
1 
 

Enhancing Operation of a Sewage Pumping Station for Inter Catchment Wastewater Transfer by Using 

Deep Learning and Hydraulic Model 

Duo Zhang1; Erlend Skullestad Hølland1; Geir Lindholm2; Harsha Ratnaweera1 

1. Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway 

2. Rosim AS, Brobekkveien 80, 0582, Oslo, Norway 
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hydraulic model, the effectiveness of ICWT is investigated in a sewer system in Drammen, Norway. 

Concerning the whole system performance, we found that the Søren Lemmich pump station plays a vital 

role in the ICWT framework. To enhance the operation of this pump station, it is imperative to construct a 

multi-step ahead water level prediction model. Hence, one of the most promising artificial intelligence 

techniques, Long Short Term Memory (LSTM), is employed to undertake this task. Experiments 

demonstrated that LSTM is superior to Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), 

Feed-forward Neural Network (FFNN) and Support Vector Regression (SVR). 
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1. Introduction 

Control overflow from the sewer system and Wastewater Treatment Plant (WWTP) is a crucial and  

challenging task for many cities in developed countries, such as the Drammen city in Norway. The 

Drammen city is located in southeastern Norway, it has two wastewater treatment plants: the Muusøya 

WWTP and the Solumstrand WWTP. The Muusøya WWTP has a designed treatment capacity of 33,000 

PE (population equivalents), a dimensioning flow (Qdim) of 780 m3/h, and a maximum flow (Qmax) of 

1,200 m3/h. The Solumstrand WWTP has a designed treatment capacity of 130,000 PE, the Qdim and Qmax 

for the Solumstrand WWTP is 2,000 m3/h and 4,000 m3/h respectively. Combined sewer accounts for more 

than 80% and less than 50% respectively in the sewer system associated with the Muusøya WWTP and the 

Solumstrand WWTP. Moreover, the drainage area of the Muusøya WWTP has a higher population density 

than the rest of Drammen due to it is located in the traditional city center. The lower WWTP capacity, a 

higher portion of combined sewer, and denser population have resulted in the severe overflow problem in 

the Muusøya area. Therefore, the Drammen city launched the Regnbyge 3M project to mitigate overflow 

from the sewer system and the WWTP of Drammen. 

There are two types of overflow mitigation measures: structural measures and nonstructural measures (Lee 

et al., 2017). Structural measures refer constructing new hydraulic facilities and the rehabilitation of sewer 

components (e.g., expansion of sewer pipes). Nonstructural measures are methods that maximize the 

capacity of the sewer system with minimal changes to the infrastructure through intelligent operating 

strategies. As the most popular structural measures, the storage tank is still servicing in many developed 

cities. However, due to limited space or high investments, storage tanks cannot be always constructed in 

densely populated urban context (Ganora et al., 2017; Ngo et al., 2016) such as the Muusøya area. The 

drawbacks of structural measures have motivated the research for nonstructural methods, such as exploit 

the sewer in-line storage capacity (Darsono and Labadie, 2007; Grum et al., 2011; Garofalo et al., 2017), 

intelligent sewer control (Lee et al., 2017) and explore underground space (Wu et al., 2016). 

Considering the spatial mismatch of capacity of the sewer system and WWTP between the Muusøya 
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WWTP and the Solumstrand WWTP, as well as according to the goal of the Regnbyge 3M project, we 

propose a novel nonstructural method: Inter Catchment Wastewater Transfer (ICWT) for the Drammen city. 

The idea of ICWT is inspired by the concept of Inter-basin Water Transfer (IBWT). IBWT refers to transfer 

water from basins having sufficient water (donor basin) to basins facing water shortages (receiving basin) 

(Wang et al., 2015, Yevjevich 2001). IBWT utilizes the differences of flow regime in different basins to 

create a win-win situation.  

 

Fig. 1. Overview of the sewer system in Drammen 

Fig.1 gives an overview of Drammen. The Drammen Fjord flow through Drammen, there are two 

catchments on the north of the Drammen Fjord, the Muusøya catchment and the Bragernes catchment, the 

curve in Fig. 1 (a) is the boundary of these two catchments. The Muusøya WWTP treats sewage collected 

in the Muusøya catchment. Wastewater from the Bragernes catchment is transported by the Søren Lemmich 
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pump station (Fig. 1 (b)) from the north of the Drammen Fjord to south (the Strømsø catchment, Fig. 1 (c)). 

Afterward, sewage from the Bragernes catchment and the Strømsø catchment merges with wastewater from 

the Konnerud catchment and the Kobbervikdalen catchment, then discharge to the Solumstrand WWTP. 

We generalize the concept of IBWT to sewer system management, the drainage area of the Muusøya 

WWTP can be regarded as the ‘donor basin’, and the drainage area of the Solumstrand WWTP can be 

regarded as the ‘receiving basin’. If flow to the Muusøya WWTP already exceeded its capacity and the 

Solumstrand WWTP still has leftover treatment capacity, part of wastewater can be conveyed to the 

Solumstrand WWTP for treatment. The ultimate objective of ICWT is to balance the distribution of sewer 

flow and uneven WWTP treatment capacities in different catchments. 

Therefore, three specific questions are raised: First, whether ICWT could reduce the overflow? Second, 

what are the individual and combined effects of ICWT and structural measures such as storage tank? Third, 

it is obvious that under the ICWT scheme, the Søren Lemmich pump station will become the bottleneck of 

the whole system. The Søren Lemmich pump station will be requested to operate with high sensitivity, if 

the Søren Lemmich pump station cannot pump wastewater timely, the ICWT will only bring extra burden 

to the Bragernes catchment rather than mitigate overflow. The operation of a pump station highly depends 

on the water level information. Pumps will be activated when the water level reaches the start level of 

pumps. The operation of a pump station can be enhanced if accurate water level prediction information can 

be provided (Chiang et al., 2010). To timely operate a pump, enhance decision-making or give enough 

response time for operators, it is imperative to find a model that can provide the multi-step ahead water 

level information (Liu et al., 2016; Chang et al., 2014; Chen et al., 2014).  

In present practice, the assessments of the effectiveness of nonstructural measures count on hydraulic 

models mainly (Autixier et al., 2014; Lucas and Sample, 2015; Chiang et al., 2010; Seggelke et al., 2005). 

Hydraulic models allow engineers gain insight into the functioning and effects of nonstructural measures 

(Chiang et al., 2010). So that the output of hydraulic models is suitable for the first and the second question. 

However, the implementation of hydraulic models requires perfect foreknowledge of the sewer system. 
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Besides, calibration, simulation and operation of hydraulic models is a time-consuming manual process. 

The hydraulic models can only provide information based on previous or current rainfall events. The 

aforementioned disadvantages of hydraulic models limit its application for question 3 (El-Din et al., 2002). 

Indeed, question 3 is a hydrologic time series problem. In recent years, there is a significant rise in the 

number of machine learning approaches applied to hydrologic modeling and forecasting (Nourani et al., 

2014). Unlike hydraulic models that derived from the hydraulic and hydrological process, the machine 

learning approaches learning from data without human intervention. Moreover, the trained machine 

learning algorithms can produce future hydrological data by being fed with current and previous data. 

Abovementioned advantages of machine learning have stimulated researchers to absorb it into studies about 

the sewer system (Yu et al., 2013; Montserrat et al., 2015; Granata et al., 2016; Zhang et al., 2016; Mounce 

et al., 2014). 

The machine learning methods have been less active in the past decade during a period called artificial 

intelligence (AI) winter (Marçais & de Dreuzy 2017). In recent years, with the computer program (Google 

DeepMind’s AlphaGo) defeated Go game world champion (Silver et al., 2016), there is renewed interest in 

machine-learning methods. The breakthrough technology behind AlphaGo is state of the art branch of 

machine learning - deep learning. The deep learning is a topic that is making big waves now, in addition to 

AlphaGo, another typical application of deep learning is the latest Google translation system. The new 

Google translation system vastly improved the translation quality, brought service nearly to the level of 

human translators (Google, 2016). The game changer behind the latest Google translation system is a kind 

of Recurrent Neural Network (RNN), Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber 

1997).  

When performing translation, the model has to consider not only the current word, but also the other words 

in the sentence or even paragraph. Data with this kind of context information called sequential data. Time 

series data are the most popular form of sequential data, stimulated by the success of LSTM on machine 

translation, a few studies have explored the power of LSTM on traffic time series forecasting (Hsu, 2017). 
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In a case study using speed data from a sensor in Beijing, China, Ma et al., (2015) made a comparison 

between LSTM and RNN, SVM and traditional time series models, and LSTM outperforms other methods 

on time forecasting. In Tokyo, Song et al., (2016) developed an LSTM based system for predicting human 

mobility and transportation mode at a citywide level. Using traffic time series data from a highway around 

Oslo, Kanestrøm (2017) compared LSTM with recent advances of Stacked Sparse Auto Encoder (SSAE) 

and Deep Neural Network (DNN) on time series forecasting. The results found that the LSTM model always 

outperformed other models. Although LSTM has shown its superior performance, to the best of the author’s 

knowledge, there are no prior reports about the application of LSTM in the urban hydrology studies, the 

effectiveness of LSTM need to be investigated.  

The objective of this study has three components: (1) assessing the feasibility of ICWT, (2) studying the 

individual and combined effects of ICWT and storage tank, and (3) evaluating the performance LSTM on 

hydrologic time series prediction. 

2. Method and materials 

2.1 The Regnbyge.no sewer monitoring system 
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Fig. 2. The user interface of the Regnbyge.no sewer monitoring system 

For the purpose of monitoring the sewer system as well as collecting data for model development, the 

Rosim AS, Norway developed a sewer monitoring system, Regnbyge.no, at the initial phase of the 

Regnbyge 3M project. The Regnbyge.no system consists of a number of water level sensors, velocity 

sensors from NIVUS GmbH, Germany and rain gauges deployed in Drammen. These sensors and rain 

gauges transmit collected data wirelessly to the data center at Rosim AS. A spatial database is employed to 

ease the process of searching, editing and managing of the collected data. Furthermore, a web Geographic 

Information System (GIS) is used to visualize data in the user interface of the Regnbyge.no system. Fig. 2 

is the screenshot of the Regnbyge.no sewer monitoring system. 

2.2 Hydraulic model 

 

Fig. 3. Hydraulic model for the sewer system of Drammen 
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To test whether could ICWT reduce overflow, as well as study the individual and combined effects of 

ICWT and storage tank in considering the whole system behavior (question 1 and 2), a fully detailed 

hydraulic model was developed. Fig. 3 shows the hydraulic model for the sewer system of Drammen, the 

model consists of 9113 pipes, 9094 manholes, 129 weirs, 78 pumps and 39 outlets. The software used for 

hydraulic model development is Rosie, which is an ArcGIS extension developed by Rosim AS. The Rosie 

software maintains the interface and all the functions of ArcGIS, while using the MOUSE DHI as the 

computational engine. Interest readers may refer to the website of Rosie 

(http://web.rosim.no/index.php/tjenester/modellering-av-vann-og-avlopsnett/, in Norwegian) for more 

details. 

In the present study, the direct response from the rainfall is calculated by the time–area (T-A) curve method 

A. The Rainfall Dependent Inflow/Infiltration (RDII) model is used to calculate the runoff generated from 

the previous hydrological processes. The pipe hydrodynamic computation is based on Saint-Venant 

continuity and momentum equations. The MOUSE RTC (Real Time Control) module is used to simulate 

different control strategies. 

2.3 Machine learning 

To provide the multi-step ahead water level prediction for managers to make decisions about pump 

operation. The performance of different machine learning methods, e.g. traditional algorithms such as 

Support Vector Regression (SVR), Feed-forward Neural Network (FFNN), traditional RNN and recent 

advances in deep learning (LSTM and Gated Recurrent Unit (GRU)) are evaluated.  

Support Vector Machine (SVM) methods such as SVR was the major competitor of the neural network 

family. Although neural networks such as deep learning are nowadays dominating artificial intelligence 

technology, however, once upon a time, neural networks were almost unnoticed as they were overshadowed 

by the SVM (Cortes & Vapnik, 1995). SVR is a subcategory of SVM designed for regression problems. 

SVR is a kind of linear model, but it could solve nonlinear problems by using a kernel to transfer data into 

http://web.rosim.no/index.php/tjenester/modellering-av-vann-og-avlopsnett/
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a feature space, and then use a linear learning mechanism to learn a nonlinear function. 

FFNN is one of the most classical neural network architectures, which is comprised of input layer, hidden 

layer, and output layer. There are some neurons in each layer and different layers are connected by weights 

and bias. The FFNN first computes the weighted sum of the inputs, which can be mathematically 

represented as: 

 s = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (1) 

Where 𝑤𝑖 represents the weights, 𝑥𝑖 is the inputs, 𝑏 is the bias. Afterwards, the computed weighted sum s 

is fed into the neuron. The neuron uses an activation function to transfer the weighted sum s into the output. 

Usually, the FFNN are trained by using Back propagation (BP) method, BP defines the relative importance 

of weights for input to a neuron use chain rule of differentiation, through adjusting the weights, the FFNN 

reduces differences between observed and predicted values. 

 

Fig. 4. Schematic of RNN, LSTM and GRU 

The memory function of human brain inspired the concept of RNN (Elman, 1990). In addition to the 
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weighted sum of input values, RNN also takes the state of the hidden neuron at the previous time steps as 

input for the next time step. As shown in Fig. 4 (a), the hidden neuron output at time step t is calculated by 

the equation:  

 ℎ𝑡 = 𝑓(𝑤ℎ  ℎ𝑡−1 + 𝑤𝑖 𝑥𝑡 + 𝑏) (3) 

Where ℎ𝑡 is state of the hidden neuron at the time step t, ℎ𝑡−1 is state of the hidden neuron at the time step 

t-1, 𝑤𝑖  and 𝑤ℎ  are weights between input values and hidden neurons, and between hidden neurons 

respectively, 𝑓() is the activation function. 

Vanishing and exploding gradients, i.e. the partial derivative calculated by the chain rule of differentiation 

going through the network either get very small and vanish, or get very large and explode, are common 

problems in the training of the RNN. When train the RNN use BP (also known as backpropagation through 

time (BPTT)), the chain rule of differentiation not only along the direction of hidden layer and weights, but 

also along each time steps. Because the error of derivation accumulates through time steps, it will be 

extremely hard to learn and tune the parameters of the earlier layers.  

LSTM was invented to combat with vanishing and exploding gradients problem. Different from traditional 

RNN, the LSTM uses a memory cell and three gates to control information in the hidden neuron, with 

on/off of the gates, information can get into, stays in or read from the cell. 

Fig. 4 (b) shows the neuron in the hidden layer of LSTM, i, f and o represent the input, forget and output 

gate respectively. c and 𝑐̅ denote the memory cell and the new memory cell. The principal of the memory 

cell in LSTM can be mathematically represented by the following equations: 

Input gate: 

 𝑖𝑡 = 𝜎𝑔(𝑊𝑖 ∗ 𝑥𝑡 + 𝑈𝑖 ∗ ℎ𝑡−1 + 𝑉𝑖°𝑐𝑡−1 + 𝑏𝑖) (12) 

Forget gate: 
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 𝑓𝑡 = 𝜎𝑔(𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑓 ∗ ℎ𝑡−1 + 𝑉𝑓°𝑐𝑡−1 + 𝑏𝑓) (13) 

Output gate: 

 𝑜𝑡 = 𝜎𝑔(𝑊𝑜 ∗ 𝑥𝑡 + 𝑈𝑜 ∗ ℎ𝑡−1 + 𝑉𝑜°𝑐𝑡−1 + 𝑏𝑜) (14) 

Cell state: 

 𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑐�̅� (15) 

 𝑐�̅� =  𝜎𝑐(𝑊𝑐 ∗ 𝑥𝑡 + 𝑈𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐) (16) 

Output vector: 

 ℎ𝑡 = 𝑜𝑡°𝜎ℎ(𝑐𝑡) (17) 

Where 𝑥𝑡 is the input vector. 𝑊, 𝑈, 𝑉, and 𝑏 are parameters for weights and bias. ° represents the scalar 

product of two vectors, 𝜎𝑔 is the sigmoid function, 𝜎ℎ and 𝜎𝑐 are the hyperbolic tangent function, for a 

given input z, the output of the hyperbolic tangent function is: 

 𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 +  𝑒−𝑧
 (18) 

The GRU is a recent advance in neural networks (Cho et al., 2014; Chung et al., 2014). As a variant of 

LSTM, the GRU also use a gating mechanism to learn long-term dependencies but its structure is much 

more simplified compare with LSTM. Fig. 4 (c) shows the gating mechanism of GRU. GRU has only a 

reset gate and an update gate. The GRU combines the input and forget gates into an update gate to balance 

between previous activation and the candidate activation. The activation of h at time t depends on h at the 

previous time and the candidate h (the ℎ̅ in Fig. 4 (c)). The update gate z decides how much of the previous 

memory to keep around. The GRU unit forgets the previously computed state when the reset gate r off.  

The GRU is formulated as: 

 𝑧𝑡 = 𝜎𝑔(𝑊𝑧 ∗ 𝑥𝑡 + 𝑈𝑧 ∗ ℎ𝑡−1 + 𝑏𝑧) (19) 
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 𝑟𝑡 = 𝜎𝑔(𝑊𝑟 ∗ 𝑥𝑡 + 𝑈𝑟 ∗ ℎ𝑡−1 + 𝑏𝑟) (20) 

 ℎ𝑡 = 𝑧𝑡°ℎ𝑡−1 + (1 − 𝑧𝑡)°ℎ�̅� (21) 

 ℎ�̅� =  𝜎ℎ(𝑊ℎ ∗ 𝑥𝑡 + 𝑈𝑡 ∗ (𝑟𝑡°ℎ𝑡−1) + 𝑏ℎ) (22) 

Where 𝑥𝑡 is the input vector, ℎ𝑡 is the output vector, 𝑧𝑡 is the update gate vector, ℎ𝑡 is the reset gate vector. 

𝑊, 𝑈 and 𝑏 are parameters for weights and bias. ° represents the scalar product of two vectors, 𝜎(. ) is the 

sigmoid function. 𝜎𝑔  represent the sigmoid activation function, 𝜎ℎ  represent the hyperbolic tangent 

activation function. 

In this study, the LSTM, GRU, RNN and FFNN is implemented using Keras. Keras is a Python based high-

level deep learning library. It is running on top of TensorFlow or Theano. TensorFlow is used as the backend 

of Keras in this study. TensorFlow is an open-source deep learning software released by Google in 2015. 

The SVR is implemented using Python machine learning library Scikit-learn.  

2.4 Model performance criteria 

The performance of different models is evaluated by three criteria, the root mean square error (RMSE), 

Nash-Sutcliffe Efficiency (NSE) and the R2. The calculation of RMSE as shown below: 

 𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖
𝑜𝑏𝑠  − 𝑌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

𝑛
 (11) 

The NSE is calculated by the following equation: 

 𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠  −  𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠  −  𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

] (12) 

The equation for R2 is: 

 𝑅2 = [
(∑ (𝑌𝑖

𝑠𝑖𝑚 − 𝑌𝑠𝑖𝑚
𝑚𝑒𝑎𝑛)𝑛

𝑖=1 (𝑌𝑖
𝑜𝑏𝑠  − 𝑌𝑚𝑒𝑎𝑛))2

∑ (𝑌𝑖
𝑠𝑖𝑚 − 𝑌𝑠𝑖𝑚

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1 ∑ (𝑌𝑖
𝑜𝑏𝑠  −  𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

] (13) 

In the three above listed equations:  
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𝑌𝑖
𝑜𝑏𝑠 = the 𝑖-th observed data.  

𝑌𝑖
𝑠𝑖𝑚 = the 𝑖-th simulated data.   

𝑌𝑚𝑒𝑎𝑛 = mean value of observed data. 

𝑌𝑠𝑖𝑚
𝑚𝑒𝑎𝑛 = mean value of simualted data. 

𝑛 = number of observed data. 
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3. Results 

3.1 Calibration of the hydraulic model 

 

Fig.5. Hydrographs of observed versus hydraulic model simulated flow 

 

Table 1. Calibration results of hydraulic model 

Monitoring site NSE R2 RMSE 

Austad 0.54 0.91 0.008 

Børresen skole 0.68 0.71 0.014 

Kobbervikdalen-gangsti 0.80 0.85 0.010 

Torgeir-vraaplass 0.51 0.67 0.036 
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Vinjesgt 0.53 0.57 0.029 

 

Flow data recorded by the regnbyge.no sewer monitoring system is used to calibrate the hydraulic model. 

Fig. 5 shows the hydrographs of the hydraulic model outputs versus the recorded values at five monitoring 

sites. It clearly indicates that the simulated values are consistent with the recorded values. Table 1 lists the 

model performance criteria. All the criteria show acceptable values. Results display in Fig. 5 and Table 1 

confirmed a high reliability of the hydraulic. The calibrated model is used in the following scenario 

simulations. 

3.2 Scenario simulations 

In the current phase of the Regnbyge 3M project, in order to mitigate overflow from the Muusøya WWTP, 

the Drammen municipality is planning to construct a storage tank at Landfalloverløpet, however, due to 

dense buildings and population, the maximum size of the storage tank is restricted to 20,000 m3, which is 

insufficient to deal with the current overflow situation. The proposed ICWT solution is expected to 

compensate insufficient capacity of the storage tank. 

Eight scenarios are designed to study individual and combined effects of the storage tank and ICWT on 

overflow mitigation. The operation of the storage tank and ICWT is simulated using the RTC module in 

Rosie. When the inflow to the Muusøya WWTP exceeds its maximum capacity, the wastewater is diverted 

to the storage tank, if the storage tank is full, then the ICWT is activated to convey wastewater to the 

Brageners catchment. Table 2 gives descriptions of the eight scenarios. The annual long simulation was run 

continuously from January 01, 2014 to December 31, 2014 to simulate sewer system behaviors. 

Table 2. Descriptions of designed scenarios for hydraulic simulation  

Scenario Descriptions 

Scenario 1 Baseline scenario, without any overflow control measures 

Scenario 2 Only construct a 1,000 m3 storage tank at Landfalloverløpet 

Scenario 3 Only construct a 5,000 m3 storage tank at Landfalloverløpet 

Scenario 4 Only construct a 20,000 m3 storage tank at Landfalloverløpet 
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Scenario 5 Only implement the ICWT between the Muusøya catchment and the Brageners catchment 

Scenario 6 1,000 m3 storage tank + ICWT 

Scenario 7 5,000 m3 storage tank + ICWT 

Scenario 8 20,000 m3 storage tank + ICWT 

 

 

Fig 6. Volume of reduced overflow from the Muusøya WWTP  

Fig. 6 displays overflow reduction from the Muusøya WWTP under different scenarios. The overflow from 

the Muusøya WWTP is 456,171 m3 for scenario 1. There is a clear tradeoff between storage tank sizes and 

overflow reduction. For scenario 2 with the smallest storage tank size, the overflow reduction is only 17,576 

m3. A 5000 m3 storage tank (scenario 3) reduces 83,768 m3 overflow. The largest storage tank (scenario 4) 

decreased the overflow more than 50% compare to scenario 1. Compare to ICWT, the storage tank seems 

less efficient. Scenario 5 with only ICWT reduces more overflow than scenario 3. With same storage tank 

size, the application of ICWT substantially enhances overflow reduction. The volume of overflow reduction 

for scenario 2, scenario 3 and scenario 4 are increased from 17,576 m3, 83,768 m3, 241,112 m3 to 145,012 

m3, 189,801 m3, 293,449 m3, respectively for scenario 6, scenario 7 and scenario 8. 

Table 3. Total overflow of the sewer system  
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Scenario 
Total overflow volume  

(m3) 

Scenario 1 2,096,668 

Scenario 2 2,071,522 

Scenario 3 2,001,256 

Scenario 4 1,837,773 

Scenario 5 1,976,164 

Scenario 6 1,954,927 

Scenario 7 1,895,657 

Scenario 8 1,771,521 

 

Alongside with the overflow from the Muusøya WWTP, the total overflow are also analyzed. Total 

overflow volume for scenario 1 is approximately 2,096,668 m3. Scenario 2 only decreases the overflow 

volume by 1.20%, which is almost not distinct to scenario 1. With the maximum available storage tank 

dimension (20,000 m3), the total overflow reduced to 1,837,773 m3, a reduction of 12.35%. Only implement 

ICWT reduces total overflow to 1,976,164 m3, which is more efficient than a 5,000 m3 storage tank. 

Compare to scenario 3 and scenario 4, the ICWT further decrease total overflow volume from 2,071,522 

m3 and 2,001,256 m3 to 1,954,927 m3 and 1,895,657 m3. Scenario 8 has the lowest overflow volume with 

both maximum storage tank size and ICWT. 

Table 4. Volume of overflow from the Søren Lemmich pump station 

Scenario Overflow from the Søren Lemmich pump station (m3) 

Scenario 1 32,940 

Scenario 5 52,076 

Scenario 6 45,079 

Scenario 7 34,862 

Scenario 8 18,650 

 

One obvious concern about implementing ICWT is whether it will bring extra burden to the Søren Lemmich 

pump station. Volume of overflow from the Søren Lemmich pump station are investigated. For scenario 5, 

the total amount of overflow is greater than scenario 1, it means only implement ICWT bring extra overflow 

to the Søren Lemmich pump station, although the total overflow reduced. Applying the storage tank resulted 

in a reduction in overflow from the Søren Lemmich pump station. For scenario 6, a 1,000 m3 storage tank 
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reduces overflow compare to scenario 5 but the overflow still higher than scenario 1. Overflow volume for 

scenario 7 is similar to scenario 1, it means a 5,000 m3 storage tank can relieve the burden of the Søren 

Lemmich pump station brought by ICWT. For scenario 8, one can observe that total overflow, overflow 

from the Muusøya WWTP and overflow from the Søren Lemmich pump station are reduced. It can be 

concluded that ICWT is an efficient overflow mitigating measure, however, in considering the whole 

system behavior, a storage tank with the size range from 5,000 m3 to 20,000 m3 is suggested to implement 

in conjunction with ICWT. 

3.3 Machine learning 

The hydraulic simulations clearly demonstrate the viability of ICWT (question 1 and 2). The purpose of 

this section is to explore the potentiality of machine learning, particularly deep learning in hydrological 

time series forecasting (question 3). To train the forecasting models, water level data of the Søren Lemmich 

pump station and corresponding rainfall data collected by the Regnbyge.no system is used. The data are 

collected from March 20, 2014 to December 1, 2014, there are 73,597 records with a temporal resolution 

of 5 min. To validate the generalization of the machine learning algorithm, the data are divided into two 

subsets: training set and testing set. Data from the first 75% were used for training, and the remaining 25% 

were used for testing. Table 5 gives the summary statistics of the datasets. In the present study, data are 

scaled to the range [0, 1] before training. After developing the models, the scaled values are rescaled to real 

values. 

Table 5. Summary statistics of the water level data 

Model 

stage 

Max 

water 

level 

(m) 

Average 

water level 

(m) 

Standard 

deviation of 

water level 

Max 

rainfall 

(mm/s) 

Average 

rainfall 

(mm/s) 

Standard 

deviation of 

rainfall 

Training 9.51 2.77 1.44 10.15 2.62 2.11 

Testing 9.18 3.17 2.15 9.07 2.68 2.08 
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Considering technical details of the pump operation, the outputs of the models are a lead-time up to 24 steps 

(2 hours). The inputs of the models are selected by applying cross-correlation and autocorrelation to the 

datasets, using the XCORR and AUTOCORR function in MATLAB R2016a. Afterward, the LSTM is 

implemented through trial and error experiments, different hyper-parameters such as the number of hidden 

layer, number of hidden neuron, and different optimizers (RMSprop, Adadelta, Adam, Adamax) are tried. 

The optimal structure of LSTM has two hidden layers with 128 hidden neurons in each layer, the Adam is 

chosen as the optimizer. Additionally, Dropout is used to prevent overfitting. During training, Dropout 

(Hinton et al., 2012) temporary discard part of neurons from the neural network. This procedure can be 

regarded as generating a number of “thinned” neural networks during training but use a single un-thinned 

neural network in testing (Srivastava et al., 2014). A dropout ratio of 0.35 is selected in this study. The 

LSTM is trained for 200 epochs with a batch size of 128. After ascertaining the structure of LSTM, the 

performance of LSTM is compared with other models. To make a fair comparison, the GRU, FFNN and 

RNN remain the same structure with LSTM. The performance of SVR is subject to the kernel function and 

the other parameters such as gamma, C and epsilon, the grid search method in the Python Scikit-learn 

library is used to find the optimal kernel and parameters for SVR. The optimized SVR used in this study is 

an RBF kernel SVR with a gamma value of 0.5, a C value of 5 and an epsilon value of 0.01.  

Table 6. Summary of model performance 

Lead time Performance criteria 
Deep learning methods Traditional methods SVM 

GRU LSTM RNN FFNN SVR 

20 minutes  

(4 steps) 

R2 0.8969 0.9014 0.9011 0.9006 0.8674 

RMSE 0.6987 0.6790 0.6774 0.6799 0.7886 

NSE 0.8943 0.9002 0.9006 0.8999 0.8653 

40 minutes 

(8 steps) 

R2 0.8942 0.8965 0.8738 0.8631 0.8573 

RMSE 0.7040 0.6929 0.7438 0.7175 0.8178 

NSE 0.8927 0.8961 0.8628 0.8586 0.8552 

1 hour R2 0.8900 0.8926 0.8376 0.8169 0.7902 
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(12 steps) 
RMSE 0.7186 0.7091 0.7991 0.8377 0.8959 

NSE 0.8882 0.8912 0.8417 0.8022 0.8174 

1 hour 20 minutes 

(16 steps) 

R2 0.8819 0.8832 0.8298 0.8072 0.7942 

RMSE 0.7435 0.7553 0.8021 0.8518 0.9042 

NSE 0.8803 0.8765 0.8143 0.8143 0.8038 

1 hour and 40 minutes 

(20 steps) 

R2 0.8721 0.8707 0.7903 0.7643 0.7750 

RMSE 0.7856 0.7740 0.8572 0.9258 0.9199 

NSE 0.8664 0.8703 0.7993 0.7524 0.7669 

2 hours 

(24 steps) 

R2 0.8620 0.8670 0.7756 0.7538 0.7390 

RMSE 0.8107 0.7961 0.8972 0.9232 0.9541 

NSE 0.8578 0.8628 0.7854 0.7155 0.7330 

 

The results for the multi-step-ahead water level forecasting within the test period are provided in Table 6. 

Overall, the LSTM outperforms other models based on R2, RMSE and NSE criteria. The performance of 

GRU is slightly worse than the LSTM but the difference is marginal. LSTM and GRU have higher R2 and 

NSE values than the other three models for long term predictions. As expected, longer time step caused less 

accuracy. The models perform consistently well for 4-step and 8-step ahead forecasting, whereas as the 

forecasting lead time exceeds 1 hour (12 steps), significant differences appear among their performances. 

The RMSE of the models increases, while the R2 and NSE decrease, as the forecasting step increases. 

The value of the three criteria indicates that the LSTM has the ability to predict water level with long lead 

time. The performance statistics of the LSTM yields an R2 of 0.8707 and 0.8670 respectively, an RMSE of 

0.7740 and 0.7961 respectively, and an NSE of 0.8703 and 0.8628 respectively for 20-step and 24-step 

ahead water level prediction. The results prove that with the gating mechanism and memory cell, the LSTM 

can substantially improve the accuracy of multi-step-ahead water level forecasts. 
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Fig. 7. Hydrographs of observed versus 24, 20 and 16-step ahead forecasted water levels of the LSTM, 

FFNN and SVR from three peak events 

To intuitively illustration the model performance, the hydrographs of Ground Truth (GT) value, LSTM, 

FFNN and SVR are presented in Fig.7. Fig.7 is observed versus 24, 20 and 16-step ahead forecasted water 

levels of the three selected models from three peak events. In general, LSTM is still superior to others. Fig.7 

shows that the LSTM predicted data are generally consistent with the observed data. It can be seen from 

Fig.7 that the developed LSTM model is able to predict the water level despite significant variations in 

water levels during rainfall events. In Fig.7 (a), (c), (d) and (f), one can observe that FFNN have significant 



22 
 

time-lag phenomena, whereas LSTM significantly mitigates this problem, it can be observed that water 

level increases are anticipated timely by LSTM. Besides, the LSTM is able to capture the major trends and 

peaks of observations. While FFNN often under-estimates the peak value, as shown in Fig.7 (a)-(c). 

Compare to LSTM and FFNN, SVR presents strong fluctuations at the rising limbs and has sudden drops 

at some peaks. 

4. Conclusion 

This paper delineates a novel ICWT solution for mitigating sewer overflow with minimal construction 

works. Hydraulic model is developed to test the effectiveness of ICWT and study extra burden received by 

the Søren Lemmich pump station. To further enhance the operation of the Søren Lemmich pump station, a 

representative deep learning technology, LSTM, is employed to provide multi-step ahead water level 

predictions. Several useful findings can be concluded from this study. 

1) Most previous studies about sewer overflow control only focus on a single component of the sewer 

system. To control the overflow in a systematical way, the sewer system should be reconsidered as a 

whole system to let individual sewer components cooperate in a holistic way. As indicated by hydraulic 

simulations of eight scenarios, the ICWT could efficiently reduce total overflow from the sewer system 

and overflow from the Muusøya WWTP, however, the ICWT may bring extra burden to the Søren 

Lemmich pump station. In considering the whole system behavior, the ICWT is suggested to act in 

concert with the storage tank.  

2) Nonstructural overflow mitigating solutions usually request key facilities to be operated with high 

sensitivity. The risks of overflow may be increased if accurate hydrological time series prediction 

information cannot be provided. Five different machine learning models, including deep learning 

methods (LSTM and GRU), the traditional RNN and FFNN, and the SVR, are compared in this study. 

Experiments demonstrated that the LSTM is superior to other methods. The LSTM model is capable of 

forecasting multi-step ahead hydrological time series, and therefore can be a great tool for sewer system 

managers. 
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3) Studies relative to sewer systems require the modeling of complex and dynamical urban hydrological 

processes. There are two approaches of models existed, in the extensively used hydraulic model 

approach, hydrological/hydraulic principals are explicitly modeled. However, the complicated model 

construction, calibration and computation make hydraulic models less adequate for real time purpose. 

On the other hand, the implicit machine learning approach could provide predictions in real time, but 

it cannot describe the hydrological/hydraulic behavior of sewer system in detail. To solve practical 

problems, engineers or researchers should consider combining the advantages of both approaches to let 

them complement each other. 

4) The potential power of deep learning is fascinating, ubiquitous sensors are monitoring infrastructures 

such as sewer system, and collecting a large amount of data. The fusion of sensors, actuators and 

algorithms will become the backbone of future cities. Data analytics is the sticking point for leveraging 

intelligent infrastructure management. Given the revolutionary strides made by deep learning in recent 

years, there are many prospective interests of deep learning for hydrological studies. 
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