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ABSTRACT
Accurate prediction of the scour hole depth and dimensions downstream of ski-jump spillways has
been an important issue among hydraulic researchers for decades. In recent years, computingmeth-
ods such as Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs) and
Support Vector Regression (SVR) have shown a powerful performance in the prediction of scour
characteristics owing to their flexibility and learning nature. In the present paper, a new hybrid
approach has been proposed for the first time in order to improve the estimation power of the SVR
tool for scour hole geometry prediction below ski-jump spillways. The principal characteristics of the
scour hole pattern in the equilibrium phase have been predicted using SVR optimized with Fruitfly
Optimization Algorithms (FOAs). The hybrid model is compared with the corresponding simple SVR
model. To evaluate the proposed hybridmodel further, it is also comparedwith othermachine learn-
ing and empirical methods, such as ANNs, ANFISs and regression equations. The results show that
the proposed SVR-FOA method performs well, improves remarkably on Support Vector Machines
(SVMs) results, estimates scour hole geometrical parameters more accurately than the simple SVR
model, and can be applied as an alternative reliable scheme for estimations onwhich simple SVR and
other methods demonstrate shortcomings. The proposed hybrid method improves the precision
level for scour depth prediction by about 8% compared with simple SVM in terms of the correlation
coefficient.
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Introduction

The local scour process due to the downstream jet of
ski-jump spillways is a serious concern and precise pre-
diction of the scour hole depth and dimensions is essen-
tial for the protection of dams and their adjacent struc-
tures. The scour can cause instability and failure of the
dam structure in the area. Many hydraulic, hydrological
and geotechnical factors influencing the scour mecha-
nism make it a very complex phenomenon. For decades,
numerous investigators have made prototypes and con-
ducted experimental studies to formulate the scour below
ski-jump spillways based on regression approaches. The
earlier of these studies developed equations to predict
the scour hole depth formed as a result of impinging
jets, such as Schoklitch (1935), Veronese (1937), Mar-
tins (1975), Mason and Arumugam (1985), and Yildiz
and Uzucek (1994). The majority of them considered

CONTACT Yuzhang Bi biyuzhanghd@163.com; Shahab S. Band shamshirbands@yuntech.edu.tw, shamshirbandshahaboddin@duytan.edu.vn; Amir
Mosavi amir.mosavi@mailbox.tu-dresden.de, amirhosein.mosavi@nmbu.no

their equations as a function of two or three param-
eters, namely discharge intensity (q), head difference
between tail water and reservoir levels (H), and bed sed-
iment size (d). However, the results from these formulae
show inconsistencies owing to the complexity of the phe-
nomenon and the deficiencies of traditional approaches
such as regression.

The literature indicates that artificial-intelligence
(AI)-based methods are proficient in simulating com-
plex systems because of their nonlinear nature. They are
used successfully in water resources engineering—see
for example Fotovatikhah et al. (2018), Shende and
Chau (2019), and Yaseen et al. (2019). Reported work
on the application of such soft computing methods for
scour prediction can also be found in the literature,
such as Bateni et al. (2007), who estimated scour depth
around bridge piers using Artificial Neural Networks
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(ANNs) and neuro-fuzzy approaches, Azamathulla and
Ghani (2011), who estimated scour depth at culvert out-
lets using an Adaptive Neuro-Fuzzy Inference System
(ANFIS), Bateni and Jeng (2007), who estimated pile
group scour using a neuro-fuzzy approach. Azmathul-
lah et al. (2005) applied ANNs successfully to predict
the location of scour hole depth; their results showed
the supremacy of ANNs in comparison with statistical
regression equations. Azamathulla, Deo, et al. (2008) pre-
sented a study concerning the estimation of scour depth
below a ski-jump spillway in prototype dams through the
use of different neural networks and anANFIS. Azamath-
ulla, Ghani, et al. (2008) utilized Genetic Programming
(GP) for estimating the scour depth downstream of a
ski-jump spillway. Naini (2011) and Naini et al. (2011)
used the ANN and ANFIS techniques, respectively, for
predicting the scour hole geometrical pattern below a ski-
jump spillway. The results showed that the AI tools turn
out to produce more accurate results than the conven-
tional regression equations.

The literature shows that Support Vector Regression
(SVR) has also been applied in various studies of water
resources and hydraulic engineering. Kargar et al. (2020)
used machine learning models including Support Vec-
tor Machines (SVMs), Gaussian process regression, M5
Model trees (M5P), random forests and regression to esti-
mate the longitudinal dispersion coefficient using data
sets gathered from 60 natural rivers. They concluded that
both M5P and SVM were satisfactory but that M5P was
superior. Ghazanfari Hashemi and Shahidi (2012) uti-
lized SVM and ANN techniques to estimate pile groups
scour, the results indicating that SVMs produce superior
estimations of scour depth. Parsaie et al. (2019) estimated
the scour depth below a river pipeline by an SVM, com-
paring the results with those of ANNs and ANFISs, the
SVM results being more accurate.

SVMs can be a promising method in practical and
field cases as it needs fewer parameters for good esti-
mation than ANNs (Goyal & Ojha, 2011), and also it is
less time consuming and less sensitive to variations of the
parameters (Ghazanfari Hashemi & Shahidi, 2012).

In case of ski-jump scour, Goyal and Ojha (2011) esti-
mated the scour downstream of a ski-jump bucket by
SVM and M5 models. The results were compared with
ANNs and it was found that SVMs and M5 perform well
in comparison with ANNs and regression models. How-
ever, sensitivity analysis of SVMs with a raw data set
showed SVMs’ performance to bemore satisfactorywhen
they have a lower number of inputs, and increasing the
number of input parameters decreases the precision of
the estimation of the output parameters.

Ayoubloo et al. (2015) applied various models for
scour depth prediction below ski-jump spillways including

ClassificationAndRegressionTrees (CARTs), SVMs, and
M5, and it was found that CARTs emerged as the most
promising approach.

Current research shows that using simple SVMs with
the application of all input parameters (five inputs) for
ski-jump scour prediction is not as appropriate as using
other soft computing techniques such as ANNs and
ANFISs. Hence, to win through this drawback of SVMs,
the need for an optimized SVM was felt. This paper
suggests that integration of SVMswith FruitflyOptimiza-
tion Algorithms (FOAs) could resolve this issue to some
degree as far as ski-jump scour estimation is concerned.

SVMs require hyperparameter tuning: parameters
such as C, γ , and ε should be selected in a way such that
the model produces the optimal output with the lowest
error. This is usually obtained through a trial-and-error
procedure. This research, accordingly, aims to combine
SVMswith a novel nature-inspired optimization scheme.

Integrating the latter single AI tools with optimiza-
tion algorithms can develop a more powerful tool for
modeling and predicting scour hole features in hydraulic
structures. Najafzadeh et al. (2014) utilized the Group
Method of Data Handling (GMDH) developed via Par-
ticle Swarm Optimization (PSO), GP, and back propaga-
tion for estimating the scour below ski-jump buckets, the
results indicating that GMDH-BP outperformed other
techniques. Hassanzadeh et al. (2019) predicted bridge
pier scour depth using an ANFIS optimized with three
different optimization algorithms, the results confirm-
ing the higher performance of the new methods. Azimi
et al. (2019) used Genetic Algorithms (GAs) and Singu-
lar Value Decomposition (SVD) for optimizing ANFIS
parameters to predict the scour depth around abut-
ments; they concluded that the ANFIS-GA/SVD model
was superior to other simple AI methods. Mahmodian
et al. (2019) combined ANFISs and differential evolu-
tion algorithms as an optimization scheme for predicting
the scour around submerged pipes. It was found that the
hybrid models performed with higher accuracy.

Some of the successful applications of FOAs in engi-
neering problems are available in the literature, such as Li
et al. (2013), who proposed a hybrid model for forecast-
ing power load coupling using Generalized Regression
Neural Networks (GRNNs). The results they obtained
indicated that the proposed model outperformed simple
GRNN modeling. Samadianfard et al. (2019) integrated
Support Vector Regression (SVR) with an FOA for river
flow forecasting. They stated that the SVR-FOA hybrid
model performed better compared with the M5 and SVR
models.

To the best of the authors’ knowledge, employing an
FOA with SVR has not been investigated for ski-jump
scour prediction yet. So the key objective of the current
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research is to evaluate the performance of the SVR-FOA
hybrid model in predicting the scour hole geometrical
characteristics below ski-jump spillways including six
scour parameters and to assess if the combination of SVR
with an FOA improves on simple SVR results. The results
of dimensionless SVR-FOA models are compared with
those of SVR and other techniques.

For developing the computational models in this
study, data obtained from experimental studies are used.
The data include three less considered features of the
scour hole (the landmarks denoting the starting and end-
ing of scour, as well as the scour hole length). To assess the
performance of the predictionmodels, several evaluation
criteria are used.

Material andmethods

Support vector regression

The SVMmethodwas presented byVapnik (1995). SVM,
as a known method, was used for both classification and
regression problems, and regression-based SVM is usu-
ally called SVR. It is constructed so as to minimize the
structural risk for solving complex problems (Samadian-
fard et al., 2019).

Suppose we have training data {(x1, y1), . . . , (x�, y�)}
⊂ X × R, where X is the space of the input forms (e.g.
X = R

d). In ε–SV regression, the goal is finding f (x) that
has at most a deviation ε from the obtained targets yi and
is as flat as possible. First we describe the linear function
f, which takes the form (Smola & Scholkopf, 2004)

f (x) = 〈W , x〉 + b withW ∈ X, b ∈ R, (1)

in which 〈·, ·〉 is the dot product in X. We have to mini-
mize the norm, i.e. ||W|| 2 = 〈W ,W〉 , to ensure that we
seek a smallW . So it can be written as

minimize
1
2
||W|| 2

subject to

{
yi − 〈W , xi〉 − b ≤ ε

〈W , xi〉 + b − yi ≤ ε.
(2)

It is assumed that the function f actually exists approxi-
mating all pairs (xi, yi) with accuracy. Sometimes, this is
not the case and we might want to permit some errors.
Therefore, the slack variables ξi, ξ∗

i may be introduced
for overcoming infeasible constraints of the optimization
problem

minimize
1
2
||W|| 2 + C

�∑
i=1

(ξi + ξ∗
i )

subject to

⎧⎪⎨
⎪⎩
yi − 〈W , xi〉 − b ≤ ε + ξi

〈W , xi〉 + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0.

(3)

The balance between the flatness of f and the amount up
to which deviations larger than ε are tolerated is deter-
mined by the constant C > 0. So the ε-insensitive loss
function |ξ |ε can be defined as follows:

|ξ |ε :=
{
0 if |ξ | ≤ ε

|ξ | − ε otherwise.
(4)

The final nonlinear regression function is given as
(Cimen, 2008)

f (x) =
N∑
i=1

(α∗
i − αi)K(x, xi) + B, (5)

where αi,α∗
i denote the Lagrange multipliers, K(x, xi) is

the kernel function, and B is a bias term. In the current
research, the Gaussian Radial Basis Function (GRBF) has
been selected for computations based on trial-and-error
procedures, as follows:

K(x, xi) = exp
( ||x − xi||2

2σ 2

)
. (6)

The optimum parameters of the GRBF kernel have to be
found; moreover, the size of the error and the regulariza-
tion parameter C have to be determined. In this study,
the default values of C and ε for SVR models are 1 and
0.001, respectively. Further details on SVM can be found
in Smola and Scholkopf (2004) and Vapnik (1995).

The Fruitfly Optimization Algorithm (FOA)

The FOA is a swarm optimization tool introduced by Pan
(2012). The FOA is based on fruitfly behavior for food
finding as follows: firstly, the osphresis organ helps the
fruitfly to smell the source of its food, then it moves near
the location and vision is utilized to find the food. After
that, further flies fly towards that direction and flock at
the location. Figure 1 illustrates the iterative process of
food finding. The algorithm is described in several steps
as follows (Pan, 2012; Shan et al., 2013):

Step 1: The main parameters of the FOA should be ini-
tialized. So, the randomflight direction and distance
zone of the fruitfly (FR) should be initialized first:

X−axis = rand(LR)

Y−axis = rand(LR). (7)

Step 2: The random direction and distance for the search
for food using osphresis by an individual fruitfly is
defined:

Xi = X_axis + RandomValue

Yi = Y_axis + RandomValue. (8)
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Figure 1. The iterative progression of food finding by a fruitfly swarm.

Step 3: The distance to the origin (Dist) is estimated,
then the smell concentration judgment value (S) is
calculated:

Disti =
√
X2
i +Y2

i

Si = 1
Disti

. (9)

Step 4: The smell concentration judgment value (S) is
substituted into the smell concentration judgment
function for finding the smell concentration (Smelli)
at the individual location of the fruitfly:

Smelli = Function (Si). (10)

Step 5: The fruitfly with maximum smell concentration
among the swarm is determined:

(bestSmell bestIndex) = max(Smell). (11)

Step 6: Using the best smell concentration value and
x-, y-coordinates, the fruitfly swarm flies towards
the location:

Smellbest = bestSmell

X_axis = X(bestindex)

Y_axis = Y(bestindex). (12)

Step 7: The procedures of steps 2–5 may be repeated as
an iterative optimization procedure until the smell
concentration converges to a constant value.

The flowchart of the process applied in this study is
shown in Figure 2 adapted from Shan et al. (2013).

Artificial neural networks

ANNs accord with our understanding of the biologi-
cal behavior of interconnected brain nodes known as
neurons. ANNs create a relationship between input and
output layers through hidden layer(s) by a learning pro-
cess. The networks can be trained using data. During
the training process, weighted connections between lay-
ers become updated so that the error between computed
and observed values are minimized. In this research, the
most conventional network, i.e. the Feed Forward Back
Propagation (FFBP) network is utilized. A feed forward
network with one hidden layer has the power to map any
input to an output, provided that it has enough neurons
in the hidden layer.

The simplest FFBP network is made up of an input, an
output, and a hidden layer. The network was developed
using the coding method inMATLAB

®
software. To train

the network, a back propagation process with a Bayesian
regularization (BR) algorithm was used that updates the
weights and biases with Levenberg–Marquardt optimiza-
tion. The main advantage of the BR method over other
training methods is generalization improvement and the
lack of a requirement for the validation data set to be
set aside. The optimum neural network was selected via
a trial-and-error method in which the error between
the observed and computed values was minimum. Var-
ious numbers of neurons in hidden layers and different
transfer functions were examined for this purpose. The
training process endedupwith an optimumnetwork hav-
ing five tansig-functioned neurons in the hidden layer
and a linear function in the output layer neurons. A five-
input model receiving the F0,H/dw, d50/dw,R/dw,�
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Figure 2. The Fruitfly Optimization Algorithm (FOA) method
flowchart.

parameters and producing ds/dw, ls/dw, l2/dw, l1/dw,
Ls/dw, andws/dw outputs at once was developed. Further
details on ANNs can be found in Haykin (1994).

Adaptive neuro-fuzzy inference systems (ANFISs)

The adaptive neuro-fuzzy inference system is an impro
ved modeling approach that can capture the action of
complex systems. TheANFISwas first introduced by Jang
(1993). It is a hybrid model that integrates the learn-
ing procedures of neural networks with those of fuzzy
inference systems. Its learning algorithm updates the
membership functions of a Sugeno fuzzy inference sys-
tem using the input–output data. The ANFIS is a fuzzy
inference system that profits from the back propagation
structure of the neural network. It uses fuzzy IF–THEN
rules to map inputs to outputs. An example of a fuzzy

Figure 3. Basic ANFIS architecture.

rule can be expressed as ‘IF the discharge intensity is
high and the total head is high THEN the scour is large’.
An ANFIS can tune membership function parameters by
using a hybrid learning algorithm that combines the least
squares method and back propagation gradient descent.
Figure 1 shows the ANFIS structure: it is a five layer
model with interconnected nodes. Some of the nodes are
tuned through the learning process. As stated from Jang
et al. (1997), a first-order Sugeno model with two fuzzy
rules (Figure 3) can be described as

Rule 1 : If x isA1 and y is B1 then f1 = p1x + q1y + r1,
(13)

Rule 2 : If x is A2 and y is B2 then f2 = p2x + q2y + r2,
(14)

in which x and y are the inputs and A1,A2, B1,B2 are
membership functions (such as ‘cold’ or ‘warm’). Each
layer has nodes with the same functions, so the process
can be stated as follows.

Each node output is represented as Ol,i.

Layer 1: each node has a function that can be tuned as
follows:

O1,i = μAi(x) = 1
1 + |x − ci/ai|2bi

, (15)

in which μAi(x) is a bell function with a range between
[0,1]; ai, bi, and ci are modifiable parameters.

Layer 2: each node is a constant node, which produces
the output as the product of all the inputs:

O2,i = wi = μAi(x)μBi(y). (16)

Layer 3: each node is constant and calculates the ratio of
the ith output to the sum of all outputs (normalized
output) as follows:

O3,i = w̄i = wi

w1 + w2
. (17)
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Figure 4. Scour hole characteristics below ski-jump spillway.

Layer 4: each node can be tuned by the following
formula:

O4,i = w̄ifi = w̄i(pix + qiy + ri), (18)

in which pi, qi and ri are modifiable parameters.
Layer 5: the node is constant that estimates the total

output by summing all inputs:

O5,i =
∑
i
w̄ifi =

∑
i
wifi∑

i
wi

. (19)

There are two approaches for clustering data: subtractive
clustering and fuzzy c-means. In subtractive clustering,
the influence range is determined, but in fuzzy c-means
clustering, the number of clusters is specified.

The method for generating a Fuzzy Inference Sys-
tem (FIS) in this research is subtractive clustering. The
rules produced with this fuzzy inference system are thus
minimized.

To develop the ANFIS models presented in this work,
the MATLAB®

Fuzzy Logic Toolbox is used. ANFIS
model structures with first-order Sugeno and Gaussian
membership functions are developed. Models consisting
of the combination of non-dimensional parameters are
built to predict scours’ geometrical characteristics down-
stream of ski-jump spillways. To develop each ANFIS
model and to reach the appropriate architecture, different
values for the range of influence are selected in a trial-
and-error approach until the highest Correlation Coeffi-
cient (CC) is achieved in the testing data set. To adjust
the parameters of membership functions, the models are
trained using the hybrid learning algorithm. For more
detailed information on ANFIS models, readers may
refer to Jang (1993) and Jang et al. (1997).

Dimensional analysis and data set used

In the current paper, the dimensionless parameters are
applied for building the structure of intelligent models.
As can be seen from Figure 4, the scour hole’s geomet-
rical dimensions are formed according to the erosive jet
downstream of a flip bucket spillway, i.e. the maximum
scour depth from the water surface (ds), the location
of the maximum scour depth from the bucket-lip (ls),
the scour hole length (Ls = l2 − l1), the location of the
ending point of the scour hole (l2), the location of the
starting point of scour hole (l1), and the scour hole width
(ws) may be considered as functions of other influen-
tial parameters, namely the head difference between the
tail water and the reservoir (H), the unit discharge (q),
the tail water (dw), the bucket radius (R), the bucket lip
angle (�), the median sediment size (d50), the densities
of sediment (ρs) andwater (ρw), and the acceleration due
to gravity (g), which is expressed as

ds, ls, l1, l2, Ls,ws = f (q,H,R,�, dw, d50, g, ρw, ρs). (20)

By applying the Π theorem of Buckingham, dimen-
sionless parameters are obtained and scour features are
normalized with the tail water depth as

ds
dw

,
ls
dw

,
l1
dw

,
l2
dw

,
Ls
dw

,
ws

dw

= f
(
F0,

H
dw

,
R
dw

,
d50
dw

,
ρs

ρw
,�

)
, (21)

in which the dimensionless parameter F0
= [q/(gd3w)1/2] is the Froude number. The constant ratio
ρs/ρw is eliminated from the input set. The above func-
tional relationship (Equation 21) is used in the develop-
ment of the dimensionless SVR and SVR-FOA models.

The data pertaining to two experimental studies are
utilized. The data set contains 96 data gathered from
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Asadi Saryazdi (1997) and Momeni Vesalian (2006),
respectively, to estimate the geometrical characteristics of
the scour hole. Table 1 displays the utilized data in the
current study.

Three significant parameters considered in this study
are the starting point and the ending point of the scour
hole (l1, l2) and the length of the scour hole (Ls), previ-
ously considered by Naini (2011) and Naini et al. (2011)
in ANN and ANFIS simulations, respectively.

The data are divided into two separated data sets, the
first is called the training data set and includes 70% of
the entire samples that were randomly selected and used
to construct and calibrate the models, the second is

called the testing data set and includes the remaining
30% used for validation of the calibrated models. Table 2
shows the statistics of the dimensionless data employed
for the modeling.

Nonlinear regression equations

In order to evaluate the efficiency of the soft computing
models, a comparison is made with nonlinear regres-
sion equations. Regression equations were derived using
the same 70% dimensionless data selected randomly and
used for training of the AImodels. Considering the func-
tional relations produced in the dimensional analysis
section (Equation 21), the following set of equations were
obtained for prediction of the scour hole geometrical
characteristics:

ds
dw

= 3.959(Fo)0.771
(
H
dw

)0.044( R
dw

)0.02(d50
dw

)0.01
(�)−0.01 (22)

ls
dw

= 1.756(Fo)0.288
(
H
dw

)0.496( R
dw

)0.075(d50
dw

)0.01
(�)−1.532 (23)

l2
dw

= 8.456(Fo)0.392
(
H
dw

)0.491( R
dw

)0.01(d50
dw

)0.01
(�)0.01 (24)

l1
dw

= 0.414(Fo)0.012
(
H
dw

)0.81( R
dw

)−0.009(d50
dw

)−0.002
(�)−1.382

(25)

Ls
dw

= 13.467(Fo)0.691
(
H
dw

)0.135( R
dw

)0.01(d50
dw

)0.02
(�)0.01 (26)

ws

dw
= 32142.161(Fo)0.01

(
H
dw

)0.874( R
dw

)0.006(d50
dw

)0.132
(�)14.16.

(27)

In addition, in order to evaluate the developed models in
the present study, regression equations from the previous
research done by Azmathullah et al. (2005) were used in
estimation of the corresponding scour hole features:

ds
dw

= 6.914(Fo)0.694
(
H
dw

)0.0815( R
dw

)−0.223(d50
dw

)0.196
(�)0.196

(28)

ls
dw

= 9.85(Fo)0.42
(
H
dw

)0.28( R
dw

)0.043(d50
dw

)0.037
(�)0.34661 (29)

ws

dw
= 5.42(Fo)−0.015

(
H
dw

)0.55107( R
dw

)0.1396(d50
dw

)0.242
(�)−0.16.

(30)

The above equations were validated using the remaining
30% data used as the testing data set. The performance
results of Equations (22)–(30) are given in Table 3.

Evaluation criteria

In the present paper, the performance of the soft comput-
ing models and empirical regression schemes are mea-
sured in terms of six different error criteria, namely the
CC, Scatter Index (SI), Willmott’s Index of agreement
(WI), Mean Absolute Percentage Error (MAPE), Root
Mean Square Error (RMSE), and Mean Absolute Error
(MAE), which are denoted as follows.

I: CC expressed as

CC =
(∑n

i=1 OiPi − 1
n

∑n
i=1 Oi

∑n
i=1 Pi

)
(∑n

i=1 Oi
2 − 1

n
(∑n

i=1 Oi
)2)(∑n

i=1 Pi
2 − 1

n
(∑n

i=1 Pi
)2)

. (31)

II: SI follows as

SI =
√

1
n

∑n
i=1 (Pi − Oi)

2

O
. (32)

III: WI expressed as

WI = 1 −
[ ∑n

i=1 (Oi − Pi)2∑n
i=1

(∣∣Pi − __
Oi

∣∣ + ∣∣Oi −
__
Oi

∣∣)2
]
.

(33)
IV: MAPE expressed as

MAPE = 1
n

n∑
i=1

∣∣∣∣Oi − Pi
Oi

∣∣∣∣ × 100. (34)

V: RMSE expressed as

RMSE =
√√√√1

n

n∑
i=1

(Oi − Pi)2. (35)

VI: MAE expressed as

MAE = 1
n

n∑
i=1

|Oi − Pi|, (36)

where Pi and Oi are the predicted and observed ith
values, respectively.
Taylor diagrams are also used to facilitate assess-
ment of the SVR and SVR-FOA models. They
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Table 1. Ranges of raw database used.

Data source
No. of
samples

Discharge
intensity, q
(m3/s/m)

Total head, H
(m)

Bed sediment
size, d50 (m)

Bucket
radius, R
(m)

Tail water
depth dw

(m)
Lip angle,
� (rad)

Scour
depth, ds

(m)

Max scour
location, ls

(m)

Starting
location, l1

(m)

Ending
location, l2

(m)

Scour
length, Ls

(m)

Scour
width,ws

(m)

Momeni Vesalian (2006) 32 0.0196–0.0758 1.129–1.404 0.00018–0.006 0.1 0.06–0.265 0.451 0.19–0.44 1.375–2.025 0.8–1.4 1.625–2.8 0.425–1.8 0.26
Asadi Saryazdi (1997) 64 0.0204–0.0471 0.2791–0.3827 0.008 0.1–0.2 0.0286–0.1 0.524 0.0562–0.3587 0.42–0.82 0.1–0.34 0.66–1.6 0.35–1.35 0.65



280 X. SUN ET AL.

Table 2. Statistical characteristics of the utilized data.

Skewness Coefficient of variation Standard deviation Maximum Minimum Mean Variable

1.441 0.950 0.779 3.110 0.052 0.819 Fo
0.738 0.513 4.060 21.267 2.791 7.914 H/dw
1.025 0.767 1.828 6.993 0.377 2.382 R/dw
0.538 0.771 0.092 0.280 0.001 0.119 d50/dw
−0.707 0.067 0.033 0.524 0.451 0.500 �

1.521 0.733 2.662 12.542 0.562 3.633 ds/dw
0.821 0.504 6.578 28.750 4.550 13.062 ls/dw
1.122 0.581 11.661 55.944 6.600 20.075 l2/dw
1.164 0.501 2.876 17.500 1.456 5.739 l1/dw
1.317 0.722 10.346 47.203 1.837 14.336 Ls/dw
0.607 0.778 7.443 22.727 0.981 9.569 ws/dw

Table 3. General computation results for the soft computing and regression models.

Statistical parameters

Model CC SI WI MAPE RMSE MAE

SVR-1 0.892 0.477 0.826 29.0 1.704 1.074
SVR-FOA-1 0.971 0.220 0.976 14.3 0.784 0.508
SVR-2 0.958 0.262 0.888 22.3 3.418 2.677
SVR-FOA-2 0.990 0.080 0.994 7.8 1.043 0.888
SVR-3 0.946 0.332 0.867 25.2 6.637 4.949
SVR-FOA-3 0.990 0.084 0.995 6.5 1.678 1.193
SVR-4 0.876 0.351 0.817 29.5 2.008 1.361
SVR-FOA-4 0.941 0.196 0.963 19.1 1.122 0.815
SVR-5 0.930 0.415 0.871 30.5 5.931 3.966
SVR-FOA-5 0.980 0.164 0.987 14.0 2.344 1.709
SVR-6 0.982 0.217 0.978 18.3 1.874 1.350
SVR-FOA-6 0.993 0.094 0.997 17.6 0.808 0.664
ANN-1 0.992 0.104 0.996 9.9 0.371 0.301
ANN-2 0.991 0.073 0.995 5.6 0.957 0.703
ANN-3 0.991 0.099 0.994 6.4 1.989 1.302
ANN-4 0.961 0.156 0.980 18.8 0.890 0.705
ANN-5 0.994 0.104 0.996 9.9 1.487 1.065
ANN-6 0.999 0.014 0.999 3 0.119 0.081
ANFIS-1 0.995 0.078 0.997 7.7 0.280 0.210
ANFIS-2 0.991 0.073 0.995 6.0 0.946 0.667
ANFIS-3 0.991 0.084 0.995 6.1 1.684 1.217
ANFIS-4 0.951 0.173 0.974 18.5 0.992 0.735
ANFIS-5 0.992 0.123 0.994 9.6 1.761 1.284
ANFIS-6 0.999 0.001 0.999 0.2 0.011 0.008
Reg-1 0.956 0.237 0.976 24.3 0.845 0.625
Reg-2 0.991 0.078 0.994 7.3 1.021 0.787
Reg-3 0.979 0.133 0.987 10.3 2.660 1.915
Reg-4 0.939 0.193 0.966 20.9 1.104 0.834
Reg-5 0.978 0.169 0.987 13.6 2.413 1.755
Reg-6 0.997 0.237 0.983 11.9 2.048 1.165
Azmathullah et al. (2005) (ds/dw) 0.947 0.321 0.947 25.5 1.145 0.823
Azmathullah et al. (2005) (ls/dw) 0.899 0.288 0.919 19.4 3.758 2.442
Azmathullah et al. (2005) (ws/dw) 0.953 0.521 0.885 110.6 4.499 2.550

are used to express the degree of correspondence
between observed and model values according to
the RMSE, the CC, and the standard deviation (Tay-
lor, 2001).

Results and discussion

In this section, the SVR and SVR-FOA results are com-
pared with each other and those of the machine learning
and regression methods (ANN, ANFIS and regression
equations) in a testing data set employing the same input
combinations for all the models. Table 5 shows the name
of established AI models developed to estimate the scour

hole parameters and Table 4 displays the specific param-
eters for each soft computing method.

Comparison of SVR-FOAwith SVR

Comparing the results of the models in terms of the sta-
tistical measures shown in Table 3, it can be understood
that the SVR-FOA hybrid models remarkably outper-
form the simple SVR models. For instance, in the case
of scour hole depth (ds/dw) prediction, the CC value
has increased from 0.892 with SVR-1 to 0.971 with the
SVR-FOA-1 model, which shows a considerable growth
(by about 8%). WI also shows a similar trend, increasing
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Table 4. Parameters of the soft computing models.

Model parameters

Model C γ ε

SVR-1 1.0000 0.0100 0.0010
SVR-FOA-1 1.4029 0.0599 0.0464
SVR-2 1.0000 0.0100 0.0010
SVR-FOA-2 1.7257 0.0863 0.2222
SVR-3 1.0000 0.0100 0.0010
SVR-FOA-3 1.7026 0.1148 0.0682
SVR-4 1.0000 0.0100 0.0010
SVR-FOA-4 2.7597 0.0428 0.0705
SVR-5 1.0000 0.0100 0.0010
SVR-FOA-5 1.8537 0.0559 0.0915
SVR-6 1.0000 0.0100 0.0010
SVR-FOA-6 1.5677 0.0667 0.0648

Number of member-
ship functions Range of influence

ANFIS-1 5 0.5
ANFIS-2 3 0.5
ANFIS-3 3 0.7
ANFIS-4 2 0.8
ANFIS-5 5 0.5
ANFIS-6 4 0.5

Architecture
transfer function

ANN 5-5-6 Tansig–Purelin

Table 5. The names of soft computing models.

Output parameter SVR SVR-FOA ANN ANFIS

ds/dw SVR-1 SVR-FOA-1 ANN-1 ANFIS-1
ls/dw SVR-2 SVR-FOA-2 ANN-2 ANFIS-2
l2/dw SVR-3 SVR-FOA-3 ANN-3 ANFIS-3
l1/dw SVR-4 SVR-FOA-4 ANN-4 ANFIS-4
Ls/dw SVR-5 SVR-FOA-5 ANN-5 ANFIS-5
ws/dw SVR-6 SVR-FOA-6 ANN-6 ANFIS-6

from 0.826 to 0.976. WI is a measure of the degree of
model estimation error and varies between zero and one,
with a perfect estimation being indicated by one, more-
over, the expected error percentage in terms of the SI
shows a lower value (0.220) in the case of SVR-FOA-1
than SVR-1 (0.477). MAPE is also lower in the case of
SVR-FOA-1 (14.3) and we can see that the lower errors
of RMSE = 0.784 and MAE = 0.508 in the case of SVR-
FOA-1 denote the superiority of the new method.

SVR-FOA-2 shows better estimation than SVR-2 in
the prediction of (ls/dw), about 3.2% increase in CC
is observed, and the WI improves by about 10% from
0.888 to 0.994, the SI decreases from 0.262 to 0.080 and
MAPE decreases from 22.3 to 7.8 (14.5%). The errors in
the case of SVR-2 (RMSE = 3.418 and MAE = 2.677)
are higher compared to SVR-FOA-2 (RMSE = 1.043 and
MAE = 0.888).

For l2/dw, SVR-FOA-3 improves the CC and WI cri-
teria to 4.4% and 12.8%, respectively, and decreases the
MAPE from 25.2 to 6.5 (18.7%). A decrease is also
observed in terms of RMSE (from 6.637 to 1.678) and
MAE (from 4.949 to 1.193) for the hybrid tool.

In the case of the location of the maximum scour
(ls/dw) and the ending point of the scour hole (l2/dw), as
can be seen from Table 3, the statistical results for CC, SI,
and WI are very much the same for the SVR-FOA-2 and
SVR-FOA-3 models, respectively. But they differ from
each other in their errors (MAPE, RMSE, and MAE).

From a comparative point of view, both the SVR-FOA-
2 and SVR-FOA-3 schemes, in terms of scour hole lon-
gitudinal characteristics, outperform their counterparts,
i.e. SVR-2 and SVR-3, respectively.

In terms of the prediction of the starting point of the
scour hole from the bucket (l1/dw), the hybrid method
performs with higher accuracy. A growth of 6.5% is
observed in the CC using SVR-FOA-4, the MAPE also
decreases by about 10.4% from 29.5 to 19.1. A drop is also
seen in RMSE (from 2 to 1.122) and MAE (from 1.361 to
0.815) values, respectively. From Table 3, it can be said
that the l1/dw parameter is the most difficult parameter
to estimate compared with the other five scour hole fea-
tures in all of the applied models, with the lowest CC and
WI.

In estimation of the scour hole length (Ls), the accu-
racy is also improved using SVR-FOA-5 by about 5% in
terms of the CC criterion, and theWI improves to 11.6%,
while the MAPE decreases from 30.5 to 14 (16.5%) and
the SI decreases from0.415 to 0.164. TheRMSE andMAE
values decrease to about 3.587 and 2.257, respectively.

In the case of the scour hole width (ws), both SVR-
FOA-6 and SVR-6 performed well with CC = 0.993 and
CC = 0.982, respectively, but the SVR-FOA-6 scheme is
slightly better w.r.t. the statistics with lower errors.

Comparing the CC and WI statistics in Table 3, it
is noted that the difference between them is lower in
the case of the SVR-FOA schemes than in the case of
the SVR models. For instance, the maximum difference
between the CC andWI in the case of SVR-FOA pertains
to SVR-FOA-4 (about 2.2), while the maximum differ-
ence between the CC and WI in the case of SVR is 7.9,
which pertains to SVR-3.

For assessing the behavior of the models graphically,
the scatter plots of the observed values versus the esti-
mated ones for the SVR and SVR-FOA models are also
given in Figures 5–10. As can be understood from these
figures, the SVR-FOA scatter plots demonstrate that the
points are much more distributed around the best fit line
(45°), denoting their higher precision in the estimation
of the scour hole parameters. While for the SVR scat-
ter plots, the points are less distributed around the ideal
fit line, signifying their lower accuracy in scour param-
eters estimation. A common fact that can be observed
in Figures 5–10 is that almost all the six SVR models
(SVR-1–6) overestimate the scour value from the low-
est values to the nearly middle values and underestimate
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Figure 5. Scatter plots of observed versus estimated values of ds/dw for various models.

Figure 6. Scatter plots of observed versus estimated values of ls/dw for various models.
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Figure 7. Scatter plots of observed versus estimated values of l2/dw for various models.

Figure 8. Scatter plots of observed versus estimated values of l1/dw for various models.
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Figure 9. Scatter plots of observed versus estimated values of Ls/dw for various models.

Figure 10. Scatter plots of observed versus estimated values of ws/dw for various models.
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the scour from the middle values to the highest values,
while, in the SVR-FOA plots (SVR-FOA-1–6), the points
are distributed with more balanced values.

Figure 11 illustrates the comparison between the
observed and estimated values of the SVR and SVR-
FOA models. The green marks (for SVR-FOA-1–6) in
the vicinity of the blackmarks (target values) indicate the
higher accuracy of the proposed hybrid approach in pre-
diction of the scour hole features, while the purple marks
(SVR-1–6) are placed at a greater distance relative to the
target values, denoting SVR’s lower accuracy. In addition,
the overestimation and underestimation mentioned ear-
lier in the SVR-1 to SVR-6 models can also be seen in
Figure 11.

Furthermore, from Figure 12 it is apparent that SVR-
FOA (the red closed circles) is a more accurate scheme in
predicting the scour hole characteristics due to its lower
distance from the observed green closed circles.

Comparison with other techniques (ANN, ANFIS and
regression equations)
Scour hole depth. As can be seen fromTable 3, in general
ANNs and ANFISs perform well and give very similar
predictions for the scour parameters as shown by the
error criteria statistics. As can be seen from Table 3, for
predicting ds/dw, ANN-1 has a higher CC (0.992) and
WI (0.996) than SVR-FOA-1 (CC = 0.971,WI = 0.976),
the errors are also lower for ANN-1 (MAPE = 9.9,
RMSE = 0.371, and MAE = 0.301). The accuracy of
ANFIS-1 (CC = 0.995, WI = 0.997, RMSE = 0.28, and
MAE = 0.21) is better than that of ANN-1 and SVR-
FOA-1 in predicting the scour hole depth. It is obvi-
ous that the accuracy of SVR-FOA-1 (CC = 0.971) is
higher than those of Reg-1 (CC = 0.956, RMSE = 0.845,
and MAE = 0.625) and Azmathullah et al. (2005)
(CC = 0.947, RMSE = 1.145, and MAE = 0.823) due
to the lower errors. In contrast to SVR-FOA-1, SVR-
1 yields lower accuracy (CC = 0.892, RMSE = 0.1704,
and MAPE = 29) in comparison with the regression
equations, which can also be seen in Figure 5, in which
the trend line deviates more from the ideal fit line. From
the scatter plots of Figure 5, the superiority of ANFIS-1
can be seen, and the fact that the two regression equations
underestimate most of the data.

Maximum scour location
In the case of the maximum scour location (ls/dw),
SVR-FOA-2 provides higher precision than the scour
depth prediction model (SVR-FOA-1). The results show
that SVR-FOA-2 (with CC = 0.990, RMSE = 1.043,
and MAE = 0.888) performs well and has approxi-
mately the same level of accuracy as ANN-2 (CC

= 0.991, RMSE = 0.957, andMAE = 0.703) andANFIS-
2 (CC = 0.991, RMSE = 0.946, andMAE = 0.667). The
accuracy of Reg-2 is also as high as the prominent soft
computing methods with CC = 0.991, RMSE = 1.021,
and MAE = 0.787 (Figure 6). The formulae of Azmath-
ullah et al. (2005) underestimate some of the data (see
Figure 6) for ls/dw,withCC = 0.899 andRMSE = 1.021.
The SVR-2 predictions (CC = 0.958, RMSE = 22.3) are
relatively better than those of SVR-1. However, in pre-
dicting ls/dw, it only performs better than the equation
of Azmathullah et al. (2005).

Ending point of the scour hole
In predicting l2/dw, the accuracy of SVR-FOA-3 is
approximately at the same level as ANN-3 and ANFIS-
3, but some of its error criteria (RMSE = 1.678, MAE =
1.193, and SI = 0.084) are lower than those of ANN-
3 (RMSE = 1.989, MAE = 1.302, and SI = 0.099) and
ANFIS-3 (RMSE = 1.684, MAE = 1.217). From Figure
7, it is obvious that SVR-FOA-3 has fewer scattered points
around the best fit line and the trend line is close to it. But
the trend line in the ANN-3 plot deviates slightly from
the ideal line. The Reg-3 equation estimates l2/dw with
CC = 0.979, RMSE = 2.66, and MAE = 1.915, which
outperforms SVR-3 with CC = 0.946 and RMSE =
4.949, but it underestimates most of the data and is below
SVR-FOA-3, ANN-3 and ANFIS-3 from the aspect of the
accuracy level. Therefore, SVR-FOA-3 seems to be eval-
uated as the most accurate model for l2/dw prediction.

Starting point of the scour hole
In predicting the l1/dw parameter, all the models dealt
deficiently with producing a good prediction compared
with the other scour characteristics. ANN-4 estimates
this parameter with better precision (CC = 0.961,
RMSE = 0.890, and MAE = 0.705) than SVR-FOA-4
(CC = 0.941, RMSE = 1.122, and MAE = 0.815) and
ANFIS-4 (CC = 0.951, RMSE = 0.992, andMAE = 0.735).
This superiority of ANN-4 can be observed in Figure 8,
which shows that the trend line deviates less from
the best fit line. The Reg-4 equation with CC = 0.939
andMAPE = 20.9 outperforms SVR-4 (CC = 0.876 and
MAPE = 29.5) in predicting l1/dw. The lower accuracy
of SVR-4 in estimating l1/dw can be seen in Figures 8
and 11.

Scour hole length. In the case of scour hole length
(ds/dw), ANN-5 outperforms the other techniques
with CC = 0.994, RMSE = 1.487, and MAE = 1.065.
The second best model is ANFIS-5 with CC = 0.992,
RMSE = 1.761, and MAE = 1.284. SVR-FOA-5 stands
in third place with CC = 0.98, RMSE = 2.344, and
MAE = 1.709. The REG-5 results are similar to those of
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Figure 11. Plots of observed and estimated values of studied parameters with machine learning and regression models.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 287

Figure 11. Continued.
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SVR-FOA-5 with a slightly lower accuracy. SVR-5 per-
forms weakly compared with the other methods, with
CC = 0.930 and RMSE = 5.931. This weakness can be
seen graphically in Figures 9 and 11.

Scour hole width. For estimation of the scour width
(ws/dw), all the models show quite good performance;
however, ANFIS-6 presents better results (CC = 0.999,
SI = 0.001, and RMSE = 0.011) than those of ANN-6
(CC = 0.999, SI = 0.014, and RMSE = 0.119) and SVR-
FOA-6 (CC = 0.993, SI = 0.094, and RMSE = 0.808).
The Reg-6 equation estimates ws/dw with CC = 0.997,
RMSE = 2.048, and MAE = 1.165. The formulae of
Azmathullah et al. (2005) predict the scour width with

CC = 0.953, RMSE = 4.499, and MAE = 2.550, and a
more scattered plot is observed in its predictions.

The results obviously indicate how applying a new
optimization algorithm like the FOA improves further on
the primitive results of the lower accuracy single SVM.
The SVR-FOA may even demonstrate a higher perfor-
mance with different numbers of input parameters in
comparison with the other soft computing techniques.
The current research employs a higher number of non-
dimensional inputs than was previously performed by
Azmathullah et al. (2005) andNaini et al. (2011). It can be
concluded that the SVMmodelmay have been optimized
in the worst-case scenario as it has lower accuracy in
comparison with the traditional regression equations

Figure 12. Taylor diagrams of the predicted parameters of the scour hole (%).
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Figure 12. Continued.

both from this research and the literature (Azmathul-
lah et al., 2005). The sensitivity analysis implemented
on ANNs and ANFISs in previous studies (Azmathullah
et al., 2005; Naini et al., 2011) indicated that, by employ-
ing all the input parameters (five inputs) in the models,
a better mapping is formed between the input and out-
put spaces, and the results improve, and the uncertainty
decreases. Therefore, all those influential input parame-
ters were utilized in the current researchmodeling. How-
ever, as illustrated by Goyal and Ojha (2011) in their
research on scour estimationwith the SVMandM5mod-
els, SVM performed better with lower numbers of raw
inputs than ANNs. Additional research could be done
to identify the most influential parameters for the single
SVM scour model in the non-dimensional case; it could
then be put into the optimization process performed
by one of the recognized algorithms like the FOA. In
that case, the accuracy might improve even further than
with the other techniques. It is concluded that, although
ANNs and ANFISs perform slightly better, the SVR-FOA
method is potentially more robust and practical in the
field of engineering.

Conclusion

In this study, the applicability of support vector regres-
sion coupled with the fruitfly optimization algorithm
(SVR-FOA) was evaluated for estimating the geometrical
characteristics of the ski-jump scour hole below spill-
ways, such as the maximum depth of the scour hole, the
maximum scour depth location, the starting and end-
ing points of scour hole, as well as the scour hole length

and width. The data set was made available through two
different experimental studies. The results were com-
pared with other soft computing techniques (SVR, ANN
and ANFIS) and the conventional regression models. A
comparative analysis was implemented using quantita-
tive criteria and graphical diagrams. The results indicate
that the developed SVR-FOA hybrid model is a robust
approach and performs well in comparison with SVR,
ANNs and ANFISs and can be used successfully for pre-
dicting scour hole dimensions downstreamof a ski-jump.
It was observed that, by using the SVR-FOA, the accu-
racy of predicting scour depth improves by about 8%
in terms of the CC, and the error (MAPE) decreases to
14.7%. There is also an improvement in the estimation of
the l1/dw and l2/dw parameters to 6.5 and 4.5%, respec-
tively, and a 5% improvement in Ls/dw in comparison
with simple SVR models. It is concluded that the SVR-
FOA combination is a promising approach which should
be further used and studied in a wide range of hydraulic
structures dealing with the scour problem and also water
resources issues. The FOA method can be applied as
a booster in fields where using single SVM is associ-
ated with deficiency and drawbacks, for instance when
the number of inputs is higher. According to a study by
Goyal and Ojha (2011), SVM seems to be more practi-
cal and suitable in the field of design, needing a lower
number of inputs to estimate the scour parameters more
accurately than ANNs. A sensitivity analysis would also
help to recognize the most useful combination of input
parameters for the SVR-FOA, but this is beyond the scope
of this paper and can be accomplished in future studies.
The results of this research may be limited to laboratory
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scale, but as a suggestion the method could be applied to
field data. Additional future research is needed to assess
if this new nature-inspired algorithm is any better than
previous optimization algorithms.
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