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Abstract 

Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history 

remains mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants 

based on a similarity-based analysis that incorporates genotype frequency data from 26 populations 

simultaneously. Using this method, we analyzed 57,629 structural variants and identified 576 structural variants 

that show unusual population differentiation. Of these putatively adaptive structural variants, we further showed 

that 24 variants are multiallelic and overlap with coding sequences, and 20 variants are significantly associated 

with GWAS traits. Closer inspection of the haplotypic variation associated with these putatively adaptive and 

functional structural variants reveals deviations from neutral expectations due to (i) population differentiation of 

rapidly evolving multi-allelic variants, (ii) incomplete sweeps, and (iii) recent population-specific negative 

selection. Overall, our study provides new methodological insights, documents hundreds of putatively adaptive 

variants, and introduces evolutionary models that may better explain the complex evolution of structural variants. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab313/6413645 by guest on 05 January 2022



 

3 

Introduction 

Emerging technologies have recently revealed hundreds of thousands of genomic structural variants, including 

polymorphic duplications, deletions, inversions, and mobile transposable elements in the human genome (Hurles 

et al. 2008; Conrad et al. 2010; Pang et al. 2010; Mukamel et al. 2021). Unlike single nucleotide variants, each 

structural variant affects a continuous block in the genome and thus is more likely to result in a phenotypic effect 

(Hurles et al. 2008; Weischenfeldt et al. 2013; Sudmant, Rausch, et al. 2015). Several structural variants have 

been documented to have considerable effects on human disease and evolution (Dennis & Eichler 2016; Payer 

et al. 2017; Hsieh et al. 2019; Ho et al. 2020; Mukamel et al. 2021). Some of these functional variants reach 

>20% allele frequency in human populations, and some affect the copy number variation of entire protein-coding 

genes (McCarroll et al. 2005; Handsaker et al. 2015).  

 

The poster child for adaptive structural variation in humans is the copy number variation of the amylase gene. 

Several studies put forward evidence for positive selection of higher amylase gene copy numbers in the human 

lineage, and further in high-starch-consuming human populations (Perry et al. 2007). Another striking example 

of potentially adaptive structural variants is the deletion of LCE3B and LCE3C. This variant is one of the leading 

susceptibility markers to psoriasis (de Cid et al. 2009). This deletion was shown to be retained in the human 

lineage since Human-Neanderthal divergence under balancing selection (Pajic et al. 2016), arguably maintaining 

a balance between protection against pathogens and facilitating immune-mediated disorders. Recently, a 

genome-wide analysis identified several Neanderthal- and Denisovan-introgressed structural variants that show 

strong signatures of adaptation (Hsieh et al. 2019; Yan et al. 2021). Collectively, these studies, along with others 

(see (Saitou & Gokcumen 2020) for a detailed review), imply that several common structural variants contribute 

to human phenotypic variation and may have evolved under diverse adaptive scenarios. 

 

Despite the increasing appreciation of their role in human adaptive evolution, structural variants have not been 

scrutinized as much as single nucleotide variants due to technical difficulties. From a methodological perspective, 

structural variants are more challenging to discover and genotype due to their localization in highly repetitive 

sections of the genome. In addition, they are generated through complex mutational mechanisms, often involving 

gene conversions and unequal recombination events (Kidd et al. 2010; Handsaker et al. 2011; Lupski 2015; 

Carvalho & Lupski 2016; Sekar et al. 2016). As a result, structural variants are usually harbored by complex 

haplotypes, and they often are not tagged perfectly with flanking variants (Sudmant, Mallick, et al. 2015). The 

complexity of haplotypic architecture harboring structural variants complicates analyses of neutrality and 

integration of structural variants to genome-wide association studies. Most studies primarily interrogate single 

nucleotide variants and structural variants are often considered if only a “tag” single nucleotide variant can be 

found. For example, our work has resolved the complex evolutionary history of the common deletion of the 

metabolizing GSTM1 gene (Saitou, Satta & Gokcumen 2018).  Locus-specific studies showed a strong 

association between this deletion and bladder cancer (The GSTM1 deletion is the risk allele, p = 4×10−11) 
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(Rothman et al. 2010). A haplotype-based analysis of the locus suggested that this deletion has formed multiple 

times through independent mutation events and undergone gene conversion events (Saitou, Satta, Gokcumen, 

et al. 2018). Thus, due to the lack of single nucleotide variants tagging this deletion, most genome-wide 

association studies and traditional selection scans did not include this deletion. Investigating individual 

haplotypes that harbor the deletion led us to identify one particular haplotype associated with the deletion that 

has been subject to a recent selective sweep in the East Asian populations (Saitou, Satta & Gokcumen 2018).  

 

A second factor that complicates the evolutionary study of structural variants is that some are multiallelic (Quinlan 

& Hall 2012; Handsaker et al. 2015). For example, the haptoglobin locus harbors two large multiallelic and 

recurrent structural variants that are not tagged by any single nucleotide variant. Only after careful, locus-specific 

resolution of haplotypic variation were they shown to be associated with cholesterol levels (Boettger et al. 2016). 

Similarly, AMY1 (Perry et al. 2007), as we noted above, and DMBT1 (Polley et al. 2015) loci harbor multiallelic 

structural variations that were associated with dietary and metabolic traits. However, even for amylase gene 

copy number variation, arguably the best-studied structural variant in the human genome from an evolutionary 

perspective, the timing and existence of putative adaptive forces remain elusive (Mathieson & Mathieson 2018). 

In fact, structural variants are often consciously left out from most selection scans along with segmental 

duplications and other repetitive regions due to the complications that we described above (e.g., (Schrider & 

Kern 2017)). In sum, we argue that the full impact of structural variants on human evolution has not been 

understood and may explain some of the most exciting, yet to be described, adaptive variation in humans. 

 

Given the complexity of haplotypes that harbor a considerable number of structural variants, measures that 

depend on accurate genotyping of haplotypic variation, such as allele frequency spectra (e.g., Tajima’s D (Tajima 

1993)) or linkage-disequilibrium/homozygosity (e.g., iHS (Voight et al. 2006), XP-EHH (Sabeti et al. 2007)) are 

often underpowered. Instead, direct population differentiation metrics may be the most appropriate and unbiased 

way to identify putatively adaptive structural variants among human populations. Population differentiation-based 

methods are robust to haplotype disruption due to gene conversion, recurrence, or the presence of multiple 

alleles. Most studies that identify adaptive structural variants have employed population-differentiation-based 

methods (Redon et al. 2006; Xue et al. 2008; Sudmant, Mallick, et al. 2015; Almarri et al. 2020; Bergström et al. 

2020). Deviations from expected allele frequency distribution can provide information on several types of 

selection (positive, negative, or stabilizing), and differential selection with complex histories (selection on 

standing variation, recent geography-specific negative selection, oscillating selective forces such as dynamic 

environmental change (Key et al. 2014)).  This is important because it has been shown that “classical” sweeps 

were rare (Hernandez et al. 2011) and selection on standing variants are likely to be the major force of human 

genomic adaptation (Schrider & Kern 2017), as recently shown for multiple alleles shaping skin color (Crawford 

et al. 2017; Martin et al. 2017).  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab313/6413645 by guest on 05 January 2022

https://paperpile.com/c/m9xtUf/CuFcr
https://paperpile.com/c/m9xtUf/b6pmi
https://paperpile.com/c/m9xtUf/b6pmi
https://paperpile.com/c/m9xtUf/o62WM
https://paperpile.com/c/m9xtUf/aLCqG+kDg0K
https://paperpile.com/c/m9xtUf/aLCqG+kDg0K
https://paperpile.com/c/m9xtUf/CwgWY
https://paperpile.com/c/m9xtUf/FNUf1
https://paperpile.com/c/m9xtUf/nRuXY
https://paperpile.com/c/m9xtUf/V938i
https://paperpile.com/c/m9xtUf/T0gUG
https://paperpile.com/c/m9xtUf/T0gUG
https://paperpile.com/c/m9xtUf/eiauY
https://paperpile.com/c/m9xtUf/eiauY
https://paperpile.com/c/m9xtUf/gKVh5
https://paperpile.com/c/m9xtUf/aOygR
https://paperpile.com/c/m9xtUf/rwdSo+xngEo+dw5W6+cOM7Z+Oa4yw
https://paperpile.com/c/m9xtUf/rwdSo+xngEo+dw5W6+cOM7Z+Oa4yw
https://paperpile.com/c/m9xtUf/GxLyB
https://paperpile.com/c/m9xtUf/LYJPY
https://paperpile.com/c/m9xtUf/T0gUG
https://paperpile.com/c/m9xtUf/r0XAp+NCqhl
https://paperpile.com/c/m9xtUf/r0XAp+NCqhl


 

5 

To measure the population differentiation of genetic variants, FST statistics  (Weir & Cockerham 1984) and VST 

statistics for copy number variants (Redon et al. 2006) are commonly used. More recent research has developed 

methods to compare multiple populations, primarily for admixture analysis (e.g., F3 statistics (Reich et al. 2009)). 

However, these methods can only compare two or three populations to each other. Recently, (Duforet-Frebourg 

et al. 2016) developed a PCA-based method to identify single nucleotide variants with population differentiation 

by analyzing 10 populations simultaneously, confirming well-known targets for positive selection, and discovered 

new candidate genes. Here, we developed a new, similarity-based method to identify adaptive structural variants 

with unusual allele frequency distribution with which one can analyze (1) multiallelic variants and (2) the 

distribution of genotype frequency in multiple populations collectively.  
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Figure 1. An overview of the calculation of "Measure of Unusualness (MU)"(see Methods for details). A. For each population and each 
locus, we have a 9 x 9 matrix representing the genotype. The row and column of the matrix represent one of the two chromosomes each. 
The cells contain the frequencies of specific genotype combinations. B. We calculate the similarity in the 9 x 9 matrices exemplified in 
panel A between each pair of populations. The similarity value ranges between 0 and 1. C. In this manner, for each locus, we obtain a 
26 x 26 matrix representing the similarity between different pairs of populations. The diagonal entries of the similarity matrix are equal to 
1 because any population is identical to itself, yielding the largest possible value of the similarity, which is 1. D. We calculate the distance 
between the 26 x 26 matrices for each pair of loci. E. In this manner, we obtain a distance matrix representing the distance between the 
different pairs of loci. F. We carry out the MDS to project the obtained distance matrix into the two-dimensional embedding space. Each 
circle represents a locus. The distance between the locus and the origin in the embedding space defines MU for each locus. G.The 
general results from our pipeline. 
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Results and Discussion 

Structural Variants with Unusual Population Differentiation 

Inspired by the emerging work that integrates all available population differentiation information to understand 

demographic and adaptive trends (Duforet-Frebourg et al. 2016), we developed a new method based on the 

Bhattacharyya similarity metric specifically to identify putatively adaptive outliers among structural variants 

((Bhattacharyya 1943), Methods, fig.1A-F, fig S1).   

 

Briefly, we characterize each locus (ℓ) as an N ✕ N similarity matrix Sℓ based on the genotype frequency of the 

N = 26 populations in the 1000 Genomes Project phase 3 data set (Sudmant et al. 2015). We measure a modified 

Bhattacharyya similarity metric between each pair of populations based on the transformed probability 

distribution (for the original Bhattacharyya metric, see (Bhattacharyya 1943; Cha & Srihari 2002)). To increase 

the sensitivity to identify the population differentiation of variants with many alleles, we use a weighted variant of 

the Bhattacharyya similarity metric. Overall, we analyzed M = 58,644 variants, including 57,629 structural 

variants, 1,008 uniformly randomly chosen single nucleotide polymorphisms, as well as 7 single nucleotide 

polymorphisms (SNPs) that were reported to be under adaptive evolution (6 SNPs under positive selection and 

one SNP under balancing selection) (Norton et al. 2007; Kimura et al. 2009; Mou et al. 2008; Smith et al. 2009; 

Ding et al. 2013; Ko et al. 2013; Basu Mallick et al. 2013; Wilde et al. 2014; Wu et al. 2016; Deng & Xu 2018) . 

We constructed a distance matrix for each of the M loci and compared the similarity matrix Sℓ across all these 

loci (ℓ = 1, ..., M). We define the distance between Sℓ (at one locus) and Sℓ′  (at another locus) by the Frobenius 

norm, denoted by dF. The M ✕ M Frobenius distance matrix, denoted by F, tabulates the difference between 

each pair of loci, and its (ℓ, ℓ′) entry is given by dF(Sℓ, Sℓ′). These steps provided us with a matrix indicating how 

structural variants relate to each other based on their global genotype frequency distribution. 

 

We assumed, based on previous literature (Conrad et al. 2010), that the majority of structural variants will be 

evolving under neutrality or near neutrality. Therefore, population differentiation should primarily be driven by 

genetic drift. We then reasoned that structural variants that have unusual allele frequency distribution among the 

26 populations as compared to the genome-wide observations are likely to have evolved under non-neutral 

conditions. To visualize the relationships between structural variants based on their global allele frequency 

distribution, we ran a multidimensional scaling (MDS) algorithm. To empirically measure these relationships, we 

calculated the distance between the origin and each variant in the MDS space and defined it as "Measure of 

Unusualness (MU)", or degree of the unusual allele frequency distribution (Methods, fig. 1F). This measure 

informs on the unusualness of global population differentiation of a given structural variant, as compared to the 

entirety of the data set. 
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Figure 2. An overview of the study pipeline and results. A. The histogram of MU of the 1,008 randomly selected SNPs and the six 
positively selected SNPs that were found to be under selection in previous studies (see Methods). The latter group was indicated by blue 
vertical dashed lines on the histogram, and the genes affected by these variants were labeled. The 95th percentile of the distribution was 
marked by a black vertical line.  B. The relationship between allele frequency and MU. The horizontal axis indicates the global alternative 
allele frequency. The vertical axis indicates the logarithm of the MU value. The exonic structural variants with MU > 5 or global allele 
frequency > 0.25 are labeled, as well as the six positively selected SNPs” and one HLA SNP which was shown to have evolved under 
balancing selection. Some gene names are shown multiple times (e.g., HP, KANSP1, and PDXDC1); this happens because multiple 
structural variants overlapping these genes were reported in the 1000 Genomes Project Phase 3 data set. Colors represent different 
types of variants. The abbreviation is from the 1000 Genome Project phase 3 structural variants data set., CNV; copy number variants 
(multiallelic variants), DEL: deletion, DUP: duplication, Known. SNP: SNPs from previous studies (see Methods), other SVs (insertion, 
inversion, Alu, Long interspersed nuclear element, SINE-VNTR retrotransposons). C. Comparison of FST (Weir & Cockerham 1984) 
between CEU and CHB populations and MU. Bi-allelic structural variants with FST (between CEU and CHB) >0.4 and MU > 5 were labeled. 

The shade in blue represents the density of the structural variants  (see fig. S4). 

 

Simulation and Empirical Confirmation  

To validate the accuracy and sensitivity, we conducted forward simulations using SLiM 3.6 (Messer 2013; 

Haller & Messer 2019) (Methods). We modeled stepwise copy number gains or losses in each locus under 

different mutation rates/selection coefficients in three populations (YRI, CEU, and CHB) for which the 

demographic parameters were previously established (Gravel et al. 2011). In each simulation, we generated 

2970 potentially variable neutral loci, and 10 x 3 potentially variable loci under population-specific selection in 

each population (with a range of selection coefficients), respectively. We used these data to calculate MU and 

assess the accuracy and sensitivity of our approach (fig. S2). Our results suggest that our approach is unable 

to distinguish between drift and selection if the mutation rate is higher than 10 -7 mutations per locus per 

generation. Further, we found that the population for which the selection is acting is an important parameter in 

determining the power and accuracy of MU. Specifically, we found that if the selection is acting on the YRI 
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population, our power to detect selection increases, possibly because the effect of drift is lower in African 

populations due to their higher effective population sizes (Tenesa et al. 2007). Although these simulations are 

useful in the general assessment of our approach, they have two major limitations. First, we were not able to 

simulate MU for all 26 populations because the demographic parameters for most of these populations were 

not established. Thus, it is likely that MU is more powerful when applied to a larger number of populations. 

Second, the mutation rates of structural variants are highly variable (Lin & Gokcumen 2019). Thus, without 

having a better sense of the mutation rates of structural variants, it is difficult to assess the power of MU for the 

whole range of structural variants in the human genome. Thus, we argue that an empirical comparison to 

known variants with well-established population-selection signatures may be currently a better benchmark than 

simulation-based methods for understanding the power of MU. 

 

To assess the accuracy of our approach empirically, we calculated MU for 1,008 random single nucleotide 

polymorphisms (tableS1, Methods). We reasoned that the control SNPs will provide an additional marker set 

whereby differentiation is determined by near-neutral forces. Using this data set, we confirmed that the 

distribution of MU measured for structural variants is not significantly different from that measured for the 

uniformly randomly chosen SNPs from the 1000 Genome Phase 3 data set (Sudmant, Rausch, et al. 2015) (p = 

0.88, Mann-Whitney test, fig. S3A), suggesting that similar to single nucleotide variants, the overall distribution 

of MU for SVs is neutral-like. We replicated this analysis using 5000 neutral SNPs reported in  (Pouyet et al. 

2018) (fig. S3B) and found similar results (p = 0.41, Mann-Whitney test, fig. S3C).  

 

Next, we investigated the sensitivity of our method by measuring MU from six SNPs that have repeatedly been 

reported to be under population-specific positive selection and their functional relevance was well established 

(Methods). Thus, they provide an appropriate gold standard to test the sensitivity of our method. We found that 

all of these six positively selected SNPs were shown to be in the top 5% of the MU distribution (fig. 2A), improving 

our confidence in our method. In addition to those 6 SNPs, we also included in our analysis rs1129740, which 

resides in the HLA locus and has been one of the handfuls of variants in humans that are thought to have evolved 

under long-term balancing selection (Teixeira et al. 2015). This allowed us to observe how MU behaves for such 

variants even though MU was not designed to test balancing selection. We found that this non-synonymous 

mutation shows low MU values when considering its allele frequency (fig. 2B). We found it noteworthy that a 

structural variant, LCE3BC gene deletion, that we speculated previously to have evolved under balancing 

selection (Pajic et al. 2016) shows similarly low MU values despite their high allele frequency (fig. 2B). Thus, it 

is plausible that high allele frequency structural variants that may have been evolving under balancing selection 

may exhibit unusually low MU values (table S2). 

 

To understand the differences between more traditional methods of measuring population differentiation and our 

method, we compared MU with direct allele-frequency-based FST between representative continental populations 
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(fig. 2C, fig. S4). As expected, we found a significant correlation between these two measures (Spearman rank 

correlation coefficient > 0.49 and p < 10-15 for all comparisons). However, we also found notable discrepancies. 

We noted 125 variants that are in the top 1ST percentile for MU, but show FST < 0.2 in any pairwise comparison 

of European (CEU), East Asian (CHB), and African (YRI) populations (table S3). Closer inspection of these 

variants suggests that MU captures multi-allelic variations and within-continent variation, which fell below the 

detection threshold of standard pairwise population comparisons. In addition, we noted structural variants that 

have large values of FST but do not stand out in terms of MU. When we investigated the allele frequency 

distribution of structural variants with high FST (>0.25) but low MU (<1), we consistently observed a clinal 

distribution of allele frequencies across the continents (fig. S5), likely due to serial founder effects that define 

human genetic variation as described previously (Ramachandran et al. 2005). In other words, we argue that 

variants that have high among-continental differences that the standard FST detects often reflect the effects of 

major bottleneck/drift events, such as out-of-Africa migrations, rather than adaptive sweeps. That suggests that 

a gradual population differentiation may not lead to a high MU value in our measure. Instead, our method is 

sensitive to deviations from such expected clinal allele frequency changes, including unusually low or high allele 

frequency in a single population as compared to its neighbors. This is an advantage of our method because local 

ecological and cultural variation often underlies adaptive evolution in humans (Rees et al. 2020). Thus, our 

method shows promise in capturing hundreds of novel putatively adaptive variants that have not been captured 

by traditional SNP-based pairwise population comparisons. 

 

MU Identifies Dozens of Structural Variants Invisible to Traditional Selection Scans  

There are several outstanding questions concerning the enrichment of specific properties of adaptive structural 

variants, including their functional relevance, the mutation mechanisms through which the variants are 

generated, and their size distribution. However, there are tremendous technical biases inherent in the short-read 

sequencing-based characterization of these variants, especially concerning extremely high false-negative rates 

in the discovery of certain types of structural variants, such as tandem and dispersed duplications and inversions 

(Kronenberg et al. 2015). Thus, instead of searching for general trends in our data set (e.g., adaptively evolving 

structural variants are larger or smaller than neutrally evolving ones), we focused on resolving the evolutionary 

forces shaping individual structural variants with functional implications. 

 

In this spirit, we first investigated structural variants that overlap with coding sequences. We identified 39 

structural variants with the top 1% MU value that contain one or more entire exon (fig. 3A, table S4). Regardless, 

many of these exonic structural variants were associated with metabolic traits and diseases in previous locus-

specific analyses and include members of cytochrome p450 (CYP3A43, CYP2D6), solute carrier (SLC30A9, 

SLC51A), olfactory receptor (OR2T27, OR52E8) gene families. For example, DMBT1 gene copy number was 

noted for its population differentiation and associated with dietary subsistence strategies (Polley et al. 2015). 
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Similarly, the copy number variation affecting the CES1 (Zhu & Markowitz 2013), CYP2D6 (Candiotti et al. 2005), 

HS3ST3B1 (Kim et al. 2010), and SULT1 (Hebbring et al. 2008) are associated with differences in metabolizing 

of xenobiotic substances, primarily described within a pharmacogenomics context. Interestingly, we found that 

24 (~65%) of these exonic structural variants are multiallelic (fig. 3B, table1), more than five times higher than 

genome-wide expectations (p = 0.0005, Chi-square test). We found that intervals that overlap with multiallelic 

SVs are enriched for “defense response to Gram-negative bacterium” function (FDR Q value = 1.09 x 10-3), 

concordant with previous literature linking adaptive structural variants with immune-related functions. 

 

The exonic structural variants with the highest MU have been invisible to previous genome-wide association 

studies and selection scans. We argue that this is primarily because the current GWAS pipelines interrogate 

single nucleotide variants. Single nucleotide variants may not tag multiallelic structural variants due to gene 

conversion, recurrence, and potential genotyping errors, as discussed in the introduction. This phenomenon was 

diligently dissected by Boettger et al. (Boettger et al. 2016) for the haptoglobin (HP) locus, which harbors two 

recurrent and multiallelic exonic copy number variants that we found to show unusually high MU. They described 

a novel way to use a combination of single nucleotide variants to impute these structural variants in the locus. 

Their reanalysis of the genome-wide association studies revealed a previously hidden association between copy 

number variation affecting HP gene function and blood cholesterol levels. Based on our results, we argue that 

the effects of multiallelic structural variants on human evolution and phenotypic variation remain 

underappreciated.  

 

Multiallelic SVs are often genotyped inaccurately (Mills et al. 2011). If such inaccuracies are systemic to given 

populations, it may lead to errors in identifying spurious genome-wide signals pertaining to population 

differentiation (Anderson-Trocmé et al. 2020). Thus, some of our observations of unusual allele frequency 

distribution may be due to such batch effects and genotyping errors inherent in the 1000 Genomes Phase 3 

dataset. To address this issue, we used mrCaNaVaR (https://github.com/BilkentCompGen/mrcanavar) to 

estimate the copy number of individual genes using new high-coverage (~30X) sequencing data from the same 

samples in the 1000 Genomes Phase 3 dataset (Byrska-Bishop et al. 2021). These new gene copy number 

estimates are different from the SV calls from the 1000 Genomes in three ways. First, the gene copy number is 

estimated for individual samples and no population-level SV discovery or genotyping was performed, eliminating 

batch effects. Second, it provides continuous values of normalized read-depth, rather than discrete categories 

of different types of SVs as was reported from the 1000 Genomes Phase 3 dataset. This allows us to measure, 

for each gene, the distance between arbitrary two populations directly by the earth mover’s distance, which 

directly uses the difference between the normalized read-depth value for an individual in one population and that 

for an individual in the other population. In this manner, we can avoid technical biases in the 1000 Genomes 

Phase 3 dataset introduced by the categorization of SVs into discrete types (Methods). Third, this new dataset 
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allowed us to estimate copy number variations in genes that were not discovered by the conservative discovery 

pipeline of 1000 Genomes Phase 3.  

 

This approach allowed us to conduct a parallel assessment of the MU approach in detecting putatively adaptive 

SVs (table S5, fig. S6). We were able to assess 21 copy number variable genes (see Methods) that we identified 

to show unusually high MU in our original pipeline and found that 8 (~38%) and 13 (~62%) of these also have 

unusually high MU values in the mrCaNaVaR database at the 99th and 95th percentile, respectively. These 

include copy number variations of KANSL1, HP, and DMBT1 genes with well-described likely adaptive functions. 

We individually investigated the remaining genes for which the copy number variation showed disparate MU 

percentiles in our original analysis and mrCaNaVaR analysis. We found that all of them are large (18kb-259kb) 

and relatively rare (<7.5% global allele frequency) variants that fall into regions rich in segmental duplications. 

These regions are prone to both genotyping errors and recurrence. In addition, using the mrCaNaVaR dataset, 

we were able to identify several additional candidates exonic SVs, including AMY1, SIGLEC14, and multiple 

CCL genes, among others, that were not included in the 1000 Genomes Phase 3 SV dataset but were noted 

because of their relevance to human evolution (Hollox et al. 2021). Thus, our results confirm that the MU provides 

a robust and reliable approach to identify putatively adaptive SVs. However, genotyping errors are a considerable 

factor in determining the false positive and negative rates in our approach and we argue that it is imperative to 

conduct follow-up analyses of the candidate adaptive SVs to validate deviations from neutrality at the haplotype 

level. We provide examples for such analysis below. 
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Table 1. Twenty-four multiallelic exonic structural variants (CNV, copy number variation in fig. 2C) with the top 1% MU (higher than 4.23). 
Variant information is retrieved from the 1000 Genomes Project phase 3 data set (Sudmant, Rausch, et al. 2015). Start and End refer to 
the starting and ending locations of variants on the chromosome, respectively. We described the gene name if the structural variant 
contains one or more entire exon(s) of UCSC Genes. Gene function was retrieved from OMIM (https://www.omim.org/). 
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Figure 3 Examples of unusually distributed variants. A. The global allele frequency and MU of the highlighted variants (black points). 
The shade in blue represents the density of all the structural variants. B The relative ratio of bi-allelic structural variants and multiallelic 
copy number variants in each grouping based on exonic overlap (structural variants that contain at least one exon vs. those that do not) 
and MU values (top 1% vs. the rest). Bi-allelic SV: biallelic structural variants. CNV: multiallelic copy number variants with three or more 
alleles. F. Manhattan plots of MU of structural variants. The horizontal axis shows the chromosomal location of structural variants, and 
the vertical axis shows the MU value.  The exonic variants with the top 1% MU (higher than 4.23) were labeled.  

 

Resolving the Haplotypes of Putatively Adaptive Structural Variants  

The complex evolutionary dynamics of structural variants often do not fit classical population genetics 

expectations, such as complete classical sweeps. Thus, we argue that careful investigation of the evolutionary 

histories of a few examples can provide valuable insights that can later be generalized at the genome-wide scale. 

Therefore, we wanted to resolve the haplotypes that harbor structural variants in order to investigate functional 

associations, coalescence times, and signatures of selection concerning these variants in more detail. There are 

344 bi-allelic structural variants that are in the 1st percentile in terms of MU ( > 4.23) and have strong linkage 

disequilibrium with nearby single nucleotide variants (R2 > 0.95) (table S6). 

 

Among these, we identified 20 haplotypes that are significantly associated with phenotypes (nominal p < 10 -9; 

GWAS Atlas (https://atlas.ctglab.nl/; last accessed 3.23.2020) (table 2). The selected 20 loci provided us with a 
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means to further investigate the evolutionary and functional effects of structural variants that show unusual 

geographical distribution. 

 

Using the linked haplotypic variation for the 20 structural variants, we retrieved allele ages from the Human 

Genome Dating database (Albers & McVean 2020) (https://human.genome.dating; last accessed, 3.23.2020). 

Under neutrality, an allele’s age is expected to positively correlate with its allele frequency (Patterson 2005). 

Given that we are explicitly investigating variants that are putatively evolving under population-specific adaptive 

forces, we expect deviations from this expectation. Fig. 4A-C shows the estimated age of the allele and its 

frequency in European, East Asian, and African populations, respectively. If a variant has emerged recently, but 

its frequency is common (left upper side) in a given population, it suggests a potential recent selective sweep 

(i.e., a new allele is rapidly favored and increases its frequency). In contrast, if a variant is old and its frequency 

is rare, these are candidates for recent negative selection against the allele in that particular population. To more 

formally interrogate this line of inquiry, we calculated how long it takes for a new allele to reach a given frequency 

in each population under neutrality using formula (15) in (Kimura & Ohta 1973) assuming previously published 

demographic parameters  (Schaffner et al. 2005) (fig. S7). In a manner similar to allele frequency expectations, 

the age estimate of a variant older than the neutral estimation may suggest a faster increase in allele frequency 

and a recent selective sweep (fig. 4A-4C). In parallel, we calculated Tajima’s D scores of 5k upstream and 

downstream regions of the 20 structural variants of interest and the iHS scores of the tag single nucleotide 

variants of the target structural variants (Methods). We summarized these values in fig. 4D. 

 

We found that the flanking haplotypes of putatively adaptive SVs predicted by MU do not show consistent trends 

of haplotypic variation, extended homozygosity, or population differentiation. Rather, our observations fit the 

emerging consensus in evolutionary genomics that the adaptive structural variants are shaped by complex 

evolutionary trajectories that change over time and space (Mérot et al. 2020). As an example of the complicated 

nature of the evolutionary histories of adaptive structural variants, we highlight esv3642017. This variant is 

recorded as a deletion compared to the reference genome in the 1000 Genomes Phase 3 data set. However, a 

closer inspection reveals that this variant is a human-specific retro-insertion of the DHFR gene (Anagnou et al. 

1988; Schrider et al. 2013; Conrad et al. 2010). The haplotype that harbors this insertion is associated with 

decreased height (p < 10-16). Even though deletion seems to be predominantly found in Africa, the derived 

retrogene inserted is predominantly found in Eurasia. The locus that harbors the insertion shows unusually low 

Tajima’s D in the European population and unusually low genetic diversity in another European-ancestry cohort 

as reported in Schrider et al.  (2013), which altogether suggest a Eurasian-specific sweep of a recent insertion. 

Based on such locus-specific analyses, we identified incomplete population-specific sweeps and recent 

population-specific negative selection as the two main drivers for shaping the allele frequency distribution of 

putatively adaptive structural variants. 
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Table 2. Structural variants with the top 1 % MU value and observed phenotypic effects through tag SNP (R2 > 0.95) in GWAS 
Atlas. 
All the structural variants in the table are deletions. ID is the same as fig. 4. We described the GWAS traits in the “Trait” column if the 
structural variant shows phenotypic effects through tag SNPs on GWAS Atlas. We described the gene name in the “Exon” column if the 
structural variant contains one or more entire exons of UCSC Genes. “Afr/EAsia/Eur.freq” are the frequency of the alternative allele in 
each population, Africa, East Asia, and Europe. The “Selection” column describes estimated natural selection based on the neutrality 
tests (fig. 4). Specifically, “negative” indicates cases where we found recent selection favoring the ancestral allele, while “positive” 
indicates cases where we found recent selection favoring the derived alleles. *This “deletion (esv3642017)” found in the 1000 Genomes 

samples as compared to the reference genome is actually a derived insertion that happens to be represented in the reference genome 
(Anagnou et al. 1988; Schrider et al. 2013; Conrad et al. 2010). Thus, even though the putative action of selection is on the non-deleted 
haplotypes, given that this haplotype carries the derived allele, we categorized the selection as “positive” in this case. Two variants 
highlighted in yellow are discussed specifically as examples. 
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Figure 4. Neutrality tests on the 20 structural variants with phenotypic effects. (A-C) Age and frequency of the structural variants 
in African (A), East Asian (B), and European (C) populations. The variant’s ID is the same as table 2. The blue dots represent the tag 
SNPs associated with the 20 structural variants (SV). The gray dots represent 599 random SNPs. The horizontal axis shows the age of 
allele in the Human Genome Dating database; the vertical axis is the alternative allele frequency in each population. D. A heatmap 
summarizing neutrality tests of the 20 structural variants in each population. It shows allele frequency, the allele age difference between 
haplotype-based estimation in the Human Genome Dating database (Albers & McVean 2020) and neutral expectation based on the allele 
frequency (Kimura & Ohta 1973), iHS value, Tajima’s D, and if the allele is observed in the Denisovan genome. (We did not observe 
these variants in the Neanderthal genomes.) Warmer colors indicate higher values. Similarly, for the allele age difference, colder and 
warmer colors show that the allele is older and newer than neutral expectation, respectively. For the archaic genome, blue shows that 
the allele is shared with the Denisovan. The asterisk indicates that the value is less than 5 percentile or more than 95 percentile when 
compared to at least 500 uniformly randomly selected variants or windows across the genome. (See Methods for detail.) Two variants 
highlighted by the arrows (7 and 20) are discussed specifically as examples. 
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Incomplete, Population-Specific Sweeps: The example of the PCC Gene 

The classical scenario for population-specific adaptive evolution is characterized by (i) high frequency of the 

variant in the specific population compared with other populations, (ii) deviations in the site frequency spectrum 

suggesting rapid expansion of the selected allele, resulting in an excess of rare variants in the locus, (iii) lower 

than expected allele age, and (iv) long haplotype homozygosity suggesting rapid expansion of the selected allele 

(Rees et al. 2020). We look for signatures of this scenario among the 20 haplotypes that we highlight because 

they harbor structural variants with unusual allele frequency distributions (MU in the 1st percentile, > 4.23) and 

because they are associated with GWAS traits (table 2). We found that 12 (60%) of them fit the scenario of a 

recent population-specific adaptive sweep (fig. 4D).  

 

The haplotype harboring esv3597888 provides an informative example of the population-specific incomplete 

sweep scenario. The haplotype has a lower than 5% allele frequency in most African populations but reaches 

near 75% allele frequency in East Asian populations (fig. 5A). Further, the Median Joining network of the 

haplotypic variation in this locus shows a dramatic reduction of haplotypic diversity beyond the expected 

reduction due to drift in the East Asian population as compared with the African population, which is consistent 

with a recent selective sweep (fig. 5B). The Tajima’s D values retrieved from the flanking sequences of the 

deletion are lower than genome-wide expectations in all three continental populations (fig. 5C). Last but not 

least, the estimated age of the allele is much more recent than what is expected based on its frequency, 

especially in the East Asian population (fig. 4B, fig. S7). Collectively, these results suggest a recent selective 

sweep in Eurasian populations. However, even for this locus, not all the neutrality tests capture this sweep. For 

example, in a traditionally defined recent sweep, we expect to find high iHS values. Instead, for this locus, the 

iHS is relatively low, mirroring the surprisingly high overall haplotypic variation in this locus. Regardless, 

esv3597888 remains one of the best candidates for a derived structural variant that has recently been swept to 

higher allele frequency in a population-specific manner. 

 

The phenotypic effects of the haplotype harboring this variant further support the potential adaptive relevance of 

esv3597888. This 5.4kb deletion overlaps with the intronic region of the propionyl-CoA carboxylase (PCC) gene, 

which encodes for an enzyme that metabolizes specific amino acids and lipid species (Wongkittichote et al. 

2017). The haplotype harboring esv3597888 (tagged by rs556788) is associated with the expression of the 

PCCB gene in the adrenal gland (p = 7.8 x 10-10 in the GTEx Analysis Release V8 (GTEx Consortium 2013)). 

Moreover, the haplotype is associated with total bilirubin, a cardiometabolic signaling molecule (p = 6.6 x 10-16), 

and neuroticism (p = 1.5 x 10-12) (fig. 5D). We argue that it is likely that the 5.4kb deletion esv3597888 is the 

causal variant in these associations, given its size and that it overlaps with a well-documented binding site for 

the abundant transcription factor CTCF (fig. S8). The haplotype has pleiotropic functional effects, and thus the 

exact reasons why it confers an adaptive advantage in East Asia particularly remains to be seen.  
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Figure 5. The evolutionary analysis of esv3597888, the deletion overlapping the intronic region of the propionyl-CoA 
carboxylase (PCC) gene. A. The geographic distribution of the esv3597888. B. Haplotype networks constructed from the 5kb upstream 
and downstream sequences from the esv3597888 location of three modern human populations (Yoruban (YRI), Han Chinese (CHB), and 
European (CEU),), the Altai Neanderthal sequence (Prüfer et al. 2014) and the Denisovan sequence  (Reich et al. 2010) that are mapped 
to hg19 reference genome, and the chimpanzee reference genome (panTro4). The haplotypes that harbor the deletion are indicated by 
white and those that do not are indicated by blue. C. Tajima’s D value in the 5kb upstream and downstream regions of esv3597888 (10kb 
in total) (Tajima 1993). Asterisk shows that Tajima’s D of the esv3597888 flanking region is lower than the bottom five percentile of 
Tajima’s D of 5000 random regions. The asterisk shows that the mean value of esv3597888 tag region is lower than the five percentile 
of the control region. D. The PheWAS result of rs556788, which tags esv3597888 (table S4). Each dot indicates a trait. The vertical axis 
shows the -log10 p-value of the association between the genotype and phenotype. The color indicates the phenotype category in GWAS 
ATLAS.  

 

Recent Population-Specific Negative Selection: The DAP3 Gene 

Among the haplotypes that we highlighted, we noticed that some show unexpectedly low allele frequency in 

Eurasian populations compared to the expectation based on their estimated age. We hypothesize that these 

haplotypes, and by proxy the structural variants that they harbor, may have been subjected to recent, population-

specific negative selection, favoring the ancestral allele. Variations that have emerged early in human evolution 

and remain in extant populations are often found at high allele frequencies in all extant human populations under 

neutrality (Lin et al. 2015). Thus, if recent negative selection on the derived structural variant is acting in a 
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population-specific manner, we expect to observe in that population i) an unusual reduction in allele frequency 

of the variant that cannot be explained by drift alone and ii) a shift in the allele frequency spectrum towards rare 

variants in the locus.  

 

A striking example of population-specific negative selection is provided by the haplotypes harboring esv3587631, 

which shows one of the highest MU values in the genome (MU = 8.50). This deletion is the major allele (i.e., > 

50% allele frequency) in most sub-Saharan African populations but almost absent in non-African populations 

(fig. 6A). Human Genome Dating database estimates the age of a single nucleotide variant tagging esv3587631 

to be 1,1-1,3 Million years old (Albers & McVean 2020). Thus, the deletion has emerged prior to human-

Neanderthal divergence. Consistent with this result, we found that Denisovan but not Altai Neanderthal carries 

this deletion (fig. 6B). The haplotype network showed that the haplotypes harboring the deletion are similar to 

those from archaic hominins, consistent with our observation that this deletion is present in archaic human 

genomes (fig. 6C). Collectively, it is clear that the deletion has evolved before Human Neanderthal divergence 

and increased in allele frequency in African populations to more than 75%, harbored by diverse haplotypes. 

However, none of the haplotypes that harbor the deletion is found in Eurasian populations. Furthermore, the 

locus shows significantly negative Tajima’s D values in the East Asian population, further supporting non-neutral 

forces acting on the deletion (fig. 4D).  

 

Functionally, this ~4.8kb deletion overlaps with one of the introns of the well-studied and highly conserved DAP3 

gene (fig S8). DAP3 is a mitoribosome protein that regulates apoptosis at the cellular level and is linked to 

multiple developmental, immune-related, and biomedically relevant phenotypes at the organismal level (Kim et 

al. 2017; Greber & Ban 2016). Specifically, the deletion overlaps with a conserved regulatory region comprising 

multiple transcription factor binding sites. Consistent with these observations, the haplotypes harboring the 

deletion (tag variant, rs348195) were strongly associated with the increased expression of the DAP3 gene in 

various tissues (p < 10-6), with the effect size exceeding 0.4 in some cases. Moreover, the deletion (through the 

analysis of tag SNP rs348195) is strongly associated with decreased levels of white blood cells (nominal p = 2.1 

x 10-37, Fig. 6D). Collectively, these results are consistent with a scenario where an ancient deletion variant that 

has been either neutral or beneficial in African populations has become detrimental to fitness in Eurasian 

populations, perhaps due to adaptive constraints concerning immune function.  
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Figure 6. The evolutionary analysis of esv3587631, the intronic deletion polymorphism of the death-associated protein gene3 
(DAP3). A. The geographic distribution of the esv3587631. B. esv3587631 in modern and ancient hominin genomes. These Integrated 
Genome Browser snapshots show the genome assembly (Hg19) of a human with the ancestral, homozygous non-deleted genotype and 
another with a homozygous deleted genotype that shows no reads mapping to the deletion region (top two rows). Similarly, sequences 
from Neanderthal and Denisovan genomes were mapped to this region. The Denisovan genome shows a clear signature of the deletion 
with breakpoints indistinguishable from the deletion observed in modern humans. C. A haplotype network of three modern human 
populations, Yoruba (YRI), Han Chinese (CHB), European (CEU), as well as Altai Neanderthal and the Denisovan, and Chimpanzee, 
constructed from the flanking sequences from the esv3587631 location. D. The Phewas result of rs348195, the tag SNP of esv3587631 
at GWAS Atlas. Each dot indicates a trait and the y-axis shows the -log10 p-value of the association between the genotype and phenotype.  

 

 

Conclusion  

Although several putatively adaptive structural variants have been reported in previous studies, a genome-wide 

selection scan of structural variants has remained challenging. In this study, we built a network-based analysis 

of population differentiation among 26 populations in the 1000 Genome Project data set to identify putatively 

adaptive structural variants including multi-allelic variants. Our method assumes that drift is the major force that 

shapes the distributions of genomic variants among human populations as articulated by others (Ramachandran 

et al. 2005; Coop et al. 2009). In identifying the most common allele frequency distribution combinations across 

the 26 populations, our method parallels the recent variant-centric integrative analysis method proposed by 

Biddanda et al (2020). We argue that such direct, empirical scrutiny of the geographical distribution of variants 
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will provide a valuable and relatively unbiased picture of demographic and non-neutral trends that shape human 

genetic variation. 

 

Our method is designed to identify structural variants with population differentiation that deviate from neutral 

expectations without any a priori adaptive model. It identified hundreds of putatively adaptive structural variants 

with unusual genotype frequency distributions in humans. The majority of these structural variants were hidden 

from traditional selection scans which mainly focus only on single nucleotide variants. Our study identified 24 

putatively adaptive exonic multiallelic structural variants, the majority of which were not discussed within an 

adaptive context in humans. In addition to incomplete sweeps of derived structural variants, we found that recent 

population-specific negative selection is a considerable force shaping the geographic distribution of functional 

structural variants in humans. Overall, our study supports the emerging notion that structural variants significantly 

contribute to non-neutral and biomedically relevant phenotypic variation in humans (Radke & Lee 2015; Mérot 

et al. 2020) and highlight specific trajectories underlying the evolution of such variants. 

 

From an evolutionary genomics perspective, the prominence of exonic multiallelic copy number variants among 

the putatively adaptive structural variants is not surprising. Cross-species analyses have repeatedly revealed 

the outsized role of recurrent gain and losses in gene families in shaping phenotypic characteristics in a variety 

of species, with recurrent evolution of caffeine in plants (Denoeud et al. 2014), salivary amylase in mammals 

(Pajic et al. 2019), and venom in snakes (Casewell et al. 2020) providing notable examples. Moreover, studies 

in humans reported that multiallelic copy number variants have seven times more effect on gene dosage than 

the combined effect of biallelic deletions and duplications (Handsaker et al. 2015). The same multiallelic 

structural variants, however, are hidden in the majority of GWAS and selection analyses. Multiallelic variants are 

not necessarily tagged by nearby single nucleotide variants, and they often reside in the genomic regions with 

enriched segmental duplications where identifying variants can be problematic. Thus, we expect that better 

genotyping of multiallelic structural variants with long-read sequencing platforms will dramatically increase our 

ability to identify multiallelic structural variants and their previously unknown adaptive roles. 

 

A surprising result from our study is the identification of recent negative selection favoring ancestral alleles as a 

notable force determining the allele frequency distribution of putatively adaptive structural variants. Selective 

sweeps are often thought to increase the allele frequency of the derived and not ancestral variant. In this work, 

we found that at least 10% of the putative adaptive structural variants show recent sweeps favoring the ancestral 

allele. It is plausible that recent human adaptive evolution involves repeated adaptation to similar environmental 

conditions across time and geography as reported in (Bergey et al. 2018). Thus, an ancestral adaptive variant 

that confers a smaller fitness advantage than the derived variant may become adaptively beneficial again if 

environmental pressures revert back to an earlier state. This scenario is particularly applicable to immune-

system-related traits within the context of an evolutionary arms race as articulated previously (Key et al. 2014). 
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Similarly, adaptive landscapes concerning metabolic traits have drastically changed multiple times for human 

populations due to technological advances (e.g., agricultural transition) (Hancock et al. 2010) and migrations to 

new ecologies (e.g., arctic populations) (Marciniak & Perry 2017). Thus, under the assumption that neither the 

ancestral nor derived alleles are fixed, it is not surprising that ancestral structural variants are favored in certain 

geographies and instances. Such cases will appear as negative selection against the derived allele. We reported 

in detail one such case involving the exonic deletion of the growth hormone receptor in another study (Saitou et 

al. 2021). The current study identifies several other cases, suggesting that recent, geography-specific negative 

selection is a considerable force shaping allele frequency distribution and population differentiation of functional 

structural variants. 

 

There are caveats to our study and to the investigation of adaptive structural variants in general. First, it is clear 

from existing literature that the current data sets suffer from significant false-positive rates, potentially missing 

up to 80% of the structural variants (Mahmoud et al. 2019). Moreover, current technologies can discover certain 

types of structural variants (e.g., large biallelic deletions) much more sensitively than other types of variants (e.g., 

duplications, inversions). It is telling that one of the structural variants most relevant to human evolution, amylase 

copy number variation, are not cataloged by the 1000 Genomes Phase 3 data set because of alignment issues 

in the locus. Even when such multiallelic variants are discovered, it is not uncommon that their exact genotypes 

(e.g., exact copy number) may not be accurately documented. Second, the genotyping platforms commonly used 

in genetic association studies mostly focus on bi-allelic single nucleotide variants only. In fact, even this study, 

which is aware of these limitations, highlighted bi-allelic variants, for which the haplotype can be readily resolved, 

and thus trait associations can be investigated. The true contribution of most structural variants, including 

multiallelic variants, to phenotypic variation, remains mostly unknown.  Third, most structural variant maps, 

including the dataset we use in our study are not an ideal representation of human variation. For example, a 

more powerful and adequate sampling would involve hypothesis-driven efforts where specific adaptive pressures 

are in mind (Scheinfeldt & Tishkoff 2013; Rees et al. 2020). Further, ascertainment bias in GWAS studies (Sirugo 

et al. 2019), which still comprise primarily European cohorts, limits our power to link evolutionary trends shaping 

the SV allele frequency distributions to their functional effects. Overall, the current picture of the evolutionary 

effects of structural variants, including those revealed in this study, remains incomplete and should be treated 

as a theoretical and methodological framework for future studies with more comprehensive data sets. We believe 

that as long-read sequencing-based discovery and later genotyping become affordable, the full impact of 

structural variants on human evolution and diversity will be better revealed.  
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Methods 

1000 Genomes Phase 3 data set 

As the input data set, we used 1000 Genome Project phase 3 data sets (Sudmant, Rausch, et al. 2015) for the 

following three reasons. First, the genotyping is based on whole-genome sequencing and multiple detection 

methods such as Delly (Rausch et al. 2012), which combines short insert paired-ends, long-range mate-pairs, 

and split-read alignments, and GenomeSTRiP (Handsaker et al. 2011), which uses read-depth and read pairs 

for structural variant identification to improve accuracy. Thus, this data set provides a highly accurate structural 

variant genotype. Second, it contains approximately 100 individuals from each population. Therefore, one can 

increase the power to detect geographically-differentiated structural variants due to population-specific 

adaptation by assessing deviations from expected population differentiation. Third, it provides phased genotype 

information not only of the structural variants but also of the SNPs from the same individuals. This allows us to 

apply our methods for identifying population differentiation to known SNPs to assess their performance and to 

carry out the subsequent haplotype-based analysis on a subset of structural variants.  

 

Pre-processing structural variants and selection of known SNPs in the analysis  

We selected 57,629 autosomal structural variants with annotations in the 1000 Genomes project phase 3 data 

set (Sudmant, Rausch, et al. 2015) since variants in sex-chromosomes are differently described from autosomes 

due to the smaller number of the observed number of chromosomes and can not be analyzed in the same 

pipeline as autosomal variants. As controls, we also used 1008 uniformly randomly selected single nucleotide 

variants from the same data set and six single nucleotide variants that have undergone putative natural selection, 

including rs334 in HBB (Ding et al. 2013), rs73885319 in APOL (Ko et al. 2013), rs4988235 in LCT(Smith et al. 

2009), rs12913832 in OCA (Wilde et al. 2014), rs3827760 in EDAR, which is common in East Asian populations 

and associated with hair and dental traits (Mou et al. 2008; Wu et al. 2016; Kimura et al. 2009), rs1426654 in 

SLC24A5, which is associated with skin color (Basu Mallick et al. 2013; Deng & Xu 2018; Norton et al. 2007). In 

addition to these SNPs, we included rs1129740 that falls into HLA-DQA1, which is one of the few variants in the 

human genome that showed classical signatures of balancing selection (Teixeira et al. 2015). This HLA allele 

showed unusually low MU (0.22) despite the global allele frequency of 0.52 (fig. 2).  

To verify that 1008 randomly chosen SNPs indeed represent a neutral dataset, we redid our analysis with 5000 

SNPs shown to be evolving under near-neutrality by Pouyet et al. (2018). Briefly, we calculated MU in the same 

manner as our previous analysis, where we include all the structural variants and the 5,000 neutral SNPs. We 

found that this reanalysis did not change our results. Specifically, we found that the MU values calculated for 

structural variants when the SNP dataset are nearly identical to those that were calculated with our initial 

dataset (Spearman’s correlation = 0.997) (fig. S3B). Further, we replicated our finding that the MU values for 

all structural variants are not significantly different from those calculated for the neutral SNPs (p = 0.41, Mann-

Whitney test, fig. S3C), indicating that the majority of structural variants are evolving neutrally. 
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Calculation of the MU and MDS plot 

We characterize each locus ℓ as an N ✕ N similarity matrix, denoted by Sℓ, where N = 26 is the number of 

populations in the 1000 Genome Project Phase 3 data set (fig. 1A). The entries of matrix Sℓ represent the 

similarity between pairs of populations in terms of the frequency of each allele at a locus. Specifically, for each 

locus ℓ and population i, the genotype count is given by the 1000 Genome Project Phase 3 data set. In general 

variant call format (VCF), genotype (i.e., the allele status of a pair of chromosomes of one individual) is denoted 

by x1|x2. Genotypes 1|0 and 0|1 in general variant call format are effectively the same and mean that one 

individual has one reference (i.e., 0) allele and one alternative (i.e., 1) allele at the locus. Therefore, we 

summarized both 1|0 and 0|1 into 0|1 in the following analysis. The maximum (alternative + reference) allele 

number at a locus was nine, in which case the allele number ranges from 0 to 8 (fig. S9). Therefore, in general, 

we summarized x1|x2 and  x2|x1  into  x1|x2, where x1, x2  = 0,1, . . . , 8 and x1 ≤ x2. We denote the frequency of 

genotype x1|x2 at locus ℓ and population i by pℓ,i (x1|x2), where 0 ≤ x1 ≤ x2 ≤ 8. Note that 

=1. To increase the sensitivity to identify the population differentiation of multiallelic variants (i.e., variants with 

more than two alleles), especially, with large copy number variation (such as a multiallelic variant with copy 

number one to eight, even if the frequency of copy number eight is rare),  we use a weighted variant of the 

Bhattacharyya similarity metric, which modifies the Bhattacharyya similarity metric (Cha & Srihari 2002; 

Bhattacharyya 1943), as follows (fig. 1B). 

 

First, we transform the original distribution,  to 

, where  

 

and 

 

This transformation magnifies the frequency of genotype and its differences between populations at large x1 and 

x2 values (i.e., large copy number variation). Second, we measure the Bhattacharyya metric between each pair 

of populations i and j based on the transformed probability distribution, i.e., 
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If the two distributions  and  are identical, then sℓ (i, j) = 1, which is the largest value of sℓ (i, j). In this 

manner, for each locus ℓ, we obtain an N ✕ N similarity matrix Sℓ whose (i, j) entry is given by Equation (1). 

To analyze the organization of M = 58,644 loci (which is composed of 57,629 structural variants, 1,008 random 

single nucleotide polymorphisms, and seven single nucleotide polymorphisms under adaptive evolution), we 

constructed a distance matrix for the M loci by comparing similarity matrix Sℓ across the loci. We define the 

distance between Sℓ and Sℓ′ using the Frobenius norm, denoted by dF, which is given by 

 

Note that (Sℓ)ij = sℓ(i, j). Also note that one can replace the summation by  without loss of generality 

because the similarity matrix Sℓ is symmetric and all of its diagonal elements are equal to 1. The M ✕ M Frobenius 

distance matrix, denoted by F, tabulates the difference between each pair of loci, and its (ℓ, ℓ′) entry is given by 

dF(Sℓ,Sℓ′). Finally, we ran a multidimensional scaling (MDS) algorithm on F to map out relationships between the 

M loci on a two-dimensional space. We used the Python package manifold, which is part of scikit-learn 

(Pedregosa et al. 2011), to estimate the MDS. To empirically measure these relationships, we calculated the 

distance between the origin and each variant in the MDS space and defined it as "Measure of Unusualness 

(MU)", or the degree of unusual allele frequency distribution (Methods, fig. 1). This measure informs on the 

unusualness of global population differentiation of a given structural variant, as compared to the entirety of the 

data set. We only used one initial condition due to the long time required for the computation. The analyses have 

been done on the server of the University at Buffalo Center for Computational Research 

(http://www.buffalo.edu/ccr.html). 

 

 

Simulations and MU calculations 

To model the evolution of copy number variation in humans, we modified recipe 14.11 (modeling microsatellites) 

and recipe  5.4 (model of human evolution) in SLiM 3.6 (Haller & Messer 2019). We modeled stepwise copy 

number gains or losses in each locus under different mutation rates/selection coefficients in three populations 

(YRI, CEU, and CHB) for which the demographic parameters were previously established (Gravel et al. 2011). 

In each simulation, we generated 2970 potentially variable neutral loci, and 10 x 3 potentially variable loci under 

population-specific selection in each population (with a range of selection coefficients), respectively. All the 

variable loci were initially neutral, but at generation 78084, just after the split of CEU and CHB, the 10 loci became 

adaptive in each population. We used 0.5, 0.05, 0.005 as selection coefficient and  10-5 , 10-6 , 10-7  for mutation 

rate. We also ran simulations with the mutation rate 10-8 , however, most of them did not produce polymorphic 

sites. So we did not eventually use the mutation rate of 10-8. We simulated each model 100 times per condition 
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(three mutation rates x three selection coefficients). The allowed copy number range was 1 - 8. The script can 

be found on our GitHub webpage.  

https://github.com/mariesaitou/Network_humanpop_SV 

 

 

mrCaNaVaR copy number estimates and MU calculations 

We used mrCaNaVaR (https://github.com/BilkentCompGen/mrcanavar) to estimate the normalized read-depth 

for each gene in the human genome using high-coverage (~30X) sequencing data (Byrska-Bishop et al. 2021) 

available for the same samples we used in our original analysis. mrCaNaVaR remaps short-reads promiscuously 

and measures the normalized read depth of intervals across the genome. Using this approach we calculated the 

read-depth of each gene across the human genome and use this data to calculate the MU values for each human 

gene as follows. First, we discarded the genes on chrM (mitochondrial DNA), chrX, chrY, which left us 36486 

genes. We denote by  the read-depth associated with gene g (g = 1, ..., 36486) in the i th individual in 

population p (p = 1, ..., 26), from the 1000 Genome phase 3 dataset. Second, for each gene, we divided each 

 by the average over all individuals and populations. We applied this normalization to enable a gene-to-

gene comparison of the copy number variation in a single population and across multiple populations without 

being affected by the typical copy number, which substantially depends on the gene. We denote the normalized 

 by . Third, for the given gene g, we calculated the distance between two populations by the earth 

mover’s distance(Levina & Bickel 2001; Pérez-Barbería et al. 2007) as follows. The distribution of the normalized 

copy number for population p is given by assigning probability  to each value of  that appears in the 

data, where  is the number of individuals in population p. If there are two individuals that have the same value 

of , for example, then the probability of this normalized copy number is . The earth mover’s distance 

between populations p and p’ is the minimal cost to move the distribution of the normalized copy number for 

population p to that for population p’. The cost of moving a unit probability mass from a location in one 

distribution (corresponding to population p) to another location in another distribution (corresponding to 

population p’) is given by . By calculating the earth mover’s distance between each pair of populations, 

for each gene g, we obtain a 26 x 26 distance matrix, denoted by , which represents how similar/different each 

pair of populations is in terms of the copy number distribution. Fourth, we calculate the distance between each 

pair of genes using the Frobenius norm using Eq. (4), but with matrix  being replaced by matrix . The 

remaining steps for calculating MU are the same as those for the 1000 Genome Project Phase 3 data set. The 

script is available on GitHub. https://github.com/mariesaitou/Network_humanpop_SV For comparing the results 

from mrCaNaVaR calls and our original analysis, we identified 21 genes that are multiallelic SVs in the 1000 

Genomes Phase 3 dataset with high MU values (99th percentile) that are also presented in mrCaNaVaR analysis. 

 

Allele frequency, MU, and structural variants 
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Since MU is related to alternative allele frequency by definition, we categorized the variants into four groups in 

terms of the allele frequency using ranges 1-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1, and investigated the distribution 

of MU of the variants in each group. In intermediate allele frequency groups, multiallelic copy number variants 

(CNV) had higher MU than SNPs (Wilcoxon test, p = 0.0021 and p = 0.00095 for allele frequency ranges 0.25-

0.5 and 0.5-0.75, respectively). This result indicates that our methods may detect unusual population 

differentiation due to the excess of multi-copy alleles than biallelic variants. In addition, we noticed that the small 

number of variants that have allele frequencies higher than 0.5 show smaller MU values than those variants that 

are less than 0.5. There is no mathematical reason for this observation. Thus, this observation may be due to 

various other reasons, including potential genotyping errors which may be increased among this group of 

variants. We want to further acknowledge here other studies that have employed tools to capture variation at the 

multiallelic SV locus (e.g., VST (Redon et al. 2006) and use thoughtful hypothesis-driven population sampling 

(e.g., (Huerta-Sánchez et al. 2014)). Regardless, the majority of genome-wide scans of selection employ biallelic 

locus and use available continental populations such as the 1000 Genomes dataset and almost none captures 

variation across dozens of populations.  

 

Functional genomics analysis 

We retrieved exonic content from UCSC Genome Browser (http://genome.ucsc.edu/; UCSC Genes, table: 

knownCanonical) and examined if each structural variant contained one or more entire exon using bedtools 

(Quinlan & Hall 2010). To find functionally relevant loci, we first calculated linkage disequilibrium between the 

top 1% high MU biallelic structural variants and neighboring regions (5kb upstream and downstream) with 

vcftools (Danecek et al. 2011). We searched the resulting tag SNPs (r2 > 0.95) in GWAS Atlas Phewas database 

(https://atlas.ctglab.nl/PheWAS), defining that p < 10-9  as a statistically significant association. Of the 576 top 

1% structural variants in terms of MU, we found that 500 variants were bi-allelic, which were suitable for 

haplotype analysis. Among the 500 variants, 344 structural variants showed R2 larger than 0.95 with neighboring 

variant(s). Of these 344 structural variants, 20 of them have flanking tag SNPs that are significantly associated 

with phenotypic variation (fig. 2A, table 2). Further, we used the GTEx portal (GTEx Consortium 2013) for 

associating these SNPs to variation in gene expression levels (fig. S4). We used Shiny.Go (Ge et al. 2020) or 

GREAT (McLean et al. 2010) to conduct functional enrichment analysis for genes and intervals overlapping 

structural variants with the whole genome as the background. These tools search for enrichment in multiple 

databases and provide multiple-hypotheses-corrected false discovery rates. 

 

Evolutionary Genomics Analysis of the haplotypes harboring putatively adaptive structural variants 

We used the 344 structural variants that are among the top 1% in terms of MU and have flanking tag SNPs with 

R2 value larger than 0.95 for the following evolutionary analysis. We used the age estimates from Human 

Genome Dating database (Albers & McVean 2020) using tag SNPs as proxies to the adaptive SVs. This 

database documents the allele age estimates based on the analysis of pairwise haplotype identical tracts in 1000 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab313/6413645 by guest on 05 January 2022

https://paperpile.com/c/m9xtUf/rwdSo
https://paperpile.com/c/m9xtUf/VUcv
http://genome.ucsc.edu/
https://paperpile.com/c/m9xtUf/89Wj5
https://paperpile.com/c/m9xtUf/xKVIy
https://atlas.ctglab.nl/PheWAS
https://paperpile.com/c/m9xtUf/CPgEJ
https://paperpile.com/c/m9xtUf/YMLJ
https://paperpile.com/c/m9xtUf/Nkug
https://paperpile.com/c/m9xtUf/ZB9cY


 

29 

Genomes (The 1000 Genomes Project Consortium et al. 2015) and Simons Genome Diversity Projects (Brazma 

2019)  (https://human.genome.dating; last accessed, 3.23.2020). We also calculated how long it takes for a new 

allele to reach a given frequency in each population under neutrality using equation (15) of (Kimura & Ohta 

1973). For this calculation, we used demographic models for each population detailed in  (Schaffner et al. 2005) 

(fig. 3D).  

 

For haplotype-level population genetics measures, we targeted 5k upstream and downstream regions of the 

structural variants and calculated Tajima’s D scores of the tag SNP of the target structural variants using 

VCFTools (Danecek et al. 2011). We retrieved the iHS score from the 1000 Genomes Selection Browser (Pybus 

et al. 2014). For comparative purposes, we calculated the same scores for ~500 random regions generated with 

bedtools (Quinlan & Hall 2010) across the genome. Ancient human (Altai Neanderthal and Denisovan) genomic 

bam files are published on the Max-Planck Institute website (https://www.eva.mpg.de/index.html) (Prüfer et al. 

2014; Reich et al. 2010). We used samtool-based  (Li et al. 2009) read-depth analysis to genotype deletions in 

archaic genomes (fig. 5B). We generated haplotype networks using VCFtoTree (Xu et al. 2017) and POPArt 

(Clement et al. 2002; Leigh & Bryant 2015) by Minimum Spanning Network method (Bandelt et al. 1999). 

 

Data visualization and availability 

For the data visualization, we used Rstudio (v1.2.1335), R(v3.5.3), and ggplot2 (Wickham 2009). Codes will be 

available at https://github.com/mariesaitou/Network_humanpop_SV.  
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SUPPLEMENTARY Materials  

Table S1 All the variants and MU values 

Table S2  Notable variants identified in this study (Low MU and High frequency; bottom 25% MU and 0.4 - 0.6 

allele frequency,) 

Table S3 MU and FST comparison for bi-allelic structural variants 

Table S4 High MU (i.e., top 1%) exonic variants  

Table S5 MU values for mrCaNaVaR results (top 10%) 

Table S6 All the variants with high MU (top 1%) and high LD (R2 > 0.95 ) with neighbouring variants 
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Figure S1 The geographical distribution of several identified structural variants as examples. Color represents genotype. White 
refers to a homozygous reference genotype. Non-white colors represent other genotypes. A. A multiallelic copy number variant; 
esv3640682;esv3640683, a multiallelic structural variant with unusual population differentiation and a top 1% MU value. CN means copy 
number, for example. CN1 is the copy number one allele and CN1.CN1 is the homozygous copy number one genotype. B. esv3635666 
with unusual population differentiation and a top 1% MU value; this variant overlaps with the coding sequence of DKFZp686O16217 
gene. C. esv3364367 at MUC4 exon is very common among human populations but showed low MU. 
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Figure S2. MU values calculated for the simulation results invoking different rates of selection and mutation rates. Each dot 
indicates one simulation result. For each simulation, we generated 10 alleles (out of 100) that are evolving under population-specific 
positive selection. The x-axis indicates how many of 10 alleles were correctly detected. Y-axis indicates the selection coefficients (left) 
and mutation rates (right). 
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Figure S3. The comparison of MU values calculated for SNPs and structural variants. A. Cumulative fraction of the MU of 1008 
randomly chosen SNPs and structural variants (SV). B. Comparison of the Mu values calculated for structural variants along with 1008 
randomly chosen (y-axis) and 5000 “neutral” SNPs (x-axis). C. Cumulative fraction of the MU of SVs with 5000 “neutral” SNPs and 
structural variants. 
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Figure S4 Comparison between FST and MU values of structural variants 
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Figure S5. Three examples where variants have high FST values but low MU values  
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Figure S6. MU values calculated from distance matrices based on mrCaNaVaR copy number estimates.  
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Figure S7 The difference between haplotype-based age estimation and expected age under neutral evolution for the 20 structural variants 
with phenotypic effects (table 2, fig. 4D) 
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Figure S8 The overlap between functional annotation and structural variants  
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Figure S9. Allele copy number distribution  
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