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Deep Semisupervised Teacher—Student Model Based
on Label Propagation for Sea Ice Classification

Salman Khaleghian
and Andrea Marinoni

Abstract—In this article, we propose a novelteacher-student-
based label propagation deep semisupervised learning (TSLP-SSL)
method for sea ice classification based on Sentinel-1 synthetic
aperture radar data. For sea ice classification, labeling the data
precisely is very time consuming and requires expert knowledge.
Our method efficiently learns sea ice characteristics from a lim-
ited number of labeled samples and a relatively large number
of unlabeled samples. Therefore, our method addresses the key
challenge of using a limited number of precisely labeled samples
to achieve generalization capability by discovering the underlying
sea ice characteristics also from unlabeled data. We perform ex-
perimental analysis considering a standard dataset consisting of
properly labeled sea ice data spanning over different time slots of
the year. Both qualitative and quantitative results obtained on this
dataset show that our proposed TSLP-SSL method outperforms
deep supervised and semisupervised reference methods.

Index Terms—Deep learning, earth observation, scarce training
data, sea ice classification, semisupervised learning (SSL).

1. INTRODUCTION

RCTIC sea ice keeps the northern polar regions cool
A and thereby helps to moderate the global climate. It is a
key component of the Arctic environment [1] that substantially
affects the polar physical environment and its ecosystems. The
Arctic has faced severe environmental impacts over the past
few decades. These changes have transformed its environment,
ecology, and meteorology and caused unsteady variations in the
weather and sea ice conditions, which pose new challenges to
maritime industries, including but not limited to aquaculture,
natural energy resources, and travel exploration operating in
the high north areas [2], [3]. Therefore, proper monitoring
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of the sea ice conditions and how it changes with time is
important [4], [5].

For high-resolution sea ice analysis, researchers and ice cen-
ters around the world are using synthetic aperture radar (SAR)
data [6], [7]. These data are not restricted by weather conditions
and polar darkness [8]. An important part of sea ice analysis
includes sea ice classification. Sea ice classification based on
SAR data [9] is carried out by classical statistical classifica-
tion methods, traditional machine learning (TML) methods,
and deep-learning-based methods (DLMs). Statistical and TML
methods rely on handcrafted features, which may not properly
encapsulate the challenging sea ice characteristics [10]. There-
fore, their generalization capabilities and their abilities to find
efficient features that can be considered to various geographic
areas and time frames are limited [10]. DLMs, when prop-
erly trained on large training datasets, have shown excellent
generalization capabilities in many research fields, including
several remote sensing applications such as food security moni-
toring [11], hybrid data-driven Earth observation modeling [12],
and flood mapping from high-resolution optical data [13]. We
consider these achievements in the aforementioned fields and
believe that deep neural networks (DNNs) may also show per-
formance improvement in automatic sea ice classification [14],
[15]. However, scarce training data is the most challenging issue
in sea ice data analysis. This problem is particularly challenging
in the Arctic, where gathering of precise true observations is
expensive, time driven, and sometimes not feasible [16]. For
sea ice classification, archived ice charts are available rendering
huge labeled data. Nonetheless, these charts are very coarsely
labeled and do not have the quality and details needed to train a
DLM effectively [17].

To extract accurate information from large-scale datasets,
when limited amount of labeled data are available, semisu-
pervised learning (SSL) has been introduced in the technical
literature [18]. These methods aim to combine labeled data with
unlabeled records. In the past few years, semisupervised models
have presented performance improvement in various fields of re-
mote sensing research, such as despeckling of SAR images [19],
change detection in heterogeneous remote sensing images [20],
and hyperspectral image classification [21]. Considering these
successes, we anticipate that deep SSL methodologies could
also be favorable in sea ice classification and potentially lead to
significant improvements by overcoming the specific challenge
of few labeled samples. In fact, a deep SSL technique is halfway
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TSLP-SSL method. We have two models, namely, teacher and student models. The teacher model is trained on labeled data during the first stage, and

then, both models are trained on labeled and unlabeled data during the second stage of the training.

between supervised and unsupervised learning. This technique
exploits multiple layers to progressively extract higher level
features from the raw input data considering both labeled and
unlabeled data.

We propose a feacher—student-based label propagation deep
semisupervised learning (TSLP-SSL) method. Our architecture
consists of two models, namely, a teacher model and a student
model. The teacher model is trained in a two-step procedure.
Initially, we trained the teacher model in a supervised fashion
utilizing only the labeled data. We then feed both the labeled
and unlabeled samples to the trained teacher model and consider
the feature space embedding to engender pseudo-labels for the
unlabeled data through a label propagation procedure [22]-[24].
The original and the pseudo-labels are in the next step used to
train the student model, which is subsequently used during the
inference stage. The purpose of using the student model is to
avoid the problem of the teacher model being biased toward
the labeled data, which is like in case of a small training set.
Our proposed method, hence, effectively exploits a relatively
large amount of unlabeled data to improve the final classification
performance. The training methodology is depicted in Fig. 1 and
is more thoroughly described in Section III. The summary of our
contributions is as follows.

1) We propose a novel TSLP-SSL method. One of the major
attractions of our proposed method is its capability to deal
with a small number of labeled samples. This is a favorable
property in the case of sea ice classification using SAR
data, where the availability of a large amount of reliable
labeled data is scarce.

2) We consider sea ice datasets to train and analyze the
generalization capabilities of our proposed method. We
compare our method with a supervised method and three

state-of-the-art semisupervised methods. Our results show
that our proposed method performs better than all the
reference methods, especially in cases with a small number
of labeled samples.

3) Additionally, we present a comprehensive literature re-

view covering both the probabilistic learning method and
the DLM.

The rest of this article is organized as follows. Related work
is described in Section II. We present our proposed deep models
and training approaches in Section III. Section IV depicts the
experimental analysis considering a set of SAR images. Finally,
Section V concludes this article and presents future work.

II. RELATED WORKS

In general, sea ice classification can be divided into two
major classes: TML/probabilistic methods and DLMs [25]. The
approaches in the latter class fall into two subclasses, namely,
supervised deep learning and semisupervised deep learning
methods. The literature is very limited in the case of semisuper-
vised DLMs since methods in this subcategory are quite recent
and still under development.

A. Probabilistic Methods for Sea Ice Classification

The literature on TML/probabilistic methods is very rich, and
we will restrict ourselves to only including a few recent publica-
tions. Statistical algorithms often combine probabilistic models
and classical classification methods with texture or polarimetric
features to perform sea-ice-type maps. An extensive survey is
given in [26].

Some specific studies in this category are highlighted be-
low. Examples of machine learning algorithms include the use
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of standard multilayer perceptrons, as in [14], support vector
machines, as in [7], or decision tree methods [15], as in [15].
Statistical and shallow machine learning methods often rely on
having extracted the input features in a preoperation prior to the
classification. Karvonen [27] and Dinessen [28] used probabilis-
tic and statistical features for estimating sea ice concentration
from SAR imagery. Johansson et al. [29] used statistical entropy
and horizontal—vertical (HV) polarization computations to iso-
late sea ice from open water and thicker sea ice. Furthermore,
Fors et al. [30] investigated the potential of C- and X-band
multipolarization SAR features for sea ice segmentation during
late summer. Dabboor et al. [31] analyzed a set of compact
polarimetric parameters for classifying newly formed ice and
multiyearice. Hong and Yang [32] used the statistical coefficient,
incidence angle, environment temperature, and speed of wind to
improve the seaice and water classification. Johansson et al. [33]
used a statistical mixture model to isolate open water from sea
ice. Their method is based on the semiautomatic segmentation
technique. They applied the algorithm to explore the sea ice
characteristics in Svalbard. Aldenhoff et al. [34] demonstrated
that C-band SAR can reliably generate the layout of the ice
boundary, whereas the L-band shows effectiveness considering
thin ice and water regions.

B. DLM:s for Sea Ice Classification

Deep-learning-based approaches have been widely exploited
for addressing the challenge of sea ice classification. Malmgren-
Hansen et al. [17] applied a convolutional neural network
(CNN) model to predict Arctic sea ice by fusing data from
two different satellites. They found that the CNNs are showing
good performance for multisensor data integration. It is worth
noting that they used archived ice chart data for both training
and validation. However, these data are coarsely labeled, hence
leading to undesired effects in the training of the CNN model.
Wang ez al. [10], [35], [36] exploited CNNss for ice concentration
estimation. Tom et al. [37] proposed an ice monitoring model
based on Sentinel-1 data with a deep learning approach. Boulze
et al. [38] introduced a CNN for detecting different kinds of
sea ice [39] using SAR data. They trained the CNN considering
the archived ice chart data. They performed comparison with a
random forest classifier using texture features.

SSL methods are proposed for classification when only
scarce training data or a limited number of training samples
are available. The idea of SSL relies on the assumption that
unlabeled samples provide essential information and clues on
how the data are distributed. Therefore, a DLM can be trained
by considering this distribution. In this sense, different ap-
proaches such as teacher—student models [40], graph-based
methods [41], pseudo-labeling [42], consistency regulariza-
tion [43], and generative models (i.e., generative adversarial
networks—GANSs) [44] have been introduced. Shin [40] pro-
posed a multiteacher single-student method to solve the visual
attribute prediction problem. His method learnt task-specific
domain experts called teacher networks and a student network by
forcing a model to imitate the distributions learned by domain
experts. Xie et al. [45] proposed a noisy student method for
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generating pseudo-labels to train a model in an iterative way.
The output of the trained model based on the labeled sam-
ples is exploited to produce pseudo-labels for the unlabeled
samples, which are subsequently used to train another model.
They used the teacher—student model to train a larger student
model by incorporating noise, considering data augmentation
(DA), dropout, and stochastic depth. Tarvainen and Valpola [46]
proposed a mean teacher method that averages model weights
instead of label predictions. Their method improves test accu-
racy and enables training with fewer labeled samples. Salimans
et al. [47] trained the semisupervised generative adversarial
network (semi-GAN) as a generative model. Kingma et al. [48]
exploited a variational autoencoder in the form of a semisu-
pervised model. In their method, a classifier is trained on top
a latent representation to predict the labels. Iscen et al. [24]
proposed a transductive label propagation model for deep SSL.
This model is trained in an iterative two-step procedure. In the
first phase, a CNN is trained using the labeled part of the dataset
in a supervised manner. In the second phase, based on a manifold
assumption in the feature space of the CNN, pseudo-labels are
produced for the unlabeled data through a label propagation
procedure using a nearest neighbor graph. The pseudo-labels
are considered to extend the set of labeled samples in the second
stage to train the CNN model. Berthelot ef al. [49] used an
augmentation technique to introduce an SSL approach. They
assumed that the distribution of a classifier should remain the
same considering unlabeled data. They used average prediction
to produce pseudo-labels for the unlabeled samples.

C. SSL Methods for Sea Ice Classification

The aforesaid cases show that the development of SSL meth-
ods is a hot topic in the data analysis community. However,
it is also true that the application of SSL architectures to sea
ice classification is very limited. For example, Han ez al. [50]
investigated an approach for sea ice classification based on active
learning (AL) and SSL. They acquired the most informative
data examples considering AL. They exploited these informative
examples in training the SSL method. Staccone [51] introduced
an SSL approach based on GANs for sea ice classification. In
this work, both labeled and unlabeled data were considered to
achieve more accurate results by exploiting the knowledge from
both data sources. Li et al. [52] presented an SSL method for
ice and water classification based on self-training. Their method
combined a contextual model and the self-training approach into
a unified framework.

Our proposed method falls into the subcategory of SSL meth-
ods. We propose a teacher—student model considering the feature
space using the label propagation method, which is summarized
in the following section.

III. TEACHER—STUDENT-BASED LABEL PROPAGATION
METHOD

As mentioned above, labeled sea ice samples are difficult to
acquire, making the training of sea ice classification architec-
tures a difficult task. Therefore, we explore a novel TSLP-SSL
method for this application. We adequately utilize a limited
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number of labeled samples and a comparatively much large
number of unlabeled samples to train a deep CNN architecture
for extracting sea ice information. Our proposed TSLP-SSL
method consists of a teacher model and a student model, which
are cooperatively trained in an iterative way during two training
stages. Our method is different from the teacher—student models
presented in [45] and [46] in two major aspects. First, in our case,
features generated by the trained teacher model are extracted
before the final classification layer and used in the label propaga-
tion process to produce pseudo-labels for the unlabeled samples
using a k-nearest neighbor approach. Hence, label propagation
is performed in feature space, and not in output label space.
Second, the pseudo-labels from the teacher model are exploited,
together with the original labels, to train the student model in
order to find an optimal decision boundary during a second
iterative training stage. Our proposed method is also different
from the deep SSL model in [24] in the way it aims to avoid
the model to be biased toward the labeled data. In fact, the
method in [24] is based on a single model, which is trained
on only the labeled data, making it susceptible to be biased
toward these data samples. The biasing problem may be even
more significant in the sea ice classification task, considering
the small amount of labeled data and noting the fact that texture
features are important for discriminating between different ice
types.

In our proposed method, both models are represented by a
CNN constructed of a 13-layer architecture [24]. During the
first training stage, the teacher model is trained on the labeled
data only. During the second stage, the teacher model gener-
ates pseudo-labels for the unlabeled data. These pseudo-labels,
combined with the labeled samples, are used to train the student
model. The motivation for considering an additional student
model is to handle the problem of the teacher model being biased
toward the labeled data, as discussed above [53]. To further
elaborate on this issue, the teacher model formulates a decision
boundary considering a small set of labeled data. However,
this decision boundary may not be the best boundary when
also considering the unlabeled data during the second stage,
especially if the teacher model gets overfitted to the labeled data
because of the limited number of samples [54]. The idea is that
the student model should discover a more appropriate decision
boundary, as illustrated in Fig. 2. Fig. 2 displays a simplified
case, in which the triangles represent samples from one arbitrary
class and the circles show samples from another class. Hence,
the red and blue symbols represent labeled data from the two
classes, respectively, and the black symbols represent unlabeled
data from both classes. Since the teacher model is trained using
labeled data only, the decision boundary shown as a blue solid
line in Fig. 2 could be a solution. A better decision boundary
is discovered by repeatedly training the student model from
scratch with both pseudo-labeled and labeled data. In this way,
the student model would end up with the decision boundary
defined by the green-dashed line, which properly separates both
the labeled and unlabeled data from both the two classes. It is
worth noting that this example shows the advantage of using
label propagation based on nearest neighbors instead of using
the network output as pseudo-labels.
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Best fit decision boundary

Teacher decision
boundary

Fig. 2. Complexity of tuning the teacher decision boundary to also take into
account the unlabeled data. We show two-class labeled data with red triangles
and blue circles. The black markers represent the unlabeled data.

During the second stage of our training, the teacher model
generates predictions for the entire dataset. The feature space
embedding is subsequently used to construct a nearest neigh-
bor graph and an adjacency matrix, from which we assign
pseudo-labels to the unlabeled samples in a transductive label
propagation procedure [24].

A. Formulation for the Learning Process

To clearly provide the details of the process of label prop-
agation for our teacher model, we present the affiliated nota-
tions in this section. In this, we will largely follow the outline
in [24]. We consider a set of n samples denoted by X :=
(T1,.. &gy Tst1, .-, Ty) Withx; € X, where s samples a; for
i€ S:={l,..., s}, represented by Xg, are labeled according
to Ys := (y1,...,ys). Each element in Yg is y; € G, where
G :={1,..., g} isadiscrete label set of g classes. The rest of the
e:=n — ssamplesx; fori € F:= {s+1,...,n},represented
by X g, are unlabeled. We consider all samples in X and labels
in Yg to train the CNN to assign class labels to the previously
unseen samples. The CNN takes an input sample x; from X
and builds a vector of class probabilities fa (z;), fa : X — RY,
where A represents the hyperparameters of our deep model.
In this process, the feature extraction stage is represented by
the function 5 : X — R?, which maps the input data to a d-
dimensional feature vector, where the ith sample is represented
by d; := Qa(z;). In the next stage, a vector of class probabilities
is built by the softmax on top of the fully connected layer
considering 25 . The prediction of the CNN for the ith sample
is the class of the highest probability, i.e.,

i = argmax; f(z;); (1)
where j is the jth dimension of the vector. In supervised learning,

the loss function in (2) is minimized to train the CNN

Cap(X5, Y5i A) = > caup(fa(wi), i) )
=1
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Equation (2) applies only to the labeled samples, i.e., z; €
Xg. In fact, (2) shows one term of the loss function in SSL.
In classification problems, the cross-entropy loss function is
generally used for g, which for a given sample x; is defined
as

g

== yilog (falw))x 3)

k=1

5<up(fA i), Yi) =

where y). is the kth component of the one-hot encoding of
yi € G. Pseudo-labeling finds a pseudo-label yj; for each sample
x; for ¢ € E. The pseudo-labels for unlabeled samples in X
are represented by Yz = {fst1,...,n}, and they form an
additional loss term formulated as

n

Z Epseu (fa (i), Ui)- 4)

i=s5+1

gpseu(XE7 Y/E§ A) =

B. Pseudo-Label Generation and Learning Process

In our method, the CNN is represented by the param-
eters A, and we formulate the descriptor set as D :=
(di,...,ds,dsy1,...,dy), where d; :== Qa(x;). We build a
sparse affinity matrix A € R™*", where its elements are rep-
resented by

S { [l d;]7, if  i#jAd; € Ni(dy)
ij —

(&)

0, otherwise

where IV} represents the set of k-nearest neighbors in X,
and ~ is a hyperparameter. It is worth noticing that building
the sparse affinity matrix is computationally efficient even if we
have a very large number of samples. We then build a symmet-
ric adjacency matrix © = A + AT such that © € R™*", The
diagonal of the matrix © consists of zeroes. The rest of the
elements of O are nonnegative pairwise similarities between d;
andd; fori =1,2,...,nandj = 1,2,...,n. We formulate the
symmetrically normalized counterpart of © as

E=T"200"* (6)

where T' = (©1,,) is the degree matrix and 1,, is an n-
dimensional vector with all elements set to 1. We formulate a
label matrix Y of size n X g consisting of the elements

1, if 1ESNY; =7
Yij = { 0, otherwise ’ )
The rows of the matrix Y represent one-hot encoded labels

for the labeled samples. Subsequently, the diffusion amounts to
formulating an n X g matrix v such that

b =(I-aE)'Y (8)

where a € [0, 1) is a parameter. The elements of ¢ are repre-
sented by d;;. In fact, calculating matrix 1, according to (8), is
impractical for large n because the inverse matrix (I — =)~}
is not sparse. Therefore, we use the conjugate gradient method
to solve the linear system

(I—aZ)p =Y. ©)

Equation (9) is fast and valid since the matrix (I — =) is pos-
itive definite. We find the pseudo-labels Y = {Js11,. ., Un}
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for unlabeled samples as

Yi = argmax ;d;; (10)

where ¢;; is the (4, j)th element of matrix ). It is worth noting
that finding pseudo-labels from matrix 1 in this way has some
unwanted causes. For example, we assign pseudo-labels to all
unlabeled samples; however, we are clearly not confident about
the same certainty for all generated pseudo-labels. Moreover,
pseudo-labels may not represent the same number of samples
for each class, which will affect the performance of the learning
process. To handle the former problem, we affiliate a weight
representing the certainty of the prediction to each pseudo-label.
For this purpose, we consider the entropy T to compute the
level of uncertainty and provide a weight w; to sample z;
formulated as

o =1 L)

log(g)

where Y : R9 — R is the entropy function, and the weight w;

is normalized in [0, 1] because log(g) is the maximum possi-

ble entropy in RY [when all datapoints are equally distributed

to the clusters, the maximum entropy for g classes is H =

=39, 1/glog(1/g) = log(g)]. 6; is a g-dimensional vector of

the ith rowwise normalized counterpart of ¢; with components
formulated as

(11

Zk Oik
To cope with the issue of the situation when we have different

number of samples for each class, we provide weight v; to class
7 that is inversely related to class size, formulated as

v; = (1] + |B; )~

0ij = (12)

(13)

where |S;| is the number of labeled samples and |E}| is the
number of pseudo-labeled samples in class j. To this end, we
formulated per-sample and per-class weights. We relate the
weighted loss to the labeled and pseudo-labeled samples as
follows:

= > vy fale) vi)

i=1

g’w(X7Y57YE;A)

+ Z WiUQiEpseu(fA(xi)agi>- (14)

1=s+1

In fact, (14) is the sum of weighted versions of {p and &Epseu
in (2) and (4), respectively. Iscen et al. [24] used one CNN
model to produce the pseudo-labels and then used these labels
to train the same model. On the contrary of this approach, we
are using two CNN models in the form of a teacher model and a
student model. The teacher model generates the pseudo-labels,
which are combined with the labeled samples to train the student
model. Therefore, the trained student model is not biased toward
the labeled data. To this end, the student and teacher models are
trained in parallel, according to (14), in which ¥; in the student
model comes from the teacher model.

In summary, considering the nearest neighbor graph defini-
tion in the form of affinity matrix, label propagation, sample
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TABLE I
DIFFERENT WATER AND ICE CLASSES

WMO code Classes

02 Open Water/ Leads with Water
01-02 Brash/Pancake Ice

83 Young Ice (YI)

86-89 Level first-year ice FYI

95 Old/deformed Ice

and class weights, and label and pseudo-label loss terms, our
semisupervised method follows a repetitive procedure. Initially,
we randomly initialize all the parameters. We then train the
teacher model using the s labeled samples in Xg, considering
the supervised loss term. We use the trained teacher model to
extract descriptors D for the complete training set X. We then
find the k-nearest neighbors of all samples to build the adjacency
matrix © and carry out label propagation by computing (9). We
then assign pseudo-labels to the unlabeled samples in Xz by
considering (10). Subsequently, we train both the teacher and
student models for one epoch on the complete training set X
using the weighted loss function in (14). This process is repeated
for T" epochs.

IV. EXPERIMENTAL ANALYSIS
A. SAR-Based Sea Ice Dataset

We have trained our proposed method considering 31
Sentinel-1 images. The images are acquired from the North of
Svalbard with 40 m x 40 m pixel resolution. They are prepro-
cessed using the ESA SNAP software by applying thermal noise
removal, calibration using the o lookup table, and multilooking
using a 3 x 3 boxcar filter. After converting the intensity images
to dB values, they are clipped and scaled linearly in the range
[0, 1] considering individual channels. The range in dB for
horizontal-horizontal (HH) polarization and HV polarization
are [min: —30, max: 0] and [min: —35, max: —5], respectively.

To create a suitable dataset for sea ice classification, we used
labeled polygons generated from 31 Sentinel-1 EW scenes from
the North of Svalbard. These polygons were carefully labeled
manually according to coregistered optical images with as small
as possible time gaps. We used these images for training our
proposed method. More details can be found in [39]. The dataset
consists of five classes, as shown in Table I.

Nonetheless, to perform sea ice classification and create a
proper dataset [55] for deep learning, we extracted patches
with size equal to 32 x 32 pixels, corresponding to a spatial
resolution of 1280 m?, from inside the polygons, with a stride
of 10 pixels. This dataset can be accessed from the link [55].
It is worth mentioning that we analyzed the effect of different
patch sizes in a previous work [9]. We found that the validation
results got better by increasing the patch size. However, this
improvement comes at the cost of a lower spatial resolution as
larger patches cover wider areas of the surface. For instance,
a larger patch will be classified as water if the majority of the
pixels represent water. This would become a significant issue at
ice edges as classification based on larger patches would lead
to coarser or nonsmooth edges. Therefore, there is a tradeoff
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between accuracy and resolution. To compensate for this, in
our proposed work, we consider a patch size equal to 32 x 32
pixels. We extracted two channel patches consisting of HH
and HV intensities. It is also worth mentioning that we also
analyzed the effect of different channel composition (HH, HV,
and incidence angle) in our previous work [9]. We found that
adding the HV channel to the HH gives large improvement.
However, the improvement resulting from also adding the in-
cidence angle is quite small. In the current work, we do not
include the incidence angle as this also enables more proper
comparison with other SSL methods [48], [49]. These reference
SSL methods largely apply different DA techniques, and the
inclusion of the incidence angle is not feasible because of the
DA techniques. Therefore, the patches in our work consist of
only HH and HV intensities to maintain consistency. In Table I,
we provide ice type codes, following the definitions of the World
Meteorological Organization [56] and a brief description of each
class. We consider binary sea ice classification. The first class,
namely, the water class, consists of open water and leads with
water, and the various ice types are grouped together as the ice
class. The total number of patches for water is 9317, and for
ice, it is 5433. We provided the dataset online [55]. For now, we
are interested in analyzing the performance of DNNs for binary
classification. Our consideration based on our experience with
sea ice classification is that if DNNs can perform well in the
binary classification case, they may also classify multiple sea
ice types properly.

For validation, we consider some other Sentinel-1 scenes
provided by the Norwegian Meteorological Institute [57] from
the Danmarkshavn area on the Northeastern coast of Greenland
and extract 1516 water patches and 1324 ice patches, mostly
from challenging areas. In the first experiment, we consider
the training dataset from the North of Svalbard and split it into
labeled X g and unlabeled X g samples. In the next experiment,
to show the capability of the proposed method in classifying real
unlabeled data, we consider 5000 random patches picked from
the Norwegian Meteorological Institute dataset as the unlabeled
dataset X g and use all samples in the training set as the labeled
dataset Xg. We insert a different number of labeled datasets
for each class, i.e., 15, 30, 60, 100, 500, and 1000. For the
inference results, we apply SAR images from the Norwegian
Meteorological Institute dataset [S7], which were collected in
2018.

B. Our Model Configurations

We exploit the same network models for the teacher and
student models. Similar to [24], we use the network architecture
defined in [46] and shown in Table II. We trained the teacher
model for 100 epochs in the first training step. In the second
step, we trained the teacher model for 200 epochs based on
the label propagation to produce pseudo-labels. These labels
are then exploited to train the student model concurrently. The
learning rate for the teacher model is 0.0008 for the first step
and 0.0001 for the second step. The learning rate for the student
model during the second step is 0.002. For DA, we used only
rotation in both steps to keep the same physical meaning of all
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TABLE II
BASE CNN ARCHITECTURE

Layer Hyperparameters

Input 32 x 32 patches
Convolutional 128 filters, 3 x 3
Convolutional 128 filters, 3 x 3
Convolutional 128 filters, 3 x 3
Pooling Max-pooling, 3 x 3
Dropout p=0.5

Convolutional 256 filters, 3 x 3
Convolutional 256 filters ,3 x 3
Convolutional 256 filters, 3 x 3
Pooling Max-pooling, 3 X 3
Dropout p=20.5

Convolutional 256 filters, 3 x 3
Convolutional 256 filters ,3 x 3
Convolutional 256 filters, 3 x 3
Pooling Average pool (6x6 to 1x1)
Softmax Fully connected 128 to 2

TABLE III
VALIDATION ACCURACY FOR DIFFERENT AMOUNT OF LABELED DATA AND
UNLABELED DATA FROM THE TRAINING DATASET

15 30 40 60 100 500 1000

Fully supervised | 39.60 52 55.67 | 70.35 | 88.72 | 91.50 | 92.06
semi-GANs [48] 71.96 | 88.14 | 89.23 | 90.5 | 90.04
MixMatch [50] 86.28 | 85.88 | 88.19 | 91.02
LP-SSL [24] 55.62 | 75.34 | 75.23 | 89.97 | 90.42 | 91.73 | 91.24
TSLP-SSL 88.03 | 86.96 | 90.87 | 90.47 | 91.21 | 91.07 | 91.94

the channels of the SAR data and considered the same values for
the hyperparameters as used in the previous studies [24], [58]
in all experiments. We run the experiments on a single NVIDIA
Quadro RTX 5000 with 16-GB memory. The code is available.!

C. Results and Discussion

We trained our models with a distinct number of labeled data
to assess the performance of our proposed method in comparison
with four reference methods. For this purpose, we consider both
a supervised CNN model and three semisupervised methods,
namely, semi-GANs [47], MixMatch [49], and label propaga-
tion model (LP-SSL) [24]. In the supervised CNN model, we
consider the same CNN architecture that we use for both our
teacher and student models. We present the validation results in
Table III in terms of accuracy for both our proposed TSLP-SSL
method and the reference methods. In the first experiment, we
use our training data and split it into labeled, i.e., Xg, Yg, and
unlabeled datasets, (X g. For the validation, we use the validation
data that were mentioned previously (see Section IV-A). As can
be seen in Table III, our proposed method outperforms the fully
supervised CNN architecture considering 15, 30, 40, 60, and
100 labeled samples. Similarly, our method also outperforms the
semisupervised methods semi-GANs [47], MixMatch [49], and
LP-SSL [24] considering different number of labeled datasets
except in case of 500 labeled samples. For comprehensive
analysis, we also consider other performance metrics, namely,
average precision, average recall, and average F1-score, for both
the classes: water and ice. We present the results in Table IV. As

Uhttps://github.com/sakh251/TSLP-SSL
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can be seen, we also outperform in most cases considering both
the supervised and semisupervised methods. In fact, our method
learns more information from the unlabeled data, especially
when a very limited number of samples are available. In fact,
the student model in our approach has the potential to remedy
the problem of overfitting of the teacher model when only few
samples are available, and it presents comparable validation
accuracy when considering 500 and 1000 labeled datasets.
However, when the number of labeled datasets increases, the
amount of information extracted from the unlabeled data does
not significantly improve the results. It is worth noticing that the
good samples of the labeled data can significantly impact the
results in the second step. This can be seen when comparing the
results of using 15 and 30 labeled samples in Tables III and IV.

In fact, our proposed method can learn from the unlabeled
data and, thus, improves its performance. It even achieves better
validation accuracy than the supervised and LP-SSL models
considering 15, 30, 40, 60, and 100 labeled samples. In order to
explain the behavior of our method considering 500 and 1000
labeled samples, we compute the accuracy of the pseudo-labels
from the teacher model during the second step of the training
process. This can be done since the ground-truth labels of
the unlabeled data can be extracted from the training dataset.
We consider the comparison of our proposed method with the
fully supervised CNN architecture. When both the methods are
trained on 500 and 1000 labeled datasets, the accuracy on the
pseudo-labels reaches more than 99%, but at the same time, the
validation accuracy does not increase, as shown in Table III.
This means that there is no more information in the unlabeled
data to further improve the validation accuracy considering this
particular dataset. We investigate this by training the supervised
model with all the data in the training dataset, and it reached a
validation accuracy of 91.57%.

We also investigated the inference results on a single-image
SAR scene from Danmarkshavn considering 30, 60, and 100
labeled datasets in our proposed TSLP-SSL model. The results
of this experiment are reported in Fig. 3, where the first row
shows results using the supervised model and the second row
shows results using our proposed method. Blue color indicates
the water and white color indicates the ice class. As can be seen,
our method presents improvement compared to the supervised
model, especially in the noisy areas.

D. Feature Separability of Our Proposed Method

Furthermore, we illustrate the capability of the label propaga-
tion step that we use to generate the pseudo-labels for training
the student model. In fact, label propagation is characterized by
consolidated feature separability, which helps generate mean-
ingful pseudo-labels for training the student model. To explain
this visually, we extract the feature vector output from the last
convolution layer. The dimension of the feature vectors is 128.
We transform the feature vectors into three components based
on the principal component analysis (PCA), considering both
labeled and unlabeled data, to visually understand the feature
space. These components are shown in Fig. 4. Fig. 4(a) and (c)
shows the feature space when training the teacher model in the
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TABLE IV
AVERAGE OF PRECISION, RECALL, AND F1-SCORE FOR DIFFERENT AMOUNT OF LABELED DATA AND UNLABELED DATA FROM THE TRAINING DATASET

15 30 40 60 100 500 1000

Pre. Rec. Fl1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. Fl1 Pre. Rec. Fl1 Pre. Rec. Fl1 Pre. Rec. Fl1

Fully supervised | .5623 .5981 3645 | .6064 .7100 4948 | .5991 7016 .5123 | .6259 .7452 .6163 | 7812 .6977 .7283 | .8860 .8036 .8336 | .8955 .8154 .8480
semi-GANs [48] - - - - - - 4278 4295 4286 | 7951 .6709 7086 | .7914 7192 7474 | .8957 .7602 .8059 | .8506 .7825 .8103
MixMatch [50] - - - - - - - - - 9160 5263 5041 | 9137 5108 4740 | .8804 .6848 7319 | .9089 7665 8143

LP-SSL [24] 5963 .6922 4921 | 6392 .7474 6493 | .6611 .8038 6674 | 7971 7738 7847 | .8041 7949 7990 | 9154 7866 .8324 | 9074 7751 8211
TSLP-SSL 75917927 7741 | 7314 7345 7329 | 8299 7640 .7914 | 8599 7546 .7925 | .8452 7609 .7990 | .8674 .8070 .8326 | .9007 .8062 .8432

30 Labels 60 Labels 100 Labels
- L a0e . Lt

2000

4000

6000

8000

6000 8000 10000

Fig. 3. Inference results. We present qualitative results of a single input image. The first row depicts the results considering supervised deep learning, and the
second row depicts the results using our proposed TSLP-SSL model.

Fig. 4. Three PCA components’ visualization of extracted features (flattened vector after convolution layers with 128 values) from labeled and unlabeled data.
The yellow color represents water and the purple color represents ice. (a) and (c) show the supervised feature space from first step with 60 and 1000 labeled data,
respectively. (b) and (d) show the best feature space of second step with 60 and 1000 labeled data, respectively.
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Inference results. The first column shows input images, the second column shows the results obtained with supervised deep learning, and the third row

shows results obtained with our TSLP-SSL model, which is trained by also taking into account unlabeled data from other images.

first step considering 60 and 1000 labeled samples, respectively.
Fig. 4(b) and (d) shows the feature space representation after
label propagation is applied in the second step. The yellow
circles represent water and the purple circles represent the ice
class. As can be seen, label propagation leads to more separable
classes in the feature space, especially when 1000 labeled sam-
ples are considered. Therefore, through label propagation, the
unlabeled data help to build a more class-separable feature space
and generate more meaningful and informative pseudo-labels to
train the student model.

E. Extended Unlabeled Data

To elaborate a bit more on the capability of our proposed
method, we conduct another experiment. We evaluate the vali-
dation accuracy of the proposed method by considering 1000
data samples from the training dataset as labeled data (i.e.,
considering it as an element of Xg) and adding unlabeled data

TABLE V
VALIDATION ACCURACY, AVERAGE PRECISION, AVERAGE RECALL, AND
AVERAGE F1-SCORE CONSIDERING ADDITIONAL REAL UNLABELED DATA

Acc. Pre. Rec. Fl1
Fully supervised 92.06  0.8955 0.8154  0.8480
semi-GANs [48] 89.22 08730  0.7264  0.7716
MixMatch [50] 89.55  0.8788  0.7345  0.7800
LP-SSL [24] 91.19  0.9243  0.7626  0.8144
TSLP-SSL 9293 09291  0.8182  0.8606

not contained in the training dataset. For this purpose, we extract
5000 random patches from the Danmarkshavn data and add to
the training process in the second step X . We present the perfor-
mance of all the methods in Table V in terms of accuracy, average
precision, average recall, and average Fl-scores. As can be
seen, our method performs better than the fully supervised CNN
method and three semisupervised methods: semi-GANs [47],
MixMatch [49], and LP-SSL [24]. These results demonstrate
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that our proposed method can extract and use relevant infor-
mation from real unlabeled data and learn new information
from unseen and unlabeled data. This is a useful and powerful
capability that can be beneficial in sea ice classification, where
the amount of available training data is limited.

We also present inference results using four different images
from the Danmarkshavn data considering the student model
trained on 1000 labeled datasets and extended with unlabeled
data. In Fig. 5, the left column depicts the original SAR images,
the middle column presents the inference results obtained with
the supervised learning model, and the last column shows the
results obtained with our proposed TSLP-SSL method. Water
is highlighted in blue color and ice is highlighted in white
color. These inference results again show the capability of our
proposed semisupervised method in using the information of
unlabeled data.

V. CONCLUSION

In this article, we proposed a teacher—student-based label
propagation method for sea ice classification. The teacher model
and the student model were trained in an iterative way during
the training stage. The teacher model produced features that
were extracted before the final classification layer. These fea-
tures were used during the label propagation process. Consid-
ering the unlabeled data, the labels were propagated to produce
pseudo-labels. Subsequently, the pseudo-labels from the teacher
models were fed to the student model during the training to find
an unbiased decision boundary. Our method outperformed the
supervised CNN and the semisupervised LP-SSL models. We
presented both qualitative and quantitative results for our pro-
posed method and the reference methods. Our proposed method
outperformed both the reference methods. Our proposed method
considered a very limited number of labeled samples starting
from 15 samples and unlabeled samples to train the models
efficiently. In fact, our proposed method was characterized by
the ability to learn useful information from both labeled and
unlabeled data. Our method reduced the dependence on labeled
samples, which is very time consuming and costly to collect
for sea ice analysis. Therefore, this property of our method
makes it a good fit for the community of sea ice analysis,
where limited labeled data are available. We have also shown
that by adding more unlabeled samples, the performance of the
inference results has improved. Considering the semisupervised
aspect, our method can be extended to other problem areas,
where a very limited number of labeled samples are available
since we coped with the biasing and dependence issues related
to the labeled samples.

The dataset we collected consists of different ice types.
However, the number of samples for each ice type is limited.
Considering the promising performance of our proposed method
for binary sea ice classification, in our future work, we would
adopt and extend our method to ice type classification.
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