
 

Master’s Thesis 2021    30 ECTS 

Faculty of Science and Technology 

Professor Cecilia Marie Futsæther 

 

Diagnosing patients with  

Major Depressive Disorder using 

radiomics features extracted from 

MR scans of the brain 

Kristin Tukun 

Environmental Physics and Renewable Energy 



Acknowledgements

There are many bright minds and supportive people that have helped me
produce this thesis. First and foremost, I want to thank my main supervisor,
Professor Cecilia Marie Futsæther, for being helpful, supportive, and always
cheerful throughout the process. And a big thanks to Ass. Prof. Oliver
Tomic, who assisted with valuable input and good ideas.

I want to thank Prof. Atle Bjørnerud, Dr Inge Groote, and Jon E Nesvold
for providing the dataset, answering many questions, and giving me valuable
input. Especially Jon who has assisted me and answered questions at all
hours throughout this period.

I also want to thank all my peers at NMBU; our study groups, collaborations,
and social gatherings have helped me immensely through all my courses at
NMBU.

To my oldest friends Ingvild and Iselin, I want to thank you for motivat-
ing me; from the first day at NMBU to the last day before delivering my
thesis, you have both brought so much joy into my life.

At last, I want to thank my boyfriend, who has listened to endless ramblings
and contributed with valuable input without one single notion of what this
thesis is all about.

i



Abstract

The main aim of this study was to diagnose patients with major depressive
disorder (MDD) using structural T1 weighted images of the brain. The im-
ages originate from the DELHI study conducted in the Netherlands from
July 2005 to February 2007. 21 images of patients diagnosed with MDD
and 22 images of healthy controls were received. Patients and controls were
scanned at study entry referenced to as t0. The patients were administered
the antidepressant paroxetine and scanned again at 6 and 12 weeks, refer-
enced as timesteps t1 and t2. Further, the images were sent to an application
programming interface (API) called RadiomPipe that segmented the images
into masks of brain regions and extracted radiomics features. The output
from RadiomPipe was a high dimensional dataset that consisted of 10165
radiomics features.

This study mainly focused on the dataset containing radiomics features of
patients and controls at study entry, t0. The samples were split into a train-
ing and test set three times stratified by whether the individual belonged to
the patient class or the control class. The Repeated Elastic Net Technique
(RENT) algorithm was applied to each of these splits to reduce the number
of features in the dataset by training an ensemble of 100 elastic net regu-
larized models and selecting features by evaluating the weight distributions
of features across the models. The first split selected eight features while
the two other splits selected seven features. Further, the ensemble of models
predicted the diagnosis of patients with high accuracy over all three splits.
The high accuracies indicated that the RENT model was a robust model that
potentially can perform well on new data.

A Principal Component Analysis (PCA) was conducted with the features
selected by RENT for each split. The PCA showed that it was possible to
separate the patient and control class using only the features selected by
RENT for each split.

In total RENT selected 14 features across the splits. Four of these features
were selected by every split. A PCA was applied to the dataset containing
these four features, which showed that the patient and control classes could
be separated. These four features corresponded to the brain region right
medial orbital gyrus. Given that all three splits found the right medial or-
bital gyrus useful to predict MDD diagnosed patients, it may be considered
a possible neural biomarker.
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1 Introduction

Depressive disorder affect our society as it is one of the most widespread men-
tal disorders [1]. In 2015 The World Health Organization recorded that about
264 million people suffered from depressive disorders [2]. Depression emerges
from a combination of social, psychological, and biological factors [1]. Major
depressive disorder (MDD) is a psychiatric disorder characterized by differ-
ent symptoms, such as sadness, little self-worth, poor appetite and reduced
sleep [3]. Antidepressants are the primary type of treatment for moderate
to severe depressive episodes, and six decades of efforts have yet to improve
their efficiency [1]. When treating depression, a ”trial-and-error” approach of
prescribing antidepressants is often applied [4]. The expected time before the
antidepressants takes effect, can range from 2 to 8 weeks. However, if there
is no effect, a new antidepressant is prescribed. This method for treating
depressive disorders leads to a prolonged treatment course, especially since
four trials of different antidepressants yield a cumulative remission rate of
67% [4]. Patients may go through eight months of treatment, and the chance
of treatment effect would be only 67%.

In order to shorten the treatment course of depressive patients, precision
medicine has been developed [4]. Precision medicine is treatment meth-
ods that take into account the individual’s variability. Instead of randomly
trying treatment methods, precision medicine opens the doors for applying
more suitable treatment for the patient. Precision medicine uses biomarkers
for targeting treatment. Biomarkers are biological characteristics and can be
molecular, anatomical, physiological, or biochemical [4]. Biomarkers can also
be extracted from magnetic resonance (MR) images of the brain [4]. These
radiomics features can be extracted based on the patterns in voxel intensi-
ties in MR images of the brain [5]. The MR images are then transformed
into high-dimensional datasets that consists of radiomics features. In these
datasets, machine learning algorithms can see patterns that the human eye
may not detect. It may therefore be possible to find biomarkers for diag-
nosing MDD and selecting treatment strategy. However, there are certain
issues with detecting biomarkers from MR images. MR images are difficult
to replicate; even when using the same patient and the same MR scanner,
the image can be different between visits [6]. Standardization of the images
is therefore critical in order to compare the images. Multiple studies have
found possible biomarkers in the frontolimbic region like the hippocampus,
prefrontal cortex, anterior cingulate cortex, amygdala, and insula associated
with treatment response for MDD diagnosed patients [1, 7, 8, 9]. However,
their strength and association are variable [7]. Biomarkers found through
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medical images also have to be validated and replicated multiple times in
order to ensure their reliability [7]. Therefore, it is expected to take some
time before these types of biomarkers will be used in the medical field.

The radiomics dataset analyzed in this thesis was extracted from structural
T1 weighted MR images of 21 patients diagnosed with MDD and 22 healthy
controls in the DELPHI study conducted in the Netherlands from July 2005
to February 2007 [10].

The primary objective of this thesis was to diagnose patients with MDD
based on radiomics features extracted from MR images using the Repeated
Elastic Net Technique (RENT). Furthermore, it was also of interest to in-
vestigate if the selected radiomics features were possible biomarkers for de-
pression. The study used RENT to select features and predict diagnosis.
Principal component analysis (PCA) was used on the RENT selected fea-
tures to see if the patient and control classes could be separated.

The thesis starts by describing the theory associated with this thesis, ex-
plaining the fundamental background of key elements used in the method.
It explains depression and how it is treated, Magnetic Resonance Imaging
(MRI), radiomics, RENT, Pearson’s correlation coefficient, accuracy metrics,
and PCA. Chapter 3 describes the method applied in this thesis and explains
how the dataset was preprocessed and how RENT and PCA were applied.
The results are presented in chapter 4 and discussed further in chapter 5.
Lastly, the conclusion can be read in chapter 7.
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2 Theory

2.1 Depression

A patient suffering from major depressive disorder (MDD) can experience
sadness, loss of interest or pleasure, irritable mood, along with somatic and
cognitive changes [3]. Depressive disorders develop by interactions between
social, psychological, and biological factors. The world health organization
(WHO) recorded in 2017 that about 264 million people suffered from depres-
sive disorder [2].

Depression is diagnosed based on symptoms by the use of diagnostic manuals
such as the Diagnostic and Statistical Manual of Mental Disorder (DSM) or
International Classification of Diseases (ICD) [4]. The 17-item Hamilton De-
pression Rating Scale (HDRS17) is the most widely used scale for assessing
the severity of depressive symptoms [11]. Like many other diagnostic scales
for depression, the Hamilton scale measures depression symptoms on a con-
tinuous scale. Strategies for treating depression are often pharmacotherapy,
psychotherapy and physical therapy [1]. The common procedure for treating
depressive disorder is to use the least intrusive interventions first and proceed
with further treatment if the treatment outcome is not satisfactory.

Pharmacotherapy often uses a ”trial-and-error” method of prescribing psy-
chiatric medication [4]. After the first treatment, approximately 30% to 50%
will experience full remission. After 4 trials of different antidepressants the
cumulative remission rate is 67%. A drawback of these antidepressants are
the time it takes for the antidepressant to take effect, which often take from
2 to 8 weeks [1].

Personalized treatment can take into account the variability in the pop-
ulation and potentially shorten the course of treatment [4]. Personalized
medicine, also called precision medicine is prevention and treatment strate-
gies that take into account individual variability. The idea is to look at the
individual patients biomarkers that takes into account the individual’s envi-
ronment, genes and lifestyle. A biomarker is defined by the Health Research
Directorate of the EU as a biological characteristic which can be molecular,
anatomical, physiological or biochemical and can be evaluated objectively.
An algorithm can use these biomarkers to make a decision for the patient’s
treatment course and provide the physician with data to make an individ-
ual assessment of the patient. Cancer treatment has been revolutionized by
personalized treatment, where treatments are based off the tumor’s genomic
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profile [4]. An application of personalized treatment in psychiatry is chal-
lenging as there is no medical test to assert psychological diagnoses [4].

Biomarkers can be extracted from medical images of the brain [4]. The
brain can be imaged on a molecular level using PET, single-photon emission
computed tomography or the technique phar-macologic MR imaging ( [4].
Physiological characteristics can be obtained by using functional MR imag-
ing (fMR imaging) and perfusion imaging and biochemical properties can be
extracted by using MR spectroscopy [4].

Several studies have identified fronto-limbic regions, in particular the hip-
pocampus, prefrontal, anterior cingulate cortex, amygdala and insula as fre-
quently predictive for treatment response for MDD diagnosed patients [1].
Fonseka et. Al (2018) [7] found multiple possible biomarkers for treatment re-
sponse from structural and functional neuroimaging modalities from 95 stud-
ies. The biomarkers were mostly found in fronto-limbic regions, including the
prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, and in-
sula. Although the strength and direction of association varied. Konarski
et al (2008) [8] reviewed 140 magnetic neuroimaging investigations in either
bipolar disorder or MDD and found similar results. Several studies reported
a reduction in volumetric changes in prefrontal cortical areas, especially in
the cingulate and orbifrontal regions. There were also consistent evidence
of a reduction in the hippocampal volumes in MDD diagnosed patients. A
smaller volumes of striatal and amygdala volumes were also reported for
MDD diagnosed patients. Lacerda et al. (2004) [9] observed a smaller vol-
ume of gray matter in the lateral and medial orbitofrontal cortex (OFC) in
the MDD patients.

Although there are several possible biomarkers to extract from medical
images there are several challenges connected to extracting useful biomarkers
for psychiatric disorders [4]. The first main challenge is the different protocols
for psychiatric diagnostics, which complicates the validation of the biomarker.
The second main challenge is that the features for a psychiatric disease can
be difficult to observe and can only appear under special conditions or under
a specific cognitive load [4]. The neural imaging field is often focused on
producing new results instead of replicating and validating biomarkers, which
explains the scarcity of replicated findings. There is also a practical challenge
involving cost of scans. In the United States a MR-scan cost approximately
600$ per hour for academic centers [4].
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2.2 MRI

Magnetic Resonance Imaging (MRI) gives us high resolution images without
the use of ionizing radiation [12]. It is based on the behavior of magnetic
dipoles in the nuclei of atoms in the human body when a magnetic field is
applied. Generally MRI uses the density of the hydrogen atoms mainly in
water and fat to differentiate between tissue/structures in the body [13].

Let us consider an isolated proton, with a charge +e and a spin angular
momentum I. The protons charge can be viewed as evenly distributed and
rotates around a central axis through the proton because of the angular mo-
mentum. This constructs an magnetic field and a dipole moment µ parallel
(for a proton) to the angular momentum vector, and normal to the plane of
charge circulation. An representation of this can be viewed in figure 1.

Figure 1: Representation of a nucleus with spin angular momentum I. The
circulating charge density generates a magnetic moment which constructs a
dipolar magnetic field. This figure was adapted from Fig 7.1 in Flower [13].

The magnetization M is the average magnetic moment per unit volume
[12]. As a magnetic field B0 is applied in the z-direction, the magnetization
will increase until all the magnetic moments are aligned and the net equi-
librium magnetization M0 is aligned with B0 [13]. By applying a pulse of
a weaker magnetic field, B1 in the xy-plane, the net magnetization, M will
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experience a torque. The net magnetization is then rotated by an angle of α,
due to the pulse exciting the nuclei. As the weaker field stops, the protons
will again realign with the direction of B0. This realignment is the source
of low-energy radio frequency photons, referred to as RF signals [13]. These
radio frequency (RF) signals are recorded by an RF-coil and interpreted into
a medical image. The realignment is referred to as relaxation, the length of
it varies depending on the matter that is being studied [12]. Different tissues
have different relaxation times, which are easily detected in an image.

MRI can obtain tissue contrasts from T1 and T2 relaxation times [14]. The
T1 relaxation time is the time it takes after the RF pulse is turned off for the
protons to realign with B0 and give up their excess energy. The T2 relaxation
time is defined as the time it takes for the transverse magnetization Mxy, to
decay. The weighting of an image contrast is accomplished by selecting the
timing parameters of the RF pulse sequence [15]. The parameters repetition
time (TR) and time echo (TE) are closely related to the tissue properties T1
and T2 [14]. TR and TE can be adjusted by the operator, while T1 and T2
are fixed tissue properties. TR is the time between RF-pulses. TE is the time
it takes from the RF signal is delivered to the measurement is conducted.
TR primarily controls the amount of T1 weighting, while TE controls the
amount of T2 weighting [15]. In T1 weighted images of the brain, the white
matter will have higher intensity values than gray matter. In T2 weighted
images, the intensity values for white matter are lower than for gray matter.

Functional magnetic resonance imaging (fMRI) enables us to study struc-
ture and function at the same time [12]. fMRI exploits inhomogeneities in
the magnetic fields due to the difference in magnetic properties between oxy-
genated and deoxygenated hemoglobin. There is no need for an external
agent as oxygenated hemoglobin is less paramagnetic than deoxyhemoglobin
[12]. A fMRI will look different before and after blood has flowed to a tis-
sue mainly because the blood is oxygenized (change in blood oxygenation).
If a brain region is active, one can usually see an increase in blood flow in
this region. By using this non-invasive method, fMRI can provide the same
functional information as PET, without the use of radionuclides [12].

An MRI image can be viewed as a 3D matrix of size i × j × k contain-
ing voxels with grayscale intensity values. The i×j dimension can be viewed
as one slice, as seen in figure 2, the slices make up the MR image in the k
dimension.
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Figure 2: An MR- image can consists of k slices with dimensions, i × j.
Each slice contains i × j voxels, and all the slices together constructs the
3-dimensional MR-image.

2.3 Radiomics

Radiomics is not strictly defined, but essentially aims to extract quantitative
and reproducible information that is based on patterns in diagnostic images,
that is difficult to see for the human eye [5]. It can be used to observe tis-
sue and lesion changes over time or treatment by extracting properties like
shape and heterogeneity. Or it can be used in explorative data analysis as
the datasets are often large. This enables the possibility to observe new
biomarkers and patterns for disease evolution and treatment response. Ex-
tracted radiomics features are often divided into three types of features, first
order statistics features, shape features and texture features.

First order statistics features describe the region of interest by using com-
mon statistical measurements that are based on the occurrence of voxel in-
tensity values [5]. Examples are mean, variance, maximum, minimum and
percentiles. To reflect the shape of the intensity distributions measurements
like skewness and kurtosis are included.
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Shape features describe the shape of the region of interest by properties
like volume, maximum diameter along different orthogonal directions and
maximum surface [16].

Texture features are calculated based on the statistical relationship between
the neighboring voxels, and provides information about the spatial arrange-
ment of the voxel intensities [16]. There are multiple subcategories of texture
features. This thesis presents five of these subcategories.

The Gray level Co-occurrence Matrix (GLCM) captures the relationship
between pairs of voxels [17]. The (i, j)th position in the matrix represents
how many times a combination of intensity values i and j occurs with a pre-
defined distance δ along an angle θ. An example of how the GLC matrix is
calculated for a two dimensional image with four intensity values is shown in
figure 3. The size of the GLC matrix will be n × n, where n is the number
of discrete intensity values present in the image.

Figure 3: An example of how the GLCM is calculated with δ = 1 and θ
= 0 (horizontally). Intensity values 3 and 1 occur two times in that order,
element (3,1) in the GLC matrix is therefore equal two. As there are four
intensity values, the size of the matrix is 4× 4.

The Gray Level Size Zone Matrix (GLSZM) counts the number of zones
with voxels of the same gray level intensity value [5]. Two voxels are con-
sidered connected if the distance is 1 [17]. The GLSZM is independent of
rotation. Only one matrix is calculated for all rotations in the ROI. The
GLSZM is calculated as shown in the example in figure 4. Position (i, j)
represents the number of intensity zones where i is the intensity value and j
is the size of intensity zone. The size of the GLSZ matrix is i× j.
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Figure 4: An example of how the GLSZM is calculated. The intensity values
(i) 2 and 4 have a run length j=2 that occurs one time in the image. The
positions (2,2) and (4,2) are therefore both equal to one.

The Gray Level Run Length Matrix (GLRLM) quantifies the number of
voxels with the same intensity value in row at a given angle θ. The position
(i, j) in figure 5 represents the number of times a gray level intensity value
i occurs consecutively in a run length j at the angle θ = 0 (horizontally) in
the image. The intensity values i = 2, 3 and 4 all have one run of length j
= 2. The size of the GLRL matrix is i× j.

Figure 5: An example of how the GLRLM is calculated. The intensity values
(i) 2, 3 and 4 have a run length j=2 that occurs one time in the image at the
angle θ=0 (horizontally), the positions (2,2), (3,2) and (4,2) are therefore all
equal to one. The size of this GLRL matrix is 4× 4.
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The Neighboring Gray Tone Difference Matrix (NGTDM) assesses the
difference between the center voxel intensity value and the mean of the neigh-
boring pixels with a distance δ. Features extracted from this type of matrix
includes coarseness, busyness and complexity [5].

As seen in figure 6, the NGTDM consists of intensity values i and ni voxels
with intensity value i. pi is the probability of a voxel having intensity value i.
si corresponds to the sum of the absolute difference between intensity value
i and the mean intensity value of the neighboring voxels. The size of the
NGTD matrix is i× 3, where each column corresponds to ni, pi and si.

Figure 6: An example of how the NGTDM is calculated. ni is the number of
voxels with intensity value i. pi is the probability of a voxel having intensity
value i. si is the sum of absolute differences between the intensity value
i and the mean intensity values of it’s neighboring voxles. The example
figure illustrates how NGTDM is calculated for intensity value i = 4 with a
distance δ = 1. Two voxels contains the intensity value 4, therefore n4 = 2.
The probability p4 is calculated by n4

Total number of voxels
= 2

12
= 0.17. s4 =∣∣4− 1+3+4+2+2

5

∣∣ +
∣∣4− 4+1+3+3+3+3+2+2+

8

∣∣ = 2.97. The size of this NGTD
matrix is 4× 3.

The Gray Level Dependence Matrix (GLDM) is also calculated based on
the relationship between a center voxel and its neighboring voxels [5]. A
neighboring voxel with intensity value j is dependent on the center voxel
with intensity value i if |i− j| ≤ α. The (i, j)th element in the GLDM is
how many times a voxel with intensity value i with j dependent voxels in
it’s neighborhood appears in the image. In figure 7 there is an example of a
GLDM that has been calculated with an α = 0 and a distance δ = 1 between
voxels. The intensity value i = 3 has only one occurrence of a neighborhood
with three dependent voxels. The size of the GLD matrix is i× j.
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Figure 7: An example of how the GLDM is calculated. A neighbor voxel with
distance δ = 1, is considered dependent if |i− j| ≤ α, where i is the intensity
value of the center voxel and j is the intensity value of the neighboring
voxels, in this case α = 0. The position (3, 4) in the GLDM corresponds
to how many times an intensity value i = 3 occurs on a neighborhood with
three dependent voxels, j = 3. The total size of the GLD matrix is 4× 4.

2.4 Repeated Elastic Net Technique for Feature Selec-
tion

Radiomics features often yield a large number of columns, while the sample
size is often quite low. A feature selection technique is therefore essential to
extract a smaller subset of the dataset. A successful feature selection yields
a dataset with variation that is useful and contains less bias. The Repeated
Elastic Net Technique (RENT) [18] was applied in this thesis for feature se-
lection.

RENT utilizes that regularization in predictive model building can be useful
for feature selection [18]. It uses the elastic net regularization for linear or
generalized linear model (GLM) as a starting point in order to develop this
feature selector approach. Let us consider a GLM,

g(y) = χ β + ε, (1)

Where y is a target variable an χ is the design matrix associated with a
dataset X. β is a regression parameter vector (weights). ε is the error which
is an i.i.d. Gaussian distributed random variable with mean zero. g is known
as the link-function. If the link-function is set to the identity mapping then a
special case of linear regression model is obtained. The logistic regression for
binary classification is a well known version of this model. The link-function,
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g(y) = log y
1−y , y ∈ [0, 1], transforms the [0, 1]-valued target variable onto

the real line R. The corresponding inverse logistic function transforms these
values into class probabilities in [0, 1].

Regularization is achieved by adding a penalty term to the minimized tar-
get function during training. There exists different types of penalty terms.
Lasso regularization adds a L1 penalty term, which can truncate a part of
the parameter to zero [18]. Ridge regression handles multicollinearities by
pulling the L2-norm from the parameter vector β towards zero [18]. Elastic
net regularization utilizes both the L1 and L2 penalties. This is especially
useful for feature reduction in high dimensional datasets.

Elastic net can handle a large amount of correlated features and can simul-
taneously truncate parts of the parameters to zero [18]. Formally the elastic
net method consists of a L1 term, λ1(β) = abs(β) and a L2 regularization
term, λ2(β) = ‖β‖2. The regularization term for the elastic net is formulated
as,

λenet(β) = γ [αλ1(β) + (1− α)λ2(β)] , (2)

where α ∈ [0, 1] works as a mixing parameter and γ decides the strength of
the regularization. These parameters are adjusted by the user by using the
input parameters c and l1ratio. l1ratio is the mixing parameter, α, which
mixes between the L1 and L2 regularization. The input parameter c is the
inverse values of γ.

Given a training set, {Xtrain = xi : I = 1, . . . , Itrain}, where xi denoted an ele-
ment from the N -dimensional feature space. RENT is built on the concept of
training models on every k = 1, . . . , K randomized subsets of Xk

train ⊂ Xtrain

that is extracted independently and without replication. While the training
is done on a unique subset, Xk

train, of the original training data Xtrain, the
evaluation of every model Mk is done on the remaining samples. In other
words the validation set Xk

val = Xtrain\Xk
train, here \ denotes the difference

operator. To further increase robustness, RENT also enables the user to vary
the size of the training sample Xk

train in proportion to the size of the entire
training set Xtrain.

For every feature fn in the total feature set F , n = 1, . . . , N of Xtrain, the
trained models will give evidence for the distribution of the associated param-
eter values, the estimated parameters, βnk from the model Mk, k = 1, . . . , K.
These estimates can be collected into a parameter matrix B with dimensions
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N × K, where every row represents the estimated parameter distribution
for a feature fn over all K trained models. RENT selects features by ex-
tracting the parameter estimations from B for every feature fn, denoted by
βn. Since the models are trained on different samples of the training data,
Xtrain, the parameter estimates βn for feature fn vary across the K-models,
where some of the parameter estimates can have been set to zero due to the
L1-regularization term as a part of the elastic net regularization [18].

A simple way to measure feature relevance is to count the number of times
a features is selected across all K models through the counter c(βn), which
in other words can be described as the ratio of non-zero parameter estimates
for feature fn,

c(βn) =
1

K

K∑
k=1

1[βn,k 6=0]. (3)

Two empirical summary statistics can be observed in the feature parameter
estimate distributions, βn. These are the feature specific mean µ(βn), and
the variance σ2(βn) is defined as:

µ(βn) =
1

K

K∑
k=1

βn,k (4)

σ2(βn) =
1

K1

K∑
k=1

(βn,k − µ(βn)2 (5)

To RENT a feature fn, is generally viewed as a candidate for feature
selection if these criteria’s are met:

• The feature fn, has a high score c(βn) (Eq. 4), in other words the
feature has been selected by the elastic net in a large proportion of the
K models.

• The feature fn, is stable. The parameter estimates do no alternate
between positive and negative signs throughout the K models.

• The feature fn, has consistently high non-zero model parameter esti-
mates with low variance across the K models.

These three criteria’s can be transformed into mathematical expressions
in order to produce three quality metrics, τi(βn), i = 1, . . . , 3, in order to
assess the feature, fn.
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τ1(βn) = c(βn) (6)

τ2(βn) =
1

K

∣∣∣∣∣
K∑
k=1

sign(βn,k)

∣∣∣∣∣ (7)

τ3(βn) = pK−1

 µ(βn)√
σ2βn
K

 (8)

Here pK−1 is the cumulative density function of students t-distribution
witk K − 1 degrees of freedom.

The optimal case for τ2 is when all the parameter estimates have the same
sign (positive or negative), but unfortunately this is not true for most cases,
with exceptions of very small K. τ2 decides therefore the ratio of parameter
estimates that has the same sign.

τ3(βn) identifies consistently high parameter estimates, and is chosen such
that it corresponds with the statistical t-test with a rejection of the null
hypothesis.

H0 : µ(βn) = 0 (9)

If the null hypothesis holds, the test statistics

T =
µ(βn)√
σ2(βn)
K

, (10)

will follow a students t-test distribution with K − 1 degrees of freedom.
This term evaluates the probability of test statistics under the H0 distribu-
tion and yields a threshold for the chosen significance level.

In order to define a criterium for feature selection from these quality metrics,
τ1(βn), τ2(βn) and τ3(βn), RENT introduces the corresponding threshold val-
ues t1, t2, t3 ∈ R+. A feature fn ∈ F is put in the selected features F if it
satisfies all the criteria’s τi ≥ ti,∀i ∈ {1, 2, 3}. These quality metrics can
therefore be viewed as hyperparameters in the RENT method, which gives
the user the opportunity to tune feature selection by changing the values of
the hyperparameters t1, t2, t3 . The number of features decreases as any of
these thresholds are increased.

τ1(βn), τ2(βn) and τ3(βn) are constrained within the interval [0, 1]. τ3(βn)
represents a t-test which means that a threshold t3 = 0.975 yield a signifi-
cance level equal to 5% in the t-test [19].
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2.5 Principal Component Analysis

Principal Component Analysis (PCA) is used in this thesis to detect clusters,
trends and outliers in the dataset. PCA is an unsupervised dimensionality re-
duction technique that is widely used across different fields [20]. The method
reduces dimensionality by finding the direction with maximum variance in a
high-dimensional dataset and projecting the data onto a new feature space
with fewer or equal number of dimensions. PCA will construct new axes,
called principal components (PC) that lie along the direction of greatest
variation but orthogonally to the other principal components. The principal
components will then make up the new subspace.

PCA is preformed by constructing a d × x-dimensional transformation ma-
trix W . This transformation matrix enables us to map a vector x with
d-dimensional feature space onto a new k dimensional feature space, where
typically k << d. The vector x can be expressed as,

x = [x1, x2, ..., xd], x ∈ Rd. (11)

The transformation matrix,

W ∈ Rd×k, (12)

is constructed from the covariance matrix of x. The covariance matrix
is decomposed into eigenvalues and eigenvectors. The eigenvectors are then
sorted by decreasing order and the corresponding eigenvectors are chosen
based on the k largest eigenvalues, where k is the dimensionality of the new
feature space.

The transformation matrix W is used to transform x,

x W = z, (13)

to an output vector z where,

z = [z1, z2, ..., zk], z ∈ Rk. (14)

The elements of the output z are often referred to as scores, while the ele-
ments of W is known as loadings. These can be meaningful to plot in order
to detect outliers, clusters or which features are affects the observations.

All components will have the largest variance possible given that the
principal components are uncorrelated to each other (orthogonal).
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2.6 Pearson’s correlation coefficient

This thesis uses correlation matrices to investigate whether patients and con-
trols correlate. Correlation matrices enables us to summarize linear relation-
ships between variables [20]. This can be achieved by using the Pearson’s
correlation coefficient [20]. The Pearson product-moment correlation coeffi-
cient also referred to as Pearson’s r measures the linear dependence between
two features. It is defined as the covariance of the two features, σxy, divided
by the product of the standard deviations of the two features, σx, σy. The
Pearson’s r is a number that ranges between 1 and −1, and is a measure
of how strong the linear dependency is. If r = 1, there is a perfect positive
correlation between the two features, if r = 0 there is no correlation between
the two features and if the r = −1, there is a perfect negative correlation
between the features. The Pearson’s correlation coefficient can be calculated
for features x and y with length n,

r =

∑n
i=1

⌈(
x(i) − µx

) (
y(i) − µy

)⌉√∑n
i=1 (x(i) − µx)2

√∑n
i=1 (y(i) − µy)2

=
σxy
σxσy

. (15)

Here, µx and µy are the means of the respective features, σx and σy are
the standard deviations of the features x and y, and σxy is the covariance
between the two features.

2.7 Accuracy metrics

Three accuracy metrics were used in thesis in order to calculate the perfor-
mance of the model, the F1 score, the accuracy and Matthews correlation
coefficient.
The accuracy is intuitively how many times the model predicts correctly with
respect to how many samples it predicted [21]. This metric does not take
into account the ratio of false positive predictions and false negative predic-
tions given by the model. Whenever the model predict a depressed patient
as being depressed the prediction is a true positive (TP ). When the model
predicts a control as depressed, the prediction is a false positive (FP ). Simi-
larly, a control predicted to be healthy would be a true negative (TN), while
a patient predicted as healthy would be a false negative (FN).

The accuracy would be calculated as,

ACC =
TP + TN

TP + FP + TN + FN
(16)
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Precision is another accuracy metric that measures how many of the de-
pressed patients were predicted correctly, calculated as,

P =
TP

TP + FP
. (17)

Recall measures the ratio of how many patients that were depressed com-
pared to the number of individuals that were predicted as depressed. Recall
is calculated by,

R =
TP

TP + FN
. (18)

Precision and recall enable us to expose models that seems to have high
accuracies but are in fact failing to predict most depressed patients. If an
unbalanced dataset had contained a small fraction of patients, then the model
could predict all individuals as controls and still achieve a high accuracy.
Therefore it is good practice to always include other accuracy metrics.

The F1 metric is the weighted average of the precision and recall scores,
calculated by,

F1 =
2PR

P +R
. (19)

Another accuracy metric the Matthews correlation coefficient (MCC),
which ranges between -1 and 1, where 1 is a perfect prediction and -1 is
a totally incorrectly predicted [22]. In precision, recall and F1, the TN is
not a part of the equations, meaning that the TN can be any number and
would not affect these accuracy metrics [23]. MCC takes TN into account
and treats the classes symmetrically, as can be seen in equation 20.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(20)
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3 Method and materials

3.1 The dataset

This thesis examined T1 weighted Magnetic Resonance images of the brain.
The images originated from the DELPHI study which was conducted the
Netherlands from July 2005 to February 2007 [10]. The study consisted of
22 patients (male and female aged 25-55) diagnosed with DSM (fifth edition)
defined MDD. The patients scored > 18 on the 17-item Hamilton Depression
Rating Scale (HDRS17) [11]. The patients were scanned at study entry and
after 6 and 12 weeks of paroxetine treatment. Each patient was matched
with a control of the corresponding sex and age (± 2.5 y). The controls were
scanned only at study entry.

The patients received open-labeled 20mg/d paroxetine for 6 weeks. For the
next 6 weeks the non-responders was randomly (stratified by age) assigned
to either a true dose escalation (paroxetine 30− 50mg/d) or a placebo esca-
lation added to paroxetine 10mg/d. Non-responders were categorized as the
patients that had less than 50% decrease in HDRS17 score.

Structural T1 weighted MR images of the 22 patients and 21 controls from
this study were received from the Oslo University Hospital. Each image con-
sisted of 256× 256 pixels that were stacked in 182 slices, where each slice is
a cross section of the brain. Four patients were removed from further study
because they did not complete the entire treatment, 18 patients were further
studied. Mainly, this thesis focused on the patients and controls at study
entry. The two other timesteps were not investigated due to time constraints
and because our main focus was diagnosing patients, not predicting treat-
ment response. A flowchart of the method implemented in this thesis can be
seen in figure 8, and is further described in the oncoming sections.
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Figure 8: This figure displays a flowchart of the method applied in this thesis.
The MR images were sent to RadiomPipe, which segmented the images.
The image segments were further normalized and discretized, and radiomics
features were calculated from these segments, resulting in a dataset. The
dataset was split into a training and test set three times called split 1, split
2, and split3. RENT was applied to each one of these splits, where it selected
a subset of the radiomics features. A PCA was conducted on the selected
features from each of these splits. A PCA was also conducted on the features
that were selected from all three splits. Further, a PCA was also conducted
on the entire dataset and selected features corresponding to the brain regions,
hippocampus, and anterior cingulate.

17



3.2 RadiomPipe

The T1 weighted images were sent to an Application Programming Interface
(API) called RadiomPipe [24] developed to segment the brain into brain re-
gions, and to normalize and discretize the images. These images were then
used to extract radiomics features. RadiomPipe is a Representational State
Transfer (REST) API that is designed to make feature extraction easier and
more standardized [24]. The MRI scans are sent to RadiomPipe as a dictio-
nary, which is passed on to another REST API called BrainSeg. BrainSeg
segments the brain into approximately 97 structures where each mask repre-
sents an anatomical section of the brain, that follows the FreeSurfer (Martinos
Center for Biomedical Imaging, Harvard-MIT, Boston USA) standards [25].
Mask images are then passed back to RadiomPipe. The images are normal-
ized and discretized, and then the masks are used to calculate 110 different
radiomics features per mask.

3.3 Normalization

The intensity values of a MRI image vary between protocols, scanners, pa-
tients and visits [6]. This poses problems in regards to image segmentation
and extraction of radiomics features. In order to compare MR scans from
different patients it is essential to standardize over all patients and visits.
The basic idea behind standardization is to change the intensity values in
the target image to new intensity values by a transformation function [26].
The easiest way to do this is by correcting each intensity value by an offset
value. As Collewet et al. (2004) [27] displayed this can be done by normaliz-
ing using the same maximum gray level or same mean for all images. These
techniques are multiplicable and therefore keep the relative variations in gray
levels.

Another common approach is the z-score method, which does not keep the
relative variation between gray levels. The z-score method is calculated by
subtracting the mean intensity value (µROI) of the region of interest (ROI)
from each voxel intensity (I(x)) and dividing this result by the standard
deviation of the ROI (σROI)[28]:

IZscore(x) =
I(x)− µROI

σROI
(21)
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This is computed for each ROI and every patient, at each visit. A z-score
represents how many standard deviations the voxel intensity differs from the
mean intensity of the ROI. The calculated z-scores therefore have zero mean
and unit standard deviation.

Carré et al. (2020) [28] investigated the z-score method as well as Nyul’s
harmonizations method, which is a piecewise linear histogram matching that
maps the intensity values of each image to a standard histogram, and a white
stripe method which utilizes the z-score method based on normal appearing
white matter. Nyul’s harmonization method led to a high number of robust
first-order features. However, it has been shown that this linear histogram
matching affects the texture in the image. The white stripe method is depen-
dent on the quality of the white matter segmentation, which may affect the
quality of the normalization. Carré et al. (2020) recommended the z-score
method as it is easy to implement, computationally efficient and is more ro-
bust as it considers all the voxels inside the ROI. The z-score method was
applied in this thesis based on Carré et al. (2020) [28] and Collewet et al.
(2004) [27] recommendations.

3.4 Discretization

Texture features were extracted based on co-occurrence matrices and other
derived matrices calculated using the gray-level intensity values of the ROI
[29]. Large numbers of intensity values yield large co-occurrence matrices,
which are computationally heavy and result in texture features that are diffi-
cult to reproduce. To handle this problem discretization can be implemented.
Discretization clusters similar intensity values and will reduce the number of
individual intensity values. The two most common methods for discretization
are, relative discretization which clusters the intensity values to a predefined
number of bins, and absolute discretization which uses a fixed bin width [29].
When a relative discretization is applied, the ROI’s intensity range will affect
the bin sizes, which will in turn affect the extracted radiomics features. Bin
sizes in the absolute discretization are independent of the intensity range and
may result in lower variability in the extracted radiomics features between
patients.
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Goya-Outi et al. (2018) [6] recommended constant bin width with relative
bounds as it is a simple method that does not require setting absolute limits
for upper and lower bounds. Based on Goya et al. (2018) [6] and Duron et
al. (2019) [29] recommendations, this thesis implemented constant bin width
equal to 5 with relative bounds. The T1 weighted MR images were scaled
to 0 − 255 gray scale values and then grouped into bin widths equal to 5.
Yielding about 51 gray scale values. Discretization is preformed after the
normalization is conducted.

3.5 Dataset structure

The patients’ images were sent to RadiomPipe which returned a dataset
structured as shown in figure 9 after four patients were removed due to not
completing the treatment. The patient column specify the patient id. Each
patient was scanned at three different timesteps. Timestep t0 corresponds
to the scan that was preformed at study entry. Timesteps t1 and t2 cor-
responded to 6 and 12 weeks after study entry, respectively. The column
timestep indicates what timestep this information corresponds to. There
was a total of 54 images in the patient dataset as each of the 18 patients
were scanned three times. Each image was separated into 95 brain regions,
the column Mask indicates what brain region the current information corre-
sponds to. There were calculated 107 radiomics features columns for each
patient at every timestep and for all the 95 brain regions. Resulting in a
dataset with 18 patients× 3 timesteps× 95 brainregions = 5130 rows, and
110 columns.

20



Figure 9: An overview of the dataset received from RadiomPipe after four
patients was removed due to not finishing the treatment. The patients col-
umn corresponds to the patients id, the timestep column corresponds to the
timestep at which the patient was scanned. Mask indicates what brain region
the current information corresponds to.

To sort the data, three new datasets were constructed for each timestep as
seen in figure 10. Here each patient will occur in 95 rows, once for each brain
region. In order to make the dataset readable for algorithms like RENT [18]
and PCA [20], it is favorable to have one row per patient. This was done by
making new names for the columns corresponding to certain masks. Instead
of having one patient occurring 95 times because of each mask, each patient
will have 107 radiomics features per mask each beside each other.

The control dataset was structured and processed the same way, but the
controls were only scanned at t0. In this study, the main focus was on the
t0 timestep for the dataset. The patients dataset at timestep t0 and the
controls dataset were concatenated to create one large dataset with 39 rows
containing both patients and controls at t0. Some analyses were done on
timesteps t1 and t2; the dataset of patients at these timesteps, respectively,
were concatenated with the control dataset in the same manner as at timestep
t0.
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Figure 10: This figure shows how the dataset received from RadiomPipe was
split into three datasets, one for each time step. Further it was rearranged
such that the 107 radiomics features for each mask was set beside each other,
creating one row for each patient with 107 columns per mask.

Some analyses were conducted on a subset of the dataset with patients
and controls at timestep t0. This subset contained a selection of masks
that corresponded to the brain regions, hippocampus, and anterior cingulate.
These brain regions were chosen based on them being predictive for diagnosis
and treatment response for MDD, as described in section 2.1. Therefore, this
subset only contained features with one of the mask labels 17, 53, 1002, 1026,
2002, and 2026. These mask labels correspond to the FreeSurfer (Martinos
Center for Biomedical Imaging, Harvard-MIT, Boston USA) standards [25]
for the brain regions, hippocampus, and anterior cingulate.
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3.6 Correlation matrices

Correlation matrices were used in this thesis to get a general view of how
much the patients and controls correlate. The correlation matrices were cal-
culated by using the Pandas function DataFrame.corr() [30] which yields
a table of Pearson’s correlation coefficients. The Pearson’s correlation co-
efficient is further explained in section 2.6. The table of correlations were
displayed using the Seaborn function heatmap() [31]. The correlation func-
tion in pandas calculates the correlation between the columns. The dataset
were therefore transposed and patients and controls were transformed into
columns, before calculating the correlation.

3.7 Repeated Elastic Net Technique

This study utilized the Repeated Elastic Net Technique (RENT) algorithm
in order to reduce the feature space. RENT is especially effective for short
wide datasets, meaning that the dataset has a small amount of samples and a
large number of columns, which often is the case when extracting radiomics
features. This thesis utilised RENT version 0.0.1 in python version 3.8.8.
RENT is as package that has a number of useful functions that help us analyse
the selected features and ensemble of models, as well as giving insight into
the dataset. This thesis used RENT to train an ensemble of 100 models to
predict what features are relevant to classify patients diagnosed with major
depressive disorder. The response vector was arranged such that the patient
corresponded to a response equal to one while the controls had a response
equal to zero.

3.7.1 Splitting the data

A challenge with a short wide dataset is that the individuals that are placed
in the test set can have a large impact on the model’s prediction. In order to
resolve this problem, ensuring robustness and reliable results, the data was
split into a training set and a test set, three times, stratified by if the individ-
ual belonged to the patient or control class. This enables the feature selector
approach to select features based on different individuals in the training set.
An example of how this can be divided is seen in figure 11. If the approach
produces similar results for all splits, then there is a higher probability that
the results are reproducible. Each split is hereby referenced as split 1, split
2, and split 3. An overview of how the samples were split can be seen in
Appendix A.
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Figure 11: An overview of how the dataset was split into a training and
validation set three times.

3.7.2 Determining the regularization parameters for RENT

In order to decide the combination of c and l1 ratio parameters for RENT
that give the best model performance, possible c and l1 ratio parameters
are stored in lists. The lists of possible c and l1 ratio parameters were,
c = [0.01, 0.1, 1, 10, 100] and l1 ratio = [0, 0.1, 0.25, 0.5, 0.75, 0.9, 1], respec-
tively. The RENT algorithm [18] computes the performance with a 5-fold
cross validation tuning the given c and l1 ratio parameters. These compu-
tations can differ slightly if run multiple times. In order to be confident in
the selection of the regularization parameters, the shuffled dataset with a
70% training set was run six times into RENT. The results can be viewed in
appendix B.

RENT produces three matrices for the results of the cross-validations of
the combinations of parameters. Dataframe 1 shows the average predictive
performance. The highest score yields the parameter combination with the
highest predictive performance. Dataframe 2 shows the average percentage
of how many feature weights were set to zero, in other words how strong
the feature selection was with the corresponding parameter combination.
Dataframe 3 shows the harmonic mean between the first two dataframes.
The highest score in Dataframe 3 yields the best parameter combination. An
example of an output of these three dataframes can be seen in figure 12. Al-
though there might be parameter combinations that yield high performance,
they might have a weak feature selection. Then it can be advantageous to
reduce the performance and rather use a parameter combination that has
a stronger feature selection. For all the six runs of RENT, the decision of
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parameter combination was inspected by comparing these three dataframes.
From this analysis the parameter combination was determined to be c = 0.1
and l1ratio = 0.5 and this parameter combination was used for all the splits.

Dataframe 1: Average predictive preformance 

c
0,01 0,1 1 10 100

0 0,7387 0,7387 0,7387 0,7387 0,7387

0,1 0,6395 0,8748 0,8162 0,7387 0,7387

l 0,25 NaN 0,8748 0,8748 0,7387 0,7387

0,5 NaN 0,9333 0,8748 0,8162 0,7387

0,75 NaN 0,8162 0,8748 0,8162 0,7387

0,9 NaN 0,6978 0,8748 0,8162 0,7387

1 NaN 0,6395 0,8748 0,8162 0,7387

Max performance: 0,9333

Dataframe 2: Average precentage of  feature weigths set to zero.

c
0,01 0,1 1 10 100

0 0,0356 0,0356 0,0356 0,0356 0,0356

0,1 0,9997 0,8648 0,3724 0,0686 0,0358

l 0,25 NaN 0,9493 0,6152 0,1344 0,0381

0,5 NaN 0,9829 0,7642 0,2245 0,0472

0,75 NaN 0,9958 0,8312 0,3019 0,0576

0,9 NaN 0,9987 0,8559 0,3446 0,0646

1 NaN 0,9997 0,8687 0,3732 0,0686

Average percentage: 0,9997

Dataframe 3: Harmonic means between Dataframe 1 and Dataframe 2. 

c
0,01 0,1 1 10 100

0 0,0000 0,0000 0,0000 0,0000 0,0000

0,1 0,0000 0,8293 0,4419 0,0621 0,0004

l 0,25 NaN 0,8680 0,6867 0,1572 0,0051

0,5 NaN 0,9913 0,7775 0,2956 0,0233

0,75 NaN 0,7498 0,8128 0,3785 0,0429

0,9 NaN 0,3311 0,8250 0,4182 0,0552

1 NaN 0,0000 0,8312 0,4426 0,0621

Harmonic mean: 0,9913

Figure 12: An example of the three dataframes yielded from the 5-fold cross
validation parameter tuning method in the RENT algorithm.
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3.7.3 Selecting features with RENT

After running RENT for all three splits, the RENT method selected fea-
tures based on the cutoff values τ1, τ2 and τ3 for each split as mentioned
in section 2.5. The bar plot of τ1, was plotted using the RENT function
plot_selection_frequency() [19]. This bar plot shows the percentage of
times a feature were selected by a model, and were used to decide the cut-off
values. The cut-off values were also set such that the RENT method selected
as few features as possible while still maintaining a separation of the patient
and control grouping in a PCA score plot, resulting in cut-off values equal
to τ1 = 0.7, τ2 = 0.7 and τ3 = 0.975.

3.7.4 Describing the individuals in the dataset

To get insight into how the RENT performs on each patient/control the
function get_summary_objects() [19] was used. The function produces a
table that yields information about how many times an individual has been
misclassified out of the number of times the individual was a part of the val-
idation set. This table yields interesting information about what individuals
may be outliers and possibly adding bias to the model.

3.7.5 Validating the performance of the ensemble of models in
RENT

In order to validate the performance of RENT, a function called
plot_elementary_models() [19] were used, which yields a plot with Matthews
correlation coefficient metrics which shows the accuracy of each model. The
Matthews correlation coefficient is an accuracy metric and were explained
in section 3.8. The plot also shows how high share of features were set to
zero by each of the models. Yielding an impression of how strong the feature
selection is.

3.7.6 Validation studies

To ensure that the RENT model performed better than a random model,
two validation studies were conducted. An example of the output of such
a validation study can be seen in figure 13. Validation study 1 marked in
blue, will randomly choose the same amount of features as RENT selected
from the entire feature space. It will do this many times and calculate the
mean model performance for the randomly selected features. Naturally we
should expect that the randomly selected feature model should have a lower
performance than the model with the RENT selected features. One would

26



also expect that the number of times the performance by the model with the
random features was higher than the model with the RENT selected features
should be quite low. If the number of times the performance with random
selected features was larger than the performance with the RENT selected
features is 4 out of 100 times, then the p-value would become 4/100 = 0.04.
A significance level is set by the user and a one-sided student’s t-test is con-
ducted. The t-test says if the null hypothesis can be rejected, which tells us
if a model with RENT selected features is significantly better than a model
trained on randomly selected features.

Validation study 2 is also built on a one sided student’s t-test, where the
response of the test data is permutated. By permutating the response sev-
eral times and collecting the performances RENT calculates the mean per-
formance. It would also here be natural that the model performance using
the permuted labels would be lower than when using the correct labels and
that the number of performances that was higher than the correct labels
performances would be quite low. A p-value would then be calculated as
in validation study 1, and a significance level is set by the user. The t-
test is conducted and the null hypothesis can be rejected if the p-value is
lower than the significance level. If the null hypothesis is rejected then the
RENT model performs significantly better on the real labels opposed to the
randomly permutated labels.
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Figure 13: An example of the results from a validation study conducted
through RENT. The blue and green graph is the empirical distribution of
MCC scores collected from 100 runs in two validation studies, respectively.
Validation study 1 (VS1) draws as many random features as RENT selected.
Validation study 2 (VS2) randomly permutates the target labels, but keeps
the sample features. The red line is the RENT model’s MCC score.

3.8 Evaluating the test data

In order to ensure that the RENT algorithm’s predictions is not faulty an
external logistic regression method was used on the test data for every split.
The logistic regression model was applied without regularization and with
c = 1.0. This model was only given the test samples that were excluded
from the training of the RENT model. The model used the features that
were selected by RENT in each split. Three accuracy metrics were used in
order to calculate the performance of the model, the F1 score, the accuracy
and Matthews correlation coefficient. These accuracy metrics are described
in section 3.8. Both the F1: 1 and the F1:0 metrics were calculated. These
are both calculated as F1 score described in section 3.8. The difference
lies in wich class is defined as positive and negative, respectivly. In F1:1, the
response for the patients is denoted as one, while the responses of the controls
are denoted as zero. In F1:0, the responses are flipped so that patients have
the response zero. Using three accuracy metrics enables us be more confident
in the estimated performance of the model.
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3.9 Principle component analysis

Several principle component analyses were conducted in this thesis, to inves-
tigate in what degree the patients and controls classes were separable and
what patients/controls deviated from the others. The PCA was conducted
using the Hoggorm package vesion 0.13.3 [32]. There was conducted a PCA
for every split with the dataset consisting of RENT selected features in the
respective splits. A PCA was also conducted using all features in the dataset,
to explore how the dataset behaved. To further investigate how the dataset
behaved with a smaller selection of features a PCA was conducted for for the
brain regions, hippocampus, and anterior cingulate. These are brain regions
that are often associated with depression, and is further explained in section
2.1. The selected features from RENT was further investigated by running
PCA for features that were selected by all the three splits.
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4 Results

The aim of this thesis was to separate depressed patients from healthy con-
trols by using only a subset of the total corresponding radiomics features.
Additionally to investigate what radiomics features and corresponding brain
regions were predictive for separating the two classes. A correlation matrix
was calculated to display how well the individual patients and controls cor-
relate. The dataset was split into training and test set three times. The
Repeated Elastic Net (RENT) algorithm was applied to each of these splits
to reduce the number of features in the dataset by training an ensemble of
100 elastic net regularized models, and select features based on weight distri-
butions of features across the models. The frequency of how many times the
features were selected were investigated. And an analysis of the ensemble
models were performed, yielding the average accuracy over all models. Each
individual was looked into in order to see how many times it was wrongly
classified. Then, a logistic regression was used on the test set to validate the
performance of the RENT model. A validation study was also performed
to check if the RENT model performed better than a random model. At
last the selected features for each split were used in a PCA, where we could
indentify possible the clusters of patients and controls and possible outliers.
A PCA was also conducted for the whole brain, and a selection of the brain.
A PCA was also conducted on the four features that all splits selected.

4.1 Correlation between patients and controls

The correlation matrix of the dataset containing all masks for patients and
controls at timestep t0 can be seen in figure 14. There was a large overlap
of information among patients and controls. Patient 08 and patient 15 were
somewhat less correlated than the rest of the patients and controls.

The correlation matrix calculated from the dataset containing patients and
controls at timestep t0, with a selection of masks corresponding to the brain
regions, hippocampus and anterior cingulate can be seen in figure 15. In this
case, there was a clearer distinction between patients and controls compared
to figure 14, where all brain regions where considered. The controls were to
an extent more correlated. Still there were some controls like control 027
that had relatively low correlation to the other controls.
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Figure 14: A correlation matrix calculated from the dataset containing fea-
tures from all masks of patients and controls at timestep t0. The figure
displays how closely correlated patients and controls were. The color bar to
the right gives the Pearson correlation coefficient.
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Figure 15: A correlation matrix calculated from the dataset with patients
and controls at timestep t0 with a selection of masks corresponding to the
brain regions, hippocampus and anterior cingulate. The figure displays how
closely correlated the patients and controls were. The color bar to the right
gives the Pearson correlation coefficient.
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4.2 Feature selection

RENT was applied on the dataset with patients and controls at timestep
t0. Figure 16, displays the fraction of the ensemble models in RENT that
selected each feature for every split. For all the splits it is quite clear that
the majority of features were selected close to 0% of the time. And almost all
features were selected in less than 40% of the models. A handful of features
were selected in 70% of all models or more.
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Figure 16: This figure shows the fraction of models that selected a given
feature, for split 1 (a), split 2 (b) and split 3 (c).

The number of features that the RENT method selected is based of the
cut-off values τ1, τ2 and τ3, previously discussed in section 2.4. The lowest
amount of features were selected based on figure 16 and while still maintain-
ing a separation of the patient and control grouping in a PCA score plot.
The cut-off values were set to τ1 = 0.7, τ2 = 0.7 and τ3 = 0.975, resulting
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in eight features selected in the first split, while the two other splits selected
seven features.The features selected by RENT in each split can be seen in
figure 17.

Figure 17: An overview of the features selected by RENT in each split,
respectively.

The frequency of how many times a feature was selected by RENT in
one of the splits can be seen in figure 18. The majority of the features were
only selected by one split, but four of the features were selected by all three
splits. Figure 19 displays the distribution of radiomics feature types. 78.6%
of the total selected features from all splits were texture features, while the
remaining features consisted of first-order features. No shape features were
selected by RENT. The right chart in figure 19 displays the distribution of
the type of texture features selected by RENT. Two types of texture features
were selected by RENT. 63.6% of all selected texture features were GLCM
features, while the rest consisted of GLRLM features. Figure 20 is a pie chart
that illustrates the distribution of labels corresponding to brain regions in
the 14 features selected by RENT.

35



Figure 18: This chart shows how many times each feature was selected by a
RENT split. Four features were selected by all three splits
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Figure 19: The left pie chart illustrates the distribution of the different types
of radiomics features in the features selected by RENT. The right pie chart
illustrates the type of texture feature distribution within the texture feature.

Figure 20: This pie chart illustrates the brain region label distribution in the
features selected by RENT.

Figure 21 gives us an overview of what brain regions the labels in the
RENT selected features corresponds to. Four of the labels are tied to the
orbitofrontal cortex in the brain, while the last one is the left cerebral white
matter.
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Figure 21: Overview of labels of the RENT selected features and the corre-
sponding brain regions.

4.3 Performance across models

The MCC accuracies was calculated for the 100 elastic net regularized models
in the RENT model for each split. The scores was plotted together with the
percentage of weights set to zero, and can be viewed in figure 22. In all three
splits the model performance ranged between 0.6 and 1, although for some
models the performance was as low as zero.
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Figure 22: This analysis of ensemble models gives insight into the perfor-
mance of each model and percentage of weights that were set to zero, in split
1 (a), split 2 (b) and split 3 (c).
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4.4 Summary of the individuals

Tables 2−4 displays how often the model predicted each individual correctly,
for each split, respectively. They tell us how many times an individual was
in the test set, what class label the individual belongs to and how many
times the individual was wrongly classified. The percentage of incorrect
classifications displays how many times the individual was classified wrongly
in relation to how many times the individual was in the test set. A large
proportion of the individuals in split 1 was correctly predicted. As seen in
table 2, the percentage of wrongly classified individuals was mostly below
14%, except for control 054 which was predicted incorrectly in 50% of the
cases.
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Table 2: This table summarizes how well the RENT model predicts the class
of patient/control in the test set for split 1. #test indicates how many times
the individual was in the test set. Class corresponds to the true class label of
the individual. #incorrect gives how many times the individual was classified
incorrectly and %incorrect yields the percentage of incorrect predictions in
reference to the total number of times the individual was in the test set.

There was generally a larger percentage of incorrectly classified individ-
uals in split 2 than in split 1, as can be seen in table 3. Patient 01 and
control 066 were predicted incorrectly in about 80% of the times they were
in the test set, while control 058 was predicted incorrectly every time it was
in the test set. Half of the time patient 14 was in the test set it was predicted
incorrectly.

41



Table 3: This table summarizes how well the RENT model predicts the class
of patient/control in the test set for split 2. #test indicates how many times
the individual was in the test set. Class corresponds to the true class label of
the individual. #incorrect gives how many times the individual was classified
incorrectly and %incorrect yields the percentage of incorrect predictions in
reference to the total number of times the individual was in the test set.

In split 3 there was also a generally low percentage of incorrectly classified
individuals, as seen in table 4. Similarly as split 2, split 3 also had difficulties
with classifying patient 01 and control 058, incorrectly classifying them in
about 50% of the times. Control 027 was incorrectly classified in 86% of the
times, although only being classified incorrectly 4.6% of the times in split 1.
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Table 4: This table summarizes how well the RENT model predicts the class
of patient/control in the test set for split 3. #test indicates how many times
the individual was in the test set. Class corresponds to the true class label of
the individual. #incorrect gives how many times the individual was classified
incorrectly and %incorrect yields the percentage of incorrect predictions in
reference to the total number of times the individual was in the test set.
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4.5 Checking performance with a logistic regression
model

The performance of a logistic regression model performed on the test set with
RENT selected features can be seen in table 5 for every split. For split 1 the
accuracies ranged between 73% and 86% across all four metrics, while for the
other two splits the accuracies was 100% across all the metrics.

Table 5: This table shows an overview of the performances of a logistic re-
gression model run on the test set for every split. Four performances metrics
were calculated, the f1 1 and f1 0 metric and the accuracy and the Matthews
correlation coefficient.
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4.6 Validation Study

The validation study for every split can be seen in figure 23. The null hy-
pothesis, H0 was rejected at a 5% significance level for both the validation
study 1 colored in blue and validation study 2 colored in green. For all splits,
the p-value was quite low for validation study 1 and 0 for validation study 2.
This means that there was almost no models with randomly selected features
or permuted labels that had a better performance than the RENT model.
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Figure 23: This figure displays two validation studies conducted in split 1 (a),
split 2 (b) and split 3 (c). In validation study 1 (VS1) random features are
drawn while in validation study 2 (VS2) the response target are permutated.
In both these tests, 100 logistic regression models were trained and predicted
on unseen test data. The MCC scores were compared with predictions based
on features selected by RENT. In order to compare the MCC scores, one
sided Student’s t-test are conducted with a 5% significance level. The null
hypothesis claims that the RENT MCC is lower than the average MCC from
VS1 and VS2, respectively
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4.7 PCA for every split

Figure 24 displays a PCA completed for each split. The PCA was conducted
on a subset of the dataset consisting of RENT selected features from each
split, respectively. The PCA for each split consists of a score plot and a
loadings plot.

There is a separation between controls and patients in the score plot in
every split. The patient and control clusters are denser for split 2 and 3.
Generally for all splits the controls 038 and 058 are positioned closer to the
patient group than the other controls. Patient 01 lies further towards the
control group than the other patients. In split 1, there seems to be some
tendency of responders being located higher on PC2 in the plot than the
non-responders. The RENT selected features in all the splits are separable
in the loadings plots on the PC1 axis. The PC1 in all the splits explains
most of the variance in the dataset. The patients have high values of the
texture features GLCM Imc1 and GLCM ClusterShade for label 2014 in all
splits. While controls have high values of the texture features GLCM Imc2
and GLCM Cluster Prominence for label 2014 in all three splits. There is a
marked variation in PC1 for all splits.

The GLCM Imc2 feature in label 1014 is responsible for most of the variation
in PC2 for split 1. PC1 and PC2 explain 97.1% of the variance in the dataset
in split 1, as seen on the axes of the scores and loadings plot.

Control 049 is positioned outide of the control cluster in the score plot of
split 2, and may be an outlier. The first order feature Mean Absolute Devia-
tion of label 2027 caused the variation in PC2 as seen in the loadings plot of
split 2. Control 049 has a high value of this particular feature. The two first
principal components explain 94% of the variance in the dataset in split 2.

The patients 08 and 014 have a lower value of PC2 than the other indi-
viduals, as seen in the score plot of split 3. The GLCM MCC and GLCM
Correlation for label 2014 are positively correlated according to the load-
ings plot in split 3. The two outliers mentioned above have high values for
these features.The two first principal components explain 93.3% of the total
variance in the dataset in split 3.
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Figure 24: Score plot and loadings plot of the responders, non-responders and
controls at timestep t0 from a PCA conducted on RENT selected features
from split 1, split 2 and split 3.
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4.8 PCA on predefined brain region

Two PCA analyses were conducted on the patients and controls at timestep
t0; one was for all masks corresponding to the entire brain and the other
was for masks corresponding to the brain regions hippocampus and anterior
cingulate. Figure 25 show the scores and cumulative explained variance plot
for the PCA conducted on the entire brain dataset. The clustering of the
control and patient group was not as distinct as in the PCA conducted on
the RENT selected features for every split. Although there is definitely a
separation between the two classes. Controls 058 and 054 are positioned
further into the patient class, compared to the other controls. The two
first principal components explains only 17, 2% of the dataset and as seen
in the explained variance plot, five principal components yields below 50%
explained variance.
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Figure 25: Score plot and cumulative explained variance plot of the respon-
ders, non-responders and controls at timestep t0 from a PCA conducted on
the entire dataset corresponding to the entire brain.

Figure 26 show the scores and cumulative explained variance plot for the
PCA conducted on the dataset of the two brain regions hippocampus and
anterior cingulate; the two classes (patients and controls) can be separated
nicely. Patient 01 is more similar to the control group compared to the other
patients. Patients 15 and 06 are similar but are outliers from the rest of the
individuals. The two first principal components explain 30.8% of the variance
in the dataset and increases to just above 50% if five principal components
are added.
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Figure 26: Score plot and cumulative explained variance plot of the respon-
ders, non-responders and controls at timestep t0 from a PCA conducted on
a selection of features corresponding to the brain regions hippocampus and
anterior cingulate.
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4.9 PCA with RENT selected features

The three PCA’s shown in figure 27, was conducted on the dataset with con-
trols and patients at each timestep containing only the four features selected
by RENT in all splits. The score plots shows a clear separation between
the classes in timesteps t0 and t1, but not in t2. Controls 058 and 038
seem to lie closer to the patients than the other controls in the scoreplots
from timesteps t0 and t1. In the loadings plots for timesteps t0 and t1 the
controls have a high values of the texture features GLCM Imc2 and GLCM
Cluster Prominence for label 2014, while the patients have high values for
the texture features GLCM Imc1 and GLCM ClusterShade for label 2014.
The first two principal components explain around 99.5% of the variance in
the dataset for both timesteps t0 and t1.

In timestep t2, the loadings plot is similar to the two other timesteps, al-
though there is a no clear seperation of the classes in the score plot. There-
fore there is not similar connections between the features and the classes as
in timesteps t0 and t1.

There was also conducted a PCA on the dataset for patients and controls at
each timestep containing all features RENT selected in the three splits. The
result can be seen in appendix C.
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Figure 27: This figure shows the scores and loadings plot from a PCA con-
ducted on the dataset consisting of patients and controls at timesteps, t0,
t1, and t2. The dataset contained features that the RENT model selected in
every split, in total 4 features.
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5 Discussion

The main objective for this thesis was to detect differences between patients
diagnosed with Major Depressive Disorder (MDD) and healthy controls us-
ing radiomics features extracted from structural MR images. In addition,
the study searched for reliable biomarkers that can potentially be used to
diagnose patients with MDD. The RENT algorithm separated patients and
controls with high accuracy in every split of the dataset and selected in total
14 features. Four of these features were selected in every split and may be
considered possible neural biomarkers for predicting a depression diagnosis.

5.1 Evaluating the selected features

The RENT algorithm selected eight features in split 1 and seven features in
the two other splits. The features selected in each split can be viewed in
figure 17. In total, 14 features were selected across all splits, seen in figure
18. Four of these features were selected by all splits, suggesting that these
four features were consistently important for RENT to separate the classes.
Figure 19 displays the proportion of types of radiomics features selected by
RENT. 78.6% of the 14 selected features were texture features, while the
remaining features were first-order features. No shape features were selected
by RENT, indicating that variations in brain regions’ shape were not as use-
ful for RENT to separate the classes.

The 14 selected features corresponded to five mask labels which again corre-
sponded to five brain regions. An overview of mask labels and brain regions
can be viewed in figure 21. The brain regions labeled 2012, 2014, and 1014
correspond to the orbitofrontal gyrus, which is located in the orbitofrontal
cortex (OFC) [33]. Label 2027 corresponds to the right middle frontal gyrus,
and label 2 corresponds to white matter in the left cerebral hemisphere. The
distribution of labels in the selected features can be seen in figure 20, in total,
78.5% of the selected features corresponded to regions in the orbitofrontal
gyrus (figure 21). The selected features indicate that the orbitofrontal gyrus
may be an essential brain region to predict a depression diagnosis. Four fea-
tures were selected in all splits, which can be seen in figure 18. These four
features are texture features that corresponded to the mask label 2014. 64%
of the 14 selected features also correspond to this brain region. Label 2014
is the brain region, right medial orbital gyrus located in the OFC [33]. All
three splits found these four features important for predicting the depression
diagnosis, indicating that these features in the medial orbitofrontal regions
may be considered possible biomarkers.
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Several studies have found connections between the OFC and depression.
Fonseka et al. (2018) reviewed 95 articles on studies examining predictors of
treatment response from structural and functional neuroimaging modalities
[7]. They found multiple possible biomarkers in frontolimbic regions, in-
cluding the prefrontal cortex, anterior cingulate cortex, hippocampus, amyg-
dala, and insula, most frequently influenced response outcome although the
strength and direction of the biomarker’s association with clinical response
varied, likely due to study differences. Lacerda et al. (2004) [9] studied 31
patients diagnosed with major depressive disorder and 34 controls subjects.
The study observed a smaller volume of gray matter in the lateral and me-
dial OFC in the MDD patients. Konarski et al. (2008) [8] reviewed 140
magnetic neuroimaging investigations with either bipolar disorder or MDD
diagnosed patients. Several studies reported a reduction in OFC grey matter
volumes in MDD patients. However, some of the 140 studies did not find
these volumetric changes in gray matter volume in the OFC. Frontolimbic
regions like the prefrontal cortex, anterior cingulate cortex and the insula are
interesting regions in the discovery of new neural biomarkers [4]. The results
of this thesis may contribute to validating the medial orbitofrontal gyrus as
a possible neural biomarker. However, in order for neural biomarkers to be
used in the medical field, the biomarkers have to be replicated and validated
many times in large independent sets of samples [7].

5.2 Evaluating the model performance

The performance of the RENT model was evaluated by reviewing the per-
formances of the 100 ensemble models. A validation study was also applied
to the RENT model in order to detect if the model performed better than a
random model. Further, a logistic regression model was applied to the test
data of every split using RENT selected features to test how relevant and
reliable the features were for predicting patients diagnosed with MDD.

RENT created an ensemble of models to predict whether an individual be-
longed to the patient group or the control group. The performance of the
models over the three splits is shown in figure 22. The performance is gen-
erally high as most model performances range from 0.6 to 1.0 over all three
splits. The consistency of model performances in each split is an indication
that the model performed well on unseen data [20]. The performances were
also consistent over all three splits, which again reassures that the model
predicted well independently of which individuals were in the training set. It
appear that many features weights were set to zero, but since the dataset is
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large with 10165 features, setting 99% of the weights to zero would still yield
102 features. In all three splits, the share of features set to zero was quite
high, which means that the strength of the feature selection is consistent.

Two validation studies were performed to ensure that the features selected by
RENT were significant for the high model performance. In validation study
1 (VS1), random features were drawn, while in validation study 2 (VS2), the
response target is permutated [18]. In both these tests, RENT trained 100
logistic regression models and predicted on unseen validation data. Then
RENT compared the MCC scores of these tests with predictions based on
features selected by RENT. In order to compare the MCC scores, a one-sided
Student’s t-test was conducted. The null hypothesis claimed that the RENT
MCC was lower than the average MCC from VS1 and VS2, respectively [18].
The null hypothesis was rejected for all three splits (figure 23), meaning
that RENT selected relevant and important features for predicting whether
a patient has depression. There was generally a high MCC score in all the
validation studies for each split, marked by the red line. The red line was
consistently further to the right than most of the VS1 and VS2 distributions,
indicating that RENT performed well independently of the training set.

A logistic regression model using only features selected by RENT was applied
to the test set for every split. The performance metrics were quite high as
they range between 73% and 86% in split 1 and 100% for all metrics in split
2 and 3 (figure 5). The high metrics are promising for using these features
on new data, indicating that the RENT selected features may be possible
biomarkers for predicting a depression diagnosis. Metrics as high as 100%
can look suspicious; keep in mind that the test size is quite small, only test-
ing 13 samples. One correct prediction has a high impact on the metrics. It
can also be a sign of overfitting that the features selected by RENT make it
simple to separate the two groups, especially in this dataset. When applied
to another dataset, the model might not yield such a high performance.

5.3 Separation of the classes

The thesis used PCA analyses to see if the control and patient classes were
separable at different subsets of the dataset and to detect possible outliers.
PCA was conducted on the dataset for patients and controls at timestep
t0, with RENT selected features for each split (figure 24). The separation
between the classes was evident in the score plots for all three splits. This
separation shows that it is possible to separate the two classes with just the
features selected by RENT for every split. Therefore, it is possible to see a
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difference in controls and patients only using the features selected by RENT.
In the score plot for split 1, the responders tend to lie higher along PC2 than
the non-responders, which may indicate that the RENT selected features can
be predictive for treatment response.

The dataset for patients and controls at timestep t0 is a short-wide dataset
with 10165 columns and only 39 samples. The size of this dataset yields
enormous information that corresponds to each individual (patient/control).
Correlation matrices were calculated for the patients and controls at timestep
t0 to give insight into how much information overlaps between the patients
and controls. Two correlation matrices were calculated—one of the entire
dataset and one containing masks corresponding to the brain regions hip-
pocampus and anterior cingulate. Changes in the hippocampus and anterior
cingulate are often associated with MDD [4]. Figure 14 displays the cor-
relation matrix conducted on the entire dataset. The correlation between
the individuals was generally high. There was no clear distinction between
the patients and the controls, which means that the patients were not nec-
essarily more correlated than with the controls and vice versa. There was
no indication of separating the patient and control group by investigating
the correlation matrix for the entire dataset. The patients/controls did not
correlate as highly in the correlation matrix conducted on the brain regions
hippocampus and anterior cingulate (fig. 15) as on the entire dataset. The
yellow box in the lower-left corner indicates that the controls were more
similar to each other. A separation of the classes was more evident in the
hippocampus and anterior cingulate regions than in the entire brain, indi-
cating that every brain is alike in its entirety. However, if the dataset has
fewer columns, it is easier to see differences between the patients and controls.

A PCA was conducted on the entire dataset with patients and controls at
timestep t0, with masks corresponding to the whole brain. The score plot
(figure 25) showed that the patient and control classes do not cluster together
tightly, although it was easy to see a clear separation between classes. The
two first principal components only explained 17% of the variance in the
dataset. Much of the variation in the dataset was therefore not accounted
for. Another PCA analysis was conducted on the dataset with the patients
and controls at timestep t0, with columns corresponding to the brain regions
hippocampus and anterior cingulate (figure 26). The score plot showed that
the patients and controls were generally more clustered than the score plot
with the entire brain. There was also a separation between the classes. The
two first principal components explained 31% of the dataset, which is higher
than the analysis for the entire brain, meaning there was still a separation
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between the classes. However, the dataset is smaller, and principal compo-
nents can explain more of the variation in the dataset. This separation may
indicate that the hippocampus and the anterior cingulate may be predictive
for a depression diagnosis. Although there was a separation, there were still
many features, and the principal components explained little of the variation
in the dataset. The features selected by RENT can be a solution to reduce
the feature space even further and still be able to separate the two classes.

The score plot and loadings plot for the PCA analysis conducted on the
patients and controls at timesteps t0, t1 and t2, with just the four features
selected by all splits is displayed in figure 27. All the splits consistently se-
lected these features. Patients and controls can be separated in a score plot
for timestep t0, using only these four features, suggesting that these features
may be reliable as biomarkers for diagnosing depression. The score plot for
timestep t1 shows a clear separation between the classes. Timestep t1 cor-
responds to 6 weeks into the treatment, which means that the features were
useful to separate the classes even though the patients received medication
for depression. In the score plot at timestep t2 the two classes did not cluster
together as much as the two other timesteps, although the controls stayed in
the same region. Timestep t2 corresponds to 12 weeks into the treatment.
The lack of clustering in the patient group may indicate that the patients
were not as similar after 12 weeks. However, the controls scanned at t0 and
patients at timesteps t1 and t2 might not be comparable, as there can be dif-
ferences between MR-images between visits [6]. The images were normalized
to reduce these effects.

5.4 Outliers

Outliers deviate from the other samples in the study and can be the source of
bias in the model. This thesis calculated correlation matrices for the dataset
of patients and controls at timestep t0 to detect how much the patients and
controls correlated. Two correlation matrices were calculated—one of the
entire dataset and one containing masks corresponding to the brain regions
hippocampus and anterior cingulate, (figures 14 and 15). In the correlation
matrix calculated on the entire dataset, patients 08 and 15 were less corre-
lated with the other patients/controls and should be investigated further as
they may be considered outliers. In the correlation matrix conducted on the
brain regions hippocampus and anterior cingulate (figure 15), control 027
was not as correlated to the other controls and may be an outlier.
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The tables 2−4 summarizes the patients and controls for every split and
can be used to further investigate outliers. These tables inform how many
times an individual was in the test set, its true class label and how many
times it was predicted wrong. It also yields the percentage of incorrect pre-
dictions. Generally, there was a low percentage of incorrect predictions for
most individuals. Patient 01 and control 058 had a high percentage of incor-
rect predictions in split 2 and 3, which may indicate that these individuals
were outliers. Patient 14 and controls 054 and 066 had a high percentage of
incorrect predictions in one of the splits but low incorrect predictions in an-
other split. These might be outliers but are dependent on what samples were
in the training set. None of the patients or controls that were uncorrelated in
the correlation matrices were difficult to predict for the RENT model. The
information that made the patients/controls uncorrelated was not predictive
for the response. Therefore RENT had no issues classifying them.

The PCA analysis is also a good method to detect and shed light on de-
viations in the dataset. A PCA analysis was conducted on the dataset for
patients and controls at timestep t0, with RENT selected features for each
split, (figure 25). In the scores plots over all three splits, patient 01 and
controls 38, 54, and 58 were closer to the opposite class than their own class.
Patient 01 and control 058 were also mispredicted in two splits according to
the summary of individuals mentioned above. Therefore, these two samples
can be viewed as outliers in the feature space constructed by the features
selected by RENT. Control 54 may also be an outlier as it was difficult to
predict in one of the splits and was difficult to separate it in the score plot
in the PCA analysis. Patient 14 and control 066 are placed in their classes
in the PCA analysis, although the RENT model has difficulty classifying
them, indicating that they may be outliers. On the other hand, control 038
is difficult to separate in the PCA score plots, but RENT has minor issues
predicting it’s response.

Whether an individual is an outlier is challenging to assess. Patient 01 and
control 058 acted as outliers from their class, which can be seen in the PCA
analysis and how well the RENT models predict these samples. These indi-
viduals did not have features with extreme values; they are difficult to classify
and therefore add bias to the RENT model.
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6 Further work

The largest obstacle to face when exploring datasets of extracted radiomics
features from MR images is the variation in the MR images. Methods for
extracting biomarkers need to be tested on different independent datasets to
validate robust and reliable biomarkers. Therefore using RENT as a feature
selector should be applied to independent larger sets of MR images to validate
the RENT method used in this thesis. The 3-fold split could be performed
several times, which would further validate the stability and robustness of
the selected features.

This thesis applied RENT to the images taken at study entry; it would be
interesting to apply the method to the images taken at 6 weeks (t1) and 12
weeks (t2) after study entry. Further, it should be investigated if RENT may
be able to select features that are predictive for treatment response. It may
be helpful to apply this method to only the patients dataset at each timestep
or the differences between the patients datasets at the different timesteps.
Analyses for the patients and controls may also be investigated further at t1
and t2 to detect if the responders become more similar to the controls.

RENT could also be performed on just one type of radiomics feature. Sev-
eral studies have shown that volume differences in several frontolimbic regions
could predict MDD and treatment response [1]. Therefore running RENT
on just the shape features may also contribute to finding other biomarkers
and see if these correspond to similar findings.

The preprocessing of MR images could also be investigated as there is no
protocol for normalization and discretization. There are different methods
for normalization like Nyul’s harmonizations method and the white stripe
method; it could be interesting to try some of these methods to see if the
results change. It would also be interesting to try different bin widths in
the discretization. Comparing the results from different bin widths can show
how much discretization affects the extraction of radiomics features and how
this affects RENT.
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7 Conclusion

Radiomics features were extracted from T1 weighted MR images from 21
patients diagnosed with MDD and 22 healthy controls. The feature space of
radiomics features were reduced by using RENT as a feature selector as well
as predicting the diagnosis of the patients with MDD.

In this thesis, we succeeded in reducing the feature space to four features
with RENT while maintaining a separation of patients diagnosed with MDD
and healthy controls. Furthermore, the three dataset splits jointly selected
four features that corresponded to the brain region’s right medial orbital
gyrus. Certain characteristics of the right medial orbital gyrus may therefore
be a possible biomarker for diagnosing patients with MDD. RENT should be
tested further on an independent set of samples to replicate these findings
and further validate image characteristics of the right medial orbital gyrus
as a possible biomarker.

RENT had a high performance across all models over all three dataset splits,
indicating that RENT predicted MDD diagnosed patients with high accu-
racy. The method was further investigated by performing two validation
studies, investigating if the model performed better than a random model.
The RENT method passed the validation studies in all splits, indicating that
the radiomics features selected by RENT were significant for predicting the
MDD diagnosis. A logistic regression model was applied to the test set with
only the features selected by RENT in the specific split. The accuracies
ranged from 73% and 100%, which again supported that the features RENT
selected were of importance. Although the high accuracies over all three
splits point to a robust model, it should be mentioned that with accuracies
this high, overfitting may be an issue.

RENT is a useful tool to reduce feature spaces, even for datasets with a
much greater number of features compared to samples, as often is the case
when extracting radiomics features.
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A Overview of how the samples were divided

into three splits.

Split 1 Split 2 Split 3

patient_03 patient_01 patient_01

 patient_06  patient_02  patient_02

 patient_08  patient_04  patient_03

 patient_09  patient_05  patient_04

 patient_10  patient_06  patient_05

 patient_12  patient_08  patient_10

 patient_14  patient_09  patient_11

 patient_16  patient_11  patient_12

 patient_17  patient_14  patient_15

 patient_18  patient_15  patient_17

 patient_19  patient_16  patient_18

 patient_20  patient_19  patient_20

 control_004  control_029  control_004

 control_023  control_032  control_023

 control_027  control_033  control_027

 control_032  control_038  control_029

 control_042  control_051  control_033

 control_049  control_055  control_038

 control_051  control_058  control_042

 control_054  control_066  control_049

 control_055  control_076  control_054

 control_076  control_081  control_058

 control_081  control_091  control_066

 control_091  control_092  control_092

 control_094  control_097  control_094

 control_102  control_102  control_097

patient_01 patient_03 patient_06

 patient_02  patient_10  patient_08

 patient_04  patient_12  patient_09

 patient_05  patient_17  patient_14

 patient_11  patient_18  patient_16

 patient_15  patient_20  patient_19

 control_029  control_004  control_032

 control_033  control_023  control_051

 control_038  control_027  control_055

 control_058  control_042  control_076

 control_066  control_049  control_081

 control_092  control_054  control_091

 control_097  control_094  control_102

Figure B1: The figure shows how the patients and controls were split three
times into a training set colored in green and a test set colored in blue. These
splits were stratified so that there was an even distribution of patients and
controls in the training and test set.

66



B Determining regularization parameters for

the RENT algorithm

c
0,01 0,1 1 10 100

0 0,7387 0,7387 0,7387 0,7387 0,7387

0,1 0,6395 0,8748 0,8162 0,7387 0,7387

l 0,25 NaN 0,8748 0,8748 0,7387 0,7387

0,5 NaN 0,9333 0,8748 0,8162 0,7387

0,75 NaN 0,8162 0,8748 0,8162 0,7387

0,9 NaN 0,6978 0,8748 0,8162 0,7387

1 NaN 0,6395 0,8748 0,8162 0,7387

Max performance: 0,9333

c
0,01 0,1 1 10 100

0 0,6870 0,6000 0,5972 0,6231 0,7044

0,1 0,6597 0,8894 0,8150 0,7564 0,4936

l 0,25 NaN 0,9414 0,7081 0,7495 0,7414

0,5 NaN 0,8558 0,9414 0,6867 0,6667

0,75 NaN 0,8639 0,9225 0,6667 0,7014

0,9 NaN 0,7533 0,9414 0,7414 0,6748

1 NaN 0,3536 0,9414 0,7642 0,4639

Max performance: 0,9414

c
0,01 0,1 1 10 100

0 0,6228 0,6894 0,6748 0,4453 0,3822

0,1 0,6124 0,9333 0,8558 0,4561 0,6350

l 0,25 NaN 0,9225 0,8081 0,5939 0,5972

0,5 NaN 0,8894 0,8894 0,6081 0,6867

0,75 NaN 0,6414 0,8309 0,8748 0,7561

0,9 NaN 0,7387 0,9414 0,7344 0,7453

1 NaN 0,6597 0,9414 0,9414 0,6894

Max performance: 0,9414

dataFrame_1:  average scores for predictive performance. 
The higher the score, the better the parameter combination.
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c
0,01 0,1 1 10 100

0 0,8748 0,6053 0,4081 0,4789 0,6639

0,1 0,6440 0,9333 0,6870 0,4228 0,6611

l 0,25 NaN 0,9225 0,7783 0,5667 0,4081

0,5 NaN 0,9333 0,8894 0,7414 0,6347

0,75 NaN 0,8053 0,9225 0,6817 0,6309

0,9 NaN 0,8162 0,9225 0,8558 0,6558

1 NaN 0,4167 0,8162 0,7455 0,4825

Max performance: 0,9333

c
0,01 0,1 1 10 100

0 0,7642 0,6558 0,4527 0,5867 0,6561

0,1 0,6869 0,9333 0,8053 0,7561 0,5642

l 0,25 NaN 0,8000 0,7455 0,6053 0,6936

0,5 NaN 0,9225 0,9333 0,6680 0,7483

0,75 NaN 0,7225 0,9414 0,7150 0,6456

0,9 NaN 0,6936 0,8817 0,7711 0,8228

1 NaN 0,5577 0,8894 0,6558 0,6309

Max performance: 0,9414

c
0,01 0,1 1 10 100

0 0,7495 0,5533 0,7642 0,6228 0,5455

0,1 0,3895 0,9333 0,7972 0,6044 0,5748

l 0,25 NaN 0,9414 0,7972 0,7122 0,7645

0,5 NaN 0,9414 0,9414 0,8231 0,5939

0,75 NaN 0,7225 0,8639 0,7228 0,6162

0,9 NaN 0,6350 0,9414 0,8894 0,8748

1 NaN 0,3062 0,9414 0,7864 0,7455

Max performance: 0,9414
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c
0,01 0,1 1 10 100

0 0,0356 0,0356 0,0356 0,0356 0,0356

0,1 0,9997 0,8648 0,3724 0,0686 0,0358

l 0,25 NaN 0,9493 0,6152 0,1344 0,0381

0,5 NaN 0,9829 0,7642 0,2245 0,0472

0,75 NaN 0,9958 0,8312 0,3019 0,0576

0,9 NaN 0,9987 0,8559 0,3446 0,0646

1 NaN 0,9997 0,8687 0,3732 0,0686

Average percentage: 0,9997

c
0,01 0,1 1 10 100

0 0,0380 0,0356 0,0365 0,0357 0,0363

0,1 0,9998 0,8678 0,3843 0,0683 0,0367

l 0,25 NaN 0,9508 0,6163 0,1370 0,0386

0,5 NaN 0,9834 0,7685 0,2283 0,0482

0,75 NaN 0,9954 0,8337 0,3141 0,0603

0,9 NaN 0,9990 0,8570 0,3525 0,0674

1 NaN 0,9999 0,8723 0,3793 0,0725

Average percentage: 0,9999

c
0,01 0,1 1 10 100

0 0,0365 0,0365 0,0356 0,0365 0,0356

0,1 0,9998 0,8671 0,3777 0,0735 0,0359

l 0,25 NaN 0,9507 0,6161 0,1362 0,0390

0,5 NaN 0,9824 0,7656 0,2263 0,0491

0,75 NaN 0,9949 0,8275 0,3107 0,0607

0,9 NaN 0,9988 0,8564 0,3521 0,0653

1 NaN 0,9998 0,8682 0,3812 0,0719

Average percentage: 0,999803

DataFrame_2:  average percentage of how many feature weights 
were set to zero. The higher the average percentage, the stronger 
the feature selection with the corresponding paramter combination.
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c
0,01 0,1 1 10 100

0 0,0364 0,0356 0,0370 0,0365 0,0364

0,1 0,9995 0,8664 0,3794 0,0669 0,0361

l 0,25 NaN 0,9507 0,6072 0,1376 0,0389

0,5 NaN 0,9830 0,7657 0,2287 0,0498

0,75 NaN 0,9956 0,8334 0,3139 0,0601

0,9 NaN 0,9987 0,8562 0,3533 0,0638

1 NaN 0,9998 0,8695 0,3772 0,0740

Average percentage: 0,9998

c
0,01 0,1 1 10 100

0 0,0364 0,0366 0,0356 0,0357 0,0372

0,1 0,9997 0,8689 0,3841 0,0688 0,0368

l 0,25 NaN 0,9528 0,6168 0,1362 0,0400

0,5 NaN 0,9833 0,7613 0,2270 0,0465

0,75 NaN 0,9955 0,8286 0,3099 0,0599

0,9 NaN 0,9989 0,8563 0,3543 0,0644

1 NaN 0,9993 0,8709 0,3859 0,0753

Average percentage: 0,9997

c
0,01 0,1 1 10 100

0 0,0356 0,0364 0,0364 0,0371 0,0364

0,1 0,9998 0,8673 0,3905 0,0713 0,0358

l 0,25 NaN 0,9489 0,6130 0,1343 0,0377

0,5 NaN 0,9844 0,7668 0,2267 0,0487

0,75 NaN 0,9959 0,8325 0,3140 0,0604

0,9 NaN 0,9985 0,8547 0,3532 0,0657

1 NaN 0,9993 0,8694 0,3815 0,0662

Average percentage: 0,9998
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c
0,01 0,1 1 10 100

0 0,0000 0,0000 0,0000 0,0000 0,0000

0,1 0,0000 0,8293 0,4419 0,0621 0,0004

l 0,25 NaN 0,8680 0,6867 0,1572 0,0051

0,5 NaN 0,9913 0,7775 0,2956 0,0233

0,75 NaN 0,7498 0,8128 0,3785 0,0429

0,9 NaN 0,3311 0,8250 0,4182 0,0552

1 NaN 0,0000 0,8312 0,4426 0,0621

Harmonic mean: 0,9913

c
0,01 0,1 1 10 100

0 0,0048 0,0000 0,0018 0,0002 0,0015

0,1 0,6849 0,8867 0,4951 0,0646 0,0022

l 0,25 NaN 0,9739 0,6027 0,1820 0,0063

0,5 NaN 0,9141 0,8637 0,2954 0,0254

0,75 NaN 0,9274 0,8922 0,3746 0,0490

0,9 NaN 0,8093 0,9200 0,4387 0,0622

1 NaN 0,0000 0,9292 0,4720 0,0635

Harmonic mean: 0,9739

c
0,01 0,1 1 10 100

0 0,0018 0,0020 0,0000 0,0019 0,0000

0,1 0,5831 0,9198 0,5001 0,0606 0,0006

l 0,25 NaN 0,9575 0,6725 0,1636 0,0070

0,5 NaN 0,9430 0,8253 0,2655 0,0273

0,75 NaN 0,6324 0,8117 0,4310 0,0502

0,9 NaN 0,7782 0,9197 0,4315 0,0589

1 NaN 0,6633 0,9267 0,5277 0,0704

Harmonic mean: 0,9575

DataFrame_3:  harmonic means between dataFrame_1 and 
dataFrame_2. The parameter combination with the highest 
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c
0,01 0,1 1 10 100

0 0,0016 0,0000 0,0000 0,0019 0,0016

0,1 0,6197 0,9257 0,4266 0,0300 0,0010

l 0,25 NaN 0,9640 0,6440 0,1567 0,0000

0,5 NaN 0,9912 0,8293 0,3045 0,0285

0,75 NaN 0,8596 0,8970 0,3714 0,0479

0,9 NaN 0,8740 0,9107 0,4753 0,0551

1 NaN 0,0321 0,8186 0,4568 0,0621

Harmonic mean: 0,9912

c
0,01 0,1 1 10 100

0 0,002 0,002 0,000 0,000 0,003

0,1 0,648 0,920 0,482 0,065 0,003

l 0,25 NaN 0,814 0,601 0,157 0,009

0,5 NaN 0,972 0,853 0,274 0,022

0,75 NaN 0,710 0,903 0,372 0,048

0,9 NaN 0,660 0,864 0,439 0,058

1 NaN 0,354 0,880 0,388 0,074

Harmonic mean: 0,972

c
0,01 0,1 1 10 100

0 0,0000 0,0015 0,0017 0,0032 0,0015

0,1 0,2319 0,9207 0,4987 0,0686 0,0004

l 0,25 NaN 0,9729 0,6749 0,1764 0,0042

0,5 NaN 0,9920 0,8626 0,3187 0,0263

0,75 NaN 0,7905 0,8515 0,4010 0,0489

0,9 NaN 0,6818 0,9187 0,4848 0,0602

1 NaN 0,0000 0,9275 0,4866 0,0606

Harmonic mean: 0,9920

72



C PCA analysis conducted on all features se-

lected by any split

PCA analysis conducted on the dataset consisting of patients and controls at
timestep t0, t1 and t2. The dataset contained features selected by any one
of the RENT models performed on the three splits.
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Figure C1: This figure shows the scores and loadings plot from a PCA con-
ducted on the dataset consisting of patients and controls at timesteps, t0,
t1, and t2. The dataset contained features that the RENT model selected in
any split, in total 14 features.

74



 

 

 


	Introduction
	Theory
	Depression
	MRI
	Radiomics
	Repeated Elastic Net Technique for Feature Selection
	Principal Component Analysis
	Pearson's correlation coefficient
	Accuracy metrics

	Method and materials
	The dataset
	RadiomPipe
	Normalization
	Discretization
	Dataset structure
	Correlation matrices
	Repeated Elastic Net Technique
	Splitting the data
	Determining the regularization parameters for RENT
	Selecting features with RENT
	Describing the individuals in the dataset
	Validating the performance of the ensemble of models in RENT
	Validation studies

	Evaluating the test data
	Principle component analysis

	Results
	Correlation between patients and controls
	Feature selection
	Performance across models
	Summary of the individuals
	Checking performance with a logistic regression model
	Validation Study
	PCA for every split
	PCA on predefined brain region
	PCA with RENT selected features

	Discussion
	Evaluating the selected features
	Evaluating the model performance
	Separation of the classes
	Outliers

	Further work
	Conclusion
	Overview of how the samples were divided into three splits.
	Determining regularization parameters for the RENT algorithm
	PCA analysis conducted on all features selected by any split

