 16, 19	3,37423215	12,3282583	3,17029504	3,08642246	2,46834224

Tabell V.27 fortsetter

5,47119775	10,9959876	10,7930907	12,525459	11,8513278	12,5123639	12,5898287
5,545193	10,689121	11,3883424	12,4468021	12,2388444	12,4851099	12,4324167
5	10	10	10	10	10	10
5,39343193	10,8336564	11,1051096	12,5051327	12,3977643	12,5593386	12,55506
5	10	10	10	10	10	10
5,51690281	10,1857649	11,0979872	12,4959716	12,0324812	12,1729027	12,2201824
2,54899115	5,16078536	5,40499974	6,02422991	5,85259041	5,93368866	6,04709955
4,94794938	10,3175203	10,731062	12,0173707	11,9077475	11,8740552	12,1223354
2,27074234	5,11955778	5,24443655	5,72410725	5,72173818	5,56064934	5,65027433
4,95427792	10,9707912	11,5197243	11,9249768	11,957699	9,43422385	10,1095775
2,33360135	5,80577524	6,07551728	6,13143969	5,78729072	5,03647744	4,88419482
2,3053712	5,82223544	6,06968943	5,88400781	6,00002956	5,00735577	4,91646466
2,25050889	5,89554314	6,17368228	6,00076527	5,74544864	4,83991934	4,64914023
7,25218561	17,3634885	17,9147425	19,0200683	17,9679155	15,3437514	14,9970179
2,11120633	6,27626974	6,09394098	5,21457875	5,65319676	4,70741552	4,62385625
3,59320545	7,40254002	6,38936004	6,59902084	6,95036222	6,56900449	6,7251149
3,1877387	7,00526303	7,58687513	6,43886113	6,72768217	6,10755847	6,28030061
4,84939897	13,5674227	12,9799309	12,87646	13,0432056	12,1750128	12,5834697
2,91907857	7,50497268	6,41500556	6,06931781	6,43182291	5,53545722	5,85774908
6,3697327	13,4588183	13,1346827	13,3425096	13,1555257	12,5129894	12,5760028
3,15064646	6,83506581	6,26302596	6,19895174	6,09304946	5,95787645	5,93822226
5	10	10	10	10	10	10
2,91369887	6,72241365	6,44465822	6,12485191	6,37245319	5,90156349	5,83682818
3,12779667	6,95599621	6,8420606	6,23199553	6,27637604	5,83128329	5,64418452
5,92178171	13,1506002	12,3743043	12,3389133	12,4040911	11,174132	11,0341632
3,02280588	6,84072426	6,11966101	6,41559774	6,21838029	5,66771243	5,53942681
2,80387073	6,67371232	6,25521213	5,99661504	6,0175218	5,36608974	5,40487383
2,5392939	6,76270943	6,17189028	6,05526853	5,82863547	5,09488728	5,13123847
2,99256007	6,75775941	7,48290324	6,00683751	5,95510117	5,28797687	5,41174755
2,50897364	6,79553452	6,47128488	6,01078121	6,1475338	5,03036419	5,28516727
5,06555622	12,6583944	11,5733704	11,6504336	11,6753248	9,77817641	9,63253078
2,75370563	6,39325918	6,06836679	5,71226677	5,97861637	5,44089203	5,28618721
2,75370563	6,39325918	6,06836679	5,71226677	5,97861637	5,44089203	5,28618721
2,43596911	6,76294584	6,34014007	5,66141358	6,36551434	4,70815247	4,75637938
2,3475544	6,73731575	5,72531089	5,72222905	5,70507258	4,68396706	4,28772271
2,80888534	6,84350356	6,35989933	6,06853921	5,8644188	5,17658726	5,33018196
2,06278755	7,38815457	6,1053582	5,46426829	3,88688612	4,54477709	4,37732781
4,1457412	10,9547608	10,7713741	11,2649495	10,9588186	8,70914808	8,55603063
1,82464654	6,9574049	6,64134973	5,4288038	5,2505016	4,23342191	3,8860137
5,96156911	6,56233269	6,78408012	5,58644004	5,49588608	4,94862945	5,83253957

Tabell V.27 fortsetter

23,3940845	23,5543151	23,3016623	24,0498402	27,1365614	25,4275749	45,9909863
23,8297047	24,1213491	24,0103825	24,4772511	26,5408595	25,7145771	46,1692076
25	25	25	25	25	25	50
23,9909327	24,4308065	24,1138588	24,6851675	25,9583843	25,8084075	46,8943368
25	25	25	25	25	25	50
24,9803747	25,0738396	23,7125339	24,8592624	25,9859322	25,569408	47,591567
12,0825607	12,3506457	11,8286169	12,0155205	12,5486724	12,5054266	24,1419
24,960841	24,0629256	23,6538301	23,9703736	25,0898361	25,2763925	47,5637817
12,2071358	12,622485	11,7616007	11,7252752	12,4393393	12,3289231	24,7031852
25,6122069	24,795031	24,0546672	24,5241918	20,1256969	20,3281892	50,9965664
12,2907717	12,4090334	11,9788009	11,6045485	9,897975	10,058007	26,5975627
12,8666493	13,4298627	11,9349638	11,9009807	10,0379113	10,0955784	25,9346318
12,5754681	12,9578904	11,9312725	11,7044466	9,80021302	9,73866448	26,4804107
37,8467736	38,2716068	36,3502266	36,2994934	30,6513036	30,5415799	78,0711107
12,993562	12,9758717	11,6604397	11,6604232	9,50324246	9,72599147	26,2726499
12,0617613	12,6456938	12,734554	12,4333956	12,2211195	12,3721465	23,7547141
12,3316625	12,5426007	12,384004	11,8249518	11,966599	12,2930195	24,8125235
23,6519685	24,9161544	25,1712071	24,4937222	23,9863522	24,2969315	48,4943047
11,7907503	12,6939674	11,9956841	11,8507638	11,0423198	11,4998242	24,91651
24,1152511	24,148978	25,8016345	24,5764692	24,344952	24,0228244	47,9762785
12,0453709	12,9131689	11,9152207	11,5605785	11,0312307	11,2327396	25,3829232
25	25	25	25	25	25	50
11,9119977	12,4720009	12,3328756	11,6130456	11,3901732	11,7785456	25,8216916
11,9665463	13,030181	11,6597424	11,5511334	11,4920092	12,0001736	26,5642589
25,2176223	25,8950578	24,2038033	23,9948394	22,6553706	22,583976	49,9611226
12,4060793	12,6700559	12,087486	11,9594728	11,5945217	11,6141341	24,4171855
12,9416297	13,0334216	11,5064708	11,3464348	10,8502984	13,4102498	24,4121443
12,4318419	13,3589788	11,6679539	11,3206999	10,5020721	10,9219486	25,749473
13,5701688	12,7900516	11,4213668	11,2786406	10,6833694	10,551454	25,5608304
12,9167251	12,8904879	11,7616887	11,5769295	10,5275374	10,6526128	26,005093
24,8192077	25,6797051	23,5155703	22,4075716	20,8410765	21,1028033	51,7167248
12,015712	12,156473	12,8774641	11,8852371	11,1430661	11,0996878	24,9564081
12,015712	12,156473	12,8774641	11,8852371	11,1430661	11,0996878	24,9564081
12,4030329	12,7339808	11,0524385	11,0110752	9,98386671	10,1038064	26,5873702
13,202469	12,9486343	11,0122969	11,106899	9,56224663	9,60334962	27,838911
12,4969304	12,7833345	11,7017019	11,6314736	10,9309769	10,7816095	25,6350588
12,649339	13,0429792	11,2537622	11,2034503	9,99869635	9,98790001	26,4666095
25,8311725	26,0055649	22,0907998	21,7685818	19,1299247	19,9536127	56,2106454
13,8088268	14,7088825	10,830875	10,1654342	9,02211879	8,95149101	28,2307286

Tabell V.27 fortsetter

47,2447168	47,9946031	47,6505009	49,5249488	49,6320613
47,6463624	46,9035237	48,2144354	48,8804439	49,0466747
50	50	50	50	50
47,0952135	47,6967814	48,0533902	48,6240416	48,2517281
50	50	50	50	50
46,7805343	47,0387818	48,160696	48,5403749	48,3371595
23,5895385	23,8390313	24,2265216	23,9834941	24,4249307
47,6526712	47,729747	48,1884152	47,9950802	49,1830173
23,6043985	23,7807728	24,6365805	23,8699283	24,0663817
49,826564	51,7374961	53,174557	44,5064157	43,9532698
24,723679	26,6727658	26,1225861	21,5500537	21,9500734
24,9033495	26,1894636	26,3808138	21,2887645	21,9830703
25,5801408	25,6577684	26,1445076	21,5727299	21,9315404
74,4967922	77,5277825	79,3130641	64,4536153	66,2717466
25,6457058	26,1593468	26,3856494	21,2429006	22,0497876
23,8239116	25,1434563	24,9036154	22,9178618	22,8211247
24,0866297	24,9009281	25,1422758	22,5700895	22,3094901
48,0202632	50,2909924	50,3329081	46,3015243	45,1307805
24,9682473	25,5053309	25,3413396	22,301749	22,0113216
47,9775591	51,1165981	50,6792202	45,1218052	45,3463199
24,5612311	25,0823982	25,3817212	22,2416975	22,469336
50	50	50	50	50
24,9187195	24,9398215	24,7407261	22,3373803	21,9655807
24,3468631	25,0179513	24,5607886	21,9049743	22,0293049
48,4664208	51,0047949	51,0075246	44,4951535	44,7796789
24,6023948	25,3932196	25,238616	22,440854	22,6677327
24,9573304	24,969961	25,2788712	22,8381106	22,0882889
25,7201667	25,071644	25,6917177	21,1229867	22,0624425
25,0441995	25,4686961	25,2320267	21,5784656	22,1866476
25,5385805	24,9628491	25,3605903	21,6739355	21,7146602
51,2650436	51,4100628	50,6124792	43,4031712	44,118314
24,3808475	26,0558101	25,3207205	22,3287546	22,7110723
24,3808475	26,0558101	25,3207205	22,3287546	22,7110723
26,1537133	25,3830891	24,9049645	21,4668673	22,0809148
26,2179754	24,710798	24,9535097	21,4794438	21,2594077
24,4307857	25,3313888	25,361996	22,4469295	22,353403
25,7196103	25,4491666	25,2404369	22,2016727	21,7302942
53,0362769	50,0993643	49,5516004	41,9066088	42,8760698
26,8305085	25,2835276	24,4416121	20,734529	20,5870731
26,0279739	25,2838794	24,9853579	21,1422953	22,0176803

Tabell V.28 Viser tilbakeregnet konsentrasjon i RIC. Disse konsentrasjonene er regnet ut ved hjelp av indertert RRF, areal og oppgitt kosentrasjon. Disse tallene kan en se i tabell V.26, tabell V.12-V.24 og tabell V31. De blå, grønne og røde områdene viser hvilke internstandard en har brukt til de ulike FAMEs. De gule områdene viser de tilbakeregningene som er over de oppgitte konsentrasjonene.

FAME					
C4:0	6,3818250	6,50109256	6,07275703	6,45963151	5,46625068
C6:0	6,44310952	6,56567202	6,26819601	6,34779215	5,40283673
C7:0	5	5	5	5	5
C8:0	6,66157183	6,42791391	6,1771507	6,23510823	5,40827866
C9:0	5	5	5	5	5
C10:0	6,94333209	6,80785244	6,36567119	6,46115625	5,42275614
C11:0	3,70522321	3,49837335	3,39696162	3,23681914	2,70907689
C12:0	5,98450943	6,00419755	5,64994183	5,70900045	4,87049101
C13:0	3,06114489	3,00141523	2,63563985	2,59328135	2,26912118
C14:0	5,04831589	4,92545261	5,83455819	5,71604372	4,94721913
C14:1 Cis 9	2,66793107	2,54384125	2,87274194	2,73462935	2,43078164
C15:0	2,62130634	2,2494466	2,76825836	2,686839	2,2390325
C15:1 Cis 10	2,65029881	2,33264224	2,78621157	2,87328068	2,08965868
C16:0	7,09435565	6,76438562	8,52520929	8,493601	7,28495992
C16:1 Cis 9	2,71482769	2,40365973	2,65018894	2,73300734	1,9876417
C17:0	3,72811842	3,72811842	3,43903972	3,28951625	3,18563679
C17:1 Cis 10	3,74997243	4,09087901	2,85121871	2,72725268	2,88873474
C18:0	7,3258283	6,90720954	6,56470328	6,2792814	6,58773733
C18:1 Trans 9	3,25508507	2,53173283	2,6468116	2,53173283	1,31345538
C18:1 Cis 9	6,9791027	6,9791027	6,34463882	5,76534571	6,24446031
C18:2 Trans 9, 12	2,96477913	2,3718233	2,47963345	1,77886748	2,15336589
C19:0	5	5	5	5	5
C18:2 Cis 9, 12	2,50525162	3,13156453	1,96434502	1,25262581	2,27450476
C18:3 Cis 6, 9, 12	5,49601459	4,39681167	3,44750006	3,29760875	2,66122812
C20:0	7,32967129	7,32967129	6,54534093	6,1080594	6,28487165
C18:3 Cis 9, 12, 15	2,99469116	1,99646077	1,04360449	1,99646077	2,4167683
C20:1 Cis 11	17,9318271	3,23419727	2,62982707	2,51548676	2,17504495
C21:0	3,40525478	3,40525478	2,73849161	2,61942676	2,53670802
C20:2 Cis 11, 14	3,04379335	3,04379335	2,38661069	2,28284501	1,84229597
C20:3 Cis 8, 11, 14	3,06238013	2,04158675	2,13438615	2,04158675	1,23569725
C22:0	6,84942296	6,84942296	5,92614651	5,66848796	5,14639039
C20:4 Cis 5, 8, 11, 14 (og C20:3 Cis 11, 14, 17)	4,94342133	3,707566	1,29203057	56,8493453	1,4960354
C20:3 Cis 11, 14, 17 (og C20:4 Cis 5, 8, 11, 14)	2,6490409	2,6490409	1,84630123	1,76602727	1,06891124
C22:1 Cis 13	3,06734234	3,06734234	2,40507524	2,30050675	1,85654931
C23:0	3,72528064	3,45918916	2,78186541	2,66091474	2,25477512
C20:5 Cis 5, 8, 11, 14, 17	4,43570096	4,43570096	2,31866187	4,43570096	1,34238319
C22:2 Cis 13, 16	2,35814589	2,35814589	1,64355623	2,35814589	1,90306511
C24:0	7,00583147	7,23935919	5,12699485	5,13760974	3,95768023
C24:1 Cis 15	3,38100571	3,80363143	2,65101584	2,53575429	2,0463982
C22:6 Cis 4, 7, 10, 13, 16, 19	3,30659685	3,60719656	3,14263337	3,60719656	2,54718705

Tabell V28 fortsettelse

5,66711964	11,0490206	10,9929371	12,6448209	12,260083	12,5146032	13,1666706
5,55201248	10,6835344	10,9190017	12,3462819	12,2785122	12,55202	12,3190274
5	10	10	10	10	10	10
5,434707	10,7358978	10,8648679	12,2912306	12,5754716	12,3892857	12,3424441
5	10	10	10	10	10	10
5,66457534	11,1444995	11,2642561	12,9534506	12,8907176	12,7332055	12,8288982
2,89687923	5,8904849	5,95485296	6,77951684	6,74409006	6,72764106	6,64658514
4,98168944	10,4543873	10,4831666	11,8637156	12,0377555	11,8719361	11,9985306
2,19877352	5,05371764	5,01254682	5,80158314	5,62506118	5,61134152	5,543735
4,94721913	11,473299	11,5270909	11,9000676	12,2779398	10,1024295	10,1024295
2,22821651	6,19349843	6,52472967	5,67182383	5,91842487	4,86156329	4,86156329
2,2390325	5,74173813	5,79791573	5,67221566	5,91883374	4,90928607	4,90928607
2,08965868	6,18309964	5,93902992	5,34023884	5,8147024	4,54049293	4,54049293
7,28495992	17,1137589	17,4420763	17,8812653	17,8294355	15,4235111	14,8348275
1,9876417	6,09906495	5,85831239	5,30037787	5,53082908	4,31882641	4,51513671
3,85711905	7,15320261	6,38897156	6,59590181	6,65798089	6,38210908	6,51506968
3,68981244	6,8429249	7,53928023	6,3329954	6,27268116	6,0806603	5,88063858
7,07958197	13,3044653	13,3190536	13,5165557	13,2869594	12,3791548	12,6370538
1,95730605	6,95733334	6,10027054	5,75899666	6,32209856	5,77205561	5,54570049
6,56856725	12,9430632	12,5623849	13,6897784	13,1207131	12,2490374	12,7950216
1,6044687	6,44704697	6,36439252	5,7699163	6,00071295	5,00987166	5,11424399
5	10	10	10	10	10	10
2,54209356	6,28590408	6,24225196	6,09450635	5,76207874	5,29170496	5,40194881
2,97431378	7,35466679	8,42722237	6,80660268	6,0676001	5,1595239	5,26701398
6,81767219	13,1545388	8,1949797	12,8327979	12,9246537	11,1814883	11,2680971
1,35054699	5,84418517	6,1224797	6,1813497	5,51023173	4,6855712	4,78318726
2,43093259	6,31158497	6,06112525	6,03993251	6,28152981	5,39766256	5,51011387
2,48075122	6,35330053	6,22550426	6,02468154	5,78369428	5,16401275	5,27159635
2,05903668	6,36429518	6,41733098	6,05831945	5,60057976	5,00051765	5,1046951
2,76214678	5,97628122	6,26086604	5,41805715	5,63477944	4,79147911	4,8913016
5,11275385	12,2473695	11,5889087	12,1182098	11,9510621	9,97769565	9,73287256
1,67203957	8,26899568	6,63242362	5,4662832	4,54794762	3,48057216	34,3464795
2,38933101	6,64668444	6,09279407	5,46789212	4,87423526	4,97370945	5,07732839
2,07496687	6,73421067	5,87907281	5,76601372	5,6439099	4,3193188	4,40930461
2,16003667	6,23137852	5,71209697	5,64932668	5,63049559	4,24660271	4,08006927
1,50031062	17,6218302	6,80140814	4,90486164	6,12126733	4,16412743	5,31360011
1,06347756	5,91680242	6,02637284	4,17210427	5,06215318	4,42753923	4,51977963
4,42328967	10,3516467	10,0261233	10,9488571	10,7422749	8,11151371	8,05670619
1,71536319	6,7159068	6,1562479	5,60791813	5,4434192	3,9675067	4,05016309
2,84685611	6,53667741	4,14827605	6,11604802	9,67931078	5,07952169	4,60919561

Tabell V.28 fortsettelse

22,8240411	24,0094774	23,8270553	24,2240288	26,7025026	25,7368339	45,1114836
23,3535996	23,8529749	23,6853063	24,1511607	25,6906036	25,4572499	46,1301588
25	25	25	25	25	25	50
23,4226916	23,9722819	23,8011747	24,0771304	25,0881051	25,4917151	46,9305078
25	25	25	25	25	25	50
25,4899818	25,4648855	24,9313002	25,844625	26,8465538	26,9161692	29,7702631
13,4841313	13,8274247	13,4360052	13,591785	14,1206899	14,1592603	2,47722199
24,1114689	23,815463	23,3785477	23,6496033	24,7484602	24,7155197	47,0786336
11,9304521	12,0232559	11,6256387	11,5019578	12,099447	12,0158378	24,3387601
25,7607472	25,0254651	24,1983544	24,728749	20,4737551	20,4899434	50,5953437
13,3754065	12,5167114	11,8896928	11,8200096	9,89911076	10,1830042	26,2524417
12,6916013	12,8326639	11,6819087	11,6626528	9,96926687	10,4084754	25,7936544
13,0209887	12,8914267	11,5839774	11,7112739	9,6445785	9,78939199	26,747631
38,2185837	37,7196839	36,2808281	36,6795185	30,746067	24,3786619	77,7768812
13,184357	12,8553941	11,4505446	11,5763747	9,35360801	9,66960828	26,8552479
12,4712429	12,2762194	12,5263036	18,2965904	12,1977269	12,2864838	23,5237279
13,1398884	12,4457959	12,2026496	17,6803513	11,5306639	11,811539	24,4920305
24,3350906	24,7073665	24,7082099	37,0498123	23,7559306	23,9162801	47,2013084
12,5692387	12,1037114	12,1197428	17,9419722	11,1457706	11,4646693	23,8188437
24,5418996	24,3714697	25,1894766	36,9481908	23,7198262	23,2636757	47,0824499
12,7387762	12,6277629	11,2897218	17,3817443	11,1421438	10,4907569	24,8501226
25	25	25	25	25	25	50
13,0596565	12,1948756	11,9248318	17,6534275	11,2981936	11,0809206	24,9981724
13,1964746	14,0453706	12,5571194	18,5894611	11,5667758	11,3443378	26,3236447
25,762083	25,922895	24,1895333	36,842976	21,4630421	22,4011121	49,1394042
12,6149994	12,755166	11,4036253	16,8818374	11,2545583	11,7739994	23,9055606
12,7156474	12,6820081	11,4946084	17,0165281	10,2639376	10,8612821	25,4588775
12,7445186	13,069415	11,3710877	17,1289965	10,2380209	10,4273334	25,4840109
12,5012941	12,5012941	11,0110736	17,158639	10,867138	10,6581546	25,0568238
13,5451429	13,0434709	10,8839559	16,1125229	9,97441894	9,78260319	25,9737664
25,8183535	25,4369648	23,743832	34,3513149	20,7705625	20,719353	50,9057271
12,4943616	12,7835829	11,2945719	16,7203957	9,28910871	10,0215192	24,0469031
12,2748599	12,3575188	11,4323951	16,924428	10,6192489	10,4150326	25,1112988
13,0825521	12,5980132	11,3882702	16,8591059	9,79845468	10,1753183	25,8245606
13,2826431	13,1145084	10,9432321	17,1002903	9,40015959	9,41554446	26,9496983
14,0138904	13,4948574	10,9790943	16,253365	10,0020708	9,80972328	25,4499545
12,416977	12,4353725	10,7756336	15,9521634	9,45313386	9,85080175	25,8833367
25,6752175	24,4400964	20,6308591	31,0683441	17,5527368	17,9037915	70,6054078
13,6192297	13,1148138	10,6216198	16,2006524	8,89447582	8,4118772	27,4110821
26,9713919	12,0717028	10,5309436	15,2510149	9,03763845	8,86383771	23,6958646

Tabell V.28 fortsettelse

45,3108543	47,8786531	46,9310061	54,1795071	49,1419595
46,7325944	46,8033686	47,6223252	53,4616415	48,1992038
50	50	50	50	50
46,3342623	47,1489705	47,7880287	53,0806719	47,7111617
50	50	50	50	50
48,4891606	49,8892374	49,9707973	57,2884867	50,5555109
26,6565951	26,9192413	27,5109311	30,2946284	27,6574107
47,30992	47,5054616	47,6024749	52,4689781	48,3348409
23,5302245	23,6924306	24,1069963	26,2955964	24,0693851
49,8724655	51,2954907	52,8997474	44,2294057	44,4160572
24,9271239	26,3334678	25,9118855	21,5891791	21,8931327
24,7577097	26,5969921	26,7320022	21,4475745	22,1827326
25,7325272	25,7513493	26,0942149	21,4464969	21,9575614
74,2078836	79,47229	80,4808216	65,2509329	66,946194
24,3074654	26,7026613	26,6364167	21,6199624	22,2896685
23,6192545	24,6942157	24,6238854	22,3193678	22,3901057
24,1916861	24,2984719	24,4897985	22,1504053	21,9926321
47,930474	49,8963038	48,7729311	45,252688	44,1489639
24,7554245	25,3455843	25,1084865	22,0441594	21,91228
47,9526969	50,1623006	49,8245652	44,1428246	44,5981685
25,0676292	25,2160641	24,6987111	21,8207744	21,9538279
50	50	50	50	50
24,5865504	24,7589321	24,5757951	21,9679252	22,1348147
26,0008393	25,0183164	25,215311	22,1214587	21,5819109
48,7241369	49,4808484	49,9626434	43,2870535	44,2871551
25,119583	24,5138347	25,3094633	21,8113339	22,9592989
24,7774267	24,321987	24,9473659	21,2828148	21,5700799
25,9707279	24,7890543	24,8261155	20,6345343	21,6006875
24,8931677	25,9792518	25,2650826	21,0021741	21,7705463
25,6873607	25,6793334	25,2653059	19,9565105	21,7603271
50,638079	50,3619569	49,475287	41,964525	43,4584077
24,2573793	22,9470014	24,6197952	20,6078877	20,1052563
24,4422811	25,386642	24,5204311	21,8325121	23,2814082
25,8576288	25,261641	24,7661729	20,9441969	21,508803
26,248148	24,5441667	24,0948972	21,1143585	21,1964574
25,1146088	23,2470005	24,7689076	21,0418564	21,7728005
26,505491	24,95295	25,14943	21,2429643	22,0477055
49,8328727	46,1582125	45,8167894	38,8064681	39,0389991
27,438304	24,807249	23,9820681	20,6558318	20,3891137
28,59315	23,045978	23,5903712	19,0129319	20,7413802

Tabell V.29 Viser utregnet % avvik av TIC. For å regne ut disse tallene har en brukt oppgitt konsentrasjon og tilbakeregnet konsentrasjon, disse tallene kan sees i tabell V.31 og tabell V.27. De brune feltene viser negative tall og de gule viser tall over 20 og under -20. De blå, grønne og røde feltene viser hvilke FAME internstandardene er brukt til å finne RRF til. De turkise områdene viser uteliggere.

FAME					
C4:0	-13,8	-5,4	-1,6	-0,9	11,3
C6:0	-7,6	-9,9	-6,2	-5,5	9,3
C7:0	0,0	0,0	0,0	0,0	0,0
C8:0	-10,9	-10,0	-5,4	-4,5	9,6
C9:0	0,0	0,0	0,0	0,0	0,0
C10:0	-5,4	-7,5	-6,6	1,0	12,7
C11:0	-6,7	-5,7	-0,9	3,9	20,2
C12:0	-2,9	-2,9	2,3	4,4	18,3
C13:0	-3,2	-0,8	11,2	7,9	21,5
C14:0	18,3	21,0	-2,0	2,9	20,4
C14:1 Cis 9	13,8	22,0	-5,5	7,7	15,0
C15:0	9,6	22,7	-2,4	0,9	21,3
C15:1 Cis 10	11,8	13,6	3,0	1,0	24,8
C16:0	18,4	24,5	1,0	3,7	19,1
C16:1 Cis 9	14,8	18,4	3,9	6,0	28,1
C17:0	-25,2	-13,3	-10,5	-11,6	-21,3
C17:1 Cis 10	-36,8	-24,2	-6,6	-12,5	-11,9
C18:0	-17,6	-7,2	-2,3	-8,5	-20,4
C18:1 Trans 9	-30,4	-36,3	10,9	17,3	-7,3
C18:1 Cis 9	-21,9	-14,9	-6,3	-6,7	-9,1
C18:2 Trans 9, 12	-17,7	-33,0	3,6	2,2	-5,0
C19:0	0,0	0,0	0,0	0,0	0,0
C18:2 Cis 9, 12	-23,7	-7,5	3,9	-5,6	-8,2
C18:3 Cis 6, 9, 12	-16,4	-29,4	-0,5	1,4	-2,7
C20:0	-10,4	-5,1	3,0	-1,3	-7,0
C18:3 Cis 9, 12, 15	-8,9	-10,5	-0,1	-1,5	-7,2
C20:1 Cis 11	-18,6	-7,1	7,1	8,7	4,1
C21:0	-18,6	-33,5	3,8	6,8	7,6
C20:2 Cis 11, 14	-9,6	-16,8	4,2	-19,3	-1,5
C20:3 Cis 8, 11, 14	-12,8	-21,7	3,8	3,4	4,6
C22:0	-12,1	-3,3	7,4	4,0	9,7
C20:4 Cis 5, 8, 11, 14 (og C20:3 Cis 11, 14, 17)	-5,2	7,5	11,2	2,4	1,0
C20:3 Cis 11, 14, 17 (og C20:4 Cis 5, 8, 11, 14)	-5,2	7,5	11,2	2,4	1,0
C22:1 Cis 13	-18,7	-14,7	14,1	14,8	18,8
C23:0	-24,8	-16,4	9,8	11,7	12,4
C20:5 Cis 5, 8, 11, 14, 17	-4,1	-23,7	-0,7	1,1	-2,9
C22:2 Cis 13, 16	-19,4	-5,1	11,0	13,1	10,9
C24:0	-18,9	-21,3	14,5	5,1	18,8
C24:1 Cis 15	-12,3	-53,2	18,1	20,3	25,9
C22:6 Cis 4, 7, 10, 13, 16, 19	-12,5	-310,9	-5,7	-2,9	17,7

Tabell V.29 fortsetter

Î	8,8	8,4	10,1	-4,4	1,2	-4,3	-4,9
Î	7,6	10,9	5,1	-3,7	-2,0	-4,0	-3,6
	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	10,1	9,7	7,5	-4,2	-3,3	-4,7	-4,6
	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	8,1	15,1	7,5	-4,1	-0,3	-1,4	-1,8
	15,0	14,0	9,9	-0,4	2,5	1,1	-0,8
	17,5	14,0	10,6	-0,1	0,8	1,0	-1,0
	24,3	14,7	12,6	4,6	4,6	7,3	5,8
	17,4	8,6	4,0	0,6	0,4	21,4	15,8
	22,2	3,2	-1,3	-2,2	3,5	16,1	18,6
	23,2	3,0	-1,2	1,9	0,0	16,5	18,1
	25,0	1,7	-2,9	0,0	4,2	19,3	22,5
	19,4	3,5	0,5	-5,7	0,2	14,8	16,7
	29,6	-4,6	-1,6	13,1	5,8	21,5	22,9
	-19,8	-23,4	-6,5	-10,0	-15,8	-9,5	-12,1
	-6,3	-16,8	-26,4	-7,3	-12,1	-1,8	-4,7
	19,2	-13,1	-8,2	-7,3	-8,7	-1,5	-4,9
	2,7	-25,1	-6,9	-1,2	-7,2	7,7	2,4
	-6,2	-12,2	-9,5	-11,2	-9,6	-4,3	-4,8
	-5,0	-13,9	-4,4	-3,3	-1,6	0,7	1,0
l	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ì	2,9	-12,0	-7,4	-2,1	-6,2	1,6	2,7
	-4,3	-15,9	-14,0	-3,9	-4,6	2,8	5,9
ì	1,3	-9,6	-3,1	-2,8	-3,4	6,9	8,0
ł	-0,8	-14,0	-2,0	-6,9	-3,6	5,5	7,7
	6,5	-11,2	-4,3	0,1	-0,3	10,6	9,9
l	15,4	-12,7	-2,9	-0,9	2,9	15,1	14,5
ſ	0,2	-12,6	-24,7	-0,1	0,7	11,9	9,8
	16,4	-13,3	-7,9	-0,2	-2,5	16,2	11,9
	15,6	-5,5	3,0	2,9	2,7	18,5	19,7
	۵,۷ م	-0,0	-1,1	4,8	0,4	9,3	11,9
	0,2 10 0	-0,0 10 7	-1,1	4,0	0,4	9,3 21 E	11,9 20 7
	10,0 21.7	-12,7	-5,7	5,0	-0,1	21,5	20,7
	21,7 6.4	-12,5	4,0	4,0	4,9 วว	12 7	20,5 11 2
	0,4	-14,1	-0,0	-1,1	2,3	13,7 24 2	11,2 27.0
	21,2 20 0	-23,1	10.2	0,9 6 1	55,2 7 0	24,3 37 /	27,0 ד סכ
	20,9	0,7	10,2	0,1	0,7 10 E	27,4	20,7
	Q8_7	-10,0	-13.1	9,5 6 Q	د,2± ۸ ع	2 <i>3</i> ,4 17 5	<u>יייי</u> ג ר
- 1	50,7	5,4	13,1	0,5	0,4	т, Ј	2,0

Tabell V.29 fortsetter

2,5	1,9	2,9	-0,2	-13,1	-5,9	4,2
0,7	-0,5	0,0	-2,0	-10,6	-7,1	3,8
0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	-1,8	-0,5	-2,9	-8,2	-7,5	2,3
0,0	0,0	0,0	0,0	0,0	0,0	0,0
-4,1	-4,5	1,2	-3,6	-8,3	-6,5	0,9
-0,7	-2,9	1,4	-0,1	-4,6	-4,2	-0,6
-4,0	-0,3	1,4	0,1	-4,5	-5,3	0,9
-1,7	-5,2	2,0	2,3	-3,7	-2,7	-2,9
-6,7	-3,3	-0,2	-2,2	16,1	15,3	-6,2
-2,4	-3,4	0,2	3,3	17,5	16,2	-10,8
-7,2	-11,9	0,5	0,8	16,4	15,9	-8,1
-4,8	-8,0	0,6	2,5	18,3	18,8	-10,3
-5,1	-6,3	-1,0	-0,8	14,9	15,2	-8,4
-8,3	-8,1	2,8	2,8	20,8	19,0	-9,5
-0,5	-5,4	-6,1	-3,6	-1,8	-3,1	1,0
-2,8	-4,5	-3,2	1,5	0,3	-2,4	-3,4
1,5	-3,8	-4,9	-2,1	0,1	-1,2	-1,0
1,7	-5,8	0,0	1,2	8,0	4,2	-3,8
-0,5	-0,6	-7,5	-2,4	-1,4	-0,1	0,0
-0,4	-7,6	0,7	3,7	8,1	6,4	-5,8
0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,7	-3,9	-2,8	3,2	5,1	1,8	-7,6
0,3	-8,6	2,8	3,7	4,2	0,0	-10,7
-5,1	-7,9	-0,8	0,0	5,6	5,9	-4,1
-3,4	-5,6	-0,7	0,3	3,4	3,2	-1,7
-7,8	-8,6	4,1	5,4	9,6	-11,8	-1,7
-3,6	-11,3	2,8	5,7	12,5	9,0	-7,3
-13,1	-6,6	4,8	6,0	11,0	12,1	-6,5
-7,6	-7,4	2,0	3,5	12,3	11,2	-8,4
-3,4	-7,0	2,0	6,6	13,2	12,1	-7,7
-0,1	-1,3	-7,3	1,0	7,1	7,5	-4,0
-0,1	-1,3	-7,3	1,0	7,1	7,5	-4,0
-3,4	-6,1	7,9	8,2	16,8	15,8	-10,8
-10,0	-7,9	8,2	7,4	20,3	20,0	-16,0
-4,1	-6,5	2,5	3,1	8,9	10,2	-6,8
-5,4	-8,7	6,2	6,6	16,7	16,8	-10,3
-7,6	-8,4	8,0	9,3	20,3	16,9	-17,1
-15,1	-22,6	9,7	15,3	24,8	25,4	-17,6
1,5	-11,1	8,1	10,6	18,4	21,8	-10,3

Tabell V.29 fortsetter

					Snitt	Stdav
1,6	0,0	0,7	-3,2	-3,4	0	6,4
0,7	2,3	-0,4	-1,8	-2,2	-1	5,6
0,0	0,0	0,0	0,0	0,0	0	0,0
1,9	0,6	-0,1	-1,3	-0,5	-1	5,9
0,0	0,0	0,0	0,0	0,0	0	0,0
2,5	2,0	-0,3	-1,1	-0,7	0	6,0
1,7	0,7	-0,9	0,1	-1,8	2	6,7
0,7	0,6	-0,4	0,0	-2,5	2	6,5
1,6	0,9	-2,7	0,5	-0,3	4	7,9
-3,8	-7,8	-10,8	7,3	8,4	6	10,3
-3,0	-11,1	-8,8	10,2	8,5	5	10,5
-3,8	-9,1	-9,9	11,3	8,4	5	11,1
-6,6	-6,9	-8,9	10,1	8,6	6	11,3
-3,5	-7,7	-10,2	10,5	8,0	5	10,6
-6,9	-9,0	-9,9	11,5	8,1	7	12,7
0,7	-4,8	-3,8	4,5	4,9	-8	8,4
-0,4	-3,8	-4,8	6,0	7,0	-7	10,2
0,0	-4,8	-4,9	3,5	6,0	-4	7,8
-4,0	-6,3	-5,6	7,1	8,3	-3	12,6
0,0	-6,5	-5,6	6,0	5,5	-5	6,3
-2,3	-4,5	-5,8	7,3	6,4	-3	9,0
0,0	0,0	0,0	0,0	0,0	0	0,0
-3,8	-3,9	-3,1	6,9	8,5	-3	7,0
-1,4	-4,2	-2,3	8,7	8,2	-3	8,9
-1,0	-6,3	-6,3	7,3	6,7	-1	5,7
-2,5	-5,8	-5,2	6,5	5,6	-2	5,5
-4,0	-4,0	-5,3	4,8	8,0	0	8,1
-7,2	-4,5	-7,0	12,0	8,1	0	11,9
-4,4	-6,1	-5,1	10,1	7,6	-2	10,4
-6,4	-4,0	-5,7	9,7	9,5	0	10,1
-6,8	-7,1	-5,4	9,6	8,1	3	9,0
-1,6	-8,6	-5,5	7,0	5,4	2	6,1
-1,6	-8,6	-5,5	7,0	5,4	2	6,1
-9,0	-5,8	-3,8	10,6	8,0	4	12,6
-9,2	-3,0	-4,0	10,5	11,4	4	14,1
-1,8	-5,5	-5,7	6,5	6,9	0	8,4
-7,2	-6,0	-5,2	7,5	9,5	6	15,2
-10,5	-4,4	-3,2	12,7	10,7	6	14,8
-11,8	-5,3	-1,8	13,6	14,2	5	22,0
-8,4	-5,3	-4,1	11,9	8,3	-15	67,2

Tabell V.30 Viser utregnet % avvik av RIC. For å regne ut disse tallene har en brukt oppgitt konsentrasjon og tilbakeregnet konsentrasjon, disse tallene kan sees i tabell V.31 og V.28. De brune feltene viser negative tall og de gule viser tall over 20 og under -20. De blå, grønne og røde feltene viser hvilke FAME internstandardene er brukt til å finne RRF til. De turkise områdene viser uteliggere.

FAME					
C4:0	-6,4	-8,4	-1,2	-7,7	8,9
C6:0	-7,4	-9,4	-4,5	-5,8	10,0
C7:0	0,0	0,0	0,0	0,0	0,0
C8:0	-11,0	-7,1	-3,0	-3,9	9,9
C9:0	0,0	0,0	0,0	0,0	0,0
C10:0	-15,7	-13,5	-6,1	-7,7	9,6
C11:0	-23,5	-16,6	-13,2	-7,9	9,7
C12:0	0,3	-0,1	5,8	4,8	18,8
C13:0	-2,0	0,0	12,1	13,6	24,4
C14:0	15,9	17,9	2,8	4,7	17,5
C14:1 Cis 9	11,1	15,2	4,2	8,8	19,0
C15:0	12,6	25,0	7,7	10,4	25,4
C15:1 Cis 10	11,7	22,2	7,1	4,2	30,3
C16:0	21,2	24,8	5,3	5,6	19,1
C16:1 Cis 9	9,5	19,9	11,7	8,9	33,7
C17:0	-24,3	-24,3	-14,6	-9,7	-6,2
C17:1 Cis 10	-25,0	-36,4	5,0	9,1	3,7
C18:0	-22,1	-15,1	-9,4	-4,7	-9,8
C18:1 Trans 9	-8,5	15,6	11,8	15,6	56,2
C18:1 Cis 9	-16,3	-16,3	-5,7	3,9	-4,1
C18:2 Trans 9, 12	1,2	20,9	17,3	40,7	28,2
C19:0	0,0	0,0	0,0	0,0	0,0
C18:2 Cis 9, 12	16,5	-4,4	34,5	58,2	24,2
C18:3 Cis 6, 9, 12	-83,2	-46,6	-14,9	-9,9	11,3
C20:0	-22,2	-22,2	-9,1	-1,8	-4,7
C18:3 Cis 9, 12, 15	0,2	33,5	65,2	33,5	19,4
C20:1 Cis 11	-497,7	-7,8	12,3	16,2	27,5
C21:0	-13,5	-13,5	8,7	12,7	15,4
C20:2 Cis 11, 14	-1,5	-1,5	20,4	23,9	38,6
C20:3 Cis 8, 11, 14	-2,1	31,9	28,9	31,9	58,8
C22:0	-14,2	-14,2	1,2	5,5	14,2
C20:4 Cis 5, 8, 11, 14 (og C20:3 Cis 11, 14, 17)	-64,8	-23,6	56,9	-1795,0	50,1
C20:3 Cis 11, 14, 17 (og C20:4 Cis 5, 8, 11, 14)	11,7	11,7	38,5	41,1	64,4
C22:1 Cis 13	-2,2	-2,2	19,8	23,3	38,1
C23:0	-24,2	-15,3	7,3	11,3	24,8
C20:5 Cis 5, 8, 11, 14, 17	-47,9	-47,9	22,7	-47,9	55,3
C22:2 Cis 13, 16	21,4	21,4	45,2	21,4	36,6
C24:0	-16,8	-20,7	14,6	14,4	34,0
C24:1 Cis 15	-12,7	-26,8	11,6	15,5	31,8
C22:6 Cis 4, 7, 10, 13, 16, 19	-10,2	-20,2	-4,8	-20,2	15,1

Tabell V.30 fortsetter

5,5 $7,9$ $8,4$ $-5,4$ $-2,2$ $-4,3$ $-9,7$ $7,5$ $11,0$ $9,0$ $-2,9$ $-2,3$ $-4,6$ $2,7$ $0,0$ $1,1$ $0,0$ $1,1$ $1,1$ $0,0$ $1,1$ $1,0$ $1,1$ $1,0$ $1,1$ $1,0,0$ $1,1$ $1,1$ $1,0$ $1,1$ $1,1,2$ $1,1,2$ $1,1,2$ $1,1,2$ $1,1,2$ $1,1,2$ $1,1,2$ $1,1,2$ <							
7,5 $11,0$ $9,0$ $-2,9$ $-2,3$ $-4,6$ $-2,7$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $9,4$ $10,5$ $9,5$ $2,4$ $-4,8$ $-3,2$ $-2,9$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $5,6$ $7,1$ $6,1$ $7,9$ $7,4$ $-6,1$ $-6,9$ $3,4$ $1,8$ $0,8$ $-13,0$ $-12,4$ $-12,1$ $-10,8$ $17,0$ $12,9$ $12,6$ $1,1$ $0,3$ $1,1$ $0,0$ $26,7$ $15,8$ $16,5$ $3,3$ $6,2$ $6,5$ $7,6$ $17,5$ $4,4$ $3,9$ $0,8$ $-2,3$ $15,8$ $15,8$ $25,7$ $-3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ $25,4$ $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $28,6$ $-19,2$ $-5,9$ $-11,0$ $-5,4$ $3,8$ $7,6$ $-33,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $2,1$ $-6,6$	5,5	7,9	8,4	-5,4	-2,2	-4,3	-9,7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7,5	11,0	9,0	-2,9	-2,3	-4,6	-2,7
9,410,59,5 $-2,4$ $-4,8$ $-3,2$ $-2,9$ 0,00,00,00,00,00,00,05,67,16,1 $-7,9$ $-7,4$ $-6,1$ $-6,9$ 3,41,80,8 $-13,0$ $-12,4$ $-12,1$ $-10,8$ 17,012,912,61,1 $-0,3$ $1,1$ $0,0$ 26,715,816,53,3 $6,2$ $6,5$ $7,6$ 17,54,43,90,8 $-2,3$ $15,8$ $15,8$ 25,7 $-3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ 25,4 $4,3$ $3,4$ $5,5$ $1,4$ $19,0$ $19,0$ 25,4 $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ 30,3 $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $31,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-8,6$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0 0,0 0,0 0,0 - 0,0	9,4	10,5	9,5	-2,4	-4,8	-3,2	-2,9
5.6 $7,1$ $6,1$ $-7,9$ $-7,4$ $-6,1$ $-6,9$ 3.4 1.8 0.8 -13.0 -12.4 -12.1 -10.8 $17,0$ 12.9 12.6 1.1 -0.3 1.1 $0,0$ $26,7$ 15.8 16.5 3.3 6.2 6.5 $7,6$ $17,5$ 4.4 3.9 0.8 -2.3 15.8 15.8 $25,7$ -3.2 -8.7 5.5 1.4 19.0 19.0 $25,4$ 4.3 3.4 5.5 1.4 18.2 18.2 $30,3$ -3.1 1.0 11.0 3.1 24.3 24.3 $19,1$ 4.9 3.1 0.7 0.9 14.3 17.6 $33,7$ -1.7 2.4 11.7 7.8 28.0 24.7 -28.6 -19.2 -6.5 -9.9 -11.0 -6.4 -8.6 -33.0 -14.0 -25.7 -5.5 -4.5 -1.3 2.0 -18.0 -10.9 -11.0 -12.6 -10.7 -3.2 -5.3 34.8 -6.0 -1.7 4.0 -5.4 3.8 7.6 -9.5 -7.9 -4.7 -14.1 -9.3 -2.1 -6.6 46.5 -7.5 -6.1 3.8 0.6 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.9 -22.6 -40.5 -13.4 -1.1 14.0 12.2 13.6 -9.6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
3,4 $1,8$ $0,8$ $-13,0$ $-12,4$ $-12,1$ $-10,8$ $17,0$ $12,9$ $12,6$ $1,1$ $0,0$ $1,1$ $0,0$ $26,7$ $15,8$ $16,5$ $3,3$ $6,2$ $6,5$ $7,6$ $17,5$ $4,4$ $3,9$ $0,8$ $-2,3$ $15,8$ $15,8$ $25,7$ $3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ $25,4$ $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,5$ $-2,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $9,6$ $31,7$ $-6,9$ $7,7$ $10,0$ $8,2$ $19,0$ $-5,$	5,6	7,1	6,1	-7,9	-7,4	-6,1	-6,9
17,0 $12,9$ $12,6$ $1,1$ $-0,3$ $1,1$ $0,0$ $26,7$ $15,8$ $16,5$ $3,3$ $6,2$ $6,5$ $7,6$ $17,5$ $4,4$ $3,9$ $0,8$ $2,3$ $15,8$ $15,8$ $25,7$ $-3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ $25,4$ $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ </th <th>3,4</th> <th>1,8</th> <th>0,8</th> <th>-13,0</th> <th>-12,4</th> <th>-12,1</th> <th>-10,8</th>	3,4	1,8	0,8	-13,0	-12,4	-12,1	-10,8
26,715,816,53,36,26,57,617,54,43,90,8-2,315,815,825,7-3,2-8,75,51,419,019,025,44,33,45,51,418,218,230,3-3,11,011,03,124,324,319,14,93,110,70,914,317,63,7-1,72,411,77,828,024,7-28,6-19,2-6,5-9,9-11,0-6,4-8,6-23,0-14,0-25,7-5,5-4,5-1,32,0-18,0-10,9-11,0-12,6-10,7-3,2-5,334,8-16,0-1,74,0-5,43,87,6-9,5-7,9-4,7-14,1-9,3-2,1-6,646,5-7,5-6,13,80,016,514,80,00,00,00,00,00,00,015,3-4,8-4,0-1,64,011,810,00,9-22,6-40,5-13,4-1,114,012,2-13,6-9,631,7-6,9-7,76,86,155,02,6-2,0-3,08,221,920,319,0-5,2-1,0-0,7-4,710,08,217,3-5,9-3,8-0,43,613,912,131,4-6,1-7,0-1,0	17,0	12,9	12,6	1,1	-0,3	1,1	0,0
17,5 $4,4$ $3,9$ $0,8$ $-2,3$ $15,8$ $15,8$ $25,7$ $-3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ $25,4$ $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-16,6$ $40,11,8$ $10,00$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,11$ $0,9$ $-5,2$ $-1,0$ $-7,7$ $7,6,8$ $6,11$ $5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$	26,7	15,8	16,5	3,3	6,2	6,5	7,6
25,7 $-3,2$ $-8,7$ $5,5$ $1,4$ $19,0$ $19,0$ $25,4$ $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $19,2$ $-6,5$ $-9,9$ $11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-2,2,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $5,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-7,7$ $6,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-$	17,5	4,4	3,9	0,8	-2,3	15,8	15,8
25,4 $4,3$ $3,4$ $5,5$ $1,4$ $18,2$ $18,2$ $30,3$ $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,22$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ <td< th=""><th>25,7</th><th>-3,2</th><th>-8,7</th><th>5,5</th><th>1,4</th><th>19,0</th><th>19,0</th></td<>	25,7	-3,2	-8,7	5,5	1,4	19,0	19,0
30,3 $-3,1$ $1,0$ $11,0$ $3,1$ $24,3$ $24,3$ $19,1$ $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,7$ $-6,1$ $3,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ </th <th>25,4</th> <th>4,3</th> <th>3,4</th> <th>5,5</th> <th>1,4</th> <th>18,2</th> <th>18,2</th>	25,4	4,3	3,4	5,5	1,4	18,2	18,2
19,1 $4,9$ $3,1$ $0,7$ $0,9$ $14,3$ $17,6$ $33,7$ $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,00$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ <t< th=""><th>30,3</th><th>-3,1</th><th>1,0</th><th>11,0</th><th>3,1</th><th>24,3</th><th>24,3</th></t<>	30,3	-3,1	1,0	11,0	3,1	24,3	24,3
33,7 $-1,7$ $2,4$ $11,7$ $7,8$ $28,0$ $24,7$ $-28,6$ $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $9,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ <	19,1	4,9	3,1	0,7	0,9	14,3	17,6
-28,6 $-19,2$ $-6,5$ $-9,9$ $-11,0$ $-6,4$ $-8,6$ $-23,0$ $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ </td <td>33,7</td> <td>-1,7</td> <td>2,4</td> <td>11,7</td> <td>7,8</td> <td>28,0</td> <td>24,7</td>	33,7	-1,7	2,4	11,7	7,8	28,0	24,7
-23,0 $-14,0$ $-25,7$ $-5,5$ $-4,5$ $-1,3$ $2,0$ $-18,0$ $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ <td>-28,6</td> <td>-19,2</td> <td>-6,5</td> <td>-9,9</td> <td>-11,0</td> <td>-6,4</td> <td>-8,6</td>	-28,6	-19,2	-6,5	-9,9	-11,0	-6,4	-8,6
-18,0 $-10,9$ $-11,0$ $-12,6$ $-10,7$ $-3,2$ $-5,3$ $34,8$ $-16,0$ $-1,7$ $4,0$ $-5,4$ $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ <tr< td=""><td>-23,0</td><td>-14,0</td><td>-25,7</td><td>-5,5</td><td>-4,5</td><td>-1,3</td><td>2,0</td></tr<>	-23,0	-14,0	-25,7	-5,5	-4,5	-1,3	2,0
34,8-16,0-1,74,0-5,4 $3,8$ $7,6$ $-9,5$ $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$	-18,0	-10,9	-11,0	-12,6	-10,7	-3,2	-5,3
-9,5 $-7,9$ $-4,7$ $-14,1$ $-9,3$ $-2,1$ $-6,6$ $46,5$ $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,22$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ <tr< th=""><th>34,8</th><th>-16,0</th><th>-1,7</th><th>4,0</th><th>-5,4</th><th>3,8</th><th>7,6</th></tr<>	34,8	-16,0	-1,7	4,0	-5,4	3,8	7,6
46,5 $-7,5$ $-6,1$ $3,8$ $0,0$ $16,5$ $14,8$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $15,3$ $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ $26,3$ $13,7$ $16,4$ $8,8$ $10,5$ $32,4$ $32,9$ <t< th=""><th>-9,5</th><th>-7,9</th><th>-4,7</th><th>-14,1</th><th>-9,3</th><th>-2,1</th><th>-6,6</th></t<>	-9,5	-7,9	-4,7	-14,1	-9,3	-2,1	-6,6
0,0 0,0 0,0 0,0 0,0 0,0 0,0 15,3 -4,8 -4,0 -1,6 4,0 11,8 10,0 0,9 -22,6 -40,5 -13,4 -1,1 14,0 12,2 -13,6 -9,6 31,7 -6,9 -7,7 6,8 6,1 55,0 2,6 -2,0 -3,0 8,2 21,9 20,3 19,0 -5,2 -1,0 -0,7 -4,7 10,0 8,2 17,3 -5,9 -3,8 -0,4 3,6 13,9 12,1 31,4 -6,1 -7,0 -1,0 6,7 16,7 14,9 7,9 0,4 -4,3 9,7 6,1 20,1 18,5 14,8 -2,1 3,4 -1,0 0,4 16,9 18,9 44,3 -37,8 -10,5 8,9 24,2 42,0 -472,4 20,4 -10,8 -1,5 8,9 18,8 17,1 15,	46,5	-7,5	-6,1	3,8	0,0	16,5	14,8
15,3 $-4,8$ $-4,0$ $-1,6$ $4,0$ $11,8$ $10,0$ $0,9$ $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ $26,3$ $13,7$ $16,4$ $8,8$ $10,5$ $32,4$ $32,9$ $42,8$ $-11,9$ $-2,6$ $6,5$ $9,3$ $33,9$ $32,5$ $5,1$ $-8,9$ $30,9$ $-1,9$ $-61,3$ $15,3$ $23,2$ <th>0,0</th> <th>0,0</th> <th>0,0</th> <th>0,0</th> <th>0,0</th> <th>0,0</th> <th>0,0</th>	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,9 $-22,6$ $-40,5$ $-13,4$ $-1,1$ $14,0$ $12,2$ $-13,6$ $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ $26,3$ $13,7$ $16,4$ $8,8$ $10,5$ $32,4$ $32,9$ $42,8$ $-11,9$ $-2,6$ $6,5$ $9,3$ $33,9$ $32,5$ $5,1$ $-8,9$ $30,9$ $-1,9$ $-61,3$ $15,3$ $23,2$	15,3	-4,8	-4,0	-1,6	4,0	11,8	10,0
-13,6 $-9,6$ $31,7$ $-6,9$ $-7,7$ $6,8$ $6,1$ $55,0$ $2,6$ $-2,0$ $-3,0$ $8,2$ $21,9$ $20,3$ $19,0$ $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ $26,3$ $13,7$ $16,4$ $8,8$ $10,5$ $32,4$ $32,9$ $42,8$ $-11,9$ $-2,6$ $6,5$ $9,3$ $33,9$ $32,5$ $5,1$ $-8,9$ $30,9$ $-1,9$ $-61,3$ $15,3$ $23,2$	0,9	-22,6	-40,5	-13,4	-1,1	14,0	12,2
55,02,6-2,0-3,08,221,920,319,0-5,2-1,0-0,7-4,710,08,217,3-5,9-3,8-0,43,613,912,131,4-6,1-7,0-1,06,716,714,97,90,4-4,39,76,120,118,514,8-2,13,4-1,00,416,918,944,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	-13,6	-9,6	31,7	-6,9	-7,7	6,8	6,1
19,0 $-5,2$ $-1,0$ $-0,7$ $-4,7$ $10,0$ $8,2$ $17,3$ $-5,9$ $-3,8$ $-0,4$ $3,6$ $13,9$ $12,1$ $31,4$ $-6,1$ $-7,0$ $-1,0$ $6,7$ $16,7$ $14,9$ $7,9$ $0,4$ $-4,3$ $9,7$ $6,1$ $20,1$ $18,5$ $14,8$ $-2,1$ $3,4$ $-1,0$ $0,4$ $16,9$ $18,9$ $44,3$ $-37,8$ $-10,5$ $8,9$ $24,2$ $42,0$ $-472,4$ $20,4$ $-10,8$ $-1,5$ $8,9$ $18,8$ $17,1$ $15,4$ $30,8$ $-12,2$ $2,0$ $3,9$ $5,9$ $28,0$ $26,5$ $28,0$ $-3,9$ $4,8$ $5,8$ $6,2$ $29,2$ $32,0$ $50,0$ $-193,7$ $-13,4$ $18,3$ $-2,0$ $30,6$ $11,4$ $64,6$ $1,4$ $-0,4$ $30,5$ $15,6$ $26,2$ $24,7$ $26,3$ $13,7$ $16,4$ $8,8$ $10,5$ $32,4$ $32,9$ $42,8$ $-11,9$ $-2,6$ $6,5$ $9,3$ $33,9$ $32,5$ $5,1$ $-8,9$ $30,9$ $-1,9$ $-61,3$ $15,3$ $23,2$	55,0	2,6	-2,0	-3,0	8,2	21,9	20,3
17,3-5,9-3,8-0,43,613,912,131,4-6,1-7,0-1,06,716,714,97,90,4-4,39,76,120,118,514,8-2,13,4-1,00,416,918,944,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	19,0	-5,2	-1,0	-0,7	-4,/	10,0	8,2
31,4-6,1-7,0-1,06,716,714,97,90,4-4,39,76,120,118,514,8-2,13,4-1,00,416,918,944,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	17,3	-5,9	-3,8	-0,4	3,6	13,9	12,1
7,90,4-4,39,76,120,118,314,8-2,13,4-1,00,416,918,944,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	31,4	-6,1	-7,0	-1,0	b,/	10,7	14,9
14,8-2,13,4-1,00,416,918,944,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	7,9	0,4	-4,3	9,7	0,1	20,1	18,5
44,3-37,8-10,58,924,242,0-472,420,4-10,8-1,58,918,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1.9-61,315,323,2	14,8	-2,1 27.0	3,4	-1,0	0,4	10,9	18,9
20,4-10,8-1,58,916,817,115,430,8-12,22,03,95,928,026,528,0-3,94,85,86,229,232,050,0-193,7-13,418,3-2,030,611,464,61,4-0,430,515,626,224,726,313,716,48,810,532,432,942,8-11,9-2,66,59,333,932,55,1-8,930,9-1,9-61,315,323,2	44,3	-37,8	-10,5	8,9 0 0	24,Z	42,0	-4/2,4
30,8 -12,2 2,0 3,5 3,5 28,0 20,3 28,0 -3,9 4,8 5,8 6,2 29,2 32,0 50,0 -193,7 -13,4 18,3 -2,0 30,6 11,4 64,6 1,4 -0,4 30,5 15,6 26,2 24,7 26,3 13,7 16,4 8,8 10,5 32,4 32,9 42,8 -11,9 -2,6 6,5 9,3 33,9 32,5 5,1 -8,9 30,9 -1.9 -61,3 15,3 23,2	20,4	-10,0	-1,5	0,9 2 0	10,0	17,1 28.0	15,4 26 E
28,0 -5,3 4,8 5,8 0,2 29,2 32,0 50,0 -193,7 -13,4 18,3 -2,0 30,6 11,4 64,6 1,4 -0,4 30,5 15,6 26,2 24,7 26,3 13,7 16,4 8,8 10,5 32,4 32,9 42,8 -11,9 -2,6 6,5 9,3 33,9 32,5 5,1 -8,9 30,9 -1.9 -61,3 15,3 23,2	28.0	-12,2	2,0	5,9	5,5	20,0	20,5
50,0 13,7 13,4 18,3 12,0 30,0 11,4 64,6 1,4 -0,4 30,5 15,6 26,2 24,7 26,3 13,7 16,4 8,8 10,5 32,4 32,9 42,8 -11,9 -2,6 6,5 9,3 33,9 32,5 5,1 -8,9 30,9 -1.9 -61,3 15,3 23.2	50.0	-102 7	4,0 13_4	0,0 12 2	-2.0	29,2	32,0 11 /
26,3 13,7 16,4 8,8 10,5 32,4 32,9 42,8 -11,9 -2,6 6,5 9,3 33,9 32,5 5,1 -8,9 30,9 -1.9 -61,3 15,3 23,2	50,0 64 6	195,7 1 /	-0.4	20,5	15.6	26.2	24.7
42,8 -11,9 -2,6 6,5 9,3 33,9 32,5 5,1 -8,9 30,9 -1.9 -61,3 15,3 23,2	26.3	12 7	16.4	2 Q Q	10 5	20,2	24,7
5,1 -8,9 30,9 -1.9 -61,3 15,3 23,2	20,3 42.8	-11.9	-2.6	6.5	9 3 9 3	32,4	32,5
	5.1	-8.9	30.9	-1.9	-61.3	15.3	23,2

Tabell V.30 fortsetter

4,9	0,0	0,7	-0,9	-11,3	-7,2	6,0
2,7	0,6	1,3	-0,6	-7,0	-6,1	3,9
0,0	0,0	0,0	0,0	0,0	0,0	0,0
2,4	0,1	0,8	-0,3	-4,5	-6,2	2,2
0,0	0,0	0,0	0,0	0,0	0,0	0,0
-6,2	-6,1	-3,9	-7,7	-11,9	-12,2	38,0
-12,4	-15,2	-12,0	-13,3	-17,7	-18,0	89,7
-0,5	0,8	2,6	1,5	-3,1	-3,0	1,9
0,6	-0,2	3,1	4,2	-0,8	-0,1	-1,4
-7,3	-4,3	-0,8	-3,0	14,7	14,6	-5,4
-11,5	-4,3	0,9	1,5	17,5	15,1	-9,4
-5,8	-6,9	2,7	2,8	16,9	13,3	-7,5
-8,5	-7,4	3,5	2,4	19,6	18,4	-11,4
-6,2	-4,8	-0,8	-1,9	14,6	32,3	-8,0
-9,9	-7,1	4,6	3,5	22,1	19,4	-11,9
-3,9	-2,3	-4,4	-52,5	-1,6	-2,4	2,0
-9,5	-3,7	-1,7	-47,3	3,9	1,6	-2,1
-1,4	-2,9	-3,0	-54,4	1,0	0,3	1,7
-4,7	-0,9	-1,0	-49,5	7,1	4,5	0,8
-2,3	-1,5	-5,0	-54,0	1,2	3,1	1,9
-6,2	-5,2	5,9	-44,8	7,1	12,6	-3,5
0,0	0,0	0,0	0,0	0,0	0,0	0,0
-8,8	-1,6	0,6	-47,1	5,8	7,7	-4,2
-10,0	-17,0	-4,6	-54,9	3,6	5,5	-9,7
-7,3	-8,0	-0,8	-53,5	10,6	6,7	-2,4
-5,1	-6,3	5,0	-40,7	6,2	1,9	0,4
-6,0	-5,7	4,2	-41,8	14,5	9,5	-6,1
-6,2	-8,9	5,2	-42,7	14,7	13,1	-6,2
-4,2	-4,2	8,2	-43,0	9,4	11,2	-4,4
-12,9	-8,7	9,3	-34,3	16,9	18,5	-8,2
-7,6	-6,0	1,1	-43,1	13,5	13,7	-6,1
-4,1	-6,5	5,9	-39,3	22,6	16,5	-0,2
-2,3	-3,0	4,7	-41,0	11,5	13,2	-4,6
-9,0	-5,0	5,1	-40,5	18,3	15,2	-7,6
-10,7	-9,3	8,8	-42,5	21,7	21,5	-12,3
-16,8	-12,5	8,5	-35,4	16,6	18,3	-6,0
-3,5	-3,6	10,2	-32,9	21,2	17,9	-7,8
-7,0	-1,8	14,0	-29,5	26,9	25,4	-47,1
-13,5	-9,3	11,5	-35,0	25,9	29,9	-14,2
-124,8	-0,6	12,2	-27,1	24,7	26,1	1,3

Tabell V.30 fortsetter

					Snitt	Stdav
5,6	0,3	2,2	-12,9	-2,4	-1,2	6,5
2,6	2,5	0,8	-11,4	-0,4	-0,6	6,1
0,0	0,0	0,0	0,0	0,0	0,0	0,0
3,5	1,8	0,4	-10,6	0,6	-0,4	6,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0
-1,0	-3,9	-4,1	-19,4	-5,3	-3,6	11,3
-11,1	-12,2	-14,6	-26,2	-15,2	-7,2	22,2
1,4	1,0	0,8	-9,3	-0,7	2,8	6,5
2,0	1,3	-0,4	-9,6	-0,3	5,4	8,7
-3,9	-6,9	-10,2	7,9	7,5	4,9	9,3
-3,9	-9,7	-8,0	10,0	8,8	5,2	11,0
-3,2	-10,8	-11,4	10,6	7,6	6,9	11,2
-7,2	-7,3	-8,7	10,6	8,5	7,5	13,0
-3,1	-10,4	-11,8	9,4	7,0	6,4	11,8
-1,3	-11,3	-11,0	9,9	7,1	8,5	13,9
1,6	-2,9	-2,6	7,0	6,7	-9,4	13,0
-0,8	-1,2	-2,0	7,7	8,4	-6,8	14,6
0,1	-4,0	-1,6	5,7	8,0	-7,6	12,3
-3,1	-5,6	-4,6	8,1	8,7	3,2	18,6
0,1	-4,5	-3,8	8,0	7,1	-5,9	12,1
-4,4	-5,1	-2,9	9,1	8,5	6,1	18,2
0,0	0,0	0,0	0,0	0,0	0,0	0,0
-2,4	-3,2	-2,4	8,5	7,8	5,0	18,6
-8,3	-4,2	-5,1	7,8	10,1	-11,7	23,6
-1,5	-3,1	-4,1	9,8	7,7	-4,1	15,4
-4,7	-2,1	-5,5	9,1	4,3	9,0	21,7
-3,2	-1,3	-3,9	11,3	10,1	-18,4	103,0
-8,2	-3,3	-3,4	14,0	10,0	1,0	13,7
-3,7	-8,2	-5,3	12,5	9,3	4,7	16,3
-7,0	-7,0	-5,3	16,8	9,3	8,1	19,1
-5,5	-4,9	-3,1	12,6	9,5	0,7	13,5
-1,1	4,4	-2,6	14,1	16,2	-89,7	377,1
-1,8	-5,8	-2,2	9,0	3,0	9,0	20,1
-7,7	-5,3	-3,2	12,7	10,4	6,1	17,4
-9,4	-2,3	-0,4	12,0	11,7	4,0	18,1
-4,6	3,1	-3,2	12,3	9,3	-7,3	48,2
-10,4	-4,0	-4,8	11,5	8,1	12,9	20,6
-3,8	3,8	4,5	19,2	18,7	7,9	20,6
-14,3	-3,4	0,1	13,9	15,0	5,7	20,7
-19,1	4,0	1,7	20,8	13,6	-4,4	33,0

FAME	Konsentrasjon ug/mL			
	R37 150 R37 300 R37 600 R37 120			R37 1200
C4:0	6	12	24	48
C6:0	6	12	24	48
C7:0	5	10	25	50
C8:0	6	12	24	48
C9:0	5	10	25	50
C10:0	6	12	24	48
C11:0	3	6	12	24
C12:0	6	12	24	48
C13:0	3	6	12	24
C14:0	6	12	24	48
C14:1 Cis 9	3	6	12	24
C15:0	3	6	12	24
C15:1 Cis 10	3	6	12	24
C16:0	9	18	36	72
C16:1 Cis 9	3	6	12	24
C17:0	3	6	12	24
C17:1 Cis 10	3	6	12	24
C18:0	6	12	24	48
C18:1 Trans 9	3	6	12	24
C18:1 Cis 9	6	12	24	48
C18:2 Trans 9, 12	3	6	12	24
C19:0	5	10	25	50
C18:2 Cis 9, 12	3	6	12	24
C18:3 Cis 6, 9, 12	3	6	12	24
C20:0	6	12	24	48
C18:3 Cis 9, 12, 15	3	6	12	24
C20:1 Cis 11	3	6	12	24
C21:0	3	6	12	24
C20:2 Cis 11, 14	3	6	12	24
C20:3 Cis 8, 11, 14	3	6	12	24
C22:0	6	12	24	48
C20:4 Cis 5, 8, 11, 14	3	6	12	24
C20:3 Cis 11, 14, 17	3	6	12	24
C22:1 Cis 13	3	6	12	24
C23:0	3	6	12	24
C20:5 Cis 5, 8, 11, 14, 17	3	6	12	24
C22:2 Cis 13, 16	3	6	12	24
C24:0	6	12	24	48
C24:1 Cis 15	3	6	12	24
C22:6 Cis 4, 7, 10, 13, 16, 19	3	6	12	24

Tabell V.31 Tabellen oppgir konsentrasjonen i hver FAME i de 4 prøvene.

Norges miljø- og biovitenskapelige universitet Postboks 5003 NO-1432 Ås 67 23 00 00 www.nmbu.no