
 International Journal of 

Molecular Sciences

Article

Assessment of Biotechnologically Important Filamentous
Fungal Biomass by Fourier Transform Raman Spectroscopy

Simona Dzurendová 1, Volha Shapaval 1 , Valeria Tafintseva 1 , Achim Kohler 1, Dana Byrtusová 1,2,
Martin Szotkowski 2, Ivana Márová 2 and Boris Zimmermann 1,*

����������
�������

Citation: Dzurendová, S.; Shapaval,

V.; Tafintseva, V.; Kohler, A.;

Byrtusová, D.; Szotkowski, M.;

Márová, I.; Zimmermann, B.

Assessment of Biotechnologically

Important Filamentous Fungal

Biomass by Fourier Transform Raman

Spectroscopy. Int. J. Mol. Sci. 2021, 22,

6710. https://doi.org/10.3390/ijms

22136710

Academic Editor:

Sébastien Bonhommeau

Received: 19 May 2021

Accepted: 17 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway;
simona.dzurendova@nmbu.no (S.D.); volha.shapaval@nmbu.no (V.S.); valeria.tafintseva@nmbu.no (V.T.);
achim.kohler@nmbu.no (A.K.); dana.byrtusova@nmbu.no (D.B.)

2 Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic;
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Abstract: Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopoly-
mers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical,
pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman
spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mu-
coromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate
concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectro-
scopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids
by using principal component analysis (PCA), multiblock or consensus PCA, partial least square
regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA
model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including
lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra
clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients
of determination (0.83–0.94) and low error (approximately 8%) for quantitative determination of
total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great
potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates
that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass
constituents.

Keywords: oleaginous microorganisms; biodiesel; pigments; biopolymers; carotenoids; fatty acids;
chitin; chitosan; fermentation; fungi

1. Introduction

Filamentous fungi have been commercially used in biotechnology for over a century,
creating a range of products from organic acids, enzymes, and oleochemicals to antibiotics,
statins, and steroids for applications in the food, pharma, and chemical industry [1–3].
Some of the most important filamentous fungal cell factories, such as Mortierella, Mucor,
Rhizopus, and Umbelopsis genera, belong to the Mucoromycota taxon. Mucoromycota have
gained interest due to their versatile metabolism that enables fermentation process on
a wide range of feedstock, such as waste and rest materials [4,5]. When cultivated in a
carbon-rich and nitrogen-limited growth conditions, Mucoromycota fungi can accumulate
high amount of lipids, up to 85% of dry weight [6]. Fermentation is the most complex indi-
vidual process within biotech-manufacturing and it poses a number of challenges related
to productivity and quality. The main challenges are related to the variability and hetero-
geneity of a fermentation growth medium and to the variability in the cellular population,
such as natural population heterogeneity [7]. Thus, online monitoring of fermentation is a
crucial requirement for an efficient bioprocess. Unfortunately, process monitoring is still

Int. J. Mol. Sci. 2021, 22, 6710. https://doi.org/10.3390/ijms22136710 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2674-1328
https://orcid.org/0000-0001-6015-0893
https://orcid.org/0000-0001-5046-520X
https://doi.org/10.3390/ijms22136710
https://doi.org/10.3390/ijms22136710
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22136710
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22136710?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6710 2 of 23

dependent on a limited number of standard sensors for pH, temperature, and gases, while
the critical process parameters, such as biomass, product and substrate concentrations, and
compositions, are rarely assessable on-line. Thus, there is a need for rapid methods that
provide detailed chemical information for bioprocess monitoring and optimization. Pro-
cess optimization and monitoring will greatly benefit from advanced spectroscopy-based
sensors that will enable real-time monitoring and control of bioprocesses.

Vibrational spectroscopy, comprising of infrared and Raman spectroscopies, is con-
sidered as a rapid, inexpensive, and highly sensitive method for analysis of biological
samples [8,9]. These techniques are excellent for obtaining comprehensive and detailed in-
formation in biotechnology since they can simultaneously measure broad chemical profiles
of the chemical constituents present in the bioprocess via detection of numerous functional
groups [10–17]. This rich spectroscopic data is interpreted by using chemometrics, classical
machine learning, and deep learning methods [18–24]. Although most of the studies involv-
ing filamentous fungi and yeasts have been conducted by Fourier transform infrared (FTIR)
spectroscopy, as of late, Raman spectroscopy has been applied to study fungi, in particular
regarding pigments [12,25–32], lipids [10,29,33–36], and cell wall composition [37,38]. Com-
pared to FTIR spectroscopy, Raman spectroscopy is based on a fundamentally different
principle. While infrared spectroscopy relies on absorption of light by molecules, Raman
spectroscopy is based on an inelastic Raman scattering phenomenon. Moreover, a molecule
must undergo a change in dipole moment during a vibration in order for a vibrational
transition to be infrared active, while a molecule must undergo a change in polarizability
during a vibration for a vibrational transition to be Raman active. For this reason, Raman
spectroscopy provides more information on molecular substructures containing non-polar
chemical bonds, such as S-S or C=C, while infrared spectroscopy provides more informa-
tion on molecular substructures containing polar chemical bonds, such as S-O or C=O. In
Raman spectroscopy, molecular vibrations originate from the interaction of the sample and
the excitation radiation, typically from a laser in the ultraviolet, visible, or near-infrared
region of the electromagnetic spectrum. In the case of biological samples, the resulting
Raman spectrum usually displays a broad range of signals related to various types of cellu-
lar analytes, such as lipids, proteins, pigments, and carbohydrates [27,35,37,39]. Raman
spectroscopy is very suitable for biotechnology applications since it does not require special
sample pretreatment, it is non-destructive, and it is fast. Unlike FTIR (mid-IR) spectroscopy,
Raman spectroscopy is not hindered by water and glass, which is extremely useful property
for application of the technique in biotechnology. Moreover, it is very versatile, from in-situ
monitoring of bioprocesses in bioreactors by a Raman fiber-optic probe [40], to the detailed
cellular imaging by a confocal Raman microscope [36]. The advances in Raman instrumen-
tation, in combination with multivariate data analysis, have shown the potential of this
technique in bioprocess monitoring [25,41,42] and rapid identification and classification of
fungal species [10,43–47].

In general, Raman scattering intensities are weak and thus it is difficult to detect
molecules that are not present in high concentration in the sample. However, if the
excitation radiation is in resonance with the electronic transitions, a so called resonance
Raman effect will occur. In that case, the Raman scattering will be tremendously enhanced,
enabling detection of molecules present in relatively low concentrations. This is often
the case of certain pigments, such as carotenoids, enabling measurement of analytes that
are undetectable by FTIR [48]. Unfortunately, in addition to Raman and resonant Raman
effect, excitation laser can often create resonance fluorescence effect. The fluorescence effect
occurs when the energy of the excitation photon is close to the transition energy between
two electronic states. The presence of intensive fluorescence can significantly hamper
detection of the Raman effect. Another common problem in Raman spectroscopy is sample
heating that leads to emission of longer-wavelength radiation and thermal interference
to the Raman spectrum, and can even result in thermal degradation of the sample. Both
fluorescence and thermal interferences can be minimized by using different excitation
lasers, with simultaneous optimization of the Raman effect [49,50]. In general, electronic
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transitions are weaker at longer wavelengths, and thus detrimental effects can be avoided
by the use of near-infrared (NIR) lasers, such as neodymium doped yttrium aluminum
garnet (Nd:YAG) laser with excitation at 1064 nm. Moreover, use of such a long-wavelength
excitation laser can significantly increase penetration depth, compared to visible (short-
wavelength) lasers, thus allowing more comprehensive analysis of a sample [51]. However,
NIR excitation lasers offer significantly lower Raman sensitivity compared to ultraviolet and
visible lasers, and thus they often require Fourier transform (FT) Raman spectrometers with
a Michelson interferometer and a FT processor for signal enhancement. In the last decade,
FT-Raman spectroscopy gained momentum in analyses of biological samples [52–55].
However, FT-Raman spectroscopy remains unexplored in the analysis of filamentous fungi,
although the potential of this technique for chemical characterization of filamentous fungi
was demonstrated almost three decades ago by Edwards et al. [39]. In the meantime, only
one other study, with a limited focus on cinnabarin production by Pycnoporus sanguineus,
has been conducted [30].

A number of our studies have shown that FTIR spectroscopy can be used for chemical
characterization of Mucoromycota fungi [56–59]. The Duetz-microtiter plate system (Duetz-
MTPS) for microbial cultivation, in combination with FTIR spectroscopy and multivariate
data analysis, can be used as a powerful high-throughput low-cost method for the screening
of filamentous fungi for biotechnological production of various biochemicals, such as single
cell lipids, polyphosphates, and polyglucosamines (chitin and chitosan) [56]. In this study,
we assessed the potential of FT-Raman spectroscopy for chemical characterization of
biomass of Mucoromycota filamentous fungi in biotechnology research and production.
Moreover, the same sample set was measured by FTIR spectroscopy and high performance
liquid chromatography (HPLC) for pigment analysis, gas chromatography (GC) for lipid
analysis, and assay-based ultraviolet–visible (UV/VIS) spectroscopy and nuclear magnetic
resonance (NMR) spectroscopy for analysis of cellular phosphorus. Thus, advantages
and disadvantages of FT-Raman spectroscopy over FTIR spectroscopy were evaluated in
respect to various chemical constituents in the fungal biomass, such as lipids, proteins, cell
wall carbohydrates, polyphosphates, and carotenoid pigments.

2. Results and Discussion
2.1. Chemical Composition of Fungal Biomass

The fungal samples, belonging to the subset of samples presented in our previous
study [60], were selected for the vibrational spectroscopy study due to their high varia-
tion in chemical composition. The selected oleaginous filamentous fungi were identified
as a potentially good producers of valuable metabolites, such as lipids, carbohydrates
(chitin, chitosan and beta-glucan), polyphosphates and carotenoid pigments [56,59]. Under
nitrogen-limitation these fungi accumulate lipids in the form of free fatty acids and their
derivatives, such as acylglycerols and glycerophospholipids, where triacylglycerols make
by far the biggest fraction [61]. For all samples, determination of total lipids (as fatty acid
methyl esters) was conducted by direct transesterification and GC-FID analysis, as reported
in our previous study [60]. The samples contained the following range of amounts of the
total lipids (expressed as a percentage of a dry weight): Amylomyces rouxii 27–49%, Mucor
circinelloides (strain VI 04473) 20–49%, Mucor circinelloides (strain FRR 5020) 34–52%, Mucor
racemosus 19–41%, Rhizopus stolonifera 22–28%, and Umbelopsis vinacea 49–83% (Figure 1).
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Figure 1. Total lipids content of the fungal samples grown under six different conditions (average
values and range based on measurements of two biological replicates).

Moreover, accumulation of other metabolites in the fungal biomass was influenced
by changing concentrations of phosphate and calcium ions in the media. The samples
contained the following range of amounts of the total phosphorus (expressed as a percent-
age of a dry weight): Amylomyces rouxii 2.65–6.24%, Mucor circinelloides (strain VI 04473)
1.40–4.91%, Mucor circinelloides (strain FRR 5020) 1.86–4.50%, Mucor racemosus 2.28–5.20%,
Rhizopus stolonifera 2.70–4.13%, and Umbelopsis vinacea 0.64–1.37% [60]. NMR spectroscopy
measurements have shown that the majority of phosphorus in Mucor circinelloides VI 04473
samples were accumulated in the form of polyphosphates [60]. These results correspond
to previously reported studies that have shown average polyphosphate accumulation of
Mucoromycota biomass within 0.31–0.93% range [62], with higher accumulation for Mucor
strains, approximately within 4–7% range [63]. Our previous studies have indicated that
some Mucoromycota strains have extensive polyphosphate accumulation in non-acidic
growth conditions [56,60,64]. In growth media lacking calcium, there is a decrease in
polyphosphate accumulation [60], which is related to the formation of acidocalcisomes
granules (polyphosphate granules), which is a calcium dependent process [60,65]. In the
formation of acidocalcisomes calcium and other cations functioning as a neutralizing agent
for neutralizing negative charge of polyphosphate molecules, therefore calcium availability
is important prerequisite for the formation of polyphosphate granules.

In our previous study, we have observed that Amylomyces, Mucor, and Rhizopus can
overproduce chitin/chitosan under low phosphate growth conditions [56]. Cell wall
of Mucoromycota fungi is typically composed of fibrillar, rigid, and shape determining
polyglucosamines, in particular chitin, chitosan, and chitin–glucan complexes. These
carbohydrates are embedded in an amorphous matrix of glucans and glycoproteins, and,
in some cases, substructures of glucuronans and polyphosphates [66–68]. One of the main
functions of the cell wall is protection against environmental stress [68], such as acidic
stress that was present in our study under low phosphate growth conditions [56,60,69].
More specifically, limitation of phosphates availability in the growth media, in combination
with ammonium sulphate as a nitrogen source, leads to acidity of the growth media, and
the subsequent acidic stress results with overproduction of chitin/chitosan in the fungal
cell walls. Calcium is directly involved in chitin synthesis as it activates the chitin synthase
enzyme in fungi [70].

In addition to changes in polyphosphates accumulation, some fungal strains have
shown the influence of media nutrients on carotenoid production (Figure 2a). HPLC analy-
sis of carotenoid content of biomasses of two Mucor circinelloides strains shows significant
change in carotenoid production under different growth conditions. In particular, Mucor
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circinelloides strain FRR 5020, shows approximately a tenfold increase in the production of
carotenoids, with accumulation of 0.14%dry weight (1457 µg/gdry weight) total carotenoids in
growth media with low phosphate and absence of calcium (Figure 2b). Mucor circinelloides
was reported as a good candidate for carotenoid production [71], with the production of 98–
378 µg/gdry weight [72] (reference). The previously reported carotenoid production for other
species covered by our study were 192 Amylomyces rouxii and 50–200 µg/gdry weight for
Rhizopus stolonifer [72]. In addition, several studies have shown that elevated temperature
and light intensity will result with higher production of carotenoids in Mucor fungi [72,73].
Since our result for Mucor circinelloides strain FRR 5020 shows exceedingly high carotenoid
production compared to other non-GMO Mucoromycota fungi, it strongly indicates that
calcium and phosphates concentrations and acidic stress should be taken into account in
carotenoid-production studies, alongside temperature and light conditions.
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Figure 2. (a) Image of disintegrated fungal biomass of samples grown under Pi0.5 condition, with (Ca1, tube1) and without
(Ca0, tube 2) calcium. (b) Total carotenoid content of the two Mucor circinelloides strains grown under six different conditions
(average values and range based on measurements of two biological replicates).

2.2. FT-Raman Chemical Profiling of Fungal Biomass

As already mentioned, although Raman spectroscopy requires simple sample prepa-
ration and measurement, the resulting spectrum is often dominated by interference signals
caused by fluorescence and sample heating. The longer wavelength excitation lasers,
such as Nd:YAG laser used in this study, significantly reduce those obstructing effects.
Out of 72 samples, only ten have shown interfering signals as a result of sample heating.
Sample heating is a well-known problem in Raman spectroscopy, and, in this study, it
was primarily caused by the absorbance of the excitation laser radiation by fungal spores.
More specifically, under moderate and high phosphate concentrations, cultivations of
Rhizopus stolonifer have resulted with slight sporulation on the walls of microbioreactor.
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In all cases, small presence of dark fungal spores has led to sample heating during the
FT-Raman measurements, resulting in suboptimal FT-Raman spectra (Figure 3). In addition
to Rhizopus stolonifer, the heating interference was noticeable for several Amylomyces rouxii
samples although those samples presented no visible sporulation. In total, ten samples
were measured with the reduced laser power in order to decrease the rate of heating, the
heating emission spectrum, and, in particular, the sample burning. Overall, the FT-Raman
measurements have resulted with high-quality spectra (Figure 4). The corresponding FTIR
spectra are presented in Figure S1.
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Figure 3. FT-Raman spectra of Rhizopus stolonifer cultivated under Ca1 condition and two different phosphate concentrations.
The spectrum of the sample cultivated under high phosphate concentration (Pi4, red) shows a significant heating effect
resulting with a distorted baseline even when measured under low excitation laser power (200 mW), compared to the
spectrum of the sample cultivated under low phosphate concentration (Pi0.5, blue), which was measured under the standard
laser power (500 mW).

To analyze reproducibility of measurements, we used Pearson correlation coefficients
(PCC) calculated for each set of the three technical replicates of FT-Raman spectra. The
coefficient measures correlation between variables, where PCC value of 1 indicates high
positive correlation. Therefore, small variability is indicated by small 1-PCC values. As
expected, the analysis result shows that samples exhibiting heating effect, which were
measured with lower laser power, have lower reproducibility (Figure S2). Nevertheless,
it can be concluded that all six fungal strains were successfully measured by FT-Raman,
even the highly challenging ones. In general, optimization of measurement parameters is
needed when fluorescence and heating effects are present, in particular, excitation laser
power and number of scans, in order to acquire quality spectra.
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Figure 4. FT-Raman spectra of Mucoromycota oleaginous filamentous fungi cultivated under the standard growth condition
(Ca1 and Pi1): Amylomyces rouxii (Ar), Mucor circinelloides VI 04473 (Mc1), Mucor circinelloides FRR 5020 (Mc2), Mucor
racemosus (Mr), Rhizopus stolonifer (Rs), and Umbelopsis vinacea (Uv). All spectra were preprocessed and plotted with offset
for better viewing.

FT-Raman spectra contain rich information on intracellular metabolites (Figure 5).
The detailed overview of the characteristic Raman bands of main components of fungal
biomass is presented in Table 1, alongside the characteristic infrared bands. In general,
the most intensive Raman bands are associated with triglyceride lipids: C-H stretching
vibrations (=C-H stretching at 3008 cm−1; C-H stretching in -CH3 and -CH2 at 2933,
2895, and 2855 cm−1), C=O stretching in esters (1750 cm−1), C=C stretching (1660 cm−1),
CH2, and CH3 deformations (1460–1440 and 1305 cm−1), and C-C and C-O stretching
(1080–1060 cm−1). In addition to the lipid-related bands, the samples show Raman bands
related to cell wall carbohydrates, namely glucosamines (chitin and chitosan), glucans, and
glucuronans: C-H stretching vibrations (C-H stretching in -CH3 and -CH2 at 2933, 2895,
and 2885 cm−1), C=O stretching in esters (1755 cm−1, glucuronans) and amides (1680–1620
cm−1, Amide I, chitin), NH2 deformations (1620–1570 cm−1), CH2 and CH3 deformations
(1460–1440, 1380–1320 cm−1), C-C, C-O, C-O-C, C-N, CH, COH stretching, deformations,
and combination bands (1260–700 cm−1). Furthermore, minor spectral contributions were
related to vibrations of proteins: C=O stretching in amides (1660 cm−1, Amide I), NH2
deformations (1620–1580 cm−1), phenyl ring C=C stretching (1605 cm−1) and deformations
(1005 cm−1) in tyrosine and phenylalanine, CH2 and CH3 deformations (1460–1440 cm−1),
and C-N-H deformations (1310–1250 cm−1, Amide III). The spectral bands associated with
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polyphosphates, namely P=O stretching (1165 cm−1) and P-O-P stretching (685 cm−1),
were weak and barely visible in the FT-Raman spectra. This was in stark contrast to the
similar bands in the FTIR spectra (at 1263 and 885 cm−1, respectively) that show strong
absorbance.
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tions and three different phosphate concentrations, and of six reference compounds: β-glucan, chitin,
gluten, glyceryl trioleate, sodium polyphosphate, and β-carotene. All spectra were preprocessed and
plotted with offset for better viewing.
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Table 1. Assignments of infrared and Raman bands: str.—stretching and def.—deformation [37–39,44,59,61,74,75].

Cell Component
Infrared Raman

Wavenumbers
(cm−1) Molecular Vibration Wavenumbers

(cm−1) Molecular Vibration

Carbohydrates
(glucosamines, glucans,

glucuronans)

3300 O-H str. 2933 and 2895 -C-H str. (CH3)
3400–3100 N-H str., N-H2 str. 2855 -C-H str. (CH2, glucan)

2879 -C-H str. (CH3) 1680–1620 -C=O str. (Amide I, chitin)
1730 -C=O str. (glucuronans) 1755 -C=O str. (glucuronan)

1680–1620 -C=O str. (Amide I, chitin) 1620–1570 NH2 def. (chitosan)
1600–1550 NH2 def. (chitosan) 1460–1440 CH2 and CH3 def.

1554 C-N str. & NH def. (Amide
II, chitin) 1377 CH2, CH, COH def.

1375 -CH3 def. 1327 CH2, CH, COH def.

1305 C-N-H def. (Amide III,
chitin) 1256 C-C, C-O, CH, CH2

1200–1000 C-O-C str., COH def. COC
def. 1200–1150 C-O-C str.

950 -CH3 def. 1050–1150 C-N str. & C-C str.

950–850 C-C str, C-O-C str. & def.,
COH def.

715 O-C-O str. & CH def.

Acylglycerol lipids
(triglycerides)

3010 =C-H str. 3008 =C-H str.
2921 -C-H str. (CH3) 2933 and 2895 -C-H str. (CH3)
2852 -C-H str. (CH2) 2855 -C-H str. (CH2)
1743 -C=O str. 1750 C=O str.
1463 -CH2 def. 1660 C=C str.
1160 C-O-C str. 1460–1440 CH2 and CH3 def.
723 -CH2 def. 1305 CH2 def.

1080–1060 C-C str. C-O str.

Polyphosphates 1263 P=O str (PO2
-) 1165 P=O str. (PO2

-)
885 P-O-P str. 685 P-O-P str.

Proteins

1680–1630 -C=O str. (Amide I) 1660 -C=O str. (Amide I)
1560–1530 C-N-H def. (Amide II) 1620–1580 NH2 def.
1310–1250 C-N-H def. (Amide III) 1605 C=C str. (phenyl ring)

1460–1440 CH2 and CH3 def.
1310–1250 C-N-H def. (Amide III)

1005 phenyl ring def.

Carotenoids Not detectable at concentrations present in fungal
biomass

1525 C=C str. (polyene chain)
1155 C-C str. & CH def.
1005 C-CH3 def.

Unlike in FTIR spectra (Figure S1), where phosphate accumulation in fungal biomass
is very noticeable due to strong phosphate-related IR bands [60], phosphate accumulation
in FT-Raman spectra is less noticeable. Nevertheless, these weak phosphate-related Raman
bands, at 1163 and 685 cm−1, can be detected in the FT-Raman spectra (Figure 6a). As
mentioned previously, calcium is directly involved in chitin synthesis, and thus strains
cultivated in the absence of calcium show significantly lower chitin-related signals in
Raman spectra when compared to their counterparts cultivated under normal calcium
conditions. This is especially noticeable for samples grown under low phosphate conditions
that show overexpression of chitin production as a result of acidic conditions, as exemplified
by Mucor circinelloides strain VI 04473 (Figure 6b).
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such as principal component analysis and partial least square regression, are often used 
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Figure 6. Influence of growth conditions on FT-Raman spectra of fungal biomass. Preprocessed FT-Raman spectra of:
(a) Mucor circinelloides strain VI 04473 cultivated under reference calcium condition (Ca1) and two different phosphate
concentrations, (b) Mucor circinelloides strain VI 04473 cultivated under low phosphates (Pi0.5) and two different calcium
conditions (Ca0 and Ca1), (c) Mucor circinelloides strain FRR 5020 cultivated under absence of calcium (Ca0) and two different
phosphate conditions (Pi0.5 and Pi4), and (d) Mucor circinelloides strain FRR 5020 cultivated under low phosphates (Pi0.5)
and two different calcium conditions (Ca0 and Ca1).

Compared to FTIR spectra of fungal biomass (Figure S1), FT-Raman spectra provide
information on one additional group of chemicals: carotenoid pigments. These chemicals
cannot be measured by FTIR due to their low concentration in fungal biomass. However,
they can be measured with FT-Raman spectroscopy because carotenoids exhibit resonance
Raman effect. In carotenoids, the conjugated nature of π-electrons from the polyene
backbone causes electronic states of lower energy. Due to this, carotenoids often have
absorption in the visible part of the spectrum, and they usually display strong yellow,
orange and red colors (Figure 2). The resonant Raman effect causes strong enhancement
of vibrational bands in carotenoids, in particular those at 1525 cm−1 (related to -C=C-
stretching), 1155 cm−1 (related to -C-C- stretching and CH deformation), and 1005 cm−1

(related to C-CH3 deformations) that have strong electron–phonon coupling [75]. Out of
the six studied strains, three strains show strong signals related to carotenoids: Amylomyces
rouxii and the two Mucor circinelloides strains (Figure 4). These Raman bands can be used
to assess influence of growth conditions on carotenoid production, and we assessed them
via regression analysis based on reference carotenoid measurements (Figure 2). As visible
from Figure 6c,d, high carotenoid bands are present in FT-Raman spectra of biomass of the
Mucor circinelloides strain FRR 5020 grown in media with low phosphate concentrations
and in the absence of calcium. Compared to Mucor circinelloides strain VI 04473, that shows
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overexpression of chitin, it is likely that Mucor circinelloides strain FRR 5020 is coping with
acidic stress in the absence of calcium by overexpression of carotenoids. This is consistent
with a number of studies that have shown stress related overexpression of carotenoids in
filamentous fungi [76].

In order to obtain general assessment of spectral variances within the whole FT-Raman
spectral set, multivariate data analysis was conducted. Both FTIR and FT-Raman data
are multivariate data with high collinearity. Therefore, methods based on latent variables,
such as principal component analysis and partial least square regression, are often used
to process such data. In PCA, graphical representations of correlations between samples,
principal components, and wavenumbers allow visual detection of groups of related
samples (in this case, based on sample strains and growth conditions) and consequent
identification of major spectral features that are causing this differentiation. The PCA of FT-
Raman data shows that the predominant spectral differences are the result of variations of
bands associated with lipids, carotenoids, and cell wall carbohydrates (Figure 7). The PCA
plots have high factor loadings associated with carotenoids at 1523, 1159, and 1006 cm−1

(positive loadings in PC1 and PC2, and negative loadings in PC3), lipids at 2897, 2853, 1750,
1440, and 1303 cm−1 (negative loadings in PC1), and cell wall carbohydrates (in particular
chitin) at 2947, 1665, 1377, 1330, and 1109 cm−1 (positive loadings in PC1 and negative
loadings in PC2). In particular, the signals associated with carotenoids dominate in the
first three principal components. Therefore, it is evident that the FT-Raman spectral data
provides complementary information to the FTIR data.
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Figure 7. PCA of FT-Raman spectra of fungi grown at different phosphates and calcium concentrations. (a) Score plots
of PC1 and PC2, (b) PC2 and PC3, and (c) the first three loading vectors. Score plots are labeled according to strains:
Amylomyces rouxii (Ar), Mucor circinelloides VI 04473 (Mc1), Mucor circinelloides FRR 5020 (Mc2), Mucor racemosus (Mr),
Rhizopus stolonifer (Rs), and Umbelopsis vinacea (Uv) (left), phosphates concentrations (middle), and calcium availability
(right). Vectors are approximating the increase in relative amount of the metabolites: lipids (L), cell wall carbohydrates (C),
and carotenoids (Cr). The explained variances for the first five principal components are 47.3%, 26.9%, 15.8%, 3.8%, and
1.4%.

2.3. Quantitative Determination of Chemical Constituents of Fungal Biomass Based on Vibrational
Spectra

The influence of growth conditions on chemical composition of fungal biomass can
be estimated by using Raman intensity ratios of Raman bands related to specific chemical
constituents. Figure 8a shows that ratio of Raman intensities at 1747 cm−1 (related to
lipids) and 1445 cm−1 (related to total biomass) provides a satisfactory estimate of total
fungal lipids (compare to Figure 1). Ratio of Raman intensities at 1163 cm−1 (related to
polyphosphates) and 1155 cm−1 (related to chitin) can be used to monitor accumulation of
polyphosphates (Figure 8b), while the ratio of Raman intensities at 1523 cm−1 (related to
carotenoids) and 1445 cm−1 (related to total biomass) can be used to monitor the production
of carotenoids (Figure 8c; compare to Figure 2).
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in six different growth conditions (phosphates concentrations and calcium availability). Ratio of Raman intensities at:
(a) 1747 and 1445 cm−1 related to lipids, (b) 1163 and 1155 cm−1 related to polyphosphates, and (c) 1523 and 1445 cm−1

related to carotenoids (average values and error is based on measurements of two biological replicates and three technical
replicates). Analysis was based on nonderivative FT-Raman data.

We demonstrated previously that PLSR of FTIR data can provide accurate assessments
of intra- and extracellular fungal metabolites [58]. Therefore, quantitative estimates of total
lipids, total phosphorus, and carotenoids in the fungal biomass were obtained by PLSR
analyses of FT-Raman and FTIR data. The results show a high level of correlation between
the vibrational data and referent measurements (Tables 2 and 3). The RMSE values for
assessment of total lipids by FT-Raman were approximately 10% for the PLSR models
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based on all six strains and approximately 8% for the models based on Mucor strains
(Table 2). Similar results were obtained for FTIR-based PLSR models (Table 3), further
corroborating our previous findings that FTIR spectroscopy is a practical method for
quantitative analysis of total lipids in fungal biomass [57]. In general, the levels of accuracy
achieved by vibrational spectroscopy PLSR models are similar to accuracy achieved by the
reference method involving extraction, transesterification and chromatography.

Table 2. PLSR coefficients of determination (R2) and root mean square errors (RMSE) for determination of total lipids, phosphorus, and
carotenoids, with the number of components in parenthesis (Aopt), for the regression analyses based on nonderivative and derivative
preprocessed FT-Raman data.

Analysis Range
Nonderivative Derivative

R2 (Aopt) RMSE R2 (Aopt) RMSE

Total lipids (6 strains) 19.42–87.13%dry weight 0.83 (5) 6.60%dry weight 0.75 (3) 8.06%dry weight

Total lipids (Mucor) 19.42–55.57%dry weight 0.88 (5) 2.94%dry weight 0.88 (5) 2.90%dry weight

Total phosphorus
(6 strains) 0.64–6.24%dry weight 0.86 (7) 0.50%dry weight 0.79 (5) 0.60%dry weight

Total phosphorus
(Mucor) 1.40–5.20%dry weight 0.89 (6) 0.38%dry weight 0.89 (5) 0.37%dry weight

Total carotenoids 10.21–1669.88 µg/gdry weight 0.84 (1) 134.69 µg/gdry weight 0.84 (2) 137.34 µg/gdry weight

Table 3. PLSR coefficients of determination (R2) and root mean square errors (RMSE) for determination of total lipids and phosphorus,
with the number of components in parenthesis (Aopt), for the regression analyses based on nonderivative and derivative preprocessed
FTIR data.

Analysis Range
Nonderivative Derivative

R2 (Aopt) RMSE R2 (Aopt) RMSE

Total lipids (6 strains) 19.42–87.13%dry weight 0.86 (2) 6.02%dry weight 0.85 (8) 6.12%dry weight

Total lipids (Mucor) 19.42–55.57%dry weight 0.79 (7) 3.93%dry weight 0.82 (5) 3.59%dry weight

Total phosphorus (6 strains) 0.64–6.24%dry weight 0.87 (9) 0.47%dry weight 0.84 (5) 0.53%dry weight

Total phosphorus (Mucor) 1.40–5.20%dry weight 0.94 (6) 0.29%dry weight 0.84 (4) 0.46%dry weight

Moreover, the RMSE values for the assessment of the total phosphorus by FT-Raman
were approximately 10% for the PLSR models based on all six strains and on Mucor strains
(Table 2). Similar results are obtained for PLSR models based on FTIR data (Table 3). Finally,
the RMSE values for the assessment of total carotenoids by FT-Raman were approximately
8% for the PLSR models based on the two Mucor circinelloides strains (Table 2). The
application of Raman spectroscopy for monitoring of carotenoids was hypothesized a
decade ago, with preliminary studies on filamentous fungi Blakeslea trispora [12], and our
results certainly confirm that quantitative analysis of total carotenoids was feasible by FT-
Raman spectroscopy. The PLSR models for assessment of total carotenoids by FTIR were
unstable, with large difference between prediction values of model and validation data.
This is unsurprising considering that direct detection of such small content of carotenoids
by FT-Raman spectroscopy was only achieved because of the resonant Raman effect, and
the corresponding phenomena is not present in FTIR spectroscopy.

The number of components (PLS factors) used for building the PLSR models for
both types of preprocessed FT-Raman data was low, indicating high stability and relia-
bility of the developed models. The PLS factors clearly show contributions of relevant
spectral signals, specifically signals related to lipids, polyphosphates, and carotenoids
(Figures S3–S5). Moreover, it can be assumed that a large part of error of the PLS models is a
result of the measurement error in the reference data and not spectral data. It is important
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to notice that all reference methods require large amount of biomass sample and several
time-consuming processing steps involving wet chemistry. In comparison, vibrational
spectroscopy methods are extremely fast and simple to implement.

2.4. Multiblock and Analysis of Spectral Variation by the ANOVA Model of FTIR and FT-Raman
Data

After averaging of technical replicates, FTIR and FT-Raman spectral sets can be
analyzed as a multiblock data with a sample-to-sample correspondence between the data
blocks. Consensus principal component analysis (CPCA) is a frequently used multiblock
data analysis method since it allows assessment of the covariance patterns using more
than one block of data [77,78]. CPCA provides global scores that describe the consensus
of all data blocks involved in the CPCA. In addition, block scores and block loadings
were calculated, showing individual sample and variable variation patterns for each
block. Analysis of individual block scores and global scores and block loadings provides
assessment of variation patterns and the molecular insights, related to sample chemistry,
obtained by each of the two vibrational spectroscopic techniques (Figure 9 and Figure
S6). The global scores are presented in Figure 8, and they show that the main variance is
predominantly driven by variance in the FT-Raman data. The first two loadings in FTIR
data block are highly correlated (Figure S6d). A similar result, with a high correlation
of loadings, was presented previously on simulated data [79]. Such an effect is caused
by similar variable variation patterns in one data block, while the second block shows a
different effect of underlying parameters on the variable variation pattern. In our study,
the reason for this is high variation in the data caused by carotenoids, which dominate
variation in FT-Raman data, and are undetectable by FTIR spectroscopy. Thus, the CPCA
results clearly show that FT-Raman spectra reveal additional level of chemical information
about fungal biomass that is not present in FTIR data.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 
 

 

show that FT-Raman spectra reveal additional level of chemical information about fungal 
biomass that is not present in FTIR data. 

 
Figure 9. Multiblock or consensus principal component analysis (CPCA) of FTIR and FT-Raman spectroscopic data. Global 
score values of the CPCA are labeled according to strains: Amylomyces rouxii (Ar), Mucor circinelloides VI 04473 (Mc1), Mucor 
circinelloides FRR 5020 (Mc2), Mucor racemosus (Mr), Rhizopus stolonifer (Rs), and Umbelopsis vinacea (Uv) (left), phosphates 
concentrations (middle), and calcium availability (right). The explained variances for the first two principal components 
are 40.8% and 30.9%. 

Both spectral data sets show that phosphate concentrations have the biggest influ-
ence on the variation of biochemical profile of fungal biomass (Figure 10). This is probably 
related not only to the intracellular accumulation of phosphorus in the form of polyphos-
phates, but also to the influence of phosphate concentration on the pH of the growth me-
dia, as discussed in our previous studies [56,60,64,69]. Since the phosphate-related signals 
(P=O and P-O-P stretching bands) are much more prominent in the FTIR spectra than in 
the FT-Raman spectra (Figures 4 and S2), the contribution of phosphates is higher in the 
FTIR dataset for strains that have significant accumulation of polyphosphates, such as 
Mucor circinelloides strain VI 04473. In general, higher contribution of calcium-phosphates 
interaction is present in FT-Raman data than in FTIR. Possible explanation is relatively 
high sensitivity of FT-Raman to the detection of changes in the chemical composition of 
cell wall polysaccharides and pigments, the two types of chemical constituents that are 
affected by both calcium and phosphates. Amongst the six cultivated strains, Rhizopus 
stolonifer was the least sensitive to different cultivation conditions (Figure 1 and [60]). Due 
to sporulation under higher phosphate concentrations, and the associated problems with 
acquiring reproducible FT-Raman spectra, this strain shows the highest residual variabil-
ity in FT-Raman data. Amylomyces rouxii and Mucor circinelloides strain FRR 5020 have rel-
atively high calcium-dependent production of carotenoid pigments (Figure 2). Since ca-
rotenoids have strong signals in FT-Raman spectra, the spectral variation due to calcium 
availability is higher in FT-Raman than in FTIR data. Of all the studied strains, Umbelopsis 
vinacea was able to accumulate by far the highest content of lipids. On the other hand, this 
strain shows no significant production of pigments and chitin/chitosan, nor accumulation 
of polyphosphates. Since lipid accumulation is predominantly affected by phosphates 
concentration, this design parameter had the highest contribution into variation in spectra 
of this strain in both FTIR and FT-Raman data. Mucor racemosus and Mucor circinelloides 
strain VI 04473 show relatively similar variation contribution profiles due to different de-
sign parameters in both spectral data sets. Mucor circinelloides strain VI 04473 is quite 
unique amongst the six cultivated strains due to significant change in polyphosphate, li-
pid, pigment accumulation, and cell wall chemistry, as a result of phosphate and calcium 
concentrations modifications. For this strain in particular, both FTIR and FT-Raman data 
provide valuable contribution in discerning the complex changes in biomass chemistry. 

Figure 9. Multiblock or consensus principal component analysis (CPCA) of FTIR and FT-Raman spectroscopic data. Global
score values of the CPCA are labeled according to strains: Amylomyces rouxii (Ar), Mucor circinelloides VI 04473 (Mc1), Mucor
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Both spectral data sets show that phosphate concentrations have the biggest influence
on the variation of biochemical profile of fungal biomass (Figure 10). This is probably
related not only to the intracellular accumulation of phosphorus in the form of polyphos-
phates, but also to the influence of phosphate concentration on the pH of the growth media,
as discussed in our previous studies [56,60,64,69]. Since the phosphate-related signals (P=O
and P-O-P stretching bands) are much more prominent in the FTIR spectra than in the
FT-Raman spectra (Figure 4 and Figure S2), the contribution of phosphates is higher in
the FTIR dataset for strains that have significant accumulation of polyphosphates, such as
Mucor circinelloides strain VI 04473. In general, higher contribution of calcium-phosphates
interaction is present in FT-Raman data than in FTIR. Possible explanation is relatively
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high sensitivity of FT-Raman to the detection of changes in the chemical composition of
cell wall polysaccharides and pigments, the two types of chemical constituents that are
affected by both calcium and phosphates. Amongst the six cultivated strains, Rhizopus
stolonifer was the least sensitive to different cultivation conditions (Figure 1 and [60]). Due
to sporulation under higher phosphate concentrations, and the associated problems with
acquiring reproducible FT-Raman spectra, this strain shows the highest residual variabil-
ity in FT-Raman data. Amylomyces rouxii and Mucor circinelloides strain FRR 5020 have
relatively high calcium-dependent production of carotenoid pigments (Figure 2). Since
carotenoids have strong signals in FT-Raman spectra, the spectral variation due to calcium
availability is higher in FT-Raman than in FTIR data. Of all the studied strains, Umbelopsis
vinacea was able to accumulate by far the highest content of lipids. On the other hand, this
strain shows no significant production of pigments and chitin/chitosan, nor accumulation
of polyphosphates. Since lipid accumulation is predominantly affected by phosphates
concentration, this design parameter had the highest contribution into variation in spectra
of this strain in both FTIR and FT-Raman data. Mucor racemosus and Mucor circinelloides
strain VI 04473 show relatively similar variation contribution profiles due to different
design parameters in both spectral data sets. Mucor circinelloides strain VI 04473 is quite
unique amongst the six cultivated strains due to significant change in polyphosphate,
lipid, pigment accumulation, and cell wall chemistry, as a result of phosphate and calcium
concentrations modifications. For this strain in particular, both FTIR and FT-Raman data
provide valuable contribution in discerning the complex changes in biomass chemistry.
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3. Materials and Methods
3.1. Fungal Strains

Six strains of Mucoromycota oleaginous filamentous fungi were used in the study:
Amylomyces rouxii CCM F220, Mucor circinelloides VI 04473, Mucor circinelloides FRR 5020,
Mucor racemosus UBOCC A 102007, Rhizopus stolonifer CCM F445, and Umbelopsis vinacea
CCM F539. Fungi were obtained on agar slants and Petri dishes or in the lyophilized form,
from the Czech Collection of Microorganisms, Brno, Czech Republic (CCM), Food Fungal
Culture Collection, North Ryde, Australia (FRR), Universitè de Bretagne Occidentale
Culture Collection (UBOCC; Brest, France), and the Norwegian University of Life Sciences
(former Norwegian School of Veterinary Science), Ås, Norway (VI).

3.2. Cultivation of Fungi

Cultivation media was formulated by using the full factorial design, where three
different concentrations of inorganic phosphorus substrate (high, medium, and low) and
two calcium conditions (presence and absence) were used. Cultivation of the selected
fungi was done in two steps: (1) growth on the standard agar medium for preparing spore
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inoculum and (2) growth in Duetz-MTPS in nitrogen-limited broth media with ammonium
sulphate as a nitrogen source and different concentrations of the phosphorus substrate
(Pi) and calcium (Ca). The cultivation in Duetz-MTPS [58] was done in two independent
biological replicates for each fungus and condition, resulting in 72 samples.

For the preparation of spore inoculum, all strains except Umbelopsis were cultivated
on malt extract agar (MEA) and Umbelopsis was cultivated on potato dextrose agar (PDA).
MEA was prepared by dissolving 30 g of malt extract agar (Merck, Darmstadt, Germany)
in 1 L of distilled water and autoclaved at 115 ◦C for 15 min. PDA was prepared by
dissolving 39 g of potato dextrose agar (VWR, Leuven, Belgium) in 1 L of distilled water
and autoclaved at 115 ◦C for 15 min. Agar cultivation was performed for 7 days at 25 ◦C
for all strains. Fungal spores were harvested from agar plates with a bacteriological loop
after the addition of 10 mL of sterile 0.9% NaCl solution.

The main components of the nitrogen-limited broth media [80] with modifications
[56,57] were: 80 g·L−1 glucose, 1.5 g·L−1 (NH4)2SO4, 1.5 g·L−1 MgSO4·7H2O, 0.008
g·L−1 FeCl3·6H2O, 0.001 g·L−1 ZnSO4·7H2O, 0.0001 g·L−1 CoSO4·7H2O, 0.0001 g·L−1

CuSO4·5H2O, and 0.0001 g·L−1 MnSO4·5H2O. The concentration of calcium salt desig-
nated as Ca1, with 0.1 g·L−1 CaCl2·2H2O, was considered as a reference value for calcium
salt, while broth media designated as Ca0 had no calcium salt present. The concentrations
of phosphate salts, 7 g·L−1 KH2PO4 and 2 g·L−1 Na2HPO4, were selected as a reference
value (Pi1) since they have frequently been used in the cultivation of oleaginous Mucoromy-
cota [57,80]. The broth media contained standard concentration (designated as Pi1), higher
(four times higher than the standard concentration Pi1, designated as Pi4), and lower
(half of the standard concentration Pi1, designated as Pi0.5) amount of phosphate salts.
Cultivation in broth media was performed in the Duetz-MTPS (Enzyscreen, Heemstede,
The Netherlands), which consists of 24-square polypropylene deep well microtiter plates,
low evaporation sandwich covers, and extra high cover clamps [81], which were placed
into the MAXQ 4000 shaker (Thermo Fisher Scientific, Waltham, MA, USA). The autoclaved
microtiter plates were filled with 7 mL of sterile broth media per well and each well was
inoculated with 50 µL of spore inoculum. Cultivation was performed for 7 days at 25 ◦C
and 400 rpm agitation (1.9 cm circular orbit).

3.3. Preparation of Fungal Biomass for Vibrational Spectroscopy Analyses

The growth media were separated from the fungal biomass by transferring the fer-
mentation broth with plastic Pasteur pipettes into 15 mL Falcon tubes and the subsequent
centrifugation at 13,500 rpm for 15 min at 4 ◦C. Fungal biomass from Falcon tubes was
washed three times with cold distilled water and filtered under vacuum using a Whatman
No. 1 filter paper (GE, Whatman, MA, USA). Approximately 5 mg of fresh washed biomass
was transferred into 2 mL of polypropylene tube containing 250 ± 30 mg of acid washed
glass beads and 0.5 mL of distilled water, and homogenized by using Percellys Evolution
tissue homogenizer (Bertin Technologies, Aix-en-Provence, France) with the following
set-up: 5500 rpm, 6 × 20 s cycle. Freshly homogenized biomass was measured by FTIR. The
remaining washed biomass was freeze-dried for 24 h, and stored at −20 ◦C until FT-Raman
measurements.

3.4. FT-Raman Spectroscopy Analysis

Raman spectra were recorded in backscattering geometry using MultiRAM FT-Raman
spectrometer (Bruker Optik GmbH, Ettlingen, Germany) equipped with a neodymium-
doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 9394 cm−1) and germanium
detector cooled with liquid nitrogen. For each measurement, 0.5–1 mg of the freeze-dried
sample was deposited in an aluminum sample container and pressed with a pestle. The
spectra were recorded with a total of 128 scans, using Blackman–Harris 4-term apodization,
spectral resolution of 4 cm−1, with a digital resolution of 1.928 cm−1, over the range of
3785–50 cm−1, at a 500 mW laser power. Since some samples of Amylomyces rouxii and
Rhizopus stolonifer have shown strong heating and burning effects, those samples were
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measured with the reduced laser power of 200 mW. Each biomass sample was analyzed
in three technical replicates, resulting in 216 spectra. The OPUS software (Bruker Optik
GmbH, Ettlingen, Germany) was used for data acquisition and instrument control.

3.5. FTIR Spectroscopy Analysis

The FTIR transmittance spectra were measured using the high throughput screening
extension (HTS-XT) unit coupled to the Vertex 70 FTIR spectrometer (both Bruker Optik,
Ettlingen, Germany). A total of 10 µL of homogenized fungal biomass was pipetted onto
an IR transparent 384-well silica microplate and dried at room temperature for two hours.
The HTS-FTIR spectra were recorded with a total of 64 scans, spectral resolution of 6 cm−1,
and digital spacing of 1.928 cm−1, over the range of 4000–400 cm−1, and an aperture of
5 mm. Spectra were recorded as the ratio of the sample spectrum to the spectrum of the
empty IR transparent microplate. Each biomass sample was analyzed in three technical
replicates, resulting in 216 spectra. The OPUS software (Bruker Optik GmbH, Ettlingen,
Germany) was used for data acquisition and instrument control.

3.6. Spectral Preprocessing and Data Analysis

All preprocessing methods and data analyses were performed using Matlab R2019a
(The Mathworks Inc., Natick, MA, USA), Unscrambler 11.0 (CAMO Software, Oslo, Nor-
way), and Orange data mining toolbox version 3.26 (University of Ljubljana, Ljubljana,
Slovenia) [82,83].

3.6.1. Spectral Preprocessing

Each spectral dataset (FTIR and FT-Raman) was preprocessed with two different
procedures, resulting in nonderivative and derivative spectral data. For nonderivative
FT-Raman data, FT-Raman spectra were smoothed by using Savitzky–Golay (SG) algorithm
(polynomial 2, window size 15, derivative order 0), followed by the rubber band baseline
correction, truncation of data to 3200–2400 and 1900–500 cm−1 regions, and normalization
by extended multiplicative signal correction (EMSC), an MSC model extended by a linear,
quadratic, and cubic components [84,85]. For nonderivative FTIR data, FTIR spectra
were corrected and normalized by using EMSC (MSC with linear, quadratic, and cubic
components). In the analysis of spectral variation due to design factors by the ANOVA
model, the nonderivative data were preprocessed further, as stated below. For derivative
FT-Raman data, FT-Raman spectra were converted into second derivatives by using the SG
algorithm (polynomial 2, window size 15, derivative order 2), followed by the EMSC (MSC
with linear, quadratic, and cubic components), and truncation of data to 1800–900 cm−1

region. For derivative FTIR data, FTIR spectra were converted into second derivatives
by using the SG algorithm (polynomial 2, window size 15, derivative order 2), followed
by the EMSC (MSC with linear and quadratic components), and truncation of data to the
1800–900 cm−1 region.

3.6.2. Principal Component Analysis

Biochemical similarities between samples were estimated by using principal compo-
nent analysis (PCA). PCA was conducted on the nonderivative spectral data. The variability
test based on Pearson correlation coefficients (PCC) was used to estimate reproducibility
of technical replicate measurements. The PCC test was conducted on the preprocessed
non-derivative FT-Raman data. Consensus principal component analysis (CPCA) was used
on multiblock spectral data, consisting of preprocessed derivative FTIR and FT-Raman
data blocks. In CPCA, technical replicates were averaged after the preprocessing in order
to obtain sample-to-sample correspondence between the data blocks [77,86,87].
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3.6.3. Quantitative Determination of Chemical Constituents of Fungal Biomass Based on
Vibrational Spectra

Ratios of Raman intensities at different wavenumbers related to chemical constituents
of fungal biomass (1747 cm−1 for lipids, 1163 cm−1 for phosphates, and 1523 cm−1 for
carotenoids) were used for the initial estimation of their content. Nonderivative FT-Raman
data was used for this estimation.

Partial least square regression (PLSR) was used to establish calibration models for
lipids, phosphates, and carotenoids. PLSR models were established by using a data set of
either GC (lipids), UV/Vis (phosphorus), or HPLC (carotenoids) reference measurements
(responses) as a Y matrix, which was regressed onto an X matrix containing FT-Raman
measurements (predictors). Optimal number of PLSR components (i.e., PLSR factors) of the
calibration models (AOpt), root-mean-square error (RMSE), and coefficient of determination
(R2) were calculated, and the optimal model was selected based on the lowest AOpt having
insignificantly higher RMSE than the model with the minimum RMSE. PLSR analyses
were conducted on both the preprocessed non-derivative and derivative FT-Raman data.
PLSR models for total lipids and total phosphorus predictions were based on FT-Raman
measurements of either all six fungal strains or the three Mucor strains, while the models
for determination of carotenoids were based on the measurements of the two Mucor
circinelloides strains. Model validation was performed by using independent biological
replicates for the test set, where PLSR models were built by using one set of bioreplicate
samples (bioreplicate 1) while validation was performed on the second set of bioreplicate
samples (bioreplicate 2).

3.6.4. Multiblock and Analysis of Spectral Variation by the ANOVA Model of FTIR and
FT-Raman Data

FTIR and FT-Raman data was used to assess the influence of various experimental
parameters. Spectral variation in the data introduced by the different design parameters,
specifically Pi concentration, calcium availability, phosphates–calcium (Ca–Pi) interactions,
and biological replicates, was calculated for each strain independently in each data set.
In the analysis of variance (ANOVA) model a data matrix is represented as a sum of
matrices that describe experimental design factors and the residual error. Each of these
matrices consists of the means of the spectra that correspond to different levels of the design
factor. The variation due to each factor can then be calculated. The ANOVA model for this
study contained five design factors: calcium availability, phosphates concentration, Ca–Pi
interaction, biological replicates, and unexplained residual variance. The factor “calcium
availability” had two levels (Ca1 and Ca0), the factor “phosphates concentration” consisted
of three levels (three different Pi concentrations), the design factor “Ca-Pi interaction”
had therefore six levels, while biological replicates had two levels (bioreplicate 1 and 2).
Technical replicate variations and other variations irrelevant for this study were kept as a
part of residuals. The variation of each factor was normalized by the sum of the variations
for the four factors of interest, meaning that they were summed up to 100%. Such an
ANOVA model underlies commonly used ANOVA-PCA and ASCA analysis [88,89], which
in addition to calculating variation contribution of design factors in a data allow analyzing
other aspects of the data. The methods were therefore not implemented in this study.
Such analysis was conducted on the preprocessed derivative FTIR and FT-Raman spectral
data, where technical replicates were averaged after the preprocessing, and both FTIR and
FT-Raman data were truncated to 1800–900 cm−1 region.

3.7. Reference Compounds and Reference Chemical Analyses

Details on lipid extraction and gas chromatography analysis of fatty acid profiles and
total lipids and analysis of cellular phosphorus by assay-based UV/VIS spectroscopy and
nuclear magnetic resonance (NMR) spectroscopy were reported previously [60].
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3.7.1. Reference Spectra

For chemical characterization of fungal biomass, a set of reference compounds was
measured by FT-Raman and FTIR spectroscopies. Chitin, β-glucan (from Saccharomyces
cerevisiae, predominantly β1,3-glucan linear structure with a small number of β1,6-glucan
branches), gluten, glyceryl trioleate (1,2,3-tri(cis-9-octadecenoyl)glycerol), and sodium
polyphosphate were purchased from Merck-Sigma-Aldrich (Darmstadt, Germany) and
used without further purification.

3.7.2. Carotenoid Analysis

Total carotenoid content was determined for the two Mucor circinelloides strains (VI
04473 and FRR 5020) by using the method based on high performance liquid chromatog-
raphy equipped with a photodiode array detector (HPLC-PDA). A total of 15 ± 3 mg
of freeze-dried biomass was weighed and rehydrated with 1 mL of Milli-Q water for
30 min. Excess water was removed by centrifugation at 10,000 rpm for 5 min, and 1 mL
of methanol and about 0.5 mL of glass beads (0.2–0.5 mm diameter, Carl Roth GmbH,
Karlsruhe, Germany) were added to the sample. The sample was vortexed for 20 min,
transferred to a 15 mL tube with 2 mL of chloroform, and vortexed for 10 min. 1 mL
of water was added to the sample, vortexed for 10 s, and centrifuged at 3000 rpm for
5 min. The lower (chloroform) phase was transferred to a clean tube and dried under
an inert nitrogen atmosphere. The dried sample was dissolved in 1 mL of ethyl acetate:
acetonitrile 1:3 and filtered through a 0.45 µm polytetrafluoroethylene (PTFE) filter into a
vial. Samples were measured on Dionex Ultimate series HPLC with Vanquish diode array
detector (Thermo Fischer Scientific, Waltham, MA, USA) on Kinetex C18-EVO column
150 mm × 4.6 mm × 5 µm (Phenomenex, Torrance, CA, USA) using gradient separation
with mobile phase A (acetonitrile: methanol: 0.1 M tris hydrochloride pH = 8; 84:2:14) and
mobile phase B (methanol: ethyl acetate; 60:40) at flowrate 1.2 mL/min and 25 ◦C. The
following gradient program was used: 0–13 min from 100% A to 100% B, 13–19 min 100%
B, 19–20 min from 100% B to 100% A, and 20–25 min 100% A. Carotenoid pigments were
detected at 445 nm. Chromatographic data were evaluated using Chromeleon 7.2 software.
Carotenoids were identified and evaluated using commercial standards (Sigma Aldrich,
St. Louis, MI, USA) and external calibration. Only β-carotene was identified based on
standards, while the remaining unidentified carotenoids were quantified via the β-carotene
calibration curve.

4. Conclusions

The study, conducted on six strains of Mucoromycota filamentous fungi, demonstrates
that quality Raman spectra of fungal biomass can be acquired by FT-Raman spectroscopy.
In the case of sample heating and fluorescence, optimization of excitation laser power and
number of scans is needed to reduce noise and baseline interference. FT-Raman spectra are
rich in chemical information and provide data on all main chemical constituents of fungal
biomass, including acylglycerol lipids, proteins, cell wall carbohydrates (glucosamines,
glucans, and glucuronans), and polyphosphates. In addition, resonant Raman effect en-
ables the detection of biomass constituents generally present in low concentrations, namely
carotenoids. Effects of growth conditions (phosphorus concentration and calcium avail-
ability) on fungal biomass were clearly detectable by FT-Raman spectroscopy. Detection
of fungal carotenoids, obtainable by FT-Raman and unattainable by FTIR spectroscopy,
is the main difference between the two vibrational spectroscopy methods. Further, the
sensitivity of the two methods in detection of other chemical constituents varies; for ex-
ample, polyphosphates and proteins have strong bands in FTIR spectra and relatively
weak bands in Raman spectra. PLSR models based on FT-Raman and FTIR data were
established for quantitative determination of total lipids, phosphates and carotenoids. The
results of PLSR analyses indicate that these vibrational spectroscopies, in combination with
multivariate regression models, could be utilized as a simple, rapid, and non-destructive
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method for quantitative assessment of phosphorus (polyphosphates) and lipids (both FTIR
and FT-Raman), and carotenoids (only FT-Raman), in intact fungal biomass.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136710/s1.
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13. Rebrošová, K.; Šiler, M.; Samek, O.; Růžička, F.; Bernatová, S.; Holá, V.; Ježek, J.; Zemánek, P.; Sokolová, J.; Petráš, P. Rapid
identification of staphylococci by Raman spectroscopy. Sci. Rep. UK 2017, 7, 14846. [CrossRef] [PubMed]

14. Kizovský, M.; Pilát, Z.; Mylenko, M.; Hrouzek, P.; Kuta, J.; Skoupý, R.; Krzyžánek, V.; Hrubanová, K.; Adamczyk, O.; Ježek, J.;
et al. Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. Biosensors 2021, 11,
115. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms22136710/s1
https://www.mdpi.com/article/10.3390/ijms22136710/s1
http://doi.org/10.1186/s40694-020-00095-z
http://www.ncbi.nlm.nih.gov/pubmed/32280481
http://doi.org/10.1186/s40694-016-0024-8
http://doi.org/10.1002/ejlt.200700169
http://doi.org/10.1098/rsos.180551
http://www.ncbi.nlm.nih.gov/pubmed/30564386
http://doi.org/10.1016/j.renene.2008.04.014
http://doi.org/10.1002/biot.201300236
http://www.ncbi.nlm.nih.gov/pubmed/24846823
http://doi.org/10.1039/C8RA04491K
http://doi.org/10.1038/nprot.2014.110
http://doi.org/10.3390/ijms20040988
http://doi.org/10.1007/s00449-017-1808-9
http://www.ncbi.nlm.nih.gov/pubmed/28656375
http://doi.org/10.1007/s12010-008-8472-0
http://www.ncbi.nlm.nih.gov/pubmed/19130307
http://doi.org/10.1038/s41598-017-13940-w
http://www.ncbi.nlm.nih.gov/pubmed/29093473
http://doi.org/10.3390/bios11040115


Int. J. Mol. Sci. 2021, 22, 6710 21 of 23
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