


Abstract

Hierarchically Ordered Taxonomic Partial Least Squares (Hot PLS) is a

method for classifying data in a hierarchical structure. Since Hot PLS is

a relatively new method, we want to study strengths and weaknesses of this.

This was done by simulated data with known parameters by using the R

package, Simrel.

The simulated data was then classified by Hot PLS. Classification error

was used as the measure on how good the a method is to classify the data.

For finding out which effect the different simulated parameters had on the

classification error an ANOVA model was made, where the classification er-

ror was the response and the simulatated parameters and methods was the

treatments. The simulated data were also classifies by other classifiers PLS,

LDA, QDA and KNN, so one could check if the Hot PLS did perform better

than the other classifiers. First the Hot PLS was only compared with PLS.

The results from these analysis show us that the Hot PLS is a good

method for classifying data which has a hierarchical structure.



Sammendrag

Hierarchically Ordered Taxonomic Partial Least Squares (Hot PLS) er en

metode for å klassifisere data som har en hierarkisk struktur. Siden Hot PLS

er en relativt ny metode, ønsker man å studere styrkene og svakhetene ved

denne metoden. Dette ble gjort ved å simulere data med kjente simuler-

ingsparametre ved hjelp av R-pakken, Simrel.

De simulerte dataene ble deretter klassifisert av Hot PLS og klassifikasjons-

feil ble brukt som mål p̊a hvor god metoden er p̊a å klassifisere dataene. For

å finne ut hvilken virkning p̊a de ulike simuleringsparameterne har p̊a klassi-

fikasjonsfeil ble en ANOVA modell laget, hvor klassifikasjonsfeil var respon-

sen og simuleringsparameterne og metodene var forklarende variabler. De

simulerte dataene var ogs̊a klassifisert av andre klassifisering metoder, disse

metodene er PLS, LDA, QDA og KNN. Dette ble gjort slik at man kunne

sjekke om Hot PLS gjorde det bedre enn de andre klassifiseringsmetodene.

Først ble Hot PLS bare sammenlignet med PLS.

Resultatene fra disse analyser viser at Hot PLS er en god metode for å

klassifisere data som har en hierarkisk struktur.
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Chapter 1

Introduction

1.1 Problem

The goal of this thesis is to study the strengths and the weaknesses of Hi-

erarchically Ordered Taxonomic Partial Least Squares (Hot PLS) method

for classification [Liland et al. 2014]. Hot PLS may be used in cases where

the data has a hierarchical structure. Hot PLS starts at the top level and

works its way trough the structure to the lowest level. Unlike other classi-

fiers, Partial Least Squares [Wold 1966], Linear discriminant analysis (LDA)

[e.g. Johnson and Wichern 2007a], Quadratic discriminant analysis (QDA)

[e.g.Johnson and Wichern 2007b], k-Nearest Neighbors (KNN) [e.g.James et

al. 2013a], which will classify on the lowest level. In this thesis the data will

be simulated so that one can predetermine parameters to be what you want

them to be. The results of the Hot PLS will be compared with the results

from other classifiers PLS, LDA, QDA, KNN.
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1.2 Classification

In statistics classification is used to predict some qualitative response. An-

other word for qualitative variable is categorical variable. Categorical vari-

ables can be, for instance be the eye colour or the gender of an individual. To

predict the qualitative response there are different classifiers such as LDA,

QDA, and KNN, to mention a few.

The classification begins with one or more observed input features, x-

variables, which then are ran through a classifier. The classifier will chooses

which class the observation will belong to. Besides other approaches, the class

which gives the observation the highest probability can be chosen. Binary

classification is the most known classification scheme, where the observations

are classified as either A or B. Occasionally the problem may requires a

classification into more than two groups, and which is known as multi-group

classification. Such a classification is a frequent problem in machine learning,

since it can be hard to separate one class from another. One strategy to deal

with multi-group classification is OvA (One versus All) [Har-peled et al.

2002]. This method makes use of the standard binary classifiers to find the

correct class. OvA assumes that there single separators for each class to

separate it from all the others. By using this, the OvA implies a WTA-

strategy (winner takes all). WTA uses a real-value function to determine

which class the observations belong to. Machine learning is divided into two

groups, supervised and unsupervised learning. Unsupervised learning models

seek for natural groups in the observations. While in supervised learning

the classes are known, and one divides the observations into test data and

training data. The training data is used to fit the classifier and then it is
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tested on the test data.

1.2.1 Classification rules

Classification rules are also known as classifiers. In the following some clas-

sifiers which are used later on for comparison in this thesis are described.

1.2.2 Linear discriminant analysis (LDA)

The LDA classifier is a stable classifier, even if when the number n of observa-

tions is low, and the number explanatory variables, p, are approximately nor-

mal distributed in each of the classes. This means that LDA is working even

if the condition for multinomial distribution is not completely fulfilled and

there are just a few observations available. LDA is also working well when

the observations are linearly separated. LDA is based on the assumption

that the covariance matrix for each class to equal, Σ1Σ1Σ1 = Σ2Σ2Σ2 = . . . = ΣΣΣk = ΣΣΣ,

where k is the number of groups. This give the multivariate Gaussian density

defined as

fj (xxx) =
1

(2π)
p
2 |ΣΣΣ| 12

e−
1
2

(xxx−µµµj)tΣΣΣ−1(xxx−µµµj)

where p is the number of explanatory variables, xxx is a vector of an observation,

ΣΣΣ is the covariance matrix of XXX, cov(XXX) and the µµµj is the expected mean

for class j. In a LDA case with two classes and known µµµs and the ΣΣΣ are

distributed as:

For class 1

xxx1 ∼ Np (µµµ1,ΣΣΣ) = f1 (xxx1)
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For class 2

xxx2 ∼ Np (µµµ2,ΣΣΣ) = f1 (xxx2)

A new observation in a two classes case belongs to class 1 if and only if

f1(xxx1) > f2(xxx2)

xxxtΣΣΣ−1µµµ1 −
1

2
µµµt1ΣΣΣ

−1µµµ1 > xxxtΣΣΣ−1µµµ2 −
1

2
µµµt2ΣΣΣ

−1µµµ2

In most cases µµµ1,µµµ2 and ΣΣΣ are unknown, so that these parameters have to

be estimated. If n1 + n2 − 2 ≥ p one can use

xxx1 =
1

n1

n1∑
i=1

xxx1j S1S1S1 =
1

n1 − 1

n1∑
i=1

(xxx1j − xxx1) (xxx1i − xxx1)t

xxx2 =
1

n2

n2∑
i=1

xxx2i S2S2S2 =
1

n2 − 1

n2∑
i=1

(xxx2i − xxx2) (xxx2i − xxx2)t .

(1.1)

where xxx1 is a vector with the mean of group 1, xxx2 is a vector the mean of

group 2, xxx1i is x vector for group 1 and observation i, xxx1i is x vector for group

2 and observation j, SSS1 is the estimated variance for group 1 and SSS2 is the

estimated variance for group 2. Since in LDA ΣΣΣ is assumed to be equal for

both groups the estimated S1 and S2 be combined to one matrix, SSSpooled

SSSpooled =
(n1 − 1)S1S1S1 + (n2 − 1)S2S2S2

(n1 − 1) + (n2 − 1)
.

When a new observation are added to data it belongs to class 1 if

(xxx1 − xxx2)tSSS−1
pooledxxx0 −

1

2
(xxx1 − xxx2)tSSS−1

pooled (xxx1 − xxx2) ≥ ln

(
π2

π1

)
(1.2)

if equation (1.2) does not hold the new observation belongs to group 2. Where

the π2
π1

is the prior probability ratio, which is used if the probability of be-

longing to one class is higher than the probability of belonging to the other
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class. In most cases with two classes the prior is set equal to 0.5, by doing so

the probabilities of belonging to a certain class are equal and thus the prior

cancels.

As mentioned before the LDA classifier works well with small n, never-

theless it requires n > p. If n < p the inverse covariance matrix, ΣΣΣ−1 cannot

be found hence the calculation of the probability is not possible. During the

analysis of this thesis LDA is used even if n < p. In order to use LDA under

this condition it is necessary to use principal components (PCA) instead of

x. The principal components will have a components where a < n. In this

thesis a = 8 since 8 always will be smaller than the smallest n used in this

thesis. One also expects that 8 components will retain most of the variation

in XXX. Later on, in subsection 1.4.1, principal components will be explained

in more details.

1.2.3 Quadratic discriminant analysis (QDA)

The LDA classifier can be used when the covariances are equal in all k classes

i.e. Σ1Σ1Σ1 = Σ2Σ2Σ2 = . . . = ΣΣΣk = ΣΣΣ. In cases where this is not true, then the

covariances are assumed different from each other, ΣΣΣ1 6= ΣΣΣ2 6= . . . 6= ΣΣΣk, k

is the number of classes, the LDA classifier cannot be used which lead to

the QDA classifier. QDA is similar to LDA since both classifiers assume the

classes the classes to be multivariate normal distributed. Figure 1.1 shows

an example of two distributions with different means and variances.
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Figure 1.1: The density plot showing two probability distribution. The blue one

has µ = −2.5, σ = 1, and the black one has µ = 3, σ = 0.5

For a QDA case with two classes, they will be distributed as

For class 1

x1x1x1 ∼ Np (µµµ1,ΣΣΣ1) = f1 (x1x1x1)

For class 2

x2x2x2 ∼ Np (µµµ2,ΣΣΣ2) = f2 (x2x2x2)

where ΣΣΣ1 and ΣΣΣ2 are the covariance matrices for class 1 and class 2, respec-

tively. If the model parameters are known, a new observation is classified to

class 1 if

f1 (x1x1x1) > f2 (x2x2x2)

6



1√
2π
· 1

| ΣΣΣ1 |
1
2

· e−
1
2

(xxx∗−111µ1)tΣΣΣ−1
1 (xxx∗−111µ1) >

1√
2π
· 1

| ΣΣΣ2 |
1
2

· e−
1
2

(xxx∗−111µ2)tΣΣΣ−1
2 (xxx∗−111µ2)

(1.3)

In order to simplify equtaion (1.3) the logarithm is taken which leads to

− 1

2
log (| ΣΣΣ1 |)−

1

2
(xxx∗ − 111µ1)tΣΣΣ−1

1 (x∗ − 111µ1)

> −1

2
log (| ΣΣΣ2 |)−

1

2
(xxx∗ − 111µ2)tΣΣΣ−1

2 (xxx∗ − 111µ2)

Using the second squared sentence gives

− 1

2
log (| ΣΣΣ1 |)−

1

2

(
xxx∗tΣΣΣ−1

1 xxx∗ − 2111µt1ΣΣΣ
t
1xxx

∗ + 111µt1ΣΣΣ
−1111µ1

)
> −1

2
log (| ΣΣΣ2 |)−

1

2

(
xxx∗tΣΣΣ−1

2 xxx∗ − 2111µt2ΣΣΣ
t
2xxx

∗ + 111µt2ΣΣΣ
−2111µ2

)
and thus

log (| ΣΣΣ1 |) +
(
xxx∗tΣΣΣ−1

1 xxx∗ − 2111µt1ΣΣΣ
t
1xxx

∗ + 111µt1ΣΣΣ
−1111µ1

)
> log (| ΣΣΣ2 |)−

(
xxx∗tΣΣΣ−1

2 xxx∗ + 2111µt2ΣΣΣ
t
2xxx

∗ + 111µt2ΣΣΣ
−2111µ2

)
If it is known in advance that there is a higher probability to belong to one

class than to the other, the prior is also used to classify the class, namely

f1 (x1)× π1 > f2 (x2)× π2

where π1 is the probability for belonging class 1 and π2 is the probability for

belonging to class 2. The sum of the priors are always equal to 1.

In the most cases the µs and the Σs are unknown. Hence these values

have to be estimated as x1,x2,S1 and S2, see Equation 1.1. A newly added

observation, xxx0, belong to group 1 if

−1

2
xt
0

(
S−1
1 − S−1

2

)
x0 +

(
xt
1S

−1
1 − xt

2S
−1
2

)
x0 − k ≥ ln

(
π2

π1

)
,
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Where the k is

k =
1

2
ln

(
|SSS1|
|SSS2|

)
+

1

2

(
xxxt1SSS

−1
1 xxx1 − xxxt2SSS−1

2 xxx2

)
else the observation belongs to group 2.

As mentioned in subsection 1.2.2 about LDA n > p has to be fulfilled

to be able to calculate the inverse covariance matrix ΣΣΣ−1 or SSS−1. This also

applies to QDA. Moreover QDA uses PCA for reduce the number explanatory

variables.

1.2.4 k-Nearest Neighbors (KNN)

The KNN classifier is a basic and simple classifier. When working on a data

set with little or no knowledge on the data before starting the classification,

it is wise to use the KNN classifier. The KNN classifier finds the K nearest

observations and the new observations are allocated to the group which is

most frequent among the K neighbors. K = 3 that the distances from the

new observations to all the observations in the training set are calculated

and then the three samples with the smallest distances are identified. The

new observation belongs to the class to which most of the three identified

observations belong to, see Figure 1.2.
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Figure 1.2: The figure shows the borders for 3-NN (whole line) and 5-NN (dotted

line)-classifiers. The blue triangles are observations belonging to group 1, the pink

squares are the observations in group 2 and the orange circle is the new observa-

tion. The new observation is allocated to group 1 by both the 3-NN and the 5-NN

classifiers.

The euclidean distance is used most frequently to calculate the distance

between the test observation and the training samples in KNN. The euclidean

distance between a new observation xi (i = 1, 2, . . . , n) and an observation

from the training samples xl (l = 1, 2, . . . , n) is calculated via

d (xi,xl) =

√
(xi1 − xl1)2 + (xi2 − xl2)2 + . . .+ (xip − xlp)2

where p is the number of predictors in the model, n is the total number of

input samples and xl is an observation of the already classified in the feature

space.

1.3 Ordinary least squares (OLS)

As an introduction to other methods we will present the ordinary least

squares (OLS) model.
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Linear model estimation:

A linear model is defined as

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε

where β0 is the intercept. We assume the data to have centred variables

which then give β̂0 = 0. Centred variables is when the mean of the variables

are subtracted from variables, (xi− x), and from the response, (yi− y). The

linear model in matrix form is given by

yyy
n×1

= XXX
n×p

βββ
p×1

+ εεε
n×1

where ε ∼ N (0, σ2), yyy is a vector of responses, βββ is a vector of parameters and

XXX is a matrix of p explanatory variables and n observations. When fitting a

linear model the least square estimator is commonly used. It is given by

β̂ =
(
X tX

)−1
X tyβ̂ =

(
X tX

)−1
X tyβ̂ =

(
X tX

)−1
X ty

If n > p the invertion of X tX will be possible and the estimation of β̂ will be

easy. Today’s data often confront one with n < p, which makes it impossible

to estimate β̂ since the inversion X tX is not possibles.

1.4 Dimension reduction in regression

Methods based on dimenstion reduction reduce X to Z which has a variables

instead of p, a < p and a < n, see Figure (1.3). The vectors Z = [z1, z2, . . . , za]

in Z are orthogonalized. Hence zt
izj = 0 where i 6= j. All zis are a linear

combination of xi,...,p

zi = r1x1 + r2x2 + . . .+ rpxp (1.4)
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where rj(j = 1, 2, . . . , p) are some numbers. This gives a new model for the

regression of y

y = Zα + f

where fff is the error term. With OLS estimator:

α̂ =
(
ZtZ

)−1
Zty (1.5)

In the following Figure 1.3 an illustration of the dimension reduction process

is shown.

Figure 1.3: The figure shows how dimension reduction reduces the X-matrix,

X = [x1,x2, . . . ,xp] to Z = [z1, z2, . . . , za], where the X-matrix contains p vari-

ables and the Z-matrix contains a variables, and a < p.

For finding the ZZZ variables there are many methods, two of them is PCR

or PLSR. PCR looks for the ±Zs which have the maximum variance. PLSR

will find the ZZZs with highest covariance to the YYY , the ZZZs that are most re-

lated to the YYY .
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1.4.1 Principal component regression (PCR)

PCR [Kendall 1957] compress the data by finding the direction with maxi-

mum variance, called Z1. Further Z2 is orthogonalized to Z1, still maximizing

the variance in the x-space. The general way to find the Zs is by

Z = XEa

where Ea = [e1, e2, . . . , ea] it is found as the a first eigenvectors of the co-

variance matrix of X, (cov(X)). It is known (see equation (1.5)) which gives

β̂PCR = Eaα̂

In this thesis the PCR is not used in the classification, but PCR is used for

calculating the Z as input to LDA and QDA.

1.4.2 Partial Least Squares Regression (PLSR)

As mentioned before the PLSR [Martens and Næs 1989] will find the Zs that

are most related to Y. The PLSR algorithm is consisting of five steps. Let

y0 and X0 be centred variables.

1. Compute the loading weights

w1 = Xt
0y0 this is replaced by normalized w1 ← w1√

wt
1w1

.

wis in a PLSR model will correspond to the rs in Eq 1.4.

2. Compute the z1 scoresvector:

z1 = X0w1

by this the |cov(y0, z1)| is maximised.

12



For finding the z2 to za we need to remove the information found in

z1.

3. Find the loadings for y and x

The x loadings: p1 = Xt
0z1 (zt

1z1)
−1

The y loadings: q1 = yt
0z1 (zt

1z1)
−1

4. The inflation step. Find the residual matrix for both XXX and yyy:

The residual matrix for XXX: X1 = X0 − z1p
t

The residual matrix for yyy: y1 = y0 − z1q
t

5. Return to step 1 for finding the next wi and zi. Repeat this algorithm

until all wi and i(i = 1, . . . , a) are found.

The PLSR algorithm will be repeated a times. The number of components

a are decided by

• crossvalidation or testing data prediction

• trying different values of a, predict y and then choosing the a value

which gives the lowest prediction error.

The β̂ββ is estimated via

β̂̂β̂βPLSR = W
(
PtW

)−1
Q (1.6)

where W
p×a

= [w1,w2, . . . ,wa], P
p×a

= [p1,p2, . . . ,pa] and Q
a×1

= [q1,q2, . . . ,qa]t.

One can now find the β̂ββ0 for the original variables by

β̂ββ0 = yyy − β̂ββ
t

PLSRxxx
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Moreover the prediction model for a new xxx∗ is

ŷyy = β̂ββ0 + β̂ββ
t

PLSRxxx
∗

1.5 Validation

Evaluating a classification rule

When evaluating a classification rule it is common to calculate the classi-

fication error also known as Apparent Error Rate (APER) which gives the

percentage of misclassification. The closer the APER is to zero, the better

the classification model is.

The APER is defined as:

APER =
n1M + n2M

n1 + n2

where

n1M : the number of correctly classified observations in group 1

n2M : the number of correctly classified observations in group 2

n1: the number of observations in group 1

n2: the number of observations in group 2

1.5.1 Test data

Evaluating these classifiers requires both training data and test data because

when creating a model for a dataset there is always the risk of overfitting i.e.

the model is fitted to the certain dataset but does not work well when used
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for another dataset. Hence the dataset is divided into training data and test

data. The model is fitted to the training data and then tested on the test

data. The purpose of using training data is to fit the model to these data

while knowing the answer to which group the different observation belongs

to. The test data are used to test the model by predicting which group the

different observations in the test data belong to.

1.5.2 Cross validation (CV)

The risk of overfitting can be reduced by using cross validation. This is done

by dividing the data into segments of which one is left out of the fitting

process. Later on the left-out-segment is used as test data for the fitted

model. After that another segment is left out as test data. This rutine is

repeated until all segments have been left out as test data. For example, if

there are ten segment, the model will be fitted ten times with different data,

each time leaving out another observation as test observation.

General case: K-fold cross validation

The K-fold cross validation is a CV which divides the observation into K

groups, also called folds. Of these groups one group is left out and the rest

is used as training data set. The group that is left out is the test data set for

which the classification error is estimated. After doing so for the first fold, one

continues to the next fold. This process is repeated until each group served

as test data. After finishing all the fittings the K-Fold CV error is calculated.

15



This error is the average of all APERs (APER1, APER2, . . . , APERK)

CVK − error =
1

K

K∑
i=1

APERi.

The number K of groups affects the results. Choosing a large K gives a large

training data set that proviedes a good estimation of the model but a poor

estimation of the classification error due to a small test data set. On the

other hand if K is chosen small it gives a poor parameter estimation but the

estimation of the classification error is quite good due to the large test data

set. In order to get the best possible estimation one should choose a medium

sized K. Thus K=10 is a frequent choice in literature.

Special case: leave-one-out cross validation, K = n

A special case of K-fold CV is K = n, which is also known as leave-one-out

cross validation (LOOCV). LOOCV divides the data set into parts, but un-

like other cross validation methods will LOOCV leave one of the observations

out and the rest of the observations will constitute the training data.For the

first run (x1, y1) is left out and the remaining [(x2, y2) , . . . , (xn, yn)] are the

training data set. The model is then fitted to the n-1 training observations.

ŷ1 is predicted separately from the others since it uses x1, then will also the

APER1 calculated. APER1 it will be unbiased, the prediction error APER1

will have high variance because it is predicted on only one observation. After

the APER1 is predicted APER2 is predicted on (x2, y2) with the training

data set [(x1, y1) , (x3, y3) , . . . , (xn, yn)]. This is repeated until all observa-

tions have served as test data. LOOCV will then find find the average of all
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the test APER’s which will be the estimate for test error

CVn − error =
1

n

n∑
i=1

APERi.

One of the main advantages of LOOCV is that it has less bias than other

CVs. Moreover there is less risk of overfitting[James et al. 2013b]. Another

advantage is that LOOCV gives less randomness in results compared to other

CVs. That is because LOOCV just leaves out one observation instead of a

set of observations. Because of this LOOCV will have has similar results in

every run. Other CV methods have some randomness in their results due to

the fact that they divide the training set and the test set into larger groups.

1.6 Analysis of variance

1.6.1 ANOVA

The analysis of variance (ANOVA) (see e.g. Montgomery 2009a) is a statis-

tical method used to make comparisons between two or more groups with

regard to their effect on some response variable. By doing this it is possible

to test and determine which variables are significant and if there exists a sig-

nificant relation between the groups. In a one-way ANOVA the observations

will be divided into different groups also called treatments. A one-way effects

model can be formulated as

yij = µ+ τi + εij

where yij is the response, µ is the overall mean, the τi is the effect of the

treatment with level i, εij is the error term. The indices are i = 1, 2, . . . , a
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and j = 1, 2, . . . , ni. An example is that the response is the weight of pigs

on a different diets (treatments). In this thesis ANOVA is used to test the

effects of classifiers and simulated parameters on classifications error.

Usually an ANOVA table is made to list the sources of variation in the

data. SST is a measure of overall variability in the data with the formula

SST = Σa
i=1Σni

j=1 (yij − y..)
2

with degrees of freedom, DF = N − 1. SSTreatment is a measure of the

variability between the treatments, with the formula

SSTr = Σa
i=1ni (yi. − y..)

2

with DF = a - 1. SSE is the variability within the treatments, with the

formula

SSE = Σa
i=1Σn

j=1 (yij − yi.)
2

with DF = N - a.

Often there are more than one factor in the model. In such models it is

common to also consider the interactions between the factors. Interaction

is when the effect of a factor on the response is depending on the level of

another factor. .

A model with two treatments and interaction is: yijk = µ+τi+βj+(τβ)ij+εijk

where number of groups for τ is i = 1, 2, ..., a, number of groups for β is

j = 1, 2, ..., b and number of observations in the groups k = 1, 2, ..., n.
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1.6.2 Experimental design

Two-level factorial design

In order to study the joint effect of the factors on the response the factorial

design is widely used. Two-level factorial design (see e.g. Montgomery 2009b)

means that the factors have only two levels each, ”high” or ”low”. Often are

the levels denoted as ”+” and ”−” for high and low levels. These designs

are often called 2k-designs where k is the number of factors and the 2k will

be the total number of runs in the design, across all k factors.

For a 22 factorial design there will be two different factors and four differ-

ent treatments combinations. Lets say there are two factors, A and B. Then

their combinations will be like in Table 2.1. This is also known as a design

matrix

Total A B

(1) − −

a + −

b − +

ab + +

Table 1.1: Overview of treatment combinations in a 22 factorial design. The ”+”

means the high level of a factor, and the ”−” means the low level of a factor.

Calculations of the main effect in a 22 factorial design is done by finding

the difference between the average when the factor is high level and when

the factor is low level (see Table 1.1), this will only be optimal when it is

balanced design where ni = n, and the formulas will be
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The main effect of factor A

A = Y A+ − Y A− =
1

2n
([ab− b] + [a− (1)])

The main effect of factor B

B = Y B+ − Y B− =
1

2n
([ab− a] + [b− (1)])

The main effect of interaction AB

AB =
1

2n
([ab− b]− [a− (1)])

The general 2k factorial design is a design that has k factors with two

levels each. For preforming a statistical analysis for a 2k factorial design one

should start by estimating the factor effects and then state the model. In a

full statistical model for 2k factorial design there will be k main effects,

k
2


two-factor interactions,

k
3

 three-factor interactions, . . ., and one k-factor

interaction. If k is large this can lead to complicated model and interaction

levels that are not significant. To make the model simpler one can reduce the

model by performing a set of statistical tests to the model. One way to do this

is to use backward selection method. The user sets a significance level (α),

which often is set to α = 0.05. Then the method will look through the model

for the highest p-value, if the p-value is over α = 0.05 the corresponding

term will be removed from the model and the model is refitted without the

term. This is done until every effect is significant. There are some rules that

has to be followed, the hierarchy in the model must be maintained. This

means that if an effect on a lower level is not significant, but is part of a
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higher order interaction that is significant, then the effect on the lower level

must be retained even though it is not significant. This also means that

main effects can not be rejected if it is a part of a significant order higher

interaction effect.
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Chapter 2

Methods

2.1 Methods

2.1.1 Hot PLS

The Hot PLS [Liland et al. 2014] will classify objects by following a known

hierarchical structure for the classes and using PLS at each hierarchical split.

The Hot PLS structure is similar to a classification tree à la [Breiman et al.

1984], but the classification in each branch is replaced by PLS discriminant

analyse (PLS- DA). Figure 2.1 shows how the data with a hierarchical struc-

ture is organized.
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Figure 2.1: The figure show a hierarchy system with branches and nodes, where

there are three levels. The horizontal lines are the different nodes and the the

vertical lines are the branches.

In the article of Liland et al. 2014 they explain that the Hot PLS will

calculate a PLS model based on the observations on the exactly branch for

each node. In the model for the nodes there can be one or more groups

per node. Figure 2.1 explains what a branch and a node are. The number

components will be determined locally by cross-validation. In the article they

use CPPLS [Indahl et al. 2009] for making the PLS model and the classifier

is LDA which uses the PLS scores as predictors, but in this thesis we will be

using the normal PLS with LDA. A problem with using methods like PLS

and LDA is that an observation always needs to be assigned to a group.

This can lead to that new groups will not be discovered. In Liland et al.

2014 they deal with this problem by adding an estimation of how similar

an observation has to be to an existing group for belonging to that group.
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Observations which do not seem to belong to any existing group will get

labeled ”low confidence”, because it could simply be an outlier of a another

group or belong to a new group. The algorithm for the training data are as

follows:

Constructing the tree

1. Make a hierarchical tree for the classes based on background knowledge.

2. Remove any obviously non-informative levels in the tree.

Training the nodes recursively:

3. Estimate the number PLS components for the node.

4. Calculate the PLS model.

5. Repeat from 3. for the next node(s).

And the algorithm for classfication:

1. Calculate the prediction scores.

2. Classify by LDA.

3. Identify the ”low confidence” observations.

4. Repeat from 1. for the next node(s).

2.2 Data

The data in this thesis are simulated by the R-package Simrel [Sæbø 2015].

The Simrel package provides data with specific properties which are decided
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by the users. The properties that are specified are:

• n : the number of observations

• p : the number of predictors

• q : the number of relevant predictors

• m : the number of relevant components

• Relpos : the set of relevant components

• R2 : the population coefficient of determination

• γ : a parameter defining the of collinearity in x

The Simrel package is based on the general random regression model

yyy = µy + βββt (xxx− µµµx) + ε (2.1)

where the yyy is the response variable, µy is the expected value for the respsonse,

βββ is a vector of regression coefficients, xxx is the vector with p predictor variables

and is assumed to be random and ε is the error term. The error term is

assumed to be normally distributed as N (0, σ2). Also the general linear

model can be written asy
xxx

 ∼ N

µy
µxµxµx

 ,
 σ2

y σσσtxy

σσσxy ΣΣΣxx


where the σσσxy is the vector of covariances between the response and the

predictor variables, ΣΣΣxx is the covariance matrix of xxx.
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It is known that any set of variables spanning the same p-dimensional

predictor space as xxx gives the same prediction of yyy and keep the same noise

variance and coefficient of determination. To be able to simulate the xxx and

the yyy from the model in equation 2.1 this knowledge is used. Therefore we

let RRR be a (p× p) matrix with rank p, then use this matrix to define the

random variable vector zzz = RxRxRx. Then we have:y
z

 ∼ N

µy
µµµz

 ,
 σ2

y σσσtzy

σσσzy ΣΣΣzz

 = N

 µy

RµRµRµx

 ,
 σ2

y σσσtxyRRR
t

RσRσRσxy RΣRΣRΣxxRRR
t


TheRRR matrix is also chosen to be an orthonormal matrix such thatRRRtRRR = IIIp

then we will also have that ΣΣΣxx = RRRtΣΣΣzzRRR and σσσxy = RRRtσσσzy and the linear

model:

yyy = µy +αααt (zzz − µµµz) + εεε (2.2)

with εεε ∼ N (0, τττ 2). Further, the simrel will choose σ2
y = 1 and

ΣΣΣzz =


λ1 0 0 0

0 λ2 0 0

0 0
. . . 0

0 0 0 λp


where the λs are the eigenvalues. In relsim the λ1 = 1 and they are in

descending order, so λ1 > λ2 > . . . > λp. The value of the other λs are

decided by the equation

λj =
e−γj

e−γ
j = 1, . . . , p

where the γ > 0, γ is the factor in Simrel that will decide how fast the

eigenvalues will decrease. When γ is large the eigenvalues will decrease fast,
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and if the γ is small the eigenvalues will decrease slow. The σσσyz vector is

chosen by the user who decide the number of the zzzs which are relevant, m.

The user also decides which of the zzzs which are relevant. The set of rele-

vant components is called relpos. Let say that m = 1 and relpos= [1] then

the σσσyz =


α1

0
...

0

 or if the m = 3 and the relpos= [1 3 4] then the σσσyz =



α1

0

α3

α4

...

0


In the article about Simrel [Sæbø et al. 2015] they show that there is a

direct connection between the regression coefficients of zzz and xxx by ααα = RβRβRβ

where the ααα is from equation (2.2) and the noise variance are similar τττ 2 = σσσ2.

They also show that the population coefficient of determination for RRR2
z and

RRR2
x are similar: RRR2

z = RRR2
x. The next step in the simulation is to simulate yyy

and zzz, for this part the we generate www ∼ N (0, III). Further let ΣΣΣ
1
2
yz be so that(

ΣΣΣ
1
2
yz

)t
·ΣΣΣ

1
2
yz = ΣΣΣyz. This is done by Simrel using the Cholesky decompostion.

Then, the procedure is

• draw a random number from w1

• calculate
(

Σ
1
2
yzΣ
1
2
yzΣ
1
2
yz

)t
·www = vvv, so that the cov (vvv) =

(
ΣΣΣ

1
2
yz

)t
· III ·Σ

1
2
yz = ΣΣΣyzΣ
1
2
yz = ΣΣΣyzΣ
1
2
yz = ΣΣΣyz

• let v1v1v1 =

y1

z1z1z1


• repeat these operations n times to get n observations.

27



Now the simrel package will use a random orthonormal rotation matrix RRR
p×p

which by rotation of zzz yields predictors:

X
p×1

= RRRtz

Further, the covariances between yyy and xxx is

σσσyx = RRRtσσσyz

and the covariance matrix of

ΣΣΣxx = RRRtΣΣΣzzRRR

Now Simrel has given us everything the model in equation (2.1) needs, where

µx = µy = 0 and βββ = ΣΣΣ−1
xxσσσyx, this defines the model:

yyy = βtxβtxβtx+ εεε
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Level	
  1.2	
  

Level	
  2.4	
  Level	
  2.3	
  

Figure 2.2: An overview the levels in the simulated data. Simrel provides a y that

is continuous. For making the y categorical it is dichotomized by y < 0 and y > 0.

For the y to belong to level 1.1 it has to be y < 0 and for belong to level 1.2 it has

to be y > 0. For level 2 the y was dichotomized in the same way, but being done

in two stages with half n that was in level 1. So in the first stage will the y < 0

will belong in level 2.1 and y > 0 will belong in level 2.2. In the second stage will

the y < 0 will belong in level 2.3 and y > 0 will belong in level 2.4.

The simulated data are organized hierarchically with two levels, the first

level has two groups and the second level has four groups, see Figure 2.2.

Simrel will generate Xs for both first level and the second level in the hier-

archy, these Xs is then added together, so there is only one X for the whole

hierarchy.
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Figure 2.3: Figure over the levels on the different factors in the simulated data

Simrel was used to simulate the hierarchical data at each level of the

hierarchy, Figure 2.3. The hierarchical data were simulated by setting five

factors in Simrel: R2, γ, relpos, number of observations n and number of

variables p. The factors R2, γ and relpos have two levels each, high and low.

When this is combined with the hierarchical system for the simulated data

we get six different combinations for each factor, see figure 2.3. That consti-

tutes totally 216 different combinations of the three factors. The number of

observations, n, and number of variables, p, do also have the high and low

levels, but the number of observations and the number for variables will not

change in the hierarchically system therefore the total number of different
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combinations will be 216× 2× 2 = 864.

A for-loop goes through the design matrix and run every design one by

one. Each design will go through the the simulation process and the classifi-

cation process (HOT PLS, PLS, LDA, QDA, 3NN) three times. The average

APER from the HOT PLS and the LDA will be stored in a matrix and this

will be used in a ANOVA.

Figure 2.4: Figure shows a 3D with an example when the simulation parameter

is set to be easy to classify. The data that has been plotted has these setting;

R2 = 0.99, relpos = [1 2 3] and γ = 0.9. The color coding give the four

different groups.
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Figure 2.5: Figure shows a 3D with an example when the simulation parameter

is set to be hard to classify. The data that has been plotted has these setting;

R2 = 0.80, relpos = [1 2 3] and γ = 0.1. The color coding give the four

different groups.

Figure 2.4 one can see that the plot is easier to separated the groups from

each other than the plot in Figure 2.5 where the observations are on top of

each other.
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Estimated relevant components plot
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Figure 2.6: The figure give the eigenvalues for components and the correlations

between the components and the y. The relevant components is set to component

5 and 7, and γ = 0.1. The relevant components plot (on the left) shows how the

relationship between the eigenvalues and correlations are in simrel and estimated

relevant components plot (on the right) shows how the relationship between the

eigenvalues and correlations are for real data. The correlations is given in absolute

value.

Figure 2.6 shows how the eigenvalues slowly drops with γ = 0.1 and most

of the information are in component 5 and 7. It also shows how hard it is to

find the information when Relpos has components with small eigenvalues.
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Estimated relevant components plot
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Figure 2.7: The figure give the eigenvalues for components and the correlations

between the components and the y. The relevant components is set to component

5 and 7, and γ = 0.9. The relevant components plot (on the left) shows how the

relationship between the eigenvalues and correlations are in simrel and estimated

relevant components plot (on the right) shows how the relationship between the

eigenvalues and correlations are for real data. The correlations is given in absolute

value.

Figure 2.7 shows that it is even harder it is to find the information when

Relpos has components with small eigenvalues and γ is set so the eigenvalues

drops fast.

2.2.1 Analyzing the data

For analyzing the classification error the data was fitted by an ANOVA model

which included up to the three-factor interactions and the the classification
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error was the response. For finding the significant factors and interactions

in the model it was conducted a backward/forward selection where the sig-

nification level, α = 0.05, was selected. Effect plot was made so that the

signification factors that it should be easier to interpret the results. The γ,

R2, and relpos has six different levels, however n, p, and methods have only

two levels, see Table 2.2.1.

Factor: γ R2 Relpos n p Methods

Level 1: 0.1/0.1/0.1 0.9/0.9/0.9 [1 3]/[1 3]/[1 3] 100 10 Hot PLS

Level 2: 0.1/0.1/0.9 0.9/0.9/0.99 [1 3]/[1 3]/[5 7] 500 200 PLS

Level 3: 0.1/0.9/0.9 0.9/0.99/0.99 [1 3]/[5 7]/[5 7]

Level 4: 0.9/0.1/0.1 0.99/0.9/0.9 [5 7]/[1 3]/[1 3]

Level 5: 0.9/0.1/0.9 0.99/0.9/0.99 [5 7]/[1 3]/[5 7]

Level 6: 0.9/0.9/0.9 0.99/0.99/0.99 [5 7]/[5 7]/[5 7]

Table 2.1: Overview of the two values/settings for each factor in model

The ANOVA-model is as follows:

yijklmn = µ+ αi + βj + ξk + θl + φm + ωn + (αβ)ij + (αξ)ik + (αθ)il +

(αφ)im + (αω)in + (βξ)jk + (βθ)jl + (βφ)jm + (βω)jn + (ξθ)kl + (ξφ)km +

(ξω)kn + (φω)mn + (αβξ)ijk + (αβθ)ijl + (αβω)ijn + (αξθ)ikl + (αξφ)ikm +

(αθφ)ilm + (αξω)ikn + (αφω)imn + (ξθφ)klm + (βφω)jmn + (ξφω)ikl + εijklmn
(2.3)

where εijklmn ∼ N (0, σ2). And the yijklmn is the average classification error

of three replicates with the level; i of γ with effect αi (i = 1, . . . , 6), j of

R2 with effect βj (j = 1, . . . , 6), k of relpos with effect ξk (k = 1 . . . 6), l of n
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with effect θl (l = 1, 2), m of p with effect φm, (m = 1, 2), and n of methods

with effect ωn, (n = 1, 2). This is the ANOVA-model used to compare Hot

PLS and PLS. Later the model will be extended for also compare with other

classifiers, LDA, QDA, and KNN.
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Chapter 3

Results

3.1 Comparison of Hot PLS and regular PLS

3.1.1 Main effects of the design parameters

First part of the results will focus on the model from equation 2.3, where

we are only comparing Hot PLS and PLS. And then will the focus be on

comparing the five different classifiers, Hot PLS, PLS, LDA, QDA, and LDA.
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Analysis of Variance Table

Response: Err

Df Sum Sq Mean Sq F value Pr(>F)

gamma 5 0.9043 0.1809 110.7974 < 2.2e-16 ***

Method 1 0.3036 0.3036 186.0053 < 2.2e-16 *

n 1 3.9740 3.9740 2434.4478 < 2.2e-16 ***

p 1 15.7690 15.7690 9659.9211 < 2.2e-16 ***

pos 5 5.8832 1.1766 720.8038 < 2.2e-16 ***

R2 5 0.3931 0.0786 48.1592 < 2.2e-16 ***

gamma:Method 5 0.7015 0.1403 85.9416 < 2.2e-16 ***

gamma:n 5 0.0211 0.0042 2.5867 0.0244810 *

gamma:p 5 1.0188 0.2038 124.8156 < 2.2e-16 ***

gamma:pos 25 3.1611 0.1264 77.4588 < 2.2e-16 ***

gamma:R2 25 0.0797 0.0032 1.9527 0.0033868 **

Method:p 1 0.0013 0.0013 0.8212 0.3649920

Method:pos 5 0.5559 0.1112 68.1102 < 2.2e-16 ***

Method:R2 5 0.0866 0.0173 10.6051 5.291e-10 ***

n:p 1 0.8041 0.8041 492.5897 < 2.2e-16 ***

n:pos 5 0.0534 0.0107 6.5370 5.131e-06 ***

n:R2 5 0.0117 0.0023 1.4289 0.2109251

p:pos 5 0.0863 0.0173 10.5767 5.644e-10 ***

p:R2 5 0.0394 0.0079 4.8251 0.0002236 ***

pos:R2 25 0.1093 0.0044 2.6794 1.535e-05 ***
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gamma:Method:p 5 0.2423 0.0485 29.6809 < 2.2e-16 ***

gamma:Method:pos 25 0.3104 0.0124 7.6056 < 2.2e-16 ***

gamma:Method:R2 25 0.0639 0.0026 1.5649 0.0378015 *

gamma:n:p 5 0.0434 0.0087 5.3196 7.591e-05 ***

gamma:n:pos 25 0.0749 0.0030 1.8359 0.0073175 **

gamma:n:R2 25 0.0809 0.0032 1.9834 0.0027507 **

gamma:p:pos 25 0.5260 0.0210 12.8894 < 2.2e-16 ***

gamma:pos:R2 125 0.2785 0.0022 1.3651 0.0064028 **

Method:p:pos 5 0.0326 0.0065 3.9890 0.0013523 **

Method:p:R2 5 0.0211 0.0042 2.5846 0.0245818 *

n:p:pos 5 0.0735 0.0147 9.0031 2.003e-08 ***

Residuals 1312 2.1417 0.0016

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 3.1: Anova table of the significant factors up to third interaction after model

simplifications by backwards/forward elimination of non-significant effects. In this

table the methods were only Hot PLS and PLS.

Table 3.1 shows the Anova table with the significant factors of the model

from equation 2.3. This table only show the significant factors up to third

interaction. The backward/forward elimination will eliminated the non-

significant factors by testing the p-values with α for the different treatments.

The table is used to find which interaction plots that is interesting to examine

the effect of the factors on APER values.
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Figure 3.1: The figure shows the main effect of γ, the x-axis the different γ values,

and the y-axis give the APER for the average of Hot PLS and PLS. The γ values

are given in six sets with three values each, 0.1/0.1/0.1, the first value is the γ-

value for level 1 in the hierarchy, the next value is the γ-value for level 2.1 in the

hierarchy and the last γ-value is for level 2.2 in the hierarchy.

The Figure 3.1 shows the main effect of γ on the APER. γ has six different

setting, where each setting has three values, these values are either low γ or

high γ. One can see that it is easy to classify when the γ = 0.9 on level 2.1

and level 2.2 and when γ = 0.9 on level 1. γ = 0.9 means that the eigenvalues

are decreasing fast, and γ = 0.1 means that the eigenvalues are decreasing

slowly. In general it is easier to classify when γ = 0.1 on level 1. And when
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γ = 0.9 is on both level 2.1 and level 2.2. Easy to classify means that the

APER is low, few classification errors. Eigenvalues only show that there are

variation in the x-space, λj = var(zj), where λj is a eigenvalue and var(zj)

is the variation of scoresvector, zj. If the cov(y, zj) 6= 0 it means that the the

zj contains information which is relevant.

Figure 3.2: The figure shows the main effect of the method, where the two methods

are Hot PLS and PLS.

Figure 3.2 shows that the lowest APER is on average when the method

is Hot PLS.
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Figure 3.3: The figure shows the main effect of R2, the x-axis the different R2

values, and the y-axis give the APER. The R2 values are given in six sets with

three values each, 0.9/0.9/0.9, the first value is the R2-value for level 1 in the

hierarchy, the next value is the R2-value for level 2.1 in the hierarchy and the last

R2-value is for level 2.2 in the hierarchy

In Figure 3.3 one can see the APER decreasing when R2 is increasing.

The best combination is when the R2 is high R2 = 0.99 at all the nodes in

the hierarchy. R2 stands for how much of the data which is explained by the

model. An R2 value of 0.99 indicates that the 99 % of the data are explained

by the model. The results is intuitive, when more of the data is explained

by the model the easier it gets to do the classification.
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Figure 3.4: The figure shows the main effect of relpos, the x-axis the different

relpos values, and the y-axis gives the APER for Hot PLS and PLS. The relpos

values are given in six sets with three values each, 1/1/1, the first value is the

relpos vector 1 for level 1 in the hierarchy, the next value is the relpos vector 1

for level 2.1 in the hierarchy and the last relpos vector 1 is for level 2.2 in the

hierarchy. Relpos has two vector which are, vector 1 [1 3] and vector 2 [5 7]

The relpos parameter gives the components which contain the informa-

tion. Table 3.4 shows that the first vector [1 3] in every level of the hierarchy

gives the lowest APER value and then gives easiest classification. One in-

terprets this as the information is in the first components and this makes it

easier to find the information. More information give better classification. If
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the second vector, [5 7], is used, the information will be stored in directions

with less variation smaller eigenvalues which leads to harder classifications.

Figure 3.5: This figure shows the main effect of n. The x axis is the number of n

and the y axis the APER.

Table 3.5 shows that higher number of observations will give a lower

APER, and a lower number of observations will give a higher APER.
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Figure 3.6: Main effect plot of the number of variables, p, where p has two levels,

p = 10 and p = 200. The y-axis is the APER value and the x-axis gives the p.

Figure 3.6 shows that p = 200 will give the best APER value which means

smallest classification error.
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3.1.2 Second order interactions between design param-

eters

Figure 3.7: Effect plot of the interaction between the six settings of γ and the two

methods. The plot to the left is when the method is Hot PLS and the plot on the

right is when the method is PLS. The x-axis is the different levels of γ.

From Figure 3.7 it seems as the Hot PLS performs better than PLS on

average. Except when γ = 0.9 in the first level and γ = 0.1 on the second

level, then the PLS is performing the best. Hot PLS performs best when

level 1 has γ = 0.1, the eigenvalues decreases fast. It will also perform good

if level 1 has γ = 0.9, but then both levels on level 2 must have γ = 0.9. PLS

performs better than Hot PLS when γ has the setting 0.9/0.1/0.1.
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Figure 3.8: Effect plot of the interaction between the six settings of γ and

the six settings of R2. This gives in total 36 combinations. The y-axis gives

the APER value, the x-axis gives the six settings of γ and each square is one

setting of R2.

Figure 3.8 shows that the more information (R2 = 0.99) there is in the

data, the easier it gets to classify the data upper right plot. The APER will

also in general be lower when level of γ = 0.1 on level 1 and both levels on

level 2 have equal value of γ = 0.1 or γ = 0.9.
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Figure 3.9: Effect plot of the interaction between the six setting of γ and the six

settings of relpos. The y-axis give the APER, x-axis is the six settings of γ and

the six squares is one of the six settings of relpos.

Figure 3.9 show that in general a relpos vector equal to [1 3] on level

1 will have a lower APER value than the relpos vector equal to [5 7] on

the first level. The Figure also shows that the lowest APER are when the

γ = 0.1 on all levels, and the relpos is set to have most of the information on

the first and third components at all levels. When γ = 0.9 is in the first level

and γ = 0.1 in both level2.1 and level2.2 the APER value get large. When

relpos is set to [5 7] level 1 on the APER value will get a lager value than

if the relpos was set to [1 3]. It is like this at level 2 as well, relpos set to

[1 3] for both levels on level 2 will get a lower APER value.
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Figure 3.10: Effect plot of the interaction between the six setting of γ and the

two levels of observation number (n = 100, 500), in total 12 combinations. The

y-axis gives the APER, x-axis is the six settings of γ and the two sections give the

number, n, of observations.

Figure 3.10 shows a clear line between n = 100 and n = 500, where

n = 500 gives the lowest APER. And again the APER is lowest when the

first level of γ = 0.1 and both levels on level 2 have equal value of γ = 0.1 or

γ = 0.9.
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Figure 3.11: The interaction plot between six setting of γ and the two setting of

number of explanatory variables.p. The y-axis gives the APER, x-axis is the six

settings of γ and the two sections give the number of variables.

In Figure 3.11 one can see clearly the defference between p = 10 and

the p = 200, where the p = 200 gives lower APER value than p = 10. For

p = 200 it is easiest to classify when γ has the same values in both levels,

either γ = 0.1 or γ = 0.9. When p = 10 the level 1 for gamma should

be γ = 0.1 and both levels in level 2 should have γ = 0.9. This result

is immediately counter intuitive with regard to the effect of p, but will be
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discussed later.

Figure 3.12: Effect plot of the interaction between the six settings of Relpos and

the methods. The y-axis gives the APER, x-axis is the six settings of relpos and

the two sections are Hot PLS and PLS.

Figure 3.12 shows that the Hot PLS will in general have the lowest APER

values with one exception, which is when the relpos is components 5 and 7

in the first level and in level 2.1 and level 2.2, the relevant components is 1

and 3. In this case the PLS performs better. The best combination is when

all levels are set to have the relevant components is 1 and 3. In this case
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there is no difference in methods.

Figure 3.13: Effect plot of the interaction between the six setting of R2 and the

methods. The y-axis gives the APER, x-axis is the six settings of R2 and the two

sections are Hot PLS and PLS.

Figure 3.13 shows once more that the Hot PLS does it clearly better when

level 1 is set to R2 = 0.99 than R2 = 0.9. The best combination is with Hot

PLS and R2 set to 0.99 on every level. R2 = 0.99 is when there are a lot of

information in the data. One can also notice that the PLS does a jump in

the APER value when the R2 = 0.99 in the first level and R2 = 0.9 in the

second levels.
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Figure 3.14: Effect plot of the interaction between the six setting of R2 and the six

settings of relpos. The y-axis gives the APER, x-axis is the six settings of relpos

and the six squares is one of the six settings of R2

Figure 3.14 shows that the more information (R2 = 0.99) there is, the

easier it is to classify correctly and especially when the information are in

first components (1 and 3).
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Figure 3.15: Effect plot of the interaction between the six settings of R2 and

the two setting variable number, p. The y-axis gives the APER, x-axis is the six

settings of R2 and the two sections are Hot PLS and PLS.

Figure 3.15 shows as before that p = 200 will give lower APER values

than p = 10. The APER value also drops when there is more information

in the data, this is when R2 = 0.99, the best combination will be to have

p = 200 and R2 = 0.99 in each level of the the hierarchy. One can also see

that the effect of R2 is lager when the p = 200.
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Figure 3.16: Effect plot of the interaction between the six settings of relpos and the

two levels of observation number (n = 100, 500). In total 12 combinations. The

y-axis gives the APER, x-axis is the six settings of relpos and the two sections give

the number of observations.

Figure 3.16 shows that the lowest APER value is reached with n = 500

and the relpos in all the levels is 1 and 3. One notice that the APER value

increasing when the amount of relpos vector 2 increases one can also see a

small jump in the APER value when the relpos settings in level goes from

having relpos vector 1 to have relpos vector 2.
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Figure 3.17: Effect plot of the interaction between the six settings of relpos and

the number of variables. The y-axis gives the APER, x-axis is the six settings of

R2 and the two sections are for p = 10 and p = 200.

Figure 3.15 shows as before that p = 200 will give lower APER values

than p = 10. The APER value also drops when the information in the data

are in relpos vector 1 changes to relpos vector 2. The best combination will

be to have p = 200 and relpos vector 1 in each level of the hierarchy.
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3.1.3 Third order interactions between design param-

eters

Figure 3.18: The interaction plot of the six settings of γ, the two settings of p and

the two methods. The y-axis gives the APER values, the x-axis give the γ settings

and the sections have the different combinations of method and p.

Figure 3.18 shows that p = 200 will give the lowest APER values. Also the

Hot PLS seems to be better than the PLS, with the exception when γ = 0.9

in level 1 and γ = 0.1 in both levels on level 2. The best combination is

when the method is Hot PLS, p = 200 and γ = 0.9 in all the levels of the

hierarchy or when the method is PLS, p = 200 and γ = 0.1 in all the levels

of the hierarchy. These two combinations has the lowest and almost equal

APER value.
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Figure 3.19: The interaction plot of the six settings of γ, the six settings of relpos

and the two methods. The y-axis gives the APER values, the x-axis give the γ

settings and the sections have the different combinations of method and relpos.

Figure 3.19 shows mainly that Hot PLS performs better than compared

with PLS, but PLS is in some cases better than Hot PLS, this is when γ = 0.9

on level 1 and on level 2 γ = 0.1. The APER value is also lower when the the

information in the data are contained in the first and third variable (relpos

vector 1) and the APER value is also lower when the eigenvalues decreases

quickly, γ = 0.9. The best results with these factors is reached when the

method is PLS, relpos vector 1 for all the levels in the hierarchy and γ = 0.9

for all the levels in the hierarchy.
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Figure 3.20: The interaction plot of the six settings of γ, the six settings of R2

and the two methods. The y-axis gives the APER values, the x-axis gives the γ

settings and the sections have the different combinations of method and R2.

The Figure 3.20 shows in general that Hot PLS preforms better than PLS

with exception when the γ = 0.9 on level 1 and γ = 0.1 on both levels in

level 2, and when R2 = 0.9 on level 1 and R2 = 0.99 on both levels in level

2. The APER value is smaller when there are more information in the data,

R2 = 0.99 and the eigenvalue drops quickly. The best combinations of these

three factors are when using the Hot PLS, R2 = 0.99 for all levels in the

hierarchy and γ = 0.9 for all levels in the hierarchy.
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Figure 3.21: The interaction plot of the six settings of γ, the six settings of R2

and the two settings of n. The y-axis gives the APER values, the x-axis gives the

γ settings and the sections have the different combinations of n and R2.

The Figure 3.21 shows that n = 500 tends to have lower APER values

than n = 100. Also when there are much information in the data (R2 = 0.99)

the APER value tends to be lower than with less information (R2 = 0.90).

The γ seems to have the lowest APER values when level 1 has either γ = 0.1

or γ = 0.9. The best combination of these three factors will therefore be

n = 500, R2 = 0.99 on all levels in the hierarchy and γ = 0.1 or γ = 0.9 on

level 1 and γ = 0.9 on both levels in level 2.
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Figure 3.22: The interaction plot of the six settings of γ, the six settings of relpos

and the two settings of p. The y-axis gives the APER values, the x-axis gives the

γ settings and the sections have the different combinations of p and relpos

The first observation to make from Figure 3.22 is that p = 200 will give

lower APER values than the p = 10. As seen earlier also that information in

the first variables seems to have to have a positive effect on the APER value

when the eigenvalues drops quickly, (γ = 0.9), for all levels of the hierarchy.

When γ goes from γ = 0.1 in level 1 to γ = 0.9 in level 1 the APER values

gets higher. When this happen the γ-values on level 2 will be set to γ = 0.1.

The best combination of these three factors will be to have p = 200, relpos

vector 1 for all the levels of the hierarchy and γ = 0.9 for all the levels of the

hierarchy.
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Figure 3.23: The interaction plot between the six settings of γ, the number of

observations and the number variables. The y-axis gives the APER value, the x-

axis gives the γ settings and each squares give one of the four combinations of

number of observations and the number of variables.

The Figure 3.23 shows that in general p = 200 will give good results, low

APER values. Also n = 500 will give lower APER values than n = 100. The

Figure 3.23 also show a jump between γ = 0.1 and γ = 0.9 on the first level,

where γ = 0.1 in general give the best results. The best combination of these

three factor is to have similar value of γ either γ = 0.1 orγ = 0.9, p = 200

and a large n, n = 500.
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Figure 3.24: The interaction plot between the six settings of relpos, the two meth-

ods and the number variables. The y-axis gives the APER value and each squares

give one of the four combinations of the methods and the number of variables.

The Figure 3.24 shows the clear difference between the p levels, where

the p = 200 gives better APER values than p = 10. The relpos give the

best result when it is set to vector 1 for all levels. In general it seems that

Hot PLS is slightly better then PLS. But the PLS has a jump where relpos

change from vector 1 to vector 2 in the first level. The best combination is

when p = 200, relpos is vector 1 for all levels and the method is PLS.
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Figure 3.25: The interaction plot between the six settings of R2, the two methods

and the number variables. The y-axis gives the APER value, x-axis give the R2

setting and each squares give one of the four combinations of the methods and the

number of variables.

The Figure 3.25 shows a very clear difference between the p levels. When

p = 200 will the lowest APER values. Hot PLS is in general the better

method. The lowest APER value will be achieved with R2 = 0.99 in the

levels, p = 200 and the method is Hot PLS.
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Figure 3.26: The interaction plot between the six settings of relpos, the number of

observations and the number variables. The y-axis gives the APER value, the x-axis

gives the six settings of relpos and each squares give one of the four combinations

of number of observations, n and the number of explanatory variables, p.

The Figure 3.26 shows a clear difference between n = 100 and n = 500,

where n = 500 will give the lowest APER value. There is also a clear dif-

ference between p = 10 and p = 200, where the p = 200 will perform the

best and get the lowest APER values. The Figure 3.26 shows also that the

more information the are in the first variables (variables number 1 and 3).
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The best combination for this interaction is when the n = 500, p = 200 and

relpos has the variables [1 3] for all levels in the hierarchy.

3.2 Comparison of Hot PLS with an extended

classifier set

There was also run an analysis where one had five different methods; Hot

PLS, PLS, LDA, QDA, and 3NN, where all classifiers worked on the second

level in the hierarchy with four classes. This means that the method effect

has five levels in the ANOVA (see table A.1). The next part of the results

will compare these five different classifiers.
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Figure 3.27: This matrix plot show the methods on the diagonal and on the lower

triangle give the correlation between the different methods for all the runs in the

experiments design. The upper triangle has scatterplot between the APER values

for the different methods. The different symbols shows how many explanatory

variables the observations have, if it is a circle p = 10 and if it is a triangle

p = 200. The color coding define the number of observations, blue is when n = 500

and red is when n = 100. When there are most observations under the line it

means that the method that is on the y-axis will have the lowest APER values.

And if there are most observation above the line it means that the method on the

x-axis will have the lowest APER value.

From Figure 3.27 one can read that the Hot PLS will do it clearly better

than LDA, QDA and 3NN. It is also better than PLS, but it is not as clear
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as with the others. The PLS is also better than LDA and 3NN, but it seems

like PLS and QDA are close together. The LDA on the other hand seems

to do it better than 3NN, but worse than QDA. The QDA performs much

better than the 3NN. A short summary, 3NN is the method which has the

highest APER value.

Figure 3.28: The main effect plot of the methods. Where the y-axis gives the

APER value and the x-axis give the method.

The Figure 3.28 confirms what the Figure 3.27 showed. Hot PLS has

lower APER value than the rest, and the 3NN has the highest APER value

of all the methods. One can also see that the PLS and the QDA (run on

PCA-scores) are close to have the same APER value.
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Figure 3.29: Effect plot of the interaction between the six setting of γ and the five

methods. There are five squares, one for each method. The x-axis is the different

levels of γ.

The Figure 3.29 shows that it is the Hot PLS which performs best, hence

the lowest APER values. The best γ combination for Hot PLS is when

γ = 0.9 in both levels on level 2. Also when γ = 0.1 in the first level will

the Hot PLS perform better. For the other methods it also seems to be a

good choice to have γ = 0.9 in both levels on second level. QDA stand out

by having the two best APER values when γ = 0.9 on the first level and

either γ = 0.9 on both levels in the second level or one of the second level

has γ = 0.9 and the other has γ = 0.1.
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Figure 3.30: Effect plot of the interaction between the six setting of relpos and

the five methods. There are five squares, one for each method. The x-axis is the

different levels of relpos.

The Figure 3.30 supports what previous figures have showed, that relpos

with vector 1 for all levels, gives the lowest APER value and that the APER

value will increase when the amount of vector 2 increases. It is the Hot

PLS which has the lowest APER values among the methods. From previous

figures one has observed a drop in the APER value when the first level in

hierarchy has vector 2 and in the second levels it has vector 1 in the PLS

method. This is also observed in Figure 3.30, but here one can also observe

this for 3NN, QDA and LDA where the slope is less steep than in the Hot

PLS for this change in relpos values.
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Figure 3.31: Effect plot of the interaction between the six setting of R2 and the

five methods. There are five squares, one for each method. The x-axises is the

different levels of R2.

The Figure 3.31 shows again that the higher R2 will give more information

in the data that will give lower APER values. Also in this figure the Hot

PLS will have the lowest APER values and 3NN will have the highest APER

values. One can also in this figure observe that the PLS does a jump in the

APER value when the R2 = 0.99 in the first level and R2 = 0.9 in the both

levels on the second level.
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Figure 3.32: Effect plot between the five methods and the two setting of n, where

the y-axis is the APER value, x-axis give the method and the square give the number

of observation, n.

The Figure 3.32 one can recognize the same pattern as in the main effect

plot in Figure 3.28. When n = 500 the APER value will be lowest.
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Figure 3.33: Effect plot between the five methods and the two setting of p, where

the y-axis is the APER value, x-axis gives the method and the two panels give the

number of variables, p.

The Figure 3.33 shows that all the methods performs better when p = 200,

than p = 10. The effect of methods on APER increases when p = 200.
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Chapter 4

Discussions

4.1 Summary of the results

In order to have a low classification error in a hierarchical case it is important

to have as much information as possible in the data i.e R2 = 0.99, see Figures:

3.3 and 3.13. In the simulation this can be decided, but in real data one

cannot decides the simulation parameters.

Figure 3.4 shows that data with information stored in the first and third

component (relpos vector 1) on all levels in the hierarchy will give the lowest

APER values. If the information is stored in the first and third components a

fast decreasing eigenvalue is desirable i.e. γ = 0.9 is preferable in every level,

see Figure 3.1. The combination of these two setting, γ = 0.9 and relpos

vector 1 is a dream pair (Figure 3.9), because a large γ give a large drop in

the eigenvalues which means that most of the variation is in the direction of

the first component. The relpos vector 1 has the information in the first and

third components. Thus such a combination makes it easy to classify.
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Hot PLS is the preferable method when a clear hierarchical structure is

given. This is the case in these data sets which can be seen in Figures 3.27

as well as 3.2.

The large number of observations will also lead to a better classification

with less classification errors which is intuitive. Number of observations will

also affect the other factors. The effect of γ increases with smaller n. In other

words, the impact of the different levels of γ becomes larger see Figure 3.10.

One can also see that the relpos is affected by the number of observations.

The effect of the relpos is large if n is small, see Figure 3.16. If the n is

small it is hard to find the information when it is stored in the 5th and 7th

components. The five different methods are also affected by n. A large n

gives a big difference between the methods which can be found in Figure

3.32. The number of explanatory variables should also be large in order to

give a low classification error. This results was unexpected. It was assumed

that p = 10 would give the lowest classification error. The n/p relation is

often seen as a signal to noise relation. A high n/p value is usually associated

with much signal (information) and low noise, in this view the lowest APER

was expected for n = 500 and p = 10. One can see this result as some kind

of reverse of the Simpson’s paradox. Simpson’s paradox may occur if one

explanatory variable with a significant effect on the response is left out. The

effect of other variables will be reversed which makes it harder to explain.

Because the data are simulated the R2 is locked at one value. In real data

the R2 increases with the number of explanatory variables which leads to a

limitation for the other parameters resulting in a counter intuitive result. If

this is the case it is a result of how simrel is implemented. It is important to
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notice that the results for p is still unclear and need further investigation.

4.1.1 A closer look at Hot PLS and PLS

Looking at interaction plots including methods one finds that PLS performs

better than Hot PLS when classification in level 1 is difficult and classification

in level 2 is easy see Figure 3.12. This can be explained by the fact that

Hot PLS starts with classifying level 1 and move on to the next level. If

the classification is difficult the Hot PLS makes more wrong classifications

because the mistakes follow to the next level. The PLS on the other hand

classifies directly on level 2, thus it is not affected by the difficulties of level

1. The opposite holds too, i.e. if it is simple to classify on level 1 and

challenging on level 2 the Hot PLS shows better performance since it has the

opportunity to classify correctly on level 1 and the PLS can only classify on

level 2 where the classification is hard.

Figure 3.13 shows that the difference between Hot PLS and PLS is not

very big if R2 = 0.90 on level 1. On the other hand if R2 = 0.99 holds on

level 1 there is a large gap between Hot PLS and PLS, suggesting Hot PLS

has the most to gain when it is easy to classify on level 1.

When it comes to choose either Hot PLS or PLS one has to investigate

whether the different levels in the hierarchy are informative or not. Non-

informative levels should be left out. These levels are found by running a

CV where the classification errors for different hierarchical structures are

compared, for example with and without individual levels in the hierarchy.
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4.1.2 A closer look at QDA of Figure 3.29

Figure 3.29 shows that there are two setting of γ where QDA performs very

well. In order to get a better understanding of these results an interaction

plot between the five different methods, the six settings of γ and the six

settings of relpos is given in Figure 4.1

Figure 4.1: Effect plot between the five methods, the six settings of γand the six

settings of relpos. The y-axis is the APER value and the x-axis gives the γ setting.

The squares are the relpos settings and the methods.

In Figure 4.1 one can see that QDA has a lower classification error than

the other methods if γ = 0.9/0.9/0.9 or γ = 0.9/0.9/0.1 on all the settings of

relpos, especially when relpos has vector 2 in the first level. As shown earlier

the vector 2 makes it harder for Hot PLS to classify correctly, and thus gives

a higher classification error. Furthermore QDA is doing better than the other
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methods when relpos and γ have unequal values for the same of the levels in

the hierarchy. In this case the four classes have different variance matrices,

which is exactly the assumption made by the QDA model.

In the simulation the number of components was set permanently to

a = 8, we also know that there is maximal two relevant components and that

component number 7 is potentially is relevant with the lowest eigenvalue.

When doing this we get the optimal value of a for LDA and QDA. With real

data would use CV to decide the amount of components to use as input for

LDA and QDA, this will lead to bigger insecurity for both methods. LDA

and QDA does it probably better than they should in this assembly. The

PLS-methods and KNN knows in a way less about these data properties.

4.1.3 Other ways to do a hierarchy PLS

Hot PLS knows the hierarchically structure in advanced. This is not the only

way of managing classification in a hierarchical structure. In [Tøndel et al.

2011] they explain how to perform a hierarchical cluster-based partial least

squares regression (HC-PLSR) in the gene regulatory of mice. HC-PLSR

uses a PLSR model to provide the PLS scores which is needed to divide the

observation into different groups by a fuzzy C-means (FCM) clustering. This

is a method to find natural groups in the data. After this the PLSR model

goes through each discovered group and then runs FCM clustering on the

PLS scores. This is done until no more natural group is available. Tøndel’s

HC-PLSR is a method like Hot PLS where the hierarchal structure is not

known a priori, which uses Fuzzy clustering for establishing the structure,

then uses this in a similar way as in Hot PLS.
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4.2 Further research

For further studies it would be interesting test the methods on real data.

This is something that had been interesting to explore more thoroughly. A

interesting dataset to look in to would be bacteria data, classify bacteria

based on the DNA. Other dataset where one can find hierarchal structure is

the classification of moulds, like Liland used in [Liland et al. 2014].

The Simrel package in R simulated data in a way as the PLS wants

the data to be. Simrel give data that are normally distributed and linear

data. Checking how Hot PLS will perform on data that are not normally

distributed and non-linear would be interesting.

Hot PLS assumes to know the hierarchal structure before the classifica-

tion, it would be interesting to see what will happen if the assumed structure

is wrong. One could compare the Hot PLS with Tøndels HC-PLSR.

The Hot PLS is using PLS to classify on each level in a hierarchal struc-

ture, one could also try to other classifiers (KNN, LDA or QDA) instead of

PLS.

In this thesis it was used five different simulation parameters which gave

864 different combinations of experiments that have been run. It could be

interesting is to expand the parameter space and then run more experiments.

When this is said one should also take a look at the parameter p. To find

out why the high p gives the lowest APER values.
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4.3 Conclusion

Hot PLS has the advantage of knowing the hierarchical structure. By start-

ing at the top of the hierarchy, the method will carry more information that

will help with the classifications in lower levels. This can also be a disadvan-

tage if the method does a mistake in a higher level will the mistake follow

down through the hierarchical structure. As long the data has hierarchical

structure with levels which are easy to classify Hot PLS will perform well.
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Appendix A

R commander tables

Analysis of Variance Table

Response: Err

Df Sum Sq Mean Sq F value Pr(>F)

gamma 5 3.5088 0.7018 323.0914 < 2.2e-16 ***

pos 5 13.5818 2.7164 1250.5969 < 2.2e-16 ***

R2 5 0.7616 0.1523 70.1240 < 2.2e-16 ***

n 1 6.7691 6.7691 3116.4482 < 2.2e-16 ***

p 1 15.6658 15.6658 7212.4681 < 2.2e-16 ***

Methods 4 10.3504 2.5876 1191.3152 < 2.2e-16 ***

gamma:pos 25 4.5214 0.1809 83.2647 < 2.2e-16 ***

gamma:R2 25 0.1974 0.0079 3.6347 2.722e-09 ***

gamma:n 5 0.0582 0.0116 5.3570 6.502e-05 ***

gamma:p 5 3.0411 0.6082 280.0205 < 2.2e-16 ***

gamma:Methods 20 7.1226 0.3561 163.9596 < 2.2e-16 ***
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pos:R2 25 0.1588 0.0064 2.9245 1.531e-06 ***

pos:p 5 0.1096 0.0219 10.0953 1.268e-09 ***

pos:Methods 20 0.9192 0.0460 21.1593 < 2.2e-16 ***

R2:p 5 0.0468 0.0094 4.3136 0.000646 ***

R2:Methods 20 0.1686 0.0084 3.8806 1.232e-08 ***

n:p 1 0.4900 0.4900 225.5935 < 2.2e-16 ***

n:Methods 4 0.4709 0.1177 54.2007 < 2.2e-16 ***

p:Methods 4 3.6105 0.9026 415.5638 < 2.2e-16 ***

Residuals 4134 8.9792 0.0022

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table A.1: Anova table of the significant factors up to third interaction after

model simplifications by backwards/forward elimination of non-significant effects.

The methods in this table is Hot PLS, PLS, LDA, QDA and KNN
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Appendix B

R-code

The programming for this thesis is done in R version 3.1.2 (2014-10-31) and is

uploaded to https://bitbucket.org/hannebrit/master-thesis/overview. Some

of these codes are written by Kristian Liland and Solve Sæbø which are

described in the link.
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