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Abstract 

Atlantic salmon, provides excellent opportunities for studying vertebrate genome evolution after 

whole genome duplication (WGD). This remains congruent with the extreme rate of duplicated gene 

copies following Ss4R (fourth round of whole genome duplication) in the common ancestor of 

salmonids. However, little is known about the role of TFs in driving duplicate gene expression 

divergence. Here we aimed at contributing to the understanding of TF evolvability by modelling a TF-

gene regulatory network using the Inferelator algorithm for the first time in Atlantic salmon genome. 

This was achieved by using ATAC-seq data and RNA-Seq gene expression counts. With this network, 

we studied the tendency of TFs to evolve towards asymmetric expression of duplicate gene copies, 

where one copy diverted to expression gain leaving another copy retained, performing ancestral 

function. Firstly, our network analysis implied that Inferelator modelled a biologically meaningful 

network. Along with this, TF evolvability indicated, presence of conserved TFs, despite the expression 

dissimilarities between duplicates. Moreover, our gene ontology results suggested that these TFs were 

mostly involved in the cell cycle function. In conclusion, we suggest that modification in the co-

activators of our TFs could explain their being preserved towards asymmetric expression patterns of 

the duplicates.  
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Introduction 

Atlantic salmon (Salmo salar), holds a remarkable position for serving as an economically valuable fish 

species globally (Houston and Macqueen, 2019). In addition, it contributes to the wild fisheries and 

recreational sports fisheries (Lien et al. 2016). It belongs to the family Salmonidae, comprising of 11 

genera along with many other species (Nelson et al., 2016). Atlantic salmon appears to be a significant 

and interesting source for studying genome evolution owing to its dramatic duplication processes 

unlinked to the evolutionary patters in other vertebrates (Lien et al. 2016).   

Duplication of genetic materials is a stochastic event that contributes to the evolutionary changes of 

an organism. It is mainly governed by single gene duplication or whole genome duplication (WGD). 

WGD is a more common incident for plants than for the animals or vertebrates (Van de Peer et al., 

2009). However, compared to the root of all vertebrates where there were two WGDs (1R and 2R) 

(Dehal and Boore 2005), a third level of subsequent WGD event (3R) (Jaillon et al., 2004; Nakatani et 

al., 2007) occurred in teleosts species, followed by a fourth round of WGD (Ss4R) in the common 

ancestor of salmonids (Macqueen and Johnston 2014). The Ss4R or autotetraploidization happened 

at around >80 million years ago, after a divergence of salmonids from their closest species pike 

(Macqueen and Johnston 2014; Gillard, 2019). This leads to an additional interest for Atlantic salmon, 

among other salmonids, because of its genome having an ongoing process of rediploidization, where 

tetraploid state or Ss4R is shaped back to a diploid state (Lien et al. 2016). Although genome evolution 

has been previously studied in Atlantic salmon, little is known about the post-WGD driven role of 

transcription factors (TFs) influencing the expression of genes.   

WGD or polyploidization (a major driver for changing the entire genomic configuration of an 

organism), shapes selectively functional traits by creating post-WGD favoured genes (Gillard et al., 

2020). Previous research has emphasized on understanding the role of different selection constraints 

generating underlying changes in genomic composition and leading to adaptive phenotypes (Zhao et 

al., 2020). The development of novel traits and adaptation following WGD is propelled by duplication 

through sub-functionalization or neo-functionalization (Prince and Pickett, 2002; Conant et al., 2008) 

where duplicated genes evolve either by dividing original functions between copies (Nowak et al., 

1997) or by gaining new function in one copy (He and Zhang, 2005). These two main models explain 

the loss or retention of paralogs after duplication (Ohno, 1970; He and Zhang, 2005). Conversely, 

duplicates can be silenced or lost because of the higher frequency of deleterious mutation than the 

beneficial ones, directing to the phenomenon called pseudogenization (Mungpakdee et al., 2008). 

Another complex explanation, known as gene balance hypothesis, reckons that selection driving long 

term retention of duplicated genes, is believed to be caused due to dosage balance constraints against 

loss (Birchler and Veitia, 2012). Hence, evolution of whole genome has gained attention by 

researchers, leading different approaches to analyse the concept of duplication mode in relation with 

regulatory divergence of gene expression (Zhao et al., 2020).  

Prior studies have focused on understanding regulatory dynamics changing gene expression patterns, 

in numerous species including both prokaryotes (eg: bacteria (McAdams et al., 2004)) and eukaryotes 

(eg: human (Battle et al., 2014)) which briefly encompass active chromatin configuration and binding 

of transcription factors (TFs) to the gene promoters to initiate transcription (Klemm et al., 2019). This 

binding form is determined by a gene regulatory network (GRN) (Thompson et al., 2015) connecting a 

TF to a specific set of genes or a gene with certain TFs (Jones and Vandepoele, 2020), allowing 

exploration of the knowledge gap between systems biology and regulatory interactions after WGD.  

Binding of TFs to promoters or enhancers determines to what extent the genes would express within 

a network under the regulatory control (Gillard, 2019). It is governed by a change in cis versus trans 
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regulatory mutations which influence the functional divergence of genes after evolution (Jones and 

Vandepoele, 2020). The changes in cis regulatory elements, i.e. promoter divergence, at target gene 

levels are associated with gain or loss of TF binding and expression shifts over evolutionary time (Jones 

and Vandepoele, 2020). Conversely, mutation or protein sequence change (trans) in a TF, lead to 

consequential change of activities of the target genes associated with the regulation of that particular 

TF (Nowick and Stubbs, 2010). Hence, alteration of specific TFs can have impact on their downstream 

gene expressions within a regulatory network (Nowick and Stubbs, 2010). Therefore, in order to infer 

evolutionary changes in the biological networks (Nowick and Stubbs, 2010), it is necessary to delineate 

the functional divergence of the TFs towards expression variation of genes. 

Evolution of duplicated genes have been extensively studied in plants and yeasts, however, here we 

have a potential curiosity in the WGD driven underlying mechanisms in Atlantic salmon. Our interest 

harmonizes with the extreme retention rate of paralogs in Atlantic salmon (Carmona-Antoñanzas et 

al., 2013). In addition, autotetraploidization in Atlantic salmon has initiated evolutionary forces to 

have consequence in the expression of genes leading up to adaptive gain (Carmona-Antoñanzas et al., 

2013). This is supported by Gillard et al. (2020) who used a phylogenetic Ornstein- Uhlenbeck (OU) 

model  (Rohlfs et al., 2014) and  found liver specific gain in the gene expression of Atlantic salmon 

following WGD. The paper stated that the acquisition of new TFBSs was associated with the increased 

expression in one of the duplicates (Gillard et al., 2020). Depending on the binding of TFs to the 

regulatory sites, the paralogous copies increase or decrease expression which is activated by specific 

TFs. To regulate this expression dynamics, which TFs are involved to change expression in the same or 

different direction still needs to be resolved. In other words, it generates a research question “Are 

there some TFs, more prone to evolvability that can lose or gain targets more easily across the 

genome on a short time scale?”.  

Here we tried to address a part of the aforementioned question by two steps analysis. Initially we 

build a TF-gene regulatory network by including a prior information table on TF-gene interaction 

besides RNA counts. For this we used ATAC-seq reads from Atlantic salmon species to link gene 

expression to TFs. Then for modelling this global regulatory network we used an algorithm called 

Inferelator (Miraldi et al., 2019). Later, we used the upregulated + conserved (up+cons) copies of 

paralogs with which we wanted to explore TFs that were more inclined to switch towards upregulated 

copies compared to their conserved partners and generate evolvability over evolutionary time scale. 

We expect that TFs showing differences in shifting between targets would provide insights about 

understanding the TF evolvability towards gene expression divergence in Atlantic salmon.  
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Glossary 

Paralogs: Copies of genes that have duplicated within the same genome over evolutionary timescale.  

Active chromatin configuration: Open regions of the chromatin where TFs have gained access to bind and 

regulate gene expression (Klemm et al., 2019). 

GRN: The gene regulatory network represents the genes and their interactions as nodes and edges respectively 

(Thompson et al., 2015). Nodes are basically comprised of regulators like TFs, mi-RNA, signalling proteins and 

specific genes whereas edges are the direction toward their targets (Thompson et al., 2015).  

TFs: Transcription factors are proteins, associated with transcription process of DNA to messenger RNA  and 

expression of specific genes.   

ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing, preloaded with Tn5 transposase, is 

used to find the open chromatin regions in the DNA (Klemm et al., 2019). This enzyme cuts and inserts adaptors 

into the DNA which facilitates the tracking of the Tn5 transposase to detect the open regions (Klemm et al., 

2019). An open region/accessible region is important for the TFs to get access to their binding sites in order to 

initiate transcription. 

RNA-seq data: It is obtained by converting the RNA to cDNA, following sanger sequencing or next generation 

sequencing (NGS) techniques with an addition of adapters to both ends of the cDNA fragments that allows 

sequencing (Wang et al., 2009). As an output, we get the reads of varying length because of different NGS 

techniques (Wang et al., 2009). The reads are mapped to the genome and the number of reads mapped to each 

gene is counted (Wang et al., 2009). These counts, normalized for the total number of reads in the sample, are 

then used for downstream gene expression analysis .  

Inferelator: It is a method that uses standard regression model to infer TF-gene regulatory network (Miraldi et 

al., 2019). Two important datasets are required as an input to this method; the gene expression dataset and 

the prior information table where we have previous knowledge about the gene-TF interaction (Miraldi et al., 

2019). When a gene is regulated by TF, it is scored in the prior as 1 or more based on the number of transcription 

factor binding sites or 0 if there is no interaction. Another element is the gold standard interaction matrix, 

which can be used to evaluate the accuracy of the inferred network. This contains the predictors for which we 

can estimate the absence or presence of an interaction with a score of 0 or 1 accordingly. Generally gold 

standard contains interactions for few TFs whereas prior includes more genome wide data. But here we have 

gold standard that is not different from the prior. 

DNAse-seq: An endonuclease called Deoxyribonuclease I (DNAse I) cleaves the accessible DNA irrespective of 

the highly dense chromatin region (Klemm et al., 2019). After the library sequencing, hypersensitive sites can 

be easily recognized as the accessible regions.   

Asymmetrical evolution: Is the phenomenon when expression of both gene copies increase or decrease 

together after duplication. 

Autotetraploidization: Fourth round of whole genome duplication event that occurred in the salmonids 

common ancestry (Lien et al., 2016). 

TFA: Here, TFA represents the profiling of TFs by measuring the expression of genes of the TFs in the prior 

(Castro et al., 2019). This is basically a determination of transcription initiatory or inhibitory factors like 

chromatin configuration, post-translational regulation of proteins, protein-protein interactions that control the 

status of TFA in a cell (Castro et al., 2019).  

Jasper: It contains sequence motifs or binding profile of the TFs to which they bind. 
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TPM: Transcripts per million is basically a normalization method for the RNA-seq data (“TPM”, 2016). In 

general, this is calculated in three steps: Initially, for each sample, the reads per kilobase (RPK) value is 

computed as reads divided by the length of each gene in kilobase; then the sum of the RPK values are divided 

by 10^6 that gives a scaling factor which is used to divide each RPK value in the third step (“TPM”, 2016).  

Confidence score: This score is estimated to get an idea about the rank of individual edges in the TF- gene 

regulatory network. To obtain robust predictions, TF-gene interactions are predicted from different subsets 

of the data (i.e. bootstrap-samples) and the final confidence score for each interactions is based on how high 

that interaction ranked across all the different subsets. 

Precision, Recall, MCC and F1: All of them are the predictors to measure the performance of the model.  

To understand these 4 metrices, we drew a confusion matrix table for our datasets: 

 Predicted Predicted 

Actual True positive (It happens when an 
interaction is predicted by the 
Inferelator that  is actually present 
in the gold standard) 

False negative (When there is an 
interaction not predicted by the 
Inferelator that is actually present 
in the gold standard) 

Actual False positive (When there is no 
interaction in the gold standard 
but is predicted by the Inferelator) 

True negative (When there is no 
interaction in the gold standard 
and is not predicted by the 
Inferelator) 

 

In the context of this table, we measured the performance metrices as following: 

Precision: It determined, of the interactions that are predicted by the model, the fraction that are actually in 

the gold standard. The formula for the calculation is: 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (“Precision and recall”, 2021) 

Recall: It determined, of the interactions that are actually in the gold standard, what fractions  are predicted 

by the model. The formula for the calculation is: 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (“Precision and recall”, 2021) 

F1: It was calculated by combining both precision and recall and known as weighted harmonic mean of both 

performance metrices (“F-score”, 2021). The formula for the calculation is : 

F1 = 
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (“F-score”, 2021) 

(https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/). 

MCC: The Matthews correlation coefficient is another performance metric that was measured because of our 

interest in both positive and negative classes of the confusion matrix. It is basically ranged between -1 and +1, 

whereas -1 means the absence of an interaction in the gold standard that is predicted by the model: 0 means 

the model predicts an interaction randomly; +1 means the presence of an interaction in the gold standard that 

is predicted by the model (“Matthews correlation coefficient”, 2021). The coefficient is calculated by using the 

following formula.     

MCC = 
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

[(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)]1/2 (“Matthews correlation coefficient”, 2021) 

Area under precision-recall curve (AUPRC): The area under PR curve (AUPRC) displays the quality of the 

method regarding predicting interactions. If it is 1, it means the model has predicted all the interactions from 

the prior while minimizing predicted interactions outside the prior. In other words, a value of 1 indicates that 

there are no false positives or false negatives. 

 

https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
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Materials and methods 

RNA-seq data  

We got expression datasets that are available on EBI databases with project codes (PRJEB24480, 

PRJEB30483, PRJEB34437). Moreover, the data also contained samples, collected during 

smoltification, that can be found in the github repository page 

(https://gitlab.com/garethgillard/megaLiverRNA/-/blob/master/data/local_GSF2_SE.tsv). From these 

projects, only liver tissue samples were used for our analysis. Briefly, they used RNA-seq data for 

Atlantic salmon, obtained through a dietary based feeding trial (Gillard, 2019) from which we only 

focused on 146 fresh water samples. Sequence reads were mapped and quantified for estimating 

counts and Transcripts Per Million reads (TPM) by using STAR (Dobin et al., 2013) and RSEM (Li and 

Dewey, 2011) respectively. Afterwards, we used the TPM counts for the fresh water samples and took 

the logarithmic values of the counts for further analysis.  

ATAC-seq data for network analysis:  

The raw ATAC-seq data, available in the database ArrayExpress with accession number: E-MTAB-9001, 

were mapped and filtered for quality check. Reads were used by TOBIAS tool (Bentsen et al., 2020) to 

perform TF-footprinting analysis, including TF motifs from JASPER (Fornes et al., 2020). For 

footprinting, Tobias uses ATAC reads that undergo bias correction for Tn5 cutsites (Bentsen et al., 

2020). This allows estimsation of footprinting scores based on the depth and accessibility of the local 

footprint (Bentsen et al., 2020). Tobias, then scrutinizes and generates these scores by using TF motifs 

in order to account for TF binding sites in the DNA, allowing its capability to differ between bound and 

unbound regions in the genome (Bentsen et al., 2020).  

Generating data for running into the Inferelator: 

For the downstream network analysis, we considered duplicates having both increased and decreased 

expression in one copy compared to their conserved copy (up + conserved and down + conserved) 

that gave us in total of 3184 genes. For each gene, we looked for 3000bp upstream and 200bp 

downstream of the transcription factor binding sites. Afterwards, we matched the Jasper TFs to 

salmon TFs through blasting for finding the regulators in salmon for these targets, followed by 

translation of the UniProt TF sequences. For each TF, a maximum of four genes were selected with an 

evalue < 1E – 10 and alignment length > 100. Later, to construct TF-gene interaction network, we 

created a prior matrix with genes in the rows and regulators in the columns, having a value of 1 or 

more, if TF binds upstream of the genes depending on the footprinting datasets and 0, if there is no 

interaction. This resulted in the reduction of the number of targets, leaving 2426 number of genes as 

well as 729 TFs in the prior list.  

We then took the liver expression data where we performed a clustering analysis for averaging the 

expression in samples that are very similar. This was done by setting a correlation threshold of 0.975.  

Afterwards, we calculated the expression similarities between TFs and their targets. Initially, we 

estimated the average correlation of the TFs with their targets in the priors. Moreover, to get the TFs 

with similar binding profiles (i.e. similar targets), we clustered the prior matrix. TFs having more than 

50% of the targets in common ended up in the same cluster.   

Eventually we selected 100 TFs from the prior table to run as an input to Inferelator depending on 

their high correlation with the targets and target redundancy. The selection was performed manually 

by looking for the functional importance of individual TFs from the literature review. Furthermore, we 

https://gitlab.com/garethgillard/megaLiverRNA/-/blob/master/data/local_GSF2_SE.tsv
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tried to keep a majority of the salmon TFs having an average correlation of 0.40 or more with their 

targets in the prior. Inferelator then ran the regression analysis using both expression and the prior 

table.  

TF-gene regulatory network: 

In order to compute the network, the method first tried to get the transcription factor activity (TFA) 

profile. Hence, it looked at the expression of the targets of the TFs rather than looking at the 

expression of the TF itself. TF activity is proportional to the expression of the genes in the prior that it 

regulates (Miraldi et al., 2019). So the method used the knowledge from the prior table that contains 

the information of the TF regulatory interactions with their targets and the expression of the genes 

which forms the TFA. The regression was then performed to find out which genes the specific TFs 

regulate using their activity profile.  

To infer the network, the regression of the model attempted to calculate the expression of a gene in 

a sample that is equal to the weighted sum of the activity of all the TFs (Miraldi et al., 2019). If the 

weight was significantly different from 0, this delineated that the TF affected the expression of the 

specific gene.  

𝑥𝑖𝑗 =  ∑ 𝑏𝑖𝑘𝑎𝑘𝑗

𝑘∈𝑇𝐹𝑠

  

 Here, 𝒙𝒊𝒋 stands for the expression level of gene i in condition j; 𝒂𝒌𝒋 symbolizes the TFA for TF k in 

condition j and 𝒃𝒊𝒌 represents the weight of the TF k on gene i (Miraldi et al., 2019).  

Network analysis:  

After running the Inferelator, we got a network in the form of a TSV file. The outflow of the algorithm 

can be found in the github repository (https://inferelator.readthedocs.io/en/latest/results.html). 

Briefly, the columns named targets and regulators are the genes and TFs correspondingly, which are 

ranked from highest to lowest according to the combined confidences score. The value of gold 

standard interactions is predicted as 1 depending on the presence of genes and TFs in the gold 

standard list and 0 while absent. Here, the gold standard is complementary to the priors in the network 

where the prior column contains the values in the prior network. The scores in precision, recall, MCC 

and F1 columns are the values calculated based on all the links predicted to have TF-gene interaction 

upwards of that specific row. In contrast, scores underneath that row are considered as values without 

TF-gene interaction. Rows having 0 and 1 indicate that the algorithm predicts interactions which is 

either absent or present in the gold standard matrix accordingly. Moreover, rows with NA value means 

that the genes or TFs are not present in the gold standard at all.  

GO enrichment analysis: 

The gene ontology enrichment analysis was conducted with R package “salmonfisher” 

(https://gitlab.com/sandve-lab/salmonfisher) and topGO (Alexa and Rahnenführer, 2009). We used 

salmonfisher to get the GO ids and topGO for obtaining the ontology terms. We tested the significance 

of the GO terms by performing classic fisher methods that used the threshold for p value < 0.01 (Alexa 

and Rahnenführer, 2009). We ran this test on each regulator to obtain the GO annotation for their 

targets individually.  

 

 

https://inferelator.readthedocs.io/en/latest/results.html
https://gitlab.com/sandve-lab/salmonfisher
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Comparison of P values between true and randomized network: 

In order to check the performance robustness of our network, we compared the p-values of the 

significant GO ids between both networks. Randomization was based on a bootstrapping approach of 

the targets from our network. We tested if the targets of each 100 TF having enriched gene functions 

differ between networks in the context of their significant p-values.  

GO similarity tree: 

The tree has been constructed for all the significant GO ids obtained for each regulator or TF. For this, 

we made a dissimilarity matrix by using jaccard method. Afterwards, we have performed a hierarchical 

clustering analysis “hclust” on the matrix that uses the method “ward.D2”, resulting in clusters, 

followed by squaring of the dissimilarities. All of the functions come from the package stats in R (R 

Core Team, 2013). 

Please note that our tree does not reflect phylogenetic relationship among TFs.  

Testing for TFs by combining all paralogs: 

To test if there were overlapping TFs between paralogs (upregulated and conserved), we made a 

contingency table for both copies, where the rows presented the upregulated TFs and the columns 

showed the conserved TFs. Furthermore, we ran fisher test on the contingency table for all the 

paralogs to get the significant TFs by setting the pvalue threshold to less than 0.01. Later, we manually 

corrected the statistical output for multiple testing in order to get the final outcome. 

 

 

Results and discussion 

We evaluated the effect of TFs on the expression of duplicated genes using the Inferelator model.  

Performance metrices: 

The model predicted 56066 interactions among 2426 genes and 100 TFs. However, the prior contained 

19108 interactions between TFs and genes. Hence, the performance metrices evaluated how well 

Inferelator predicts the true interactions from the prior.  

We saw that with decreasing precision, recall increases in the precision-recall (PR) curve (Figure 1A). 

Precision goes down as the confidence score gets lower (Supplementary file). On the other hand, we 

saw an increase in recall because the method predicted more of the interactions in the prior as it 

makes more predictions.  

In Figure 1B and 1C, both F1 and MCC scores increased with response to lower confidence score. For 

the confidence of 0.0755 (MCC) and 0.0378 (F1), resulting in 26046(F1) and 17843(MCC) predicted 

interactions, we observed the highest F1 and MCC score of 0.53 and 0.4787 respectively. From Figure 

1D, we observed that most of the interactions had low confidence score whereas few had a very high 

confidence. This goes parallelly with the selection of interactions for which the predictions had low 

confidence score.  
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Figure1A, 1B and 1C show the performance metrics on the y- axis increasing from 0 to 1 while x axis displays confidence 
score decreasing towards the right (except 1A). 1D represents number of edges for the level of confidence score for the 
average TF-gene interactions.   

We also ran the method on the same input data despite selecting for 100 TFs (Figure 2). We included 

all 729 TFs which gave us a total of 13122 predicted interactions, of which 7649 were in the prior. The 

performance metrices had very poor scores for both F1 and MCC compared to the previous 

performance scores. Moreover, The AUPR represented a very low quality (compared to Figure 1A) 

prediction of the method for predicting interactions. Therefore, we continued with the first network 

for the rest of our analysis.   
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Figure2A, 2B and 2C show the performance metrics on the y- axis increasing from 0 to 1 while x axis displays confidence 
score decreasing towards the right (except 2A). 2D represents number of edges for the level of confidence score for the 
average TF-gene interactions. 

 

P-values for true and randomized network 

To check the validity of our (true) network, we compared the p-values of our GOs with those from the 

bootstrap results corresponding to a randomized network. We observed a clear difference between 

the p-values for both networks where the peak for the true network was at the left side of the plot 

with maximum values close to 0 (Figure 3). On the contrary, it was mostly at the right side for the 

randomized network with larger values close to 0.01 (Figure 3). Moreover, for the bootstraps, the 

randomized network had a highest GO ids count for the peak at around 80. Conversely, for the true 

network, it had values higher than 80 for the majority of GO ids. The plots showed that our result was 

not random and therefore Inferelator models a meaningful network.    

 

Figure 3. It represents the p-values of all the significant GO ids, for 100 TFs corresponds to a true (left) and a randomized 
network (right). The y axis shows the counts for all the GO ids and x axis shows significant p values between 0 and 0.01. 
The left plot presents the true network and right one is for the randomized network. 
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By comparing both networks we observed that Inferelator worked well when we used a higher number 

of genes than the number of TFs. The first network (true) contained a 24 times higher number of genes 

compared to the later network (randomized) that had nearly 3 times more genes than that of TFs. This 

could be because of the overfitting of our model, however it requires additional approaches to confirm 

the concept.  

Hierarchical clustering for GO similarities  

We investigated the 100 TFs that we chose closely to check their modularity at the functional level. In 

other words, we were interested in exploring if there are groups of TFs sharing the same GOs, 

therefore, performing similar functions. We observed that TFs that have very small distance, shared 

GO ids between them (Figure 4). Compared to this, TFs that are very distant from each other do not 

shared GO ids (Figure 4). While looking at the bootstraps result we found that the bigger clusters were 

not meaningful at all or happened by chance. This suggests that our TFs are different from each other 

and performing specialized functions because of the little overlaps regarding GO ids between them. 

Figure 5 shows the number of TFs per GO id. We used the total number of GO ids for all 100 TFs. For 

the majority of the GO ids (more than 1500) there was only one TF present and for very few GO ids 

(around 4) showed a comparatively higher number of TFs (approximately 10) that overlapped, thus 

supporting our previous argument concerning Figure 4. 

 

 

Figure 4. The bootstrap result for the hierarchical clustering of 100 TFs based on their GO similarities. Here, in the y axis 
the height is the square of the TFs dissimilarities and x axis shows the distance between and among TFs. The numbers are 
the percentage of times when we get that branch in the bootstrap. 
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Figure 5. This plot shows the number of overlapped TFs for the GO ids where the y axis is the number of count 
corresponding to the GO ids and x axis displays the number of TFs. 

As the pattern of clustering with 100 TFs shows few shared GO between and among them, this raises 

the question: can we expect the similar pattern if there was a network with all the TFs instead of 100? 

In other words, if we do have all the TFs in the network, can there be modularity in the network like 

what we found for the TFs (Figure 4)? However, as we do not have clusters among the TFs (Figure 4), 

it could mean that there is no modularity at our network level as well. Alternatively, if there is 

modularity, it could be because of our incomplete sampling as we used a very small subset of the total 

TFs. However, we could not check the network modularity because of our time limit which can be 

measured by using local and global clustering coefficient to capture the degree of modularity of the 

network (Watts and Strogatz, 1998).   

Next, as we took samples from the liver, we were interested to closely look into the GO enrichment 

for TFs like HNF1A, KLF15 and FOX1A, highly expressed in liver and associated with lipid metabolism 

(Gillard et al., 2020). Also, we wanted to check if our model is biologically meaningful. Hence, we 

expected the TFs to be involved in the functions that were directly or indirectly related to liver. Our 

enrichment results showed that HNF1A, KLF15 and FOX1A are involved in several other functions 

along with their earmarked specificity in liver/lipid metabolism. Please note that for the majority of 

the results, in order to compare with our GO terms, we used information from human and mice. 

Therefore, sometimes, it can be uncertain to happen in fish.  

Krüppel-like factor 15 (KLF15) has been reported to play a crucial role in cell proliferation (Wang et al., 

2018). These authors stated that KLF15 inhibits cell cycle process by upregulating CDKN1 A/p21 and 

CDKN2A/p15 complex in human (Wang et al., 2018). CDKN1A or cyclin- dependent kinase inhibitor 1 

A, a tumor suppressor , arrests cell cycle event, when binding of p21 to it blocks Cdk2 and Cdk1 

activities and blocks entry into S phase from G1 phase  (Alberts et al., 2002). Moreover, KLF15 arrests 

cell cycle progression in mouse by inhibiting DNA replication (Ray and Pollard, 2012). On the other 

hand, there could be a trade-off between liver lipogenesis and gluconeogenesis, initiated by KLF15 

(Takeuchi et al., 2016). These authors proposed that during fasting in mice, KLF15 could supress 

lipogenesis by arresting its associated downstream lipogenic genes and initiate gluconeogenesis 

(Takeuchi et al., 2016). These findings coincide with our enrichment status for this TF. We found its 

involvement in G1/S transition checkpoint, interphase, purine nucleoside triphosphate metabolic 
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process and in electron transport chain (Table 1). This could mean that KLF15 promotes DNA 

replication at the S phase when there is enough energy. And so, during fasting phase, due to lack of 

energy, this replication stops and glucose metabolism is initiated.   

Hepatic nuclear factor 1-α (HNF1A), plays an important role in the development of mammalian liver 

and kidney (Lau et al., 2018). Its function in mammals includes, arresting cell cycle event by blocking 

G2/M phase (Zeng et al., 2011). Moreover, it blocks the glucose energy metabolism that initiates anti-

proliferative mechanism in mammals (Wang et al., 2019).  

Conversely, function of HNF1A in the glucose metabolism of fish is not well studied. HNF1A is involved 

in the secretory function of insulin in regards to glucose in mammals (Beysel et al., 2019). Moreover, 

Kuo et al., (2015) reported that steroid hormone like glucocorticoids elevation increases blood glucose 

level (hyperglycaemia) when there is not sufficient production of insulin from pancreatic Beta cell. 

However, like mammals, hyperglycaemia in fish is not reported to be a clinical case due to lack of 

insulin production, although (Moon, 2001) reported it to be a potential reason. There is a controversial 

topic about teleost being glucose intolerant or not (Moon, 2001). Navarro et al., (2002) reported that 

teleost clears loads of glucose slowly compared to mammals. But it is not clear how do they do that 

to alleviate increased glucose level in blood. In mammals, in order to ensure gradients for glucose 

transport, they need to be phosphorylated to glucose-6-phosphate by hexokinase (HK) which requires 

glucokinase (GK) expression in liver (Niswender et al., 1997; Moon, 2001). Their presence is important 

for maintaining insulin concentration in mammalian blood (Niswender et al., 1997). To regulate this 

glucose-6-phosphate system in mammals, HNF1A plays a key role in glucose homeostasis (Moon, 

2001; Lau et al., 2018). In Atlantic salmon, GK activities were found to be reported by (Tranulis et al., 

1996). However, the regulatory mechanism of HNF1A is not clear in fish. Therefore, with the reference 

from (Kuo et al., 2015, Zeng et al., 2011 and Wang et al., 2019), including our GOs (Table 2), we suggest 

that in response to increased glucose in blood, HNF1A regulates the steroid hormone receptor 

signalling pathway followed by decreasing glucocorticoid levels in blood up to a certain point. After 

that, it shunts glucose energy metabolism to prevent cell proliferation.  

After combining both literature studies and enrichment results, we did not find any link between our 

GOs (Table 3) and the expression of FOXA1 in liver. Hence, we thought this could be because of an 

artifact of our model. But, after checking for the distribution of the slopes (data not shown), we found 

that it upregulates many genes. Therefore, this TF could be doing pleotropic functions in both liver 

and brain in Atlantic salmon.  

Table 1 describes the top 5 gene enrichment analysis for KLF15 performed with Fisher’s exact test. The GO terms stand for 
the biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated 
for that specific GO id, among which the method finds significant and expected number of genes. Class fisher represents the 
corresponding p-value score for the most significant GO term.  

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0002474 

antigen processing and presentation of peptide antigen 

via MHC class I 

 23 13 4.56 0.00010 

2 GO:0044819 mitotic G1/S transition checkpoint 18 11 3.57 0.00014 

3 GO:0022900 electron transport chain 30 15 5.95 0.00019 

4 GO:0009144 purine nucleoside triphosphate metabolic process 57 23 11.3 0.00025 

5 GO:0051325 interphase 19 11 3.77 0.00027 
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Table 2 describes the top 5 gene enrichment analysis for HNF1A performed with Fisher’s exact test. The GO terms stand for 
the biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated 
for that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents the 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0061005 cell differentiation involved in kidney development 13 9 2.54 0.00013 

2 GO:0033145 
positive regulation of intracellular steroid hormone 
receptor signalling pathway 5 5 0.98 0.00028 

3 GO:0046339 diacylglycerol metabolic process 14 8 2.73 0.00195 

4 GO:0030879 mammary gland development 51 19 9.95 0.00216 

5 GO:0001990 
regulation of systemic arterial blood pressure by 
hormone 9 6 1.76 0.00262 

 

Table 3 describes the top 5 gene enrichment analysis for FOXA1 performed with Fisher’s exact test. The GO terms stand for 
the biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated 
for that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0007033 vacuole organization 36 21 10.2 0.00014 

2 GO:0021533 cell differentiation in hindbrain 10 8 2.83 0.00102 

3 GO:0021681 cerebellar granular layer development 10 8 2.83 0.00102 

4 GO:0021683 cerebellar granular layer morphogenesis 10 8 2.83 0.00102 

5 GO:0019827 stem cell population maintenance 52 25 14.73 0.00175 

 

Testing for paralogs 

To test for TFs among paralogs, we investigated a total of 612 paralogs (306 upregulated + 306 

conserved). We explored if there were TFs that overlapped among paralogs or that appeared in only 

one of the copies. In other words, we tested if there were TFs with presence in one paralog is 

independent from the presence in the other paralog. While testing for significance, we found the 

majority of the TFs to be close to p value 0 (Figure 6). After correcting for multiple testing it resulted 

in four TFs (Table 4). In this test we were interested in the TFs with the lowest p-value and those who 

had observed greater than expected for false-true or true-false combinations. Moreover, this means 

that if we find these four TFs in one paralog, they are most likely to be absent in the other paralog. 

However, the contingency table (Table 4) showed that all these four TFs (CTCFL, ERG1, EMX2, ETV3) 

had enrichment in the observed side higher than the expected for false-false and true-true 

combinations. On the contrary, they did not have enrichment for the other diagonal. Therefore, it 

means that if we find any of these TFs binding to one paralog, they are most likely to bind to the other 

copy, despite the fact that one copy is upregulated and other is not. 
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Figure 6. It represents the histogram corresponding to the p-values for the 100 TFs. Y axis is the number of TFs and x axis 
is the p-values concerning to the number. 

 

Table 4. Contingency table for the TFs that have shown significance in the fisher test where the TFs are presented as a row. 
We quantified both observed and expected instances to test our hypothesis. Our null hypothesis was that TFs bind to both 
paralogous copies, and alternate hypothesis was that they bind to one of the copies. The orange colour shows that we 
have higher number in the observed state than the expected while the green colour represents the opposite pattern.  

 

Next, as the abovementioned TFs bind to both paralogs or neither and also because the copies had 

different expression, we investigated the top 5 biological processes that these TFs are involved in. 

Thereby, we hypothesized that increased expression of one copy but not the other copy could possibly 

be related to the fundamental functions initiated by these TFs, which can be unbalanced if there is a 

change in the TFs with respect to the expression patterns of the paralogs.  

Contingency Table 

 

Conserved Paralog 

False True 

U
p
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d
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o
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e

 

 Observed Expected Observed Expected 

CTCFL 191 176.72 37 52.785 

EMX2 177 162.945 40 54.315 

ETV3 195 176.715 42 58.905 

EGR1 199 186 34 46.512 

Tr
u

e 

 Observed Expected Observed Expected 

CTCFL 45 58.905 33 17.595 

EMX2 52 66.555 37 22.185 

ETV3 35 52.785 34 17.595 

EGR1 45 58.752 28 14.688 
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Table 5 describes the top 5 gene enrichment analysis for CTCFL performed with Fisher’s exact test. The GO terms stand for 
the biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated 
for that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0043484 regulation of RNA splicing 46 26 13.72 0.00013 

2 GO:0033120 positive regulation of RNA splicing 9 8 2.68 0.00040 

3 GO:0035264 multicellular organism growth 83 39 24.76 0.00058 

4 GO:0016569 covalent chromatin modification 150 63 44.75 0.00069 

5 GO:0016570 histone modification 150 63 44.75 0.00069 

 

Table 6 describes the top 5 gene enrichment analysis for EGR1 performed with Fisher’s exact test. The GO terms stand for the 
biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated for 
that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0030097 hemopoiesis 247 86 61.04 0.00010 

2 GO:0048705 skeletal system morphogenesis 59 28 14.58 0.00010 

3 GO:0002520 immune system development 262 90 64.75 0.00012 

4 GO:0019222 regulation of metabolic process 1234 342 304.98 0.00012 

5 GO:0001568 blood vessel development 170 63 42.01 0.00013 

 

Table 7 describes the top 5 gene enrichment analysis for EMX2 performed with Fisher’s exact test. The GO terms stand for 
the biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated 
for that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0042886 amide transport 452 178 144.54 0.00011 

2 GO:0006886 intracellular protein transport 282 118 90.18 0.00012 

3 GO:0015031 protein transport 433 171 138.47 0.00014 

4 GO:0015833 peptide transport 445 175 142.3 0.00015 

5 GO:0007098 centrosome cycle 35 22 11.19 0.00015 

 

Table 8 describes the top 5 gene enrichment analysis for ETV3 performed with Fisher’s exact test. The GO terms stand for the 
biological processes associated with the corresponding GO id. Annotated means the number of genes that are annotated for 
that specific GO id, among which the method finds significant and expected number of genes. Classfisher represents 
corresponding p-value score for the most significant GO term 

Serial 
No. 

GO.ID GO Terms Annotated Significant Expected Classfisher 

1 GO:0060968 regulation of gene silencing 8 8 2.58 0.00012 

2 GO:0006396 RNA processing 146 68 47.15 0.00014 

3 GO:0046822 regulation of nucleocytoplasmic transport 37 23 11.95 0.00016 

4 GO:0065002 intracellular protein transmembrane transport 10 9 3.23 0.00026 

5 GO:0071806 protein transmembrane transport 10 9 3.23 0.00026 

 

CTCFL is a known paralog of CTCF, also called Brother Of Regulator of Imprinted Sites (BORIS) (Loukinov 

et al., 2002). After WGD in early teleost fish, retention of CTCFL in the genome of stickleback and 

medeka could be explained by sub-functionalization (Taylor et al., 2003). On the other hand, these 

duplicates evolved by performing distinct functions in mammals after their divergence from 

monotremes (Hore et al., 2008). This suggests that in salmonids, therefore, in Atlantic salmon, both 

copies could perform similar ancestral gene functions as salmonids belong to the later stage of teleost 

divergence. CTCF, a highly conserved transcriptional regulator protein (Bell et al., 1999), performs by 

binding to the transcription start sites (TSSs) of many genes in order to control their expression (Nora 

et al., 2017). Its ubiquitous functions corresponds to the finding from Wang et al. (2020), who reported 
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contribution of CTCF in hepatocyte repopulation by activating genes that regulate the cell cycle. They 

stated that enrichment of CTCF in the accessible chromatin region could be associated with 

demethylation (Wang et al., 2020). Moreover, our GOs (Table 5) confirms the transcriptional and 

translational control of CTCF in liver that could be consistent with hepatocyte repopulation .  

EGR1 is a highly conserved transcriptional regulator across vertebrate evolution (Drummond et al., 

1994) and it regulates cell proliferation via p21 mediated pathway (Li et al., 2020). Our results (Table 

6) also supports its involvement in the development of the immune system, blood vessels, blood cells 

and the skeletal system.  

EMX2 has been found to act on cellular proliferation by regulating the Wnt/B catenin signalling 

pathway (Li et al., 2012). Wnt/B catenin is a evolutionarily conserved pathway important for 

fundamental development (Pennica et al., 1998) as well as tissue homeostasis in adults (Clevers et al., 

2014). But the contribution of EMX2 in tissue homeostasis is not well studied. EMX2, has been studied 

in murine brain where its role has been suggested to control regulation of Beta catenin during Wnt 

pathway (Muzio et al., 2005). Beta catenin in the epithelial cell junctions, undergoes stabilization 

instead of degradation during Wnt signalling pathway (Dickinson et al., 2011). Also, binding of Beta 

catenin with the TFs appearing in the cell nucleus, activates transcription for the downstream target 

genes of the pathway (Molenaar et al., 1996; Korinek et al., 1998). Although the potential mechanism 

of EMX2 remains unclear throughout the pathway, our GOs (Table 7) suggest its contribution in the 

transport of Beta catenin into the nucleus to initiate transcription. However, there could be several 

other nuclear proteins regulating the journey of Beta catenin towards downstream gene expression 

(Söderholm and Cantù, 2021). Albeit, the whole mechanism remain unsolved, the interplay among 

transcriptional regulation, nuclear factors and our GOs suggest further investigation with a focus on 

EMX2 activity throughout the process of Wnt/B catenin signalling pathway.  

ETV3, a tumor suppressor in chronic lymphocytic leukaemia (Green et al., 2010), is found to be 

involved in cell cycle arrest, inflammation and protein synthesis (Carlson et al., 2011). Protein 

phosphorylation of ETV3 by ERK1/2 plays a crucial part in downstream ERK activated mechanisms. 

ERK1/2 (MAPKs-Mitogen-activated protein kinases), conserved in both vertebrates and invertebrates, 

are integral part of multiple biological processes that include the immune system (Dong et al., 2002), 

development (Aouadi et al., 2006), glucose homeostasis (Bost et al., 2005) and memory (Govindarajan 

et al., 2006). These kinases phosphorylate various proteins to initiate the regulation of these processes 

(Yoon and Seger, 2006). Carlson et al. (2011) reported that phosphorylation of ETV3 by ERK1/2 

promotes activation of genes involved in cell cycle, mRNA processing and translation. On the other 

hand, while the activity of ERK1/2 ceases, ETV3 (newly translated) instantly represses its target genes, 

thus allowing temporary blow-up of post ERK activated transcriptional activities (Carlson et al., 2011). 

Supported by our GOs (Table 8), we found the role of ETV3 in the regulation of cell proliferation. 

However, we could not link how does it relates to protein transmembrane transport.  

Seemingly, our TFs are involved in the functions mostly related to the cell proliferation. Gillard et al. 

(2020) reported that the association of adaptive evolution towards cell cycle in salmon have 

potentially influence on genome stability. This relation was found to be biased towards upregulated 

copies between up+cons paralogs (Gillard et al., 2020). These authors also stated higher promoter 

divergence with regards to more bound transcription factor binding sites (bTFBSs) in the increased 

copies (upregulated) (Gillard et al., 2020). However, our TFs do not belong to the group of TFs which 

were found to be associated with adaptive gain in the paper (Gillard et al., 2020). Therefore, It suggests 

that it could be easier to modify the co-activators of our TFs rather than the TF themselves towards 

the paralogous expression turnover. To test the hypothesis in future, we can check for the TFs by using 

the same datasets but in the reversed direction. Then we can select for the genes and look into the 
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TFs that regulate them, followed by running GO enrichment analysis on them. Otherwise, we need to 

perform the similar chi square test in the whole datasets for which we have similar expression in the 

paralogs. If we get the same TFs for all (up + up, down + down and cons + cons), it means that these 

four TFs are very congruent with our hypothesis that they need to be conserved in Atlantic salmon.  

 

 

Conclusion 

In conclusion, measuring the validity of the network including GO enrichment analysis showed that 

Inferelator modelled a purposive TF-gene regulatory network. However, our results recommended 

that answering the gap between modularity at the functional level and network level could ameliorate 

the robustness of the model. On the other hand, our analysis involving WGD driven TF evolvability 

with respect to paralogous expression variation suggested that CTCFL, EGR1, EMX2 and ETV3 

remained preserved in salmon rather than being biased towards the upregulated copies of the 

paralogs throughout the evolutionary time.   
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