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                                                   Abstract 

Genomic selection on feed efficiency traits in dairy cows can save 

more feed costs and result in more sustainable dairy industry. Here 

we estimate the accuracy of genomic selection regarding dry 

matter intake in dairy cattle on individuals’ and herd levels for 

training and validation animals. The training population consists of 

27856 cows from 833 herds. The validation population was 1104 

cows from 11 herds. The number of single nucleotide 

polymorphisms (SNPs) used for genomic prediction was 41227. The 

simulated heritability for dry matter intake was 0.25.  

The accuracy of genomic selection for the training animals was 

0.799, and for the validation animals was 0.748. The herd-wise 

average genotype of the training animals from 833 herds of the 

41227 SNP-chip genotypes and the average phenotype of these 

833 herds were used to estimate the SNP effects. The accuracy of 

genomic selection of 833 herds from training animals and GEBV 

estimated by average genotype per herd from training animals was 

0.345 and 0.495. Furthermore, using these 41227 estimated SNPs 

effects from the herd-average genotypes and phenotypes for the 

prediction of GEBV of the validation animals resulted in ~0 

correlations between TBV and GEBV of the validation animals. It 

was concluded that using a large number of individual phenotypic 

records will achieve high accuracy of genomic selection in dry 



matter intake for dairy cows. Genomic selection with herd-wise 

averaged genotypes and phenotypes as training data did not yield 

prediction accuracy for validation animals in this study because 

herd-averaged genotypes resulted in decreased variance in 

genotypes and phenotypes, which leads to the less precise 

estimates of the SNP effect to predict the GEBV of validation 

animals and reduces the accuracy of the estimates of the SNP 

effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1: INTRODUCTION  

Feed accounts for the main cost in the dairy industry, and it is 

essential to have more efficient dairy cows to maximize the profit 

and save the feed costs of dairy production. Dry matter intake 

partly predicts the feed efficiency in a breeding program. 

Measuring dry matter intake (DMI) is expensive because it needs 

special equipment to measure individual roughage intake, and it is 

a challenge to collect accurate dry matter intake records. 

Considering feed efficiency in the breeding goal implies striving for 

more milk and less feed intake in the dairy industry. The difference 

between actual feed intake and expected feed intake is defined as 

residual feed intake (RFI) (Løvendahl et al., 2018). The RFI can be 

estimated by least square estimation, which makes RFI an 

independent trait. Hence, RFI ignores the feed cost for production 

and growth. Another option for feed efficiency selection is to 

estimate the breeding value of DMI. Because DMI also includes 

feed for production, growth, and energy maintenance, the 

breeding goal in dairy cows can be considered the cost difference 

between milk production and the cost of DMI (Veerkamp et al., 

2013). Including DMI and residual feed intake (RFI) selection 

programs can save more energy and cost and produce more 

efficient dairy cows. Also, feed efficiency traits such as DMI and RFI 

are highly correlated to methane emission in dairy (Hegarty et al., 

2007). The selection for feed efficiency in dairy cows could reduce 

the environmental impact of the dairy industry. Genomic selection 

is an ideal method to estimate the breeding value because genomic 

selection uses genetic markers such as Single-nucleotide 

polymorphism across the genome to predict the breeding values of 



selection candidates (Meuwissen et al., 2001).  Using linkage 

disequilibrium between the genetic markers and the actual 

polymorphisms can cause variation in traits (Hayes et al., 2012). 

When the SNP effects are estimated from the reference population, 

breeding values can be derived from an animal with genotype and 

no phenotype. This research aims to assess the genomic breeding 

values (GEBV) of the validation population-based on marker effects 

from the reference population and calculate the accuracy of 

genomic prediction. Second, the reference population's 

phenotypes and genotypes were averaged per herd to estimate the 

marker effects and the GEBV to avoid expensive individual 

recordings. The latter assumes that total feed intake records for an 

entire herd are readily available. Third, based on estimates of 

markers effects to predict the GEBV of the validation population 

and calculate the accuracy of genomic prediction. We will use 

actual SNP genotypes from Norwegian Red Cows here but 

simulated phenotypes based on a random set of SNPs assumed to 

have causal effects on the phenotypes. The latter implies that true 

genotypes were known in this simulation study and that accuracies 

of genomic prediction could be calculated as the correlation 

between predicted and true genetic value. To the best of our 

knowledge, genomic selection with herd-wise averaged genotypes 

and phenotypes as training data has not been tested before for its 

accuracy of prediction. Especially for dry matter intake, herd-wise 

averaged phenotypes for genomic prediction are helpful since it is 

easier to obtain DMI records at the herd level than at the individual 

level.        

  



   CHAPTER 2: LITERATURE REVIEW 
                                                           

Background 

In the dairy industry, the main cost is for buying feed for cows. The 
feed efficiency traits should be considered in the selection scheme. 
One of the critical feed efficiency traits is dry matter intake (DMI) 
in the dairy cow. The cost of collecting records for DMI is expensive 
and complex in practice, making genomic selection an ideal tool for 
the prediction of breeding values of animals based on their 
genotypes. The following review is focused on three studies; the 
first study researched how genomic selection can be implemented 
using different statistical methods (Meuwissen et al., 2001), the 
second study reported measurement of genetic parameters of DMI 
in three dairy breeds(Li et al., 2016), the third study focused on 
combining data sets from multiple countries to improve the 
accuracy of genomic prediction in DMI( Hayes et al., 2009) 

. 

            

Different statistical methods for genomic selection 

The effects of markers can be estimated using different statistical 

approaches in training populations with recorded phenotypes and 

genotypes. Next, the estimates of marker’s effects are used to 

predict breeding values of new individuals, e.g., in an evaluation 

population. The critical assumption in genomic selection is that 

using dense markers should cover all chromosomes. All 

quantitative trait loci (QTL) and markers are in linkage 



disequilibrium with QTL (B. Hayes & Goddard, 2001). These authors 

compared the accuracy of genomic selection calculated by 

different statistical methods, including least squares and BLUP, and 

Bayesian approaches. Meuwissen et al. reported that when the 

number of markers exceeds the number of phenotypic records, the 

least-squares method has too few degrees of freedom. The 

solution is to use only genes above the statistical significance 

threshold to predict breeding values. The authors reported the 

problem that the effects of the gene may be overestimated. 

Meuwissen et al. reported that the gene effects could be evaluated 

with the BLUP method, where the number of markers may exceed 

the number of phenotypic records. The main drawback of the BLUP 

method is that all loci have the same variance, which in practice, is 

not the case. The authors suggested that using a Bayesian approach, 

the variance explained by each locus from a prior distribution could 

be estimated. Then the effects of alleles are predicted. The authors 

have shown that the variance is not fixed in the Bayesian method 

as in the BLUP approach. Meuwissen et al. emphasized that the 

simulated population with an effective population size of 100 was 

used. After 1000 generations, the numbers of the population 

became 200 in generation 1001, then 20000 in generation 1002 

and 1003. The animals from generations 1001 and 1002 were 

genotyped, and their phenotypes were collected. In generation 

1003, the animals did not have the phenotypes but only genotypes. 

The estimated breeding value, as well as the accuracy, will be 



calculated for generation 1003. Meuwissen et al. calculated the 

accuracy of genomic prediction by correlating true and estimated 

breeding values in the simulation study. The accuracy of genomic 

prediction of the Least square method was lowest, around 0.318, 

and for BLUP, the accuracy was 0.732, and for BayesB, the accuracy 

was 0.848. Hence, the Bayesian approach yielded the highest 

accuracy of genomic prediction. Meuwissen et al. have shown that 

using available dense markers maps; the genomic prediction can 

predict the breeding values only based on the genotypes and 

estimates of marker effects. 

 

Genomic selection of dry matter intake in four countries 

De Haas et al. (2012) have shown that collaboration in genomic 

selection between countries can improve the genomic selection for 

DMI. She conducted a study to improve the accuracy of genomic 

predicted breeding values (GEBV) of dry matter intake (DMI) in 

dairy cattle. In this study, the combined data from three countries, 

including Australia (AU) and the United Kingdom (UK), and the 

Netherlands (NL), were used, and both single trait and multi-trait 

models were used for the accuracy of genomic selection. In this 

study, the total number of phenotypes of DMI was from 1801 dairy 

cattle. And 833 lactating heifers were from AU, where the 

phenotypes were recorded around 60 – 70 days. Three hundred 

fifty-nine lactating heifers were from the UK. The rest of the 599 



calves were from NL. The number of single nucleotide 

polymorphism (SNP) used in this study was 30 949. De Haas used a 

Subset of the data as a testing population. For UK and AU, four 

testing populations were made, respectively, and three testing 

populations were created for NL. Because of significant differences 

in phenotype-based on means and standard deviations, de Haas 

standardized the phenotypes. Variance components for DMI were 

estimated by a linear mixed model (Gilmour et al., 2009). De Haas 

estimated Genomic prediction using mixed model equation in 

which the G matrix was used. De Haas used the estimated 

heritability (0.342) for calculating the accuracy. And the accuracy 

of genomic selection was estimated as the correlation between 

genomic estimated breeding value and phenotype and divided by 

the square root of the heritability of DMI in the study. De Haas 

measured that the overall heritability of DMI was 0.342 using a 

genomic relationship matrix. And 0.406 for AU and 0.386 for the 

UK, and 0.585 for NL. de Haas found that the Estimated genetic 

correlation between AU and UK was highest (0.74) and between 

AU and NL was lowest (0.36) between NL and UK was 0.5. The 

author combined two countries' data sets and took DMI as a single 

trait in all three countries and noticed that the accuracy of genomic 

selection of DMI was only improved in the UK. When a dataset from 

three countries was used, the accuracy was improved in all 

countries. And the highest accuracy was observed. De Haas 



concluded that the accuracy of genomic selection could be 

improved using datasets on the same trait from multiple countries.  

Genetic parameters such as heritability and genetic variance are 

essential factors in genomic prediction. Li (2016) used the data of 

32929 weekly dry matter intake records from 717 Holstein and 663 

Nordic Red and 276 Jersey, in total 1656 cows. And the author used 

the weekly DMI in different periods as a distinct trait in this study. 

The animal model was used to calculate heritability and variance. 

The repeatability for DMI for three breeds in each period was 

estimated by (REML) (Gilmour et al., 2009). The authors also 

evaluated the correlation of DMI within the different lactation 

periods between the breeds. The authors found that genetic 

variance for both Holstein and Jersey increased from the first to 

mid-lactation period. In contrast, Nordic Red has the highest and 

lowest genetic variance for DMI, similar to Jersey. The authors 

observed that the difference in genetic variance was not 

statistically significant. Related to variance in phenotype, Li found 

that Nordic red led to higher variance in phenotype, and Jersey 

showed the lowest variance in phenotype within three breeds. 

Holstein's estimated heritability for DMI was from0.2 to 0.4. For 

Nordic Red, the estimated heritability varied from 0.25 to 0.41, and 

for Jersey cows, from 0.17 to 0.42. Li noticed that the higher genetic 

and phenotypic variance for dry matter intake was observed in the 

middle of lactation. Furthermore, Li examined that the genetic 



correlation between breeds should not be ignored when using dry 

matter intake as a trait from dairy breeds. 

 

Progress and challenges of genomic selection in the dairy 

industry  

Results from genomic selection in dairy cattle breeding programs 

in four countries, Australia, New Zealand, and the United States, 

are described here. The Australian population was 798 Holstein-

Friesian bulls born between 1998 and 2003, and 56,947 SNP was 

used for the analysis(reference). BLUP and the Bayesian method 

(BayesA) were used for genomic prediction. The estimated SNP 

effects were estimated from the bulls that were born between 

1998 and 2002. Then the GEBV of bulls born in 2003 were predicted 

using the estimated SNP effects. The accuracy of genomic selection 

was derived from the correlation between GEBV and TBV (true 

breeding value) estimated from the progeny test. The reliability 

was calculated as the square of the accuracy. Among the traits, the 

reliability of the GEBV of fertility was lower than other traits 

because of the lower heritability. Apart from fertility traits, using 

the Bayesian method did improve the reliability for all traits.  

Harris et al. (2008) reported that 4,500 bulls from New Zealand 

were used as the reference population, and 44,145 SNP was used 

for analysis.  Prediction methods including BLUP, BayesA, BayesB 

(Meuwissen et al., 2001), least angle regression (Efron et al., 2004), 



and Bayesian regression (Xu, 2003) were used. The reliabilities of 

GEBV were calculated from inversion of the mixed model equation 

where the genetic relationship was used. The Bayesian approach 

than the BLUP estimated the highest reliability. The regression 

approach gave the lowest reliability. VanRaden et al. (2009) 

reported on 3,576 Holstein bulls considered a reference population 

from the United States, and 38416 SNP were used for analysis. For 

genomic prediction, the BLUP and Bayesian methods were used. 

And reliability from the Bayesian approach was 1% better than 

BLUP. De Roos et al. reported that 1,583 bulls from the Netherlands 

were used as reference populations and genotyped by SNP chip 

46,529. When the GEBV and the progeny proofs were correlated, 

the reliability of the traits (fat percentage), (kilogram of protein), 

(feet and legs), and (fertility) did improve compared to the average 

EBV of the parent. 

 

         Comparison of results from four countries 

In all four countries mentioned above, the reliabilities of GEBV 

were increased compared to the average breeding value from 

parents and the level for genetic gain. Furthermore, the cost of 

breeding programs can be decreased. The reliabilities of GEBV from 

the United States and New Zealand were more significant than in 

Australia because of more extensive reference data. For the 

method part, the Bayesian method did slightly better than the 



BLUP method, which indicates that the Bayesian assumption is 

closer to practice in the dairy industry. 

 

           Increasing the accuracy of genomic selection 

The accuracy of GEBV can be improved by four factors [e.g., 

Goddard (2008); Hayes et al. (2008)]. The first factor is the amount 

of linkage disequilibrium (LD) between markers and quantitative 

trait loci. Without sufficient LD between markers and QTL, the 

marker effects cannot be predicted. A second factor is the number 

of individuals with phenotypic records and genotypes in the 

training population to predict the marker's effects. The third factor 

one is the heritability of the trait, because trait with lower 

heritability requires more phenotypic records and markers. The 

fourth factor is the distribution of the QTL effect. 

                                              Challenges 

Although genomic selection is a promising technology for breeding 

programs, there are still many challenges. In the breeding industry, 

using pedigree and phenotypic records and maker effects all 

together to estimate GEBV can be a challenge. One solution for this 

challenge is to estimate the breeding value using phenotype and 

pedigree and estimate GEBV using markers effect separately, then 

combine the two EBV into one GEBV for selection (Goddard and 

Hayes 2007). Another challenge for genomic selection is collecting 



and combining genetic resources from different countries because 

of differences in breeds and prediction models, SNP chips. Using a 

dense SNP marker chip captures QTL and captures the genetic 

relationship, including breeds and pedigree (Habier et al., 2007., 

Pritchard et al., 2000; Hayes and Goddard, 2008). Because the 

effects of markers in LD with QTL will be preserved across the 

generation, these relationships should be accounted for in the 

model to predict the SNP effects. Habier et al. (2007) observed that 

the accuracy of GEBV using the BLUP method to predict marker 

effects decreased quickly compared to the Bayesian method. This 

is because of the normal distribution of the QTL effect in the BLUP 

method, where the pedigree relationship matrix is replaced with a 

genetic relationship matrix (Goddard, 2008). The solution is to add 

polygenetic effect in the prediction model and uses individuals 

from several breeds in the training population (De Roos et al., 2008). 

Another challenge is that estimating SNP effects requires large 

reference populations, which will be challenging to obtain for traits 

whose recording is expensive. Here, we investigate whether 

phenotypes at the herd level could be used for genomic selection. 

In this case, such phenotypes are easier to get,  

         

      Long term genetic gain using genomic selection 

Both Muir (2007) and Goddard (2008) reported that the traditional 

selection method using phenotypes and pedigree information 



could outperform genomic selection in the long term. One reason 

is that GEBV heavily relies on predicted SNP effects based on LD 

between markers and QTL (Muir, 2007), which means insufficient 

LD will result in poor SNP effect prediction. Another reason is that 

genomic selection uses trained marker effects on specific traits, 

and markers will not detect some frequency QTL. Adding the 

polygenic component to capture more QTL can be a solution (Muir 

2007). Goddard (2008) reported that the weight could be given to 

the markers according to their frequency so that QTL with low 

frequency gets more weight to be selected. Another method for 

capturing low-frequency QTL is to use haplotype instead of SNP 

makers. The distribution of maker haplotype frequencies is more 

likely to catch QTL with low frequency.  

                                     Conclusion of review  

Genomic selection has improved genetic gains, decreased the 

generation interval, and reduced the cost of the selection scheme 

because the GEBV of the young individual can be predicted from 

markers effects. The challenges to applying genomic selection are 

combining data within or between countries, long-term genetic 

gain, and technical issues. These problems and chances to improve 

genomic selection need more data and research. 

 



CHAPTER 3: GENOTYPE DATA AND METHODS 

The original genotype data set contained 28960 Norwegian dairy 

cows genotyped with 45807 SNPs provided by GENO SA 

(www.geno.no). The data was split into two sets of data, where the 

training population consisted of 27856 cows from 833 herds, the 

validation population was 1104 cows from 11 herds. In every 10th 

SNP, one causal SNP marker was chosen randomly to simulate 

phenotypes, resulting in the 4580 randomly selected causal SNPs 

(QTL) for estimating the true breeding value for both training and 

validation animals. The effects of QTLs were sampled from a 

normal distribution with mean 0 and variance 1. True breeding 

values (TBV) of individuals were obtained by summing the QTL 

effects times their genotypes for all 4580 QTLs, standardizing the 

result such that the variance of the TBV equals 1. The number of 

SNPs for estimating marker effects was 41227 for both training and 

validation animals. The phenotypic records were obtained by 

adding true breeding values and error terms for the training 

population. The error term was sampled from a normal distribution 

with mean 0 and variance 3. The simulated heritability for dry 

matter intake trait was 0.25 used in this study, according to (Li et 

al., 2016). The GEBV of the training animals and validation animals 

was estimated. The accuracy of genomic selection is defined as a 

correlation between true breeding values (TBV) and GEBV, 

estimated for training animals and validation animals (Sonesson et 

al., 2009).  To estimate SNP effects using herd-wise phenotypes, 



the herd-wise average genotype of the training population from 

833 herds with the identical 41227 SNP genotypes and the average 

phenotype of these 833 herds were estimated. Subsequently, the 

accuracy between the TBV of 833 herds from the training 

population and GEBV estimated by average genotype per herd 

from the training population was estimated as training population 

accuracy. Furthermore, using 41227 estimated SNPs effects from 

the average genotype of the herd from the training population, the 

GEBV of the validation animals was estimated. Then the correlation 

between TBV and GEBV of the validation animals was calculated as 

a validation accuracy. 

Table1, descriptive statistics of genotype matrices used to simulate the TBVs and predict 

the GEBV of training and validation population and average genotype matrix based on 

the number of herds in the training population. 

Genotype matrix Number of 
individuals 

Number of 
SNPs 

Mean variance Standard deviation 

Genotype matrix of 
Training population, 

27586 41127 1.444 0.433 0.658 

Validation population 1104 41127 1.442 0.436 0.6603 

Average genotype 
matrix of training 
population based on 
833 herds 

 
 
833 

 
 
41127 

 
 
1.444 

 
 
0.089 

 
 
0.299 

 

 

 



The true breeding value was calculated for all cows as the sum of 

the causal SNP effects (Sonesson et al., 2009).  

TBVj = ∑
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿
𝑗=1 𝑥𝑖𝑗1𝑔𝑗1 + 𝑥𝑖𝑗2𝑔𝑗2 

Where 𝑥𝑖𝑗𝑘 is the number of copies that individual i have at the jth 

QTL position and kth QTL allele, and 𝑔𝑗𝑘 is the effect of the kth QTL 

at the jth position, which was sampled from the normal distribution. 

The simulated trait, dry matter intake (DMI), has a heritability of 

0.25. The simulated TBV was obtained by 4580 causal SNP effect 

times marker genotype of animals standardized to a variance of 1.  

The Phenotypes were constructed by adding a random error term 

to the true breeding value.  

Pi = TBVi + εi 

the error term εi is for animal i, which was normally distributed (0, 

𝜎
2)(Sonesson et al., 2009). 

The GEBV formula is,  

GEBVi= ∑𝑛
𝑗=1 𝑋𝑖𝑗𝑎𝑗 

Xij is the jth SNP effect of individuals I, aj is the BLUP estimate of the 

jth SNP effect, and n is the number of SNPs (41227).  

The BLUP method was used to estimate markers effects, and the 

statistical model used to evaluate individual marker effects was 

Y =μ+ Zu + e 



y is the vector for an individual's phenotype record. and Z is the 

marker genotype of animals that was centralized to the mean of 0, 

and e is the random error vector with the variance of R𝜎
2where R 

is a diagonal matrix. Vector u contains the additive genetic effects 

corresponding to the allele substitution effects for each marker. 

The sum of Zu overall marker loci equals the vector of breeding 

value (a) (VanRaden, 2008).  Mixed model estimates of u were 

solved by iteration on data (Schaeffer & Kennedy, 1986). The scalar 

λ was used to estimate the SNPs effects, where scalar λ is defined 

as the sum across marker loci 2 ∑𝑃𝑖(1 − 𝑃𝑖)  times the 𝜎𝑒
2/𝜎𝑎

2  , 

where 𝜎𝑎
2   is total genetic variance 1 and 𝜎𝑒

2 is error variance 3 in this 

study (VanRaden, 2008). The EBV (a) was obtained as Z*u. 

Estimating the SNPs markers effects from the training population 

based on 833 herds, the average genotype of each herd was 

constructed from the genotype of the training population. Then 

using the new genotype matrix (833 x 41227) and average 

phenotypes of each herd from the training population, the 41227 

SNP effects were estimated. Using these SNP effects, the GEBV of 

833 herds in the training population was predicted. Furthermore, 

the GEBVs were predicted by multiplying the genotype matrix with 

the estimated SNP effects vector. In total, 6 GEBVs were estimated 

in this study, GEBVs of training and validation animals were 

predicted by SNPs effects using simulated phenotypes and marker 

genotypes of the training population. Two sets of SNP effects were 

estimated using herd-wise phenotype and genotype from 



individual training animals. The difference was without considering 

the numbers of animals in herds and considering the number of 

animals in herds in R-1 in mixed model equations.  Using these two 

sets of SNP effects, two sets of GEBVs of training population 

predicted, and two sets of GEBV of validation animals were 

estimated respectively. 

The accuracy of the genomic selection was calculated using the 

correlation between the estimated breeding value and the true 

breeding values. Genomic breeding values were evaluated by 

summing the marker's effects (Sonesson et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4: RESULT 

 

The SNP effects were estimated using the simulated phenotypes of 

individual training animals and marker genotype. For training and 

validation animals, the mean of GEBV was 0, and variances were 

0.533 and 0.491, respectively (Table 2). The two sets of SNP effects 

were calculated using herd-wise marker genotype and phenotype 

of training population as mentioned in the Method part. Using 

these two sets of SNP effects, two sets of GEBV of training animals 

and two sets of GEBV of validation animals were estimated. The 

means of GEBV in training animals were 0, 0, and variances were 0, 

0.025 respectively (table2). For validation animals, the means of 

two sets of GEBV were 0, 0, and variances were 0, 0.16, respectively 

(Table 2). All estimated GEBV showed a normal distribution with a 

mean of 0. Therefore, variances of GEBVs are much smaller, and 

without herd size as weight even 0, when using herd-wise 

estimates of SNP effect. These low variances of GEBVs suggest that 

the herd-wise analysis did not capture much of the genetic 

differences between animals. The accuracy of genomic selection 

between the training population and validation population is 

shown below in table 3.  The GEBV of the training population was 

estimated by the BLUP model, where the simulated phenotype of 

the training population was used. The accuracy of genomic 

selection for the training animals was 0.7988 (plot 1). and for the 

1104 validation population, the genomic accuracy for the 



validation population was 0.74842 (plot 2), which is relatively high 

considering the rather low heritability (0.25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2, descriptive statistics of 6 sets of GEBVs, GEBV of training animals and validation 

animals, GEBVs of training animals predicted from two sets of SNP effects using herd-

wise genotype and phenotype of training population, GEBVs of validation animals 

predicted from the two sets of SNP effects using herd-wise genotype and phenotype of 

training population) 

 mean Variance  Standard 
deviation 

min med max 

GEBV of Training 
animals  

0 0.533 0.73 -2.75 0.005 3.202 

GEBV of 
validation 
animals 

0 0.491 0.700 -2.23 0.01 2.066 

GEBV of training 
animals using the 
SNP effects did 
not consider the 
number of 
animals in herds. 

0 0.0002 0.0143 -0.123 0.00 0.108 

GEBV of training 
animals using the 
SNP effects 
considered the 
number of 
animals in herds.  

0 0.025 0.161 -0.77 0.00 0.641 

GEBV of 
validation 
animals using the 
SNP effects did 
not consider the 
number of 
animals in herds. 

0 0.001 0.032 -0.095 -0.001 0.099 

GEBV of 
validation 
animals, using the 
SNP effects 
considered the 
number of 
animals in herds. 

0 0.16 0.4 -1.39 0.004 1.14 

 

 

 



Table 3. The accuracy of genomic selection of training animals and validation animals. The 

correlations between average TBV of training population based on 833 herds and GEBV 

of training population predicted from two sets of SNP effects using herd-wise genotype 

and phenotype of training population. The correlations between TBV of validation 

population and GEBV of validation population predicted from two sets of SNP effects 

using herd-wise genotype and phenotype of training population. 

Accuracy of genomic selection Training population Validation population 

 TBV vs GEBV 0.799 0.748 

Mean TBV of training animals-based 
on herd VS GEBV predicted from 
SNP effects using herd-wise 
genotype and phenotype of the 
training animals 

0.345 -0.0312 

Mean TBV of training animals based 
on herds VS GEBV predicted from 
SNP effects  
using herd-wise genotype and 
phenotype of the training animals 
and number of animals in herds 
were considered 

0.495 -0.0437 

 

 

Plot 1, (scatter plot of true breeding values and genomic estimated breeding values of 

training animals) 
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Plot 2, (scatter plot of true breeding values and genomic estimated breeding values of 

validation animals) 

 

 

 

The correlation between the average 833 TBV based on the herds 

of training population and the GEBVs of 833 herds predicted from 

SNP effects using herd-wise genotype and phenotype of training 

population was 0.345 (plot 3). When the number of animals in the 

herd was considered to calculate the SNP effects in BLUP, the 

correlation was 0.495 (plot 4).  
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Plot 3, (scatter plot of herd-wise true breeding values of training animals and genomic 

estimated breeding values of training population predicted from SNP effects using herd-

wide genotype and phenotype) 

 

 

Plot 4 (scatter plot of the herd- wise true breeding values of training animals and genomic 

estimated breeding values of training population predicted from SNP effects using herd-

wide genotype and phenotype, where the number of animals in herds were considered 

in R-1 in a mixed model equation) 
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Plot 5 scatter plot of true breeding values of validation animals, and genomic estimated 

breeding values of validation population predicted from SNP effects using herd-wide 

genotype and phenotype, where the number of animals in herds were taken account in 

diagonal matrix R-1 in a mixed model equation) 

 

The correlations between TBV of the validation animals and GEBV 

of the validation animals were estimated using two sets of SNP 

effects using herd-wise genotype and phenotype of individual 

training animals. The accuracies of genomic selection were around 

-0.03 and -0.04 (plot 5) using SNP effects that considered the 

number of animals in herds.          
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CHAPTER 5: DISCUSSION 
 

Table 3 shows that with the large training population and a large 

number of markers, genomic selection would be a suitable method 

for selecting dairy cows based on DMI. When many individuals in 

the training populations were used to estimate the SNP effects, the 

accuracy of genomic selection can be high even when low 

heritability was used. But in practice, the large number of DMI 

phenotypic records (27586) are expensive to obtain and collect. In 

real data, the true breeding value of individuals is not available for 

us to estimate the accuracy of genomic selection. The assumption 

of normally distributed causal SNP effects might not be the case in 

reality (Meuwissen et al., 2001). As the GEBV of the training 

population was estimated from 41127 SNP effects calculated from 

a herd-wise genotype matrix based on 833 herds and average 

phenotypes in the training population, the accuracy was 0.345 and 

0.495. This result can be explained by a decreased variance in 

genotypes and phenotypes. The variance of simulated phenotypes 

in the training population was 4. After averaging the phenotype of 

the training population based on 833 herds, the variance and 

number of phenotypes used to estimate SNP effects were 

decreased to 2 and 833. To test whether it is possible to select dairy 

cows using estimated SNP effects trained from an averaged 

genotype matrix and average phenotypes based on herds in the 

training population, the accuracies of genomic selection were 



estimated. Table 3 shows that the correlations between TBV of the 

training animals and GEBV of validation animals was -0.0437, which 

means no relationship between observed TBV and the GEBV of the 

validation population (plot 5). Hence, predicting GEBV of validation 

population using the SNP effects estimated from the average 

genotype of the training population and phenotype based on herd 

did not yield any prediction accuracy. The main reasons may be 

fewer phenotypic records used to predict the SNPs effects, which 

leads to less precise estimates of SNPs effects used to predict the 

GEBV for validation animals. Also, the herd-averages show less 

variance than individual records, which reduces the accuracy of 

SNP effects estimates. Due to this reduced variance, more than 

27586 herd-average records should have been used instead of 

fewer (833) to achieve similar accuracy as obtained by individual 

DMI records based on genomic selection.  

From Table 1, the 833 herds and variance 0.089 were used to 

estimate the SNP effects. The number of herds may be too few, and 

the variance of herd-wise genotype too small to give precise SNP 

effects. It might be possible to achieve higher selection accuracy if 

more herd genotypes and phenotypes were used to estimate the 

SNP effects. As the accuracy of genomic selection is defined as a 

correlation between TBV and GEBV. The amount of variability, the 

shape of the distribution, and linearity between two variables 

contribute to the correlation between two variables (Goodwin & 

Leech, 2006). The accuracy of genomic selection depends on 



several factors. The markers should appear in linkage 

disequilibrium with the QTL. Then using the predicted markers 

effects, measuring the effect of QTL across the population. The LD 

between QTL and markers is measured by r2 and is related to 

effective population size and recombination fraction between loci 

used to estimate LD and QTL levels (Hill & Robertson, 1968). The 

type of markers also can affect the accuracy of genomic selection. 

When the SNP was used instead of haplotypes, the accuracy of 

genomic selection can be increased. As (Calus et al., 2008) reported, 

when the average r2 between markers increased from 0.1 to 0.2, 

the accuracy of genomic selection hardly increased (from 0.68 to 

0.68). In this study, the complete LD between QTL and markers was 

assumed, and SNPs were used as markers for prediction. The 

Phenotypic records and heritability of DMI determine the accuracy 

of genomic selection. The more phenotypic records used, the more 

precise SNPs effects can be estimated. The heritability of the traits 

and assumed distribution of QTL also affects the accuracy of 

genomic selection. As the trait's heritability is high, fewer 

phenotypic records need to be used in genomic prediction. 

Collecting many feed efficiency records in the dairy industry, such 

as DMI is costly and difficult. Although whole lactation DMI records 

were not simulated in this study, it is essential to know how the 

lactation period affects DMI genetically and include lactation 

periods to measure DMI in individual cows. Early, mid, and late 

lactation period genetically affects the prediction of DMI especially 



the early lactation period (Li et al., 2016). These studies show that 

all lactation periods should be considered while collecting the DMI 

of an individual. When DMI records were measured separately 

within 15 weeks at early, mid, and late lactation periods, prediction 

of DMI was more precise (Manzanilla-Pech et al., 2016).  Collecting 

total DMI records per herd, the lactation stages of the individual 

cows could be neglected and could be difficult to correct for. In 

practice, individual DMI records should be corrected for herd 

effects. In this simulation study, herd-effects were not simulated 

thus could be ignored. As analyzing herd averages of DMI, it is not 

possible to correct for herd-effects in the model, since only one 

record per herd is available. Therefore, the herd-effects will enter 

into the residual term of the analysis, which increases the residuals 

variance. This effect was not accounted for in this study and would 

reduce the accuracy of the estimates of SNP effects even further. 

The number of phenotypic records of DMI has a vital role in 

predicting the genomic breeding values and estimating the 

variance components. Countries should share and collaborate in 

data collection and measurement of genotype and achieve higher 

accuracy of genomic selection of DMI or other feed efficiency traits 

(Vanraden & Sullivan, 2010).  

                                           

CHAPTER 6: CONCLUSION 

In conclusion, using a BLUP method and a large number of 

phenotypic records (dry matter intake records) and a larger 



number of SNP markers can achieve high accuracy of genomic 

selection for training and validation animals on individual levels. 

However, the accuracy of genomic selection for the reference 

population decreased significantly by using averaged phenotypes 

and genotypes of the reference population to estimate the 

marker’s effect and GEBV. For the validation population, the 

accuracy was around zero. Herd-wise averaged phenotypes for 

genomic prediction could be helpful to measure and collect DMI 

records at the herd level rather than at individual levels because it 

needs less cost and labor to collect herd-level records. More herd-

wise averaged phenotype and genotype records can increase the 

accuracy of genomic prediction on DMI traits in dairy cows, which 

requires collaboration and sharing data between companies and 

countries. 
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