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Abstract: Genetic association studies are primarily used to identify genes associated with complex 

disease. It can be conducted by genotyping intentionally selected or randomly chosen markers. 

Numerous statistical and computational algorithms have been developed in the past to analyze the 

genome wide association study (GWAS) dataset. These are classified as parametric, non-parametric 

and Bayesian methods. However, there are methodological and computational challenges related 

with population stratification and the vast volume of data generated by chip and sequencing based 

technologies. The packages, SNPRelate and GenABEL, are built to overcome this burden. SNPRelate 

uses parallel computing and loads genotypes block by block to optimize high-speed cache memory. 

It is designed for principal component analysis (PCA) and identity by descent (IBD) analyses which 

are used for correcting population structure. Whereas, GenABEL incorporates genome wide rapid 

association using mixed model and regression (GRAMMAR). It is developed to overcome the 

limitation of efficiently storing, handling and analyzing data in GWAS by integrating a data format 

called gwaa.data. In order to evaluate and compare these packages, this study obtained PLINK 

formatted data from heritable dog osteosarcoma study. PLINK data format is then changed into a 

genomic data structure (GDS) file format for SNPRelate and gwaa.data file for GenABEL. Using 

GenABEL, data analysis was performed by ignoring population structure and taking into account 

population structure. In SNPRelate, LD based pruning is performed prior to PCA and IBD calculation. 

For three dog breeds, the first and the second PCs have almost 50% of the information. IBD 

interpretation of PCA indicate that Irish wolfhounds are inbred compared to the other two dog 

breeds. PCA correction on population structure has the most accurate estimates compared with 

genomic control and PCs as a predictor correction methods. Comparing SNPRelate and GenABEL, 

SNPRelate method used for PCA calculation is faster and allows larger data sets than GenABEL which 

use EIGENSTAR for PCA calculation. 

 

Keywords: GenABEL, GWAS, IBD, SNPRelate, parallel computing, PCA, population structure. 
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1. Introduction 
 

Genetic association studies are primarily used to identify genes controlling susceptibility to complex 

disorder. This can be accomplished by testing the correlation between disease status (phenotype) 

and genetic variation (genotype). Initially, disease genes were identified by genotyping affected 

families by using genetic markers across the genome and evaluating the segregation of genetic 

markers across multiple families (pedigree). This approach is called genome wide linkage analysis 

and was preliminarily used to identify disease genes which follow a monogenic (i.e. a trait that is 

controlled by a single gene) type of Mendelian inheritance [14]. These variants have low frequency 

due to natural selection. However, they have high penetrance and the markers within 10-20cM of 

the actual disease causing allele will co-segregate with diseases eminence [8]. Genome wide linkage 

analysis has a limitation to detect genetic variants that has modest effect on the disease. In other 

words, the linkage analysis approach has a weakness when it comes to detecting alleles that have 

low penetrance. Candidate gene resequencing approach is a practical alternative to linkage analysis. 

In this analysis, genes are selected based on linkage or other evidence associated with the trait 

(disease) for further study. Then, the selected genes are resequenced using disease and control 

groups. Candidate genes are obtained by comparing the disease and control groups for the richness 

or deleted variants in the disease cases. However, this approach is laborious and expensive.  

 

Now a days, Genome wide association studies (GWAS) are usually used to carry out association 

studies [8]. In association studies, single nucleotide polymorphism markers (SNPs) are predominantly 

used, but other markers also exists such as microsatellites, insertions/deletions, tandem repeats 

(VNTRs) and copy number variants (CNVs). In the past years, the vast volume of data generated in 

chip and sequencing based GWAS had faced significant challenges in analytical and computational 

processing.    

 

Genome wide association study 

 

GWAS analysis is performed by examining the genome for causal genetic variants without prior 

information of the location of these variant. GWAS can be conducted by genotyping intentionally 

selected or randomly chosen markers (SNPs) in a case-control population [8]. The corrected p-value 

(i.e. significance measure by false positive rate) is then computed for each statistical test. The 

marker (SNP) should pass the significant threshold in order to have a significant association with the 

trait of interest (i.e. an association of a single locus with a trait). This approach is considered to be 
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unbiased and reliable since it does not require prior knowledge regarding the function and/or 

location of the causal genes (see Figure 1).  

 

 

 

Figure 1. GWAS used to test the association between a SNP and a trait of interest (e.g. Disease). 

(http://cubocube.com/dashboard.php?a=344&b=462&c=1) 

 

There are direct and indirect association of SNPs with a given trait of interest. The first type is when 

the genotyped SNPs are directly associated with the trait. The second type is that the genotyped 

SNPs are not directly associated with the trait rather they act as a tag SNPs, that is, a representative 

SNP for a genomic region where influential SNPs are located. In other words, the tag SNP and 

influential SNP are in linkage disequilibrium (LD). LD measures the degrees of association between 

two loci. Depending on the distance of LD, mapping at centimorgan (cM) for long distance or base 

pair gene distance for short LD could be applied. Because of these two types of associations 

between SNPs and traits, significant SNPs identified by genome wide association studies (GWAS) are 

not considered actual variants. That is why the results of GWAS require additional procedures to 

map the precise location of actual SNPs [14]. It has been shown that identifying disease genes using 

association studies is more powerful than linkage studies [9].  

 

Genome wide association studies have been widely and successful used to identify common genetic 

variant associated with complex traits. To analyze GWAS datasets, there have been numerous 

statistical procedures and computational algorithms developed in the past decade classified by three 

fundamental statistical methods. These are parametric, non-parametric and Bayesian methods. 

Among many parametric models, logistic regression is dominantly used for the detection of 

interacting gene effects for dichotomous traits (i.e. the traits that take an either/or form but not 
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both. E.g. sick/healthy). Combinatorial partitioning method is among the most commonly used non-

parametric methods, which is used for detecting quantitative traits by partitioning of multi-locus 

genotypes based on the corresponding inter-individual variation. Bayesian methods are used to 

model and test interactions among SNPs for case/control study. However, this method is not used 

for higher-order interaction due to its computational burden of Monte Carlo Markov Chain 

algorithms (i.e. largely Bayesian analysis depends on) and sample size [1]. 

 

Basically, GWAS performs scanning by testing each marker individually [11]. In other words, traits 

are analysed separately (univariate analysis) by searching for signal of association at a specific loci 

across the studied traits. However, multivariate (MV) approach (multiple correlated traits) could be 

beneficial for several reasons. Multivariate analysis provides cross-trait covariance information due 

to genetic correlation between different traits. In addition, multivariate analysis reduces the burden 

of analysing all traits individually since it can perform a single test for association with multiple traits 

[4, 5, 6]. It is also widely believed that a single genetic variant could be associated with multiple 

traits which lead to the conclusion that multivariate GWAS is more appropriate in a biological 

context compared to univariate approach [3, 10]. Individual loci may also interact to control a 

certain trait epistatically. The R package VariABLE is developed to analyze interacting loci by applying 

the variance heterogeneity test [23]. Some of the multivariate and univariate methods and 

applications are listed in Table 1 [2]. 
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Table 1.  Some of the multivariate and univariate methods and applications. 

Methods Application Output 

Multi variate (MV)-PLINK Use additive model F-statistic and p-value 

MV-SNPTEST Use method called “expected” Expected genotype counts (dosages) 

MultiPhen Use likelihood ratio test (LRT) p-value per trait and p-value for LRT 

MV-BIMBAM Use two different approaches: 1) testing for association between 

multivariate traits, all partitioned in the group of directly affected 

traits and genotype; and 2) considers all different possible 

partitions of traits into different categories of traits (directly 

affected, indirectly affected, unaffected). 

Summarized by log10 Bayes Factor (BF) that 

evaluates presence of any Multivariate Genome-

Wide Association between QTL and trait 

 

PCHAT Use splitting in a training set and test set. In addition, so called 

‘bagging’ is performed, in which bootstrap samples are drawn 

from training sample and optimal linear combination of traits is 

averaged across bootstrap samples. 

Association result is expressed as p-value. 

TATES Requires correlation matrix. Fitting linear models p-value corrected for traits correlation. 

Univariate meta-analysis 

(UV_MA) and univariate principal 

component analysis (UV-PCA). 

Uses univariate results per trait as input files and use p-values 

direction of effect as input for meta-analysis. PCA performed. 

Using first PC in univariate analysis 

Overall z-statistic and p-value 
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Generally, association studies can be classified in to two types: single locus association study and 

multiple locus association study [7]. 

 

Single locus test 

 

A statistical test is conducted to analyze each SNP individually for the association to a phenotype. 

Different statistical tests are required based on whether the traits are quantitative or dichotomous 

(case/control). If the traits are quantitative, the generalized linear model (GLM) approach, usually 

analysis of variance (ANOVA), is applied. For dichotomous traits (case/control), logistic regression is 

often used [12]. Genotypic data can be encoded to test association between allele and phenotype 

(i.e. allelic association) or genotype and phenotype (i.e. genotypic association). Genotype classes 

could also be modelled as dominant, recessive, multiplicative or additive [13]. 

 

Let us consider two alleles, T and t, for a dominant model. The presence of one or two copies of T 

allele could increase risk of getting T allele controlling character. But for a recessive model, only two 

copies of T could increase the risk. For the multiplicative model, for example, if 4x is the value of T 

allele controlling character then for two copies of T allele, there is 16x. This means that for Tt, there 

is k value of T allele controlling character and for TT, there is K2 character values. When considering 

additive model, if 4x is for Tt, then TT would have 8x. This means that the risk for having T controlling 

character for Tt is K and for TT is 2K. Among these genotypic models, the additive form is commonly 

practiced in GWAS.    

 

Multi-locus test 

 

Multi-locus testing approaches require the examination of every pair-wise combination of SNPs for 

association with the trait. Basically, multilinear regression (i.e. a multivariate analysis approach 

which models trait values as a function of autonomous variable vectors corresponding to genotypes 

of multiple loci) is used in multilocus association study. This approach is computationally challenging 

even when applying efficient algorithms. To tackle this problem, SNPs are filtered based on their 

results from single SNP analysis. The significant SNPs in the single SNP analysis are used to find 

interactions. However, this approach would undermine the role of epistatic loci, (specially those 

alleles with marginal effects individually and could not be detected by a statistical test) since the 

subsets are selected based on their main effect.  Limiting the analysis to SNPs that are involved in a 

biological network such as biochemical pathways or protein families is another approach to detect 

interactions and is referred to as bio-filtering approach. This approach uses different types of 
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publicly available data sources for screening. For testing interaction, logistic regression is used most 

commonly in several statistical methods such as INTERSNP and multifactor dimensionality reduction 

(MDR) [12]. 

 

However, there are methodological and computational challenges related to creating robust 

statistical model for association studies in complex trait. Specially, when dealing with larger data 

sets, population stratification and scaling problem remains a challenge for the computation 

infrastructure. The more preferred way to deal with these issues is splitting the problems into 

smaller parts (parallelization), sending each to different CPUs and finally combining the results (out 

puts) together [20].    

 

 Population stratification and covariance analysis 

 

The test statistics could be affected by factors like age, sex and geography. Covariate adjustment 

should therefore be applied to minimize the effect of such confounding factors. Usually, in GWAS 

analysis, there is lack of a full genealogy (i.e. traces of lines of decent) of the population due to 

population structure, family structure and cryptic relatedness. If the population and sample 

structures (family structure and cryptic relatedness) are not properly corrected in the model, GWAS 

may face a significant number of false positives. Genomic Control (GC) is one of the methods to 

handle the problems of population stratification. However GC has limitation due to other 

confounders such as family structure and cryptic relatedness. Structured Association (SA) and 

Principal Component Analysis (PCA) are among other approaches to correct false positives due to 

stratification. Now a day, combining the three methods (GC for adjusting residual inflation, SA for 

removing closely related sample and PCA for correcting broad sample structure) has become the 

preferred approaches by some researchers. In human population, allele frequency is significantly 

different across subpopulations (ethnicity) [12]. In order to avoid population stratification, the 

method STRUCTURE/EIGENSTART is used to compare allele frequencies to HapMaps subpopulations. 

The samples would be excluded if similarity is found or covariate analysis could be conducted [12]. 

 

 Multiple testing correction approaches 

 

Bonferroni correction is used to change the threshold value (α) = 0.05 in which p-value is measured 

against, into α/k (0.05/k) where k is the number of statistical tests performed. This approach is, 

however, considered as highly conservative since it assumes that markers are independent and 

ignores linkage disequilibrium among markers. False discovery rate (FDR) is an alternative approach 
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to adjust α which controls the proportion of false positives [15]. Another complimentary approach is 

permutation tests in which the phenotypes of each individual are reassigned into another individual 

by altering the genotype-phenotype maps of the data. Each reassigned steps are considered as one 

possible sampling and the process is repeated N times. Software packages such as PLINK, PRESTO 

and PERMORY are developed to do permutation tests. Genome wide significance notion is another 

approach which is commonly used. This approach is based on linkage disequilibrium (LD) 

information. The number of autonomous genomic regions would therefore determine the number 

of corrected statistical test for hypothesis testing at the genomic level [12]. 

 

Linear mixed model (LMM) approaches for association studies 

 

Mixed model approaches have been applied in linkage analysis [16]. The model was initially 

developed for animal model. The Variance components of the genetic effects are additive and 

polygenic effects which is expressed as:  

 

У = µ +ɑ +g +е 

 

where µ is overall mean, ɑ is additive genetic effects, g is polygenic effects and e is residual effects. 

However, with larger data set and sample size, it becomes difficult to apply variance components for 

random effect estimation. In order to tackle this problem, LMM based approaches were 

implemented in GWAS and the model is: 

 

У =  Xβ + g + e 

 

where X is the matrix of fixed effect (overall mean, covariance, SNPs), g and e are polygene and 

residual effects, respectively. The variance of g is dependent on kinship matrix, Var (g) = K  and  K 

denoted kinship matrix quantifying genetic similarity across individuals. Therefore, population 

structure, family structure and cryptic relatedness are included in K. LMM based approaches applied 

in GWAS is used to correct false positive inflation and it could be applied for both single and multi-

loci analysis [17]. 

  

In this thesis, we evaluate the performance of R packages SNPRelate and GenABEL. The goal is to 

evaluate and compare these packages on their population stratification and cryptic relatedness 

dealing performance.  
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SNPRelate: 

 

Since SNPRelate is primarily designed to do PCA and IBD analysis, it is provided with the GDS data 

format to run efficiently. The package gdsfmt and SNPRelate has advantages compared to previous 

methods in terms of efficient data storage technique and implementation for PCA and IBD analysis. 

One of the challenges in GWAS analysis is the computational burden due to big data size for data 

processing and memory limitation. For instance, in PLINK, all SNP genotypes has to be loaded into 

memory and it could be the main limitation for PLINK analysis. However, SNPRelate overcomes this 

problem by allowing access to data as needed without loading all data into memory. SNPRelate use 

parallel computing and have an R interface to utilize high speed memory cache by blocking the 

computations. This means that the algorithms in SNPRelate packages are optimized to load 

genotypes block by block without the limitation of the number of SNPs (bearing in mind the 

limitation of main memory). These packages are developed to facilitate principal component and 

identity by descent (IBD) analysis in general. 

 

GenABEL: 

 

GenABEL uses EIGENSTRAT that incorporates SA and genomic kinship matrix for adjusting possible 

population stratification. For larger data set analysis involved in GWAS, there is a need to store, 

handle and analyze the data efficiently in addition to correcting population structure. In standard R 

data, GWAS data storage is not efficient. GenABEL, which implements genome wide rapid 

associations using mixed model and regression (GRAMMAR) [23], is developed to overcome such 

limitation by integrating a special data format called gwaa.data for efficient data storage, handling 

and for fast GWA analysis for case–control data. Since R is supported by a wide-range of statistical 

analysis and graphical facilities, developing GenABEL as an R library enables to facilitate not only the 

analysis of GWAS, but also result presentation supported by graphs and figures as well [21, 22].  
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2. Methods 
 

SNPRelate 

 

The package gdsfmt, which is needed to load SNPRelate, is used to provide efficient memory usage 

and file management independent of the platform. SNPRelate is used to perform principal 

component analysis (PCA) and identical by descent (IBD) (i.e. similarity of alleles due to the same 

ancestry) calculations which are numerically intensive. The algorithms kernels are written in C/C++. 

PCA is a statistical method used to convert a set of observations described by several dependent 

variables (correlated variables) in to a set of new orthogonal variables (i.e. linearly uncorrelated 

variables) called principal components [18]. This means, it identifies PCs based on genetic 

correlations among individuals representing the population [30].  PCA analysis has two purposes. 

First, PCA is used to classify the data in the way that reflects the internal structure of the data 

according to how much of the information they have explained and stored in the data.  Second, PCA 

is used to reduce the number of variables into a smaller set of components while maintaining the 

data variability. However, PCA might not give an optimal solution.  Since it is a dimension reduction 

technique, it will lose information if too few principal components are used. Therefore, as an 

alternative method, hierarchical clustering analysis is proposed to determine clusters. Hierarchical 

clustering analysis is based on the individual dissimilarity which is directly related to co-ancestry 

coefficient (kinship coefficient). Agglomerative clustering algorithm is used for the analysis based on 

individual dissimilarity (distance). The average dissimilarity between individuals is used to draw a 

tree of the dissimilarity between clusters.  

 

Zheng et al., 2012 provided an alternative interpretation of PCA based on relatedness measure as 

the probability of set of genes which are identical-by-descent (descended from a single ancestral 

origin (gene)). Hence, Population structure could also be adjusted by pair wise relatedness analysis 

(i.e. identical by descent (IBD) analysis). To do identical by descent calculation, the reference 

population is needed. Using allele frequency, in order to estimate the relatedness of the individuals 

in the population, is analogous to changing the reference population back in time. For relatedness 

analysis, maximum likelihood estimation (MLE) and method of moments (MoM) are commonly used 

in a homogeneous population. 

 

For our analysis, data were obtained from heritable dog osteosarcoma study (http://www. 

broadinstitute.org/ftp/pub/vgb/dog/OSA GenomeBiology2013paper). We used 169,010 SNPs and 



12 
 

543 samples (267 greyhounds, 135 Rottweilers and, 141 Irish wolfhounds) with almost equal male-

female and case-control proportion. All three dog breeds are genetically distinct populations. To do 

the analysis, PLINK data formats was changed in to GDS file format. Then, linkage disequilibrium (LD) 

based SNP pruning was applied to filter SNP that are in linkage equilibrium. For the diagnosis and 

correction of population stratification, fixation index ( ), identity by state (IBS) (i.e. identical alleles 

but have no identical origin) and PCA was applied. The performance of efficient memory usage and 

speed was compared with other methods. 

 

Data formats 

 

For the purpose of efficient memory usage, the gdsfmt package uses the genomic data structure 

(GDS) file format to store annotation data and SNP genotypes. This file format is able to encode up 

to four SNP genotypes in each byte and therefore reduces file size and the time required to access 

data. In the GDS file format, only the data that is being analyzed is retained in memory since it is 

supported with data blocking. Data blocking can be defined as an algorithm used to analyze the data 

structure by preventing interference from other processes. It is an optimization technique that 

reduces usage of memory bandwidth by allowing full cache use [19]. The raw data format used in 

the analysis was PLINK binary file format. In order to process the data with SNPRelate, the PLINK file 

format had to be changed into the GDS file format. The function snpgdsBED2GDS provided by 

SNPRelate is used to convert PLINK files into GDS files format. 

 

Data analysis 

 

After the data conversion, linkage disequilibrium (LD) based pruning of SNPs was performed to 

evade SNP clusters in PCA and IBD calculation (see Figure 2). In the dataset paper, they have 

indicated that 98% of SNPs are in LD. Therefore, we used LD threshold of 0.98. For PC analysis, the 

genetic covariance matrix was calculated from genotypes followed by creating correlation 

coefficients between sample loadings and genotypes for individual SNP. Then SNP eigenvectors 

(loadings) of the new dataset was approximated after SNP eigenvectors (loadings) was calculated 

(see Figure 2; flow chart for computing). For the first 16 PC components, the percentage of variation 

explained by them was estimated. Plots for PCA were performed using the highest scoring 

eigenvectors. Plots were also made to show the correlation between eigenvectors and SNP 

genotypes. Fixation index ( ) was calculated by the method of Weir & Cockerham (1984) to 

measure the degree of differentiation between case and control population. IBD calculation was 

performed using both method of moments (MoM) by Purcell et al., 2007 and maximum likelihood 
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estimation (MLE) by Milligan, 2003; Choi et al., 2009 for relatedness analysis. MLE are more accurate 

than MoM. But it is slow compared to MoM due to its computational burden. Identity by state (IBS) 

estimation was also performed using individuals in the sample by creating an nxn matrix of averaged 

genome wide IBS pair wise identity using the snpgdsIBS function.  

 

 

Figure 2. Parallel computing flow chart of PCA and IBD analysis [28] 

 

GenABEL 

 

The association tests are carried out using the package GenABEL in R and data was obtained from 

heritable dog osteosarcoma study (http://www.broadinstitute.org/ftp/pub/vgb/dog/OSAGenome 

Biology2013paper). We used 184 genotyped SNPs for 432 samples with equal proportion of male 

and female. That is, 124 SNPs in greyhounds (174 cases and 110 controls) and Rottweilers (64 cases 

and 32 controls); and 60 SNPs in Irish wolfhounds (22 cases and 30 controls). GenABEL was tested in 

the presence of population stratification for its efficiency of storage, handling and fast analysis of 

GWAS data. In order to detect and adjust population stratification; genomic control, multi 

dimensional scaling (MDS) and PCA were used for comparison purpose. Since the data type was 

PLINK formatted, it had to be converted into GenABEL raw format using the convert.snp.ped 

function. However, this dataset lack ‘sex’ as a variable and the GenABEL converting function requires 

this variable1. To solve this problem, the ‘sex’ variable is created at random in the phenotype dataset 

but not used for the analysis. The converted file, which belongs to the gwaa.data class, is developed 

to facilitate GWA analysis and is used to store GWA data. After the PLINK data format conversion, 

gwaa data is loaded into R using load.gwaa.data function.  

 
                                                           
1 In the dataset paper [27], as they have stated in their analysis, they did not detect any significant association 
between sexes. Therefore, they exclude the variable in the dataset they have uploaded. 
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Data analysis was performed first by ignoring the presence of population stratification (i.e. the 

presence of allele frequency difference between populations due to ancestral difference). A genome 

scan was performed using the glm() function which implements a maximum likelihood estimation 

(MLE) method which is computationally intensive. For genome wide significance, we use α= 0.05 

(95% confidence interval) rather than Benferroni correction. Because Benferroni correction is highly 

conservative for SNPs tested in dog breeds due to extensive LD occurrence [27]. Association tests 

taking into account population structure is more preferable since we have three different dog 

breeds as one population. Therefore, correcting the population structure using components (PCs) as 

a predictor is one of the methods. Both scanning methods, glm and qtscore was applied and the 

results were compared. The general linear model (GLM) parameters are estimated by MLE and 

hence glm scan is slow compared to qtscore.  The second method for correcting population structure 

is genomic control in which it uses corrected p-values (i.e. uncorrected p-value multiplied by the 

number of comparisons) for test statistics. However, it is not recommended to use this method for 

admixed population (i.e. population with mixed ancestry) due to its conservative nature. The third 

method chosen to correct population structure is PCA. In order to apply this method, GenABEL 

integrate EIGENSTRAT which enables to test the association along with correcting population 

structure. The implementation is performed using ‘egscore’ function and plots are drawn. The 

comparison between PCs as a predictor and correction with PCA methods were made.  
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3. Results  
 

Three dog breeds; Irish wolfhounds, greyhounds and Rottweilers were used in our analysis. All three 

dog breeds are genetically distinct population.  

 

SNPRelate 

 

In our analysis using SNPRelate, PCA and IBD analysis were performed in genomic SNP data. 

 

PCA analysis using SNPRelate 

 

As it is shown in figure3, the three dog population are genetically distinct and the variation of top 

two PCs are; in the upper right corner (Irish wolfhounds) has high values for both components 

whereas the upper left population (Greyhounds) has relatively higher values in component one 

(comp1) compared to the lower left population (Rottweilers) which has higher values for comp2 

only. This could be interpreted as Irish wolfhounds breed is more inbred compared to the other two 

breeds. The correlation between SNP genotypes and eigenvectors are also shown in figure 6.  

 

 

Figure 3.  Principal component analysis using the first two eigenvectors where 1(black) is control and 

2 (red) is case.  

Looking into the first 6 components, the proportion of variance explained from component 1 to 6 is; 

15.84, 14.49, 0.57, 0.53, 0.46, 0.45. The total variance explained by them is less than 33% of the 
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total. However, the first and the second principal components account for the largest proportion of 

variance as shown in figure 4.  

 

Figure 4. Principal component analysis of 543 samples. Pairwise plots of the first four eigenvectors and 

proportion of variance explained by each is given along the diagonal.  

 

The first two components contain more than 50% of the information as seen in figure 5. The other 

components explain a smaller proportion (for example, comp 3 shown in figure 6). Therefore, it is 

sensible to reduce the dimensions in two dimensions by choosing comp 1 and 2. 
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Figure 5. Scree plots of the number of components explaining the proportion of variation. 
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Figure 6. The correlation between SNP genotypes and eigenvectors.   

 

When comparing the running time of these two methods, SNPRelate is relatively faster than 

GenABEL as shown in table 2. GenABEL took half of the running time of SNPRelate to calculate PCA 

for 184 markers (fewer marker sets) and 432 samples whereas SNPRelate takes twice the running 

time of GenABEL for 169,010 SNPs (larger marker sets) and 543 samples2. This means that SNPRelate 

is faster than GenABEL since it only doubles the time required for PCA analysis by GenABEL while 

using very large number of SNP sets.  

 

 

 

                                                           
2 We used a pedigree file for GenABEL in which the number of markers is usually less than the number of 
subjects since only few markers are typed.  
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Table 2. Running time of SNPRelate and GenABEL on dual-core Intel processor (2.4GHz and 4GB 

RAM) where m, s and ms are minute, second and millisecond respectively.   

 

Methods Runing time 
SNPRelate 00m.12s.86ms 
GenABEL 00m.06s.35ms 
 

Fixation index ( ) estimation was 9.85232e-06 which implies that the two populations case and 

controls are interbreeding freely (no evidence to support that the two populations do not share any 

genetic diversity). 

 

Hierarchical Clustering Analysis 

 

Hierarchical clustering analysis was conducted using the full set of SNPs and 543 individual based on 

individual dissimilarity matrixes. Different colours (black-Rottweilers, red-Irish wolfhounds, and 

green-greyhounds) represent different populations (breeds) as shown in figure 7. 

 

 

Figure 7. Hierarchical cluster analysis of the three dog breeds. 
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Hierarchical clustering is a complimentary method to PCA and has more power for clustering analysis 

than PCA since PCA is a dimension reduction method and might lose information. 

 

GenABEL 

 

Correcting population using genomic control and PCA 

 

There are 30 significant loci found before genomic control using both glm and qtscore (uncorrected 

p-values) (blue circles) with genomic inflation factor(l) of 3.5 as shown in Figure 8  . After genomic 

control (corrected p-values), 16 loci are significant and l is 1 (green circles in Figure 8).  

 

 

Figure 8. – (P-value) of GWAS scan using raw data (blue circles) and after genomic control 

(green circles) ( red line is the threshold value (p=0.05)). 

 

PCA correction for population structure was performed using markers that are not in linkage 

disequilibrium (LD). EIGENSTRAT, built-in GenABEL, is able to test the association along with 

correcting population structure. Therefore, 33 loci are found to be significant using PCA corrected 

population with l of 3.16 as shown in figure 9. PCs as a predictor correction method was also 

applied and 8 loci are found significant by using glm scan and 2 loci using qtscan with l of 1.  
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Figure 9. – (P-value) GWAS scan using PCA corrected population structure (red line is the 

threshold value (p=0.05)) 
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4. Discussion 

 

Up to the current application, GWAS is the primary tool widely used to investigate and analyze the 

genetic architecture of a disease or a trait. Since genome wide analysis has involved numerous 

computations and applications, a faster and efficient algorithm is needed to carry out the task given. 

PCA and IBD analysis is two methods that reduce the dimensions in order to address false positive 

associations due to the presence of population structure and cryptic relatedness.  However, PCA 

analysis is confronted with a computational burden mainly on larger sample and SNP analysis which 

requires efficient numerical implementation and memory management. In order to solve this 

limitation, Xiuwen Z. et.al., 2012, developed R packages; gdsfmt, for the efficient memory and file 

management independent of the platform; and SNPRelate, for efficient GWAS calculations for PCA 

and IBD.  

 

In SNPRelate, the calculation for covariance matrix and pair wise IBD are performed on multi-core 

multiprocessing computer simultaneously without overlapping as shown in Figure 2. These packages 

are advantageous for loading genotypes block by block without limiting the number of SNPs. 

However, the size of the main memory could be the limiting factor which holds covariance matrix or 

IBD coefficient matrix. The performance of SNPRelate was compared with PCA and IBD calculating 

algorithms, EIGENSTART and PLINK.  Our result was consistent with earlier works by Xiuwen Z. et.al, 

2012, in which the performance of PCA and IBD was faster in SNPRelate compared to GenABEL 

which incorporates EIGENSTART for PCA calculation (see table 2). The reason why SNPRelate is faster 

than EIGENSTART is that it uses multi-threaded local alignment search for eigenvector and 

eigenvalue calculations whereas EIGENSTART use uniprocessor. This would increase the 

computational performance for larger number of sample size. SNPRelate is also unique for extracting 

sample and SNP loadings while correcting for population stratification [4]. In addition, SNPRelate 

performs genotype-PC correlation in order to test whether a local region of the genome reflects the 

correlation structure [28].  However, except the difference on the speed of calculation, EIGENSTART 

and SNPRelate have the same accuracy [28].  

 

The genomic interpretation of PCA in terms of relatedness is the reflection of the probability of gene 

sets that are identical by descent (IBD). This means that based on the relatedness measures, PCA can 

be interpreted as the probability of set of genes which are identical-by-descent (descended from a 
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single ancestral origin (gene)) [28]. In our analysis Irish wolfhounds is more inbred compared to the 

other two breeds and our result is consistent with the work of Karlsson, E.K. et al., 2013.   

 

The occurrence of large proportion of false positive associations in GWAS analysis could be tackled 

by the implementation of PCA for diagnosis and correction of population structure and IBD for 

relatedness diagnosis between pair of samples. However, for a larger data set analysis involved in 

GWAS, there is a need to store, handle and analyze the data efficiently in addition to correcting 

population structure. In standard R data, GWAS data storage is not efficient. GenABEL is developed 

to overcome such limitation by integrating a special data format called gwaa.data for efficient data 

storage and handling and qtscore for fast GWA analysis for case–control data. GenABEL is also able 

to perform data quality control (QC) and analysis faster than the previous methods. During QC 

analysis, using PCA correction for population stratification has the most accurate estimation 

compared to incorporating PCs as a predictor and genomic control. Because, using PCA correction, 

33 loci has been identified which is the same as the dataset paper[27]. 

 

Incorporating PCs as a predictor with smaller l adjusts for genotypes only whereas PCA correction 

adjusts both genotypes and phenotypes for PCs and calculates their correlation after applying 

correction. This makes ‘PCs as a predictor’ method less accurate although it has smaller l than PCA 

correction. When we look the genomic control test statistic inflation control, it uses the value of the 

observed test statistics divided by the genomic inflation factor (l) with corrected p-value (Pcd1df). 

For l calculation, previous analysis uses the ratio of median observed X2 and expected X2 test 

statistics. However, GenABEL uses the ratio of regression coefficient (slope) of observed X2 and 

expected X2 which makes it a bit conservative. Due to this nature, genomic control is not 

recommended to use for admixed population; it may not correct the population efficiently.  
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5. Conclusion  

 

Advancement in chip and sequencing based technologies has created a tsunami of data where one 

needs to have a robust statistical model to do the analysis. In addition, an efficient memory use is 

also required to withstand the wave. Although GenABEL is efficient for its fast QC, data analysis and 

memory use compared to previous methods, it incorporates EIGENSTART for PCA calculation. 

Sticking on the first two PCs would then reduce the number of variables which is critical to avoid the 

problem of multicollinearity, large standard errors and inaccurate prediction caused by maintaining 

all covariates. A systematic selection of number of variables into a smaller set of variables while 

maintaining the data variability is also reduces computational burden. The methodology SNPRelate 

used for PCA calculation is faster and allows much larger data sets than EIGENSTART. Therefore, 

incorporating SNPRelate methodology in to GenABEL for correcting population structure and cryptic 

relatedness would enhance the performance of GenABEL in the future.  
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Appendix 

 
 
 

 
Figure A1. The correlation plot between eigenvector and genotype representing genome wide 
correlation from PCA joint ancestry analysis. 
 

 
Figure A2. Relatedness estimates of all three dog breeds using IBD coefficient by MLE method. The 
black circle represents pair of samples. 
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Figure A3.  Relatedness estimates of all three dog breeds using IBD coefficient by MoM method. The 
black circle represents pair of samples. 
 

 
Figure A4. Relatedness estimates of all case dog breeds using IBD coefficient by MEM method. The 
dots represent pair of samples. 
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Figure A5.  Relatedness estimates of all case dog breeds using IBD coefficient by MoM method. The 
dots represent pair of samples. 

 

 

Figure A6. Heat plots of IBS. The extent of IBS increases across the color gradients (from green to 

red).  
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Figure  A7. Q-Q plot before population stratification correction applied (black line is slop (assuming 

no inflation) and red line is fitted line). 

 

Figure  A8. Q-Q plot after  population stratification correction applied using genomic control. 

 

Figure  A9. Q-Q plot after population stratification correction applied using PCA. 
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Figure A10. Q-Q plot after population stratification correction applied using PCs as a predictor. 
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