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Abstract 
The infant gut microbiota is known to be dominated by Bifidobacterium, especially in 

healthy, breastfed infants. This is mainly due to their ability to utilize human milk 

oligosaccharides (HMOs) that are non-digestible glycans, unique to breast milk. From this 

utilization, metabolites such as short chain fatty acids (SCFAs) are produced, that have an 

important role in nurturing the epithelial cells in the large intestine. There is currently a 

knowledge gap related to how Bifidobacterium utilize HMOs in the infant gut. The aim of this 

thesis was therefore to analyze how Bifidobacterium degrade HMOs in the infant gut using a 

metagenomic and proteomic approach.  

 

Potential HMO degradation by Bifidobacterium was studied using fecal samples from the 

PreventADALL study. To obtain an overview of the gut microbiota composition, and to select 

samples with high abundance of Bifidobacterium for further analyzes, a 16S rRNA 

sequencing was performed. The detailed composition and functional potential of 

Bifidobacterium species was found through a shotgun sequencing. To identify HMO utilizing 

proteins found in Bifidobacterium, a proteome analysis was performed, and the proteins were 

divided into different HMO degradation pathways. Several proteins related to HMO 

degradation were found either from both the shotgun and proteome data, or only from the 

shotgun data. For three out of five building blocks of HMO, whole degradation pathways 

were found. In addition to this, all the main enzymes to break down HMO; β-galactosidase, 

fucosidase, sialidase, GLNBP and β-hexosaminidase, were identified from the data. 

 

In conclusion, Bifidobacterium has the ability to degrade HMO compounds, and there is a 

high potential that some Bifidobacterium species contain whole HMO degradation pathways. 

This provides a good base to research different HMO degradation pathways in specific 

Bifidobacterium species.    
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Sammendrag 
Tarmmikrobiotaen til spedbarn er kjent for å være dominert av Bifidobacterium, spesielt hos 

friske, ammede spedbarn. Dette er hovedsakelig grunnet deres egenskaper til å utnytte 

spesifikke oligosakkarider (HMOer) i morsmelk, som er ikke-nedbrytbare glykaner. Fra 

denne nedbrytelsen blir det produsert metabolitter, slik som kortkjedede fettsyrer (SCFAer), 

som har en viktig rolle i å fungere som næring for epitelceller i tykktarmen. Det er for 

øyeblikket mangel på kunnskap relatert til hvordan Bifidobacterium bryter ned HMOer i 

tarmen til spedbarn. Målet med denne oppgaven var derfor å analysere hvordan 

Bifidobacterium bryter ned HMOer i tarmen til spedbarn ved å bruke en metagenomisk og 

proteomisk analyse.  

 

Potensiell HMO-nedbrytelse av Bifidobacterium ble studert ved å bruke avføringsprøver 

hentet fra PreventADALL-studien. For å få en oversikt over tarmmikrobiota-

sammensetningen, og for å velge ut prøver med høy tilstedeværelse av Bifidobacterium for 

videre analyser, ble det utført en 16S rRNA sekvensering. Den detaljerte sammensetningen og 

det funksjonelle potensialet av Bifidobacterium-arter ble funnet gjennom en shotgun-

sekvensering. For å identifisere HMO-nedbrytende proteiner funnet i Bifidobacterium ble det 

utført en proteom-analyse, og proteinene ble delt inn i ulike HMO-nedbrytende veier. Flere 

proteiner relatert til HMO-nedbrytelse ble funnet enten fra både shotgun- og proteom-dataene, 

eller bare fra shotgun-dataene. For tre av fire byggeklosser i HMO ble det funnet fullstendige 

nedbrytelsesveier. I tillegg til dette ble alle hovedenzymene som bryter ned HMO: β-

galaktosidase, fukosidase, sialidase, GLNBP og β-heksosaminidase, identifisert fra dataene.  

 

For å konkludere har Bifidobacterium egenskapen til å bryte ned komponenter av HMO, og 

det er et høyt potensial for at noen Bifidobacterium-arter inneholder fullstendige HMO-

nedbrytende veier. Dette gir et godt grunnlag for å undersøke ulike HMO-nedbrytende veier i 

spesifikke Bifidobacterium-arter.  
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1 Introduction 

1.1 Infant and adult-like gut microbiota and colonization 

Humans have almost equal amounts of cells and bacteria in the body, with the highest density 

of bacteria in the large intestine (Thursby & Juge, 2017). The complex community of 

microorganisms in the intestine is referred to as the gut microbiota and has evolved to survive 

in the gastrointestinal tract (Milani et al., 2017). The gut microbiota can consist of harmless 

commensals, opportunistic pathogens or health promoting microorganisms (O'Callaghan & 

van Sinderen, 2016). In the large intestine it is discovered approximately 160 species that 

creates the gut microbiota (Rodriguez et al., 2015). The bacteria composition varies according 

to environmental factors in the gut, such as pH, temperature, access to oxygen, nutrients 

available and so on. The bacteria that survive the gut environment best will often dominate 

(Milani et al., 2017).  

The composition of bacteria in the gut can give indications of different conditions, for 

example dysbiosis (Olin et al., 2018), which is an continuous imbalance in the gut microbiota, 

due to changes in the composition and metabolic activity (Belizário & Faintuch, 2018). 

Dysbiosis can lead to long term effects like obesity, diabetes and inflammatory bowel disease 

(IBD) (Milani et al., 2017). Diseases like IBD and psoriatic arthritis are both linked to a loss 

of diversity in the gut microbiota (Morrison & Preston, 2016), and this is just a few examples 

of several studies that have linked development of different diseases due to an altered gut 

microbiota (Arboleya et al., 2016).  

Humans are dependent on the gut microbiota, because the bacteria break down different food 

compounds that we cannot digest, which results in the production of short chain fatty acids 

(SCFAs), that nurture the epithelial cells in the large intestine. The gut microbiota also 

protects the intestinal cells from pathogen colonization and helps mature the immune system 

(Milani et al., 2017).  

 

The infant gut microbiota starts from birth and consists mainly of some bacteria from the 

mother and environment. From there the diversity in the microbiota increases, and a child 

have an adult-like microbiota at the age of 3-5 years old (Rodriguez et al., 2015). From the 

stage of newborn to a child of age 3-5 there are a large number of factors that can affect the 

microbiota diversity and composition. During pregnancy, factors like maternal microbiota, 

health status and lifestyle can affect the child. During birth will the mode of delivery, vaginal 

vs c-section, term vs preterm and antibiotic treatment have an impact on the infant gut 
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microbiota. Breastfeeding vs formula, genetics, duration of lactation, family environment and 

geographical location will all modulate the infant gut microbiota during the first few years of 

life (O'Callaghan & van Sinderen, 2016; Rodriguez et al., 2015). During the adult-period of 

life, mainly lifestyle and diet are the factors that can modulate the gut microbiota, and as an 

elder, living conditions and medications are important factors (Rodriguez et al., 2015).  

 

The meconium, which is the first stool of an infant, is not sterile and consists of a community 

of microorganisms with Firmicutes as the main phylum and staphylococci as the dominant 

bacteria (Rodriguez et al., 2015). The fist colonizers of the infant gut create an environment 

that fit strict anaerobic bacteria, such as Bacteroides, Clostridium and Bifidobacterium. The 

newborn gut microbiota is known to have low diversity and is dominated by the phyla 

Proteobacteria and Actinobacteria. New phyla dominate during increasing time after birth, 

and these phyla are Firmicutes and Bacteroidetes (Rodriguez et al., 2015). Bifidobacterium 

will dominate the gut microbiota in healthy, breastfed children (O'Callaghan & van Sinderen, 

2016), and contribute to more than 50% of the total bacteria population during the breast 

feeding period (Gotoh et al., 2018). This domination is mainly due to their ability to utilize 

human milk oligosaccharides (HMOs) found in human breast milk. During weaning the 

population of Bifidobacterium decreases.  

 

1.2 Human milk oligosaccharides 

Human milk oligosaccharides (HMOs) are a family with structurally different glycans, that 

are unique to breast milk (Bode, 2012). They are non-digestible oligosaccharides that are 

metabolized by gut bacteria in the large intestine (O'Callaghan & van Sinderen, 2016), and 

therefore have a major part in shaping the gut microbiota in breastfed infants (Bode, 2012). 

One bacterium in particular that is common in breastfed infants is Bifidobacterium (Kitaoka, 

2012). It is discovered over 130 different oligosaccharides in breast milk that are HMOs, 

which makes it a complex composition (Bode, 2006; Kitaoka, 2012). According to (Bode, 

2012), HMOs are antimicrobial agents that can prevent adhesion. They also work as soluble 

decoy receptors, which means they can recognize and bind to specific growth factors or 

cytokines but cannot send signals or activate receptor complexes (Mantovani et al., 2001). 

The human milk oligosaccharides also prevent pathogens to adhere to the infant’s mucosal 

surfaces, and therefore reduce the risk of infections. It is suggested that HMOs have a 

prebiotic effect (Bode, 2012). Prebiotic agents are resistant to gastric acid, utilization from the 
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hosts enzymes and gastrointestinal absorption (Davani-Davari et al., 2019). HMOs cover all 

these factors. The breast milk is not sterile, and it is also seen that HMOs can have positive 

effects on the lactating mother. HMOs are for example discovered in the mothers urine right 

before birth, and this can indicate potential positive systemic effects on the mother (Bode, 

2012).     

 

The building blocks of HMOs are the monosaccharides D-glucose (Glc), D-galactose (Gal), 

N-acetylglucosamine (GlcNAc), L-fucose (Fuc) and sialic acid (Sia), the latter is often in the 

form as N-acetyl neuraminic acid (Neu5Ac) (Bode, 2012). All HMOs have lactose (Gal(β1-

4)Glc) at the reducing end, and this can be elongated by disaccharides in either a type 1 or 

type 2 chain (Figure 1.1). A type 1 chain consists of β1-3 or β1-6 bound lacto-N-biose (LNB, 

Gal(β1-3)GlcNAc), and this will terminate the chain, which means the core HMO structure is 

lacto-N-tetraose (LNT, Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) (Sela et al., 2008). A type 2 

chain consists of a β1-3 or β1-6 bound N-acetyllactosamine (Gal(β1-4)GlcNAc), and this can 

further be elongated by one of the two disaccharides. Lactose or the elongated chain can be 

fucosylated or sialylated with different α-bonds (Bode, 2012). Some examples of neutral 

HMOs, which are neither fucosylated or sialylated, are lacto-N-tetraose (LNT), lacto-N-

neotetraose (LNnT) and lacto-N-hexaose (LNH). 2-fucosyllactose (2FL) and 3-fucosyllactose 

(3FL) are examples of fucosylated HMOs, and 3-sialyllactose (3SL) and 6-sialyllactose (6SL) 

are examples of sialylated HMOs (Garrido et al., 2015).  
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Figure 1.1: Structure of human milk oligosaccharides. The figure shows the structure of HMOs 

and their building blocks. The dotted lines represent the potential for fucosylation or sialylation. The 

upper structure shows elongation with type 1 chain, and the lower structure shows elongation with 

type 2 chain. Glc, glucose; Gal, galactose; GlcNAc, N-acetylglucosamine; Fuc, fucose; Neu5Ac, N-

acetyl neuraminic acid (sialic acid). The figure is made based on information from (Bode, 2012). 

 

1.3 Bifidobacterium 
Bifidobacterium is a gram-positive bacteria genus, belonging to the Bifidobacteriaceae 

family. This family belongs to the phylum Actinobacteria which is known to include bacteria 

with high GC DNA content. Bifidobacterium was originally named Bacillus bifidus and 

classified in the genus Lactobacillus, when they were first discovered from feces of a 

breastfed infant in the late 1800s (Turroni et al., 2011). Bifidobacterium is most often found in 

the gastrointestinal system and is known to be dominating the intestine of healthy, breastfed 

infants. When the infant ages, the levels reduces, and the composition of Bifidobacterium 

species changes (Arboleya et al., 2016). The most common Bifidobacterium species found in 

the infant gut are Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum 

(Bunesova et al., 2016), but Bifidobacterium longum subsp. longum and Bifidobacterium 

breve are also present at a high level (Arboleya et al., 2016). An adult gut microbiota consists 
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more of the Bifidobacterium species Bifidobacterium catenulatum, Bifidobacterium 

adolescentis and B. longum subsp. longum (Arboleya et al., 2016).    

 

Bifidobacterium is thought to be vertically transferred from mother to child, by transmission 

from the vaginal tract during vaginal birth, the gastrointestinal tract and breast milk (Collado 

et al., 2016; Makino et al., 2013). Therefore, birth mode (vaginally vs. c-section) and to some 

extent breast feeding will have an impact on Bifidobacterium colonization in the infant gut  

(Dominguez-Bello et al., 2010; Guaraldi & Salvatori, 2012).  

 

The bacteria has GRAS status (generally recognized as safe) and researched health benefits, 

that makes it a probiotic microorganism (O'Callaghan & van Sinderen, 2016). They are most 

likely able to produce short chain fatty acids (SCFAs) and bacteriocins, which are health 

promoting metabolites (Arboleya et al., 2016). Bifidobacterium is also important in 

stimulating the immune system (Arboleya et al., 2016), and as other beneficial gut bacteria, 

they occupy place and food resources that prevent the growth of pathogenic bacteria in the 

intestine (Kitaoka, 2012). According to (Underwood et al., 2015), B. longum subsp. infantis is 

associated with the ability to decrease intestinal permeability and has anti-inflammatory 

properties. Since some diseases are linked with altered gut microbiota, several studies have 

focused on changed levels or composition of Bifidobacterium in connection with diseases. 

Studies have suggested that patients with diseases such as obesity and long-term asthma, also 

have reduced levels of Bifidobacterium (Gao et al., 2015; Hevia et al., 2016). An article by 

(Di Gioia et al., 2014) has summarized various studies researching the effect of 

Bifidobacterium on diseases such as allergies, celiac disease, obesity, diarrheas, colic and 

necrotizing enterocolitis.  

 

Bifidobacterium is very common especially in breastfed infants, due to their ability to utilize 

different components in breast milk. In terms of a Bifidobacterium growth factor in breast 

milk, human milk oligosaccharides (HMOs) are the most promising candidate (Kitaoka, 

2012).    
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1.4 HMO utilization in Bifidobacterium species 

A whole genome sequencing done on B. longum subsp. infantis presented gene clusters 

controlling the expression of glycosidases, sugar transporters and glycan binding proteins 

specific to HMO utilization (Sela et al., 2008). B. longum subsp. infantis is also able to grow 

with HMOs as the only carbon source. B. bifidum grow somewhat slower with HMOs as only 

carbon source and are not able to decompose all monosaccharides from HMOs. In contrast, B. 

longum and B. breve alone are hard to grow with HMOs as the only carbon source. This is 

due to their ability to only utilize some HMOs, but they can catabolize carbohydrates already 

decomposed by other bacteria (Sela et al., 2008).   

 

Bifidobacterium take up carbohydrates through three different mechanisms; ABC 

transporters, major facilitator superfamily permeases and phosphotransferase systems (PTS), 

although the first mechanism is mostly used (Sela et al., 2008). ABC transporters can 

transport HMO, lactose (Lac), LNB, N-acetylglucosamine (GlcNAc) and sialic acid (often 

Neu5Ac). The permeases can transport fucose (Fuc), glucose (Glc), galactose (Gal) and Lac, 

and PTS transport Glc and GlcNAc (figure 1.2).  

 

A 43 kbp gene cluster (Blon_2331 – Blon_2361) has been discovered in Bifidobacterium 

species, mainly B. longum subsp. infantis. This gene cluster is associated with HMO import 

and processing (Sela et al., 2008). Some enzymes in this gene cluster are; 1,2-α-fucosidase, 

1,3/4-α-fucosidase, 2,3/6-α-sialidase, β-galactosidase and β-N-acetylhexosaminidase 

(Kitaoka, 2012), and their function is shown in figure 1.2. According to (Matsuki et al., 2016), 

Bifidobacterium species has developed two different ways to break down HMOs. The first 

way uses extracellular glycoside hydrolases (GH) to break down HMOs to mono- and 

disaccharides, before incorporating into the cell. The second way is depending on 

oligosaccharide transporters that import intact HMOs which will be hydrolyzed by 

intracellular enzymes. B. bifidum and some B. longum are thought belonging to the group 

using extracellular hydrolases, whereas some B. longum, B. breve and B. longum subsp. 

infantis belongs to the group using intracellular hydrolases (Odamaki et al., 2015). The 

extracellular hydrolysis done by B. bifidum makes it possible for other (bifido)bacteria to 

utilize HMO-derivates. This sharing of nutrients is an activity called cross-feeding (Turroni et 

al., 2018).  
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Most Bifidobacterium species that are common in infants, such as B. bifidum and B. longum 

subsp. infantis, uses specific enzymes to metabolize galacto-N-biose (GNB) and lacto-N-

biose (LNB) (Kitaoka, 2012). LNB is found at the terminating end in HMO structures (Bode, 

2012), and is therefore necessary to break down in order to break down HMO. GNB is a 

structural component of O-linked glycoproteins in mucosal membranes (Kitaoka, 2012). In 

several Bifidobacterium species, a GNB/LNB pathway is used for this particular 

metabolization (figure 1.2), and this consists of several different components, where the 

enzyme GNB/LNB phosphorylase (GLNBP, EC 2.4.1.211) is central. (Kitaoka, 2012). 

GLNBP hydrolyze the bond between the two LNB components Gal and GlcNAc (GalNAc in 

GNB). Gal1P, generated from GNB and LNB, has to be converted to Glc1P to further be able 

to attend energy obtaining pathways such as the bifid shunt. In the study done by (Kitaoka, 

2012), GLNBP was found in all species that commonly are found in infants, such as B. 

longum subsp. infantis, B. longum subsp. longum, B. bifidum and B. breve. In contrast, the 

enzyme was not found in two species more common in an adult microbiota: B. adolescentis 

and B. catenulatum (Kitaoka, 2012). 

 

The GNB/LNB pathway is a way for Bifidobacterium to break down galactose and is a more 

energy-saving variant of the Leloir pathway, which is a known galactose utilizing pathway in 

several bacteria (De Bruyn et al., 2013). LNB enter the GNB/LNB pathway, but galactose 

alone is released by β-galactosidase from the lactose unit in HMO (figure 1.2). Results from 

(De Bruyn et al., 2013) suggest that galactose primary is metabolized by the Leloir pathway, 

together with galactose-1-phosphate (Gal1P) from the GNB/LNB pathway. In theory, to 

utilize LNB, the bacteria only need N-acetylhexosamine-1-kinase (NahK, EC 2.7.1.162) and 

GLNBP from the GNB/LNB pathway, but when utilizing GNB they need the whole enzyme 

package from the GNB/LNB pathway. After the action of GLNBP, the GNB/LNB pathway 

uses the enzymes NahK, to catalyze the reaction from N-acetylglucosamine (GlcNAc) to N-

acetylglucosamine-1-phosphate (GlcNAc1P) (GalNAc to GalNAc1P in GNB). It then uses 

both UDP-glucose-hexose-1-phosphate uridylyl transferase (GalT2, EC 2.7.7.12) and UDP-

glucose/GlcNAc 4-epimerase (GalE2, EC 5.1.3.2) to catalyze the reaction from Gal1P to 

glucose-1-phosphate (Glc1P) from both LNB and GNB and the reaction from N-

acetylgalactosamine-1-phosphate (GalNAc1P) to GlcNA1P in GNB (Kitaoka, 2012) (figure 

1.3b).  

In the Leloir pathway galactose is converted to Gal1P by galactokinase (GalK, EC 2.7.1.6), 

and further Gal1P is converted to Glc1P by both UDP-glucose-hexose-1-phosphate uridylyl 
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transferase (GalT1, EC 2.7.7.12) and UDP-glucose/GlcNAc 4-epimerase (GalE1, EC 5.1.3.2) 

(figure 1.3a). GalT1 used in the Leloir pathway and GalT2 used in the GNB/LNB pathway 

have an amino sequence identity of ~12 %, and GalT1 shows a higher activity in converting 

Gal1P to Glc1P. GalT2 also showed more activity towards GalNAc1P than to Gal1P (De 

Bruyn et al., 2013). Suggested by (De Bruyn et al., 2013) Bifidobacterium can therefore use 

GalT1 and GalE1, which is part of the Leloir pathway to utilize Gal1P in LNB after GLNBP 

has done its job, whereas they must use GalT2 and GalE2 to utilize GNB.  

Sequences coding for GalT1 and GalT2 does not usually exist in the same organism, but there 

are some exceptions to Bifidobacterium and some Clostridiales. Both genes galT1 and galT2 

are found in B. bifidum, B. longum and B. breve. These are the same bacteria that has the 

GNB/LNB pathway, so the coexistence can be coupled with this phenomenon (De Bruyn et 

al., 2013).  

 

When oligosaccharides are metabolized to monosaccharides by various glycosidases and 

further degraded, hexose sugars enter the bifid shunt (figure 1.2). This is a carbohydrate 

fermentative pathway found in Bifidobacterium species, which is centered around the enzyme 

fructose-6-phosphate phosphoketolase (F6PPK, EC 4.1.2.22) (Sela et al., 2008). This enzyme 

catalyzes the following reaction: D-fructose-6-phosphate + phosphate à acetyl phosphate + 

D-erythrose-4-phosphate. The bifid shunt produces 1.5 moles acetate and 1 mole lactate for 

every mole hexose that enters (Sela et al., 2008).   

 

A possible L-fucose utilization pathway for Bifidobacterium species may impact the intestinal 

SCFA balance due to the fact that some Bifidobacterium species are able to produce 1,2-

propanediol (1,2-PD) from L-fucose (figure 1.2). 1,2-PD is a precursor for intestinal 

propionate formation. Usually, several Clostridia species and Escherichia coli are able to 

transform L-fucose to 1,2-PD (Bunesova et al., 2016). The study done by (Bunesova et al., 

2016) describes two different pathways used by bacteria to utilize L-fucose, where one 

involves phosphorylated intermediates and the other does not. They found that B. longum 

subsp. infantis was the infant Bifidobacterium species that could best degrade L-fucose and 

suggested the use of the non-phosphorylated pathway. This pathway yields L-lactate and 

pyruvate, but not 1,2-PD. 1,2-PD is thought to be produced through a modified non-

phosphorylated pathway (Bunesova et al., 2016).         
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Figure 1.2: Simplified illustration of the transport and processing of HMO and derivatives. The 

metabolism is mainly from B. longum subsp. infantis, but several pathways and enzymes can also be 

found in the other Bifidobacterium species. HMO and its derivatives are transported over the 

membrane by one of three transporters, before intracellular glycosyl hydrolases process the sugars to 

smaller components. These components will be further degraded in one of the catabolic pathways, 

where the central fermentative pathway is bifid shunt. GLNBP, GNB/LNB phosphorylase; Glc, 

glucose; Gal, galactose; GlcNAc, N-acetylglucosamine; Fuc, fucose; Neu5Ac, N-acetyl neuraminic 

acid (sialic acid); Lac, lactose; LNB; lacto-N-biose; LNT; lactose-N-triose; HMO, human milk 

oligosaccharide; P, phosphate. The figure is modified and redrawn from (Sela et al., 2008). 
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Figure 1.3: Overview over the Leloir pathway and GNB/LNB pathway. Galactose is mainly 

utilized in the Leloir pathway, shown in a), and some research suggest Gal1P from the GNB/LNB 

pathway, shown in b), also is broken down in the Leloir pathway. The GNB/LNB pathway is 

necessarily to utilize GalNAc1P from GNB. Gal, galactose; P, phosphate; Glc, glucose; GlcNAc, N-

acetylglucosamine; GalNAc, N-acetylgalactosamine; GNB, galacto-N-biose; LNB, lacto-N-biose; 

GalT1/GalT2, UDP-glucose-hexose-1-phosphate uridylyl transferase; GalE1/GalE2, UDP-

glucose/GlcNAc 4-epimerase; GalK, galactokinase; GLNBP, GNB/LNB phosphorylase; NahK, N-

acetylhexosamine-1-kinase. The figures are made based on inspiration from (De Bruyn et al., 2013; 

Kitaoka, 2012). 

 

1.5 Short chain fatty acids 

The main metabolite produced from oligosaccharide degradation in the infant gut is SCFAs. 

In the article from (Morrison & Preston, 2016) short chain fatty acids (SCFAs) are described 

as “the primary end products of fermentation of non-digestible carbohydrates (NDC) that 

become available to the gut microbiota”. SCFAs are also known as volatile fatty acids (VFAs) 

and consists of one to six carbons, where the most common are acetate (C2), propionate (C3) 

and butyrate (C4), present in the molar ratio of 60:20:20 (den Besten et al., 2013). These 

SCFAs have, in moderate amounts, healthy effects on the gut, and for example is butyrate the 

main energy source for colonocytes (Morrison & Preston, 2016). SCFA production in the 

gastrointestinal tract can lead to reduced pH, more accessible calcium and magnesium, and 

inhibition of potential pathogens (Wong et al., 2006). New studies have shown that SCFAs 

can be used as a signaling molecule between gut microbiota and host, and they are for 
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example ligands for the free fatty acid receptor 2 and 3 (FFAR 2/3). These receptors are found 

on immune cells and enteroendocrine cells, in addition to several other cell types (Morrison & 

Preston, 2016).  

Fermentation of indigestible foods by Bifidobacterium is often linked with production of 

acetate (O'Callaghan & van Sinderen, 2016). There are many bacteria groups that produce 

acetate, but pathways for production of propionate, butyrate and lactate is more conserved and 

are seen in specific bacteria groups or for specific substrates. The main producers of butyrate 

are Faecalibacterium prausnitzii, Eubacterium rectale, Eubacterium hallii and Ruminococcus 

bromii (Morrison & Preston, 2016). 

 

A biological gradient exists for each SCFA from the gut lumen to central organs. This leads to 

different exposure of SCFAs on different tissues and cells. The SCFAs are produced in the 

gut lumen, and the majority of butyrate absorption happens by the epithelium. Uptake of 

propionate is manly in the liver, and acetate is exposed to more of the central organs, such as 

muscles, the adipose tissue and the brain (Morrison & Preston, 2016), and are mainly 

metabolized in the liver and muscle cells (Wong et al., 2006).  

 

1.6 Analytical methods 

1.6.1 Techniques to analyze short chain fatty acid composition 

About 80-90 % of the SCFAs are absorbed by the gut, and the rest will be excreted from the 

body (Tangerman & Nagengast, 1996). This makes it hard to analyze the amount of SCFAs 

produced in the intestine by just analyzing the feces, which is the most used material to 

analyze SCFA composition in humans, due to its easy accessibility (Primec et al., 2017). 

There are several different methods used to analyze SCFAs from feces, and the dominating 

are: gas chromatography (GC), high performance liquid chromatography (HPLC), nuclear 

magnetic resonance (NMR) and capillary electrophoresis (CE), where the former method is 

predominantly used (Primec et al., 2017).  

 

Gas chromatography 

Gas chromatography (GC) is a method used to separate and analyze organic material, by the 

use of a mobile and a stationary phase (Primec et al., 2017). The mobile phase is a carrier gas, 

that transport the sample through the stationary phase, which is the column, and into a 

detector. During this path, the samples will be separated based on several different factors, 
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such as molecular weight, melting point and column temperature, and the components will be 

analyzed by a computer (Vitha, 2016). 

 

The mostly used carrier gases are helium, hydrogen, argon and nitrogen. They have different 

properties for example in terms of separation efficiency, viscosity and speed, and must be 

chosen based on the column and detector used. This is because it is important that the carrier 

gas does not react with the stationary phase in the column (Vitha, 2016). Two different 

columns can be used: packed or capillary, and the most common detector used is the flame 

ionization detector (FID) (Primec et al., 2017). This detector breaks down organic 

components in the samples, which escapes the column with the carrier gas, and is mixed with 

hydrogen. When the organic components reach the flame, they are ionized and collected by an 

electrode where they produce a signal that is exported to a computer program (Vitha, 2016).      

 

1.6.2 Sequencing methods for analyzing bacterial composition in the gut microbiota 

The breakthrough for studying and classifying microorganisms came in 1977, where Carl 

Woese suggested using ribosomal RNA genes as molecular markers, and Fred Sanger 

developed the Sanger sequencing method (Sanger et al., 1977; Woese & Fox, 1977). Sanger 

sequencing is today known as a first-generation sequencing method. The Sanger sequencing 

technology is a method where a polymerase chain reaction (PCR) reaction occurs with both 

deoxynucleotides (dNTPs) and labeled 2´,3´-dideoxynucleotides (ddNTPs) present. When 

elongation takes place, some strands incorporate ddNTPs, and the elongation will be 

terminated. The strands, which will have different lengths dependent on when termination 

occurred, will be separated on a gel, and by the pattern of the bands, nucleotides could be 

identified, thus revealing the sequence (Sanger et al., 1977). Sanger sequencing is still used 

today, and with improvements it can now achieve read lengths up to ~1000 bp (Shendure & 

Ji, 2008). After a time of Sanger sequencing dominating the field, more companies wanted to 

make better sequencing technologies, and thus the second-generation sequencing, also known 

as next generation sequencing, was formed.  

 

There are several different sequencing platforms belonging to next generation sequencing, but 

the concept of the work flow is similar between them all (Shendure & Ji, 2008). Genomic 

DNA is fragmented and ligated with common adapters in vitro. Through one of several 

approaches available, including in situ polonies, emulsion PCR and bridge PCR, millions of 

spatially immobilized PCR colonies are generated, where each colony has several copies of a 
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single library fragment. Alternating cycles involving enzymatic extension reactions and 

imaging-based detection summarizes the sequencing process. The immobilization of colonies 

makes it possible to use a single reagent volume to enzymatically manipulate the array, which 

is a huge advantage compared to the Sanger sequencing (Shendure & Ji, 2008). A known, and 

much used, next generation sequencing technology is made by Illumina.  

 

Illumina´s technology uses the sequencing by synthesis (SBS) principle, and their work flow 

includes four steps: library preparation, cluster generation, sequencing and data analysis 

(Illumina Inc., 2017). During library preparation adapters are ligated to random DNA 

fragments before they are amplified and purified by PCR and gel electrophoresis respectively. 

The library is then applied to a flow cell, where the surface is covered with surface-bound 

complementary sequences to the library adapters. The bound fragments will be amplified into 

clonal clusters through bridge PCR and now work as templates, and this completes the second 

step, which is cluster generation. According to (Illumina Inc., 2017) they use a “reversible 

terminator-based method that detects single bases as they are incorporated into DNA template 

strands”. The dNTPs that are detected are fluorescently labeled, and the emission wavelengths 

and intensity during imaging of the flow cell will identify the incorporated base. The dNTPs 

contain a reversible terminator that blocks binding of the next dNTP. When the base has been 

identified, the terminator will be cleaved, and the next dNTP can bind the template. During 

each cycle, all dNTPs are present, compared to other technologies, which will reduce raw 

error rates. The last step is data analysis, where the identified sequence reads will be 

compared to a reference genome (Illumina Inc., 2017). Illumina has several sequencing 

systems for different scales. MiSeq is used for small genome and target sequencing, NexSeq 

is used for genome, exome and transcriptome sequencing, and HiSeq is used for production-

scale genome, exome and transcriptome sequencing (Illumina Inc., 2017).    

 

A disadvantage with the second-generation sequencing is short reads, and some companies 

have developed sequencing technologies with longer read length. Third-generation 

sequencing, also called long-read sequencing, is still a fairly new sequencing generation. 

There are two main types of third generation sequencing: single-molecule real-time (SMRT) 

sequencing and synthetic sequencing (Goodwin et al., 2016). The single-molecule approach 

does not create clonal clusters of amplified DNA fragments to get detectable signals, such as 

short-read sequencing does. Two wildly used single-molecule long-read technologies are 

PacBio and MinION from Oxford Nanopore Technologies (ONT) (Goodwin et al., 2016).   
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1.6.3 Technologies used for gene expression analysis 

mRNA is the precursor to proteins and gives an indication of protein production and activity 

in microorganisms. mRNA degrade rapidly, and in order to analyze, it is therefore necessary 

in gene expression studies to convert mRNA into complementary DNA (cDNA), which is 

more stable. Once cDNA is made, gene expression can be analyzed by different methods. One 

method is RNA sequencing (RNA seq), which is a recently developed method that has taken 

over some other technologies, such as microarrays. RNA seq uses high-throughput 

sequencing methods such as Illumina (Wang et al., 2009). The sequencing steps are fairly 

similar to the ones described previously. Another way to analyze gene expression is through 

quantitative polymerase chain reaction (qPCR).  

 

qPCR is a highly used method to measure the number of specific cDNA target copies (Costa 

et al., 2013). In gene expression analysis, qPCR uses PCR technology to amplify cDNA to 

produce high enough concentrations for fluorescence detection and quantification. The 

fluorescence dye is added to the samples prior to the qPCR, and during amplification they will 

send out signals when bound to double stranded DNA (dsDNA) (Hollister et al., 2015). Few 

amplification cycles (qPCR cycles) before a reached threshold value, means a greater quantity 

of the target material from the start. The number of PCR cycles when reached threshold value 

is often referred to as the Ct or Cq value (Wong & Medrano, 2005). The difference between 

qPCR and PCR is that in qPCR the amount of PCR products will be measured after each 

amplification cycle, whereas in PCR the amount of products are only measured at the end of 

the procedure. The PCR procedure consists of 3 steps: denaturation, annealing and elongation. 

During denaturation, dsDNA is parted to single stranded DNA (ssDNA) under high 

temperatures. The reason behind denaturation is to attach primers during annealing. The 

temperature rises again during elongation where dNTPs are attached to create a 

complementary strand to the template ssDNA (Hollister et al., 2015).   

When using qPCR, you are limited to a lower number of genes, and this method can only find 

known sequences, based on chosen primers. qPCR is on the other hand effective for low 

target numbers (Illumina Inc, 2019).  
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1.6.4 Techniques to analyze protein composition  

A huge part of protein analysis is separation. There are different techniques available for 

protein separation, such as gel filtration, chromatography and electrophoresis. A common 

separation method is the polyacrylamide gel electrophoresis (PAGE) (Lesk, 2016). PAGE 

involves an electric field that makes the proteins move in polyacrylamide gels. The gels are 

equipped with tunnels in different sizes, which makes smaller molecules travel faster. Proteins 

have different mobility, which depend on mass and shape, that makes them move differently 

through the gel. To have a separation based only on mass, proteins have to be denaturated, 

and a known detergent that help denature proteins are the negatively charged sodium dodecyl 

sulphate (SDS). When SDS-PAGE is carried out, proteins are spread out in bands, and 

staining with Coomassie Blue is often done to visualize these bands (Lesk, 2016).  

In PAGE, complex protein mixtures can be poorly separated due to overlapping bands in the 

lanes. A two-dimensional PAGE is more suited to complex mixtures. They involve a two-step 

procedure, where proteins are first separated according to charge, then according to size. The 

second step occurs 90 degrees from the original direction, to create a two dimensional 

separation (Lesk, 2016).  

Difference gel electrophoresis (DiGE) is another electrophoresis method that has the same 

principles as the two-dimensional PAGE, but makes it possible to compare different protein 

mixtures on separate gels, due to identical separation conditions for each sample (Lesk, 2016).  

 

The separation techniques give information about some protein features, such as mass, charge 

and size, and the separation makes it possible to isolate the proteins and process them for 

further identification. To identify proteins, the most used method is mass spectrometry. This 

method is efficient, whilst also accurate and precise. Summarized briefly, mass spectrometry 

characterizes molecules by measuring their ion masses (mass/charge ratio) in a vapored stage 

(Lesk, 2016). The setup of a mass spectrometer consists of an ion source, a mass analyzer and 

a detector. The mass analyzer will measure the mass/charge ratio, and at each mass/charge 

ratio value, the detector will register the number of ions (Aebersold & Mann, 2003). For 

evaporation and ionization of the peptides there are two common methods: electrospray 

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). A highly used 

mass spectrometry approach is the liquid chromatography-tandem mass spectrometry (LC-

MS/MS). In this method, fragmented peptides are separated by liquid chromatography before 

they are converted into highly charged droplets by an electrospray ion source (Aebersold & 

Mann, 2003). When the droplets enter the mass spectrometer they are dissolved by heat, 
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creating ions. In the first MS, specific ion masses will pass through the mass analyzer, one at 

a time, before they will go through a collision cell where they will be fragmented by a neutral 

gas. The fragmented ion will then pass through the second MS that will filter the ions based 

on mass/charge ratio through a second mass analyzer. The ions are then detected, and a mass 

spectrum is generated. The outcome of MS/MS can be used to identify the peptides 

(Aebersold & Mann, 2003).  

 

1.7 The PreventADALL study 

Research about the infant human gut microbiota, and how it can be connected to development 

of diseases later in life, are becoming a larger field of interest. One study that addresses this 

exact topic is the PreventADALL (Preventing Atopic Dermatitis and ALLergies) study 

(Lødrup Carlsen et al., 2018). This study aims to provide more information about how to 

prevent atopic dermatitis and allergies in infants and children. Through several years, they 

collected samples and information from mother-child pairs, where 2386 mothers participated, 

and in total 2397 children were born. According to (Lødrup Carlsen et al., 2018) all infants 

were randomly selected into 4 groups at birth, where “(1) no intervention; (2) skin care (oil-

bath at least 5 days per week from 0.5 to 9 months of age); (3) consecutive introduction, 

between 3 and 4 months of age, of peanut, milk, wheat and egg at least 4 days per week 

complementary to breastfeeding; or (4) both interventions”. Both biological samples and 

questionnaires were collected, and amongst the biological samples, fecal samples were 

collected. This was from mothers at 18 weeks pregnant, infants as newborn (meconium), 

infants at 3, 6, 12 and 36 months. 
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1.8 Aim of thesis 

There is currently a knowledge gap related to how Bifidobacterium utilize HMOs in vivo in 

the infant gut. Most of the current knowledge is based on in vitro studies and animal studies, 

that has given indication that most of the Bifidobacterium genus express proteins that are 

involved in HMO utilization. To gain a deeper understanding on this topic, we have to study 

protein expression. To my knowledge there has not been done any proteome analyzes on 

Bifidobacterium species from the infant gut.  

 

The aim of this study is to analyze how Bifidobacterium degrade HMOs in the infant gut 

through a multiomic approach, using fecal samples from the PreventADALL study. To 

achieve this, the following subgoals were included:  

• find proteins that are involved in HMO utilization with use of proteome analysis 

• examine short chain fatty acid composition from Bifidobacterium-rich samples with 

use of gas chromatography   

• identify mRNA that can be linked to HMO utilizing proteins with use of qPCR analysis 
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2 Materials and methods 
An overview of the experimental procedures, and the division of samples into datasets, used 

in this master´s thesis is illustrated in figure 2.1.  

 

 

 



 

  19 
 

 
Figure 2.1: Flow chart showing the experimental procedures, and an overview of the division of 

datasets, in this thesis. a) shows the workflow of the thesis, and b) shows the different datasets with 

belonging samples and analyzes performed. Fecal samples were collected from the PreventADALL 

cohort. 10 samples with high Bifidobacterium levels were chosen from a previous 16S rRNA 

sequencing, done by Ph.D. Morten Nilsen. Due to a lack of samples for protein analysis, a 16S rRNA 

sequencing was preformed to collect 5 more samples with high levels of Bifidobacterium. All 15 

children were breastfed at 6 months. Shotgun sequencing was performed to determine the composition 

of Bifidobacterium species, and get an overview of the genome (n=15). Transcriptrome analysis, by 

qPCR quantification of gene expression, was done to check for potensial of HMO utilization (n=14), 

and proteome analysis was done to find HMO utilizing proteins in the bacterial cells and construct 

potential pathways (n=5). Short chain fatty acid (SCFA) composition was determined by the use of 

gas chromatography (n=15). Data analysis from the 16S rRNA sequencing data, preparation of 

shotgun data and preparation of proteome data from LC-MS/MS were done by Ph.D. Morten Nilsen.  

 

2.1 Sample selection and preparation 

Samples used in this experiment were feces samples from 6 months old children, obtained 

from the PreventADALL cohort (Lødrup Carlsen et al., 2018). These samples were stored in 

three parallels. Samples used for DNA analysis were diluted 10x with stool DNA stabilizer 

(PSP Spin Stool DNA Plus Kit, Invitek Molecular), samples used for RNA analysis were 

diluted 10x with RNA/DNA shield, and samples for protein analysis were stored without 

buffer. All samples were originally stored at -80 ℃. 
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2.2 Nucleic acid based methods to analyze gut microbiota and gene expression  

2.2.1 DNA/RNA extraction and purification 

Mechanical lysis 

Mechanical lysis was performed by adding 200 μL supernatant from pre-centrifuged 1 mL 

feces sample to FastPrep tubes (MP Biomedicals, USA) with 0.2 g acid-washed glass beads 

(Sigma-Aldrich, Germany, <106 μm), 0.2 g acid-washed glass beads (Sigma-Aldrich, 

Germany, 425-600 μm) and 2 acid-washed beads (2.5-3.5 mm, Sigma-Aldrich, Germany). To 

disrupt the cell wall, independent of cell type with the glass beads, the samples were 

processed in FastPrep 96 (MP Biomedicals, USA) twice at 1800 rpm for 40 sec. Then the 

samples were centrifuged at 13000 rpm for 5 min to collect the cell remains, such as 

membranes, proteins, salts and other large particles in a pellet.  

 

In order to dissolve the remaining intact cell membranes, lysis buffer was added to the 

samples, and Proteinase K (ThermoFisher Scientific, USA) was added to degrade proteins 

that potentially could interfere with DNA, for example nucleases. The chemical lysis was 

done both manually and automatically using the King Fisher Flex robot (Thermo scientific, 

USA).  

In addition to lysis buffer, 100% isopropanol was used before RNA extraction in order to 

release RNA from proteins in the cell, and therefore increase binding of RNA to beads during 

extraction.  

 

DNA extraction 

DNA was extracted both automatically, using the KingFisher Flex robot (Thermo scientific, 

USA), and manually. In order to achieve pure DNA, silica coated paramagnetic particles 

(Mag particles) from the MagMidi LGC kit (LGC Genomics, UK) were used, to selectively 

bind DNA to the silica surface and create a salt bridge in the presence of high salt 

concentrations. These salt concentrations were made by adding buffers, containing alcohol 

and salts, that also made it possible to cleanse the samples from impurities. An elution buffer 

was then added to release DNA from the silica particles, by interrupting the bridge between 

DNA and the surface of the silica particles, leaving the DNA in the solution.     
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RNA extraction and cDNA synthesis 

RNA was extracted manually using MagMax 96 total RNA isolation kit (ThermoFisher 

Scientific, USA). The kit contained RNA binding beads and a buffer that enhanced the 

binding process, wash buffers that remove impurities and DNase. DNase was added to 

enzymatically degrade residual DNA in the solution but is not sufficient to remove all DNA. 

An additional DNase treatment was therefore added after elution, which was done in small 

volumes to concentrate the samples.  

The additional TURBO DNA-free procedure was done following the manufacturer 

recommendation, and the routine DNase treatment, using the TURBO DNA-free kit 

(ThermoFisher Scientific, USA). This treatment will leave any DNA residues in the pellet and 

RNA in the supernatant.    

 

cDNA synthesis was performed by combining the following reagents to 5 μL template RNA: 

1x RT Reaction Premix with Random Primers (Solis BioDyne, Estonia) and 1.5 μL 

FIREScript Enzyme Mix (Solis BioDyne, Estonia) with a total volume of 20 μL. To control 

the amount of DNA left in the samples, one parallel of each sample was synthesized without 

FIREScript Enzyme Mix.  

cDNA was synthesized using the following PCR-program: primer annealing at 25 ℃ in 10 

min, reverse transcription at 50 ℃ in 60 min for maximum yield, enzyme inactivation at 85 

℃ in 5 min and 10 ℃ in ∞.  

 

2.2.2 Nucleic acid quantification and quality control 

qPCR targeting 16S rRNA V3-V4 region 

The qPCR reaction mix consisted of: 1x HOT FIREPol EvaGreen qPCR supermix (Solis 

BioDyne, Estonia), 0.2 μM Forward primer and Reverse primer, 2 μL extracted DNA. The 

volume in total was 20 μL. Following program was used to amplify DNA on LightCycler 480 

(BioRad, USA): 95 ℃ in 15 min and 40 cycles of 95 ℃ in 30 sec, 55 ℃ in 30 sec and 72 ℃ 

in 45 sec. For 16S rRNA sequencing, the following primers were used: (341F) and (806R) 

(see table 2.1 below).  

For transcriptome analysis, 2 μL cDNA was combined with 10 μM of several different 

primers listed in table 2.1. The following qPCR program was used: 95 ℃ in 15 min and 40 

cycles of 95 ℃ in 30 sec, 60 ℃ in 30 sec and 72 ℃ in 45 sec. 

 



22 
 

Table 2.1: Primes used to check gene expression of specific HMO-associated Bifidobacterium genes. 

The primes below came out best from a test we did with multiple primer candidates. The primers 341F 

and 806R were used as control.  

Primers Sequence Gene coding proteins Reference 

Blon_2334F 5´- CATCACCGAGCAGGACATGA 
β-1,4-galactosidase 

(Yoshida et 

al., 2011) Blon_2334R 5´- GCCGTACTCGTCGCACAGT 

Blon_2335F 5´- CCTGTTCAACCAGGATGAGTC 
1,2-α-L-fucosidase 

(Sela et al., 

2012) Blon_2335R 5´- CCGTCCACGACGAAGTAG 

Blon_2336F 5´- ATCACGCTCACCCTCCC 
1,3/4-α-L-fucosidase 

(Sela et al., 

2012) Blon_2336R 5´- ACATCGTCGAAGCGGAGT 

Blon_2348-2F 5´- TGGCCGTGTGATGCTGAA 
2,3/6-α-sialidase 

(Sela et al., 

2011) Blon_2348-2R 5´- CCGGGAGATGGCGACATA 

Blon_2355F 5´- ACGCGCCGCGCAATAGGAAT β-N-acetyl-

glucosaminidase 

(Garrido et 

al., 2012) Blon_2355R 5´- GGACGTGACTCGTGGCCGTG 

Blon_2016F 5´- GGACCACCTTGACTTGGACAA LNT β-1,3-

galactosidase 

(Yoshida et 

al., 2011) Blon_2016R 5´- GTCCACTTATCTGCCTTGAAGGA 

Blon_0732F 5´- ACGCTGGACCGCACATTGGG β-N-acetyl-

glucosaminidase 

(Garrido et 

al., 2012) Blon_0732R 5´- AACGCCAGCAGTTCCTCGCC 

341F 5’- CCTACGGGRBGCASCAG 
 

(Yu et al., 

2005) 806R 5’- GGACTACYVGGGTATCTAAT 

 

Agarose gel electrophoresis 

Either 1.5% or 2% agarose gel, consisting of agarose (Invitrogen, USA) and 1x tris-acetate 

EDTA (TAE) buffer, with added PeqGreen dye (Peqlab, Germany), were made. The 1.5% 

agarose gel was set to 80V in 30 min, and the 2% agarose gel was set to 80V in 45 min. Five 

microliter sample with 1x purple loading dye (New England BioLabs, USA) were applied to 

the gel. A 100 bp ladder (Solis BioDyne, Estonia), sometimes together with a 1 kb ladder, was 

used as a reference. The gel-results were visualized by UV-lights, using the Molecular Imager 

Gel DocTM XR Imaging System (BioRad, USA).   

 

Measurement of DNA/RNA quantity by Qubit 

Quantity of nucleic acids were measured using a Qubit Fluorometer (Invitrogen, USA). The 

Quant-iTTM Assays Abbreviated Protocol (Invitrogen Corporation, 2007) was followed and 

the Quant-iTTM kit (Invitrogen Corporation, USA) was used to detect quantity of nucleic acids 



 

  23 
 

in the samples. Used 2 μL sample to 198 μL Quant-iTTM Working Solution. The Quant-it 

reagent contains, according to (Thermo Fisher Scientific Inc, 2018), “target-selective dyes 

that emit fluorescence when bound to DNA, RNA or protein”, dependent on the kit been used.  

 

2.2.3 PCR amplification and purification 

Amplification of qPCR products 

To amplify template DNA from qPCR, 5 μL product was mixed with the following 

components: 1x HOT FIREPol Blend Master Mix Ready to Load (Solia BioDyne, Estonia), 

0.2 μM Forward primer and reverse primer (Yu et al., 2005). The total volume was 25 μL. 

The PCR products were amplified using the following program: 95 ℃ in 15 min, 30 cycles of 

95 ℃ in 30 sec, 55 ℃ in 30 sec and 72 ℃ in 45 sec, followed by 72 ℃ in 7 min and 10 ℃ in 

∞. Both 5 μL template DNA and 30 cycles were to increase the DNA amount, because of low 

Cq-values from qPCR targeting 16S rRNA V3-V4 region. The products were checked on gel 

electrophoresis with 100 bp ladder (Soils BioDyne, Estonia).   

 

Clean-up of PCR product 

The clean-up of products after amplicon PCR was done automatically on Biomek 3000 

(Beckman Coulter, USA). Used 1x volume of Sera-Mag beads to 10 μL PCR product and 

followed the manufacturer recommendation to the Biomek robot to clean up 16S samples. 

Some of the purified products was checked on gel electrophoresis to ensure that no product 

was removed during the clean-up.   

 

2.2.4 Amplicon (16S) sequencing 

Index PCR for Illumina sequencing 

Purified PCR products were used as templates for the sequencing. Indexes were attached to 

the products, to make them separable during 16S sequencing. The index application was done 

using the Eppendorf epMotion 5070 robot (Eppendorf AG, Germany), with 0.2 μM 

concentration of each forward and reverse primer. The index primers used were F1-16 and 

R26-32 (supplement, table S.6) to achieve a unique combination for each sample. 1x FIREPol 

Master Mix Ready to Load (Solis BioDyne, Estonia) and 2 μL template DNA were then 

applied to the indexes, to achieve a final volume of 25 μL.  
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The DNA fragments were then amplified using the following PCR program: 95 ℃ in 5 min, 

10 cycles of 95 ℃ in 30 sec, 55 ℃ in 1 min and 72 ℃ in 45 sec, followed by 72 ℃ in 7 min 

and 10 ℃ in ∞, and then checked on 1.5% agarose gel.   

 

Quantification and Normalization 

Amounts of DNA from indexed PCR products were measured using the Cambrex-FLEX 800 

CSE robot (ThermoFisher Scientific, USA) to prepare for the 16S rRNA sequencing. A 

volume of 70 μL Quant-iT Working Solution, same solution used for Qubit measurements, 

was mixed with 2 μL DNA sample, and Nunc 96 Nontreated Black Microwell plates were 

used to measure DNA amount.  

A selection of 20 samples, ranging from low to high fluorescence value, were afterwards 

measured with Qubit to get the concentration for making a standard curve. This standard 

curve was used to calculate ng/μL concentration of the other samples.  

To normalize, the samples were calculated based on the sample with highest concentration. 

All samples with a value over 10 μL were set to 10 μL, based on the requirements of the robot 

used in normalization and pooling, Biomek 3000 (Beckman Coulter, USA). The pooled 

sample was measured by Qubit afterwards.        

 

Clean-up of pooled library 

Clean-up of pooled library with 16S products was done manually, using 1.5x volume of 0.1% 

Sera-Mag beads to 300 μL pooled sample. Followed the AMPure protocol and eluted in 40 

μL PCR-water. The product was checked with Qubit and gel and quantified with qPCR.   

 

KAPA Library Quantification  

The KAPA Library Quantification kit for Illumina platforms (KK4828, Kapa Biosystems) 

was used to quantify amplicons in the pooled sample. A dilution series from 10-4 to 10-7 was 

made from the pooled sample, and together with 6 standards, they were quantified in 

duplicates. Standards, negative control and 2 μL sample were each mixed with 12 μL of a 

PCR mix, containing 2x KAPA SYBR FAST qPCR master mix and 10X Primer premix, and 

6 μL PCR water. A qPCR was preformed, using the following cycling protocol: 95 ℃ in 5 

min, 95 ℃ in 30 sec and 60 ℃ in 45 sec. The melt curve analysis ranged from 65-95 ℃.  

 

Used the KAPA Library Quantification Data Analysis Template to quantify the data, and to 

calculate back to the concentration of the pooled sample.  
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16S rRNA amplicon sequencing 

The 16S rRNA amplicon sequencing was done using Illumina MiSeq. From the qPCR of 

pooled sample using KAPA Library Quantification Data Analysis Template, the pooled 

sample was diluted to 4 nM, using nuclease-free water. Following the protocol from Illumina 

MiSeq, the pooled sample was further diluted to 6 pM and combined with a PhiX control, 

which constituted 15% of the sample, and then applied to the Illumina MiSeq (Illumina, 

USA). PhiX was added to avoid cross-signals between different samples during the 

sequencing and is an adapter-ligated library.  

 

Data analysis from 16S rRNA sequencing in QIIME 

Sequencing data from the 16S analysis was processed by PhD Morten Nilsen, with use of the 

Quantitative Insights Into Microbial Ecology (QIIME) pipeline. The pipeline assembled 

forward and reverse reads and sorted them to their respective samples. To check reads for 

chimeras, Usearch was used, and the SILVA database was then used to create OTUs with ≥ 

97% 16S rRNA identity and assigning taxonomy (Nilsen et al., 2020). The cut-off was set to 

5000 sequences per sample.  

 

2.2.5 Shotgun sequencing 

DNA tagmentation  

To fragment and tag the extracted, genomic DNA with adapter sequences, Bead-Linked 

Transposomes (BLT), from the Illumina DNA prep kit, were used. Thirty μL cleansed DNA 

was transferred to a PCR plate and combined with Tagmentation Master Mix, before the plate 

was tagmented during the following program on the thermal cycler (Applied Biosystems, 

USA): 55 ℃ in 15 min and 10℃ in ∞ with a reaction volume to 50 μL and preheat lid option 

at 100 ℃.  

 

Tagmentation was stopped with Tagment Stop buffer and heat treatment with the following 

program: 37 ℃ in 15 min, and 10 ℃ in ∞, with 60 μL reaction volume and preheat lid option 

at 100 ℃. The adapter-tagged DNA was then washed with Tagment Wash buffer before 

further processing.   
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Amplification of tagmented DNA 

To recognize the DNA sequences after Illumina sequencing, the tagmented samples have to 

contain index adapters with a specific combination attached to each sample. The indexes were 

24 plex individual tubes from the Illumina prep DNA kit. 

 

The following PCR program was used: 68 ℃ in 3 min, 98 ℃ in 3 min, X cycles of: 98 ℃ in 

45 sec, 62 ℃ in 30 sec and 68 ℃ in 2 min, followed by 68 ℃ in 1 min and 10 ℃ in ∞. The 

reaction volume was 50 μL and preheat lid option was set to 100 ℃.  

The amount of PCR cycles was calculated from the Qubit results from DNA extraction, by 

multiplying the result with 30 μL. This was the amount of sample applied to the PCR plate 

during tagmentation. In the protocol (Illumina, 2020b) a table with amount of total DNA input 

(ng) and corresponding number of PCR cycles are shown.  

The samples were run with a PCR program with 12, 8 and 6 cycles depending on total DNA 

input (ng) (Supplement, table S.1).    

 

Purification of amplified DNA tagmentations 

To clean up amplified DNA tagmentations, the Library Prep Protocol from Illumina 

(Illumina, 2020a) was followed, with use of the Illumina DNA prep kit. Followed the clean-

up method for small PCR fragments (<500bp), due to results from the gel electrophoresis, and 

if the method for over 500 bp was used, a lot of sample would be lost. Due to this method, the 

transferred sample volumes were multiplied with 1.8x to find the fitting amount of sample 

purification beads to add. The samples were washed in 80% ethanol.  

 

Pooling of library 

To pool the shotgun library, the method for DNA inputs less than 100 ng, from the protocol 

(Illumina, 2020b), was used. The samples were quantified based on the Qubit results and 

calculated and quantified based on the sample with highest concentration. They were then 

quantified again with an equal factor to reach a volume between 60 μL and 80 μL. In those 

cases where the concentration of the samples was too low, speedvac was used to increase the 

concentration. The pooled library was sequenced by Norwegian Sequencing Centre (NSC) on 

NovaSeq SP. The library got ½ flow cell, and the sequencing resulted in 150 bp paired end 

reads.  
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Data analysis from shotgun sequencing 

The quality of the reads was checked by FastQC. Data from the sequencing was processed by 

PhD Morten Nilsen. Firstly, the reads were filtered and trimmed by trimmomatic, with the 

parameters MAXINFO: 50:0.24, LEADING: 10, TRAILING: 10, SLIDINGWINDOW: 5:20, 

MINLEN: 32. In other words, the reads were balanced by a read length of 50 and error rate 

0.24 to maximize the value of each read. Then bases of the start and end of the read were cut 

if the quality was below 10. The read will then be cut if the average quality within a group of 

5 bases is below the threshold set to 20. Lastly all reads below the length of 32 was removed.      

After trimmomatic, Bowtie2 and Samtools were used to remove human DNA sequences, and 

MetaSPADES was used to assemble the reads. To create bins, two separate programs were 

used, MaxBin and Metabat2. From these programs, the best candidates were selected with use 

of the program Drep. Taxonomy within each bin was performed by the Kraken2 standard Plus 

database, and Prodigal was used to create the amino acid sequences corresponding to each 

sequence in the bins.  

With bins with genomic information and estimated amino acid sequences I processed the data 

in RStudio version 1.3.1093 and made a FASTA file with amino acid sequences only 

belonging to Bifidobacterium species. The procedure is attached as an R Markdown file in 

appendix E.  

The FASTA file with Bifidobacterium species were checked in the KEGG database to see 

potential proteins and pathways.  

The FASTA file was processed further by Prof. Knut Rudi to attach proteins to the amino 

acids. The different amino acid sequences were mapped to proteins by CLC Genomic 

Workbench and taxonomy, GO names, enzyme codes etc. were imported from InterProScan.  

 

2.3 Protein based methods 

2.3.1 Isolation of bacterial cells 

Approximately 0.2g fecal sample was suspended in 10 mL ice-cold TBS-buffer in 50 mL 

tubes. To remove large materials and intact human cells from the samples, they were passed 

through a 20 μm filter, using MerckTM Nylon-Net SteriflipTM Vacuum Filter Unit (Fisher 

Scientific, USA). Centrifugation at 1500 g for 5 min can also be used for this step, to collect 

large particles in the pellet. The samples were then centrifuged at 4000 rpm for 10 min, to 

collect bacterial cells in the pellet, that was further resuspended in 10 mL cold TBS-buffer. To 
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remove eukaryote proteins, the samples were passed through a second filter, a 0.22 μm 

nitrocellulose membrane filter (Millipore, USA). The bacterial cells will be captured on the 

filter, and eukaryotic proteins will pass through. The filtration was performed on a Millipore 

Vacuum Filtration System (Merck Millipore, USA).  

 

2.3.2 Cell lysis 

Filters from the isolation of bacterial cells step were cut in small pieces and placed in their 

respective tubes, together with 0.2 g acid-washed glass beads (Sigma-Aldrich, Germany, 

<106 μm), 0.2 g acid-washed glass beads (Sigma-Aldrich, Germany, 425-600 μm) and 2 acid-

washed beads (Sigma-Aldrich, Germany, 2.5-3.5 mm), and 1 mL lysis buffer with 2% SDS, 

to perform a chemical and mechanical lysis combined. The lysis buffer worked on the cells 

for 30 min on ice with occasional mixing to dissolve the cell membrane, so that the SDS get 

access to the proteins and unfold them, before the cell wall was disrupted by 3 x 60 sec pulses 

on FastPrep 96 (MP Biomedicals, USA) at 1800 rpm. The samples were then centrifuged at 

16000 x g for 15 min at 4 ℃ to collect the glass beads at the bottom of the tubes. 

Approximately 700 μL supernatant was transferred to new tubes.  

 

2.3.3 Measurement of protein concentration  

To measure the protein concentration, a BCA (Bicinchoninic Acid) Protein Assay was 

performed. One milliliter BCA working solution, consisting of 50 parts BCA and 1 part 

reagent from the Pierce BCA Protein Assay Kit (ThermoFisher Scientific, USA), was added 

to 50 μL 1/5 diluted lysed sample. The reagent in BCA working solution contains Cu2+, and in 

order to make the proteins reduce Cu2+ to Cu+ in alkalic environments, provided by BCA, the 

samples were incubated at 60 ℃ for 30 min, then cooled down to room temperature. This will 

make the samples purple, and the color can be measured with absorbance at 562 nm on the 

Eppendorf BioPhotometer D30 (Eppendorf AG, Germany). The instrument will estimate a 

protein concentration for the samples based on this absorbance. Before measurement, the 

instrument was blanked with a negative control, containing lysis buffer, with the same 

treatment as the samples. The instrument was already calibrated with BCA standard solutions 

(25, 50, 100, 150, 200 and 250 μg/mL), that were prepared in the same way as the samples.  
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2.3.4 Protein purification through SDS-PAGE 

Based on the experience of Magnus Arntzen, 40 μg protein in 19.5 μL sample on the SDS-

PAGE (Sodium Dodecyl Sulphate – Polyacrylamide Gel Electrophoresis) gives best results 

on the mass spectroscopy performed later on. The lysed samples were speedvaced to achieve 

the desired concentration, based on the concentrations from BCA Protein Assay (supplement, 

table S.2). Nineteen point five microliter sample was mixed with a reducing sampling buffer, 

resulting in a mix consisting of 40 μg protein, 1x Sampling buffer (ThermoFisher Scientific, 

USA) and 1x Reducing agent (ThermoFisher Scientific, USA). The Sampling buffer gives 

color to the samples and make them visible in the gel. The Reducing agent consists of DTT 

that is known to reduce disulfide bonds in proteins, and therefore keep the proteins unfolded 

together with SDS that already is in the samples, when the samples are denatured at 90 ℃ for 

5 min. After denaturation, the samples were centrifuged for 1 min at 10000 x g.  

To the wells in the SDS gel (Mini-PROTEAN TGX stain-free gel, Bio-Rad Laboratories, 

USA), 30 μL sample was applied with blanks in between to inhibit one sample well 

contaminating the neighboring well, or the bands to blend into each other. The inner chamber 

was filled with freshly made 1x TGS-buffer (Tris-Glycine-SDS, Bio-Rad, USA), and the rest 

of the container with 1x used 1x TGS-buffer. The gel was set at 270V for 6 min, until the 

band had traveled 1 cm on the gel. SDS-PAGE was not used in this experiment as a protein 

separation step, but rather as a clean-up step to get as much pure protein as possible.   

 

Staining and destaining SDS-gel 

Before staining, the gel was rinsed with Milli-Q water. To make the protein bands visible, the 

gel was stained with a staining stock (0.05 % Coomassie Brilliant blue R-250 (Bio-Rad, 

USA), 25 % isopropanol and 10 % acetic acid glacial) that binds to proteins. After 1 hour 

staining at 20 rpm, destaining solution (staining solution without Coomassie Brilliant blue R-

250) was applied to remove the blue color from the gel, in order to get visible blue protein 

bands. Destaining was done 2 x 20 min at 20 rpm, before an overnight destaining was 

performed with 1:2 dilution of the destaining solution.  

 

2.3.5 In gel reduction, alkylation and digestion 

The gel was rinsed with Milli-Q water before the bands were cut in 1x1 mm cubes and placed 

in their respective tubes. Two hundred microliter Milli-Q water was added to cover the gel 

pieces, and then the samples were incubated in 15 min at room temperature on a thermo mixer 

(500 rpm). The fluids were removed, and 200 μL of a solution with 50% ACN (Acetonitrile, 
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Honeywell, USA) and 25 mM AmBic (Ammonium bicarbonate, Sigma-Aldrich, USA) was 

added to de-color and rinse the gel pieces. The samples were again incubated in 15 min at 

room temperature and 500 rpm. The liquid was removed, and the two previous steps were 

repeated once more. To extract all fluids from the gel pieces, 100 μL 100 % ACN was added 

to each sample before incubation at room temperature for 5 min and 500 rpm. The liquid was 

removed, and the samples air-dried for 1-2 min.  

 

Reduction and alkylation 

The disulfide bonds in the samples were reduced by adding 50 μL DTT solution, consisting of 

10 mM DTT (Dithiothreitol, Sigma-Aldrich, USA) and 100 mM AmBic, and incubated for 30 

min at 56 ℃ at 500 rpm. Once the samples were cooled down, the proteins were prevented 

from forming disulfide bonds by adding 50 μL IAA solution (55 mM IAA (Iodoacetamide, 

Sigma-Aldrich, USA), 100 mM AmBic), that binds to the thiol group on cysteins. Due to IAA 

light sensitivity, the samples were incubated in the dark for 30 min. IAA was then removed, 

and 200 μL 100 % ACN was added to extract all fluids from the gel pieces. The samples were 

incubated for 5 min in room temperature at 500 rpm. The fluids were removed, and the 

samples were air-died for 1-2 min.  

 

Digestion of proteins 

To digest the proteins to peptides, 30 μL 10 ng/μL Trypsin solution (made with a Trypsin 

buffer consisting of 1M Ambic and 100 % ACN) was added to the gel pieces, so that the 

serine protease Trypsin could cleave the protein chain at a specific place. The samples were 

incubated on ice for 30 min, before additional trypsin buffer was added to cover the gel 

pieces. The samples were the incubated over night at 37 ℃ at 500 rpm, before the reaction 

was stopped by adding 40 μL 1 % TFA (Trifluoroacetic acid, VWR, USA). To get the 

peptides from the gel pieces and into the TFA solution, the samples were sonicated on water 

bath for 15 min.   

 

2.3.6 Extract and cleanse peptides from solution using ZipTips and NanoDrop measurement 

Peptides were extracted from the solution into a hydrophobic stationary phase (C18 material) 

inside ZipTips (Merck-Millipore, USA), using a C18 solid phase extraction method. The 

binding of peptides was enhanced by conditioning the C18 material beforehand with 100 % 

methanol as an organic compound, 70 % ACN/0.1 % TFA as an acidic compound and 0.1 % 

TFA as an ion-pairing reagent. After binding of peptides from the sample, the peptides were 
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washed with 0.1 % TFA, before they were eluted in 20 μL 70 % ACN/0.1 % TFA. After 

peptides from all samples were eluted in their respective tubes, speedvac was used to dry the 

samples, before cleaned peptides were dissolved in 10 μL 2 % ACN/0.1 % TFA and 

transferred to HPLC vials (VWR, USA). One point five microliter sample was then measured 

on Thermo Scientific NanoDrop One Microvolume UV-Vis Spectrophotometer (A205) 

(ThermoFisher, USA), and the results can be found in the supplement, table S.3. The samples 

were further analyzed on a nanoLC-Orbitrap MS/MS system (Dionex Ultimate 3000 UHPLC, 

Thermo Scientific, Germany), connected to a Q-Exactive mass spectrometer (Thermo 

Scientific, Germany). Details about the MS procedure is found in appendix C.    

 

2.3.7 Data analysis from mass spectroscopy 

Raw files from the mass spectroscopy were analyzed by PhD Morten Nilsen with MaxQuant 

version 1.6.7.0, with the MaxLFQ algorithm implemented for label-free quantitative detection 

of proteins. Raw files were searched against both the sequence database made in RStudio and 

against human genome (Homo sapiens, 73952 sequences), the latter to remove contaminants. 

Detailed information about the MaxQuant procedure is found in Appendix D.   

 

Data from MaxQuant was processed further in Perseus version 1.6.15.0. I filtered rows based 

on categorical columns to remove contaminants and based on text column to remove all 

proteins mapped to the human genome database. The data was then log2 transformed and all 

missing values from the label-free quantification (LFQ) intensity, which in other samples 

were over 19, were replaced by the value 10 to easily work with the data. The matrix was 

lastly annotated by columns to the database from InterProScan with taxonomy, GO names, 

enzyme codes etc.   

 

2.4 Determination of short chain fatty acid (SCFA) composition  

From the 10x diluted feces samples, 200 μL was diluted 1:1 with an internal standard. This 

standard consisted of 0.4 % formic acid (Sigma-Aldrich, Germany), to reduce pH in the 

samples so SCFA can easily be activated and 2 mM 2-methylvaleric acid (Sigma-Aldrich, 

Germany), to keep track of any displacements whilst not interfere with the results, as it does 

not exist as a SCFA in the human gut. The samples were centrifuged at 13000 rpm in 10 min. 

The supernatant was filtered through 0.2 μm filters (VWR, USA) to remove smaller particles 

and centrifuged at 10000 rpm in 5 min. The fluid was transferred to 300 μL GC vials (VWR, 
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USA). The instrument used for the gas chromatography analysis was Trace 1310 with an 

autosampler (ThermoFisher Scientific, USA).    

A standard was run between every 5 sample to detect any changes, for example 

displacements, in the run. This standard consisted of 0.2 % formic acid and 1 mM of the 

following acids: 2-methylvaleric acid, acetic acid (Sigma-Aldrich, Germany), propionic acid 

(Sigma-Aldrich, Germany), isobutyric acid (Sigma-Aldrich, Germany), butyric acid (Sigma-

Aldrich, Germany), isovaleric acid (Sigma-Aldrich, Germany) and valeric acid (Sigma-

Aldrich, Germany). Detailed information about the gas chromatograph is listed in Appendix 

B. The data program used to identify peaks was the Thermo ScientificTM DionexTM 

ChromeleonTM 7 Chromatography Data System Version 7.2 SR4.  

 

2.5 Statistical analysis 

Spearman correlations were used to correlate the SCFAs to both bacterial taxa and to 

Bifidobacterium species. The significant level was set to 0.05, and the analysis was performed 

in RStudio version 1.3.1093. From the correlation analysis, a matrix was created, based on the 

Spearman´s rank correlation coefficient, rho (ρ). A matrix with p-values (pairwise two-sided 

p-values) was also included. These two matrices were used to create correlation plots. For 

more details about the statistical analysis, see the R Markdown file in appendix E.  
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3 Results 

3.1 Gut microbiota composition in 6 months children from 16S rRNA sequencing 

Overall, the microbiota composition in high Bifidobacterium dataset 1 and 2 has an 

overrepresentation of Bifidobacterium (figure 3.1a and b), which is due to the selection of 

samples with high abundance of the bacteria in these two datasets. The amount of 

Bifidobacterium is 72.9 % and 67.63 % in high Bifidobacterium dataset 1 and 2 respectively. 

This is around three times as much as in the reference dataset for microbiota composition, 

which consists of 23.75 % Bifidobacterium (figure 3.1c). Besides Bifidobacterium, the three 

most abundant bacteria in the high Bifidobacterium dataset 1, which was used for proteome 

analysis and consists of sample T11-T15, are Escherichia-Shigella (4.97 %), Bacteroides 

(3.61 %) and Streptococcus (3.19 %). Escherichia-Shigella is also highly abundant in the high 

Bifidobacterium dataset 2, with 7.18 %. In addition, the latter dataset, which was not used for 

proteome analysis and consists of sample T1-T10, has Clostridium sensu stricto 1 (3.38 %) 

and Veillonella (3.35 %) at the top four most abundant bacteria. The data in the reference 

dataset for microbiota composition, represents a normal gut microbiota in 6 months old 

children. This microbiota is still dominated by Bifidobacterium, with Bacteroides (13.75 %), 

Escherichia-Shigella (10.54 %) and Clostridium sensu stricto 1 (8.42 %) highly abundant.  
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Figure 3.1: Distribution of average bacteria present over 1 %. The pie charts are based on data 

from the 16S rRNA sequencing. a) shows the average of bacteria in the high Bifidobacterium dataset 

1, and b) shows the average of bacteria in the high Bifidobacterium dataset 2, which was sequenced by 

Ph.D. Morten Nilsen. c) shows the reference dataset for microbiota composition and represents the 

total average of bacteria in the gut of 100 children at the age of 6 months. In all pie charts, the four 

most dominating samples, with the exception of “others”, are shown in percent.   

 

3.2 Composition of Bifidobacterium species from shotgun sequencing 

Based on data from the shotgun sequencing, the composition of Bifidobacterium species was 

determined in each sample and illustrated in figure 3.2. The composition of different 

Bifidobacterium species is very different in each sample, but overall, Bifidobacterium longum 

subspecies are dominating. When comparing the datasets, B. bifidum and B. longum are the 

dominating species in infants belonging to the high Bifidobacterium dataset 1, whereas B. 

breve, B. longum subsp. infantis and B. longum are dominating the high Bifidobacterium 

dataset 2. B. breve is dominating sample T1 and T2, whilst sample T3, T5, T9 and T10 are 



 

  35 
 

dominated by B. longum subsp. infantis. Sample T14 is completely dominated by B. bifidum, 

and this bacterium is also found in high amounts in sample T7, T11 and T12. In sample T6 

there is a high abundance of B. pseudocatenulatum, which is not found in the other infants. B. 

dentium and B. adolescentis present in sample T12 and T13 respectively, are also rarely found 

in the other samples.    

 
Figure 3.2: Distribution of Bifidobacterium species. The bar chart is based on data from the shotgun 

sequencing from high Bifidobacterium dataset 1 and 2. The species incorporated in the 

Bifidobacterium longum category are not sequences at a low enough level to be incorporated in the 

subspecies. This category can therefore include both B. longum subsp. longum, B. longum subsp. 

infantis and B. longum subsp. suis, which are the three subspecies of B. longum.   

 

3.3 SCFA composition and correlation between SCFA and gut bacteria  

In all three datasets presented in figure 3.3, the SCFA composition is dominated by acetic 

acid, with an amount of 93.7 %, 85.1 % and 87.83 % in figure a, b and c respectively. The 

high Bifidobacterium dataset 2 (figure 3.3b) resembles the reference dataset for SCFA 

composition (figure 3.3c) the most. The two datasets have almost equal amounts of acetic acid 

and propionic acid. The latter is 6.9 % in the high Bifidobacterium dataset 2 and 6.76 % in the 

reference dataset, which is almost twice as much as in the high Bifidobacterium dataset 1 (3.9 

%) (figure 3.3a). The reference dataset for SCFA composition has twice as much butyric acid, 

being 4.13 %, then the two other datasets. Whilst the high Bifidobacterium dataset 1 only 
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consists of three acids, the high Bifidobacterium dataset 2 has over the double amount of 

isobutyric acid (3 %) and isovaleric acid (2.3 %) than the reference dataset.  

 

 
Figure 3.3: Average short chain fatty acid (SCFA) composition. The pie charts are based on data 

from the gas chromatography. a) shows mean SCFA composition in the high Bifidobacterium dataset 

1 and b) shows mean SCFA composition in the high Bifidobacterium dataset 2. c) is used as a 

reference, and shows mean SCFA composition in the reference dataset for SCFA composition, which 

is analyzed by Ph.D. Morten Nilsen (Nilsen et al., 2020). The distribution of SCFAs in each sample 

from the high Bifidobacterium dataset 1 and 2 can be found in the supplement, figure S.1.  
 

To check the correlation between gut bacteria and SCFA, and Bifidobacterium species and 

SCFA, a Spearman correlation analysis was performed with a 0.05 significant level. Based on 

this analysis, correlation plots were created, and they are illustrated in figure 3.4.  

Figure 3.4a shows that acetate is negatively correlated with almost every other SCFA. 

Bacteroides shows a strong positive correlation with isobutyric acid, whilst Clostridium sensu 

stricto 1 has a strong positive correlation with the same acid, which makes these two bacteria 

negatively correlated with each other. Bifidobacterium is on this level not correlated with any 

of the other bacteria species or SCFAs. When Bifidobacterium is divided into species, shown 

in figure 3.4b, several correlations are present. B. breve shows a small negative correlation 
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with acetate. B. bifidum and B. longum subsp. longum shows a small negative correlation with 

isobutyric acid, whilst B. longum subsp. infantis shows a small positive correlation with the 

same acid. B. longum shows a positive correlation with acetate and is negatively correlated 

with propionate.  

 

 
  
Figure 3.4: Correlation between gut bacteria and SCFAs. The figure shows significant (p < 0.05) 

correlations of the Spearman’s rank correlation coefficient, rho (ρ). Figure a) shows the significant 

correlations between different bacterial taxa in the gut microbiota and SCFAs, whilst figure b) shows 

the significant correlations between Bifidobacterium species and SCFAs. The larger the circle, the 

greater the correlation, either negative or positive. Blue colors indicate degrees of positive correlation, 

and red colors indicate degrees of negative correlation.  

 

3.4 HMO utilization pathways 

HMO is hydrolyzed by intracellular glycoside hydrolases, which are sialidase, fucosidase, β-

galactosidase and β-hexosaminidase, shown in the first boxes (after HMO) in figure 3.5a, c, d 

and e. All of these are found in the shotgun data, and just β-hexosaminidase (EC 3.2.1.52) is 

not found in the protein analysis. The two most complete pathways are the utilization of 

galactose and the bifid shunt (figure 3.5a and b). In these pathways, all enzymes were found 

in both the protein data and shotgun data, or only in the shotgun data, which means the 

bacteria has the ability to express the gene coding for the specific protein. The protein acetate 

kinase (EC 2.7.2.1), that makes acetate production possible is only found in the shotgun data, 

together with N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) that has acetate as 
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a biproduct. The GNB/LNB pathway is partly represented in figure 3.5a where a majority of 

enzymes are present in both the protein and shotgun data, and partly in figure 3.5d. The 

degradation pathway for GlcNAc is missing an important enzyme early in the pathway, but 

for extracellular GlcNAc, the pathway is complete based on the shotgun data (figure 3.5d). 

When degrading L-fucose, bacteria use either a pathway with or without phosphorylated 

intermediates, and the pathway without is more complete from the beginning, shown in figure 

3.5c.  
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Figure 3.5: Potential HMO utilizing pathways from both proteome- and shotgun data. The 

proteins are shown in colored boxes with the EC number. Green boxes are proteins present in one or 

more samples both in the proteomics data, and in shotgun data. Orange boxes are only found in the 

shotgun data, and yellow boxes are only found in the proteomics data. Boxes without color are found 

in neither of the data analysis. The hits from the shotgun analysis are based on data from both high 

Bifidobacterium dataset 1 and 2, whilst the protein analysis is only based on data from the high 

Bifidobacterium dataset 1. The distribution of each protein in the samples, and the protein names to 

the EC number, are shown in more detail in the supplement, table S.5. Figure a) shows the utilization 

of galactose, b) shows the bifid shunt, which is a fermentative pathway found in most Bifidobacterium 

species. Figure c) shows the utilization of L-fucose, d) shows the utilization of N-acetylglucosamine 

and e) shows the sialic acid utilization. These pathways are shown in a more complex version in figure 

1.2 and 1.3. HMO, human milk oligosaccharide; LNB, lacto-N-biose; P, phosphate; G6P, glucose-6-

phosphate; F6P, fructose-6-phosphate; GlcNAc, N-acetylglucosamine. 
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3.5 Detection of genes central to HMO utilization 

The genes expressing β-1,4-Galactosidase and 2,3/6-α-Sialidase are detected to a large extent 

in almost every sample (figure 3.6). LNT β-1,3-Galactosidase is also highly detected 

throughout the samples, but at a lower degree. The fucosidase genes are detected in the same 

samples, as well as the genes expressing β-N-acetylglucosaminidase. 

Sample T3 consisted of 100 % B. longum subsp. infantis (figure 3.2) and was also the sample 

with the highest detected gene expression. Sample T4, T5 and T8 also have a lot of detected 

gene expression. T5 is mostly dominated by B. longum subsp. infantis, whilst T4 and T8 has 

most B. longum and a good amount B. longum subsp. infantis. On the other hand, sample T9 

and T10 has high amounts of B. longum subsp. infantis, but less detected gene expression. 

Sample T12 does not have detection of any of the genes, and are dominated by B. longum and 

B. bifidum, and is also the only sample with B. dentium. Sample T2 is dominated by B. breve 

and has little or no detected gene expression.  

 
Figure 3.6: Detected gene expression linked with HMO utilizing proteins. The heatmap represents 

qPCR results showing gene expression in 14 samples distributed on the high Bifidobacterium dataset 1 

and 2. The color-gradient shows degrees of differences in qPCR cycles between the control and 

samples. The control was parallel samples without primer during the cDNA synthesis, which will 

show amount of DNA created. +++ represents > 7 qPCR cycles different, ++ represents 5-7, + 

represents 2-5 and – represents < 2 qPCR cycles different. 2 qPCR cycles different was set as a 

threshold for gene expression. All primers were designed to B. longum subsp. infantis. The primer 

used for β-1,4-galactosidase was Blon_2334; 1,2-α-L-fucosidase, Blon_2335; 1,3/4-α-L-fucosidase, 

Blon_2336; 2,3/6-α-sialidase, Blon_2348-2; β-N-acetylglucosaminidase, Blon_2355 and Blon_0732; 

LNT β-1,3-galactosidase, Blon_2016. 
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4 Discussion 

4.1 Potential HMO utilization pathways used by Bifidobacterium  

To transport HMO and its derivates in through the cell membrane, the bacteria are dependent 

on transporters. A widely used transporter is the ATP-binding cassette (ABC) transporter. 

This was observed in the proteomics data, but only on a less detailed level, so the presence of 

an ABC transporter that is linked with HMO transport cannot be confirmed, but it is most 

likely present, due to the utilization proteins found inside the cell. HMO transporters are often 

anchored to the cell membrane or cell wall. This makes it more difficult to release them, and 

therefore some may have been lost during preparation for proteome analysis. This can be the 

reason why ABC transporters and PTSs are difficult to find from the protein data.  

 

4.1.1 Pathways to degrade galactose and LNB 

The galactose degradation pathway was one of the pathways with most enzymes present from 

both the shotgun data and protein data (figure 3.5). Only galactose-1-phosphate 

uridylyltransferase (GalT, EC 2.7.7.12) was not found in the protein data, but still found in the 

KEGG database from the shotgun data. Both GLNBP (EC 2.4.1.211) and galactokinase 

(galK, EC 2.7.1.6), which are central enzymes from the LNB/GNB pathway and Leloir 

pathway respectively, were highly present both in the shotgun data and protein data (figure 

3.5, table S.5). This is in line with the theory from (De Bruyn et al., 2013) that 

Bifidobacterium can use both ways to degrade galactose. Which pathway the bacterium prefer 

is not possible to see with the analysis done in this study. Glucose-6-P produced from both of 

the pathways can go directly into the bifid shunt as the second substrate.    

 

N-acetylglucosamine (GlcNAc) can be obtained from both LNB, from cleavage by GLNBP 

(EC 2.4.1.211), and directly from HMO, from cleavage by β-hexosaminidase (EC 3.2.1.52). 

GLNBP is highly present both from the protein and shotgun data (figure 3.5 and table S.5), 

whilst β-hexosaminidase is only found from the shotgun data. GLNBP is found in most 

infants associated Bifidobacterium species, whilst β-hexosaminidase is more species 

dependent. B. longum subsp. infantis, which performs an internal degradation, uses a different 

β-hexosaminidase to B. bifidum, which performs an external degradation. The enzymes used 

by these two species share only about 30 % identity (Garrido et al., 2012). The enzyme used 

to convert GlcNAc to GlcNAc-6-P, N-acetylhexosamine 1-kinase (EC 2.7.1.162), is not 

present in any of the two data analyzes. In the study done by (Garrido et al., 2012), several 
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genes encoding enzymes present in the GlcNAc utilizing pathway (figure 3.5), including N-

acetylhexosamine 1-kinase (EC 2.7.1.162), were expressed in B. longum subsp. infantis. N-

acetyl-D-glucosamine phosphotransferase (EC 2.7.1.193), a component from the 

phosphotransferase system (PTS), has the ability to convert extracellular GlcNAc to GlcNAc-

6-P. This enzyme exists in the shotgun data, which means that based on the shotgun data there 

is a complete possible utilization pathway of GlcNAc. Since GlcNAc has to be external for 

this pathway to be complete, B. bifidum may play an important role here, due to its external 

degradation. B. bifidum or other species can then make use of GlcNAc through the pathway 

suggested.  

 

4.1.2 Degradation of fucose and sialic acid 

L-fucose is one of the building blocks of HMO and is parted from oligosaccharides by the 

action of fucosidase (EC 3.2.1.51). This enzyme is present both in the shotgun data and 

proteome data (figure 3.5), but the next three enzymes in the phosphorylated pathway are 

completely missing. This is expected and similar to the results from (Bunesova et al., 2016). 

In the non-phosphorylated pathway, more enzymes are present from the shotgun data, 

compared to the phosphorylated pathway, indicating that this is the pathway used by 

Bifidobacterium. A few studies have discovered that only B. longum subsp. infantis, of the 

infant gut bifidobacteria, can utilize L-fucose, whilst B. bifidum mostly release L-fucose from 

HMOs (Bunesova et al., 2016; Garrido et al., 2015). The released L-fucose can then be 

utilized by other (bifido)bacteria by cross-feeding. In the high Bifidobacterium dataset 1, 

which was used to proteome analysis, there were few samples containing B. longum subsp. 

infantis, and one sample dominated by B. bifidum. This can explain the lack of proteins 

related to L-fucose degradation from the proteome analysis.  

The enzyme lactaldehyde reductase (EC 1.1.1.77), catalyzing the reaction from lactaldehyde 

to 1,2-propanediol (1,2-PD), is present in data from both data analyzes. 1,2-PD is a precursor 

to the SCFA propionic acid (Bunesova et al., 2016). The presence of this enzyme indicates 

that some Bifidobacterium species can produce 1,2-PD, but the pathway in which this occurs 

is unknown. 

 

Sialic acid is also left to degradation by cross-feeding by B. bifidum, in the same way as L-

fucose (Garrido et al., 2015). According to (Egan et al., 2014), B. breve can cross-feed on 

sialic acid derivates, released by B. bifidum, amongst others. B. longum subsp. infantis is also 

thought to have sialic acid degrading abilities (Sela et al., 2008). B. breve is almost non-
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existent in the high Bifidobacterium dataset 1, and the amount of B. longum subsp. infantis is 

minimum (figure 3.2), which can explain the lack of sialic acid degrading enzymes from the 

proteome analysis.  

 

4.1.3 The bifid shunt pathway 

The pathway degrading glucose, which includes the bifid shunt, has none missing enzymes. 

Most of the enzymes are also both found in the data from shotgun analysis and proteome 

analysis. According to (Turroni et al., 2018), all genes belonging to the bifid shunt are in the 

bifidobacterial core genome, which here means genes that are shared by all strains of 

Bifidobacterium. This theory is consistent with the result, in that the bifid shunt is the most 

complete pathway found based on the proteome and shotgun analyzes (figure 3.5). From the 

high Bifidobacterium dataset 1, almost every sample contained the enzymes present from the 

protein analysis (table S.5). The species composition in these samples are very different, 

which means that the bifid shunt pathway is present in several Bifidobacterium species 

associated to the infant gut microbiota.  

According to (Bunesova et al., 2018; Turroni et al., 2018), the bifid shunt is a more energy 

yielding pathway, compared to other carbohydrate fermentative pathways found in most gut 

bacteria. This can contribute to the bacteria’s survival capabilities, and help the genus spread 

faster and outcompete other carbohydrate fermentative bacteria in the gut microbiota. 

 

4.2 Correlation between SCFA production and Bifidobacterium 

The correlation plot between gut bacteria and SCFAs in figure 3.4a does not show any 

significant correlation between Bifidobacterium and SCFAs, but looking at species level of 

Bifidobacterium, some significant correlations with SCFAs are present (figure 3.4b). Most of 

the correlations are just slightly significant, but one somewhat larger is a negative correlation 

between B. longum and propionate. According to literature, Bifidobacterium has not been 

associated with propionate production, but with production of 1,2-propanediol (Bunesova et 

al., 2016). 1,2-propanediol is, as previously explained, a precursor to propionate and the 

enzyme producing 1,2-PD was found in data from both the shotgun and proteome analyzes 

(figure 3.5). The negative correlation is in contrast with the literature, since production of 1,2-

PD should help increase, and not decrease the production of propionate in the presence of 

Bifidobacterium, as long as propionate producers are present in the gut microbiota. A possible 

reason for the negative correlation could be the large abundance of Bifidobacterium in the 
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samples. This can cause other bacteria to be outcompeted, and some of these bacteria can be 

propionate producers.  

 

4.2.1 Acetate production in Bifidobacterium  

From the literature, is has been shown that acetate is the main SCFA produced by 

Bifidobacterium (Bunesova et al., 2018; Egan et al., 2014; LeBlanc et al., 2017). Acetate can 

be produced in several ways, and in connection to HMO utilization, there are two main 

enzymes that produce acetate: acetate kinase (EC 2.7.2.1) and N-acetylglucosamine-6-

phosphate deacetylase (EC 3.5.1.25) (figure 3.5). Both of these enzymes were found in the 

KEGG database from the data obtained from shotgun analysis, which indicate that in the 

genome, the bacterium has the potential to express genes encoding acetate producing proteins. 

When looking at data from the protein analysis (figure 3.5), there was no discovery of either 

of the two acetate producing proteins. This does not exclude the potential for their existence. 

When performing a protein analysis, the proteins must already be expressed in the cell at the 

time the analysis is performed, in order to be identified. There may therefore be the case that 

several potential proteins found in the shotgun database, also is found in the bacteria, but are 

not expressed at the time the protein analysis was done.         

 

4.3 Technical considerations and future research  

4.3.1 Limitations with the proteome analysis 

The preparation before the proteome analysis was done with two different methods, on one 

parallel of the five samples each. In one of the methods, large materials and intact human cells 

were removed, by passing the samples through a 20 μm filter. In the other method, filtering 

was done by centrifuging the samples at 1500 g for 5 min. This would collect large particles 

in a pellet, and the supernatant was used further in the analysis. A strength of using two 

different methods is that if the results are similar, the likelihood is higher that they are 

trustworthy, but unfortunately, one of the methods gave much lower yield. The first method 

performed better, giving a sufficient amount of proteins in each sample to work with, 

compared to the second method where only one sample could be used. The proteome analysis 

should therefore be performed again, using only the first method.   

 

Another weakness with this analysis was that the sample size was too small. More samples 

should have been analyzed. The selection of high Bifidobacterium dataset 2 was done before 
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the discovery of a lack of feces basic samples, which are used in the proteome analysis, and 

therefore only the high Bifidobacterium dataset 1 could be used for the analysis.  

To get a wider understanding of the HMO degradation pathways, a proteome analysis with 

more samples, and samples with more variation in the Bifidobacterium composition should be 

done. This would make it easier to see differences between species, due to protein expression 

and HMO utilization pathways. It would be interesting to see if samples dominated by B. 

breve indeed did not have complete pathways, because they are supposedly only able to 

degrade HMO derivates. Samples fully dominated by B. longum subsp. infantis and B. 

bifidum would also give an indication of their utilization pattern, due to external and internal 

HMO degradation.  

 

4.3.2 Limitations with the qPCR analysis for detecting gene expression 

Due to low amounts of RNA, qPCR was the best option to detect any potential gene 

expression. The samples have been stored over several years and thawed and frozen several 

times. This can have made the RNA degrade, and therefore affected the amount of RNA in 

the samples. Another reason could be the protocol used for RNA extraction. During the 

preparation for qPCR analysis, the samples did not give any results on both qubit and gel 

electrophoresis.  

All primers used in the analysis were from B. longum subsp. infantis, which most likely have affected 

the results. This is because the detection of gene expression in figure 3.6 was mainly found in samples 

with high abundance of B. longum subsp. infantis. The detection can therefore be a result of primer 

binding, and not actual expression, which makes these results not trustworthy.  

The gene expression analysis should be reanalyzed, using a different RNA extraction protocol 

yielding more RNA, and then preforming RNA sequencing. Another solution could be to construct 

primers based on the genome data, which would be more representative for the Bifidobacterium 

genus. 
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5 Conclusion  
Several proteins related to HMO degradation were found either expressed or with the 

potential to be expressed in Bifidobacterium. Whole degradation pathways were found for 

three of the building blocks for HMO; glucose, galactose and N-acetylglucosamine. In 

addition to this, all the main enzymes to break down HMO; β-galactosidase, fucosidase, 

sialidase, GLNBP and β-hexosaminidase, were found. These enzymes were all found from 

both the protein data and the shotgun data, except for β-hexosaminidase which was only 

present in the latter. This is a good indication that Bifidobacterium has the ability to utilize 

HMO and its derivates.  
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Supplementary tables and figures 
Table S.1: Qubit results used in amplification of tagmented DNA. These values were used 

to calculate the number of PCR cycles.    

Sample μg/mL 

1 1.15 
2 0.128 
3 0.177 
4 0.172 
5 0.126 
6 0.130 
7 0.129 
8 0.223 
9 0.610 
10 0.204 
Pos. control 2.15 
Neg. control < 0.01  
11 < 0.01 
12 < 0.01 
13 < 0.01 
14 < 0.01 
15 0.062 
Pos. control 1.52 
Neg. control < 0.01 

 

Table S.2: Concentrations from BCA Protein Assay. Only one sample got a value.   

Sample μg/mL 

11 - (too low) 
11_2 - 
12 - 
12_2 - 
13 14 
14 - 
14_2 - 
15 - 
15_2 - 
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Table S.3: NanoDrop measurements. The duplicate of sample 12 has been removed, due to 

weak appearance on SDS-PAGE.  

Sample mg/mL A205 

11 0.014 0.43 
11_2 0.043 1.33 
12 0.021 0.64 
13 0.027 0.82 
14 0.019 0.60 
14_2 0.018 0.55 
15 0.022 0.69 
15_2 0.014 0.42 

 

 

 

Figure S.1: Distribution of SCFAs in all 15 samples. Sample T1-T10 belongs to dataset C, 

whilst sample T11-T15 belongs to dataset B.  
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Table S.5: Presence of enzymes from proteome analysis. The table presents presence of the 

most known enzymes, sorted into pathways, linked with HMO utilization in the samples from 

proteome analysis. The data are obtained from matrices made and filtered in Perseus.    

   Present in the samples 

Protein EC number T11 T12 T13 T14 T14_2 T15 

L-fucose utilization  

α-L-fucosidase  EC 3.2.1.51 Yes Yes No No No No 
L-fucose isomerase EC 5.3.1.25 No No No No No No 
L-fuculokinase EC 2.7.1.51 No No No No No No 
L-fuculose-1-phosphate-aldolase EC 4.1.2.17 No No No No No No 
lactaldehyde reductase  EC 1.1.1.77 Yes Yes Yes Yes Yes Yes 
triose-phosphate isomerase  EC 5.3.1.1 No No No No No No 
L-fucose dehydrogenase EC 1.1.1.122 No No No No No No 
L-fuconolactone hydrolase EC 3.1.1.- No No No No No No 
L-fuconate dehydratase EC 4.2.1.68 Yes Yes Yes Yes Yes Yes 
L-2-keto-3-deoxy-fuconate hydrolase EC 1.1.1.- No No No No No No 
L-2,4-diketo-3-deoxy-fuconate hydrolase EC 3.7.1.26 No No No No No No 

Galactose utilization / Leloir pathway 

β-galactosidase  EC 3.2.1.23  Yes Yes No No No No 
galactokinase  EC 2.7.1.6 Yes Yes No Yes Yes Yes 
UDP-glucose 4-epimerase EC 5.1.3.2 Yes Yes No Yes Yes Yes 
galactose-1-phosphate uridylyltransferase  EC 2.7.7.12 No No No No No No 
phosphoglucomutase  EC 5.4.2.2 Yes Yes No Yes Yes Yes 

N-acetylglucosamine utilization 

β-hexosaminidase (β-N-
acetylhexosaminidase) 

EC 3.2.1.52  No No No No No No 

N-acetylglucosamine kinase  EC 2.7.1.59 No No No No No No 
N-acetyl-D-glucosamine 
phosphotransferase 

EC 2.7.1.193 No No No No No No 

N-acetylglucosamine-6-phosphate 
deacetylase  

EC 3.5.1.25 No No No No No No 

glucosamine-6-phosphate isomerase  EC 3.5.99.6 Yes Yes Yes Yes Yes Yes 
Sialic acid utilization 

exo-α-sialidase  EC 3.2.1.18  Yes Yes No No No Yes 
N-acetylneuraminate lyase  EC 4.1.3.3 No No No No No No 
N-acetylmannosamine kinase  EC 2.7.1.60 Yes Yes No No No No 
N-acetylmannosamine-6-phosphate 2-
epimerase  

EC 5.1.3.9 No No No No No No 

GNB/LNB pathway 
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GNB/LNB phosphorylase (GLNBP) EC 2.4.1.211  Yes Yes Yes Yes Yes Yes 
N-acetylhexosamine-1-kinase  EC 2.7.1.162  No No No No No No 
UDP-glucose-hexose-1-phosphate 
uridylyl transferase 

EC 2.7.7.12  No No No No No No 

UDP glucose/GlcNAc 4-epimerase  EC 5.1.3.2  Yes Yes No Yes Yes Yes 
Bifid shunt / central fermentative pathway 

glucokinase EC 2.7.1.2 Yes Yes No Yes No Yes 
glucose-6-phosphate isomerase  EC 5.3.1.9 Yes Yes Yes Yes Yes Yes 
fructose-6-phosphate phosphoketolase  EC 4.1.2.22  Yes Yes Yes Yes Yes Yes 
transaldolase EC 2.2.1.2 No No No No No No 
transketolase EC 2.2.1.1 Yes Yes Yes Yes Yes Yes 
ribose 5-phosphate isomerase  EC 5.3.1.6 Yes Yes No Yes Yes Yes 
ribulose 5-phosphate epimerase  EC 5.1.3.4 No No No No No No 
xylulose-5-phosphate phosphoketolase  EC 4.1.2.9 Yes Yes Yes Yes Yes Yes 
acetate kinase  EC 2.7.2.1  No No No No No No 
glyceraldehyde-3-phosphate 
dehydrogenase  

EC 1.2.1.12 Yes Yes Yes Yes Yes Yes 

phosphoglycerate kinase  EC 2.7.2.3 Yes Yes Yes Yes Yes Yes 
phosphoglycerate mutase EC 5.4.2.11 No No No No No No 
enolase  EC 4.2.1.11 Yes Yes Yes Yes Yes Yes 
pyruvate kinase  EC 2.7.1.40 Yes Yes Yes Yes Yes Yes 
lactate dehydrogenase  EC 1.1.1.27 Yes Yes Yes Yes Yes Yes 

 

Table S.6: Sequence of index primers used for 16S rRNA sequencing. The table shows the 

16 forward primers (F) and seven reverse primers (R) used in index PCR. The primer 

sequences are from (Yu et al., 2005).  
Primer Primer sequence (5´-3´) 

F1 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagtcaaCCTACGGGRBGCASCAG 

F2 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagttccCCTACGGGRBGCASCAG 

F3 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgtcaCCTACGGGRBGCASCAG 

F4 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctccgtccCCTACGGGRBGCASCAG 

F5 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtagagCCTACGGGRBGCASCAG 

F6 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtccgcCCTACGGGRBGCASCAG 

F7 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtgaaaCCTACGGGRBGCASCAG 

F8 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtggccCCTACGGGRBGCASCAG 

F9 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtttcgCCTACGGGRBGCASCAG 

F10 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcgtacgCCTACGGGRBGCASCAG 
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F11 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgagtggCCTACGGGRBGCASCAG 

F12 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctggtagcCCTACGGGRBGCASCAG 

F13 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctactgatCCTACGGGRBGCASCAG 

F14 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgagcCCTACGGGRBGCASCAG 

F15 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctattcctCCTACGGGRBGCASCAG 

F16 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcaaaagCCTACGGGRBGCASCAG 

R26 caagcagaagacggcatacgagatGCTCATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R27 caagcagaagacggcatacgagatAGGAATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R28 caagcagaagacggcatacgagatCTTTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R29 caagcagaagacggcatacgagatTAGTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R30 caagcagaagacggcatacgagatCCGGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R31 caagcagaagacggcatacgagatATCGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

R32 caagcagaagacggcatacgagatTGAGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 
 

Appendix A: Sample information for the reference dataset for 

microbiota composition 
Categories  n 

Birth method  

Caesarean section  16 

Vaginally 84 

Gender  

Boys 46 

Girls 54 

Feeding method at 3 months  

Breast milk 48 

Breast milk + milk powder 14 

Breast milk + milk powder + complementary 19 

Complementary 4 

Missing 15 

Feeding method at 6 months  

Breast milk 69 

Breastfed from 3-6 mo., stop at 6 mo.  3 

Complementary 5 

Missing 23 
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Appendix B: GC details 
Gas chromatography was done on a Trace 1310 with an autosampler (ThermoFisher 

Scientific, USA), with the following specifications:  

Injector: 

Mode: split 

Temperature: 250 °C 

Carrier gas: Helium 

Column flow: 2.5 ml/min 

Split flow: 200 ml/min 

Purge flow: 3 ml/min 

Injection volume: 0.2 µl  

Liner: 4mm x 6.3mm x 78.5mm (Catalog# 23311.5, Restek) 

Syringe: 10 µl syr FN 50 mm C, Ga 23, cone tip (catalog# 365D3741, ThermoFisher 

Scientific) 

 

Column:  

Stabilwax DA 30m, 0.25 mm ID, 0.25 µm (Restek) 

 Temperature program: 90 °C to 150 °C (6 min), 150 °C to 245 °C (1.9 min) 

 Time per sample: 14.9 min 

 

Detector:  

Type: FID 

Temperature: 275 °C 

Hydrogen: 30 ml/min 

Air: 300 ml/min 

Makeup gas: 30 ml/min  
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Appendix C: LC-MS/MS program 
The LC-MS/MS used was a nanoLC-Orbitrap MS/MS (Dionex Ultimate 3000 UHPLC; 

Thermo Scientific, Bremen, Germany), connected to a Q-Exactive mass spectrometer 

(Thermo Scientific, Bremen, Germany). First, peptides were applied to a trap column 

(Acclaim PepMap100, C18, 5 µm, 100 Å, 300 µm i.d. × 5 mm) and backflushed onto a 50 cm 

× 70 µm analytical column (Acclaim PepMap RSLC C18, 2 µm, 100 Å, 75 µm i.d. × 50 cm, 

nanoViper). A 120 min gradient from 3.2 to 36% solution B (99.9 % ACN, 0.1% formic acid) 

separated the proteins, at a flow rate of 300 nl/min. The Q-Exactive mass spectrometer setup 

was (Top5 method): a full scan (300-1600 m/z) at R=70.000 was followed by (up to) 12 MS2 

scans at R=17500, using an NCE setting of 28. Singly charged precursors were excluded for 

MS/MS, as were precursors with z>5. Dynamic exclusion was set to 20 sec. 

Appendix D: Data processing in MaxQuant 
Data processing in MaxQuant was done by Ph.D Morten Nilsen. MaxQuant version 1.6.7.0 

was used to analyze, identify and quantify raw files from the mass spectroscopy analysis. The 

algorithm used with this data program was the MaxLFQ algorithm implemented for label-free 

quantitative (LFQ) detection of proteins.  

Raw files were searched against both the sample-specific protein sequence database and the 

human genome (Homo sapiens, 73952 sequences). The sequences database was 

complemented with common contaminants (human keratin, trypsin and bovine serum 

albumin) as well as reversed sequences of all protein entries to estimate the false discovery 

rate (FDR). Variable modifications were oxidation of methionine’s, protein N-terminal 

acetylation, deamination of asparagine and glutamine, and conversion of glutamine to pyro-

glutamic acid, while carbamidomethylating of cysteine residues was used as a fixed 

modification. Two missed cleavages of trypsin were allowed. 
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Appendix E: R Markdown files 

E.1 Shotgun results and database for proteome analysis 

Finding all unique bins with Bifidobacterium 

First, I read the file “reads.txt” to a table with 5 columns that shows all unique sequences that 

exists in all bins, and which taxonomy and number of bp these have. The different columns 

stand for: 

• C/U = classified/unclassified 

• Seq.ID = from which sequence the taxonomy comes from 

• Tax.ID = which taxonomy that has the sequence 

• bp.length = how many basepairs that makes the sequence 

• LCA = refers to LCA classifier 

library(tidyverse) 
library(dplyr) 

reads_file <- "reads.txt" 
 
new_krk.tbl <- read_delim(reads_file,  
                          delim = "\t",  
                          col_names = c("C/U", "Seq.ID", "Tax.ID", "bp.len
gth", "LCA"), 
                          trim_ws = T) 

##  
## ── Column specification ───────────────────────────────────────────────
───────── 
## cols( 
##   `C/U` = col_character(), 
##   Seq.ID = col_character(), 
##   Tax.ID = col_character(), 
##   bp.length = col_double(), 
##   LCA = col_character() 
## ) 

head(new_krk.tbl, 3) #Shows the first 3 rows of the table to check if all 
is correct 

## # A tibble: 3 x 5 
##   `C/U` Seq.ID           Tax.ID           bp.length LCA                          
##   <chr> <chr>            <chr>                <dbl> <chr>                        
## 1 C     NODE_6_length_2… Collinsella aer…    215984 84999:45 0:3 84999:
5 0:57 7… 
## 2 C     NODE_12_length_… Collinsella aer…    174033 84999:28 2003188:6 
84999:4 … 
## 3 C     NODE_16_length_… Collinsella aer…    150145 0:61 34:5 0:325 34:
5 0:2718… 
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To easily access the files in each bin, I listed all files in a vector from a folder with all bins. 

Then I made a loop that collect all Seq.IDs from every bin in the folder and connects these to 

the right bin in a table “df”. 

files <- list.files(path = "All_bins/", pattern = "*.fa", full.names = T) 
 
df <- data.frame(matrix(ncol = 2, dimnames = list(NULL, c("Seq.ID", "Bin_i
d")))) 
 
for (i in 1:length(files)) { 
  lines1 <- readLines(files[i]) 
  logicals1 <- str_detect(lines1, pattern = ">") 
  idx1 <- which(logicals1) 
  fasta.tbl <- tibble(Seq.ID = lines1[idx1]) 
  fasta.tbl$Bin_id <- rep(files[i], nrow(fasta.tbl)) 
  df <- rbind.data.frame(df, fasta.tbl) 
} 
 
df <- df[-1,] #Have to remove the first row, because this is blank  
 
head(df, 3) 

##                                 Seq.ID                 Bin_id 
## 2  >NODE_6_length_215984_cov_97.521884 All_bins//M1.001.fasta 
## 3 >NODE_12_length_174033_cov_81.709298 All_bins//M1.001.fasta 
## 4 >NODE_16_length_150145_cov_83.615665 All_bins//M1.001.fasta 

 

In the column Seq.ID in the table “df” a “>” is before the IDs, and this does not exist in 

new_krk.tbl. The “>” must therefore be removed from “df” before the two tables can be 

merged. Merged df and new_krk.tbl to connect taxonomy to wanted samples. 

df$Seq.ID <- df$Seq.ID %>% gsub(pattern = ">", replacement = "") 
 
new.table <- left_join(new_krk.tbl, df, by = "Seq.ID") 
 
head(new.table, 3) 

## # A tibble: 3 x 6 
##   `C/U` Seq.ID         Tax.ID         bp.length LCA                    
Bin_id    
##   <chr> <chr>          <chr>              <dbl> <chr>                  
<chr>     
## 1 C     NODE_6_length… Collinsella a…    215984 84999:45 0:3 84999:5 … 
All_bins… 
## 2 C     NODE_12_lengt… Collinsella a…    174033 84999:28 2003188:6 84… 
All_bins… 
## 3 C     NODE_16_lengt… Collinsella a…    150145 0:61 34:5 0:325 34:5 … 
All_bins… 
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Extracted all Bifidobacterium species from my samples (Sample and T) in their own table and 

bound them together to “tbl”. 

tbl1 <- new.table %>%  
  filter(str_detect(Tax.ID, "Bifidobacterium")) %>%  
  filter(str_detect(Bin_id, "Sample"))  
 
tbl2 <- new.table  %>%  
  filter(str_detect(Tax.ID, "Bifidobacterium")) %>%  
  filter(str_detect(Bin_id, "T"))  
 
only_bifido <- bind_rows(tbl1, tbl2) 
 
head(only_bifido, 3) 

## # A tibble: 3 x 6 
##   `C/U` Seq.ID        Tax.ID          bp.length LCA                   B
in_id     
##   <chr> <chr>         <chr>               <dbl> <chr>                 <
chr>      
## 1 C     NODE_9601_le… Bifidobacteriu…       955 1678:97 1685:21 1678… A
ll_bins/… 
## 2 C     NODE_10649_l… Bifidobacteriu…       875 1678:11 216816:12 16… A
ll_bins/… 
## 3 C     NODE_3323_le… Bifidobacteriu…      2442 1678:232 1685:23 0:3… A
ll_bins/… 

 

Extracted unique bins from the table only containing Bifidobacterium. 

unique.bins <- unique(only_bifido$Bin_id) 
print(unique.bins) 

##  [1] "All_bins//Sample10.005.fasta" "All_bins//Sample10.006.fasta" 
##  [3] "All_bins//Sample10.008.fasta" "All_bins//Sample10.013.fasta" 
##  [5] "All_bins//Sample1.003.fasta"  "All_bins//Sample1.004.fasta"  
##  [7] "All_bins//Sample1.005.fasta"  "All_bins//Sample1.008.fasta"  
##  [9] "All_bins//Sample10.2.fa"      "All_bins//Sample1.21.fa"      
## [11] "All_bins//Sample1.8.fa"       "All_bins//Sample2.001.fasta"  
## [13] "All_bins//Sample2.005.fasta"  "All_bins//Sample2.008.fasta"  
## [15] "All_bins//Sample2.009.fasta"  "All_bins//Sample2.012.fasta"  
## [17] "All_bins//Sample2.013.fasta"  "All_bins//Sample3.003.fasta"  
## [19] "All_bins//Sample4.003.fasta"  "All_bins//Sample4.005.fasta"  
## [21] "All_bins//Sample5.001.fasta"  "All_bins//Sample5.002.fasta"  
## [23] "All_bins//Sample6.005.fasta"  "All_bins//Sample6.006.fasta"  
## [25] "All_bins//Sample6.007.fasta"  "All_bins//Sample6.012.fasta"  
## [27] "All_bins//Sample7.001.fasta"  "All_bins//Sample7.003.fasta"  
## [29] "All_bins//Sample7.004.fasta"  "All_bins//Sample7.005.fasta"  
## [31] "All_bins//Sample7.006.fasta"  "All_bins//Sample7.009.fasta"  
## [33] "All_bins//Sample8.006.fasta"  "All_bins//Sample9.001.fasta"  
## [35] "All_bins//Sample9.002.fasta"  "All_bins//T10.003.fasta"      
## [37] "All_bins//T10.004.fasta"      "All_bins//T6.003.fasta"       
## [39] "All_bins//T6.004.fasta"       "All_bins//T6.006.fasta"       
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## [41] "All_bins//T7.005.fasta"       "All_bins//T7.007.fasta"       
## [43] "All_bins//T7.009.fasta"       "All_bins//T7.010.fasta"       
## [45] "All_bins//T7.016.fasta"       "All_bins//T8.008.fasta"       
## [47] "All_bins//T8.011.fasta"       "All_bins//T8.012.fasta"       
## [49] "All_bins//T8.24.fa"           "All_bins//T9.005.fasta"       
## [51] "All_bins//T9.007.fasta" 

 

Making fasta file with the sequence ID from only Bifidobacterium species and 
their predicted amino acid sequences 

With the unique bins containing DNA sequence, I got corresponding bins with estimated 

amino acid sequence. 

To read in the amino acid sequences to a table, I made a loop that extract all sequences from 

the folder “aasequence”, both Seq.ID and the belonging sequence, and attached to right bin. 

This was done by combining two loops. The first loop was to read all files in the folder, as 

done before, and the second was to get all sequences in their own column corresponding to 

their Seq.ID. First, I made a vector with the path to get the sequences from the folder. 

library(tidyverse) 
library(dplyr) 

bins <- list.files(path = "aasequence/", pattern = "*.fa", full.names = T) 
 
df_table <- data.frame(matrix(ncol = 3,  
                              dimnames = list(NULL, c("Seq.ID", "Sequence"
, "Bin_id")))) 
 
for (b in 1:length(bins)) { 
  lines3 <- readLines(bins[b]) 
  idx3 <- which(str_detect(lines3, pattern = ">"))  
  fasta.tbl3 <- tibble(Seq.ID = lines3[idx3], Sequence = "", Bin_id = "") 
  N.rows <- nrow(fasta.tbl3) 
  for (row in 1:N.rows) { 
    seq.line.first <- idx3[row] + 1  
    if(row == N.rows){ 
      seq.line.last <- length(lines3)  
    } else { 
      seq.line.last <- idx3[row + 1] - 1    
    } 
    seq.lines <- lines3[seq.line.first:seq.line.last]  
    fasta.tbl3$Sequence[row] <- str_c(seq.lines, collapse = "") 
  } 
  fasta.tbl3$Bin_id <- rep(bins[b], nrow(fasta.tbl3)) 
  df_table <- rbind.data.frame(df_table, fasta.tbl3) 
} 
 
df_table <- df_table[-1,] #Have to remove the first row, because this is b
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lank 
 
head(df_table, 3) 

##                                                                                                                                     
Seq.ID 
## 2     >NODE_1_length_450894_cov_23.679890_1 # 2 # 529 # 1 # ID=1_1;part
ial=10;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.472 
## 3 >NODE_1_length_450894_cov_23.679890_2 # 716 # 1339 # 1 # ID=1_2;parti
al=00;start_type=ATG;rbs_motif=AGGA;rbs_spacer=5-10bp;gc_cont=0.458 
## 4 >NODE_1_length_450894_cov_23.679890_3 # 1391 # 1738 # -1 # ID=1_3;par
tial=00;start_type=ATG;rbs_motif=None;rbs_spacer=None;gc_cont=0.526 
##                                                                                                                                                                                                           
Sequence 
## 2                                 GHCGYALKATHVPNSTGYFRCTKRTENKGCPGCGKIR
KEEFEQFIFSTMQEKFKDFQILHGREEKVNPKLTAYQVELAQVEAEIEKLLDTLTGANATLLAYANKKIEELDT
RRQTISKAIAELSVETISPQQIKKLSYYLDNWDSIDFDDKRKAADGLISTIKATSDRVQIEWKI* 
## 3 MAKKNTKRGFTLVELIVVLVILAILAALLIPALTGYIDKARKSQVVAETRMLTQAVQTEMSTLYASNEY
ATLLKVGKNAFTAAAKGGQPVFDYERQLTSLAERYNAIVKLSEVPSLSDGSGSFFAVANYKCQLKWVVYSDGKG
YYGVYCQADGTVTGYSNKEVTGYETYYDTNIGKVICDVTADVTDPDEPVPWTKTAVYYGLGLLN* 
## 4                                                                                             
MYDGDKLISFVDGFVTDDADLTDEMYENAAMHNENGAWQMIFGVNTLPAYRQQGYAGELIQKAITDAKEQGRKG
LVLTCKNRLVHYYARFGFVDEGMTDKSTHGNVAWHQMRLAF* 
##                              Bin_id 
## 2 aasequence//Sample1.003.fasta.faa 
## 3 aasequence//Sample1.003.fasta.faa 
## 4 aasequence//Sample1.003.fasta.faa 

 

Removed “>” from the Seq.ID and “.faa” from the Bin_id to be able to combine df_table with 

only_bifido by both Seq.ID and Bin_id. By combining these tables I will get a table with 

amino acid sequences only attached to the wanted Seq.IDs with Bifidobacterium. 

df_table$Seq.ID <- df_table$Seq.ID %>% gsub(pattern = ">", replacement = "
") 
df_table$Bin_id <- df_table$Bin_id %>% gsub(pattern = ".faa", replacement 
= "") 
 
head(df_table, 3) 

##                                                                                                                                    
Seq.ID 
## 2     NODE_1_length_450894_cov_23.679890_1 # 2 # 529 # 1 # ID=1_1;parti
al=10;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.472 
## 3 NODE_1_length_450894_cov_23.679890_2 # 716 # 1339 # 1 # ID=1_2;partia
l=00;start_type=ATG;rbs_motif=AGGA;rbs_spacer=5-10bp;gc_cont=0.458 
## 4 NODE_1_length_450894_cov_23.679890_3 # 1391 # 1738 # -1 # ID=1_3;part
ial=00;start_type=ATG;rbs_motif=None;rbs_spacer=None;gc_cont=0.526 
##                                                                                                                                                                                                           
Sequence 
## 2                                 GHCGYALKATHVPNSTGYFRCTKRTENKGCPGCGKIR
KEEFEQFIFSTMQEKFKDFQILHGREEKVNPKLTAYQVELAQVEAEIEKLLDTLTGANATLLAYANKKIEELDT
RRQTISKAIAELSVETISPQQIKKLSYYLDNWDSIDFDDKRKAADGLISTIKATSDRVQIEWKI* 
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## 3 MAKKNTKRGFTLVELIVVLVILAILAALLIPALTGYIDKARKSQVVAETRMLTQAVQTEMSTLYASNEY
ATLLKVGKNAFTAAAKGGQPVFDYERQLTSLAERYNAIVKLSEVPSLSDGSGSFFAVANYKCQLKWVVYSDGKG
YYGVYCQADGTVTGYSNKEVTGYETYYDTNIGKVICDVTADVTDPDEPVPWTKTAVYYGLGLLN* 
## 4                                                                                             
MYDGDKLISFVDGFVTDDADLTDEMYENAAMHNENGAWQMIFGVNTLPAYRQQGYAGELIQKAITDAKEQGRKG
LVLTCKNRLVHYYARFGFVDEGMTDKSTHGNVAWHQMRLAF* 
##                          Bin_id 
## 2 aasequence//Sample1.003.fasta 
## 3 aasequence//Sample1.003.fasta 
## 4 aasequence//Sample1.003.fasta 

 

Made a loop to extract all sequences connected to Seq.ID from “only_bifido”. Included 

Tax.ID here to get an overview over the different Bifidobacterium species. 

aa_bifido_seq_tbl <- data.frame(matrix(ncol = 4, dimnames = list(NULL, c("
Seq.ID", "Sequence", "Bin_id", "Tax.ID")))) 
 
for (c in 1:nrow(only_bifido)) { 
  indeks <- grep(only_bifido$Seq.ID[c], df_table$Seq.ID) 
  bifido_tbl <- tibble(Seq.ID = df_table$Seq.ID[indeks],  
                Sequence = df_table$Sequence[indeks],  
                Tax.ID = only_bifido$Tax.ID[c]) 
  bifido_tbl$Bin_id <- rep(only_bifido$Bin_id[c], nrow(bifido_tbl)) 
  aa_bifido_seq_tbl <- rbind.data.frame(aa_bifido_seq_tbl, bifido_tbl) 
} 
 
aa_bifido_seq_tbl <- aa_bifido_seq_tbl[-1,] #Have to remove the first row, 
because this is blank 
 
head(aa_bifido_seq_tbl, 3) 

##                                                                                                                                       
Seq.ID 
## 2 NODE_9601_length_955_cov_23.806075_1 # 268 # 702 # -1 # ID=101_1;part
ial=00;start_type=ATG;rbs_motif=AGGAG;rbs_spacer=5-10bp;gc_cont=0.494 
## 3    NODE_10649_length_875_cov_38.738402_1 # 2 # 874 # -1 # ID=103_1;pa
rtial=11;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.684 
## 4    NODE_466_length_21106_cov_18.691484_1 # 67 # 672 # 1 # ID=40_1;par
tial=00;start_type=ATG;rbs_motif=AGGA;rbs_spacer=5-10bp;gc_cont=0.543 
##                                                                                                                                                                                                                                                                                              
Sequence 
## 2                                                                                                                                                   
MASLLQGFKEVQLVKPVGKTVMTVTDSVVRFNKATAEVLNFPAQVKILINDKTRQIAVTPTTAKADNAVKFSKG
EGKQTTSVSIKDAVLVEAISKYFTLVEAPEGEVSFASANGTAYPEDKTVIFDVANATAGTMKRRGRKKAE* 
## 3 AYIDEFKDRFRVGPICRVLAASLDCGSVTPRGYRMFRSRPVSRMAARHEALARDILEIHADSFMAVYGY
RKTRARLLARGWDPAEIGRDQVTNVMRELGIRGVRRGGTPVATEPAKGTGGRPDLVERRFEAEAPNRLHVADIT
YVRMANGSFGYTAFAADVFARRIVGWACATTLDTRELPLQALEQAISWAASHGGADGLVHHSDHGAQYISLVYT
TRVGEFGMLPSTGTVGDSYDNAMAESADGAYKTELVWRRKPFQDSRDLESATFRWVSWRGLEASAPVLGLQDTG 
## 4                                                                                          
MHIMFVCTGNICRSPMGELLLTRYLSGTTVQVSSAGTHGLPMHQIDPNSALLMESVGIEPSGFRSRRLTQPMAK
SADLILCFEKDQRKDIVTLAPTAVKYTFLLGDFANMCEYCARNGLVKGLTIQERLQSVINSSSIIRPMLPEPED
IEDPHGKEYAKFRTAAEQTNKALRTILTSMRKHYRVEEAPVRPQITRQYAYTV* 
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##                         Bin_id                                        T
ax.ID 
## 2 All_bins//Sample10.005.fasta            Bifidobacterium breve (taxid 
1685) 
## 3 All_bins//Sample10.005.fasta Bifidobacterium longum NCC2705 (taxid 20
6672) 
## 4 All_bins//Sample10.008.fasta    Bifidobacterium breve 689b (taxid 138
5942) 

 

Removed "*" from the amino acid sequence, because this will interfere with programs used 

later in the data analysis. 

aa_bifido_seq_tbl$Sequence <- aa_bifido_seq_tbl$Sequence %>%  
  gsub(pattern = "\\*", replacement = "")  
 

Removed duplicates from the dataset to only get unique amino acid sequences. This was done 

because I got some duplicates in the Seq.ID column that prevented the finished datafile to go 

through the KEGG-database. 

new_aa_bifido_seq_tbl <- subset(aa_bifido_seq_tbl, !duplicated(aa_bifido_s
eq_tbl$Sequence)) 
 

Created a fasta file that contains Seq.ID and amino acid sequence from only Bifidobacterium 

species from my samples, to use as a reference in the proteome analysis. 

library(ampir) 

df_to_faa(new_aa_bifido_seq_tbl, file = "Bifido_aa_contigs.fasta") 
 
head(new_aa_bifido_seq_tbl, 3) 

##                                                                                                                                       
Seq.ID 
## 2 NODE_9601_length_955_cov_23.806075_1 # 268 # 702 # -1 # ID=101_1;part
ial=00;start_type=ATG;rbs_motif=AGGAG;rbs_spacer=5-10bp;gc_cont=0.494 
## 3    NODE_10649_length_875_cov_38.738402_1 # 2 # 874 # -1 # ID=103_1;pa
rtial=11;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.684 
## 4    NODE_466_length_21106_cov_18.691484_1 # 67 # 672 # 1 # ID=40_1;par
tial=00;start_type=ATG;rbs_motif=AGGA;rbs_spacer=5-10bp;gc_cont=0.543 
##                                                                                                                                                                                                                                                                                              
Sequence 
## 2                                                                                                                                                    
MASLLQGFKEVQLVKPVGKTVMTVTDSVVRFNKATAEVLNFPAQVKILINDKTRQIAVTPTTAKADNAVKFSKG
EGKQTTSVSIKDAVLVEAISKYFTLVEAPEGEVSFASANGTAYPEDKTVIFDVANATAGTMKRRGRKKAE 
## 3 AYIDEFKDRFRVGPICRVLAASLDCGSVTPRGYRMFRSRPVSRMAARHEALARDILEIHADSFMAVYGY
RKTRARLLARGWDPAEIGRDQVTNVMRELGIRGVRRGGTPVATEPAKGTGGRPDLVERRFEAEAPNRLHVADIT
YVRMANGSFGYTAFAADVFARRIVGWACATTLDTRELPLQALEQAISWAASHGGADGLVHHSDHGAQYISLVYT
TRVGEFGMLPSTGTVGDSYDNAMAESADGAYKTELVWRRKPFQDSRDLESATFRWVSWRGLEASAPVLGLQDTG 
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## 4                                                                                           
MHIMFVCTGNICRSPMGELLLTRYLSGTTVQVSSAGTHGLPMHQIDPNSALLMESVGIEPSGFRSRRLTQPMAK
SADLILCFEKDQRKDIVTLAPTAVKYTFLLGDFANMCEYCARNGLVKGLTIQERLQSVINSSSIIRPMLPEPED
IEDPHGKEYAKFRTAAEQTNKALRTILTSMRKHYRVEEAPVRPQITRQYAYTV 
##                         Bin_id                                        T
ax.ID 
## 2 All_bins//Sample10.005.fasta            Bifidobacterium breve (taxid 
1685) 
## 3 All_bins//Sample10.005.fasta Bifidobacterium longum NCC2705 (taxid 20
6672) 
## 4 All_bins//Sample10.008.fasta    Bifidobacterium breve 689b (taxid 138
5942) 

 

E.2 Correlation analysis 

Statistical analysis with correlation plots 

First, I loaded in the 16S, shotgun and SCFAs data, before I put 16S and SCFAs together in 

one table and shotgun and SCFAs together in another table. Then I did a correlation analysis 

within each table and based on this analysis, I made correlation plots. 

library(tidyverse) 
library(dplyr) 

results_16S <- read.delim("data/ res_16S_utvalg.txt") 
 
results_SCFA <- read.delim("data/res_SCFA.txt") 
 
result_Bifido <- read.delim("data/res_Bifido.txt") 
 
#Makes the samples in the first column of each table be the incorporated f
irst column. This will make the tables only consisting of values.  
row.names(results_16S) <- results_16S$Sample 
results_16S[1] <- NULL 
 
row.names(result_Bifido) <- result_Bifido$Samples 
result_Bifido[1] <- NULL 
 
row.names(results_SCFA) <- results_SCFA$Sample 
results_SCFA[1] <- NULL 
 
 
#Removed two species (columns) from the table with shotgun data because th
ey had only one value, and this was very low compared to the values of the 
other species.  
results_Bifido_reduced <- result_Bifido %>%  
  select(Bifidobacterium..taxid.1678.,  
         B.adolescentis,  
         B.bifidum,  
         B.breve,  
         B.kashiwanohense,  
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         B.longum,  
         B.longum.subsp..infantis,  
         B.longum.subsp..longum,  
         B.pseudocatenulatum) 

#Combined the factors to be correlated into the same table, and printing t
he first 3 rows to see that everything is correct 
df_Bifido.red_SCFA <- bind_cols(results_Bifido_reduced, results_SCFA) 
head(df_Bifido.red_SCFA, 3) 

##    Bifidobacterium..taxid.1678. B.adolescentis  B.bifidum   B.breve 
## T1                   0.00000000    0.000000000 0.01754386 0.9122807 
## T2                   0.02016129    0.004032258 0.03225807 0.7661290 
## T3                   0.00000000    0.000000000 0.00000000 0.0000000 
##    B.kashiwanohense   B.longum B.longum.subsp..infantis B.longum.subsp.
.longum 
## T1                0 0.00000000               0.05263158             0.0
1754386 
## T2                0 0.02016129               0.14516129             0.0
1209677 
## T3                0 0.00000000               1.00000000             0.0
0000000 
##    B.pseudocatenulatum Acetate Propionate Butyrate Isobutyric.acid 
## T1                   0 0.78816    0.07561  0.04585         0.06001 
## T2                   0 0.78857    0.12144  0.00000         0.08999 
## T3                   0 0.76474    0.09666  0.00000         0.04879 
##    Isovaleric.acid Valeric.acid 
## T1         0.01868      0.01169 
## T2         0.00000      0.00000 
## T3         0.08980      0.00000 

df_16S_SCFA <- bind_cols(results_16S, results_SCFA) 
head(df_16S_SCFA, 3) 

##    Bacteroides Bifidobacterium Clostridium.sensu.stricto.1 Escherichia.
Shigella 
## T1           0         0.39282                     0.06825              
0.09076 
## T2           0         0.60856                     0.10716              
0.07769 
## T3           0         0.79012                     0.01023              
0.14831 
##    Klebsiella Parabacteroides Streptococcus Subdoligranulum Veillonella 
Acetate 
## T1    0.00000               0             0         0.20775     0.04804 
0.78816 
## T2    0.10209               0             0         0.00000     0.03267 
0.78857 
## T3    0.00000               0             0         0.00000     0.00000 
0.76474 
##    Propionate Butyrate Isobutyric.acid Isovaleric.acid Valeric.acid 
## T1    0.07561  0.04585         0.06001         0.01868      0.01169 
## T2    0.12144  0.00000         0.08999         0.00000      0.00000 
## T3    0.09666  0.00000         0.04879         0.08980      0.00000 
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The correlation analysis used was Spearman correlation. This resulted in a list of 4, “R”, “P”, 

“P.unadj” and “type”, where “R” consist of a list of 3. Inside “R” we find a “r” matrix which 

shows Spearman correlation, a “n” matrix which shows the number of observations and a “P” 

matrix which shows the p-values (pairwise two-sided p-values). 

library(RcmdrMisc) 

corr_16S_SCFA <- rcorr.adjust(df_16S_SCFA, type = c("spearman")) 
 
corr_Bifido.red_SCFA <- rcorr.adjust(df_Bifido.red_SCFA, type = c("spearma
n")) 

 

In the correlation plots, both the Spearman correlation matrix and the pairwise two-sided p-

values matrix was used. 

head(corr_16S_SCFA$R$r, 3) 

##                             Bacteroides Bifidobacterium 
## Bacteroides                   1.0000000      -0.0786700 
## Bifidobacterium              -0.0786700       1.0000000 
## Clostridium.sensu.stricto.1  -0.5397065      -0.3021836 
##                             Clostridium.sensu.stricto.1 Escherichia.Shi
gella 
## Bacteroides                                  -0.5397065          -0.328
25514 
## Bifidobacterium                              -0.3021836           0.324
33749 
## Clostridium.sensu.stricto.1                   1.0000000           0.083
34435 
##                             Klebsiella Parabacteroides Streptococcus 
## Bacteroides                  0.2264853       0.2946172   0.062584482 
## Bifidobacterium             -0.3300115      -0.2474358   0.007377111 
## Clostridium.sensu.stricto.1  0.0000000      -0.2093589  -0.474382716 
##                             Subdoligranulum Veillonella   Acetate Propi
onate 
## Bacteroides                      -0.1841357  -0.3432734  0.206243 -0.09
14273 
## Bifidobacterium                  -0.4330127  -0.2396494  0.300000 -0.28
57143 
## Clostridium.sensu.stricto.1       0.4187179   0.3354102 -0.596309  0.47
94647 
##                                Butyrate Isobutyric.acid Isovaleric.acid 
## Bacteroides                  0.06956217      -0.6723686      -0.1949367 
## Bifidobacterium             -0.31427096      -0.1430554      -0.2636508 
## Clostridium.sensu.stricto.1  0.29545455       0.8069414       0.3598043 
##                             Valeric.acid 
## Bacteroides                   -0.1841357 
## Bifidobacterium               -0.4330127 
## Clostridium.sensu.stricto.1    0.4187179 
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head(corr_16S_SCFA$R$P, 3) 

##                             Bacteroides Bifidobacterium 
## Bacteroides                          NA       0.7804857 
## Bifidobacterium              0.78048570              NA 
## Clostridium.sensu.stricto.1  0.03784261       0.2736630 
##                             Clostridium.sensu.stricto.1 Escherichia.Shi
gella 
## Bacteroides                                  0.03784261            0.23
22862 
## Bifidobacterium                              0.27366296            0.23
82386 
## Clostridium.sensu.stricto.1                          NA            0.76
77636 
##                             Klebsiella Parabacteroides Streptococcus 
## Bacteroides                  0.4169609       0.2864478    0.82464366 
## Bifidobacterium              0.2296480       0.3739394    0.97918334 
## Clostridium.sensu.stricto.1  1.0000000       0.4539422    0.07399861 
##                             Subdoligranulum Veillonella    Acetate Prop
ionate 
## Bacteroides                       0.5112198   0.2103339 0.46084019 0.74
589527 
## Bifidobacterium                   0.1069075   0.3896377 0.27731678 0.30
193635 
## Clostridium.sensu.stricto.1       0.1203291   0.2216564 0.01896201 0.07
052975 
##                              Butyrate Isobutyric.acid Isovaleric.acid 
## Bacteroides                 0.8054207    0.0060301732       0.4862953 
## Bifidobacterium             0.2539635    0.6110227517       0.3423781 
## Clostridium.sensu.stricto.1 0.2850158    0.0002769747       0.1877498 
##                             Valeric.acid 
## Bacteroides                    0.5112198 
## Bifidobacterium                0.1069075 
## Clostridium.sensu.stricto.1    0.1203291 

head(corr_Bifido.red_SCFA$R$r, 3) 

##                              Bifidobacterium..taxid.1678. B.adolescenti
s 
## Bifidobacterium..taxid.1678.                    1.0000000     0.2781296
3 
## B.adolescentis                                  0.2781296     1.0000000
0 
## B.bifidum                                       0.1789697     0.0250477
5 
##                               B.bifidum    B.breve B.kashiwanohense    
B.longum 
## Bifidobacterium..taxid.1678. 0.17896966 0.36159386       0.18555425  0.
09815714 
## B.adolescentis               0.02504775 0.11438801       0.03931574 -0.
03074458 
## B.bifidum                    1.00000000 0.05822174       0.16805028 -0.
24802060 
##                              B.longum.subsp..infantis B.longum.subsp..l
ongum 
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## Bifidobacterium..taxid.1678.               0.08108633            0.0490
78569 
## B.adolescentis                             0.02305844            0.0076
86145 
## B.bifidum                                 -0.50899750            0.2054
49899 
##                              B.pseudocatenulatum    Acetate  Propionate 
## Bifidobacterium..taxid.1678.           0.3085263 -0.1020584  0.18923325 
## B.adolescentis                         0.1569343 -0.3012401  0.47228313 
## B.bifidum                              0.3453953  0.2102477 -0.06454972 
##                                 Butyrate Isobutyric.acid Isovaleric.aci
d 
## Bifidobacterium..taxid.1678.  0.09594782      0.09413161      -0.260759
5 
## B.adolescentis                0.10080137      0.22335082      -0.341962
7 
## B.bifidum                    -0.14356319     -0.52877874      -0.327196
1 
##                              Valeric.acid 
## Bifidobacterium..taxid.1678.   -0.1841357 
## B.adolescentis                 -0.1326516 
## B.bifidum                       0.0000000 

head(corr_Bifido.red_SCFA$R$P, 3) 

##                              Bifidobacterium..taxid.1678. B.adolescenti
s 
## Bifidobacterium..taxid.1678.                           NA      0.315509
6 
## B.adolescentis                                  0.3155096             N
A 
## B.bifidum                                       0.5233444      0.929394
7 
##                              B.bifidum   B.breve B.kashiwanohense  B.lo
ngum 
## Bifidobacterium..taxid.1678. 0.5233444 0.1854036        0.5079134 0.727
8233 
## B.adolescentis               0.9293947 0.6847972        0.8893619 0.913
3867 
## B.bifidum                           NA 0.8367105        0.5493899 0.372
7746 
##                              B.longum.subsp..infantis B.longum.subsp..l
ongum 
## Bifidobacterium..taxid.1678.               0.77390255              0.86
21064 
## B.adolescentis                             0.93499082              0.97
83115 
## B.bifidum                                  0.05265065              0.46
26041 
##                              B.pseudocatenulatum   Acetate Propionate  
Butyrate 
## Bifidobacterium..taxid.1678.           0.2632147 0.7174071 0.49938418 0
.7337420 
## B.adolescentis                         0.5764656 0.2752382 0.07546689 0
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.7207584 
## B.bifidum                              0.2073427 0.4519842 0.81921976 0
.6097443 
##                              Isobutyric.acid Isovaleric.acid Valeric.ac
id 
## Bifidobacterium..taxid.1678.      0.73861793       0.3478928    0.51121
98 
## B.adolescentis                    0.42360959       0.2121951    0.63744
15 
## B.bifidum                         0.04270087       0.2338861    1.00000
00 

  

The correlation plots used the p-values in the rho-matrix and measured up against the 

significant level. The type was set to only show an upper triangular matrix. p.mat is the matrix 

of p-values that was considered against the significant level, which was set to 0.05. The insig 

shows the specialized insignificant correlation coefficients, and with blank, the corresponding 

symbols will not be visible. tl.col is the color of the text labels, which was set to be black. 

library(corrplot) 

corrplot(corr_16S_SCFA$R$r,  
         type = "upper",  
         p.mat = corr_16S_SCFA$R$P,   
         sig.level = 0.05,  
         insig = "blank",   
         tl.col = "black")  
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corrplot(corr_Bifido.red_SCFA$R$r,  
         type = "upper",  
         p.mat = corr_Bifido.red_SCFA$R$P,  
         sig.level = 0.05,  
         insig = "blank",  
         tl.col = "black") 

 

 

 







 

 

 


