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Abstract

The Mie extinction for the scattering of infrared light of spherical particles shows
both broad background oscillations and resonant structures. The resonance struc-
ture, also called ripples, is due to resonant electric and magnetic modes. In this
thesis it was evaluated to what extent the ripples in the extinction efficiency can
be used to estimate a dispersive real refractive index in the infrared region. In
this context, approximation formulas that estimate the distance between ripples
in the Mie extinction were of special interest. Different aspects, such as reso-
lution, formula accuracy, resonance order, and resonance index were taken into
account when evaluating these formulas.

During the work with this thesis, it was observed that the resolution has a
strong effect on the resonance structure. The resolution affects both the shape
of the ripple structure, as well as the sharpness and number of visible peaks. It
also determines whether first or higher order peaks cause the peaks in the ripple
structure. Further, it was found that the choice of formula, for obtaining the best
accuracy, depends on resolution.
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Sammendrag

Mie-ekstinsjonen til en sfeerisk partikkel som blir truffet av infallende infrargdt
lys, viser store underliggende oscillasjoner med en overlagret resonansstruktur.
Denne resonansstrukturen kalles ogsa ripples, og skyldes resonante elektriske
og magnetiske moder. I denne oppgaven ble det evaluert i hvilken grad reso-
nansstrukturen kan brukes til a estimere en dispersiv reell brytningsindeks i det
infrarsde omradet. I den forbindelse var tilzermingsformler for beregning av avs-
tanden mellom disse resonansene av spesiell interesse. Underveis i prosessen ble
forskjellige aspekter som opplgsning, tilneermingsformlene ngyaktighet og reso-
nanseorden og indeks tatt i betrakting.

I lgpet av arbeidet med denne oppgaven ble det observert at opplgsningen har
en sterk effekt pa resonansstrukturen, bade nar det gjelder form, antall synlige
topper og hvor skarpe toppene er. I tillegg har opplgsningen en effekt pa hvilken
orden det er pa resonansene som er synlige i resonansstrukturen. Videre ble det
funnet at opplgsningen har innvirkning pa hvilken av tilnsermingsformlene for
avstanden mellom toppene i resonansstrukturen som gir best resultat.
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Chapter 1

Introduction

In infrared (IR) spectroscopy of biological material, the aim is to obtain a scatter-
free absorbance spectrum with chemically interpretable spectral bands. In biomed-
ical IR spectroscopy it is often desirable to obtain spectra at cellular level. Since
cells are strong scatters of infrared radiation they are not well suited for such
analysis. These spectra are often distorted by scattering which can make the
biochemical information unreliable. IR spectroscopy is potentially a powerful
tool, but, for it to be successful, it must be possible to extract reliably a pure
absorbance spectra [2, [4] [I].

Gustav Mie published the theory describing analytically the scattering of light
from homogeneous spherical particles, later refereed to as Mie theory, in 1908
[T1]. In 1957, van de Hulst published an approximation formula for the extinc-
tion efficiency Q..;, which did not include spherical Bessel and Hankel functions
and therefore required much less computational effort and power [16]. In 2005,
Mohlenhoff et al. [I2] observed spectra of cells in IR spectroscopy that did not
obey Beer-Lambert’s law. A scattering background with superimposed absorption
features was observed. They showed that this scattering background can be de-
scribed using the Mie theory of scattering spheres. Kohler et al. managed in 2008
to correct the Mie type scattering oscillations in the baseline using Extended Mul-
tiplicative Signal Correction (EMSC) and Principal Component Analysis (PCA)
on Fourier transform infrared (FTIR) synchrotron spectra of single lung cancer
cells [9]. The so-called ”dispersion artifact” remained uncorrected. In 2009, Bas-
san et al. [I] managed to describe the origin of the ”dispersion artifact”. This
artifact was due to rapid changes in the scattering efficiency at the absorption
band, i.e. resonant Mie scattering (RMieS). After understanding the origin of
the ”dispersion artifact”, a new correcting algorithm, which removed both the
broad background oscillation and the ”dispersion artifact”, was constructed [3].
Bassan et al.[4] continued developing this algorithm, and in 2010 they presented
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2 1. INTRODUCTION

an iterative RMieS-EMSC algorithm which incorporated the full Mie theory.

A method for recovering the complex refractive index from materials with
spherical shape was suggested by van Djik et al. in 2013 [I7]. This method was
in 2015 further developed by Lukacs et al. [10]. It was tested on FTIR synchrotron
spectra of PMMA spheres and pollen (approximately spherically shaped). Pure
absorbance spectra was obtained for PMMA spheres and the imaginary part of
the refractive index was successfully recovered for both PMMA and pollen. In
FTIR spectra of a PMMA sphere, the first experimental observation of Mie rip-
ples, was observed.

The aim of this thesis was to determine to what extend the ripples in the
extinction efficiency can be used for determination of the refractive index for var-
ious materials in the infrared region of light. Petr Chylek suggested two formulas
for the approximation of the distance between the peaks in the ripple structure
of the Mie scattering as a function of the refractive index [0} [7]. Since, in infrared
microspectroscopy, spectra of small spheres, i.e. with sizes in the same order
as the wavelength of the infrared light, can be obtained, these approximation
formulas could be used for the estimation of the refractive index in the infrared
region of the electromagnetic spectrum. Petr Chylek’s approximation formulas
are together with bisection used to find an estimate of the refractive index from
simulated spectra. During this project, the following has been discovered: The
resolution has a strong effect on the resonance structure. It affects both the
shape of the ripple structure, the number of visible peaks, and the sharpness of
the peaks. Further, it has an impact on if first order or higher order peaks are
visible in the ripple structure. It was then determined that the resolution of the
simulated spectra has an impact on which of the approximation formulas that
should be used. The calculated distance between the resonances from the sim-
ulated spectra are compared to the results from the approximation formulas for
different refractive indices.

The next chapter (chapter , gives a short introduction to FTIR spectroscopy
where spectra of the extinction efficiency and from PMMA spheres are shown.
Some basic properties are defined before a short summary of the Mie theory is
given. The ripple structure is illustrated and the resonances described before the
approximation formulas for the distance between the resonances are presented.
In chapter |3|the results from exploring the effects of the resolution on .., a, and
> a, are displayed. The accuracy of the equations for calculating the distance
between the resonances is discussed in addition to the possibility of using these
equations for estimating the refractive index. The effects of the resolution on
the resonance structure are discussed further in chapter 4] In appendix [A] an



overview of the Bessel functions is presented and a more detailed description of
the Mie coefficients is given in appendix [B] In appendix [C] the numerical results
from chapter [3.2.1] are given.
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Chapter 2

Theory

2.1 FTIR Spectroscopy

Fourier transform infrared (FTIR) spectroscopy is a biophysical technique for
the investigation of biological tissues and cells in their native state. Physical and
chemical light are normally distinctc but this is not the case in FTIR spectra.
In FTIR spectra the scattering effects from physical and chemical light often
overlap. Thus for biochemical interpretation, correction of various types of light
scattering effects is desired. Since cells and tissue structures vary on scales com-
parable to the wavelength of the infrared light, infrared absorbance spectra are
often hampered by strong scattering effects [9 [10]. As model systems for char-
acterization of scattering phenomenon, Lukacs et al. [I0] used pollen grains and
polymethyl methacrylate (PMMA) spheres. PMMA spheres are used as a simple
experimental model system to model scattering from cells. Even though their
chemical composition is identical, their IR spectra are different. The only factor
that can impact the spectra, since their composition are the same, are the phys-
ical size of the spheres. Both Mie scattering and the ”dispersion artifact”, which
is explained by the Mie theory, are evident in spectra from the spheres [1].

Pollen grains are an ideal real-world model system for scattering of biological
samples because their grain walls are thick and shape resistant. In other words,
their morphology is stable and reproducible. This enables simple manipulation
and measurement. In addition, the variety of pollen morphologies creates a wide
range of experimental conditions for the measurement of scattering [10].

Next, to illustrate how spectra of PMMA spheres change when the diameter
is changed, the extinction efficiency for three spheres with different diameter are
shown. Data is obtained from Dr. Rozalia Lukacs, Postdoc at NMBU[§]. A
PMMA sphere with diameter 40um is shown in figure 2.1} The resolution is in
this spectra Av = 4cm™!. The area 56 < z < 90 is zoomed in on in figure
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6 2. THEORY

to show the fine ripple structure. The two next figures are plotted with higher
resolution, A7 = 2cm™!, and the spectra have a sharper ripple structure than in
the previous figures. The extinction efficiency for a PMMA sphere with diameter
15um is shown in figure[2.3|and figure[2.4] This change in the shape that is visible
between the previous figures makes it interesting to explore how the resolution
affects the ripple structure. Lukacs et al. recorded samples with Av = 4cm ™1, so
using Az = 5ecm ™! can make the results comparable to experimental results [10].
In figure [2.5], the absorbance, A, of a sphere with diameter 15um is plotted. Data
for this spectra is obtained from Dr. Rozalia Lukacs, Postdoc at NMBUJ[g|. In
this spectra the scattering effects cancels each other out and therefore the spectra

have a flat baseline with no large oscillations.

- QPMMA

60

50

40
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0 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
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Figure 2.1: Example of spectra from a PMMA sphere plotted with resolution Av =
4cm™! and diameter 40um.
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Figure 2.2: Zoomed in on spectra from a PMMA sphere plotted with resolution
AP = 4cm™! and diameter 40pm.
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Figure 2.3: Example of spectra from a PMMA sphere plotted with resolution Av =
2cm ™! and diameter 15um.
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Figure 2.4: Zoomed in on spectra from a PMMA sphere plotted with resolution
AP = 2cm™! and diameter 15um.
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Figure 2.5: Example of an absorbance, A, from a PMMA sphere plotted with resolu-
tion AU = 4cm~! and diameter 15pm.
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2.2 Scattering of Light

This section is partly based on the book by Stone [13].

A beam of light which is incident on an object, i.e. a particle, as shown
in figure [2.6] has power P, and intensity Iy. The object is placed between a
light source and a detector with cross section G. The incident light is scattered,
chemically absorbed by the object, and transmitted. The transmitted light has
intensity I.

Scattered light

Incident light
> _
Transmitted light
7
e
7
7
1

d
e

Source Detector

Radiation sink
(absorbed light)

Figure 2.6: Illustration of scattered light. The incident light has intensity Iy. This
light is scattered, chemically absorbed by the object, and part of the incident light is
transmitted through to the detector. The transmitted light has intensity 1.

The difference between the incident and the transmitted light is mainly be-
cause some of the light is scattered and some is absorbed by the particle. Thus
scattering and absorption removes energy from the beam of light. This is called
extinction and is defined as

Extinction = Scattering + Absorption

Py can be measured by removing the object from the path of the incident light.
When an object is placed between the detector and the source, the detector
measures a power P which is the power of the transmitted light. The incident
light beam have lost power equivalent to F; — P and is said to have experienced
extinction. The lost power, P.,;, is distributed into two parts: P, and Ps. Pico
is the power of a scattered wave radiated in various directions. The rest of the
power is converted into heat generated in the interior of the object. This is called
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absorption and has the power P,;,. Conservation of power requires that
Py =P + Pscq + Pobs,
and the different powers are defined by the following equations
By = Gy, P =dGl, Psca = Cscalo, Paps = Capslo, Peyt = Cegilo,

where Ceu, Cups and Cl,., are the cross sections for extinction, scattering and ab-
sorption. Non-absorbing particles have C.,; = Cy., and the law of conservation
of energy requires that C.py = Cyeq + Cups. I is the intensity of the transmitted
light and I the intensity of the incident light [13].

The extinction is often represented by ()..; which is the extinction efficiency.
The ..+ describes the loss of of incident light, as a function of the wavelength,
caused by the particle [5]

Ce:rt

cross- sectional area'

Qe:ct =

So for a sphere, with cross-sectional area A = wa?, where a is the radius of the
sphere, Q.. is given by
Ce:ft

)
Ta?

Qeact =

where C¢,; is the extinction cross section and a is the radius of the sphere. The
chemical quantity absorbance, A, is defined as

(2.1)

A = —logy(T), (2.2)

where T is the transmission. A conversion formula between ().,; and A is given
by
G
Qezt = (1 - 107A)_7
g

where ¢ is the geometrical cross section of the scatter and G is the area in front
of the detector. Equation (2.2)) can be rewritten as

7TCL2

Ar Gln—(l())Qm’ (2.3)

where a is the radius of the sphere, G the area of the aperture in front of the
detector. For convenience ”—g ~ 0.05 [10, B].
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2.2.1 Mie Theory

The extinction cross section, C\.;, is defined as

[e.9]

Clat = i—g > (20 + 1)Re(a, + by), (2.4)
n=1

where k is the angular wavenumber given by k = 27”, A is the wavelength in

vacuum, and a, and b, are the scattering coefficients. The scattering coefficients,

which are derived in appendix |B|, follows the notation used in Bohren, Huffman

[5]. The connection between the extinction efficiency and the extinction cross

section is defined by equation ([2.1)) which gives

o0

Qeat = % 2(271 + 1) Re(an + by), (2.5)

n=1

where x = ka is the size parameter. a, is known as the electric mode and b, the
magnetic mode and they are given by the following

mn (M) iy, (x) =tn (€) ¢y, (mz)
mwn (m$)€41 (CC) _£TL (.1})’(#;1 (mx)

dy —

: (2.6)
b — Yn(ma)dy (@) —mn (@), (mz)
" Y (ma)g, (@) —mén @)y, (ma)

where m is the refractive index, x is the size parameter, and 1, and &, are the
Riccati-Bessel functions which are defined by equation in appendix .
As illustrated in this section, for calculations using Mie theory, it is necessary to
know the radius of the scattering particle, a, and the refractive index, m which
can be complex.

The complex refractive index, m, consists of a real and a imaginary part,
respectively 7 and 7/. The relation between these terms are given by

m(p) = a(D) + it (7), (2.7)

following the notation in [16]. In equation (2.7) 7 is the wavenumber, i describes
the refractive properties of the material and n’ describes the absorptive properties
of the material.

2.3 Ripple Structure

The extinction efficiency, Qeu, is given by equation ([2.5) and is a function of the
size parameter. In figure 2.7] the extinction efficiency is plotted from =z = 0 to
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x = 30. As x increases the peaks in the ripple structure becomes sharper. These
ripples are also called resonances and are, as illustrated in figure[2.7} superimposed
on top of large oscillations in the baseline. This structure is also present in the

absorbance, A, given by equation (2.3)) and illustrated in figure [2.8|

Qext

size parameter

Figure 2.7: Extinction efficiency Q.+ as a function of size parameter z.

01r
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0.08 |
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© o o
o o o
(2] (o)} ~
T T T

o©
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S
T

0.03

0.02

0.01 1 1 1 1 1 I
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Figure 2.8: Absorbance A as a function of size parameter x.
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2.3.1 Approximation Formula for Distances Between
Resonances

The distinct ripple structure in the extinction efficiency, Q..:, as illustrated in
figure [2.7] is caused by the summation of the real parts of a, and b,, given by
equation (2.6). In figure the > a, and the Y b, are plotted in the same figure.

a and b

30

size parameter

Figure 2.9: ) a, and ) by as a function of size parameter.

The peaks in ) a, and ) b, are also called resonances and their notation are
shown in figure 2.10 The first peak of the electric mode a with index n = 20
would be denoted as ag'.

order, 1 indicates
first peak, 2 second peak
and so on

e

ak

' n
4 A

1

1

1

type of
mode;
electric :a
magnetic: b

index

Figure 2.10: Illustration of the notation of a,* where k is the order of the resonance,
n is the index or the number of the resonance.
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The distance between the resonances is represented by dx. The position of
these distances are illustrated in figure 2.11}

— 2a,
— 2bn

size parameter

Figure 2.11: ) a, and > b, as a function of size parameter. dz is the distance
between the resonances.

In 1975, Petr Chylek [6] derived a formula for this distance between the res-
onances, the sharp peaks in .., the extinction efficiency. This formula is only
dependent on the refractive index m of the sphere and is defined as

dx = . (2.8)

Equation (2.8) was further developed by Petr Chylek, and in 1990 [7], a new and
improved approximation formula for dz was derived

dr =

x-tan~ ((%) 1)1/2

(P -7

where z is the position of the peak, n the index of the peak and m the refractive
index. The distance dx calculated by equation is the distance between two
successive resonances of the same order k. So, the size parameter distance, dx%k),
between a,®) and an;1* is given by dzl) = xfﬁl — W Equation and
equation are defined to hold under the assumptions z > 1, n > 1, & ~ 1
and mx ~ n. The assumption that = ~ 1 indicates that ay will have its first
peak, as!, in close proximity of z = 20.

(2.9)



Chapter 3

Results

3.1 Effect on Ripple Structure by Changing
Resolution

The resolution is here referred to as the step size in the wavenumber or the size
parameter. A low resolution results in a fine grid. It is given as a step in the
wavenumber, A, and can be converted to size parameter, Az, by

Ax
Az =21 x Av x 1 A= ——————— 1
x =21 x Av x 100 X a, U= 00 %’ (3.1)

where a is the radius of the sphere. In the following figures the functions are
given as functions of the size parameter x as frequently done in the literature.
The resolution is on the other hand given as a step in the wavenumber  for
convenience. This conversion formula, equation [3.1} is therefore useful. For ex-
ample, Av = 10cm™~! corresponds to a resolution of Az ~ 0.035, Ay = 5cm ™!
corresponds to Az ~ 0.017, and AP = 0.2cm ™! corresponds to Az =~ 0.00069.

In this thesis, a refractive index of m = 1.48 and a radius of @ = 5.5 x 107 %m,
is the main area of study. The reason for choosing this refractive index is because
the real part of the refractive index for PMMA are approximately m = 1.48 [10].
For the radius of the sphere, it is assumed to lie in the interval [1pm; 10pm)] [10].

Figure |3.1| shows the extinction efficiency ()., as a function of size parameter
x with a refractive index m = 1.48 and a radius of the sphere a = 5.5 x 107%m on
the interval 0 < o < 28. Q.. is plotted with A7 = 5cm~! and oscillate around
2.5. The ripple structure is superimposed on large oscillations and it becomes
more prominent as x increases. Figure is generated using the Matlab script
PlotQext.m [14].

In figure the resolution is changed from A7 = 5em~! to Av = 0.2cm ™1,

15
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0 5 10 15 20 25 30
size parameter

Figure 3.1: Extinction efficiency Q.,¢ as a function of size parameter x employing a
resolution of A7 = 5cm™!, a refractive index of m = 1.48 and a radius of the sphere of
a = 5.5 x 107%m on the interval 1 < 2 < 28. On top of the large oscillations a ripple
structure is observed, which becomes more pronounced as x is increased.

One clear change from figure is that the height of the sharp peaks have
increased from x ~ 17.

451

0 5 10 15 20 25 30
size parameter

Figure 3.2: Extinction efficiency Qez: as a function of size parameter z employing a
resolution of AU = 0.2cm™!, a refractive index of m = 1.48 and a radius of the sphere
of a = 5.5 x 107%m on the interval 1 < z < 28. On top of the large oscillations a ripple
structure is observed, which becomes more pronounced as x is increased.

As illustrated by figure and figure [3.2] a change in the resolution gives a
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visual change in the spectra of )., In figure > an, Y b, and Q.. are plotted
together as functions of size parameter x on the interval 1 < x < 28 for refractive
index m = 1.48 and radius of the sphere a = 5.5 x 107%m. From x =~ 10 a distinct
ripple structure is visible and by observation it is clear that every second peak is
a, and b,. As in Q. illustrated by figure 3.1 and figure the ripple structure
becomes sharper as x is increased. This figure is generated using the Matlab
script Plot_An_Bn_oneplot.m [14].

size parameter

Figure 3.3: > ay, > by and Q.. as a function of size parameter employing a resolution
of A = 5em™!, a refractive index of m = 1.48 and a radius of the sphere of a =
5.5 x 107%m on the interval 1 < < 28.

3.1.1 Effect of the Resolution on a, and > a,

As stated in chapter[2.3.1, when calculating dx, the distance between the peaks in
the resonance structure, according to equation , the distance has to be taken
between successive peaks of the same order and of the same mode, electric or
magnetic. It is therefore interesting to investigate how a change of the resolution
in Y a, affects the ripple structure. Each single a, contributes to the ripple
structure in »_ a,, as shown in figure . Thus, it is important to know, if the
resolution changes appearance of certain peaks in Y a,. Further, it is of interest
to determine if the visible peaks are first, second or third order peaks.

Figure shows ) a, as a function of the size parameter z, using a refractive
index of m = 1.48 and a radius of the sphere of a = 5.5 x 107%m. Figure
is plotted with resolution A7 = 0.2cm~! and figure is plotted with
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Ap = 10cm™!. From z ~ 20 a clear change is visible when the resolution is
decreased. In figure high, sharp peaks as well as wide peaks are visible,
while in figure this area contains wider peaks.

181
6F | —— 2 an
14t
12

10

Re(an)

size parameter

(a)
187
16F | —— 2@
14t
12+

10

Re(an)

size parameter

(b)

Figure 3.4: ) a, with a refractive index of m = 1.48 and a radius of the sphere of
a=5.5x10"%m. (a) Resolution Az = 0.2cm~!. (b) Resolution A = 10cm 1.

As figure [3.4] shows, the ripple structure change when the resolution change.
For higher values of the size parameter, high resolution results in higher and
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shaper peaks in the ripple structure. In figure the area that changes most
in figure [3.4]is zoomed in on. The same refractive index and radius as in figure
is applied. In figure the resolution is Av = 0.2cm™!, in figure m
Av =0.9cm™! | in figure Av =5cm ™! and in figure Av = 10cm ™.

8r

[—Za

18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 25 26

size parameter size parameter
(a) (b)
18 18
— & — > &

27

18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 25 26
size parameter size parameter
(c) (d)

Figure 3.5: Plot of ) a, with a refractive index of m = 1.48, a radius of the sphere
of @ = 5.5 x 107%m and decreasing resolution. (a) Resolution A7 = 0.2cm~!. (b)
Resolution A7 = 0.9cm™!. (c) Resolution A = 5ecm ™. (d) Resolution A = 10cm ™.

It is not likely to get spectra from biological material with resolution as high
resolution as A = 0.2cm™!. Lukacs et al.[I0] recorded samples with A = 4em™
for PMMA spheres. So, it might therefore be a good idea to work with resolution
Av = 5em ™! as in figure where the peaks in the area 19 < x < 20 still are
clear and visible.

In figure the a, is plotted together with ag, azg and as4 as a function of the
size parameter x. The resolution is Av = 10cm™!, the refractive index m = 1.48
and the radius of the sphere a = 5.5 x 107%m. As stated in chapter , the

27
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ripple structure in ) a, is due to the sum of the single a,. When plotting with
Ap = 10cm ™! it appears that the peak around x = 24 is caused by the secondary
peak of aze and not by the first peak of azy which is small and not very prominent.
Figure is generated using the Matlab script Plot_many_single_an.m [14].

121
- Z an
1F a26
ago
a,
08k 34
~~
mC
g 0.6
x

0.4 M

02r

19 20 21 22 23 24 25 26 27 28
size parameter

Figure 3.6: ) a, and age, azp and a3s as a function of the size parameter x employing
a resolution of A7 = 10cm™!, a refractive index of m = 1.48 and a radius of the sphere
of a =5.5x 107%m.

When the resolution is high, i.e. A7 = 0.2cm™!, the > a, has a ripple struc-
ture consisting of alternating sharp and wide peaks. This is illustrated in figure
In figure > a, is plotted together with asg, azp and azq as a function of
the size parameter x. Figure is employed with a resolution of A7 = 0.2cm ™!,
a refractive index of m = 1.48 and a radius of the sphere of a = 5.5 x 10~%m.
When plotting with A7 = 0.2cm™!, the first order peaks of as, az and as4 are
prominent and the position of these peaks coincide with the high and sharp peaks
in > a,. The second order peaks of ays and a3 coincide with the wider peaks in
>~ an. Thus, when the resolution is high, the first order peaks are responsible for
the sharp peaks and the second order peaks are responsible for the wider peaks
in > a.

When > a, is plotted together with as, azp and azq with resolution Av =
10cm™! (see figure , it appears that the peak in > a, around x = 27.5 is
caused by the second order peak of azg and not by the first order peak of az,.
The same is evident for the peak around x = 24 which appears to be caused by
the second order peak of as and not by the first order peak of azp. In contrast,
the first order peak for ass and the sharp ripple in > a, (behind the first peak of
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az) in figure coincide perfectly. The second order peak of azg and the wider
peak coincide perfectly.
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Figure 3.7: > a, and ag, azp and az4 as a function of the size parameter x employing

a resolution A = 0.2cm™!, a refractive index m = 1.48 and radius of the sphere of
a=55x10"5m.

In figure [3.8] sharp peaks in addition to the wider peaks in the upper part

of the size parameter. Just by changing the resolution from A7 = 0.2cm™! to
Ap = 2cm~! in figure , the height of the sharp peaks are reduced.
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Figure 3.8: ) a, and age, azp and ass as a function of the size parameter x employing
a resolution AD = 2cm™!, a refractive index m = 1.48 and a radius of the sphere of
a=5.5x10"%m.

As figure [3.9a] and [3.9b] illustrates, the height of the first peaks of azg and as4 is

reduced when decreasing the resolution from Az = 5¢cm™! in (a) to Av = 10cm™

in (b). Low resolution, as illustrated in figure [3.9b], creates wider peaks in »_ a,,.
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Figure 3.9: ) a, and age, azp and as4 as a function of the size parameter x employing
a refractive index m = 1.48 and a radius of the sphere of a = 5.5 x 10~ %m.
Ap =5cm~ L. (b) A = 10cm ™!

(a)
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Next, single a, is plotted together with > a, in several plots. Instead of
plotting all single a, together with the sum in one plot, the range 0 < x < 28
is distributed to six different graphs. For convenience the size parameter range
used in the different plots overlap. The reason for this overlap is to make the
graphs easier to read and understand. Further, some of the a, are repeated in
the different plots to facilitate comparison. The index n range from 8 to 34 in
figure to figure In these figures to , both the subplots in
each figure are plotted over the same range of size parameter and with the same
an. A refractive index of m = 1.48 and a radius of the sphere of @ = 5.5 x 10~%m
was chosen. Each subplot contains one figure plotted with A7 = 0.2cm™! on the
left side and A? = 2cm™! on the right side. In figure ag to a3 are plotted,
in figure [3.11] a3 to aig, in figure [3.12) a1 to as3, in figure[3.13|ax; to ayz, in figure
3.14) a57 to a3; and in figure [3.15] a3y to ass.
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Figure 3.10: Plot of ) a, and a, with index ranging from n = 8 to n = 13. (a)
Resolution A7 = 0.2cm™ 1. (b) Resolution A = 5em™1.
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Figure 3.11: Plot of ) a, and a, with index ranging from n = 13 to n = 18. (a)
Resolution A7 = 0.2cm™!. (b) Resolution A7 = 5cm 1.
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Figure 3.12: Plot of ) a, and a, with index ranging from n = 18 to n = 23. (a)
Resolution A7 = 0.2cm™ 1. (b) Resolution A = 5cm™ 1.
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Figure 3.13: Plot of ) a, and a, with index ranging from n = 23 to n = 27. (a)
Resolution A7 = 0.2cm™!. (b) Resolution A7 = 5cm 1.
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Figure 3.14: Plot of ) a, and a, with index ranging from n = 27 to n = 31. (a)
Resolution A7 = 0.2cm™ 1. (b) Resolution A = 5em™1.
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Figure 3.15: Plot of ) a, and a, with index ranging from n = 30 to n = 34. (a)
Resolution A = 0.2cm~!. (b) Resolution A7 = 5ecm 1.

In figure and figure the second order peaks only contribute to the
background oscillation in the baseline while the first order peaks create the ripple
structure. In figure [3.13a] figure and figure the secondary peaks
creates a wide peak after a sharp peak. The effect of the change in the resolution
is first evident in figure [3.13] The first order peaks in figure are not as
prominent as in [3.13a] When comparing [3.15a] and [3.15b] it becomes clear that
for low resolution, i.e. Az = 5em™?, the second order peaks are responsible for
the ripple structure in the higher range of the size parameter.

3.2 Approximation Formulas for the Distance
Between the Resonances

It is of general interest to see how accurate the approximation formulas, given in
chapter , for the distance between the peaks in the ) a, and > b, are, and if
these formulas can be used for other purposes. One important area of application
can be to use these formulas for the calculation of the refractive index from  aj.

3.2.1 Accuracy of Approximation Formulas for
Calculating dz

In this section, the accuracy of the equations for calculating dx, given in chapter
2.3.1} is investigated. The results from equation and equation are com-
pared to the results from the actual distances obtained numerically from the exact
Mie solutions. Finally these results are compared with the distances between the
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peak positions of single a,. Throughout this section Ezact is the distance be-
tween the peaks in > a,. FEzact single a, is is the distance, dz, between the
first order peaks for each a,. Complicated formula is the distance, dz, calculated
using equation , which takes the position and the index of the resonances
into account. Simple formula is the distance between the peaks calculated using
equation ([2.§]).

In figure the results from calculating the distance between the peaks,
dz, using equation (Complicated formula), equation (Simple formula)
and with the dz obtained numerically from the exact Mie solution (Ezact) are
compared. FEzact is calculated from the peaks in > a, where a radius of the
sphere of a = 5.5 x 107%m, a refractive index of m = 1.48 and a resolution of
Av = 5em~! was employed. This result is computed for n = 12 to n = 57
because the first peaks for n < 12 in > a, is not very prominent. The results are
generated using the Matlab script Simulation3.m [14]. Figure illustrates
the results, and the numerical results can be found in table in appendix [C]
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Figure 3.16: FEzact is the dx calculated from the peaks of ) a, with a radius of the
sphere of a = 5.5 x 107%m (blue), a refractive index m = 1.48 and a resolution of
A = 5cm™!, Complicated formula is the dx calculated using equation (yellow)
and Simple formula is the dx calculated using equation (orange). The numerical
values are given in table @ in appendix Q

In figure the distance dz between adjacent peaks of > a, is displayed.
From this figure it appears as equation (2.9) (Complicated formula) for calculating
dx might be the best approximation from n = 12 to n ~ 30. The distances
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from n = 30 until n = 57 are approximated better with equation (2.8) (Simple
formula).

In figure the results from calculating the distance between the peaks,
dz, using equation (Complicated formula), equation (Simple formula),
with the dx obtained numerically from the exact Mie solution (Ezact) and with
the distance, dx, between the first order peaks for each a, (Ezact single a,) are
compared. For all calculations a radius of the sphere of @ = 5.5 x 107%m, a
refractive index m = 1.48 and a resolution of A7 = 5ecm~! was used. The
positions of the first peaks for the single a, are computed with resolution Az =
0.0173 which is equivalent to Av = 5cm™! calculated with equation . These
results are computed for n = 12 to n = 57 because the prominence of the first
peaks for n < 12 in > a, are not distinct and it would be difficult to separate
one peak from the other. The results are generated using the Matlab script
Plot_dif ferent_deltax_results-n12_57.m [14]. The results are illustrated in figure
and the numerical results are given in table in appendix [C]
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Figure 3.17: The distances between the peaks, dx. Ezact is the dx calculated between
the peaks from the graph of > a, (blue). Ezact single a, is the dz calculated between
the first peaks of the single a, (orange). Simple formula is the dz calculated by equation
(2.8) (purple). Complicated formula is the dx calculated by equation (yellow)
which depends on z and n. For all calculations radius of the sphere a = 5.5 x 10~5m,
refractive index m = 1.48 and resolution of A7 = 5cm™! was used. The numerical

values are given in table in appendix |g

In figure the difference between the distance dx from the peaks in ) a,
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(Ezact) and from the first order peaks form a, (Ezact single a,) are large, es-
pecially for n > 30. Since, Fzact single a,(blue) is close to Complicated for-
mula(yellow), equation which depends on x and n, would be a good ap-
proximation for the distance between the peaks for n > 12. As n increases, the
distance between the first peaks(Ezact single a,, orange) are approximated well
with the equation (2.9)). For n < 30 there are occasional overlaps between Fract
single a,(orange) and Ezact(blue). An overlap indicates that the peaks from ) a,
(blue) are first order peaks. Because of the large difference between Ezact(blue)
and Ezact single a,(orange) it indicates that > a,, employed with Ay = 5em™!,
does not contain only first order peaks. This confirms what was observed in chap-
ter when the resolution is low, the visible peaks in ) a, for low n are first
order peaks, but as n increases the visible peaks are higher order peaks.

It is interesting to see if equation gives a better approximation for the
distance between the peaks as n is increased further. In figure [3.17 it is shown
that calculations using equation ([2.9)) gives a better approximation than equation
for dx from a,. The distance between the first order peaks from a, and the
results from the two approximation formulas(Simple formula and Complicated
formula) are plotted in figure As this figure illustrates, equation gives
a very good approximation for high n. Ezact single a, (blue), is very close to
Complicated formula (yellow) for n ~ 30. The positions of the first order peaks
for a, are computed with high resolution, Az = 0.01, which is equivalent to
Av = 2.9cm™! calculated by equation (3.1). These results are calculated from
n =1 to n = 60 in order to see how dx changes as n increases. The numerical
results are given in table [C.3] The table is generated using the Matlab script
Plot_dif ferent_deltax_resultsn1_60.m [I4] and the results are displayed in figure
B.18
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Figure 3.18: The distances between the peaks, dx. Fxact single a, is the dx calculated
between the first peaks of the single a, (blue). Simple formula is the dz calculated
by equation (2.8) (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations radius of the sphere
a = 5.5x107%m, refractive index m = 1.48 and resolution Az = 0.01 which is equivalent
to A = 2.9cm™! was used. The results are plotted from n = 1 to n = 60. The
numerical values are given in table in appendix |g

As the previous figure shows, equation (Complicated formula), is a good
approximation for n > 30. For n < 30 the approximation is not very good. In
figure the area 1 < n < 15 is enlarged in order to highlight the difference
between Ezact single a, (blue), and Complicated formula (yellow). These nu-
merical results are displayed in a separate table, table [C.4] in appendix [C] which
also contains the absolute error. The table is generated using the Matlab script
Plot_dif ferent_deltax_resultsnl_60.m [14].
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Figure 3.19: The distances between the peaks, dr. Fxact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations radius of the sphere
a = 5.5x107%m, refractive index m = 1.48 and resolution Az = 0.01 which is equivalent
to AP = 2.9cm~!. The results are plotted from n = 1 to n = 15. The numerical values

are given in table in appendix g

In the next figures(3.2053.27) Ezact single a, (blue), Simple formula (orange)
and Complicated formula (yellow) are plotted. The refractive index is changed

from m = 1.3 to m = 1.5, to be able to see how the refractive index alter the
results. The resolution for Ezact is the same, Az = 0.01, which is equivalent
to a step as small as 2.9cm™! in the wavenumber. In figure and the
refractive index is mm = 1.3. In figure[3.22] and [3.23] the refractive index is m = 1.4.
In figure and the refractive index is m = 1.46. In figure and

the refractive index is m = 1.5.
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Figure 3.20: The distances between the peaks, dx. Fxact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (2.8)) (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a =5.5x 107%m, a refractive index of m = 1.3 and a resolution of Az = 0.01 which is
equivalent to AU = 2.9cm™!. The results are plotted from n = 1 to n = 60.
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Figure 3.21: The distances between the peaks, dr. Fzact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on z and n. For all calculations a radius of the sphere
a=5.5x 107%m, a refractive index of m = 1.3 and a resolution of Az = 0.01 which is
equivalent to AU = 2.9cm™!. The results are plotted from n = 1 to n = 15.
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Figure 3.22: The distances between the peaks, dx. Fxact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a=5.5x 107%m, a refractive index of m = 1.4 and a resolution of Az = 0.01 which is
equivalent to A7 = 2.9cm™!. The results are plotted from n =1 to n = 60.
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Figure 3.23: The distances between the peaks, dr. Fzact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (2.8)) (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a=5.5x 107%m, a refractive index of m = 1.4 and a resolution of Az = 0.01 which is
equivalent to AU = 2.9cm™!. The results are plotted from n =1 to n = 15.
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Figure 3.24: The distances between the peaks, dr. Fxact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (2.8)) (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a = 5.5 x 107%m, a refractive index of m = 1.46 and a resolution of Az = 0.01 which
is equivalent to A = 2.9cm™'. The results are plotted from n = 1 to n = 60.
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Figure 3.25: The distances between the peaks, dr. Fzact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on z and n. For all calculations a radius of the sphere
a = 5.5 x 107%m, a refractive index of m = 1.46 and a resolution of Az = 0.01 which
is equivalent to A7 = 2.9cm™'. The results are plotted from n =1 to n = 15.
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Figure 3.26: The distances between the peaks, dx. Fxact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a =5.5x 107%m, a refractive index of m = 1.5 and a resolution of Az = 0.01 which is
equivalent to A7 = 2.9cm™!. The results are plotted from n =1 to n = 60.
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Figure 3.27: The distances between the peaks, dr. Fzact single a, is the dz calculated
between the first peaks of the single a, (blue). Simple formula is the dx calculated
by equation (2.8)) (orange). Complicated formula is the dx calculated by equation
(2.9) (yellow) which depends on x and n. For all calculations a radius of the sphere
a=5.5x 107%m, a refractive index of m = 1.5 and a resolution of Az = 0.01 which is
equivalent to AU = 2.9cm™!. The results are plotted from n =1 to n = 15.
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As seen in the previous figures, dz-values decrease with m. In addition the
intersection between Simple formula and Complicated formula move from n =9
towards n = 7 as m is increased. In chapter it is stated that equation
and equation hold under the assumptions that x > 1. This is confirmed in
the previous figures. In figure |3.16, Ezact gets closer to Simple formula(orange)
as n and with that = increases. In figure to figure [3.27] Fxact single a, get
closer to Complicated formula(yellow), as n and z increases. In other words,
equation and equation are more accurate for x > 1. It is also seen in
the previous figures that, for the area 1 < x < 8, equation does not give a
very good estimate for the distance between the resonances. Neither of the two
formulas deliver a good estimate in this area. For n = 8 to n = 15, equation
certainly is the best approximation. In the area from 1 < n < 8 it might be
necessary to find another way of computing dzx.

3.2.2 Using Bisection to Obtain the Refractive Index

In this section bisection is going to be applied to the equations, given in chapter
2.3.1, for calculating the distance between the peaks. The aim is to calculate an
estimate for the refractive index from simulated spectra.

Equation (2.8) and equation (2.9)), given in chapter [2.3.1] are rearranged on
the form f(m) =0

dx - (m* — 1)V% — tan~Y(m? — 1)Y/2 = 0, (3.2)

dz - n((mz/n)?* = 1Y?) — x - tan ' ((ma/n)? — 1)V/% = 0. (3.3)

In the Matlab script Simulation2.m [14], bisection is used on equation (3.2) and
equation to find the zeros. The ) a, is plotted for 11 < n < 34 and the
zeros are calculated with tolerance ¢ = 1071°. The first test of estimating the
refractive index from the graph using bisection is implemented with a constant
refractive index m = 1.48, radius of the sphere 5.5 x 107%m and A = 5cm™1.
m graph is the constant refractive index in the graph, m simple formula is the
refractive index calculated using bisection on equation and m complicated
formula is the refractive index calculated using bisection on equation (3.3)). This
result is given in table |3.1]
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Table 3.1: Bisection is used on equation and equation to find the zeros.
The first test of estimating the refractive index from the graph using bisection is im-
plemented with a constant refractive index m = 1.48 and A = 5em~!. The " a, is
plotted for 11 < n < 34 and the zeros are calculated with tolerance e = 1070, m graph
is the constant refractive index in the graph, Simple formula is the refractive index
calculated using bisection on equation and Complicated formula is the refractive
index calculated using bisection on equation .

Graph | Simple formula Complicated formula
1.48 1.57462241128087 | 1.52636288329959
1.48 1.52546649798751 | 1.46726275011897
1.48 1.4786015547812 | 1.41274695321918
1.48 1.43387502059341 | 1.79999999925494
1.48 1.4786015547812 | 1.40199743285775
1.48 1.52546649798751 | 1.44360328838229
1.48 1.4786015547812 | 1.79999999925494
1.48 1.52546649798751 | 1.43465180322528
1.48 1.52546649798751 | 1.43048443868756
1.48 1.52546649798751 | 1.42669081762433
1.48 1.57462241128087 | 1.47184311524034
1.48 1.52546649798751 | 1.4194560430944
1.48 1.57462241128087 | 1.46512661352754
1.48 1.52546649798751 | 1.41331238821149
1.48 1.57462241128087 | 1.45938547030091
1.48 1.57462241128087 | 1.45655974075198
1.48 1.57462241128087 | 1.45392350777984
1.48 1.57462241128087 | 1.45145833268762
1.48 1.43387502059341 | 1.79999999925494
1.48 1.4786015547812 | 1.79999999925494
1.48 1.4786015547812 | 1.79999999925494
1.48 1.43387502059341 | 1.79999999925494
1.48 1.4786015547812 | 1.79999999925494

From table it appears that equation (Sz'mple formula) gives the best
approximation to the refractive index in the graph. To determine how good the
approximations are it is necessary to calculate the absolute error. The absolute
error is displayed in table [3.2]
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Table 3.2: The absolute error for the results from table

Simple formula | Complicated formula
0.09 0.05
0.05 0.013

0.0014 0.06
0.05 0.3
0.0014 0.08
0.05 0.04
0.0014 0.3
0.05 0.05
0.05 0.05
0.05 0.05
0.09 0.008
0.05 0.06
0.09 0.015
0.05 0.07
0.09 0.02
0.09 0.02
0.09 0.03
0.09 0.03
0.05 0.3
0.0014 0.3
0.0014 0.3
0.05 0.3
0.0014 0.3

The average absolute error and the maximum absolute error from table

are displayed in table [3.3]

Table 3.3: Average absolute error and maximum absolute error for the results from

table when A7 = 5cm L.

Simple formula

Complicated formula

Average absolute error
Max absolute error

0.05
0.09

0.13
0.3

So, as illustrated in table[3.3], the smallest average absolute error is obtained by
equation (3.2))(Simple formula). The maximum absolute error from this equation
is also much smaller than for equation (C’omplicated formula). This indicates
that when the resolution is low, i.e. A7 = 5cm™!, as in table the simplest
formula, equation , gives the best result.

The zeros of the functions are calculated for resolution A = 0.2cm™! as well,
and these results are given in table (3.4
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Table 3.4: Bisection is used on equation and equation to find the zeros.
The second test of estimating the refractive index from the graph using bisection is
implemented with a constant refractive index m = 1.48 and A = 0.2cm ™. The 3" a, is
plotted for 11 < n < 34 and the zeros are calculated with tolerance e = 1070, m graph
is the constant refractive index in the graph, Simple formula is the refractive index
calculated using bisection on equation and Complicated formula is the refractive
index calculated using bisection on equation .

Graph | Simple formula Complicated formula
1.48 1.55073144063354 | 1.50226842835546
1.48 1.51972487941384 | 1.46170491501689
1.48 1.47130537852645 | 1.40574932470918
1.48 1.47312432453036 | 1.40154795572162
1.48 1.4786015547812 | 1.40165207609534
1.48 1.49708269312978 | 1.41514203771949
1.48 1.50645446255803 | 1.41981669589877
1.48 1.51972487941384 | 1.42866552993655
1.48 1.52546649798751 | 1.43027439191937
1.48 1.53124108836055 | 1.43220162913203
1.48 1.53899231180549 | 1.43633127436042
1.48 1.54680331274867 | 1.44071128591895
1.48 1.55073144063354 | 1.44142100140452
1.48 1.55863337740302 | 1.44624990895391
1.48 1.56460014209151 | 1.44929421767592
1.48 1.56859734579921 | 1.45052758082747
1.48 1.57462241128087 | 1.45390356704593
1.48 1.57865876033902 | 1.45542279556394
1.48 1.58271092250943 | 1.45707283392549
1.48 1.5888190202415 | 1.46085551902652
1.48 1.5888190202415 | 1.45868939831853
1.48 1.59496321454644 | 1.46270601376891
1.48 1.59701935574412 | 1.46275203749537

The absolute error for the results from table [3.4] are displayed in table [3.5]
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Table 3.5: The absolute error for the results from table

Simple formula | Complicated formula
0.07 0.02
0.04 0.018
0.009 0.07
0.007 0.08
0.0014 0.08
0.017 0.06
0.03 0.06
0.04 0.05
0.05 0.05
0.05 0.05
0.06 0.04
0.07 0.04
0.07 0.04
0.08 0.03
0.08 0.03
0.09 0.03
0.09 0.03
0.10 0.02
0.10 0.02
0.11 0.019
0.11 0.02
0.11 0.017
0.12 0.017

As shown in table [3.5] the absolute error for the results calculated with equa-
tion (3.3))( Complicated formula) is smaller than for the results from equation
(3.2) (Simple formula). The average absolute error and the maximum absolute

error for A = 0.2cm™! are displayed in table

Table 3.6: Average absolute error and maximum absolute error for the results from
table when A7 = 0.2cm ™.

Simple formula Complicated formula
Average absolute error 0.07 0.04
Max absolute error 0.12 0.08

For higher resolution, i.e. Av = 0.2cm™!, it seems as equation ([3.3)) (Complicated
formula), gives the best approximation.
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3.2.3 Distance Between the Peaks for Different
Resolutions

When plotting > a, with different resolutions there is a shift in the positions of
the peaks. This is illustrated in chapter The calculated distance between
the peaks, dr, will vary and can therefore give the wrong refractive index m for
the spectra. In this section ) a, is employed with a refractive index m = 1.48,
a radius of the sphere of 5.5 x 107%m and plotted with different resolution. The
distances between the peaks is then calculated from »_a, for 12 < n < 33.
Bisection is then used to calculate the refractive index from these results.

Table shows the different dz obtained when the resolution is changed.
Generated with the Matlab script Plot_an_-many_dif f res.m [14].

Table 3.7: The distance between the peaks, dx, calculated from the > a, employed
with a refractive index m = 1.48, a radius of the sphere of 5.5 x 107%m, and resolution

A =0.2cm™, A =2cm~! and AP = 5em L.

n

Av = 0.2cm™!

AD = 2cmt

AP = 5cm!

12

0.745060113725357

0.746442414492934

0.742986662573985

13

0.763030023703887

0.767176926006627

0.760265422168731

14

0.7623388733201

0.760265422168731

0.777544181763474

15

0.760265422168731

0.760265422168731

0.760265422168729

16

0.753353918330832

0.753353918330832

0.742986662573987

17

0.749898166411883

0.746442414492934

0.760265422168731

18

0.745060113725351

0.746442414492934

0.742986662573985

19

0.742986662573987

0.746442414492936

0.742986662573987

20

0.740913211422619

0.739530910655038

0.742986662573987

21

0.738148609887457

0.739530910655038

0.725707902979241

22

0.735384008352298

0.73261940681714

0.742986662573987

23

0.734001707584721

0.73261940681714

0.725707902979241

24

0.731237106049559

0.73261940681714

0.742986662573987

25

0.729163654898191

0.73261940681714

0.725707902979241

26

0.727781354130613

0.725707902979241

0.725707902979241

27

0.725707902979245

0.725707902979241

0.725707902979241

28

0.72432560221166

0.725707902979241

0.725707902979241

29

0.722943301444083

0.718796399141347

0.777544181763474

30

0.720869850292715

0.815557452871911

0.760265422168732

31

0.720869850292715

0.767176926006627

0.760265422168729

32

0.718796399141343

0.767176926006627

0.777544181763474

33

0.718105248757556

0.767176926006627

0.760265422168729

The dx-values agree well until n ~ 30. For n > 30 the dx-values for Av =
2cm~! and Av = 5cm~! are higher than the dz-values calculated with Ap =
0.2cm™1,
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The method from chapter is applied to the results from table in
order to calculate the refractive index. Bisection is used on equation (Sémple
formula) and equation (3.3)(Complicated formula) to see which of the formulas
that gives the best result. In table the refractive index is calculated by
equation (3.2]).

Table 3.8: The refractive index is calculated from the results from table 3.7 where
the distance between the peaks, dz, is calculated from the ) a,. It is employed with
a refractive index m = 1.48, a radius of the sphere of 5.5 x 10~%m. Bisection is used
on equation (3.2)(Simple formula) with resolution Az = 0.2cm™!, Ar = 2cm™! and

A = 5ecm L,

Graph | Av = 0.2cm™! Ap = 2cm™! Ap = 5cm~!

1.48 1.51972487941384 | 1.51591531708837 | 1.52546649798751
1.48 1.47130537852645 | 1.46046241298318 | 1.4786015547812
1.48 1.47312432453036 | 1.4786015547812 | 1.43387502059341
1.48 1.4786015547812 | 1.4786015547812 | 1.4786015547812
1.48 1.49708269312978 | 1.49708269312978 | 1.52546649798751
1.48 1.50645446255803 | 1.51591531708837 | 1.4786015547812
1.48 1.51972487941384 | 1.51591531708837 | 1.52546649798751
1.48 1.52546649798751 | 1.51591531708837 | 1.52546649798751
1.48 1.53124108836055 | 1.53510927036405 | 1.52546649798751
1.48 1.53899231180549 | 1.53510927036405 | 1.57462241128087
1.48 1.54680331274867 | 1.5546747662127 | 1.52546649798751
1.48 1.55073144063354 | 1.5546747662127 | 1.57462241128087
1.48 1.55863337740302 | 1.5546747662127 | 1.52546649798751
1.48 1.56460014209151 | 1.5546747662127 1.57462241128087
1.48 1.56859734579921 | 1.57462241128087 | 1.57462241128087
1.48 1.57462241128087 | 1.57462241128087 | 1.57462241128087
1.48 1.57865876033902 | 1.57462241128087 | 1.57462241128087
1.48 1.58271092250943 | 1.59496321454644 | 1.43387502059341
1.48 1.5888190202415 | 1.59999999925494 | 1.4786015547812
1.48 1.5888190202415 1.46046241298318 | 1.4786015547812
1.48 1.59496321454644 | 1.46046241298318 | 1.43387502059341
1.48 1.59701935574412 | 1.46046241298318 | 1.4786015547812

In table the refractive index is calculated by equation (3.3))(Complicated

formula).
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Table 3.9: The refractive index is calculated from the results from table [3.7] where
the distance between the peaks, dz, is calculated from the > an. It is employed with a
refractive index m = 1.48, a radius of the sphere of 5.5 x 107%m. Bisection is used on
equation (3.3)) (Complicated formula) with resolution Av = 0.2cm™!, AP = 2cm™! and

Ap = 5ecm~ L,

Graph | Av = 0.2cm™! AD = 2cm™! AD = 5cm ™!

1.48 1.46170491501689 | 1.45776949450374 | 1.46726275011897
1.48 1.40574932470918 | 1.79999999925494 | 1.41274695321918
1.48 1.40154795572162 | 1.40711383447051 | 1.79999999925494
1.48 1.40165207609534 | 1.40168348774314 | 1.40199743285775
1.48 1.41514203771949 | 1.41517197266221 | 1.44360328838229
1.48 1.41981669589877 | 1.42921665981412 | 1.79999999925494
1.48 1.42866552993655 | 1.42478423044085 | 1.43465180322528
1.48 1.43027439191937 | 1.42076982185245 | 1.43048443868756
1.48 1.43220162913203 | 1.43610419258475 | 1.42669081762433
1.48 1.43633127436042 | 1.43251553401351 | 1.47184311524034
1.48 1.44071128591895 | 1.44856401607394 | 1.4194560430944
1.48 1.44142100140452 | 1.44529563263059 | 1.46512661352754
1.48 1.44624990895391 | 1.44227311238647 | 1.41331238821149
1.48 1.44929421767592 | 1.43946972563863 | 1.45938547030091
1.48 1.45052758082747 | 1.45655974075198 | 1.45655974075198
1.48 1.45390356704593 | 1.45392350777984 | 1.45392350777984
1.48 1.45542279556394 | 1.45145833268762 | 1.45145833268762
1.48 1.45707283392549 | 1.46922078803182 | 1.79999999925494
1.48 1.46085551902652 | 1.79999999925494 | 1.79999999925494
1.48 1.45868939831853 | 1.79999999925494 | 1.79999999925494
1.48 1.46270601376891 | 1.79999999925494 | 1.79999999925494
1.48 1.46275203749537 | 1.79999999925494 | 1.79999999925494

The average and absolute error from the results in table 3.9 and table [3.8] is
displayed in table |3.10]

Table 3.10: Average absolute error and maximum absolute error for the results from

table and table

Simple formula Complicated formula
Average absolute error AP = 0.2cm ™! 0.07 0.04
Max absolute error A7 = 0.2cm™! 0.12 0.08
Average absolute error Ay = 2cm™! 0.05 0.11
Max absolute error Ay = 2cm™* 0.12 0.3
Average absolute error A7 = 5cm ™! 0.05 0.13
Max absolute error Ay = 5cm ™t 0.09 0.3

For resolution A = 0.2cm ™!, the smallest average absolute error are obtained
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by equation ([3.3)(Complicated formula). For higher resolution, Av = 2cm™!
and A? = 5ecm~!, the average absolute error are small when using equation
(3-2) (Simple formula).

3.3 Identifying Peak Order and Index in ) a,

In figure , > a, is plotted with constant refractive index m = 1.48, radius of
the sphere a = 5.5 x 107%m and resolution A = 5cm™!. The peaks are numbered
from 12 to 57, starting at n = 12 because this peak is equivalent to the first peak
of ajp in figure [3.10] It is then assumed that the following peaks are successive

peaks. The positions for the peaks in ) a, are found using the Matlab script
Plot_An_save_peaks_table.m [14] and saved in table [3.12]

10 15 20 25 30 35 40 45
size parameter

Figure 3.28: Y a, with radius of the sphere a = 5.5x10~%m, refractive index m = 1.48
and resolution A7 = 5cm™!. The peaks are numbered from 12 to 57.

The position of the first, second and third order peaks for 1 < n < 50 for
each a, are found using the Matlab script table_single_an_peak_locations.m [14].
Each a, is plotted with constant refractive index m = 1.48 and resolution Az =
0.005 which corresponds to Av = 1.45cm™*, according to equation . The x-
coordinate for each peak is given in table|[3.11} This table can be used to decide if
the peaks located in Y a, with resolution Ar = 5cm™! are first, second or third
peaks. The coordinates in table|3.12| can be compared to the coordinates in table
3.11} Thus, it will be possible to decide if the peaks are first, second or third
order peaks.
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Table 3.11: The positions of the first,
second and third order peaks for each
ap with constant refractive index m =

1.48 and Az = 0.005.

n | 1. peak | 2. peak | 3. peak
1 |3.245 9.665 16.115
2 | 3.839 10.274 | 16.719
3 | 4.404 9.909 16.224
4 |4.974 10.319 16.734
5 | 5.608 10.918 | 17.303
6 | 6.298 11.433 | 16.868
7 | 7.028 11.628 | 17.383
8 | 7.773 11.923 | 17.983
9 |8.527 12.447 | 18.387
10 | 9.287 13.017 | 18.257
11| 10.047 | 13.592 | 18.747
12 | 10.812 | 14.167 | 19.332
13 | 11.576 | 14.751 | 19.906
14 | 12.336 | 15.371 | 20.421
15| 13.091 | 16.031 | 20.851
16 | 13.851 | 16.721 | 21.296
17 | 14.600 | 17.430 | 21.810
18 | 15.350 | 18.155 | 22.375
19 | 16.095 | 18.895 | 22.955
20 | 16.840 | 19.645 | 23.535
21 | 17.579 | 20.399 | 24.104
22 | 18.319 | 21.159 | 24.679
23 | 19.054 | 21.919 | 25.264
24 | 19.788 | 22.683 | 25.883
25| 20.518 | 23.448 | 26.538
26 | 21.248 | 24.213 | 27.213
27| 21.978 | 24.978 | 27.913
28 | 22.702 | 25.742 | 28.627
29 | 23.427 | 26.502 | 29.357
30 | 24.152 | 27.267 | 30.092
31 | 24.872 | 28.027 | 30.837
32 | 25.591 | 28.781 | 31.586
33 | 26.311 | 29.541 32.341
34 | 27.031 | 30.296 | 33.096
35 | 27.746 | 31.046 | 33.856
36 | 28.460 | 31.795 | 34.620
37 129.175 | 32.545 | 35.385
38 29.890 | 33.290 | 36.145
39 | 30.605 | 34.035 | 36.915
40 | 31.319 | 34.779 | 37.679
41| 32.029 | 35.524 | 38.444
42| 32.744 | 36.264 | 39.204
43 | 33.453 | 37.003 | 39.968
44 | 34.163 | 37.738 | 40.728
45 | 34.873 | 38.478 | 41.493
46 | 35.583 | 39.213 | 42.253
47 1 36.292 | 39.947 | 43.007
48 | 36.997 | 40.677 | 43.767
49 | 37.707 | 41.412 | 44.522
50 | 38.412 | 42.142 | 45.277

Table 3.12: The positions of the peaks
for > a, employed with constant re-
fractive index m = 1.48, radius of the
sphere a = 5.5 x 107%m and Ay =
5cm L.

nr | x - coordinates

12 | 10.8165035063097
13 | 11.5594901688836
14 | 12.3197555910524
15 | 13.0972997728158
16 | 13.8575651949846
17 | 14.6005518575586
18 | 15.3608172797273
19 | 16.1038039423013
20 | 16.8467906048753
21 | 17.5897772674493
22 | 18.3154851704285
23 | 19.0584718330025
24 | 19.7841797359817
25 | 20.5271663985557
26 | 21.252874301535
27 | 21.9785822045142
28 | 22.7042901074934
29 | 23.4299980104727
30 | 24.2075421922362
31 | 24.9678076144049
32 | 25.7280730365736
33 | 26.5056172183371
34 | 27.2658826405058
35 | 28.0261480626745
36 | 28.7864134848433
37 | 29.546678907012
38 | 29.8922540989069
39 | 30.289665569586
40 | 31.0499309917547
41 | 31.7929176543287
42 | 32.5359043169027
43 | 33.2961697390714
44 | 34.0391564016454
45 | 34.7821430642194
46 | 35.5251297267934
47 | 36.2681163893674
48 | 36.9074304943729
49 | 37.6676959165416
50 | 38.4279613387104
51 | 39.2055055204738
52 | 39.9484921830478
53 | 40.7260363648113
54 | 41.5035805465748
55 | 42.2465672091487
56 | 43.0068326313175
57 | 43.7670980534862
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The results fromlooking up the values from table in table are shown
in table [3.13 and illustrated in figure [3.29]

Table 3.13: The results from looking up the values from table in table

nr | peak order
12-29
38
50
30-37
39-47
48
49

W WIN o = e

10 15 20 25 30 35 40 45
size parameter

Figure 3.29: Graphical illustration of the results from looking up the values from

table in table

When generating > a, with Az = 5cm™! the peaks are not of the same order.
To be able to correctly determine the refractive index using the approximation
formulas from chapter [2.3.1], it is necessary to take the difference between the
successive peaks. This problem is illustrated, in figures and [3.17], in chapter
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3.2.1] Three outliers are visible in figure [3.16] and with this method, it is now
possible to determine the reason for these outliers. The outliers are caused by
calculating the distance between peak 37-38, 38-39, and 47-48 in figure [3.28]
When calculating the distance between these peaks using the x-coordinates from
table the dz values corresponds to the outliers in figure [3.16] This deviation
from the other calculated dxz- values is explained when taking a closer look at
table [3.12] and table [3.11] The x-coordinates for the peak at 38 is equivalent to
asg!, 37 is equivalent to as3?, 39 is equivalent to ass?, 47 is equivalent to as? and
48 is equivalent to ase®. As seen in figure in chapter [3.2.1] dx lies around
between 0.7 and 0.8. When looking at the values in table it becomes clear
that these values are responsible for the outliers.

Table 3.14: Peaks 38 — 37, 38 — 39 and 47 — 48 with the corresponding correct
peak notation and the calculated dzx.

Peaks | Corresponds to | dz- value
38-37 3381 - a332 0.3455
39-38 :':\342 — 3381 0.3974
48-47 azg> — az? 0.6393

3.4 Effect of the Dispersive Refractive Index

on Qe:ct

For future work, it is of interest to see if it is possible to adjust the simulated
spectra of (Q..; to experimental spectra from PMMA spheres or pollen grains.
From the experimental spectra of PMMA spheres the radius of the sphere is
known, so the only adjustable parameter is the refractive index.

In figure and [3.3] the refractive index m is constant. In figure the
extinction efficiency is generated for a sphere with radius @ = 5.5 x 10~%m using
a dispersive refractive index and constant resolution Az = 5ecm~!. The refractive
index is changed from m = 1.4 to m = 1.7 along the whole spectral region. For
comparison, an extinction efficiency with constant refractive index m = 1.4 is
plotted in the same figure. When we assume a dispersive refractive index, m
changing with the wavenumber, we can notice large changes in the background
oscillations for a small change in the refractive index. Figure is generated
using the Matlab script Plot_many_Qext_changing_re fractive_index.m [14].
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Figure 3.30: Plot of two Qey; with radius @ = 5.5 x 10~%m and resolution A = 5cm™!
on the interval 9 < z < 28. Dispersive refractive index from m = 1.4 to m = 1.7 (blue)
and constant refractive index m = 1.4 (orange).



Chapter 4

Discussion

Petr Chylek suggested two formulas for the approximation of the distance between
the resonances in the ripple structures as a function of the refractive index [0, [7].
Since, in infrared microspectroscopy, spectra of small spheres, i.e. with sizes in
the same order as the wavelength of the infrared light, can be obtained, these
approximation formulas could be used for the estimation of the refractive index
in the infrared region of the electromagnetic spectrum. Different aspects, such
as resolution, formula accuracy, resonance order, and resonance index need to
be taken into account when evaluating these formulas. In chapter [3.2.2] it was
shown that when a low resolution was employed, i.e. AP = 5ecm™!, the best
results were obtained solving equation by bisection. For high resolution, i.e.
Ap = 0.2cm™ !, the best results were obtained when solving equation by
bisection. Thus, the resolution of the simulated spectra has an impact on which
of the approximation formulas that should be used.

In chapter [3.2.1] it is shown that when calculating the distance between the
resonances using Petr Chylek formulas, given in chapter from > a, gener-
ated with A7 = 5cm™!, equation gives the most accurate result for n > 30.
For n < 30, equation ([2.9)) give the most accurate result for the distances between
the peaks in Y a,. The best estimate for the distance dx between the first order
peaks from each a, is obtained by equation (2.9). For both approximation for-
mulas, certain ranges of validity were given by Petr Chylek [6, [7]. Equation
and equation were defined to hold under the assumptions x > 1, n > 1,
Z ~ 1 and mz ~ n. In addition, the distance dr between the resonances has to
be calculated between successive peaks; n and n+ 1. In chapter single a, is
plotted from n = 8 to n = 34. For this range the assumption £ ~ 1 is determined
to be valid by observation, the peak with index n is located close to position

x = n. From figure to figure in chapter the range of validity,
the assumption that n > 1, for the approximation formulas is visible: Equation

49
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(2.8) and equation delivers a bad approximation for n < 10, but a good
approximation for n > 10. So, for this area, n < 10, the distance between the
peaks should be calculated otherwise. One option for n < 10 is to calculate the
distance between the first order peaks for the single a,. The distance between the
resonances was also calculated for different refractive indices to see if it affected
the results. For a low refractive index, i. e. m = 1.3, equation provide a
good approximation for the area 15 < n < 40, while equation approximate
the area 40 < n < 60 well. For high refractive index, i.e. m = 1.5, a good
approximation for dx is provided by equation for the area 20 < n < 60.
The area 10 < n < 20 is approximated well by equation . For calculating dx
for different refractive indices it can be useful to take this into account since the
accuracy of the formulas differ for different ranges of n in addition to for different
ranges of the refractive index m.

Since Petr Chylek’s formulas [0, [7] contained the refractive index m as a
variable it was interesting to explore if these equations could be rearrange such
that they could be used for estimating the refractive index. Bisection was used
to estimate a dispersive refractive index that change with the wavenumber for
different resolutions applying a tolerance of ¢ = 107°. The accuracy of the
estimation of the refractive index by bisection depends further on the resolution
that can be achieved in a given experimental setup. Since equation takes into
account the position and index of the peak when calculating the distance dx, one
would assume this formula gave the most accurate result for the refractive index
for any resolution. This is, as shown in chapter |3.2.2] not the case. The equation
that gives the best estimate for the refractive index depends on which resolution
that is employed. For a resolution of Az = 0.2cm™! and m = 1.48, equation ([3.3))
gives the most accurate estimate for the refractive index with maximum absolute
error estimated to 0.08. Thus, equation gives a good approximation for the
refractive index when the resolution is high. Using a resolution of Ay = 5cm™!
and a refractive index of m = 1.48, the best estimate for the refractive index
was obtained by applying bisection on equation (3.2]). The maximum absolute
error was estimated to 0.09, thus, equation gives a good approximation to
the refractive when a resolution that is typical for infrared microspectroscopy is
used.

When investigating the different validity ranges of the approximation formu-
las for the resonance index, it turned out that the resolution has a strong effect
on the resonance structure. It affects both the shape of the ripple structure, the
number of visible peaks, and the sharpness of the peaks. Further it has an impact
on if first order or higher order peaks are visible in the ripple structure. Using
a resolution of Av = 5cm~! the peaks in the ripple structure in 3 a, are not
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only given by first order peaks, as shown in Chapter|3.1.1] It is therefore difficult
to decide when calculating distances between peaks in experimentally obtained
spectra, if the respective peaks are first or second order peaks. In Chapter [3.3] the
order of the peaks in ) a, was determined and displayed graphically. A graphical
control of the peak order is necessary when evaluating experimentally obtained
spectra. This information needs to be available when fitting simulated (.. to
spectra from PMMA spheres or pollen grains in order to estimate the refractive
index.

In chapter it was determined which peak in > a, that corresponds to
a}; for resolution Az = 5em™! and A = 0.2cm™!. It was then assumed that
the following peaks were successive peaks. In chapter [3.3|it was established that
the peaks in Y a, with resolution Ar = 5cm~! did not follow this assumption.
The peaks was not all successive peaks, and the order of the peaks varied for
this resolution. This has on the other hand, not been assessed for resolution
Ap = 0.2cm™!. Following this assumption, the index employed into equation
, for resolution AZ = 5cm™!, is not necessarily the correct index for the
concerned peak. This might be the reason that equation give a better result
for A = 5cm~1.
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Chapter 5

Conclusion and Outlook

In this thesis the applicability of Petr Chylek’s approximation formulas [6] [7]
for the estimation of the refractive index from spectra was evaluated. Since
the validity of the approximation formulas depends both on the index and the
order of the resonances, different ranges of the resonance index were considered.
Further, the resolution of the scattering extinction turned out to be essential
for the appearance of certain resonances. Petr Chylek’s approximation formulas
[6, [7] for the distance dx between the resonances, given in chapter , are not
very accurate for estimating the distance between the peaks, dz, in the range
0 < n < 8 Equation (2.9)), which take the index and the location of the peak
into account, gives the best estimate for dz for n > 30. Equation (2.8)), which is
only dependent on the refractive index, gives the best estimate for the distance
between the peaks for 8 < n < 20.

Considering the sum of the electromagnetic modes, > a,, it became apparent
that a low resolution, i.e. Av = 5cm™!, and employing bisection on equation (3.2)),
resulted in the the best estimate for the refractive index. For higher resolution,
i.e. AU = 0.2cm™ !, bisection on equation , resulted in the best estimate for
the refractive index.

Outlook

Bisection combined with Petr Chylek’s formulas, given in chapter 2.3.1] can be
used to estimate the real refractive index from the ripple structure in »_ a,.
This method estimates a dispersive real refractive index that change with the
wavenumber.

This method can be combined with the method developed by Lukacs et al.
[10] where the imaginary part of the refractive index, 7, is determined. In this
method an accurate estimate of the real part of the complex refractive index is
necessary to obtain a good estimate of n’. Before the method using bisection can

23



54 5. CONCLUSION AND OUTLOOK

be combined with other methods it has to be tested on spectra with a dispersive
refractive index to determine how accurate it can estimate the real refractive
index.

This method then has to be adapted to work on the extinction efficiency, Q.
Then, combined with the method developed by Lukacs et al. [I0], it can give a
good estimate for the complex refractive index. Finally, it can then be applied
to spectra from PMMA spheres and then to spectra from pollen grains.

Another method that is worth developing further is to work with extinction
efficiency from PMMA spheres, and adjust the simulated extinction efficiency,
Qe using the refractive index. The aim would be to adjust the simulated Q..
such that it is as close to the experimental extinction efficiency as possible.

The extinction efficiency has to be adjusted so that two peaks in Q.. are
as close to two peaks in the experimental extinction efficiency as possible. This
adjustment is done by changing the refractive index of the sphere in the Q.,;. The
radius of the sphere from the experimental spectra is given. As seen in Chapter
3.4l when the refractive index is changed, it affects the shape of the curve for
the extinction efficiency. This observation can be used when trying to adjust
the simulated spectra, Q..; to the experimental extinction efficiency. When two
peaks are very close, one can assume that the right m is chosen. This refractive
index can then be saved. The next step is then to adjust the next two peaks,
save this m and so on.

When this method is developed for PMMA spheres it should then be adapted
to spectra from pollen grains.
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Appendix A

Bessel Functions

This section is partly based on the book by Tolstov [15].

A.1 Introduction to Bessel Functions

The Bessel equation is the second order differential equation
d? 1d 2
—y+——y+(1—p—)y—o (A.1.1)
x?

where p is the order of the equation. Solutions of equation (A.1.1]) are called Bessel
functions. Equation (A.1.1) is linear and the general solution can therefore be
expressed as

y = Ciyr + Caye, (A.1.2)

where C} and Cy are arbitrary constants and y; and y, are linearly independent
particular solutions of equation (A.1.1]) [I5].

A.2 First, Second and Third Kind

The Bessel functions are divided into three; the first, the second and the third
kind. The first kind are denoted J,(x) and a general expression for the Bessel
function of the first kind for all real p is

e x/2)ip+2m
A2.1
Tep(® ZFm—i—l I(Ep+m+1) ( )

m=0

where T is the gamma- function [15].
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When p is not an integer, the Bessel function of second kind is given by
Y;,(:L’) — Jp<l’>008§pﬂ') — J—p(QZ).
sin(pm)
When p is an integer equation (A.2.2)) is indeterminate. By applying the I'Hospital
rule for Y, (z) in case of integer p = n [15]

(A.2.2)

n—1

Y, (x) = %Jn( ) [ln <2> + C} 71T Z W <§>—n+2m

Lo (=)™ (a/2)rm 'S 1
- = A.2.3
LS e S 3 a2
Bessel functions of the second kind are often denoted by the symbol IV, and called
Neumann functions.

The third kind of the Bessel functions, which are a linear combination of the
first and second kind, are also commonly known as Hankel functions

HY (2) = Jy(a) + Y(a),  HO(@) = Jyx) — iYy(a). (A2.4)

p

Subscript (1) and (2) indicates the first and the second kind of the Hankel func-
tions [18].

A.2.1 Recurrence Relations

Relation between Bessel functions of different orders

o0 _1ym2p+2m
dci: (2" Jp(x)) = d%c 7;) 2p+2mF((mll SF(p +m+1)
i (—1)ma2ptam=1
= w21l (m + 1)0(p + m)
= 2P J,_1(2).

The same holds for —p

LRI w) = —a Py (@),
The recurrence relations are given by

vty (x) + plp(x ~1()

wy(x) — pp(x —xJpH( )

(z) =
(z) =

Jp1 (@) = p+1(:v)—2J’( )
(2) = —Jp(2).

Jp-1(2) + Jpia (@
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Similar formulas as above holds for Bessel functions of the second kind [15].

A.3 Spherical Bessel Functions

When inserting p = n + % into equation ([A.2.1|) the Bessel function of the first
kind of half an order integer is obtained

n_n+i d " -1
Jnpi(z) = (=1)"x t3 (%) {;1: QJ%(JJ)}. (A.3.1)
The Bessel functions of second and third kind of half an order integer are obtained
in the same way.

One application of the the Bessel functions of half an integer order are the
spherical Bessel functions

Jn(m) = %JnJr% ('r)a yn(x) = %YWF% (l’>, (A.3.2)
Wy — | g YR T

where J, 1 is the Bessel function of the first kind of half an integer order and

Y, 1 the Bessel function of the second kind of half an integer order. Hr(ll) , is the
2

Hankel function of the first kind of half an order integer and ngl is the Hankel

function of the second kind of half an order integer. ’

A.3.1 Recurrence Relations

Recurrence relations are a convenient way of calculating the next term of a se-
quence. The following general recurrence relation can be used to compute the
next term as a function of the preceding terms. If one of the spherical Bessel
functions j,, yn, hg) or hg) are denoted by 1, the recurrence relations follows

[18]:

2n+1

Un

n¢n_1 — (TL + 1)¢n+1 = (27’L + 1)%

77Z}n—1 + 77Z}n—&—1 =
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Appendix B

Mie Theory

This section is partly based on the book by Bohren and Huffman [5].

Gustav Mie considered a spherical particle in a medium. The refractive index
for the particle is denoted by m and can be a complex number. This particle was
then hit by an incident plane electromagnetic wave, i.e. infrared light. The light
is then scattered, absorbed by the sphere or transmitted through the particle.
The transmitted light is then detected by a detector on the other side of the
particle. This is illustrated by figure

Scattered light

Incident light
» —_—
Transmitted light
7
7
7
1
7

e

Source Detector

7

Radiation sink
(absorbed light)

Figure B.1: Illustration of scattered light. The light is scattered, chemically absorbed
by the object, and part of the incident light is transmitted to the detector.

Mie first started with an electromagnetic field (E H ). This field must satisfy
the wave equation in a linear, isotropic, homogeneous medium

V2E +KE =0, V:H+KH =0.
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The vector functions M and N are introduced. M is constructed with the scalar
function ¢ and arbitrary constant ¢

M =V x (cpp),

N is then constructed from M. T hey both satisfy the vector wave equation, are
divergence-free, the curl of M being proportional to N and vice versa. Since M
satisfy the vector wave equation, v is a solution of the scalar wave equation. The
scalar wave equation for ¢ is then written in spherical polar coordinates.

Any function that satisfy the scalar wave equation in spherical coordinates
may be expanded as infinite series in the functions

Yemn = cos(me@) P (cosl)z, (kr),
Yomn = sin(me) P (cos) z, (kr),

where z, is any of the spherical Bessel functions given in appendix [A]and P are
the associated Legendre polynomials where n and m are integers which satisfies
the following condition n > m > 0.

The electromagnetic field is split into three parts:the incident electromagnetic
field, (EZ, ﬁl), scattered electromagnetic field, (E, FIS) and the field inside the
sphere, (E,, Hy). This is illustrated in figure

Scattered field
(EsHs)

Incident field

(Ei'Hi) /‘/'
e

YYYYVYYVYY

Figure B.2: Basic diagram showing the electromagnetic fields. The incident field

(E}, I:_T'I), the field inside the particle (El, ﬁl) and the scattered field (ES, I—fs)

(E;, H;), (Ey, Hy) and (E,, H,) are expanded in an infinite series of vector
spherical harmonics. The following boundary conditions are imposed on the
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boundary . .

(E;+ E, — Ey) x é, = (H; + H, — Hy) x é, = 0.
The incident, scattered and inside electromagnetic fields are then written as func-
tions depending only on 7, 6 or ¢. Four independent equations are needed to
obtain expressions for the scattering coefficients. These equations are derived
from the boundary conditions in component form. The coefficients for the field
inside the particle follows

o — _min@Eh @) by @ @) )
" mgn(ma)lzhl) @) —phi (@) maa (ma))

>, (B.0.1)

d = _mmin@ehi @) —pimh) @) @)
" um2jn (ma)[zhY (@) —p hGY (2)[maja (ma)) )

The scattering coefficients
pm?jn (ma) [2jn ()] =p1jn (@) [majn (mz)) )
pm 2 (ma)whs,) (2))' —pa il (@) fmagn (me))

d, =

, (B.0.2)
_ i (ma) [ (1)) = g () [z ()|
p1jn(ma)[zht (@) —uhlD (@) [mazjn (ma)) )

where 17 is the permeability of the particle, y is the permeability of the medium
and m the refractive index. The size parameter x is given by
r = ka,

where a is the radius of the particle, k the angular wave number. The spherical
Bessel functions are given in appendix [A] as

W) =\ T h @) )= T @ WD) = ) + (o),

(B.0.3)
where J,, 1 is the Bessel function of the first kind of half an integer order and

Y., 1 the Bessel function of the second kind of half an integer order given in

appendix [A]
The Riccati-Bessel functions

Un(p) = pin(p),  &alp) = ph{(p), (B.0.4)

are often used to simplify the scattering coefficients. p is a dimensionless variable
introduced for simplification. When equation (B.0.4]) is inserted into equation

(B.0.2) with the assumption p; = 1, equation (B.0.2)) transforms

= i () (@) — &), (ma) (B.05)
i ma) (@) — i () (ma)
P = ma)el (@) — me (@), (ma) (B.06)
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Appendix C

Tables
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Table C.1:

calculated for n = 12 to n = 57

FEzact is the dz calculated from the peaks of ) a, with resolution
AD = 5cm~t, Complicated formula is the dx calculated using equation and Sim-
ple formula is the dx calculated using equation . The results are generated with
radius of the sphere a = 5.5 x 107%m and refractive index m = 1.48. The results are

Exact > ay,

Simple formula

Complicated formula

0.742986662573985

0.759737884292489

0.738401590417633

0.760265422168731

0.759737884292489

0.735550727376339

0.777544181763474

0.759737884292489

0.733361689094409

0.760265422168729

0.759737884292489

0.73171890050505

0.742986662573987

0.759737884292489

0.73000398719042

0.760265422168731

0.759737884292489

0.728224775353495

0.742986662573985

0.759737884292489

0.726866110181915

0.742986662573987

0.759737884292489

0.725412478800909

0.742986662573987

0.759737884292489

0.724093155395408

0.725707902979241

0.759737884292489

0.722890345447984

0.742986662573987

0.759737884292489

0.721587409206597

0.725707902979241

0.759737884292489

0.720583281037179

0.742986662573987

0.759737884292489

0.719470094108727

0.725707902979241

0.759737884292489

0.718620408374767

0.725707902979241

0.759737884292489

0.717657378090542

0.725707902979241

0.759737884292489

0.716760746228436

0.725707902979241

0.759737884292489

0.715923873832521

0.777544181763474

0.759737884292489

0.715140978571176

0.760265422168732

0.759737884292489

0.714870095530547

0.760265422168729

0.759737884292489

0.714466826024848

0.777544181763474

0.759737884292489

0.714087889536861

0.760265422168729

0.759737884292489

0.713872172398262

0.760265422168729

0.759737884292489

0.71353185600432

0.760265422168732

0.759737884292489

0.713210362288491

0.760265422168729

0.759737884292489

0.712906171631232

0.345575191894877

0.759737884292489

0.712617923708834

0.39741147067911

0.759737884292489

0.709353988205688

0.760265422168729

0.759737884292489

0.706572958031983

0.742986662573987

0.759737884292489

0.706457800020092

0.742986662573987

0.759737884292489

0.706229611761016

0.760265422168729

0.759737884292489

0.706012010578516

0.742986662573983

0.759737884292489

0.705917616704036

0.74298666257399

0.759737884292489

0.705716644572234

0.742986662573983

0.759737884292489

0.70552438735005

0.742986662573983

0.759737884292489

0.705340290191967

0.639314105005525

0.759737884292489

0.705163844374251

0.760265422168729

0.759737884292489

0.704381261577724

0.760265422168736

0.759737884292489

0.70433109924677

0.777544181763467

0.759737884292489

0.704282929846151

0.74298666257399

0.759737884292489

0.704333066668552

0.777544181763474

0.759737884292489

0.704192112918369

0.777544181763474

0.759737884292489

0.704242096631132

0.742986662573983

0.759737884292489

0.704290215577588

0.760265422168729

0.759737884292489

0.704157700231082

0.760265422168729

0.759737884292489

0.704117748429769

C. TABLES
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Table C.2: Comparison of the obtained results using the exact dx from the positions
of the first peaks of the single a, with dz from the graph of } a,, dz calculated using
the simple formula, equation , and the complicated formula, equation , which
depends on = and n. All generated with radius of the sphere a = 5.5 x 107%m and
refractive index m = 1.48. The results are calculated for n = 12 to n = 57

Exact single a,,

Exact > a,

Simple formula

Complicated formula

0.759737884292491

0.742986662573985

0.759737884292489

0.738241363461075

0.759737884292488

0.760265422168731

0.759737884292489

0.735704375304193

0.759737884292491

0.777544181763474

0.759737884292489

0.733497314598765

0.759737884292488

0.760265422168729

0.759737884292489

0.731559741057613

0.759737884292491

0.742986662573987

0.759737884292489

0.729845129869084

0.742437884292489

0.760265422168731

0.759737884292489

0.728317084363543

0.742437884292489

0.742986662573985

0.759737884292489

0.726707264753017

0.742437884292489

0.742986662573987

0.759737884292489

0.725253396088384

0.742437884292492

0.742986662573987

0.759737884292489

0.723933860530358

0.742437884292485

0.725707902979241

0.759737884292489

0.722730859824185

0.742437884292489

0.742986662573987

0.759737884292489

0.721629607300819

0.72513788429249

0.725707902979241

0.759737884292489

0.720617716684043

0.742437884292492

0.742986662573987

0.759737884292489

0.71949713066474

0.72513788429249

0.725707902979241

0.759737884292489

0.718640749998501

0.725137884292494

0.725707902979241

0.759737884292489

0.717671278348344

0.72513788429249

0.725707902979241

0.759737884292489

0.716768615613577

0.72513788429249

0.725707902979241

0.759737884292489

0.715926085030839

0.72513788429249

0.777544181763474

0.759737884292489

0.715137870936827

0.725137884292494

0.760265422168732

0.759737884292489

0.714398884270536

0.707837884292491

0.760265422168729

0.759737884292489

0.713704652523358

0.72513788429249

0.777544181763474

0.759737884292489

0.712904913590139

0.725137884292494

0.760265422168729

0.759737884292489

0.712292725240449

0.707837884292488

0.760265422168729

0.759737884292489

0.711714537837836

0.725137884292494

0.760265422168732

0.759737884292489

0.711032343766645

0.707837884292491

0.760265422168729

0.759737884292489

0.710517540016169

0.707837884292491

0.345575191894877

0.759737884292489

0.70990034995744

0.72513788429249

0.39741147067911

0.759737884292489

0.709313593732184

0.707837884292491

0.760265422168729

0.759737884292489

0.708878075822336

0.707837884292488

0.742986662573987

0.759737884292489

0.708343098655802

0.707837884292495

0.742986662573987

0.759737884292489

0.707832675688931

0.725137884292494

0.760265422168729

0.759737884292489

0.707345154219411

0.707837884292488

0.742986662573983

0.759737884292489

0.706991806241946

0.707837884292495

0.74298666257399

0.759737884292489

0.706543415722465

0.707837884292488

0.742986662573983

0.759737884292489

0.706113868662273

0.707837884292495

0.742986662573983

0.759737884292489

0.705702001578126

0.707837884292488

0.639314105005525

0.759737884292489

0.705306744847506

0.707837884292488

0.760265422168729

0.759737884292489

0.704927113430119

0.707837884292495

0.760265422168736

0.759737884292489

0.704562198668801

0.707837884292488

0.777544181763467

0.759737884292489

0.704211161026084

0.707837884292495

0.74298666257399

0.759737884292489

0.703873223634187

0.707837884292488

0.777544181763474

0.759737884292489

0.703547666554092

0.707837884292495

0.777544181763474

0.759737884292489

0.703233821654372

0.690537884292489

0.742986662573983

0.759737884292489

0.702931068033128

0.707837884292495

0.760265422168729

0.759737884292489

0.702548431945285

0.707837884292488

0.760265422168729

0.759737884292489

0.702267638653429
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Table C.3: Comparison of the obtained results using the exact dz from the positions
of the first peaks of the single a,, with dz calculated using the simple formula, equation
(2.8), and the complicated formula, equation , which depends on x and n. All
generated with radius of the sphere ¢ = 5.5 x 10~%m and refractive index m = 1.48.

The results are calculated for n =1 to n = 60.

Exact single a,,

Simple formula

Complicated formula

0.589737884292489

0.759737884292489

0.94039112605591

0.569737884292489

0.759737884292489

0.87428183792493

0.559737884292489

0.759737884292489

0.831696298260981

0.63973788429249

0.759737884292489

0.801746817300063

0.689737884292489

0.759737884292489

0.782443801976631

0.729737884292489

0.759737884292489

0.769457093595324

0.73973788429249

0.759737884292489

0.760555283404514

o| 1| | | | wo| po| | B

0.759737884292488

0.759737884292489

0.753771448226654

<o

0.759737884292489
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o

0.759737884292489
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—
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w
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—
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—
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—
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—
-3
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0.728301108355446

—
o

0.739737884292493
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0.726793121936531

—
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0.725299726050788
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o
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0.72407072538613
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0.72282934398221
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B
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0.759737884292489

0.721692702169434
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w
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0.759737884292489

0.720535598073398

)
=

0.72973788429249

0.759737884292489

0.71957631837013

[N}
ot

0.729737884292494

0.759737884292489

0.718584205206148
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D

0.719737884292488

0.759737884292489

0.717663178138581

[S)
=

0.729737884292494

0.759737884292489

0.716707830089712
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oo

0.72973788429249

0.759737884292489

0.715910885145337

no
N=)

0.719737884292492

0.759737884292489

0.715165512807392
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0.719737884292488

0.759737884292489

0.714377411526921

w
—_

0.719737884292496

0.759737884292489

0.713636831851063

w
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0.719737884292488

0.759737884292489

0.712939600869085

o WO
w

0.719737884292492

0.759737884292489

0.712282020394082

w
=

0.719737884292492

0.759737884292489

0.711660801315903
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0.70973788429249

0.759737884292489

0.711073008555451

w
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0.719737884292492

0.759737884292489

0.710439730347285

w
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0.70973788429249

0.759737884292489

0.709913009798812
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0.719737884292492

0.759737884292489

0.709339785400804

w
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0.70973788429249

0.759737884292489

0.708865282054504
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0.70973788429249

0.759737884292489

0.708343793775497
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0.709737884292494
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0.709737884292487
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0.706065668672761

0.709737884292494
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0.705666401421489

0.709737884292487

0.759737884292489

0.705283263684847

0.709737884292494

0.759737884292489

0.704915297352289

0.709737884292494

0.759737884292489

0.704561618728587

0.699737884292489

0.759737884292489

0.704221411446312

0.709737884292487

0.759737884292489

0.703837977941892

0.709737884292494

0.759737884292489

0.703523479680338

0.699737884292489

0.759737884292489

0.703220314619298

N

0.709737884292494
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0.702874754647129
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0.702593374494573
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0.702008412597081

ot
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0.699737884292496

0.759737884292489

0.70170547904024

(oA
Ne

0.709737884292487

0.759737884292489

0.701412317817917
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Table C.4: Comparing the results obtained using the exact dx from the positions
of the first peaks of the single a, with dx calculated using the complicated formula,
equation, which depends on x and n. The error is calculated between dx from the
single a, and from the complicated formula. All generated with radius of the sphere
a = 5.5 x 107%m and refractive index m = 1.48. The results are calculated for n = 1

ton = 15.
n | Exact single a, Complicated formula | Error
1 | 0.589737884292489 | 0.94039112605591 0.350653241763421
2 | 0.569737884292489 | 0.87428183792493 0.304543953632441
3 | 0.559737884292489 | 0.831696298260981 0.271958413968492
4 ] 0.63973788429249 | 0.801746817300063 0.162008933007573
5 | 0.689737884292489 | 0.782443801976631 0.0927059176841424
6 | 0.729737884292489 | 0.769457093595324 0.0397192093028352
7 | 0.73973788429249 | 0.760555283404514 0.020817399112024
8 | 0.759737884292488 | 0.753771448226654 0.00596643606583469
9 | 0.759737884292489 | 0.74875941368064 0.0109784706118496
10 | 0.759737884292489 | 0.74462866105812 0.0151092232343691
11 | 0.769737884292489 | 0.741165472612259 0.0285724116802302
12 | 0.759737884292491 | 0.738413440773525 0.0213244435189663
13 | 0.759737884292488 | 0.735865770543534 0.0238721137489537
14 | 0.759737884292491 | 0.733649261683107 0.0260886226093837
15 | 0.749737884292488 | 0.731703274454572 0.0180346098379156
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