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A B S T R A C T   

Selectively picking a target fruit surrounded by obstacles remains a challenge for fruit harvesting robots. This 
paper presents improvements to the active obstacle separation method for strawberry picking in clusters. A faster 
and more accurate vision system was developed that combined two neural networks and color thresholding for 
real-time detection, tracking and localization of strawberries. We propose an improved active obstacle separation 
method that used a push and a drag-push operation to separate the obstacles from the target in three stages. The 
push and drag vectors were simplified and precisely calculated based on the exact locations of obstacles. Also, 
different from many systems that only “looked” once for the entire picking process, the new system used a hybrid 
vision-based control method. In stage 1, the push operation was controlled by a simple closed-loop vision at two 
key points. In stages 2 and 3, the vision system re-perceived the environment to update the target and obstacle 
information before each round of drag-push movements. Field evaluation showed that the proposed method was 
more precise to separate the obstacles without reducing the speed, increasing the whole process success rate to 
62.4% in clusters on the “Murano” strawberry cultivator that was 36.8% higher than the previous work.   

1. Introduction 

High-value crops such as strawberries, tomatoes, cucumbers, and 
sweet peppers ripen unevenly and require selective harvesting of only 
the marketable fruits, considering ripeness, size, and disease (Xiong 
et al., 2020a; Kootstra et al., 2021). Selective harvesting is still heavily 
reliant on human labor and the most labor-intensive task in the whole 
production (Anjom et al., 2018; Yu et al., 2020). Labor represents the 
highest cost and significant operational uncertainty for fruit growers 
(Yamamoto et al., 2014). This issue is emphasised during the COVID-19 
pandemic, due to the shortage of seasonal workers (Wagner et al., 2021). 
Despite several attempts to develop a selective fruit-harvesting robot, a 
fully viable commercial system has yet to be established (Silwal et al., 
2017; Xiong et al., 2020b; Arad et al., 2020). Both crop perception and 
manipulation are challenging tasks due to the diverse and unstructured 
environments and crop variations in size, shape, color, texture and pose 
(Tang et al., 2020; Lehnert et al., 2020; Bac et al., 2013). 

Some fruits, such as strawberries and tomatoes, tend to grow in 
clusters. Selectively harvesting a ripe fruit that grows in clusters or is 
surrounded by obstacles, such as branches or leaves, while leaving the 

other fruits to remain undamaged on the plant, is one of the major 
challenges for fruit-harvesting systems (Xiong et al., 2020b; Yaguchi 
et al., 2016). Due to the presence of obstacles, many researchers tried to 
avoid them by generating a collision-free path (Lin et al., 2021) or 
finding a view with fewer occlusions (Lehnert et al., 2019). Unfortu
nately, passive obstacle avoidance does not work when the obstacles are 
not avoidable, especially in clusters where the obstacles may be 
extremely close to the target. 

Our previous work introduced a strawberry-harvesting robot with a 
gripper that used opening fingers to surround a target and push the 
peduncle to the cutting area at the closing configuration, which was 
robust to positional errors (Xiong et al., 2020b). We also proposed using 
the outside of the fingers to actively push aside the obstacles close to the 
target based on the 3D point cloud (Xiong et al., 2020b). The active 
obstacle separation made it possible to pick a fruit that would otherwise 
be inaccessible to the robot by using obstacle avoidance methods. Based 
on our conception of active separation, Mghames et al. (2020) proposed 
a learning from demonstration (LfD) approach to generate the push 
movements using the same robot setup as this work. The proposed 
interactive primitive based planner learnt two movement primitives 
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from demonstrations, conditioned the resulting primitive to pass 
through selective obstacles and found the pushing directions. The 
method showed promising results in a simplified simulation environ
ment with an ideal perception system, but was not verified in the field 
using a real robot. Also, this method only used push operations to clear 
the obstacles under the target but was not able to separate the obstacles 
around or above the target. 

In a later work, we showed improvements to the active obstacle 
method (Xiong et al., 2020a). This included a sophisticated layout of 
point cloud blocks around the target with a new calculation method to 
generate more accurate separation paths, and two new polices (a zig-zag 
push and an in-hand drag) capable of separating the obstacles at all 
interest locations around the target. However, the method used pre
defined cuboid blocks with certain positions and numbers to represent 
the obstacles around the target, limiting the precision of push and drag 
paths. Also, using the number of points in one block to determine the 
presence of obstacles was inaccurate, especially for partially occluded 
obstacles that had few or even no points in the point cloud. It also 
happened that the points of several obstacles were mixed together in one 
block although their heights were different, or the points of one obstacle 
were located in two or more blocks, which led to failure picking. In this 
paper, both ripe and unripe strawberries were detected and localized in 
3D for obstacle separation calculation. We redefined the layout of the 
region of interest (RoI) area and precisely separated the obstacles using 
push and drag-push movements based on their exact positions. 

In addition, the previous work only perceived the environment once 
and generated the separation paths in all layers at the beginning of the 
picking. However, the positions of the target and the obstacles might 
change after the initial perception, which caused many failures. There
fore, this work proposed to use a hybrid visual loop to control the 
gripper for obstacle separation. A closed visual loop was used to control 
the push operation at two key points in the bottom layer, and a 
continuous “look-and-move” was used to determine a new round of 
drag-push operation in central and top layers. To make the control 
possible, we developed a faster vision system that combined YOLOv4 for 
object detection and Deep SORT for ripe berry tracking. 

2. Materials and methods 

2.1. Robot overview 

As shown in Fig. 1, the field tests were performed on our previously 
developed U-shaped strawberry-harvesting robot (Xiong et al., 2020a). 
The robot mainly consists of a U-shaped platform and two independent 
picking systems mounted on either side of the arch, allowing straw
berries to be picked on both sides of the table. Changing ambient illu
mination in the field is a challenge for image processing. The robot was 
designed to pass through the strawberry table to avoid ambient illumi
nation, covering the entire plants and the picking systems. The picking 
system (Fig. 1(b)) included an RGB-D camera (D435; Intel, USA), a 
laboratory-developed SCARA-type arm, a previously developed gripper, 
and a LED panel (VT-2407; V-TAC, Bulgaria). The three degrees of 
freedom arm had two rotation joints and one linear vertical axis using 
the same motors and control strategy as the old Cartesian arm (Xiong 
et al., 2020b). In the 2020 picking season, we improved the structure of 
the arm links and redesigned arm’s working space, making it possible to 
pick with both arms in a limited tunnel row space. 

2.2. Perception 

Our previous work used an instance segmentation convolutional 
neural network Mask Region-Convolution Neural Network (R-CNN) to 
identify and segment strawberries at pixel level (Ge et al., 2019). 
Compared with other popular object detection networks, such as You 
Only Look Once (YOLO) (Bochkovskiy et al., 2020), the instance seg
mentation was more accurate on 3D localization of the targets, since it 
generated the boundaries of the targets while detection networks only 
outputted the bounding boxes that might contain pixels from other ob
jects. However, the Mask R-CNN method required ample computational 
resources and was too slow for a closed-loop control system. In our 
applications, the average processing time for one image frame, including 
running the detection network, coordinate transformation and other 
computations was 0.82s on GTX 1060 GPU (Ge et al., 2019). Recent 
development in the YOLO network (YOLO version 4, YOLOv4) has made 
significant progress in both detection accuracy and execution speed 
(Bochkovskiy et al., 2020). This paper presents a new vision system that 
combined YOLOv4, Deep Simple Online and Realtime Tracking (SORT), 

Fig. 1. The U-shaped strawberry-harvesting robot on a farm: (a) overview of the whole system; (b) inner view of the picking system.  

Y. Xiong et al.                                                                                                                                                                                                                                   



Computers and Electronics in Agriculture 191 (2021) 106508

3

and color thresholding for strawberry detection, tracking and localiza
tion in real-time. 

2.2.1. Detection 
The training and validation datasets were collected from the Boxford 

Suffolk Farms (England) and a university experimental tunnel at the 
Norwegian University of Life Sciences in 2018 and 2019, respectively. 
As we used transfer learning, the total dataset contained 280 images for 
training and 55 images for validation. Around one-third of the images 
were captured by the integrated camera of a mobile phone (iPhone 6s, 
Apple, USA) at Boxford Farms, and the remaining were collected using 
an RGB-D camera (D435, Intel, USA) on the strawberry-harvesting robot 
at the university tunnel. The cultivators of the strawberries were “Lusa” 
from the Boxford Farms and “Murano” from the university tunnel. We 
defined two classes of strawberries for annotation, ripe and unripe. Most 
of the images contained a great number of strawberries. A total of 5,983 
ripe strawberries and 3,500 unripe strawberries were annotated in the 
dataset, representing 28.3 berries per image. To reduce the annotation 
time, we used our previously trained YOLOv3 model to generate the 
bounding boxes of the strawberries and then manually refined them 
using an annotation software Lableme (Wada, 2016), including bound
ing box refinement and correction for undetected and incorrectly 
detected objects. 

The strawberry detection model was obtained through transfer 
learning. The annotated strawberry dataset was used to fine tune the 
weight parameters of an official released YOLOv4 model (yolov4. 
conv.137) that was pretrained on the Common Objects in Context 
(COCO) image dataset (Lin et al., 2014; Bochkovskiy et al., 2020). The 
images were resized to 416 × 416 pixels for training and the learning 
rate was set to 0.001 with a momentum of 0.949. The model was then 
trained for 20,000 iterations in Darknet framework (Bochkovskiy et al., 
2020), ending with a loss value of 2.24. 

To avoid picking unripe strawberries, the confidence rate was set 
relatively high at 0.7 in real applications. The robot control system used 
ROS architecture, so we modified the official Darknet YOLOv4 package 
(Bochkovskiy et al., 2020) to a ROS YOLOv4 package. Initially, Real
sense ROS package was used to grab the RGB and depth images from the 
camera and publish them as ROS topics that were subscribed by the 
YOLOv4 package. However, this method significantly reduced the 
cycling speed caused by the non-synchronized image publishing and 
image detection and many unusable functions, such as point cloud 

generation and publishing in the Realsense package. Therefore, the 
YOLOv4 ROS package was modified to call the camera and process the 
images directly using the Pyrealsense2 library. The images were ac
quired only when the network started a new round of detection, thus 
avoiding unnecessary image publishing. A resolution of 640 x 480 pixels 
was used for both RGB and depth images. The loop rate of this method 
achieved 22 frames per second (FPS) on the robot computer (GTX 1060 
6 GB GPU). Fig. 2 shows the detection results of a complex situation on 
the images captured by the robot camera (D435) in the field, where the 
class name was shown at the top of the bounding box and the confidence 
rate was given at the bottom of the box. In general, the new model 
showed good performance for strawberry detection, with high confi
dence scores on most objects even on highly occluded strawberries, 
although some small and occluded unripe berries were not detected 
(Fig. 2(a)). Fig. 2(b) shows an example of the picking procedures, in 
which a target ripe berry was continuously detected, even those partially 
swallowed by the gripper. 

2.2.2. Tracking 
Deep SORT (Wojke et al., 2017) is an improved version of the classic 

Kalman filter-based tracking method SORT (Bewley et al., 2016) for 
multiple object tracking. The key improvement of Deep SORT was that it 
employed a two-layer convolutional neural network for appearance 
matching among different image frames, which reduced the failures of 
identify switches and increased the possibilities of maintaining identi
ties through longer occlusions. This was useful for strawberry picking 
since the target berry might be occluded by other objects or even the 
gripper during the picking operation. Continuous re-identification of 
objects can help the robot pick on a specific target, avoiding capturing 
other obstacles. Deep SORT was mostly used for people tracking and re- 
identification. To apply it to strawberry picking, it was necessary to train 
the deep appearance descriptor. 

The training dataset was required to have connected image frame 
sequences in videos where each instance of a moving object was iden
tified for each frame. Annotating each object in a number of video 
frames was a laborious work. Using Deep SORT without appearance 
descriptor was also able to track other objects but with lower accuracy. 
We therefore used the YOLOv4 detection network combined with Deep 
SORT to roughly detect and track all the strawberries in videos that were 
recorded by the robot camera D435 during the previous picking. The 
picking operation moved many berries, which met the requirements of 

Fig. 2. Strawberry detection and tracking using YOLOv4 and Deep SORT, the numbers on the top of the ripe berry bounding boxes were the tracking IDs: (a) a 
complex situation with many occlusions, some small and occluded unripe berries were not detected; (b) picking procedures of ripe 1 using a drag-push operation, 
where the target was still detected and tracked in partially captured situations. 
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the tracking dataset and was the same situation in applications. The 
detected berries were cropped out from the video frames, and all the 
frames of a tracked target were placed into a folder forming an identity. 
Only correctly detected and tracked objects were manually selected for 
training. The total dataset contains 110 identities and 24189 cropped 
images, with an average of 220 images per identity. All the cropped 
images were resized to 128 × 256 pixels for training. We followed the 
steps in the metric learning paper for training (Wojke and Bewley, 
2018). The model was trained to a loss value of 2.48 using a learning rate 
of 0.001. 

The Deep SORT function was added to the YOLOv4 ROS package to 
combine detection and tracking, becoming a new Deep SORT YOLOv4 
ROS package (Deepsort_yolov4). As the flowchart shows in Fig. 3, the 
detected bounding boxes of the objects from the YOLOv4 ROS module 
and the current RGB image were sent to the Deep SORT function for 
multiple object tracking. The Deep SORT function outputted the pre
dicted bounding boxes and tracking ID numbers. The processing speed of 
the Deep SORT function was negatively correlated to the number of 
tracked objects. The robot only picked ripe strawberries, while the un
ripe strawberries were detected to calculate obstacle separation, so only 
ripe strawberries were selected for tracking. As shown in Fig. 2, the 
tracked ID numbers of ripe strawberries were placed at the top of the 
bounding boxes. In Fig. 2(b), the target was continuously tracked with 
ID 1 even it was partially swallowed by the gripper, allowing the system 
to focus on the same target during the picking procedures. 

2.2.3. Localization 
The robot required 3D bounding boxes of both ripe and unripe 

strawberries for picking manipulation. Our previous work used instance 
network Mask R-CNN that outputted RGB masks of an object in pixels 

without other objects, so the 3D locations were easily obtained by 
matching the RGB masks with corresponding depth images (Ge et al., 
2019). YOLOv4 outputted 2D bounding boxes of the targets, which may 
contain pixels from other objects with different depth values. To remove 
these noise pixels, a two-step color thresholding was implemented to 
filter non-red pixels for ripe berries and non-green pixels for unripe 
strawberries. For instance, in Fig. 4(a), ripe berries 2 and 4 were 
occluded by front green branches, leaves, and berries removed by non- 
red pixel thresholding. However, this method was unable to filter the 
occlusions with the same colors as the objects. Thereafter, the mean 
depth value of all the filtered pixels in the bounding box was used as the 
depth of the object. The top left and bottom right points of the 2D 
bounding box were de-projected into 3D points in the camera frame 
using the mean depth value, obtaining the length and height of the 3D 
bounding box of a target. In addition, since strawberries are mostly 
symmetrical, the length of the berry was also used as the width, thus 
obtaining a 3D bounding box in the camera frame (Fig. 4(b)). After that, 
the coordinates were transformed from the camera frame to the robot 
arm frame based on camera extrinsic calibration. More details about 
coordinate transformation can be found in our previous work (Ge et al., 
2019). 

2.3. Improved active obstacle separation 

2.3.1. Region of interest and layout 
The obstacle separation paths were generated according to the visual 

perception of the obstacle information around the target. Similar to the 
previous method, we considered that the obstacles located in a region of 
interest (RoI) area around the target might cause picking failure. These 
obstacles might be wrongly captured by the gripper during picking or 
prevented the target from being captured by the gripper. The RoI area 
was thus used to calculate the separation paths based on the distribution 
and number of the obstacles (Xiong et al., 2020a). The RoI comprised a 
volume of the 3D point cloud that contained the target fruit and 
potentially one or more obstacles. As shown in Fig. 5, the RoI area 
included a top layer above the target, a central layer encompassing the 
target and a bottom layer under the target. The gripper was instructed to 
separate obstacles in three stages in three layers accordingly. As the 
gripper picked from below, the gripper may push aside obstacles hori
zontally within the bottom layer during the first stage. During the sec
ond stage, the device moved upwards to swallow the target and might 
drag the target to avoid obstacles and then pushed the obstacles back 
within the central layer. Finally, the third stage performed a similar 
drag-push motion as the second stage but used a greater magnitude of 
the motion. The detailed separation policies will be elaborated in the 
below sections. 

The radius of the layer was determined according to the opening 
radius rgri of the gripper aperture for picking. This was because the 
gripper might wrongly capture the obstacles located within the opening 
size. Considering having a large space for pushing and dragging and the 
limitation of drag distance in the central layer, the radius of bottom and 
rbot central layers rcen were twice that of the gripper opening radius rgri. In 
the central layer, as the gripper partially swallowed the target fruit, the 
drag distance was limited to prevent the target from slipping out of the 
gripper. In the top layer, the target was fully enclosed in the gripper, so it 
can be dragged to a further position if needed. Therefore, the radius of 
the top layer rtop was three times of gripper opening radius rgri. The 
height of the central layer was equal to the strawberry bounding box 
height, while the heights of the bottom layer hbot and top layer htop were 
fixed, 80 mm and 40 mm, respectively. 

2.3.2. Stage 1: push in the bottom layer 
As the gripper swallowed berries from below, to avoid capturing the 

obstacles under the target, it was necessary to clear them before the 
gripper opening fingers to swallow the target. Our previous work Fig. 3. Flowchart of the perception system.  
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proposed a single linear push to move the obstacles out of the way in a 
simple situation and a zig-zag push for a more complex situation (more 
obstacles), which was demonstrated to be effective (Xiong et al., 2020a). 
A zig-zag push was a motion where the gripper used a zig-zag movement 
that contained several linear motions to push the obstacles side to side. 
This work remained the pushing policies but proposed several im
provements that made the method more precise and robust. One of the 
main improvements was that a closed visual loop was used to control the 
gripper for obstacle separation in the bottom layer, thanks to the 
implementation of object tracking. Another improvement was the 
calculation method of push direction and magnitude. 

Fig. 6(a) and (b) show that a single push was used to push aside 
obstacle 1 under the target. Obstacle 1 might be captured if the gripper 
moved up directly to swallow the target. The single push first instructed 
the gripper to move to the right side of the target bottom P0 (Fig. 6(b)). 
Second, the gripper pushed from P0 to the center of the target bottom P1. 
To reduce the possibility of the gripper touching the bottom of the target 
due to inaccurate localization, P0 and P1 were lower than the bottom of 
the target bounding box (offsetpush, using 1 mm in this work). Until then, 
the fingers remained closed to avoid receiving any obstacles. The final 
action in the bottom layer was that the gripper opened fingers at the P1 
position (Fig. 6(b)). 

During this stage, the gripper was closed-loop controlled based on 
visual feedback to reach at P0 and P1, respectively. Fig. 7 shows the 
control diagram for reaching at position P0. The system used the camera 
to perceive the current environment to detect, track and localize the 

target and obstacle strawberries. The 3D bounding boxes were sent to 
the obstacle separation algorithm to determine the newest and desired 
gripper position P0. Meanwhile, the system read the current gripper 
position and subtracted it from the desired position obtaining an error or 
difference of the gripper position. If the positional error was greater than 
a threshold, it was further converted into arm joint errors for motor 
speed adjustment. Considering the relatively high tolerance of the 
gripper and slow reacting speed of the camera-arm system, a simple 
proportional controller was used. The strawberries were not always 
stable, and the depth sensing of the camera generated about 1–2 mm 
errors among different image frames, so we used relatively large 
thresholds for quick settlement. The method was less sensitive to the 
positional error at P0 point as this was a push-starting point without 
strawberry capturing, so the threshold was set to 10 mm. The control of 
reaching at P1 point included all the procedures in Fig. 7, except for the 
obstacle separation function, because a push motion was already 
executed. A smaller threshold of 5 mm was used for P1 point for more 
accurate positioning, since the gripper opened fingers to capture the 
fruit at this point. 

The closed-loop feature was helpful when the strawberries were 
moved by previous picking of other berries or by wind, which accounted 
for approximately 34% of the failures before manipulation for the va
riety of “Malling Centenary” (Xiong et al., 2020a). Also, the target po
sition might change when pushing aside obstacles from P0 to P1, 
especially when they grew on the same stem. This made more than 50% 
of the failures in the bottom layer in the previous open-loop system 
(Xiong et al., 2020a). A closed visual loop enabled the system to find the 
newest P1 position. It also increased the success rate in the bottom layer 
when the mobile platform was moving or shaking, thus improving the 
system’s robustness. 

A high tolerated solution without pushing was used for the situation 
where no obstacles were detected in the bottom layer. The gripper 
moved directly to a lower point P1 l that was vertically under P1 (30 mm 
was used in this work) and then opened fingers at P1 l. This method gave 
a high tolerance to the z-direction of the target position. Furthermore, if 
the target was isolated, with no obstacles in all layers, the gripper moved 
to P1 l as well but opened fingers to a larger angle, making it more 
tolerated to all directions of the localization errors. 

2.3.3. Stage 2: Drag-push in the central layer 
After stage 1, the gripper moved up to separate the obstacles from the 

target in the central layer. Our previous work introduced an upward zig- 
zag push operation to push the surrounded obstacles side to side while 
the gripper moved upwards (Xiong et al., 2020a). This method worked 
in many cases but had low precision, long operation time and may 

Fig. 4. Localization: (a) results of detection and tracking, the binary images show to use the two-step color thresholding to remove the noise pixels from the branches 
and other obstacles in different colors; (b) localization results in the 3D point cloud. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Region of interest area around the target for obstacle separation.  
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increase the damage to the fruit. The reason for the low precision was 
that the predefined point cloud blocks used to determine the presence of 
obstacles had certain positions and numbers, so the gripper may miss the 
obstacles if it was located at a higher position in a block. Also, the old 
system only perceived the environment and generated the separation 
paths in all layers at the beginning of the picking. The environment 
might be changed when operated in the central layer. In this work, the 
separation policies were simplified and unified in the central and top 
layers, using a drag-push operation to separate the obstacles from the 
target. As shown in Fig. 6(c), the drag-push started with a vertical up
ward motion to swallow the target from P1 to the bottom of the lowest 

obstacle (2) at point A. After that, to avoid capturing obstacles 2 and 3, 
the gripper dragged the target horizontally to a position that contained 
fewer obstacles at point B (Fig. 6(d)). At this position, the gripper 
continued to move vertically upwards to enclose more of the target at 
point C (Fig. 6(e)). At point C, the peduncle might be inclined such that 
the target was difficult to fall due to the static contact force with the 
gripper fingers and easily be damaged when the gripper moved upwards 
further towards a cutting position. Hence, the gripper returned to the 
original central line of the target at point D while pushing the obstacles 
to the right (Fig. 6(f)). To avoid generating too many push and drag 
movements over a short distance, closely distributed obstacles were 

Fig. 6. Diagram of using push and drag-push movements to separate the obstacles from the target during picking: (a) the gripper is moving upwards to P0 before 
pushing obstacles; (b) pushing aside obstacle 1 in the bottom layer, arriving at P1, then opening fingers; (c) moving upwards to A; (d) dragging the target to B to avoid 
capturing obstacles 2 and 3 in the central layer; (e) moving upwards to C to enclose more part of the target; (f) pushing back to reduce the contact force generated 
from the inclined peduncle; (g) using the same drag-push motion to separate obstacle 4; (h) using drag-push motion to separate obstacle 5 in the top layer, closing 
fingers and moving down for fruit detachment. 

Fig. 7. Closed-loop position-based visual-servoing control in stage 1.  
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regarded as a group (obstacles 2 and 3 were in one group in Fig. 6). The 
push-drag operation was implemented once for a group of obstacles. As 
the gripper picked from below, the bottom position lowz of an obstacle 
bounding box was used for the group determination. First, the obstacles 
in the central layer were sorted from bottom to top and labeled as lowz0,

lowz1 and so on. The upper obstacles were grouped together if the ver
tical position was not higher than 10 mm of the nearest below obstacle: 

lowzi+1 − lowzi < 10, i = 0, 1,…, n (1) 

As shown in Fig. 6(b), the height of the pushing back motion (endz, 
height of points C and D) was critical. In general, endz should be very 
close to the lowest obstacle among the upper group upp groz, so the 
gripper had the highest possibility to push aside all the obstacles in the 
current group. However, the gripper may move the obstacles uninten
tionally from the upper group due to the localization error in z-direction. 
Therefore, it was more tolerated to use a lower endz when upp groz was 
higher enough than the highest obstacle (gro highz) in the current group 
or there was only one group in the central layer. A threshold of 15 mm 
(stepz) was used to determine the value of endz in this work. The 
abovementioned strategy can be concluded as follow:   

Fig. 8 displays the control process of the method in stage 2. The 
perception system grabbed the latest RGB-D images and sent the upda
ted positions and IDs of the target and obstacles to the obstacle sepa
ration function. The obstacle separation function calculated and 
obtained a set of push-drag operation paths. Then, the manipulator was 
instructed to implement the drag-push operation, traveling from point A 
to B, C, and D, respectively. In the meanwhile, a parallel thread was used 

to check if the gripper received the target using the gripper internal IR 
sensors (see the gripper design in (Xiong et al., 2020b)). After 
completing the push-drag operation in one group, the system continued 
to separate the obstacles in the upper group if the gripper had not passed 
the central layer. The perception system updated the target and obstacle 
information for planning the separation of each obstacle group. For 
example, as shown in Fig. 6(f), after finishing the drag-push operation 
for the first group, at point D, the system recaptured the images and 
generated a new set of drag-push paths (black arrows) for the upper 
group (obstacle 4). Continuous “look-and-move” provided more accu
rate information compared to the old system. Also, in this stage, the 
target might not fall into the gripper smoothly when the gripper moved 
upwards, because the gripper might push up the target and obstacles if 
they grew on the same stem or the static contact force between the target 
and the connected obstacles was difficult to break (Xiong et al., 2020a). 
The current system was able to perceive the new situation and perform 
appropriate actions continuously until reaching the arm’s working space 
limits, which increased the possibility of successful picking. If the 
gripper did not detect the target inside it for more than five rounds of the 
push-drag operation, the system would skip the current target and move 

to the next one. It also happened when the gripper failed to swallow the 
target due to localization errors. 

Unlike in stage 1, the control of the drag-push operation crossing 
points A, B, and C to D was a visual open loop. One reason was that 
points A, B, C, and D were determined according to the number and 
locations of the obstacles that might have obvious differences over 
image frames due to the picking operation. Strawberries swung quickly 
in the picking operation, which made the current system hard to esti
mate the position changes in a short time due to the latency of the image 
processing. The central layer might contain several rounds of drag-push 
operation, so using a visual closed-loop method to reach each point 
might significantly increase the operation time. 

During stage 2, the target might be lost in detection and tracking 
when partially swallowed by the gripper. In this case, the latest target 
position from the previous image frame would be used for separation 
calculation, but the obstacle information was still updated in the current 
image frame. Thus, the target position was only updated when it was 
visible and trackable. 

2.3.4. Stage 3: Drag-push in the top layer 
After stage 2, the gripper continued moving upwards to provide more 

space for finger closure and fruit detachment in stage 3. Obstacle sep
aration in stage 3 was similar to stage 2, using the drag-push operation 
but with a greater drag magnitude. As shown in Fig. 6(g), after finishing 
the obstacle separation in stage 2, the system re-perceived the scene and 
determined to use a drag-push operation to move aside the top layer of 
obstacle 5 to avoid capturing it. In stage 3, the target was fully enclosed 
in the gripper, so it could be dragged to a farther position without 
slipping out from the gripper. In addition, dragging the target to a 
farther location could increase the likelihood of finding a position with 
fewer obstacles. When one round of drag-push operation was finished, 
the gripper closed fingers at the final position and then moved down 30 
mm for fruit detachment (Fig. 6(h)). The newly added moving down 
motion was simple, but a robust mechanical method to keep the 
peduncle that remained on the fruit short and neat. 

It was also worth reminding that to avoid cutting the fruit body, the 
gripper internal sensors were used to check whether the target had Fig. 8. Continuous “look-and-move” control in stage 2.  

endz =

{
gro highz + stepz

/
2, upp groz − gro highz > stepz or numgroup = 1

upp groz − offsetpush, upp groz − gro highz <= stepz

(2)   
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passed the cutter when the target was not visible from the camera in 
stage 3. This was because that in some cases, the fruit did not fall further 
for detachment when the static contact force between the target and the 
gripper was greater than the fruit weight or when the gripper pushed up 
the branch that connected to the target. On the other hand, a continuous 
upward movement may enable the fruit to fall for detachment. There
fore, the system would perform another drag-push round until the fruit 
fell or reached the arm limits. The control diagram of stage 3 was similar 
to Fig. 8 but replaced “gripper detects a berry” and “more than 5 cycles” 
with “gripper checks whether the target has passed the cutter” and 
“reach arm limits”, respectively. 

2.3.5. Calculation of push and drag vectors 
This work simplified the calculation of push and drag vectors, 

making it possible to use the same formulas to derive both push and drag 
vectors in all stages. We used the latest distribution of obstacles in the 
current image frame to generate the push or drag motions, without the 
need of tracking the obstacles. The push vector Dpush referred to the 
movement of P0P1 in stage 1, and the drag vector Ddrag referred to AB in 
stages 2 and 3 (Fig. 6). Fig. 9 shows the diagram of the calculation of the 
push and drag vectors. The central red circle represented the target that 
was surrounded by four obstacles, circle B1, B2, B3 and B4. The bold 
black circle was the ring formed by the gripper fingers at the opening 
position. In this work, a two-step calculation was used. First, we defined 
a risk circle to determine if the target was isolated at the current layer or 
group. That was, if the distance between the obstacle and the target 
disob tar was shorter than the radius of the risk circle rrisk, the target was 
considered not isolated so a push or drag was required. This was because 
that obstacles located within the risk circle might be captured by the 
gripper or stopped the gripper from enclosing the target. The radius of 
the risk circle rrisk equaled the gripper opening radius rgri plus a tolerance 
Δ (8 mm was used in this work). The outer dashed circles show the top 
view of the bottom, central and top layers. Second, if the target was not 
isolated in the current layer/group, all the obstacles located within the 
layered circle were used for push or drag vector calculation. To increase 
the possibility that the gripper pushed all the obstacles out of the way 
and had less impact on the target, the gripper should move from an 
“entrance” that contains fewer obstacles towards the target center. Drag 
operation, on the other hand, took the target from the original center of 
the target to a place with fewer obstacles. As shown in Fig. 9(a), ob
stacles B1 to B4 were located inside of the bottom layer and the angle 

between the nearest obstacles around the target was labeled as θ1, θ2,

θ3 and θ4 in clockwise. The “entrance” was the maximum angle θmax 
among these obstacle angles (θ1 in Fig. 9). The normalized drag vector 
Ddrag N can be expressed as: 

Ddrag N =
OBL

|OBL|

⎛

⎜
⎜
⎝

θmax

2

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

cos
θmax

2
− sin

θmax

2

sin
θmax

2
cos

θmax

2

⎤

⎥
⎥
⎦

OBL

|OBL|
, θmax

= max

⎛

⎜
⎜
⎝θ1, θ2,…, θi

⎞

⎟
⎟
⎠ (3)  

where, BL was the centroid of the end obstacle in a clockwise direction at 
the “entrance” (B1 in Fig. 9). The normalized drag vector Ddrag N was 
obtained by rotating the normalized vector of OBL counterclockwise by 
half of θmax. The push vector Dpush was opposite to the normalized drag 
vector Ddrag N and had a fixed magnitude of rbot so that it can be 
expressed as: 

Dpush = − rbotDdrag N (4) 

As for the drag vector, the magnitude mdrag was calculated based on 
the obstacle locations. As shown in Fig. 9(b), all the obstacles in the 
central layer were added with a risk circle. The obstacle risk circle may 
have one or two intersection points with the line segment OT along the 
drag vector. The intersection point was marked as E1, E2, …, and Ei. The 
gripper dragged the target to the farthest intersection point to O (OEmax) 
to reduce the risk of capturing obstacles. However, considering that the 
target may slip out of the gripper for long-distance drag, the magnitude 
mdrag was limited to rgri in the central layer and 2rgri in the top layer. 

mdrag =

{

OEmax, OEmax <= krgri
krgri, OEmax > krgri

, OEmax = max

(

OE1,OE2,…,OEi

)

(5)  

where, k was 1 in the central layer and 2 in the top layer, respectively. 
The drag vector Ddrag was then obtained by: 

Ddrag = mdragDdrag N (6)  

Fig. 9. Diagram of calculating the push and drag vectors: (a) top view with layers and obstacles to show the calculation of push or drag directions; (b) calculation of 
drag magnitude. 
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3. Results and discussions 

3.1. Results 

3.1.1. Application demonstrations of the proposed method 
Fig. 10 demonstrates three picking examples of using the proposed 

method under different situations. The robot recorded these images 
during picking, showing both detection and tracking in a dynamic 
environment. In Fig. 10(a), the target ripe berry 4 and several green 
berries that grew on the same branch swung from left to right. First, the 
gripper moved to push aside the obstacles under the target to P1 where 
the branch of berries was on the left (Fig. 10(a-1)). After that, the branch 
of berries swung to the right quickly, but the gripper remained in the left 
(Fig. 10(a-2)). In a short period, the system used the closed vision loop to 
adjust the gripper to the newest P1 position (Fig. 10(a-3)). In the 
meanwhile, the berries stopped swinging due to the contact with the 
gripper. In Fig. 10(a-4), the gripper started to use a drag-push to separate 
the green obstacle in the central layer. The gripper dragged the target 

rightwards to point B to avoid the left green berry (Fig. 10)) and pushed 
back to the left at point D for further fruit enclosing (Fig. 10(a-6)). 
Fig. 10(a-7) shows the 3D trajectory (blue line) of the gripper tip posi
tion during the picking, in which the enlarged part shows the position 
adjustment of the closed-loop controlled gripper in the first stage. 

Fig. 10(b) demonstrates a case where the separation method was 
used in all stages/layers. In stage 1, the gripper moved to P0 position and 
pushed aside the bottom obstacles to the front left (Fig. 10(b-1)). 
Thereafter, a drag-push motion was used to separate the obstacle in the 
central layer (Fig. 10(b-2) and (b-3)). Then the gripper continued to 
separate the obstacle in the top layer using another drag-push (Fig. 10(b- 
4) and (b-5)). After obstacle separation, the gripper closed its fingers and 
moved downward for fruit detachment. Fig. 10(c) mainly illustrates a 
case of using continuous drag-push to separate an obstacle that did not 
fall. The gripper first used a drag-push to separate the obstacle ripe 3 in 
the left (Fig. 10(c-1) and (c-2)). After that, the system performed another 
drag-push to avoid the unripe berry in the central layer (Fig. 10(c-3)). 
However, the unripe berry did not fall and got stuck on the tip of the 

Fig. 10. Examples of the proposed method in the field test: each row of images represents a picking case, where the left six images that were captured by the robot 
camera show the picking procedures and the last image (right) displays the corresponding 3D trajectory of the gripper (blue line, and the green line is the trajectory 
projection on the xy plane). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Performance of the detection method: (a) precision-recall curves of the detection method; (b) loop rate - number of ripe berries of the perception system.  
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gripper (Fig. 10(c-4)). The system recaptured the environment and 
performed the second trial of drag-push on the same obstacle, although 
it moved to the top layer. In the third stage, the primary goal was to 
enable the target to fall inside the gripper that received sufficient long 
peduncle for fruit detachment, and in the meanwhile, the gripper did not 
capture obstacles. However, in this case, the target was pushed up 
together with the obstacle as they grew on the same stem. The gripper 
sensors detected insufficient length of peduncle and instructed the 
gripper to move upwards further. The system then carried out the third 
trial of the push-drag, and finally, the gripper received sufficient long 
peduncle and the obstacle fell at the same time (Fig. 10(c-5) and (c-6)). 

3.1.2. Performance of the detection method 
Fig. 11(a) shows the precision-recall curves of ripe and unripe classes 

of the YOLOv4 detection method. The intersection over union (IOU) 
threshold for the evaluation was 0.5. The ripe and unripe classes’ 
average precision (AP) were 91.8% and 81.5%, respectively. It is clear 
that the detection network performed better on the ripe strawberries. 
This was because that the unripe strawberries varied in size and shape. 
As mentioned before, the detection network YOLOv4 ran at a speed of 22 
FPS on the robot computer (GTX 1060 6 GB GPU). However, the loop 
rate of the whole perception system (including detection, tracking, and 
localization) was reduced to a medium value of around 9 FPS and was 
dependent on the number of ripe strawberries (Fig. 11(b)), since only 
ripe strawberries were tracked. 

We also performed an experiment to evaluate the positional accuracy 
of the system in the field. Accurate measuring the ground truth positions 
of strawberries is difficult. Same to the previous method (Xiong et al., 
2019), a 3D printed pointer with a sharp tip was mounted on the gripper 
for easier measurement. As shown in Fig. 12(a), the distance between 
the strawberry tip (roughly used as the bottom center point P1) and the 
pointer tip was regarded as the absolute positional error, which was 
measured by a caliper. Fig. 12(b) shows the distributions of the posi
tional errors for both ripe and unripe strawberries. The mean positional 
errors of reaching the ripe and unripe berries were 7.3 mm and 9.1 mm, 
respectively. The smaller sizes of unripe berries made the positioning 
less accurate. Compared to other picking devices, the gripper used in this 
paper was high tolerated to positional errors (Xiong et al., 2019). The 
gripper opened fingers forming a closed ring to surround the target 
strawberry from below, which usually started with the sharp strawberry 
bottom tip. Once a part of the strawberry entered the gripper, the 
gripper was likely to fully captured it. The tolerance of the gripper was 
roughly the half of the aperture diameter of the gripper fingers (35 mm 
used in this work). However, if the strawberry was highly tilted to the 
ground, it might be difficult to capture the fruit, as the P1 position was 

the bottom center of the bounding box, not the tip position. 

3.1.3. Picking performance tests 
The performance experiment was carried out on a strawberry culti

vator of “Murano” in a strawberry tunnel at the Norwegian University of 
Life Sciences, which used the same settings as in the previous work 
(Xiong et al., 2020a). Since this work focused on obstacle separation, 
only the targets surrounded by obstacles were counted for the perfor
mance evaluation. This may result in a lower success rate because the 
robot performed well on isolated strawberries (Xiong et al., 2020b). A 
total of 109 attempts on detected ripe strawberries were recorded for the 
performance tests. As shown in Table 1, we divided the picking process 
into five steps: before separation, stage 1, stage 2, stage 3, and detach
ment. Failures caused by localization error from the vision system before 
the separation were independently recorded, because it happened 
before the manipulation started. The result of each separation stage only 
included the situation that one or more obstacles were located in the 
corresponding layer, while the whole process might contain an isolated 
situation in one or two layers/stages, but at least one stage had obsta
cles. The success in the whole process means that all the five steps were 
successful. The success rate of the whole process was 62.4% using the 
proposed method, which increased 36.8% from the previous work. 
Overall, the system was improved in all separation stages, in which the 
drag-push using continuous “look-and-move” in stage 2 reduced many 
failures compared to the old system. 

In terms of speed, we recorded the execution time for both failure 
and successful cases. The cycle time of picking one target included 
perception, manipulation, and fruit detachment. In general, the speed of 
the improved system was not reduced even using a more complex vision 
control system. One reason was using a more precise drag-push instead 
of using multiple zig-zag pushes in the central layer. Another reason was 

Fig. 12. Positional accuracy test: (a) measurement of positional errors; (b) positional error distributions of ripe and unripe berries.  

Table 1 
Performance of the proposed method in field tests and its comparison with the 
old method (Xiong et al., 2020a).   

Performance 
indicators 

Results of this 
work 

Results of the old 
method  

Before separation 88.1% N/A  
Stage 1 85.3% 81.8% 

Success 
rate 

Stage 2 80% 69% 
Stage 3 84.6% 75.4% 
Detachment 95.5% N/A  
Whole process 62.4% 45.6% 

Cycle time Failure cases 7.6 s 6.9 s 
Successful cases 6.8 s 7.6 s  
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the faster detection system, which could even be ignored compared with 
the time used for manipulation. A noticeable difference was that the 
failure cases used more time than the successful cases. In some failure 
cases, the system used several drag-pushes for continuously detected 
target but did not fall for detachment. 

3.2. Failure cases and discussions 

Table 2 reports the failure reasons and the percentages of the failures 
in each step. Inaccurate localization of a target was the main failure 
reason before separation, especially in partially occluded situations 
where the depth sensing might be affected by front obstacles. Also, when 
the bottom of a target was occluded, the separation in stage 1 was hard 
to use because the gripper may push the bottom part of the target. Future 
work will consider completing the occluded bottom part of the 
strawberries. 

A common failure (5) in all three separation stages was the wrongly 
capturing of undetected berries and flowers. The current single-view 
vision system was not able to detect the rear obstacles that were fully 
occluded by the front objects. However, the proposed obstacle separa
tion required full obstacle information around the target to generate 
accurate motions. The undetected obstacles might be wrongly captured 
by the gripper. Therefore, future work should utilize the fusion of one or 
more cameras to provide multiple views, which can also improve the 
localization accuracy in partially occluded situations. Also, the class of 
unripe berries in the current vision system was trained on relatively 
large green berries, but did not include very small unripe berries and 
flowers. The small unripe berries have different shapes and features than 
typically-sized unripe berries, so it is necessary to set a new class to train 
the small unripe berries. 

In stage 1, when the berries swung quickly, the system might not 
capture the target due to the latency of the closed-loop vision control 
system (failure 3). A faster perception manipulation system with motion 
prediction capacities may help address this issue. Another common 
failure in stage 1 was “not updated” (failure 6). Such failure would 
require the detection and localization system to work in a more complex 
environment, especially in highly occluded situation. Also, in stage 1, 
the closed-loop control was only performed once at two points, P0 and 

P1. However, occasionally, some new obstacles moved to the bottom of 
the target after pushing and were captured by the gripper in stage 2 
(failure 4). This was because that the push may break the static contact 
force that held the berries together. To avoid this failure, the system 
should recheck the obstacles in the bottom layer and, if necessary, re- 
perform the push in stage 1 before moving on to stage 2. 

In stage 2, the frequent failures were “disconnected detection” 
(failure 7) and “inaccurate drag” (failure 8). Inaccurate drag was 
because the drag-push process was controlled using an open vision loop. 
The predetermined drag distance might be inaccurate when the obsta
cles moved obviously or were inaccurately localized. Future work 
should consider using closed-loop vision for all stages, although it may 
make the system more complicated and slower. “Pushed up” (failure 2) 
frequently occurred in stage 3 and also can be seen in stage 2. The 
control system only used the obstacles above the gripper tip for sepa
ration in stages 2 and 3 and could not recognize these failures. The 
future system may need to detect the obstacles below the gripper tip and 
have the ability to identify and handle any failure cases. Also, an addi
tional vision system inside of the gripper may help identify wrongly 
captured obstacles and instruct the gripper to get rid of them and 
recapture the target. 

4. Conclusions 

This paper presents the improvements in perception, obstacle sepa
ration and control method to the active obstacle separation method for 
strawberry picking in clusters. A faster and more accurate vision system 
was developed that combined YOLOv4, Deep SORT and color thresh
olding for strawberry detection, tracking and localization in real-time. 
We proposed an improved version of the active obstacle separation 
method that used a push operation in the bottom layer and a drag-push 
in the central and top layers. The push and drag vectors were simplified 
and precisely calculated based on the locations of obstacles. Most 
importantly, different from the old system that only “looked” once for 
the entire obstacle separation stages, the new system used a hybrid 
vision-based control system for the separation process. In stage 1, a 
simple closed-loop vision was used to control the push operation at two 
key points. In stages 2 and 3, the vision system re-perceived the 

Table 2 
Failure analysis of the proposed method.  

Stages and 
failures 

Failure reasons 

Before separation: 
a. 76.9% a. Inaccurate localization due to occlusions. 
b. 23.1% b. Inaccurate localization due to arm-camera calibration. 

Stage 1: 
1. 12.5% 
3. 37.5% 
4. 12.5% 
5. 12.5% 
6. 25% 

1. Difficult: unable to separate some obstacles that were too close to the target or were in dense clusters. 
2. Pushed up: the target was pushed up but did not fall further into the gripper because: a) obstacles did not fall on outside of the fingers, resulting in the target not 
falling as they grew on the same branch; b) gripper was covered by branches and not able to swallow the target; c) the target peduncle was too short, and the 
gripper pushed up the connected branches. 
3. Latency: failed to capture the target when reaching because berries swung quickly, and the closed-loop control did not work well due to latency. 
4. One push: some new obstacles appeared after pushing and were wrongly captured. 
5. Undetected: did not detect small or occluded unripe berries or flowers that were picked together with the target. 
6. Not updated: the target was moved, but the position was not updated and resulted in failure capturing, because: a) target was initially detected and localized 
correctly but was not detected or incorrectly localized due to the new occlusions caused by separation; b) target was initially detected as a ripe berry but was 
changed to unripe when gripper was approaching because of the illumination changes (shadow). 
7. Disconnected detection: some obstacles were initially detected but not detected when they became occluded during separation or dropped suddenly that were 
unstable to be detected, and thus no drag-push was carried out to separate them from the target. 
8. Inaccurate drag: insufficient or excessive drag distance, resulting in the target slipping out from or obstacles falling into the gripper. 

Stage 2: 
1. 16.7% 
2. 16.7% 
5. 16.7% 
7. 25% 
8. 25% 

Stage 3: 
2. 33.3% 
5. 16.7% 
6. 16.7% 
7. 16.7% 
8. 16.7% 

Detachment: 
c. 60% c. Gripper fingers clamped other peduncles or branches when closing. 
d. 40% d. Failed to cut the target peduncle.  
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environment to update the information for each round of drag-push 
movements. Field evaluation showed that the improved picking 
method was more precise to separate the obstacles, increasing the whole 
process success rate to 62.4% in clusters on the “Murano” strawberry 
cultivator that was 36.8% higher than the previous method. Meanwhile, 
the picking did not slow down on successful cases despite using a more 
complex vision-guided system. Future work may include full-process 
closed visual loop, failure case handling, and multi-view perception. 
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