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Summary

Metabolism is the set of biochemical reactions that occur within a living organism in or-

der to maintain life and grow. Most of these reactions are catalysed by enzymes which are

coded for by genes. Using existing biochemical, genetic and genomic knowledge, one can

link reactions together into pathways and further into metabolic networks, accounting for

all enzyme-coding genes and which reactions they catalyse. Thus, metabolic networks can

be made for entire organisms from their sequenced and annotated genome. As a means

to predict network functionality and phenotypes, they are converted into genome-scale

metabolic models (GEMs). GEMs are increasingly used to study the physiology of vari-

ous organisms, ranging from microbes to complex multicellular eukaryotes, in order to

understand and possibly benefit from their metabolic activities. However, there is increas-

ing evidence that only a subset of metabolic reactions in a network is active in any given

context, making GEMs superfluous when specific conditions are investigated. Therefore,

several methods have been developed to extract context-specific metabolic models by in-

tegrating omics data with GEMs. Although context-specific models are assumed to yield

more accurate predictions of phenotypes in a particular context, their accuracy regard-

ing metabolic functionality has not yet been sufficiently tested. To overcome this, I here

assess the capability of six model extraction methods (MEMs) to create functionally ac-

curate context-specific models, using an Atlantic salmon GEM and hepatic transcriptomic

data. To this end, I extend current methods for predicting sample-specific activity states

of metabolic tasks to overcome the particular challenge of not having an objective truth

to benchmark against in MEM comparisons. Context-specific models outperformed the

GEM from which they were built, indicating that context-specific modelling captures real-

istic representations of metabolism in a given context and thus yield practical and biologic-

ally meaningful predictions. These results support current evidence that context-specific

models are advantageous when studying the metabolic behaviour of organisms, especially

when investigating specific contexts of interest. The findings of this study contribute to

the current knowledge regarding context-specific metabolic modelling and may facilitate

further research. Consequently, this may potentially be beneficial for both academic and

industrial purposes.
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Sammendrag

Stoffskiftet, eller metabolisme, er alle biokjemiske reaksjoner som forekommer i en levende

organisme for å kunne leve og vokse. Disse reaksjonene katalyseres av enzymer som kodes

for av gener. Ved å bruke eksisterende biokjemisk, genetisk og genomisk kunnskap kan

man koble sammen reaksjoner til veier og videre til større nettverk, og gjøre rede for alle en-

zymkodende gener og hvilke reaksjoner de katalyserer. Dermed kan metabolske nettverk

lages for hele organismer fra deres kartlagte genom. Som et middel til å forutsi nettverks-

funksjonalitet og fenotyper, blir de konvertert til genomskala metabolske modeller (GEM).

GEM-er brukes i økende grad til å studere fysiologien til forskjellige organismer, fra mik-

rober til komplekse flercellede eukaryoter, både for å få mer kunnskap og muligens utnytte

deres metabolske aktiviteter. Imidlertid øker mengden bevis for at bare en delmengde

av biokjemiske reaksjoner i et nettverk er aktivt i en gitt kontekst, noe som gjør GEM-er

overflødige når spesifikke forhold undersøkes. Derfor har flere metoder blitt utviklet for

å trekke ut kontekstspesifikke metabolske modeller ved å integrere ulike data som gener-

eres med funksjonell genomikk ("omics"-data) med GEM-er. Selv om kontekstspesifikke

modeller antas å mer nøyaktige kunne estimere fenotyper under bestemte forhold, har de-

res nøyaktighet med hensyn til metabolsk funksjonalitet ennå ikke blitt tilstrekkelig testet. I

denne oppgaven vurderer jeg seks modellekstraksjonsmetoders (MEM) evne til å lage funk-

sjonelt nøyaktige kontekstspesifikke modeller, ved å integrere hepatisk genuttrykksdata fra

Atlanterhavslaks på en GEM av denne arten. Jeg bruker eksisterende metoder for å forutsi

prøvespesifikke aktivitetstilstander for metabolske oppgaver for å løse den nåværende ut-

fordringen å ikke ha en objektiv sannhet å teste mot i MEM-sammenligninger. De kon-

tekstspesifikke modellene utkonkurrerte GEM-en de ble laget fra, noe som indikerer at

kontekstspesifikk modellering evner å realistisk representere metabolismen til en organ-

isme i en gitt kontekst og dermed kunne gi praktiske og biologisk meningsfulle spådom-

mer. Resultatene støtter eksisterende bevis for at kontekstspesifikke modeller er fordelak-

tige når man studerer organismenes metabolske atferd, spesielt når man undersøker spesi-

fikke forhold. Funnene av denne studien bidrar til å øke den nåværende kunnskapen om

kontekstspesifikk metabolsk modellering og kan legge til rette for videre forskning. Derfor

kan dette potensielt være gunstig for både akademiske og industrielle formål.
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1. Introduction

Within a cell, a multitude of biochemical reactions converts available nutrients into en-

ergy and the building blocks required to maintain vital processes and to grow. Metabolism

is this vast network of reactions and, although very complicated and highly interconnec-

ted, it is often studied in individual parts (Sulheim, 2020). Although this has led to extens-

ive knowledge about single reactions and metabolic pathways, it provides limited insights

into the function of the network as a whole. By piecing together individual reactions and

pathways, the structure and dynamics of entire systems can be scrutinised to uncover the

function of the individual parts in interaction. Hence, by approaching networks from a sys-

tems level, one can start studying the entire metabolism of organisms to understand and

possibly benefit from the given organism’s metabolic activities.

1.1 What is systems biology?

Systems biology is an interdisciplinary field built upon the understanding that molecu-

lar components form the networks representing the entirety of living organisms, and that

these components are intimately interconnected and explicable only by reference to the

whole (Palsson, 2015). The relationship between cell components, with their genetic bases,

and their physiological functions are interpreted holistically, thus linking genotype to phen-

otype (Palsson, 2015). Systems biologists take the step from network reconstructions, i.e.

maps of the individual parts and the links between them, to mathematical models fit for

simulations, monitoring component interactions and the resulting function and behaviour

of the biological system. This practice was made possible by the emergence of the first

full genome sequences and high-throughput sequencing technologies in the mid-1990s,

enabling scientists to study organism-specific metabolism as systems (Palsson, 2015). By

identifying and functionally annotating genes in genomes using bioinformatics tools and

connecting gene-protein-reaction relationships through reaction databases, an organism’s

metabolism could now be outlined as a genome-scale metabolic model (GEM) (Sulheim,

2020).

1



2 CHAPTER 1. INTRODUCTION

1.2 Metabolic modelling

The concept of metabolic modelling is based on metabolites and reactions, forming net-

works when connected. Although different graph representations have been discussed

(Montañez et al., 2010; Cazzaniga et al., 2014), metabolites and reactions are often rep-

resented by nodes and links, respectively. In this case, reactions that share metabolites as

either reactants or products may be linked together to form reaction maps. For instance, a

metabolite a may be taken up from the environment and transported into the intracellular

space, before it is used in a reaction to produce a second metabolite b. This metabolite

may in turn be a part of separate reactions, thus extending the reaction map. This net-

work would be represented by a node for each of the metabolites and a link between the

metabolites involved in the given reaction (Fig. 1.1). However, network complexity quickly

increases with the number of reactions, revealing the need for a mathematical format to

analyse GEMs.

Figure 1.1: Minimal reaction network. Reactions and metabolites are represented
by arrows and circles, respectively. Exchange reactions (E) allow metabolites to enter
or leave the system, transport reactions (T) transport metabolites across membranes,
while metabolic reactions (R) take place within cellular compartments. The objective
function is represented by an artificial reaction (growth). Metabolites may be either
intracellular (yellow) or extracellular (red). Figure from Sulheim (2020).

The mathematical format used for GEM analyses is based on the stoichiometric matrix, S.

This matrix comprises the stoichiometric coefficients of the metabolites in each reaction

in the network. The columns of S represent reactions while the rows represent the meta-

bolites, with the mass-balanced coefficients of the metabolites in each reaction as entries

in the matrix. For every metabolite consumed and produced in any given reaction, there

is a negative and positive stoichiometric coefficient, respectively, and for every metabolite

that does not take part in a particular reaction, a coefficient of zero is used. In addition

to the intracellular reactions, a GEM also includes transport and boundary reactions. Fur-

thermore, it is common to add a reaction representing a specific biological functionality of

the system. The mathematical representations of such reactions are referred to as object-

ive functions (Palsson, 2015). Biomass production is often used as the primary metabolic

objective. However, it may be any combination of the reactions in the model.



1.2. METABOLIC MODELLING 3

The turnover rate or flow of metabolites through a network is called fluxes (Bordbar et al.,

2014), commonly measured in mmol produced metabolites per gram dry weight per unit

time, usually hours (mmol gDW–1 h–1) (Orth et al., 2010b). The flux through all n reactions

can be represented mathematically as a flux vector,

v = (v1, v2, . . . , vn)

which when multiplied with the stoichiometric matrix results in a vector of changes in

metabolite concentrations (x) over time:

Sv = dxxx

dt
(1.1)

Metabolite turnover rates are documented to be on the order of seconds (Buchholz et al.,

2002). This is much faster than those of other biochemical processes such as transcription,

translation and protein degradation, which are on the order of minutes to hours (Maier et

al., 2011; Shamir et al., 2016). Thus, metabolite concentrations are assumed to be constant

and a steady-state constraint is imposed on the fluxes (Orth et al., 2010b). Consequently,

equation (1.1) reduces to

Sv = 0 (1.2)

Since the stoichiometric matrix usually comprises more reactions than metabolites, there

are infinite solutions to equation (1.2), which spans a volume known as the null space of S

(Sulheim, 2020). Every point in the null space of S, i.e. every solution, is a flux distribution.

In order to further constrain the allowable steady-state flux distributions of the network,

upper and lower reaction flux bounds are set, specifying the maximum and minimum al-

lowable fluxes, respectively (Orth et al., 2010b; Palsson, 2015). All solutions that satisfy

these additional constraints define the allowable solution space of the network under the

given constraints (Fig. 1.2).

Figure 1.2: The solution space. The solution space defines the allowable fluxes of an
organism given the current constraints. Flux balance analysis can be used to find op-
timal solutions in the solution space. Figure from Orth et al. (2010b).
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The solution space demarcates an organism’s achievable cellular functions, and thus phen-

otypes, in a particular environment (Price et al., 2004; Palsson, 2015). The expressed func-

tionality of an organism is determined by its evolutionary past and present, as organisms

are subject to environment-specific selection pressure based on e.g. nutrient availability.

Therefore, pathways will adapt to optimise metabolic objectives (Nam et al., 2011; Schuetz

et al., 2012) and the resulting state is in some sense optimal for the organism for the spe-

cific conditions that have driven its evolution (Palsson, 2015). Consequently, the functional

states and capabilities of a network given a set of constraints can be predicted using optim-

isation methods (Palsson, 2015).

Numerous optimisation methods exist (Banga, 2008) and can be categorised as either lin-

ear or non-linear depending on the linearity of the objective function and the constraints

(Zomorrodi et al., 2012). In conjunction with GEMs, these methods can be used to ad-

dress relevant biological questions, which may be outlined through the chosen objective

function. To date, the most commonly used optimisation method for large-scale systems

has been linear programming (LP) (Beard and Qian, 2005). This method optimises a linear

objective function, finding extreme solutions of interest by maximising or minimising as

appropriate. Thus, the solutions determine the optimal use of the network to meet the spe-

cified objective, enabling the study of specific capabilities of a metabolic network (Palsson,

2015). Optimisation methods are therefore beneficial for both academia and the industry,

enabling exploration of physiologically meaningful objectives and objectives tailored for

commercial applications.

The most commonly used approach for studying the biological capabilities of GEMs is flux

balance analysis (FBA). FBA is a method that relies on the stoichiometry, growth require-

ments and optimality principles of a metabolic network (Varma and Palsson, 1994). The

method aims to find one extreme solution in the solution space of allowable physiological

states for a chosen objective through the means of LP (Orth et al., 2010b). All returned

solutions of the FBA algorithm will consequently be on the edges of the solution space

(Fig. 1.2). Given a set of constraints, the solutions need not be one unique point in the

solution space. Rather, it may be a set of equal solutions, which is often the case for GEMs

(Reed and Palsson, 2004). In FBA, the following linear program is solved:

maximise (or minimise) Z = cT v

subject to:

Sv = 0

vmin ≤ v ≤ vmax

(1.3)
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where v is a vector of the flux through all reactions in the network and c is a vector of

weights indicating the contribution of each reaction to the objective function Z, such that

Z = cT v = c1v1 + c2v2 + . . . ,cn vn . vmi n and vmax defines the lower and upper flux bounds,

respectively.

A commonly used objective for GEMs is the maximisation of growth rate. The definition

of this objective depends on knowledge of the cell’s chemical composition and its ener-

getic requirements (Feist and Palsson, 2010) (Fig. 1.3). From experimental data, one can

determine the requirements for making one gram of biomass, and convert this into a re-

action that drains precursor metabolites and produces by-product metabolites (Orth et al.,

2010a). Additionally, the energetic cost of biosynthesis and maintaining biomass needs to

be taken into account for realistic growth simulations (Feist and Palsson, 2010; Palsson,

2015). To be able to use the reaction for modelling purposes, the multiple components and

precursors of biomass have to be quantified in relative proportions, such that the reaction

drains and produces metabolites at appropriate ratios. The biomass reaction is then scaled

such that its flux represents a specific growth rate per unit time, usually per hour (Feist and

Palsson, 2010).

Figure 1.3: Formulation of the biomass objective function. Generating a biomass
objective function is dependent on different types of information. Figure from Feist
and Palsson (2010).
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Although maximising growth rate is often used as an objective function in GEMs, this may

not always be the obvious choice (Feist and Palsson, 2016). For microorganisms, cellu-

lar growth is beneficial to secure the continuation of its genetic material and is thus an

evolutionarily plausible choice of a metabolic objective. Reproduction, however, is not the

biological goal of all cells of multicellular organisms (Fouladiha and Marashi, 2017). Dif-

ferent organs, tissues and cell types are specialised in various metabolic functions, leading

to different objectives (e.g. Chang et al., 2010; Gille et al., 2010; Toroghi et al., 2016), which

may also depend on interactions with each other (Lewis et al., 2010a; Robaina Estévez and

Nikoloski, 2014). Furthermore, maximisation or minimisation of specific metabolite pro-

duction rates may be more valuable for industrial applications, where growth may be a

constraint. Thus, finding an appropriate objective function is challenging, and may de-

pend on the size and scope of the model as well as the tissue or cell type.

1.3 Context-specific metabolic modelling

Over the past few decades, the scope of GEMs has greatly increased. Genome sequen-

cing techniques have evolved, leading to increased and improved omics data availability

and analyses (Shendure and Aiden, 2012; Land et al., 2015; Zhang et al., 2020). Thanks to

methods for reconstructing metabolic networks from genome sequences (Thiele and Pals-

son, 2010; Mendoza et al., 2019) along with databases of metabolic reactions and models

(Ganter et al., 2013; King et al., 2016; Kanehisa et al., 2019), GEMs have become increas-

ingly available. Consequently, GEMs have been reconstructed for numerous organisms,

ranging from microbes to multicellular organisms (Gu et al., 2019).

Although GEMs include all metabolites and reactions that comprise the cells of an organ-

ism, the metabolic behaviour and activity level of each tissue or cell type differ (Shlomi et

al., 2008; Uhlén et al., 2015). The activity profile of cells’ and tissues’ molecular functions

may be altered at any moment in time to adapt to its surrounding environment (Richelle

et al., 2020). Hence, a complete genome-scale metabolic model may be too flexible and su-

perfluous in certain conditions, which may lead to inaccurate predictions (Pacheco et al.,

2015). Therefore, several methods have been developed to integrate omics data with GEMs

to extract context-specific models which represent a specific condition from which the om-

ics data has been sampled (Machado and Herrgård, 2014; Robaina Estévez and Nikoloski,

2014). As context-specific models are a representation of the metabolism of a single cell,

tissue or condition, their ability for accurate predictions in the given context is assumed to

be greater than that of complete GEMs (Opdam et al., 2017).

There are myriad applications of context-specific models. For instance, context-specific

models of Recon 1, the first genome-scale reconstruction of human metabolism, have

been used for studying host-pathogen interactions (Bordbar et al., 2010) and brain meta-
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bolism (Lewis et al., 2010a), as well as for drug target discoveries in cancer (Frezza et al.,

2011). Moreover, non-human models have been used to study e.g. the flux distribution

in mesophyll and bundle sheet cells of C4 grasses during photosynthesis (Dal’Molin et al.,

2010), the metabolic behaviour of organs related to production, storage and consumption

of sugars during the generative phase of barley (Hordeum vulgare) (Grafahrend-Belau et al.,

2013), or more recently the stress responses to drought for thale cress (Arabidopsis thali-

ana) (Siriwach et al., 2020). Needless to say, the potential that lies within GEMs and in their

extension context-specific models for studying metabolic behaviour is enormous, thus en-

abling them to address and contribute to solving key challenges.

Several methods have been developed to extract subsets of GEMs representing a particu-

lar condition, cell or tissue (Machado and Herrgård, 2014; Robaina Estévez and Nikoloski,

2014; Opdam et al., 2017). These methods, hereafter model extraction methods (MEMs),

deploy diverse strategies to find the best reduction of the full model to create context-

specific models (Robaina Estévez and Nikoloski, 2014; Opdam et al., 2017; Correia et al.,

2018). Numerous MEMs already exist, and new methods are being created rapidly. Some

commonly used MEMs include FASTCORE (Vlassis et al., 2014), GIMME (Becker and Pals-

son, 2008), iMAT (Shlomi et al., 2008; Zur et al., 2010), INIT (Agren et al., 2012), MBA (Jerby

et al., 2010) and mCADRE (Wang et al., 2012), which can be categorised into three families

based on their mathematical and algorithmic formulation, namely the GIMME-like, iMAT-

like and MBA-like (Robaina Estévez and Nikoloski, 2014) (Table 1.1).

Table 1.1: Overview of implemented MEMs. Concise description of each model ex-
traction method (MEM) and their required inputs in the COBRA Toolbox 3.0 (Heirendt
et al., 2019). Information of each parameter’s contents when implementing the meth-
ods on SALARECON is also included. Note that the biomass reaction was handled
manually in the utilisation of each MEM to ensure its inclusion in the extracted model.

Method

Description

(Opdam et al., 2017)

Required inputs

(Richelle et al., 2019b) Parameter contents

MBA-

like

MBA

(Jerby

et al.,

2010)

Two sets of core reactions are defined,

with high and medium probability to

be active in a given context. The al-

gorithm then reconstructs a context-

specific model containing all of the high

confidence reactions, as many medium

confidence reactions as possible, and a

minimal set of other generic model reac-

tions that are required for obtaining over-

all model consistency.

Two sets of core reac-

tions; one with high

confidence and one

with medium confid-

ence of being active

in the given context.

The 75th percentile of the distribu-

tion of all gene scores and 5ln(2)

were used as thresholds to di-

vide all reactions into the reac-

tion sets. All reactions associated

with a gene score above the 75th

percentile were added to the high

confidence set, while all remain-

ing reactions with a score above

5ln(2) were added to the medium

confidence reaction set. The bio-

mass reaction was manually ad-

ded to the high confidence set.
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Table 1.1 continued from previous page

Method

Description

(Opdam et al., 2017)

Required inputs

(Richelle et al., 2019b) Parameter contents

MBA-

like

mCADRE

(Wang

et al.,

2012)

Using a defined set of core reactions, all

non-core reactions are pruned based on

expression level, connectivity to the core,

in addition to a confidence score. Su-

perfluous reactions, i.e. reactions not

needed to support the core or defined

functionalities, are removed. In cases

where a core reaction is supported by a

certain number of zero-expression reac-

tions, it is removed.

Two sets of reaction

scores; a quantific-

ation of how often

a gene is expressed

across samples in

the dataset, the ubi-

quity scores, and

literature-based

evidence scores, the

confidence scores.

As the expression distribution of

genes is used in the calculation for

the gene scores, the gene scores

were used as the ubiquity scores.

The biomass reaction was given a

confidence score of 3. All other re-

actions were given a score of 1 if

they were associated with at least

one gene or 0 otherwise.

FASTCORE

(Vlassis

et al.,

2014)

A set of core reactions guaranteed to be

active in a certain context of interest is

defined, and the algorithm tries to find

the minimal number of reactions pos-

sible to support the core.

Single set of core re-

actions.

All reactions with a gene score

superior to 5ln(2) was added to

the core reaction set, as well as

the biomass reaction, which was

manually added.

iMAT-

like

iMAT

(Shlomi

et al.,

2008; Zur

et al.,

2010)

Maximises the number of matches

between a reaction’s minimum flux

value, and the group it belongs to, i.e.

either highly or lowly expressed. Thus,

it finds an optimal trade-off between

including highly expressed reactions and

removing lowly expressed reactions.

Two threshold val-

ues defining non-

expressed and ex-

pressed genes, in

addition to the gene

expression values

themselves.

Gene scores were used as expres-

sion values, while the upper and

lower threshold values were both

set to 5ln(2). The biomass reaction

was manually attributed a score of

10ln(2).

INIT

(Agren

et al.,

2012)

Finds an optimal trade-off between in-

cluding and removing reactions based on

their attributed weights.

An attributed weight

to each reaction,

which is positive or

negative for highly or

lowly expressed reac-

tions, respectively.

Reactions with a gene score below

5ln(2) were attributed a weight of

−8, while gene score divided by

5ln(2) was defined as the weight

for the remaining reactions. The

weight of the biomass reaction

was put to the maximum of ob-

tained reaction weights.

GIMME-

like

GIMME

(Becker

and

Palsson,

2008)

Removes reactions associated with an

expression level below a user-defined

threshold value. Subsequently, reactions

will be reinserted to achieve a required

metabolic function (i.e. the objective

function).

A gene expression

dataset and a meta-

bolic objective func-

tion.

Gene scores were used as expres-

sion values, while the threshold

value was set to 5ln(2). The bio-

mass reaction was manually at-

tributed a score of 10ln(2).
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Of the above-mentioned MEMs, the GIMME-like family comprises only GIMME, which as-

sumes a correlation between transcriptomics data and reaction fluxes. It first optimises an

objective function with FBA, before removing inactive reactions, i.e. reactions associated

with transcript levels below a user-defined threshold. If the flux through the objective func-

tion is not above a set fraction of the full model, a minimum number of inactive reactions

are added back into the system. This is done by minimising the difference between their

expression levels and flux values.

The iMAT-like family encompasses iMAT and INIT, which aims to find a trade-off between

removing reactions associated with low gene expression and keeping reactions whose genes

are highly expressed. iMAT applies a user-defined threshold to categorise reactions as

either highly or lowly expressed based on their associated expression values, before find-

ing a flux distribution that maximises the number of matches between reaction activity

and gene expression state. For the INIT algorithm, reactions are given positive or negative

weights based on whether they are associated with high or low transcript levels. It then

tries to find a trade-off between including reactions with positive weights and removing

reactions with negative weights.

The MBA-like family consist of MBA, mCADRE and FASTCORE, all of which utilise reac-

tion sets to determine which reactions should be included in the extracted model, the core

set, and which reactions can be removed, the non-core set. MBA requires the user to cat-

egorise core reactions into a high- and medium-confidence set, based on their likelihood

to be present in the extracted model and then prunes all non-core reactions in an iterative

process. A randomly selected non-core reaction is removed from the model, which is then

checked for consistency (i.e. no blocked reactions), and if all high-confidence and a user-

defined fraction (defaults to 0.5) of medium-confidence reactions remain unblocked, the

selected non-core reaction and potential other blocked medium-confidence and non-core

reactions are removed from the final model. The process continues until the non-core re-

action set is empty. mCADRE ranks reactions according to expression-, connectivity-, and

confidence level-based scores. Based on the expression-based scores, all reactions associ-

ated with a score above a set threshold value are defined as core reactions, while the rest

are defined as non-core reactions. The non-core reaction set is then ranked according to

connectivity- and confidence level-based scores, before it is pruned sequentially, removing

reactions not necessary to support the core. FASTCORE also aims to keep all core reactions,

and finds the minimum number of non-core reactions to support the core.

The overall goal of MEMs is to extract a model with a functional subset of reactions from a

larger model, though their approach may differ. Unlike the other MEMs, GIMME requires

a priori knowledge of a metabolic objective, which has been suggested to yield more ac-

curate models and flux distributions (Machado and Herrgård, 2014; Robaina Estévez and
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Nikoloski, 2014). However, for organisms with no clear biological objective such as mul-

ticellular organisms, this may not be advantageous and other MEMs may be more easily

applied (Blazier and Papin, 2012). Although MEMs like iMAT and INIT, for this reason, may

be better suited for extracting context-specific models of multicellular organisms, they do

so through the means of computationally demanding mixed-integer linear programming

(MILP) problems, as opposed to the LP problems utilised by the other MEMs. Therefore,

these methods generally require longer computation time, but a trade-off between search-

ing for multiple model optima and computational time may be considered and defined by

the user in the implementation of these MEMs. Similarly to iMAT and INIT, the methods

that comprise the MBA-like family are independent of a metabolic objective. In contrast

to the other MEMs, however, this family allows the user to integrate different data types

with biochemical knowledge, which may ultimately increase the certainty of reaction pres-

ence in a certain context (Robaina Estévez and Nikoloski, 2014). Furthermore, the defin-

ition of the core set for mCADRE can be fully automated, caused by its expression-based

determination of threshold values. MBA and mCADRE may on the other hand be quite

time-consuming due to their pruning process. However, provided that a defined core set

is given, FASTCORE outperforms these methods with regard to computational time by two

or three orders of magnitude (Vlassis et al., 2014), and may thus be the method of choice

when time is limited.

1.4 Metabolic modelling for aquaculture

As a result of a growing human population and diminishing returns of terrestrial agri-

culture, there has been a change towards aquatic environments for sustenance (Tibbetts,

2018). For the past few decades, the growth of aquatic farming (i.e. fish and shellfish) has

greatly surpassed that of terrestrial farming, and is currently responsible for approximately

half of the international fish consumption, with expectations of further growth (Troell et

al., 2014). Salmonid aquaculture has experienced similar growth within the aquaculture

industry and Atlantic salmon (Salmo salar) has become the most valued fish commodity

in the world (FAO, 2018).

Aquaculture has become a major consumer of finite marine resources and feeds, which has

led to a shift in feed composition with higher proportions of alternative proteins, grains

and oils (Tibbetts, 2018). However, salmon are carnivorous by nature and not adapted

to eating plants. Current plant-based feeds are complex and have been reported to have

negative impacts on several factors, including fish welfare, growth, feed utilisation, the en-

vironment, as well as fatty acid composition (Mundheim et al., 2004; Gatlin III et al., 2007;

Turchini et al., 2009; Boissy et al., 2011; Jennings et al., 2016).



1.4. METABOLIC MODELLING FOR AQUACULTURE 11

Fatty acid composition is important both for the fish itself and for the consumer. For many

fish, and especially fatty fish like the Atlantic salmon, lipids and their constituent fatty

acids are a major component, reflecting their importance as a role in metabolic energy ex-

penditure in fish, including growth (Tocher, 2003). Moreover, unlike fatty meat products,

fish lipids comprise copious quantities of omega-3 long-chain polyunsaturated fatty acids

(LC omega-3), which have been well documented to have beneficial effects for humans

(Domingo et al., 2007). Consequently, certain levels of LC omega-3 are sought after in sal-

mon farming. However, the vegetable oils used in aquafeeds usually contain large amounts

of omega-6 fatty acids, which are incorporated into the tissues of farmed fish (Jennings et

al., 2016), and causes changes in the fatty acid composition of the fish. For Atlantic salmon,

both total LC omega-3 content and the omega-3/omega-6 ratio have decreased (Nichols

et al., 2014), which have been indicated to reduce consumption benefits (Ramsden et al.,

2010). Thus, an understanding of lipid and fatty acid metabolism is crucial for salmon

farming.

A fully sequenced and mapped genome of the Atlantic salmon was published in 2016 (Lien

et al., 2016), making a GEM reconstruction of this species a reality in 2021 (Zakhartsev

et al., 2021), hereafter referred to as SALARECON. As a result, it is now possible to study

how molecules get modified from what the fish eats until it makes the flesh that we eat,

thus providing a framework for connecting the genome and metabolism of salmon and

addressing challenges such as the prediction of novel feeds. Although lipid metabolism

is not well represented in most GEMs today (Sánchez et al., 2019), SALARECON included,

the liver is important to understand lipid metabolism (Henderson, 1996). Hence, being

able to create accurate context-specific models from this tissue, and establishing empirical

evidence that they better represent its metabolism than the GEM, would have potential

benefit for the salmon farming industry concerning economic growth and development,

while concurrent considerations of fish welfare and other factors can be accounted for.

From the emergence of commercial-scale salmon farming in the 1960s to its global eco-

nomic importance today, a large body of research on the Atlantic salmon has been es-

tablished, ranging from effects of domestication and selective breeding to genome-wide

studies of function and regulation (Macqueen et al., 2017; Houston and Macqueen, 2019).

Large quantities of omics data are thus available for this species, all of which contain in-

formation on metabolic network changes across different conditions between individuals.

This information can be used to capture differences between conditions, cell types and tis-

sues using context-specific modelling, and derive non-trivial hypotheses through in silico

flux analysis.
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1.5 Aims of the thesis

Using transcriptomics data from Atlantic salmon liver, I here test whether context-specific

metabolic models created with the above-mentioned MEMs can outperform the full sal-

mon GEM, and thus potentially be beneficial for the aquaculture industry in the future. To

this end, I test the aptness of these methods to create liver-specific metabolic models, by

comparing their ability to successfully perform a list of metabolic tasks (Fig. 1.4) curated

and standardised by Richelle et al. (2020) with that of the full model. It is acknowledged that

this list was originally intended for model-based assessment of mammalian cells. However,

the context-specific models in this thesis were extracted from and compared to only one

GEM. Thus, only relative metabolic functionalities are compared.

Figure 1.4: Metabolic tasks. These are sets of reactions required to transform input
metabolites into defined products. A list of metabolic tasks can be used to infer the
activity of metabolic functions in a metabolic model from transcriptomic data. Figure
from Richelle et al. (2020).



2. Methods

2.1 Data collection

Transcriptomic data from Atlantic salmon liver were provided by researchers involved with

the GenoSysFat project (NFR 244164), and downloaded from the project’s page on FAIR-

DOMHub, along with corresponding sample metadata. A detailed description of the feed-

ing trial can be found in Gillard et al. (2018). Briefly, Atlantic salmon fry was reared in fresh-

water tanks and continuously fed on one of two diets, based on either vegetable oil (VO),

a combination of linseed oil and palm oil, or marine oil (MA), containing only North At-

lantic fish oil. After 26 weeks, a feed switch took place, with sampling occurring at specific

time points. Subsequently, smoltification was triggered and a feed switch was repeated in

saltwater. A subset of each sample was used for RNA extraction and sequencing.

2.2 The Atlantic salmon GEM

The reconstructed Atlantic salmon GEM (SALARECON) (Zakhartsev et al., 2021) contains

718 reactions, 530 metabolites and 1,104 genes, which corresponds to 2% of the genes in its

genome and 48% of Atlantic salmong metabolic genes from KEGG (Kanehisa et al., 2019).

The compounds are divided into five compartments that are connected by transport reac-

tions. To allow prediction of growth, a biomass reaction based on whole-body composition

(Hatlen et al., 2015) is included.

2.3 Pre-processing of transcriptomic data

The raw gene expression data was first reduced to only contain genes that were also ex-

istent in the model. Subsequently, a gene expression threshold was set to determine gene

activity in any of the samples, and any gene with an activity score above this threshold was

defined as active. Each gene was given an individual threshold equal to the 90th percentile

of its expression value across all samples in the dataset, as this has been documented to

yield better models than lower threshold values (Opdam et al., 2017). The 25th percentile

13

https://fairdomhub.org/projects/34
https://fairdomhub.org/projects/34
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of the overall gene expression value distribution (i.e. all genes in all samples) was used

to deal with lowly expressed genes. To this end, it was set as the threshold for any gene

with a threshold lower than this percentile. The gene score was then computed as follows

(Richelle et al., 2019b):

Gene score = 5ln

(
1+ Expression level

Threshold

)
(2.1)

By parsing the gene-protein-reaction rules (GPRs) associated with each reaction, the gene

scores were mapped to SALARECON. As this model only contains genes associated with

isozymes (OR rules), the maximum score of all genes involved in a reaction was selected as

the reaction’s activity level (RAL).

2.4 Extracting context-specific models

Six different model extraction methods were used to extract sample-specific context-specific

models from SALARECON, specifically FASTCORE (Vlassis et al., 2014), GIMME (Becker

and Palsson, 2008), iMAT (Shlomi et al., 2008; Zur et al., 2010), INIT (Agren et al., 2012),

MBA (Jerby et al., 2010) and mCADRE (Wang et al., 2012). The algorithms of these MEMs

are implemented in the COBRA Toolbox 3.0, a MATLAB software suite for constraint-based

modelling (Heirendt et al., 2019). Using the function createTissueSpecificModel, sample-

specific models were extracted from SALARECON. The values of the required parameters

needed to execute the different MEMs were set equal to the values described by Richelle

et al. (2019b) (Table 1.1). As the biomass reaction is not directly associated with any genes,

it was handled manually in the utilisation of each MEM to ensure its inclusion in the ex-

tracted model. To this end, the lower bound of the biomass reaction flux was set to one.

Additionally, the reaction was manually added to the core reaction set parameters of FAST-

CORE and MBA, assigned a gene score greater than the threshold for GIMME and iMAT, as

well as assigned a specific weight for INIT.

The implementation of the mCADRE algorithm did not perform as expected, as it stopped

with an error if removing a reaction led to an infeasible solution, instead of continuing its

model reduction process. To overcome this, I took advantage of the fact that the COBRA

Toolbox is version-controlled using Git; a free and open-source distributed version control

system that tracks changes in computer files. The MATLAB code was manually edited be-

fore raising an issue on the COBRA Toolbox’s repository page. The contribution was later

merged into the development branch (commit be52c22) and subsequently into the master

branch of the repository (commit 6c1ba69).

https://github.com/opencobra/cobratoolbox/commit/be52c2221070a88d84bc132aac2c4ca9363e71ba
https://github.com/opencobra/cobratoolbox/commit/6c1ba69dfd7adbf121a3b987a3446b3d7fdc15ed
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2.5 Metabolic task activity

A curated and standardised list of 210 metabolic tasks (MTs) covering seven major meta-

bolic activities of a cell (energy generation, nucleotide, carbohydrate, amino acid, lipid, vit-

amin and cofactor and glycan metabolism) was downloaded from Richelle et al. (2019b).

Subsequently, their framework for predicting task activity from transcriptomics data was

used. This framework utilises the GPRs of the model to compute which reactions are re-

sponsible for performing each metabolic task, and further which genes are involved in the

specific reactions, ultimately being able to link the metabolic tasks to transcriptomics data.

Hence, reactions and associated genes responsible for executing each metabolic task were

determined using parsimonious flux balance analysis (pFBA) as described by Lewis et al.

(2010b) and the GPRs of the model. The enzyme production and abundance of these genes

are naturally dependent on their expression levels, intuitively making some genes more

predominant than others for a specific reaction. Consequently, one single gene may be

selected as the most important for a particular reaction. Thus, each reaction was also at-

tributed an activity level, based on the expression level of the associated main determinant

gene. As the expression levels of the genes are the underlying information of which gene

activity scores were computed, the RAL was defined to correspond to the main determ-

inant gene’s activity score. Ultimately, the MT scores were calculated as the mean of the

activity levels of the reactions involved in the specific task:

MT score =
∑

(RAL)

Number of reactions involved in the task
(2.2)

To be consistent with the gene score computation that both the context-specific models

and the MT scores are based on, a threshold of 5ln(2) was set to define whether or not a

metabolic task was active in a particular sample (Richelle et al., 2019b).

2.6 Analysing MEM performance

Using each of the six different MEMs and the gene expression data, context-specific mod-

els were extracted from SALARECON. In this regard, each sample of the transcriptomic

dataset was considered as a context. Subsequently, the context-specific models’ ability to

perform the metabolic tasks were tested and compared. To this end, the template GEM’s

task performance was first tested, removing the infeasible tasks from the list, thus only

testing the extracted models’ task performance on the tasks that they potentially could be

able to perform. From the reduced task list, a binary matrix containing information on task

feasibility was constructed, in which each row represents a model and each column rep-

resents a task, with entries of 1 (feasible) or 0 (infeasible). In addition, a binary MT score
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matrix was computed from the reduced task list and the transcriptomic data, defining the

expected functionality of each sample in the data. Ultimately, the MT scores were used

to assess the MEMs capabilities to create models with a metabolic functionality that con-

curred with the transcriptomic data, overcoming this previously challenging part of MEM

comparisons. To this end, the Hamming distance was calculated between two binary vec-

tors, one representing a particular model’s ability to perform the metabolic tasks, the other

the MT scores of the corresponding sample from which the model was extracted. Further-

more, principal component analysis (PCA) and partial least squares discriminant analysis

(PLS-DA) was performed to assess the impacts of MEM, feed type and life stage. For this,

models not able to perform any of the tasks, i.e. rows of all zeros, were removed from the

matrix, which subsequently was centred to have zero mean within each row. Additionally,

the relative contributions of each factor level to the first three principal components were

calculated and scaled to percentages. PCA and PLS-DA were then repeated on a binary

matrix containing information on reaction presence, in which rows represents models and

columns represents reactions, with entries of 1 (present) or 0 (absent).



3. Results

3.1 Model extraction and contents

Using the transcriptomic dataset, each MEM was used to extract 208 context-specific mod-

els (one for each sample in the dataset) from SALARECON, resulting in a total of 1,248

models. Four mCADRE models were non-functional, i.e. they contained too few genes,

reactions and metabolites to be able to perform any tasks. The remaining 1,244 models

varied greatly in contents and functionality, both between and within the used extraction

methods. The number of retained reactions in the extracted models varied from 162 as

a minimum to 714 as a maximum (Fig. 3.1). Investigating presence of specific reactions,

genes and metabolites, models extracted using the same MEM were more similar to each

other than to the other models (Figs. A.1-A.3).

200 300 400 500 600 700
Number of reactions

MBA

mCADRE

FASTCORE

iMAT

INIT

GIMME

Figure 3.1: Number of reactions in extracted models. The number of retained reac-
tions in a model varies between extraction methods, but there is also large variability
within MEMs. The MEMs are sorted by family, from MBA-like to iMAT-like and ending
with GIMME. Non-functional models are not included in the plot.
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3.2 PCA and PLS-DA

The impacts of the three factors MEM, feed type and life stage on reaction inclusion and

model functionality differed. For the PCA of reaction inclusion in the extracted models,

explained variability of the first and second principal components was 14.8% and 8.9%, re-

spectively (Fig. 3.2). GIMME explained most of the variation within the first component,

while INIT explained the majority of the variance in the second component (Fig. 3.2a,b).

For the other factors, there was no clear separation between the levels, i.e. between the

four feed types and between the two life stages, and there was not much difference in ex-

plained variability between them within the first three principal components (Fig. 3.2c-f).

The second principal component explained much of the variation seen in model inclu-

sion of certain reactions, while the first two components explained approximately half of

this variation for several other reactions (Fig. 3.2g). 200 components were required to ex-

plain approximately 90% of the variability in the reaction inclusion of the extracted models

(Fig. 3.2h).
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Figure 3.2: PCA on reaction presence. (a and b) Extraction method influences both
PCs, with GIMME being very important for the first PC. (c–f) Feed type and life stage
influence on the PCs is more variable. (g) A correlation loadings plot shows that the
first two PCs explain much of the variance in several reactions. (h) Approx. 90% of the
variation is explained by 200 PCs.
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The variation in reaction inclusion between the context-specific models was well separated

by MEM, with the first and second PLS components explaining 14.6% and 13.1% of it, re-

spectively (Fig. 3.3a). Models extracted using the same method were clustered together, al-

beit with some variability. Similarly to the PCA, between 50% and 100% of the variability in

reaction inclusion of several reactions was explained by these PLS components (Fig. 3.3b).

Although the models were in some form separated, the levels of the other factors were not

separated into distinct clusters (Fig. 3.3c,e). However, PLS components of life stage separ-

ation better explained the observed variance in reaction inclusion between the extracted

models for some reactions (Fig. 3.3d,f). Additionally, the overall explained variance was

lower for these factors, with more variation being explained by the second PLS component

than the first.
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Figure 3.3: PLS-DA on reaction presence. (a and b) The models are well clustered to-
gether by MEM, although the separation of mCADRE models is less compact. The PLS-
DA separates the models into the correct MEM families. (b) The variance in several
reactions are almost fully explained by the first two PLS components for MEM separa-
tion. (c–f) Although highly overlapping, reaction presence in the models can be some-
what separated by life stage, but not as well by feed type. Variation in some reactions is
better explained by the life stage PLS components.
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For the PCA of model functionality of the extracted models, the explained variation in task

feasibility between the context-specific models was 9.4% and 8.7% for the first and second

principal components, respectively (Fig. 3.4). Within these components, the majority of

the variance was explained by FASTCORE and GIMME (Fig. 3.4a,b). As for the reaction

inclusion PCA, there was no clear separation between the levels in the other factors, with

only small differences in explained variability between them within the first three principal

components (Fig. 3.4c-f). Less than 50% of task-specific variance in feasibility between

context-specific models was explained by the first two principal components for the ma-

jority of the metabolic tasks (Fig. 3.4g). 65 components were required to explain approx-

imately 90% of the variance in task feasibility between the extracted models (Fig. 3.4h).

−2

−1

0

1

2

−1 0 1 2 3

Extraction method

FASTCORE

GIMME

INIT

MBA

iMAT

mCADRE

a

−2

−1

0

1

2

−1 0 1 2 3

Feed type

MA

MA−VO

VO

VO−MA

c

−2

−1

0

1

2

−1 0 1 2 3

Life stage

Freshwater

Saltwater

e

PC1: 9.4% variance

P
C

2:
 8

.7
%

 v
ar

ia
nc

e

0

20

40

60

PC1 PC2 PC3

b

0

10

20

PC1 PC2 PC3

d

0

20

40

60

PC1 PC2 PC3

f

E
xl

pa
in

ed
 v

ar
ia

nc
e 

(%
)

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1: 9.4% variance

P
C

2:
 8

.7
%

 v
ar

ia
nc

e

Task system

Energy metabolism

Nucleotide metabolism

Carbohydrates metabolism

Amino acids metabolism

Lipids metabolism

Vitamin and cofactor metabolism

g

0.25

0.50

0.75

1.00

0 25 50 75 100 125
Principal component

C
um

ul
at

iv
e 

su
m

 o
f

ex
pl

ai
ne

d 
va

ria
nc

e

h

Figure 3.4: PCA on task feasibility. (a and b) The influence of extraction method is
clear in the first PC, with FASTCORE being the method contributing most to the PC.
(c–f) Feed type and life stage influence on the PCs is more variable. (g) The first two PCs
explain >50% of a few tasks involved in energy, amino acids and carbohydrate metabol-
ism. (h) Approx. 90% of the variation is explained by about 60-65 PCs.
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Task feasibility variance in the context-specific models was better separated by MEM than

feed type or life stage, similarly to reaction inclusion variance (Fig. 3.5). For the extraction

method factor, the first two PLS components explained 10.5% and 6.8% of the variability,

and although there was some overlap, the models were clustered together into MEM used

(Fig. 3.5a). These two components explained more than or equal to 50% of the variability

in the feasibility of only two tasks, one involved in amino acids metabolism, the other in

carbohydrates metabolism (Fig. 3.5b). Likewise to the reaction inclusion matrix, the levels

of the other factors were not as well separated into distinct clusters. However, life stages

were better separated than feed types (Fig. 3.5c,e). Moreover, these factors explained less

variance than the analysis on MEM, with more variation being explained by the second

PLS component than the first. Furthermore, several tasks positively correlated with the

first component and negatively with the second for life stage separation, while the opposite

was observed for feed type separation (Fig. 3.5d,f).
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Figure 3.5: PLS-DA on task feasibility. (a and b) The models are well clustered together
by MEM and separated well by family. (b) About 50% of feasibility variance of some
tasks is explained by two PLS components for MEM separation. (c–f) The discriminant
analysis separates life stage better than feed type. Variation in some tasks is better
explained by the life stage PLS components.
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3.3 Metabolic functionality of context-specific models

121 of the 210 metabolic tasks passed in SALARECON, comprising six task systems, i.e.

metabolic activities. These tasks are hereafter referred to as all tasks. For the context-

specific models, metabolic functionality correlated with number of retained reactions (Fig. 3.6).

The extracted models were also more similar within than between MEMs, except for some

MBA and mCADRE models in which a higher percentage of the tasks were feasible than for

the rest of the models (Fig. 3.7). Within the six task systems, the number of context-specific

models that were capable to perform the system-specific tasks differed between MEMs and

varied between systems (Fig. 3.8). Comparing MEM families, the iMAT-like family were

more consistent than other families in creating models with similar capabilities for most of

the task systems, i.e. the variability in these models’ metabolic functionality was smaller.
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Figure 3.6: Task performance correlates with number of reactions. Metabolic func-
tionality increases with number of retained reactions. The variation in reaction inclu-
sion differs between extraction methods. Non-functional models are not included in
the plot.
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Figure 3.7: MBA models have a higher fraction of feasible tasks than the other mod-
els. Some tasks are commonly or seldomly feasible independent of the extraction
method. MEM is overall well clustered together, at least within families.
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Model functionality was compared with expected functionality based on the transcrip-

tomic data. The Hamming distance between passed tasks in a model and the computed

binary MT scores for the corresponding sample was generally shorter for the context-specific

models than for SALARECON (Fig. 3.9a). The shortest distance was observed for iMAT,

INIT and GIMME models, of which the iMAT models had the highest proportion of mod-

els with Hamming distance less than 0.2. However, some of the models extracted with

these methods also overlapped with the distance of several samples of GEM assessment. A

cluster analysis revealed that the overlap was indeed the same samples and that these lead

to approximately equal Hamming distances across all MEMs and SALARECON (Fig. 3.9b).

Comparing other samples across all MEMs, there was some variability in distance between

them. However, two additional clusters, albeit comprising fewer samples, produced mod-

els with similar Hamming distances. Although MEMs were clustered together with other

methods in the same family based on the distance, the agreement between expected and

model functionality varied between samples, especially true for MBA and mCADRE mod-

els. FASTCORE models were the most consistent with each other, but their distance was

longer than those of the majority of iMAT, INIT and GIMME models. The other factors, i.e.

feed type and life stage, were not well clustered together in the samples.

Figure 3.9: Hamming distance between passed tasks and computed binary MT
scores. (a) Context-specific model functionality corresponds better with expected
functionality from transcriptomic data than SALARECON. (b) Expected task feasibility
is more accurate for models extracted with all MEMs. The models are also clustering
correctly within their families. However, the factors life stage and feed type are not well
clustered together. The Hamming distance is approximately equal in some samples for
all MEMs and SALARECON.



4. Discussion

In this study, I assessed the capability of six model extraction methods to create accur-

ate context-specific models using a hepatic transcriptomic dataset. Each context-specific

models’ ability to perform metabolic tasks was compared with the expected task activity of

the particular sample it was extracted from. This method of comparing the MEMs is based

on the newest literature, extrapolating current methods for predicting sample-specific task

activities (Richelle et al., 2019b, 2020) to overcome the particular challenge of not hav-

ing an objective truth to benchmark against in MEM comparisons. The cluster analysis

showed that all the evaluated MEMs generally extract models with a metabolic functional-

ity that concurs better with that of the liver than SALARECON (Fig. 3.9b). This indicates that

context-specific models outperform full GEMs with regard to capturing realistic represent-

ations of metabolism in a given context and thus yield practical and biologically mean-

ingful predictions, suggesting their advantage when studying the metabolic behaviour of

organisms for both academic and industrial purposes.

Context-specific models seem to outperform GEMs due to differences in enzyme activ-

ity between contexts, e.g. tissues or conditions such as environmental changes or devel-

opmental stages. These differences change network structure and inactivate certain re-

actions, making GEMs superfluous (Robaina Estévez and Nikoloski, 2014; Pacheco et al.,

2015). This is especially the case for multicellular organisms, where metabolic functional-

ity and objective differs between organs, tissues and cell types and interact with each other

(Lewis et al., 2010a; Robaina Estévez and Nikoloski, 2014). Consequently, the use of GEMs

for context-specific analysis may lead to inferior predictions compared with submodels

where inactive reactions have been removed (Opdam et al., 2017). Therefore, methods

to reduce the scope of GEMs to be concordant with omics data are proving useful, es-

pecially considering the accessibility of transcriptomic data. In practice, context-specific

models have been reported to yield more accurate predictions of genotype-phenotype re-

lationships of four human cell lines, as they were able to accurately predict known meta-

bolic functionalities and better predict gene-essentiality than the template GEM (Opdam

et al., 2017). Additionally, confining GEMs to specific tissues or to be in accordance with

a given context have been demonstrated to generate predictions more consistent with ex-

25
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perimental data than the unconstrained model and be able to identify important aspects

of the organism’s metabolism for various applications (Chang et al., 2010; Gille et al., 2010;

Bordbar et al., 2012; Shen et al., 2016; Fouladiha and Marashi, 2017; Siriwach et al., 2020).

These findings indicate MEM superiority over GEMs, especially for multicellular organ-

isms, corroborating the results of this study.

Between the implemented MEMs, iMAT had the highest proportion of models with the

shortest Hamming distance between passed tasks and the computed MT scores and there-

fore was the best performing method, closely followed by INIT and GIMME (Fig. 3.9a).

These results suggest that the iMAT and GIMME-like families may be better suited for

analysing context-specific metabolism of multicellular organisms like the Atlantic salmon

when transcriptomic data is available. iMAT was developed with only the integration of

transcript profiles in mind, whereas INIT allows for the integration of additional proteo-

mic and metabolomic data. As only transcriptomic data was used in the analyses of this

study, these MEM attributes may explain why iMAT was the slightly better performer of the

two. INIT may, however, have performed better if other data types had been included in

the analyses. Additionally, iMAT has performed better when only one expression threshold

was used to identify highly and lowly expressed reactions, removing moderately expressed

states (Jamialahmadi et al., 2019), supporting the discoveries of this study where such an

approach was also used. A reason why the median distance for GIMME was somewhat

higher than the other two methods may be its inherent demand for defining a metabolic

objective, as demonstrated previously (Machado and Herrgård, 2014). For multicellular or-

ganisms, the metabolic objectives of tissues may depend on the surrounding environment

(Robaina Estévez and Nikoloski, 2014), i.e. the context, thus complicating the definition

of an objective function for use with GIMME. Here, maximum growth rate was used as the

objective, which may be reasonable for the rearing salmon from which the transcriptomic

data was sampled, and may explain the relatively low Hamming distance of the GIMME

models. Nevertheless, the definition of a tissue-specific objective could possibly have im-

proved the models further, as has been suggested for humans (Chang et al., 2010; Gille et

al., 2010; Toroghi et al., 2016).

The poor performance of the MBA-like family seen in this study may be explained by only

integrating one data type in the extraction process. The full utility of these MEMs lies in

the possibility of including complimentary pieces of experimental evidence to define the

core sets, and ultimately increase the confidence of reaction presence in the context of

interest (Robaina Estévez and Nikoloski, 2014). Consequently, optimal results require in-

corporating multiple data types, and as only transcriptomic data was used in this study to

define the input parameters, it may explain the observed outcome. The median values of

Hamming distances amongst these MEMs are quite dissimilar, with the MBA method per-

forming much more poorly than the others. One property of its algorithm is the pruning
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of non-core reactions in random order, inevitably affecting the topology of the final model

(Jerby et al., 2010). Therefore, the algorithm should be run many times to get a population

of context-specific models from which a consensus model can be extracted, e.g. 1000 times

as in the implementation of Jerby et al. (2010). However, this is both very time-consuming

and cumbersome. Consequently, no consensus population of models were created with

MBA and only one model was extracted from each sample in the present study.

The choice of MEM had a larger impact on model contents and functionality than both feed

type and water salinity, i.e. life stage. This is evident by the observed variability between

the extracted models, which was highest for choice of MEM (Fig. 3.2 and Fig. 3.4). Similar

tendencies have been reported in prior studies (Ferreira et al., 2017; Opdam et al., 2017;

Richelle et al., 2019b). Well-separated clusters of each MEM are formed, caused by sim-

ilarities and differences of algorithms between and within MEM families, indicating that

MEM selection, or at least choice of MEM family, is the most important of the considered

factors with regard to model content and functionality. In addition to the PCA and PLS-DA

plots, this is also evident in Fig. 3.7, Fig. 3.8 and Figs. A.1-A.3. Not unexpectedly, the impact

of MEM selection is most apparent in reaction content. The algorithms employ different

strategies to remove redundant reactions, but do not consider task feasibility information

in this process. This is also apparent in Fig. 3.2g and Fig. 3.4g , where >50% of observed vari-

ation in only three tasks (2.5%) can be explained by the first two PCs, while this number is a

lot higher for reactions (11.7%). Additionally, a higher proportion of principal components

is needed to explain the same amount of variation in task feasibility than reaction inclu-

sion (Fig. 3.2h and Fig. 3.4h). Interestingly, GIMME tremendously impacts PC1 in reaction

content, and as seen from the correlation loadings plot, variation in the inclusion of a lot

of exchange reactions are explained by the PCs. Upon further investigation, all GIMME

models contained all exchange reactions, explaining the mentioned pattern. The reason

for this is unclear. However, GIMME removes reactions associated with expression levels

below a user-defined threshold, provided that the flux through the objective function stays

above a set fraction of that of the template GEM (Becker and Palsson, 2008). In this case, ex-

change reactions are necessary to supply the metabolic network with metabolites needed

to grow. Thus, the algorithmic strategy of GIMME, requiring the formulation and mainten-

ance of a metabolic objective, might cause the observed inclusion of exchange reactions in

the GIMME models.

The supervised separation analysis of the extracted models supports the findings that MEM

choice has the most impact on the extracted models compared to the other investigated

factors (Fig. 3.3 and Fig. 3.5). Comparably to the PCA, the PLS components explain a lot

more of the intra-reaction variance than intra-task variation for all tested factors, as task
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feasibility information is not a part of the extraction process. This is further shown in the

cluster separation of the factors, especially the separation of MEMs. The MEM families

form decently separated clusters, but the FASTCORE models stand out, forming their own

cluster. In contrast to its other family members, i.e. MBA and mCADRE, the algorithm of

FASTCORE does not eliminate non-core reactions and check for consistency at each step,

but rather solves two LP problems. To this end, it uses the reaction cardinalities, i.e. the

number of non-zero fluxes in the reaction flux vectors. In an alternate fashion, FASTCORE

maximises the cardinality of the core reaction set, before minimising the cardinality of the

non-core set. This is repeated until all reactions in the core set are able to carry flux, sup-

ported by a minimum number of non-core reactions. The approach taken by FASTCORE

may lead to different reactions being removed, ultimately impacting which tasks pass in

the resulting model. For feed types and life stages, the separation is moderate at best. How-

ever, variation in reaction presence of models still results in the formation of clusters. As

the models used to separate these factors are extracted using six different MEMs, differ-

ences in algorithmic strategies between them lead to differences in reaction presence of

the models. Furthermore, the context-specific analyses of this study are based on tran-

scriptomic data from a study that focused on different contexts affecting lipid metabolism.

However, due to the poor representation of lipids in SALARECON, it may not capture any

potential variability in reaction activity between the investigated feed types. Therefore, the

impact of feed type on model content and functionality is limited in this study. In reality,

however, feed type may affect these model attributes more than what is observed in this

study.

Model functionality seems to correlate with number of retained reactions, albeit with large

variability between MEMs (Fig. 3.6). Intuitively, the more reactions a model retains, the

more alike it is to the template GEM, facilitating task performance. Similar patterns has

also been documented in former research (Correia et al., 2018; Richelle et al., 2019b). This

further highlights the impact of algorithm choice on model functionality. Most within-

MEM variability was seen in the MBA-like family (MBA, mCADRE and FASTCORE), sug-

gesting that their shared feature, i.e. the definition of core reaction sets, might be the

causing factor. While some mCADRE models can be categorised as outliers, there is con-

siderable variance between MBA models. MBA groups the core reactions into a high and

a medium confidence set, thus adding an extra factor the user has to account for when

defining the parameters. In this study, sample-specific thresholds were used for adding

reactions into these reaction sets, which may have contributed to the observed variation.

Moreover, the upper threshold was set to the 75th percentile of the sample-specific gene

scores. Opdam et al. (2017), however, registered more accurate models with more strin-

gent thresholds, albeit for gene-essentiality predictions. Hence, less variation might be ex-

pected from setting a more strict threshold than was used here. As previously mentioned,
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all exchange reactions were included in the GIMME models, yet they are not able to per-

form as many tasks as other models with the same number of reactions, suggesting that

exchange reactions are not crucial for performing the tasks of the applied task list.

Although there is increasing evidence that only a subset of metabolic reactions in a net-

work is active in any given context (Robaina Estévez and Nikoloski, 2014), context-specific

modelling is challenging and MEM applicability and use have been questioned on several

occasions. Despite being shown to be able to provide accurate insights into the metabolic

state of organisms in specific contexts (Shen et al., 2016; Fouladiha and Marashi, 2017;

Jamialahmadi et al., 2019), it is yet unclear how to tackle each individual reconstruction

problem to ensure optimal results, a question subject to numerous factors.

The number of methods for creating context-specific models from omics data has increased

in the last couple of decades (Machado and Herrgård, 2014; Jamialahmadi et al., 2019) and,

realistically, more methods will be developed in the coming years. Individual advantages

and limitations of these methods make selecting one for each specific extraction problem

a challenging task (Blazier and Papin, 2012; Robaina Estévez and Nikoloski, 2014). As ob-

served in this study, the choice of MEM has an immense impact on both the functionality

and contents of the extracted models. Model variability between MEMs has similarly been

documented previously. Correia and Rocha (2015) reported large differences in model

functionality between three MEMs in different data sources. Furthermore, huge variability

in reaction content between models that had been created using the same input has been

observed (Pacheco et al., 2015). In another study, context-specific models of healthy liver

and hepatocellular carcinoma (HCC) cells were generated using four different MEMs and

analysed functionally and structurally (Ferreira et al., 2017). The authors observed large

differences in models between the methods and concluded that although they can provide

accurate insights into tissue- or cell-specific metabolism, none of the examined algorithms

was ideal. This supports the results of Machado and Herrgård (2014), showing that none of

the investigated methods outperforms the others in terms of flux predictions compared to

experimental data. Several additional studies aiming to benchmark algorithms for creat-

ing context-specific models have recently been published. Pacheco et al. (2015) proposed

a benchmarking method to aid in identifying weaknesses of both old and new MEMs in or-

der to increase the quality of their algorithms and created models. In a different study, the

impacts of algorithm choice, expression thresholds and metabolic constraints were sys-

tematically evaluated on the predictive abilities of cancer cell-specific models (Opdam et

al., 2017). More recently, Jamialahmadi et al. (2019) analysed the functional and structural

properties of several MEMs and identified which considerations to take into account to

improve their functional performance. Furthermore, the authors developed a new method

for generating context-specific models using their results, demonstrated its predictive cap-

abilities, and provided guidelines for considering both weaknesses and strengths of exist-



30 CHAPTER 4. DISCUSSION

ing methods when adopting their approach. Additionally, Robaina Estévez and Nikoloski

(2014) categorised MEMs based on the mathematical formulation of their algorithms and

provided a flowchart for choosing an appropriate method when facing a context-specific

reconstruction problem.

Subsequent to choosing a suitable MEM when facing a context-specific reconstruction

problem, the algorithm’s input parameters need to be defined. Intuitively, the choice of

parameter values affects the contents and functionality of the final model. Although the

user may opt to leave all optional parameters to their default values, as done in this study,

this may not always be optimal for each individual context that is investigated (Pacheco et

al., 2015). Therefore, careful consideration has to be taken to determine how to best assign

parameter values. Most important of the parameters is arguably the threshold defining

the activity state of genes in the case of transcriptomic data. The choice of threshold has

previously been documented to have the most impact of tested parameters on model con-

tents and functionality and should therefore also be adjusted to the specific goals of the

individual reconstruction problem (Opdam et al., 2017; Richelle et al., 2019a). However,

systematically testing parameter settings for an optimum, through e.g. cross-validation,

is cumbersome and computationally onerous, and may even pose overfitting problems

(Pacheco et al., 2015). Indubitably, selecting both an appropriate MEM and its optimum

parameter values given a particular context-specific reconstruction problem is a tremend-

ously challenging task subject to multiple factors, and although a suggestion of what an

ideal algorithm-parameter combination of methods have been proposed (Kim and Lun,

2014), no such MEMs exist. Therefore, thorough contemplation is required before choos-

ing a method and defining its parameters for context-specific analyses.

In the present work, six MEMs were used to generate context-specific models from SALARE-

CON using transcriptomic data. However, other alternatives may have yielded better res-

ults. It has been suggested that algorithm choice is less important for creating accurate

context-specific models than data source (Correia et al., 2018). Omics data integration

have been shown to lead to spaces of alternative optima, inducing ambiguous model pre-

dictions (Robaina Estévez and Nikoloski, 2017), which may be one explanation. Further-

more, many algorithms assume that the level of mRNA transcripts strongly correlates with

protein activity, determining the activity of reactions based on transcript levels. However,

the soundness of this assumption has been questioned on several occasions (Greenbaum

et al., 2003; Rossell et al., 2006; Daran-Lapujade et al., 2007). Spearman’s rank correla-

tion coefficients ranging from 0.21 to 0.61 have been reported in earlier work (Ideker et al.,

2001; Griffin et al., 2002; Washburn et al., 2003; Moxley et al., 2009), exhibiting only a mod-

est relationship between transcript and protein levels. The observed discrepancy may be

explained by factors such as post-translational modification, post-transcriptional regula-

tion of protein synthesis and enzyme kinetics (Zhang et al., 2010). Moreover, the activity
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level of transcriptional regulation on protein expression has been demonstrated to vary

between pathways as a result of an evolutionary trade-off between being able to quickly

react to changes in environmental conditions and minimizing the protein cost to achieve

the appropriate response (Wessely et al., 2011). Protein levels should be more concordant

with metabolic fluxes than gene expression levels (Robaina Estévez and Nikoloski, 2014).

Nevertheless, context-specific analysis by using proteomic instead of transcriptomic data

by Machado and Herrgård (2014) did not result in improved predictions. Last in the hier-

archical cascade that regulates metabolic fluxes is metabolite levels, partaking in metabolic

reactions, and should therefore provide more accurate snapshots of the metabolic state of

a network (Robaina Estévez and Nikoloski, 2014). Despite current methods for measur-

ing metabolite levels may not offer enough metabolome coverage to portray the metabolic

state of the entire network (Fernie, 2007), integrating metabolomics data has been proven

successful in context-specific analysis, especially in combination with other types of om-

ics data (Yizhak et al., 2010; Kleessen et al., 2012). Consequently, integrating transcriptomic

data alone may not be sufficient to create context-specific models that are functionally cor-

rect and of high quality (Pacheco et al., 2015; Correia et al., 2018). Thus, the full potential

of the compared MEMs in extracting context-specific models may not have been reached

in this study.

Above all, the reliability of a context-specific model predominantly depends on the quality

of the GEM it is extracted from. Hence, shortcomings in GEM reconstructions is a huge

limitation for context-specific modelling. Although automatic reconstruction tools exist,

there are several problems with genome annotations and databases (LU_2018; Salzberg,

2019). Additionally, data availability varies for different organisms and complex organism-

specific characteristics require manual assessment, leading to large variability in the qual-

ity of GEMs (Thiele and Palsson, 2010). Consequently, GEMs often include errors such as

incorrect directionality definition (i.e. establishing the reversibility of reactions) and meta-

bolic gaps (Di Filippo et al., 2016; Xu et al., 2020). Coupled with a lack of probabilistic

factor representation and imperfect knowledge of biology and biochemistry, it is trouble-

some to expect absolute consistency between omics data and a network model (Hyduke

et al., 2013). Additionally, algorithms generating context-specific models using omics data

heavily relies on the GPR rules of the GEM. However, the translation of the GPRs in the re-

construction process has been shown to lead to errors in gap-filling and the exclusion of the

molecular context used to create the model itself (Ponce-de-León et al., 2020). Despite this,

context-specific modelling is still useful for hypothesis generation (Hyduke et al., 2013),

and have proven successful in numerous applications (Fouladiha and Marashi, 2017).





5. Conclusions

Here, the metabolic functionality of the Atlantic salmon liver was derived from transcrip-

tomic data and compared to the functionality of context-specific models extracted by six

different MEMs. Through a new way of evaluating model quality, context-specific mod-

els were shown to more accurately capture metabolic functionality than the GEM, with

the iMAT- and GIMME-like MEMs performing the best. The findings of this study cor-

roborate current evidence that context-specific models better represent the actual meta-

bolism of organisms in specific contexts and therefore should provide more practical and

biologically meaningful predictions of an organism’s metabolic behaviour. Thus, context-

specific models should be advantageous when studying the metabolic behaviour of organ-

isms, especially when investigating specific contexts of interest, and potentially be bene-

ficial for both academic and industrial purposes. As the scope of GEMs has rapidly grown

from studying microbial behaviour to biomedical and industrial applications, future work

should aim to further develop and create new MEMs and identify the metabolic function-

ality of tissues in relevant organisms. In this regard, the panoply of omics data enables the

advancement of algorithms, directing their focus to the integration of multiple omics data

sources with GEMs to create improved context-specific models. Through this approach,

context-specific models of higher quality will be generated, ultimately leading to more ac-

curate and deeper insights into the metabolic behaviour of organisms in particular con-

texts.
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Appendix A. Clustermap of model contents
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Figure A.1: Reaction inclusion in extracted models. The presence of reactions is similar for models extracted with the same model extraction
method, and are generally well clustered together.
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Figure A.2: Gene inclusion in extracted models. The presence of genes is similar for models extracted with the same model extraction method,
and are generally well clustered together.
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Figure A.3: Metabolite inclusion in extracted models. The presence of metabolites is similar for models extracted with the same model extrac-
tion method, and are generally well clustered together.
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