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ABSTRACT

This paper studies the generation of LiDAR-predicted above-
ground biomass (AGB) maps from synthetic aperture radar
(SAR) intensity images by use of conditional generative ad-
versarial networks (cGANs). The purpose is to improve on
traditional regression models based on SAR intensity, which
are trained with a limited amount of AGB in situ measure-
ments. Although they are costly to collect, data from airborne
laser scanning (ALS) sensors are highly correlated with AGB
and can replace in situ measurements as the regression tar-
get. Thus, the amount of training data increases dramatically,
and we can learn an expressive two-stage regression model
for SAR backscatter intensity. We propose to model the re-
gression function between SAR intensity and ALS-predicted
AGB with a Pix2Pix convolutional neural network for image
translation that uses a ResNet-5-based cGAN architecture
with the Wasserstein GAN gradient penalty (WGAN-GP)
objective function. The synthesized ALS-predicted AGB
maps are evaluated qualitatively and quantitatively against
real ALS-predicted AGB maps. Our results show that the
proposed architecture manages to capture characteristics of
the real data, which suggests further use of the ResNet-5 for
a SAR intensity regression model of AGB.

1. INTRODUCTION

The REDD+ program (Reducing Emissions from Deforesta-
tion and Forest Degradation) was initiated to reduce carbon
emissions from tropical forests. As part of this, developing
countries have been motivated to implement an efficient mea-
suring, reporting, and verification (MRV) system. Ideally, if
deforestation and carbon emission are kept low and this is
documented with the MRV system, a financial reward will
be released through the REDD+ program [1]. Since above-
ground biomass (AGB) is a primary variable related to the
carbon cycle [2], enabling accurate estimates of AGB in large
areas is a necessary part of the MRV system. For this sys-
tem, AGB field data is needed, but it is unfortunately both
costly and time-demanding to collect manually. As a conse-
quence, the focus instead lies on regression models that estab-

lish a relationship between a small amount of AGB field data
and remote sensing (RS) measurements from different sen-
sors. Previous analyses on the use of different RS sensors for
this task conclude that among different platforms and sensor
types, AGB models based on airborne laser scanning (ALS)
are significantly more accurate than models developed using
radar or passive optical data [3]. This was confirmed in [4],
which also states that in tropical forests, ALS data is highly
correlated with AGB. However, the high cost of airborne data
acquisition limits the use of ALS data in a national MVR sys-
tem [2]. AGB estimation with spaceborne synthetic aperture
radar (SAR) images has, on the other hand, the advantage of
providing data with large spatial coverage acquired with high
temporal frequency. Unfortunately, SAR suffers from lim-
ited estimation accuracy, which restricts the use of SAR data
for the MRV system of high precision. The separate chal-
lenges of SAR and ALS have fostered studies on their com-
bined use for forest AGB estimation. Several of these studies
were reviewed in [2], which concludes that the combination
of SAR and ALS may improve AGB estimation, especially
when SAR data is used to upscale accurate ALS AGB predic-
tions to large areas.

Artificial neural networks and deep learning has opened
a lot of new possibilities in the analysis of RS images. The
ability to perform accurate regression between different im-
age modalities, also known as image translation, is one such
example. Cross-modal image translation based on generative
adversarial networks (GANs) has drawn considerable atten-
tion since the architecture was proposed in 2014 [5]. In the
standard GAN setting, the generative model learns a mapping
from a random noise vector z to an output image y. This
idea was later extended to the conditional GAN (cGAN) ar-
chitecture, where the learned mapping to the output image
y is conditioned on an input image x [6]. In this project, we
have access to SAR data covering most of Tanzania, while the
ALS data only covers a limited part of the country. Motivated
by the conclusions of [2] and the achievements of image-to-
image translation with cGANs in [6], we propose to train a
cGAN to synthesise ALS-predicted AGB maps from SAR in-
tensity images. The cGAN model becomes the second part



Fig. 1: AGB predictions from ALS data (left) and false-colour
SEN1A image of same area (right).

of a two-stage regression model, where the first is the regres-
sion model used to produce the ALS-predicted AGB maps
from ground reference data, as described in [1, 4]. It is to our
knowledge the first time that image-to-image translation has
been performed to simulate ALS data from SAR data for AGB
regression purposes. SAR image simulation of vehicles was
studied in [7]. Our work differs from it in many ways. First
of all, we consider different conditional GAN networks to
simulate ALS data, while [7] considered three ordinary GAN
networks to simulate SAR data. Furthermore, [7] performed
their study on a benchmark dataset, while we use a real-world
dataset. The rest of this paper is organised as follows: Sec. 2
introduces the dataset used in this paper. Sec. 3 describes the
preparation of the dataset and the cGAN models used. Re-
sults are presented and discussed in Sec. 4, and conclusions
are drawn in Sec. 5.

2. DATA AND PREPROCESSING

The SAR data consists of a scene from the Sentinel-1a
(SEN1A) sensor, containing two bands in VV and VH polar-
isation, acquired on 10 September 2015. It was chosen since
SEN1A data is freely available and since the scene fulfils
our three criteria: 1) it covers our area of interest, 2) it is
closest in time to acquisition of the ALS data, and 3) it was
acquired during one of the area’s two yearly dry seasons, this
to achieve optimal sensitivity to dynamic AGB levels.

ALS data and ground reference data for 88 field plots were
acquired in 2014. A regression model was in [1, 4] trained
to predict AGB for pixel cells of size 700m2, corresponding
to a ground resolution of 26.6m. The ALS-predicted AGB
maps were made available for this project and will serve as
the desired output for the cGAN.

Our SEN1A scene was radiometrically calibrated into σ0
values, terrain corrected, and resampled to the same pixel size
as the ALS-predicted AGB data. These steps and subsetting
of the SEN1A scene to match the ALS scene were performed
with the ESA SNAP toolbox. Both scenes were co-registered
with QGIS. After this process, each pixel in the dataset con-
tains a predicted AGB value and the corresponding measure-
ments in the VV and VH polarisation [dB]. A false-colour
image was created from the SEN1A bands with: red = VV,
green = VH, and blue = VV-VH. The ALS scene was kept as
a greyscale image. Fig. 1 shows the corresponding ALS scene
and the false-colour SEN1A scene after preprocessing.

3. METHOD

For the image-to-image translation task, we created training
and test sets as follows. Firstly image patches of size 64× 64
were extracted from the whole scene in a grid manner with
a 10% overlap between the patches. This to obtain as many
patches as possible without transferring too much informa-
tion between patches. Approximately 20% of these patches
were extracted to a test set, while the remaining 80% were
kept in the training set. Data augmentation, with flipping and
rotation, were applied on the separate datasets. This results in
232 patches in the test set and 944 patches in the training set.

3.1. Generation of ALS-predicted AGB image patches

The generation of synthetic ALS-predicted AGB image
patches is based on the image-to-image translation frame-
work Pix2Pix [6]. In our application, the input domain X
consists of SEN1A patches and the output domain Y of ALS-
based AGB patches. Conditioned on images from the input
domain X , the generator network (G) of the cGAN aims to
capture the data distribution of the output domain to generate
corresponding samples from Y . Image pairs are then pre-
sented to the discriminator network (D) of the cGAN, which
aims to distinguish if it is presented with a real pair of images
(real AGB estimates and SEN1A) or fake pair (generated,
synthetic AGB estimates and real SEN1A). During adaption
of the cGAN, both G and D are trained simultaneously to
outperform each other, resulting in the following minmax
objective function [5]

min
G

max
D

V (D,G) =Ex,y[logD(x,y)]+

Ex[log(1−D(x, G(x))].
(1)

A cGAN network trained with the objective function in
Eq. (1) is referred to as a Vanilla GAN. The least squares
generative adversarial network (LSGAN) was proposed to
overcome issues with stability during training of the Vanilla
GAN [8]. Its objective functions in a conditional setting are

min
D

VLSGAN (D) =
1

2
Ex,y[(D(x,y)− b)2]+

1

2
Ex[(D(x, G(x))− a)2]

min
G

VLSGAN (G) =
1

2
Ex[(D(x, G(x))− c)2],

(2)

where a and b are labels for fake and real data, while c de-
notes a value that G tricks D to believe for fake data [8]. In-
troduced by [9] for further stabilisation of training and high
quality image generation, we also consider the WGAN-GP. It
consider real data, simulated data and a combination of these
in its objective function, which in the conditional setting has
the following form [9]

min
G

max
D

V (D,G) =Ex[D(x, G(x))]−

Ex,y[D(x,y)] + λEŷ[(||∇ŷD(ŷ)||2 − 1)2]
(3)
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Fig. 2: First row: SEN1A patches. Second row: Real ALS
patches. Third row: Generated ALS patches. Column (a)
Vanilla GAN, ResNet-5, (b) LSGAN, ResNet-5, (c) WGAN-
GP, ResNet-4, (d) WGAN-GP, ResNet-5, (e) WGAN-GP,
ResNet-6.

with
ŷ = εy + (1− ε)ỹ , (4)

where y is a real image patch of Y while ỹ is a generated
image patch from G(x).

Generator network: Three different G networks were
tested, all based on the ResNet model, i.e. ResNet-4, ResNet-
5, and ResNet-6. ResNet-6 is a part of [6] and consists of
2 encoding blocks followed by 6 residual blocks and 2 de-
coding blocks. ResNet-4 and ResNet-5 consist of the same
number of encoder-decoder blocks as ResNet-6 but only 4 or
5 residual blocks. The two smaller networks were proposed
as we work with small image patches of 64× 64 pixels.

4. RESULTS AND DISCUSSION

For the generation of synthetic ALS-predicted AGB patches
from SEN1A data, we train nine different cGAN architectures
(combining the three ResNet networks and the three objective
functions from Sec. 3) and compare their performance. In our
experiments, we apply batch normalisation (BN) for Eq. 1 and
Eq. 2, while for Eq. 3 we apply layer normalisation (LN) for
D and BN for the G network, as suggested in [9]. We exper-
iment with batch sizes (BS) between 1 and 4 and keep the D
network as recommended in [6]. We train the different archi-
tectures for 200 epochs, with a learning rate of 2×10−4. After
training, the performance of the different models was evalu-
ated by generating synthetic ALS-based AGB using SEN1A
data from the test set and comparing it to the real AGB pre-
dictions. We evaluate the result by computing the root mean
square error (RMSE) averaged over the 232 patches in the test
set, and refer to it as the average RMSE.

To evaluate the risk of overfitting while training the

Average RMSE [Mgha−1]
Vanilla GAN LSGAN WGAN-GP

(BN,BS=3,ResNet-5) (BN,BS=3,ResNet-5) (BN,LN,BS=4,ResNet-5)

68.1 57.9 56.7
WGAN-GP (BN, LN, BS=4)

ResNet-4 ResNet-5 ResNet-6
57.0 56.7 56.8

Table 1: Average RMSE on the test set in Mgha−1. Results
are given for all the tested GAN architectures, specifying the
configuration that produces the lowest average RMSE.

cGAN, we performed two separate training regimes: one
where the model train on the whole training set during each
epoch and another where the model utilises a random sam-
ple containing 60% of the whole training set in each epoch.
By evaluating the average RMSE on the test set for the two
regimes we found that the average RMSE decreased while
using only 60% of the whole training set per each epoch.
Thus, all results presented in this section follow the second
training regime.

Among all possible models we found that the WGAN-GP
trained on a ResNet-5 network with BN on the G, LN on the
D, and using a BS of 4 yielded the lowest average RMSE of
all models: 56.7 Mgha−1. We kept ResNet-5 fixed and com-
pared models trained with Eq. 1 and Eq. 2 against the best
WGAN-GP. We also kept WGAN-GP fixed while training the
different ResNet-4, 5 and 6 networks, to evaluate the differ-
ence between them. Tab. 1 summarises the results with model
specifications. All three ResNet networks trained on the spe-
cific WGAN-GP perform similarly, although ResNet-5 yields
slightly lower average RMSE. Tab. 1 shows that the choice
of objective function has the largest impact on the average
RMSE, where the WGAN-GP is clearly better than the other
two for our dataset. Fig. 2 shows a qualitative comparison
of the five different models from Tab. 1, where each column
correspond to the patch closest to the average RMSE shown
in Tab. 1. The first row of Fig. 2 visualises patches from the
(input) SEN1A domain, the middle row from the real (out-
put) ALS domain and the third row from the generated syn-
thetic ALS patches. Among the generated patches in Fig. 2,
the Vanilla GAN differs from the other models by generating
more crispy looking patches, while the other models generate
more blurry looking patches.

To investigate the worst and best case scenario of each the
three models in the upper part of Tab. 1, we plot the patches
from the test set that yield minimum and maximum RMSE in
Fig. 3. Tab. 2 shows the corresponding minimum and max-
imum RMSE for these patches. From Fig. 3 it can be noted
that the same two patches, but with different flipping/rotation,
are selected as the easiest and the hardest one for the image-
to-image translation. Once again, the Vanilla GAN achieves
the crispiest look, but with the largest deviation between the
real and generated ALS patch, compare column (b) with col-



Model Min [Mgha−1] Max [Mgha−1]
Vanilla GAN, ResNet-5 49.9 85.6

LSGAN, ResNet-5 40.0 73.7
WGAN-GP, ResNet-5 37.0 75.4

Table 2: Computed minimum and maximum RMSE in the
test set when generating ALS patches using the ResNet-5 net-
work and the three different objective functions.

(a) Min (b) Max (c) Min (d) Max (e) Min (f) Max

Fig. 3: First row: SEN1A patches. Second row: Real ALS
patches. Third row: Generated ALS patches. Column (a),
(b) Vanilla GAN, ResNet-5 (c), (d) LSGAN, ResNet-5 and
(e) , (f) WGAN-GP, ResNet-5. Columns with caption min in-
dicate patch with min RMSE within the test set, while caption
max indicate patch with max RMSE.

umn (d) and (f). From the same figure, it can be noted that all
three objective functions seem to be approximately equally
appropriate for translating from X to Y when patches from
the two domains have similar appearance, but struggle when
the X and Y domains deviate from each other in appearance.

5. CONCLUSION

So far, we have shown that the cGAN architectures are suit-
able for generating synthesised images of ALS-based AGB
estimates from SEN1A scenes. Three different objective
functions and three different deep neural networks of differ-
ent dimensions were optimised and applied in the generation.
Overall we found that the models manage to capture the ALS
specific structure when trained to perform image-to-image
translation from the SEN1A domain. Results show that the
G networks perform similarly, but the ResNet-5 might be
slightly better suited for the task. In general, the Vanilla
GAN produces sharper synthesised images than applying the
LSGAN or the WGAN-GP. Despite the visual results, the
Vanilla GAN also receives the highest RMSE. As pointed out
in [10], it is a delicate issue to evaluate the performance of
GANs, which suggests that the evaluation needs to match the

target application. Therefore, selecting one model in favour
of another boils down to selecting a model that fulfils the aim
of this study best. Our interest lies in synthesising ALS-based
AGB estimates from corresponding SEN1a data, not to gener-
ate data that visually appear similar to the real ALS data. We
therefore suggest further work to focus on applying a ResNet-
5 generator network, a WGAN-GP objective function trained
with BN and LN, and a BS of 4, as this model achieves the
lowest average RMSE over all considered models. We aim to
finalise this work by performing statistical characterisation of
the obtained AGB estimates and compare to ground reference
data.
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