Norwegian University
of Life Sciences

Master's Thesis 202130 ECTS
School of Economics and Business

Analysing the Feasibility of a Simulated Zero-Emission Vehicle Fleet in Logistics
 A Scenario-Based Case Study

Abstract

As logistics providers strive to reduce their operational emissions with increasing urgency, the feasibility and costs associated with transitioning to zero-emission vehicle fleets is of growing concern. Meanwhile, vehicle routing problems, a staple in the field of operational research, struggle to capture the wide range of real-world complexities known to impact the operation of electric commercial vehicles to problems similar in size to those faced by commercial enterprises. The purpose of this thesis is to demonstrate how a pragmatic formulation of a Capacitated Electric Vehicle Routing Problem with Time Windows can constitute a viable decision-making tool for logistics providers seeking to eliminate operational emissions. Our two-stage solution contributes to the existing literature by enabling the incorporation of a wide range of real-world factors to large problem instances, while maintaining relatively low computational complexity.

The viability of our method is demonstrated using a Norwegian logistics provider, Bring Home Delivery, as a case study. Using historical order data to generate problem instances, we examine the feasibility and operational costs of fulfilling different levels of demand using an electric vehicle fleet. To enable comparative analyses to the case study subject's current operations, the same problem set is solved as a conventional routing problem using a diesel vehicle fleet. By first optimizing routes for minimal operational cost and incorporating the necessary use of charging infrastructure in a subsequent step, the model is successfully applied to problem instances containing up to 648 customer nodes and 731 charging locations.

Based on our findings, we conclude that an electric vehicle fleet is a viable alternative to diesel vehicles in all scenarios, incurring operational costs similar to, or below, the costs of a diesel vehicle fleet. However, deliveries to remote areas of the largest customer network are deemed infeasible due to a combination of limited vehicle range, unavailability of charging infrastructure, and long charging times. Furthermore, the feasibility and operational costs of the solutions using electric vehicles are far more sensitive to changes in variables such as ambient temperatures or customer density than those of their diesel counterparts.

Acknowledgements

To our supervisors, Hendrik Winzer and Mette Wik, whose dedication and advice made this thesis an academic endeavour we are proud of. To Hendrik, for his genuine interest in our topic and willingness to go above and beyond to see us succeed. To Mette, for her honest feedback and unique ability to provide encouragement and spur optimism in our regular meetings.

To Posten and Bring in general, and Managing Director of Bring Home Delivery, Tore Hetland, in particular, for showing keen interest in our work and supporting us along the way.

To our partners, Gry and Marie, who, during a semester of working from home, have shown more patience and support than we could ever ask for. To our family and friends, for providing much-needed breaks and enduring lengthy monologues about vehicle routing problems.

Table of contents

LIST OF FIGURES VII
LIST OF TABLES VIII
AbBREVIATIONS IX
1 INTRODUCTION 1
1.1 Empirical background 1
1.2 Purpose and research questions 2
1.3 THESIS STRUCTURE 5
2 LITERATURE REVIEW 6
2.1 The Vehicle Routing Problem (VRP) 6
2.2 The Electric Vehicle Routing Problem (EVRP) 8
2.3 CONTRIBUTION TO EXISTING LITERATURE 12
3 METHODOLOGY 14
3.1 Model design 14
3.1.1 GRAPH NOTATIONS 16
3.1.2 InPUT VARIABLES 17
3.1.3 DECISION VARIABLES 19
3.1.4 ObJective function. 21
3.1.5 OPERATIONAL COST FUNCTION 22
3.1.6 CONSTRAINTS 23
3.1.7 SENSITIVITY ANALYSIS 24
3.2 PROBLEM COMPLEXITY AND SOLUTION METHODS 25
3.2.1 Problem Complexity 25
3.2.2 HEURISTIC ALGORITHMS 26
3.2.3 Solution method 27
3.2.4 Model validation 28
3.3 DATA COLLECTION AND ANALYSIS 29
3.3.1 CUSTOMER NETWORK 29
3.3.2 Charging network 30
3.3.3 COMPILATION OF NETWORKS AND CREATION OF MATRICES 30
3.3.4 LABOUR COST 31
3.3.5 ENERGY COST 31
3.3.6 VEHICLE SPECIFICATIONS 32
3.3.7 AMBIENT TEMPERATURES 34
3.4 SCENARIO SELECTION CRITERIA 35
4 FINDINGS AND ANALYSIS 38
4.1 BEST-CASE SCENARIO 38
4.2 Medium-Case scenario 39
4.3 WORST-CASE SCENARIO 42
4.4 Cross-SCENARIO analysis of $S_{\text {Electric }}$ AND $S_{\text {Diesel }}$ PERFORMANCE 46
4.4.1 ROUTE CHARACTERISTICS 46
4.4.2 Vehicle fleet size 47
4.4.3 ENERGY EFFICIENCY AND SENSITIVITY TO AMBIENT TEMPERATURES 48
4.4.4 AdDITIONAL PERFORMANCE MEASURES 49
5 DISCUSSION 52
5.1 IMPLICATIONS TO PRACTICE 52
5.2 Implications to theory 54
6 CONCLUSION 56
7 FUTURE RESEARCH 57
REFERENCES 58
APPENDIX A: NUMERICAL VALUES OF COMMON INPUT PARAMETERS 65
APPENDIX B: MODEL FORMULATION IN PSEUDOCODE 66
APPENDIX C: MODEL OUTPUT 75

List of figures

Figure 2.1: Example of three vehicle routes covering a set of customers from a terminal, with the weight of arcs denoting the distance between nodes7

Figure 3.1 Efficiency of proposed solution methods, measured in time and the cumulative number of vehicles (CNV) required (Bräysy \& Gendreau, 2005) 26

Figure 3.2 Vehicle range at different ambient temperatures, as percentage of measured range at $20^{\circ} \mathrm{C}$34

Figure 3.3 The network size and geographic area of each scenario, with the terminal represented as a red dot (scale 1:175000)37

Figure 4.1 A heatmap showing the density of charging locations, with customer nodes from worst-case scenario superimposed in purple (scale 1:270 000)44
Figure 4.2 A heatmap showing the density of customer nodes in each scenario (scale 1:260 000) 50

List of tables

Table 3.1 List notations in model 16
Table 3.2 The cost of charging 52.8 kWh in 60 minutes in NOK, weighted by share of ownership in the considered network 32
Table 3.3 Vehicle specifications 33
Table 3.4 Categorization of scenarios according to season 35
Table 3.5 Ambient temperatures used in scenarios, and the corresponding impact on vehicle range relative to their performance at $20^{\circ} \mathrm{C}$ 35
Table 3.6 Summary of scenario characteristics 37
Table 4.1 Summary of routes in best-case scenario generated by $S_{\text {Electric }}$ 38
Table 4.2 Summary of routes in best-case scenario generated by $S_{\text {Diesel }}$. 39
Table 4.3 Summary of routes in medium-case scenario generated by $S_{\text {Electric }}$ 40
Table 4.4 Summary of routes in medium-case scenario, generated by $S_{\text {Diesel }}$ 41
Table 4.5 Summary of routes in worst-case scenario generated by $S_{\text {Electric }}$ 43
Table 4.6 Summary of routes in worst-case scenario, generated by $S_{\text {Diesel }}$ 45
Table 4.7 Summary of solution characteristics 46
Table 4.8 Estimated size of vehicle fleet in each scenario 48
Table 4.9 Comparison of energy consumption sensitivity to ambient temperatures 49
Table 4.10 Comparison of OC per delivery and kilometre travelled 51

Abbreviations

API Application Programming Interface
AT Ambient Temperature
BEV Battery Electric Vehicle
BHD Bring Home Delivery
CAR Climate Action Regulation
C-EVRPTW Capacitated Electric Vehicle Routing Problem with Time Windows
CVN Cumulative Number of Vehicles
C-VRP Capacitated Vehicle Routing Problem
C-VRPTW Capacitated Vehicle Routing Problem with Time Windows
DCV Diesel Commercial Vehicle
DVRC Daily Vehicle Routing Cost
ECV Electric Commercial Vehicle
EEA European Economic Area
EU European Union
EV Electric Vehicle
EVRP Electric Vehicle Routing Problem
GDP Gross Domestic Product
GHG Greenhouse Gas
G-VRP Green Vehicles Routing Problem
MIP Mixed-Integer Programming
OC Operational Cost
PRP Pollution-Routing Problem
RVRP Recharging Vehicle Routing Problem
SoC State of Charge
TSP Travelling Salesperson Problem
VRP Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows

1 Introduction

The following chapter describes the empirical background of this thesis. Furthermore, its purpose and subsequent research questions are presented, followed by a brief description of the thesis' structure.

1.1 Empirical background

As the world's population steadily rises and economies become increasingly globalized, our reliance on transportation and logistics networks to provide continued social and economic progress grows larger. In the European Union (EU) alone, approximately 10 million people are employed in the transportation industry, and households spend an average of 13.2% of their disposable income on the moving of goods and services (European Union, 2019). However, the increased mobility of goods and people is not without consequences; more than 24% of global CO_{2} emissions from fuel combustion stem from the transportation sector (International Energy Agency, 2020). In 2015, the associated air pollution caused an estimated 385,000 premature deaths and USD 1 trillion in health damages (Anenberg et al., 2019).

Due to the nature of greenhouse gas emissions (GHGs), their negative impacts are not geographically limited to any city or country. Consequently, a vast range of intergovernmental initiatives, such as the Paris Agreement, the 2030 Agenda for Sustainable Development, and the EU's Climate Action Regulation (CAR), aim to regulate and reduce the consumption of fossil fuels. The primary source of this pollution, both globally and locally, is road transportation, of which freight constitutes 29.4 \% of emissions (International Energy Agency, 2019). While a decarbonization of the road transportation sector would reduce global GHG emissions by an estimated 11.9%, it is instead progressing negatively faster than any other sector (Wang \& Ge, 2019).

Among the measures available to curb emissions are: reducing the demand for transportation, improving energy efficiency through technological advancements, or adopting transportation modes that are inherently "greener". A rising global GDP, increased adaptation of logisticsintensive e-commerce and a projected global doubling in personal vehicles on roads by 2040, makes reducing demand for transportation challenging (International Energy Agency, 2020). Furthermore, improvements to the energy efficiency of combustion engines have stagnated at a level where less than half of the fuel consumed propels the vehicle forward (Albatayneh et
al., 2020). Consequently, efforts are primarily focused on the latter alternative - transitioning to modes of transportation that are more energy-efficient, and thereby less harmful to the environment.

To meet the obligations ratified in the Paris Agreement and conform to the decreasing carbon budgets imposed by CAR, national governments are increasingly promoting electric vehicles (EVs) as a preferred mode of transport. For instance, Norway, a Paris Agreement signatory and European Economic Area (EEA) member, has become the country with the highest proportion of EVs in the world, largely due to their exemption from a high sales tax and toll fees (Nikel, 2019). The Norwegian Government has announced that by 2025, all new passenger cars and light vans shall be zero-emission vehicles, with heavy-duty trucks to follow suit by 2030 (Norwegian Ministry of Transport and Communications, 2017). Several other countries, including Denmark, Sweden, Iceland and Ireland, have made similar commitments with corresponding incentive structures (Wappelhorst \& Cui, 2020).

This constitutes a monumental challenge to commercial operators of logistics networks. As the demand for goods rises, companies must simultaneously adopt alternative modes of transport to adhere to increasingly strict regulations and growing demand from stakeholders for greener delivery modes (Velázquez-Martínez \& Cottrill, 2020). Furthermore, due to the relative infancy and high acquisition cost of electric commercial vehicles (ECVs), this transition requires significant investments into technologies with which companies have limited experience. The considerably lower ranges of ECVs compared to conventional diesel vans and trucks, longer charging times, often limited availability of charging infrastructure, and high sensitivity to factors such as load weight, ambient temperatures, route elevation and more, means that there is considerable uncertainty associated with the transition to a zero-emission vehicle fleet.

1.2 Purpose and research questions

Operations research has long been concerned with the Vehicle Routing Problem (VRP), a combinatorial optimization and linear programming problem which, in its most basic form, is concerned with how a fleet of vehicles can visit a set of customers exactly once, while minimizing the total distance travelled. Since first introduced by Dantzig and Ramser (1959), the complexity of VRPs has grown considerably, as new sub-problems incorporate an increasingly wide range of real-world dynamics to solve for intricate objectives in large customer networks.

The purpose of this thesis is to contribute to existing VRP literature by proposing a pragmatic approach to a Capacitated Electric Vehicle Routing Problem with Time Windows (CEVRPTW). By employing a two-stage approach to the C-EVRPTW, we maintain relatively low computational complexity, enabling both the solving of large problem instances and the inclusion of a high number of real-world variables. Using Bring Home Delivery (BHD), a Norwegian logistics provider, as a case study, we demonstrate how this method can be utilized as a decision-making tool for commercial enterprises faced with the challenge of transitioning to zero-emission vehicle fleets.

The case study uses historical order data from BHD to generate problem instances that reflect real-world dynamics. It is exclusively concerned with last-mile deliveries, meaning goods transported to the end-consumer from BHDs terminal located in Haugenstua, Oslo. The unique characteristics of this part of the logistics providers' value chain warrants consideration independent of the preceding elements for multiple reasons: Firstly, last-mile deliveries consist of dynamic networks of customers that are subject to considerable changes from day to day, both in the level of demand and the location of customers. Furthermore, deliveries are generally made using fleets of smaller vehicles, such as vans or light trucks, which travel shorter distances to multiple locations in predominantly urban environments. As governments impose increasingly stringent regulations to combat the adverse impact vehicles have on air quality in populated areas (Hovi et al., 2019), the feasibility of last-mile deliveries using combustion engine vehicles is rapidly diminishing. Furthermore, alongside personal vehicles, the vans and light trucks used for last-mile deliveries are subject to a more rapid phasing out than heavyduty vehicles, meaning the transition to zero-emission alternatives is more urgent (Norwegian Ministry of Transport and Communications, 2017).

Meanwhile, the preceding inter-depot transportation consists of routes that are more homogenous by nature, where the origin and possible destinations constitute a static network of relatively few nodes, with changes only to the level of demand between depots. The routes are generally travelled by heavy-duty trucks, across greater distances and at highway speeds. As such, the primary challenge of inter-depot transportation is not the routing of vehicles, but the loading, size, and allocation of a vehicle fleet. Furthermore, the elimination of operational emissions from inter-depot transportation may rely on the adoption of entirely different modes of transport, such as hydrogen vehicles that are less constrained by limited ranges and long refuelling times. However, such a transition would require significant investments in infrastructure, as, at time of writing, there are only three operational hydrogen refuelling
stations in Norway (Norwegian Hydrogen Association, 2021). As such, while emissions from inter-depot transportation should be addressed, its feasibility appears less contingent on route optimization and analysis, than on technological progress and infrastructure investments.

To reflect that the demand for goods fluctuates significantly over time, the order data is divided into different scenarios, representing occasions where BHD must satisfy high, medium, and low levels of demand. Each scenario then constitutes a problem instance, which is solved as a CEVRPTW. Furthermore, as the performance of an electrified vehicle fleet is best examined relative to an alternative, the same problem instances are solved by formulating a Capacitated Vehicle Routing Problem with Time Windows (C-VRPTW) using a conventional diesel vehicle fleet. In doing so, this thesis seeks to answer the following research questions:

> RQ1: Can Bring Home Delivery transition to zero-emission last-mile deliveries from their Oslo terminal, without compromising on their delivery times, using only electric vehicles?

RQ2: How would doing so impact their operational costs?

By answering RQ1, we determine whether a zero-emission vehicle fleet is at all capable of satisfying the demand of BHDs customers in problem instances known to have already been solved by a conventional diesel fleet. Furthermore, as BHD exclusively transports goods in excess of 35 kg , deliveries are made in predetermined time windows so that customers can ensure that they are present to take receipt of the goods. An important measure of the quality of service is therefore BHD's ability to ensure that deliveries are made within the agreed-upon time window.

Lastly, while satisfying the demand in a given scenario may be feasible, the incurred costs of doing so are crucial to the decision-making process of any commercial enterprise. Although Norwegian consumers exhibit some degree of willingness to pay for the consideration of ethical concerns (Schjøll \& Thorjussen, 2019), the elasticity of demand for zero-emission transportation relative to conventional delivery is unknown.

While the historical order data provided by BHD contains a wide range of characteristics for each order, it is not possible to ascertain the routes driven by vehicles, nor the order in which customers were visited. Instead, the operational costs in each scenario are estimated for both
the C-EVRPTW and C-VRPTW. Consequently, $R Q 2$ provides important context to the results of RQ1 by estimating BHD's operational costs using an ECV fleet relative to those of a DCV fleet.

For simplicity, as the names of the two simulation models are hard to distinguish, please note that the C-EVRPTW is referred to as SElectric in subsequent chapters. Similarly, the C-VRPTW is referred to as $S_{\text {Diesel }}$ to improve readability.

1.3 Thesis structure

The subsequent sections are structured as follows: Chapter 2 briefly describes the theoretical background and general characteristics of routing problems, including its most common subproblems. A comprehensive literature review with emphasis on research pertaining to environmental considerations in routing problems is then provided, with the objective of describing the field's current state-of-the-art. Furthermore, the contribution of this thesis to the existing literature is described. Chapter 3 details the thesis' underlying methodology, including model formulation, the generation of problem instances, descriptions of how real-world data were collected and analysed, and how the final model's performance was validated and benchmarked. In Chapter 4, the problem instances are solved using $S_{\text {Electric }}$ and $S_{\text {Diesel, }}$, followed by comparative analyses of the results. Finally, Chapter 5 discusses the findings in relation to the research questions and their implications to practice and theory, followed by a brief conclusion and recommendations for future research in Chapter 6 and 7, respectively.

2 Literature review

The following chapter contains a description of the key concepts and literature on which this thesis is based. Section 2.1 provides a brief narrative of the origins and structure common to all routing problems, as well as examples of its most common sub-problems. Section 2.2 contains a thorough, while not exhaustive, review of literature relevant to the work presented in this thesis. For comprehensive reviews of the field in general, see Eksioglu et al. (2009), Toth and Vigo (2014), Braekers et al. (2016) or Gayialis et al. (2019). While the significant diversity and overlap between routing problem types makes it challenging to categorize the literature systematically, an attempt has been made to discuss relevant contributions in their appropriate context, ordered chronologically except where doing so is not expedient. Critical observations are made alongside the review of each paper with the intention of identifying areas of potential progress. Lastly, Section 2.3 describes where the field of Electric Vehicle Routing Problems (EVRPs) appears to be headed, and how this thesis contributes to the current state-of-the-art.

2.1 The Vehicle Routing Problem (VRP)

The model presented in this thesis is a sub-problem of the Vehicle Routing Problem (VRP), itself a generalization of the Traveling Salesperson Problem (TSP) which seeks to determine the route through a given set of points that minimizes the total distance travelled.

Dantzig and Ramser (1959) first formulated what they labelled the Truck Dispatching Problem, by modelling a homogenous fleet of trucks tasked with delivering fuel to a network of gas depots, solved as a linear optimization problem. This differed from earlier problems by demanding that routes were constructed so that all vehicles departed from, and returned to, a central hub after visiting their designated customer set. The model also allowed for unique levels of demand for each customer and considered the limited loading capacities of each vehicle, today known as a Capacitated Vehicle Routing Problem (C-VRP). Based on this, Clarke and Wright (1964) generalized a linear optimization problem that seeks to determine how a set of customers can be served from a central hub by vehicles with dissimilar loading capacities at minimal total travelling distance, today known as a Vehicle Routing Problem (VRP).

In general, a VRP is modelled as a weighted directed graph where nodes represent individual customers. The arcs between nodes constitute the paths taken by vehicles, and each arc's weight signifies the cost of that path, as seen in Figure 2.1.

Figure 2.1: Example of three vehicle routes covering a set of customers from a terminal, with the weight of arcs denoting the distance between nodes

Subject to constraints, such as loading capacities, vehicle range, prearranged delivery times or vehicle fleet size, the routing problem is solved to keep an objective function, in early iterations a measure of travel distance or vehicle fleet size, at a minimum. As nearly all VRPs constitute NP-hard problems, further discussed in Section 3.2, most applications involve the use of heuristic algorithms to provide near-optimal solutions (Lenstra \& Kan, 1981). While the aforementioned iterations of the VRP contain objective functions which simply measures the distance between nodes or the number of vehicles used, more recent work aims to minimize total travel time, operational cost, or more comprehensive, multi-objective measures described in greater detail in Section 2.2.

The Vehicle Routing Problem with Time Windows (VRPTW) is perhaps the most common generalization of the original VRP, due to its relevance to the operation of real-world logistics networks (Desaulniers et al., 2014). First introduced by Pullen and Webb (1967), the problem adds complexity by requiring the servicing of customers to occur within a predetermined time interval, constituting a time window. In cases where the violation of a time window is possible but incurs a penalty cost, the time window is considered soft. This allows for the incorporation of compromises similar to those of real-world operations, where the size of a vehicle fleet may be kept lower in exchange for an inability to deliver all goods on time in certain problem instances. However, this type of soft constraint requires a weighting of the
penalty incurred if violated, which can then be balanced against the benefit of upholding it. If a time window is hard, the model is restricted so that arrival or departure outside the specified time interval is prohibited. Consequently, the problem solution must ensure conformity by making changes to route arcs, fleet sizes or other variables which may incur additional costs. While time windows most commonly impose restrictions on when a vehicle may arrive at a customer node, they may also concern the availability of the depot, drivers or the roads available for routing (Braekers et al., 2016).

The performance of heuristics used to solve VRPs is most commonly benchmarked using problem instances first introduced in Solomon (1987), containing six problem sets with a total of 56 problem instances. Each instance consists of 100 customers with unique demand in weight and a time window for delivery. Vehicles are capacitated by a maximum load weight, and the problem is originally multi-objective by aiming to minimize the number of vehicles used, route duration, travel distance, and waiting times. Several adaptations and extensions of the original problem sets have since been published alongside entirely new benchmarks, to improve their applicability to a broader range of VRPs, primarily containing changes to the sizes and density of customer networks.. A recent review of these and their best-known solutions can be found in (Meira et al., 2017).

2.2 The Electric Vehicle Routing Problem (EVRP)

Multiple approaches to the inclusion of environmental considerations in routing problems have been proposed. Sbihi and Eglese (2010) and Maden et al. (2010) demonstrate that the minimization of travel distance and avoidance of traffic congestion commonly emphasized in conventional VRPs concerning fossil-fuelled vehicles indirectly reduces GHG emissions.

More targeted approaches include the Emissions Vehicle Routing Problem formulated by Figliozzi (2010), in which the minimization of GHG emissions and fuel consumption is addressed directly through incorporation in the objective function itself, either as the primary objective or as a component of a cost function. By including departure times and vehicle speed as decision variables, travel in congested traffic is avoided as drivers can make adjustments to when they depart from each node, subject to meeting hard time window constraints, thereby allowing the fleet to operate at speeds where emissions are lower. Similarly, Bektaş and Laporte (2011) formulate the Pollution-Routing Problem (PRP) containing a more comprehensive emissions model which, in addition to permitting varying vehicle speeds, accounts for the
impact of changes in vehicle load from one arc to another. Their collective findings suggest that changes to parameters such as departure times, vehicle speed and the number of vehicles utilized can result in moderate reductions in both emissions and total operational costs relative to conventional VRPs. However, neither attempts to eliminate operational emissions through the use of alternative transport modes.

An different approach is the use of inherently cleaner modes of transportation to solve regular cost optimization problems, thereby addressing environmental concerns directly. Gonçalves et al. (2011) construct a pick-up and delivery VRP containing both conventional diesel vehicles and ECVs. However, while the time required to recharge an ECV is derived from a function of distance travelled and maximum vehicle range, the availability and location of charging infrastructure is not incorporated in their model. Conrad and Figliozzi (2011) formulate the Recharging Vehicle Routing Problem (RVRP) in which a fully electric vehicle fleet is used to service a set of 40 customers, with experimental instances derived from adaptations of the Solomon problem sets (Gambardella, 1999). Their model permits charging en route at a selection of customer locations, thereby extending the potential distance covered by a single vehicle. One finding of particular interest is that even when the primary objective is the minimization of routes or vehicles employed, the imposition of hard time windows significantly increases the necessary fleet size and total distance travelled. Meanwhile, recharging at customer locations becomes less feasible when subjected to time constraints. However, the estimated time required to recharge a vehicle is fixed and does not account for a vehicles' state of charge (SoC), and, as in Gonçalves et al. (2011), the energy consumption function does not reflect factors known to have a significant impact on the range of ECVs, such as operating temperatures, differences in elevation between arcs, and vehicle load (Basso et al., 2019).

Similarly, Schneider et al. (2014) propose a hybrid heuristic that efficiently solves an Electric Vehicle Routing Problem with Time Windows (E-VRPTW) for constructed problem instances of up to 100 customers. However, as customer locations are derived from Solomon instances and charging locations are subsequently randomly generated to ensure coverage of the customer network, the challenges posed by the absence or dispersion of charging infrastructure in realworld networks is not addressed. Furthermore, energy consumption is a function of travel distance, neglecting the impact of factors such vehicle load and elevation, all of which limits their routing model's applicability to real-world problems, particularly with regards to the transportation of heavy goods where load weight significantly impacts vehicle range. This may reflect the relative infancy of EVRPs compared to traditional routing problems, in which
considerations of range constraints and refuelling times are scarcely made due to the ubiquity of gas stations and the longer ranges of diesel trucks. Examples include Kek et al. (2008) and Laporte et al. (1985), where range constraints are imposed on fleets of gasoline trucks as part of a routing problem, and Ichimori et al. (1983), who propose a model to minimize travel distance and ensure vehicles do not run out of fuel using a polynomial algorithm. More recently, Erdoğan and Miller-Hooks (2012) proposed the Green Vehicle Routing Problem (G-VRP) to enable the servicing of larger customer networks with alternative-fuel vehicles, such as ECVs or hydrogen trucks, by incorporating fuel monitoring and replenishment in their model formulation, and including optional refuelling nodes in their problem set.

Another essential aspect in determining the commercial viability of ECVs is their profitability relative to conventional vehicles. In response to environments increasingly conducive to operating with low- or zero-emission vehicle fleets, Davis and Figliozzi (2013) propose a method of evaluating the competitiveness of ECVs in different scenarios. By accounting for acquisition costs, depreciation, maintenance, battery replacements, tax incentives and energy costs of ECVs, the authors estimate a total cost-of-ownership relative to a fleet comprised of a commonly used diesel truck. Their findings show that the high acquisition cost of ECVs must be compensated for by maintaining low operational costs, and that ECVs are not competitive once the necessary fleet size exceeds that of a conventional vehicle fleet. Consequently, long travel distances close to the maximum range of each ECV, maintenance of low vehicle speeds and loads, frequent customer stops and predictability in customer demand levels are crucial to efficient resource utilization, and thereby the commercial viability of ECVs. Similarly, Feng and Figliozzi (2013) emphasize that while current ECVs are approximately three times more expensive than comparable diesel trucks to acquire, their energy cost on a per-mile basis is nearly one-quarter of their counterparts (studies from other markets estimate the difference in energy cost to be as high as $1: 10$, see Xiao et al. (2019)). In their most favourable scenario, where the acquisition cost of an ECV is 9-23 \% lower than 2013 US market prices, vehicle fleets become competitive when each vehicle is driven more than 19,000 kilometres per year. Seen in conjunction with the findings of Gambardella (1999), where the imposition of hard time window constraints significantly increases the number of vehicles required, this appears in conflict with the need to maintain ECV fleet sizes that do not exceed the number of conventional vehicles used to service the same customer set.

More recently, Lin et al. (2016) address several of the shortcomings above, as the first to consider the impact of vehicle load on ECV battery consumption as part of a comprehensive
energy cost function derived from Barth and Boriboonsomsin (2009); Barth et al. (2005) and Bektaş and Laporte (2011). Using a real-world case study network from Ruan et al. (2012), their model provides an optimal solution to an EVRP with 13 customers, two charging stations and a heterogenous vehicle fleet, where the objective function minimizes total operational cost. Their findings indicate that ECVs can cover distances in time comparable to that of diesel trucks, but will incur significant labour cost and time penalties once en-route charging is required. However, their formulation does not impose time windows, nor does it account for differences in elevation between nodes or ambient temperatures. Lastly, while able to provide an exact solution for a small customer network, they are unable to solve larger problem instances more similar to real-world dynamics. Keskin et al. (2019) demonstrate that waiting times at public charging locations may impact routing decisions if the objective is cost minimization, or if hard time-window constraints are present. In other words, if the demand for public chargers is higher than the available supply in a region, driving to an area where demand is lower may be preferable to waiting, even if the total travel distance is increased. More recently, Keskin et al. (2021) demonstrates that when waiting times at charging locations are unexpectedly high, taking recourse action may result in lower total costs. For instance, by skipping a sub-set of customers following a charging stop to uphold subsequent time windows, and dispatching an additional ECV to service the skipped sub-set, the total cost incurred by time-windows violations may be reduced. However, while applicable to scenarios where vehicle fleets supply homogenous goods, this approach appears infeasible in networks where demand is unique to each customer, as the goods to be delivered are already loaded onto a vehicle by the time the need for such recourse action can be determined.

Basso et al. (2019) demonstrate that the accuracy of the energy cost function can significantly impact routing, fleet size, and the utilization of charging infrastructure. First, they employ a conventional EVRP model derived from Bektaş and Laporte (2011) and Goeke and Schneider (2015) to solve 18 problem instances of various sizes. By comparing the solutions with that of their revised model, which accounts for vehicle acceleration, load weight, topography and more, the conventional EVRP is found to propose infeasible solutions in all but four of the 18 cases. While the authors' approach is not feasible for large scale instance with heterogenous vehicle fleets, nor accounts for operational costs or the impact of constraints such as time windows, it efficiently demonstrates the importance of incorporating a wider range of factors in EVRPs than conventional VRPs. Lin and Zhou (2020) investigates how various factors impacts daily vehicle routing cost (DVRC), defined as the sum of driver salaries and cost of energy for an

ECV fleet. They conclude that while ECVs can perform on-par with diesel trucks in urban areas with high customer density, inter-city distribution is infeasible due to either technological constraints or the associated cost of circumventing those limitations. The findings highlight an important distinction in literature examining the costs associated with ECVs in logistics; if the objective is to minimize the total cost of ownership, as in Davis and Figliozzi (2013) or Feng and Figliozzi (2013), keeping vehicle fleet size at a minimum is essential due to the high acquisition cost of ECVs. However, if one seeks to minimize daily operational costs, as in Lin et al. (2016) or Lin and Zhou (2020), maintaining a large vehicle fleet to avoid the labour cost associated with en-route charging is preferable.

2.3 Contribution to existing literature

The growing body of work concerning EVRPs is largely focused on closing the gap between theoretical models and real-world systems, thereby increasing their practical applications. The novelty of the field, the increasing urgency to reduce operational emissions in logistics, and the distinct characteristics of ECVs suggest that there are still significant contributions to be made. Our thesis proposes a pragmatic approach to evaluating the feasibility of operating a large logistics network using ECVs for last-mile deliveries. First, we formulate a Capacitated Electric Vehicle Routing Problem with Time Windows (C-EVRPTW). While incorporating factors such as vehicle load, elevation between nodes and ambient temperature to estimate energy consumption, we solve for multiple real-world problem instances containing up to 648 customers. By not imposing range restrictions on vehicles when first solving each problem instance, a set of routes that minimizes operational costs and energy consumption is generated. Secondly, routes where vehicles travel beyond their estimated battery range are revised to incorporate charging stops, and the final operational cost of the revised route is estimated.

The proposed method has several benefits. By dividing the initial routing and subsequent use of charging infrastructure into two separate problems, we maintain lower computational complexity so that commercially available solvers can be used to identify feasible solutions. Furthermore, we combine elements from recent literature and extensive data collection to provide accurate energy consumption and operational cost functions, which are crucial to determining the practical feasibility and commercial viability of operating an ECV fleet.

The practical application of the proposed method is demonstrated by using BHD's terminal in Haugenstua, Oslo as a case study. Using historical order data to generate problem instances
representing a best-, medium-, and a worst-case scenario of 72,329 and 648 customers, respectively, we generate feasible routes and estimate the associated operational cost of delivering to all customers. Furthermore, the incorporation of real-world charging infrastructure is done through the collection of publicly available data. It should be noted that our method does not attempt to derive the total cost-of-ownership of an ECV fleet. This reflects the way in which BHD currently operates, where most vehicles used in last-mile deliveries are leased from sub-contractors, and therefore not owned by BHD. Furthermore, we solve the same instances using a C-VRPTW with conventional diesel trucks and conduct comparative analyses of the two.

To the best of our knowledge, this is the largest C-EVRPTW solved. Combined with the extensive use of real-world data, we believe it constitutes a valuable contribution to the literature by demonstrating how the feasibility and cost of operating a real zero-emission vehicle fleet can be assessed.

3 Methodology

The following chapter describes the model design, including its notations and incorporated variables in Section 3.1. Herein, the formulation of the objective function, cost function and model constraints are provided, alongside a description of how sensitivity analysis is conducted. Following a description of the problem complexity, our applied solution method is described, and its performance validated using common benchmarks in Section 3.2. In Section 3.3, the data collection and analysis central to our proposed method is presented. Finally, the applied selection criteria for the problem instances that form the basis of our scenario analyses are described in Section 3.4.

3.1 Model design

The proposed $S_{\text {Electric }}$ is solved in a two-stage sequence due to the sheer number of nodes in the problem set, including customers and charging infrastructure. To attain feasible output from the model within an acceptable time limit, the first stage of the model solves each problem instance with an objective function designed to minimize the operational costs of the vehicle fleet. Furthermore, each problem set is divided into daytime and evening routes, and the network of charging locations is omitted to reduce the total number of nodes. When executed, this stage provides output containing the total routes needed, the deliveries included in each route, and the order in which deliveries should be made. It should be noted, however, that additional routes and alterations to the visiting order may occur due to constraints imposed as part of the subsequent stage.

The second stage of the model contains the routes generated in the initial stage and imposes time windows restrictions. Additionally, an energy consumption function is incorporated to track the remaining battery levels of each vehicle. Based on this function, the model predicts the arc on which charging is needed to reach the next customer node, and how much it is expedient to recharge based on remaining route length. In this stage, all charging infrastructure is included, and vehicles are directed to the nearest charging node instead of to the next customer location when required. Charging practices account for the SoC being a concave function, meaning that the time it takes to charge the upper bound of a battery is significantly longer than the middle bound of a battery. As charging the last 20% takes approximately onethird of the total charging time (Zuo et al., 2019), this implies that charging to full capacity is undesirable en route. Consequently, the model assumes a linear charging function up to 80%

SoC , and prohibits charging beyond this limit before returning to the depot. The actual amount charged is also dependent on the energy required to complete the route, so that if less than a full charge is required to visit the remaining customer nodes and return to the depot, no excess charging is conducted. The time spent at each charging location is calculated, so that the incurred cost of labour and charging can be estimated. Additionally, once a vehicle returns to the terminal, the cost of fully recharging using privately owned infrastructure is added to the total OC. It is assumed that no labour cost is incurred when charging is not done en route.

The model assumes availability at all charging stations without any queueing time and a constant charging rate r_{f} of 50 kW on all chargers. Due to the significant variation in the density of charging infrastructure in urban and rural areas, the model only searches for the nearest charging station when charging is due. However, it will not account for the additional energy consumption and travel time to and from the charger from the last customer prior to its recharge. This is to prevent infeasibility in the simulation of the scenarios so that the calculation of OC can be completed. As an alternative, the feasibility of the route is assessed by imposing a threshold distance to the nearest charging location, set to 51,220 meters (the median distance to the nearest charging station in the worst-case scenario). I.e., if charging infrastructure is within 51,220 meters of the last customer node prior to required recharging on a route, this part of the route is deemed feasible. This way, we can calculate the OC of the proposed route, even if the current charging infrastructure renders the route infeasible.

Finally, the model calculates the associated costs of the outputs from the second stage of the model and estimates the total OC in each simulated scenario.

By postponing the inclusion of charging infrastructure to the second stage of the model and categorizing the time windows into daytime and evening routes in the first stage of the model, the number of nodes in each problem set is significantly reduced. Notably, the largest problem set to solve is reduced from exceeding 1,300 nodes, to two problems containing less than 400 nodes. Simultaneously, the model still accounts for all nodes by incorporating charging infrastructure in the second stage. It should be noted that postponing the inclusion of charging infrastructure to the second stage of the model may have adverse consequences. Primarily, as the model's objective function does not differentiate between the higher costs of charging en route, relative to charging at the terminal, it is plausible that deployment of additional vehicles could provide lower total OC than fewer routes requiring longer recharging stops. Also, as routes are optimized in the first stage without considering the location of charging
infrastructure, it seems likely that travel distances to and from charging stations could be lower than presented in our solutions.

Lastly, as the starting- and end-time of each route is recorded, the model can provide an estimate of the number of vehicles required to operate the routes. The required fleet size is estimated by identifying routes that, due to their time windows, are not operated simultaneously. As the loading time preceding departure from the terminal is included in the estimated duration of a route, and it is assumed ECVs are fully recharged during loading, any routes in a problem instance which do not occur simultaneously can be operated by the same vehicle. It should be noted that the fleet size is primarily of interest if the objective is to avoid unnecessary acquisition costs, which, as described in Section 2.3, is not subject to optimization in this thesis. The model formulation of both stages are provided in pseudocode in Appendix B.

3.1.1 Graph notations

As the model is designed as a weighted directed graph, multiple notations are attributed to lists incorporated in the model, shown in Table 3.1.

Table 3.1 List notations in model

Notation	Description
O	BHD terminal, denoted as $\{0\}$ in lists
N	Set of delivery points (customers). Denoted as $\{1,2,3, \ldots, \mathrm{n}\}$ in lists with a size of n
V	List of terminal and delivery points. $\mathrm{V}=\mathrm{N} \cup \mathrm{O}$
F	Set of charging stations. Denoted as $\{\mathrm{n}+1, \mathrm{n}+2, \mathrm{n}+3, \ldots, \mathrm{n}+\mathrm{f}\}$ in lists with a size of f
G	List of all nodes (terminal, delivery points and charging stations). $\mathrm{G}=\mathrm{V} \cup \mathrm{F}$
A	Set of arcs between all nodes. $\{(\mathrm{i}, \mathrm{j})\}, \forall \mathrm{i}, \mathrm{j} \in \mathrm{G}$.
M	Set of vehicles in vehicle fleet. Denoted as $\{1,2,3, \ldots, \mathrm{~m}\}$ with a in lise of m

3.1.2 Input variables

The retrieval of output which resembles real-world dynamics as closely as possible relies on the quality of input. To this end, matrices containing the travel distance and elevation difference between all nodes are generated using OpenStreetMap and Google Elevation application programming interface (API), respectively. Subsequently, values for the following input variables are derived:
$\boldsymbol{d}_{i j}:$ Travel distance in meters on arc $(\mathrm{i}, \mathrm{j}), \forall \mathrm{i}, \mathrm{j} \in \mathrm{A}$.
alt $_{i j}$: Elevation difference on $\operatorname{arc}(\mathrm{i}, \mathrm{j}), \forall \mathrm{i}, \mathrm{j} \in \mathrm{A}$.

In $d_{i j}$ and altij and any other notation including i and/or j in subscript, i represents a node in the graph, and j represents the subsequent node.

Based on the distance matrix, an additional travel time matrix is generated. We assume a constant travel speed of $60 \mathrm{~km} / \mathrm{h}$, commonly used by BHD to model for time consumption when routes include a mixture of urban, highway and rural roads. Hence:
$t_{i j}$: Travel time in hours on $\operatorname{arc}(\mathrm{i}, \mathrm{j}), \forall \mathrm{i}, \mathrm{j} \in \mathrm{A}$.

It should be noted that the elevation matrix constitutes a simplification of network topography as it only accounts for the altitude at each node, without concern to changes in elevation on the arc. Due to the sheer size of the problem set, the inclusion of elevation measures for multiple points on every arc would result in tremendous amounts of data. Although the viability of including more precise elevation data when solving smaller problem sets has been demonstrated, see Basso et al. (2019), only accounting for elevation difference between two nodes is consistent with existing literature on larger problem sets (Goeke \& Schneider, 2015; Lin et al., 2016; Zhang et al., 2018). Still, it indicates if the sum of road angle on the arc amounts to an uphill or downhill arc, and enables this to be considered in the determination of routes.

To provide accurate energy consumption estimates, $d_{i j}$ is used in conjunction with:
$\alpha_{i j}$: Arc-specific constant in the model's cost function, which is derived from equation (1) by (Lin \& Zhou, 2020):

$$
\begin{equation*}
\alpha_{i j}=a_{i j}+g \sin \theta_{i j}+g C_{r} \cos \theta_{i j} \tag{1}
\end{equation*}
$$

Where $a_{i j}$ is the acceleration on arc (i, j), always set to zero as the vehicle will start and stop at zero speed. Furthermore, g is the gravitational acceleration constant of $9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{C}_{\mathrm{r}}$ being the coefficient of rolling resistance for the simulated vehicle, and θ_{ij} is the road angle on arc (i, j), derived from equation (2):

$$
\begin{equation*}
\theta_{\mathrm{ij}}=\arcsin \left(\mathrm{alt}_{\mathrm{ij}} / \mathrm{d}_{\mathrm{ij}}\right) \tag{2}
\end{equation*}
$$

Where alt $_{t_{i j}}$ is the difference in elevation between the departing and arrival node.
In addition to the arc-specific input parameters, there are several node-specific parameters:
$\boldsymbol{D} \boldsymbol{w}_{i}$: Demanded weight of goods in kg at delivery points $i, \forall \mathrm{i} \in \mathrm{N}$.
$\boldsymbol{h}_{i}:$ Handling time in hours at each customer node and terminal $i, \forall \mathrm{i} \in \mathrm{V}$.
$\boldsymbol{t S t a r t} \boldsymbol{i}_{i}$: The earliest time accepted by customer i to receive a delivery, $\forall \mathrm{i} \in \mathrm{N}$.

Where SStart $_{i}$ is the difference between the terminal's opening time at 07:00 a.m. and the earliest time a customer accepts delivery, in hours. I.e., if a customer accepts delivery after 09:00 a.m., ${ }^{t}$ Start $_{i}=2.00$.

Calculated similarly to t Starti:
$\boldsymbol{t E n d}_{i}$: The latest time accepted by customer i to receive a delivery, $\forall \mathrm{i} \in \mathrm{N}$.

Furthermore, vehicle-specific parameters are formulated. While the problem instances considered in this thesis are solved using a homogenous vehicle fleet, this enables the solving
of smaller problem sets as agent-based routing problems. The model contains the following vehicle-specific input parameters:
$\boldsymbol{Q} \boldsymbol{w}_{\boldsymbol{m}}$: Weight capacity of vehicles m in $\mathrm{kg}, \forall \mathrm{m} \in \mathrm{M}$.
$\boldsymbol{Q} \boldsymbol{e}_{\boldsymbol{m}}$: Battery capacity of vehicles m in $\mathrm{kWh}, \forall \mathrm{m} \in \mathrm{M}$.
$\boldsymbol{W}_{\boldsymbol{m}}$: Curb weight of vehicles m in $\mathrm{kg}, \forall \mathrm{m} \in \mathrm{M}$.

For the calculation of energy consumption, the vehicle-specific constant β_{m}, adopted from Lin and Zhou (2020), is formulated as shown in equation (3):

$$
\begin{equation*}
\beta_{\mathrm{m}}=0.5 \mathrm{C}_{\mathrm{d}} \mathrm{~A}_{\mathrm{m}} \rho \tag{3}
\end{equation*}
$$

In equation (3), C_{d} is the coefficient of rolling drag, meaning the friction between a vehicle's pneumatic tires and the road surface, which is assumed to be equal for all vehicles. A_{m} is the frontal surface area of vehicle m in m^{2} and ρ is the air density measured in $\mathrm{kg} / \mathrm{m}^{3}$.

Lastly, the model contains input parameters that are constant and equal for all arcs, nodes, and vehicles:
$\boldsymbol{C}_{t t}$: Hourly labour cost of drivers in NOK.
$\boldsymbol{C}_{\boldsymbol{e}}$: Cost of energy in NOK/kWh.
\boldsymbol{r}_{f} : Charging rate at charging stations f in $\mathrm{kW}, \forall f \in \mathrm{~F}$.

3.1.3 Decision variables

The values of the model's decision variables are dependent on the purpose of the model, as defined by its objective function, and the constraints imposed to avoid solutions that are not transferable to real-world operations. As the problem instances are solved using a two-stage approach, the decision variables differ in the first and second stage. In the first stage, the following decision variables are incorporated:

$$
X_{i j m}: \text { Represents the vehicle flow on } \operatorname{arcs}(i, j), \forall i, j \in \mathrm{~A} .
$$

This variable is binary, where the value 1 represents an arc being travelled, while a value of 0 implies that the arc is not traversed.
$\boldsymbol{l} \boldsymbol{w}_{\boldsymbol{i m}}$: Total weight delivered on route at node i in $\mathrm{kg}, \forall i \in \mathrm{G}$.

For each delivery made by a vehicle, lwim amounts to the total weight of demand of all nodes visited prior to and including node i. This decision variable is used to monitor the total weight of the load of a given vehicle, making sure the capacity constraint $Q w_{m}$ of the vehicle is not violated.

In the second stage of the model, the following decision variables included in addition to those used in the first stage:
$\boldsymbol{\tau}_{i}$: Duration of route at node i in hours, $\forall i \in \mathrm{~V}$.

Starting at $\tau_{0}=0$ at the terminal (equivalent to 07:00 a.m.), and tracking time as a function of the travel time ($t_{i j}$) and handling time (h_{i}) at each node. Constraints imposed on this variable ensures that the model generates routes in which customers are serviced within their respective time windows (between $t S t a r t_{i}$ and $t E n d_{i}$).
$\boldsymbol{e}_{i j m}$: Energy consumption on arc (i, j) in $\mathrm{kWh}, \forall i, j \in \mathrm{~A}, \forall m \in \mathrm{M}$

This variable measures the energy consumption of a vehicle on arc (i, j). It is used to determine when a vehicle's SoC is insufficient to reach the subsequent customer node, and the amount of energy that should be recharged at a charging location before continuing its route. e eijm is estimated by using the function presented by Basso et al. (2019) and Lin and Zhou (2020), as shown in equation (4):

$$
\begin{equation*}
e_{i j m}=\alpha\left(W_{m}+l_{i j}\right) d_{i j}+\beta_{m}\left(v_{i j}\right)^{2} d_{i j} / e_{f} \tag{4}
\end{equation*}
$$

In equation (4), W_{m} is the weight of the vehicle, and $l_{i j}$ is the payload of the vehicle on arc (i, j) in kg , derived from the total weight of demand on route subtracted by the $l w_{i m}$. Furthermore, $v_{i j}$ is the vehicle speed on arc (i, j), assumed to be $60 \mathrm{~km} / \mathrm{h}$ as when calculating $t_{i j}$. Lastly, e_{f} is the engine efficiency of the vehicle, expressed as a percentage of the total energy consumed.

To conduct sensitivity analyses on the impact of ambient temperatures on the feasibility and estimated OC of our solutions, different values for AT, as described in Table 3.5, are applied as a multiplier to the energy consumption function (4). This is done to examine how a factor that is known to have a significant impact on ECV performance, further discussed in 3.3.7, yet is rarely considered in EVRP literature, may disproportionally impact $S_{\text {Electric }}$ relative to the alternative $S_{\text {Diesel }}$.

3.1.4 Objective function

The objective function is a linearised function derived from equation (4), and the operational cost functions from equations (6) and (7), described in Section 3.1.5. This objective function accounts for the relevant costs associated with the selection of routes, and by minimizing this function, the model seeks to optimize the routing of the vehicle fleet. The objective function applied in our model is a revision of that of Lin and Zhou (2020), and, as the solution presented in Section 3.2.3 is obtained using a linearised mixed-integer program, the objective function is linearised. Since charging infrastructure is incorporated at a later stage, the cost incurred by time spent at charging locations is not part of the objective function. Consequently, the objective function is as presented in equation (5):

$$
\begin{align*}
\min \mathrm{Z}= & \sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{A}} \sum_{m \in \mathrm{M}} \mathrm{C}_{\mathrm{e}} \alpha_{\mathrm{ij}} \mathrm{~W}_{\mathrm{m}} \mathrm{~d}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ijm}} / \mathrm{e}_{\mathrm{f}}+\sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{C}_{\mathrm{e}} \alpha_{\mathrm{ij}} \mathrm{l}_{\mathrm{ij}} \mathrm{~d}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ijm}} / \mathrm{e}_{\mathrm{f}} \\
& +\sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{C}_{\mathrm{e}} \beta_{\mathrm{m}}\left(\mathrm{v}_{\mathrm{ij}}\right)^{2} \mathrm{~d}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ijm}} / \mathrm{e}_{\mathrm{f}}+\sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{C}_{\mathrm{tt}} \mathrm{t}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ijm}} \tag{5}
\end{align*}
$$

Here, the first two terms account for the energy costs based on the weight of vehicle W_{m} and its payload $l_{i j}$, while the third term minimizes a vehicle's energy consumption based on its velocity. Lastly, the fourth term measures the labour costs of the staff onboard vehicles.

Additionally, to compare operational costs of ECVs and the existing DCV fleet, the same energy consumption function in equation (4), as well as the objective function in equation (5), is applied to both $S_{\text {Electric }}$ and $S_{\text {Diesel }}$, using vehicle-specific variables to differentiate their energy consumption.

3.1.5 Operational cost function

The OC of each solution generated by $S_{\text {Electric }}$ is calculated as in equation (6):

$$
\begin{equation*}
\mathrm{OC}=\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{e}_{\mathrm{ijm}} \mathrm{C}_{\mathrm{er}}+\sum_{\mathrm{m} \in \mathrm{M}} \mathrm{Qe} \mathrm{e}_{\mathrm{m}} \mathrm{C}_{\mathrm{et}}+\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{RdC}_{\mathrm{tt}} \tag{6}
\end{equation*}
$$

Where $C_{e r}$ is the charging cost en route and $C_{e t}$ is the charging cost at the terminal. As the model minimize the en-route charging so that it arrives at the terminal with no remaining battery capacity, as discussed in Section 3.1, a full recharge of the battery at the terminal is incorporated in the OC. Additionally, as labour cost is incurred as long as a vehicle is in operation, the total time spent on the route $R d$ is multiplied accordingly.

Furthermore, the operational cost function incorporated in $S_{\text {Diesel }}$ is presented in equation (7):

$$
\begin{equation*}
\mathrm{OC}=\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{e}_{\mathrm{ijm}} \mathrm{C}_{\mathrm{ed}}+\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~A}} \sum_{\mathrm{m} \in \mathrm{M}} \mathrm{RdC}_{\mathrm{tt}} \tag{7}
\end{equation*}
$$

Where $\mathrm{Ced}_{\mathrm{e}}$ is the cost per unit of energy in kWh for a DCV when refuelling diesel. While equation (6) reflects the fact that the ECV fleet incurs a lower cost by charging at the terminal, relative to using publicly available charging infrastructure, it is assumed that no such alternative exists for DCVs.

3.1.6 Constraints

For the model to generate feasible solutions based on the objective function presented in Section 3.1.4, constraints have been imposed on the model. The purpose of the constraints are multiple: Firstly, they impose restrictions inherent to all single depot VRPs, by stating that vehicles must depart from the terminal, visit their assigned set of customer nodes exactly once, and then return to the same terminal. Constraints are also used to differentiate between nodes that must be visited, as they constitute customer locations, and those that are optional, meaning the charging location nodes. Additionally, as time windows constitute restrictions on when a customer node may be visited, these are formulated as constraints. Furthermore, restrictions are imposed to ensure the model does not propose trivial solutions by generating routes that are not replicable in real-world operations. For instance, constraints prevent the generation of routes where the total weight of demand exceeds the loading capacity of the vehicles.

The first constraint of the model is used in the first stage and ensures that each route has precisely one connection to and from the terminal. This same constraint makes sure all routes start and end at the terminal, meaning sub-tours (routes that start/end elsewhere than the terminal) are prevented. Also, the constraint requires that all customer nodes must be visited exactly one time, as formulated in equation (8):

$$
\begin{equation*}
\sum_{j \in V} \sum_{m \in M} x_{i j m}=\sum_{j \in V} \sum_{m \in M} x_{j i m}=1, \forall i \in N \tag{8}
\end{equation*}
$$

In the second stage of the model, where charging infrastructure is incorporated, equation (8) is modified as it would otherwise restrict vehicles from arriving at a customer node or the terminal from a charging station. To allow for visits to charging stations while en route, a reformulation of equation (8) can be seen in equation (9) and (10):

$$
\begin{align*}
& \sum_{i \in G} \sum_{m \in M} x_{i j m}=1, \forall j \in N \\
& \sum_{j \in G} \sum_{m \in M} x_{i j m} \leq 1, \forall j \in G \tag{10}
\end{align*}
$$

From equation (9), the model is constrained to visit every node of list N exactly once, irrespective of the departing node. Hence, the model allows for travelling from the terminal, a customer, or charging location, to the next customer node. Additionally, equation (10) restricts the number of times any arc (i, j) can be travelled. Effectively, no arcs can be traversed more than once, but must not necessarily be travelled at all.

Equation (11) ensures that the total weight of demand on a given route does not exceed the load capacity of a vehicle:

$$
\begin{equation*}
l w_{i m} \leq Q w_{m}, \forall i \in N, \forall m \in M \tag{11}
\end{equation*}
$$

In the second stage, the model imposes hard constraints on time windows for both ECVs and CDVs, effectively creating enough routes to ensure all customers are visited within their preferred time windows. The time window constraints are formulated in equation (12):

$$
\begin{equation*}
\operatorname{tStart}_{\mathrm{i}} \leq \tau_{\mathrm{i}} \leq \mathrm{tEnd}_{\mathrm{i}}, \forall \mathrm{i} \in \mathrm{~V} \tag{12}
\end{equation*}
$$

In this second stage, the addition of charging stops is done subsequently to the calculation of τ_{i}. Consequently, although time windows are imposed as hard constraints, the subsequent addition of charging stops are not subject to equation (12), allowing the generation of routes that do not uphold time windows as the result of required charging.

It should be noted what while the proposed two-stage approach enables the solving of large problem instances, the exclusion of the impact of en-route charging practices on solution conformity to time windows is not considered. However, as real-world operations also regularly result in late deliveries outside time windows due to externalities such as traffic congestion or road work, this is deemed an acceptable compromise. The impact of this approach on our solutions is discussed in Chapter 4, and potential remedies are proposed in Chapter 5.

3.1.7 Sensitivity analysis

As briefly noted in Section 3.1.3 and further discussed in Section 3.3.7, the ambient temperature AT impacts the energy consumption of vehicles (Anisimov et al., 2017; Reyes et al., 2016). AT
results in changes to both the cost of recharging C_{e} and labour cost $C_{t t}$ due to more time spent at charging stations. Intuitively, as these costs make up the OC discussed in this thesis, the sensitivity of AT may have a significant impact on the results. Furthermore, AT is rarely considered in existing EVRP literature, adding relevance to its sensitivity analysis.

3.2 Problem complexity and solution methods

The subsequent sections describe the general problem complexity associated with routing problems, and how heuristic algorithms are utilized to circumvent the challenges posed by NPhard problems. Furthermore, we describe our applied solution method, and how our model was verified and benchmarked.

3.2.1 Problem complexity

While early iterations of the VRP enabled the determination of near-optimal solutions to problem sets containing a small number of nodes, even allowing for hand computation, current VRP models have developed immensely in both their complexity and incorporation of realworld dynamics. In order to accurately imitate the processes and systems found in logistics and transportation networks, the inclusion of factors such as time windows for deliveries, fluctuating traffic levels, and real-time demand changes have given rise to a wide range of subproblems (Braekers et al., 2016). Furthermore, while Dantzig and Ramser (1959) and Clarke and Wright (1964) provided solutions for synthetic networks of a single terminal with 15 customers, modern applications of VRP models by large corporations regularly require solutions encompassing multiple terminals and thousands of customers (Hall \& Partyka, 2014). As the number of possible routes is a factorial function, the computational complexity of a problem increases significantly just by increasing the network size. For instance, while a network of ten customer nodes results in 362,880 possible routes, a network of 20 customer nodes has 2.43 quintillion $\left(10^{18}\right)$ possible routes. As more comprehensive objective functions and model parameters are incorporated to better imitate real-world operations, problem complexity rapidly increases further.

In 1981, Lenstra and Kan (1981) demonstrated that while of varying complexity, nearly all iterations of the VRP are of non-deterministic polynomial-time hardness (NP-hard). Consequently, the problems are unsolvable in polynomial time, meaning that the upper bound
of time spent to solve the problem is not a function of n^{k} where n is the problem size and k is a positive constant. The use of exact algorithms is consequently still inefficient in all but the smallest problem instances, despite significant advancements in computational power and its availability. Due to the sheer scale of real-world applications, one must instead rely on heuristic and metaheuristic algorithms.

3.2.2 Heuristic algorithms

While a heuristic method, or approximation algorithm, enables the solving of real-world problems, selecting the most suitable algorithm necessitates evaluating their performance against a set of criteria. Barr et al. (1995) and Cordeau et al. (2002) proposes running-time, solution quality, flexibility, robustness and ease of implementation.

The first two, running time and solution quality, are commonly considered trade-offs, as the application of any heuristic assumes that obtaining a feasible solution to a problem in shorter time is preferable to solving it at an optimum using an exact algorithm. In other words, arriving at a feasible solution within a specified timeframe increases the value of the solution. For instance, if one imagines the operation of a logistics network, if a VRP is not solved in time to inform the routing of vehicles, its value is significantly diminished. Bräysy and Gendreau (2005) measure approximation algorithms' performance by plotting them in two-dimensional space as shown in Figure 3.1, where one axis constitutes run-time and the other a measure of solution quality, given by the cumulative number of vehicles (CVN) required.

Figure 3.1 Efficiency of proposed solution methods, measured in time and the cumulative number of vehicles (CNV) required (Bräysy \& Gendreau, 2005)

Furthermore, the flexibility of an algorithm describes its ability to handle changes to the model, such as its constraints or objective. Robustness, on the other hand, refers to an algorithm's ability to consistently render high-quality solutions, both across ranges of problem instances with differing characteristics, as well as if it is applied to the same instance more than once. The latter is important due to the nondeterministic nature of some heuristics, where the randomization of parameters will result in different solutions to the same problem when executed repeatedly (Cordeau et al., 2002). Consequently, when assessing the suitability of any nondeterministic heuristic algorithm, determining its average performance across multiple executions of the same problem instance is vital.

3.2.3 Solution method

Our model utilizes an academic licence of Gurobi's Python solver API on all problem instances. Gurobi's mixed-integer programming (MIP) solver uses a range of heuristic methods to seek for an optimal solution. As the primary purpose of our model is to assess problem feasibility within reasonable time, the model allows a MIP-gap of 0.6 . Allowing a MIP-gap of 0.6 effectively means that when the gap between lower and upper objective bound is less than 0.6 multiplied by the absolute value of the incumbent objective value, the solution is considered a satisfactory compromise between solution quality and running time.

By allowing a MIP-gap, the model can stop its search for an optimal solution to a problem instance at a predetermined point. This was done in the benchmark presented in Section 3.2.4 where the results of this thesis' model were deemed satisfactory compared to best-known results of the benchmarked problem set.

All simulations of the benchmark and case study problem set were executed using a Dell XPS 9570 laptop with an Intel i7-8750H CPU with six cores at $2.20 \mathrm{GHz}, 16 \mathrm{~GB}$ RAM, running Windows 10 Pro. All modelling was done in Python 3.8 and solved using Gurobi 9.1.1. For the scenario problem instances, run-times during the first stage ranged from 23 seconds to 4.13 hours across problem instances, while second stage run-times ranged from 7 seconds to 1.41 hours.

3.2.4 Model validation

For VRPTW models, the most common way to compare the applied heuristic algorithms' performance and simultaneously validate the model's solutions is by benchmarking it to the problem sets first proposed by Solomon (1987) (Bräysy \& Gendreau, 2005). The more than 50 Solomon benchmark problems have distinct characteristics to enable testing for different scenarios, including multiple network sizes, demand levels and node densities. Our model is validated using problem set C 1 , as it contains customer nodes organized in clusters, which resembles the way BHD's customers tend to be distributed.

C1 comprises nine sub-sets to solve, $\mathrm{C} 101, \mathrm{C} 102, \ldots, \mathrm{C} 109$, each containing 100 customers organized by Cartesian coordinates. Furthermore, the weight of demand, time windows and handling times at nodes are included in the problem set. As customers' locations are provided in Cartesian coordinates, the cost of travel in the benchmark is the Euclidean distance between each customer. Hence, the objective function for the benchmark model is to minimize the total Euclidean distance travelled, rather than the objective function presented in Section 3.1.4.

As customer one has the location $\left(x_{i}, y_{i}\right)$ and customer two has the location $\left(x_{j}, y_{j}\right)$, the Euclidean distance ($e d_{i j}$) can be calculated using equation (13):

$$
\begin{equation*}
e d_{i j}=\sqrt{\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}} \tag{13}
\end{equation*}
$$

Existing solutions to problem set C1 (SINTEF, 2008) indicate that for all nine sub-sets, the optimal vehicle fleet consists of 10 vehicles. Furthermore, the best solutions found indicates a distance averaging 828.38 units with a minimal distance value of 824.78.

The model employed in this thesis generates solutions where the vehicle fleet varies between 10 and 13 vehicles, with an average of 11 and a standard deviation of 1.12 vehicles. Furthermore, the average total travel distance across all nine sub-sets is $1,276.66$ units with a standard deviation of 384.71, and the best sub-set solution resulting in a total distance of 826.45 units.

The benchmark results confirm that the model achieves its primary objective: to provide feasible output within an acceptable time. As described in Section 3.2.3, a MIP-gap of 0.6 was accepted in the solving of benchmark sub-sets, which was likely to be the primary reason for
the non-negligible standard deviations. A correlation between solving time and solution quality found adds credibility to this assumption.

3.3 Data collection and analysis

The following section details how the various types of data incorporated in the thesis were collected, processed, and analysed. Furthermore, as our work relies heavily on the consideration of how real-world dynamics affects the feasibility of a zero-emission vehicle fleet, justifications for the inclusion or omission of variables are made.

3.3.1 Customer network

The network of nodes considered by the model consists of three types; the depot or terminal from which the vehicles depart (t 01), the customer locations ($\mathrm{a} 001, \mathrm{a} 002, \ldots$, an) and the charging locations ($\mathrm{c} 001, \mathrm{c} 002, \ldots, \mathrm{c} n$). The first type, t 01 , is simply BHDs terminal in Oslo, Haugenstua, and equal across all problem instances.

The nodes consisting of customer locations (a001, a $002, \ldots, \mathrm{a} n$) were collected using historical order data from BHDs proprietary route planning software HappyFlow. Once compiled, the dataset contained information pertaining to all orders delivered from BHDs terminal in Haugenstua, Oslo, in the period 01.01.2017 to 31.12.2020. The inclusion of multiple years in the initial dataset allowed the identification of trends or extremes in demand that do not necessarily occur annually. Meanwhile, orders made prior to 2017 were registered in a different system, and, due to a lack of compatibility with the available dataset from the current system, were therefore omitted from further processing. Next, orders, represented by individual rows, were further parsed so that those which did not result in last-mile deliveries by a BHD vehicle were removed. This included goods forwarded to another BHD terminal before delivery, or orders which were returned or for other reasons not delivered by BHD. For instance, customers may choose to pick up ordered goods themselves at the terminal $t 01$ and, while this would appear as an individual order in the dataset, it would not have resulted in a BHD vehicle being dispatched to deliver it. The remaining dataset contained approximately 300,000 last-mile deliveries made over the past four years. Each row provides information including a sender's reference (used as a primary key for each order), the recipient's address, the demanded weight $D w_{i}$ and volume $D v_{i}$ of the goods, the planned delivery date and time window, and the date and
time of actual delivery. Furthermore, it includes the name of the route on which the delivery was made. The dataset was then further parsed according to the criteria described in Section 3.4 to determine the set of customer nodes to be included in each problem instance, and network matrices generated as detailed in Section 3.3.3.

3.3.2 Charging network

The dataset containing the final node type, charging locations (c001, c002,..., $\mathrm{c} n$) was first derived using a publicly available API from OpenChargeMap.org. However, upon parsing and cleaning the exported dataset, it became apparent that the service's reliance on both commercially provided and crowdsourced data resulted in a considerable number of duplicate and erroneous registrations of charging infrastructure. Consequently, we chose to collect data from info.nobil.no, a public database compiled by the governmental entity Enova and the Norwegian Electric Vehicle Association (Bøe, 2012). Using an API request, an overview of all charging infrastructure within a 300 -kilometre radius of $t 01$ was compiled, resulting in a list containing 1,981 charging locations. Using data provided by NOBIL, the set was further parsed by removing duplicate locations, identified as rows with identical coordinates, and charging locations that are not available to the public. The final dataset contained 731 charging locations, including their address, owner, number of charging points, as well as the type of charger available at each location.

3.3.3 Compilation of networks and creation of matrices

Once all nodes to be included in the network of a problem instance were determined, each node's location and elevation in the geographic coordinate system were established based on their address using OpenSteetMap API and Google Elevation API, and all addresses were subsequently replaced with geographic coordinates. Then, all nodes were compiled in separate lists constituting the worst-, medium- and best-case scenario according to the criteria described in Section 3.4. For instance, the network of nodes considered in the best-case scenario consists of t01 (the terminal), a001-a083 (the customers), and c001-c731 (the charging locations). For the other scenarios, while t 01 and $\mathrm{c} 001-\mathrm{c} 731$ remained identical, the list of customer nodes was replaced to reflect the characteristics of orders made in that scenario.

To accurately measure the distance a vehicle must travel on the arcs between all nodes on a directed graph, distance matrices between all nodes in each scenario were created using proprietary software from the parent company of BHD, Posten Norge AS, with data collected from OpenStreetMap. Furthermore, using Microsoft Excel, matrices containing the elevation difference between the nodes were generated using information available in the compiled datasets.

3.3.4 Labour cost

The hourly labour cost of drivers $C_{t t}$, is derived from the most recent publicly available collective bargaining agreement for short-distance drivers in Norway (Yrkestrafikkforbundet, 2020). Assuming an equal share of trained and untrained drivers employed and a 37.5 -hour working week, the average hourly wage of a driver is NOK 188.75. By adding the corresponding pension contribution of 5.70 \% (The Confederation of Norwegian Enterprise, 2018), and a mandatory Employer's National Insurance Contribution of 14.1 \% (the Norwegian Tax Administration, 2020), the hourly labour cost per driver is estimated to be NOK 227.64. As BHD exclusively delivers goods in excess of 35 kg , it is assumed that there are two drivers assigned per vehicle, and $C_{t t}$ is therefore set to NOK 455.28 to reflect the incurred cost of labour per hour a vehicle is in operation.

3.3.5 Energy cost

The battery charging cost in NOK per kWh is estimated using publicly available pricing data from all Norwegian charging infrastructure providers (Norwegian Electric Vehicle Association, 2020). As vendors employ different pricing structures, where some charge only per kWh used, while others include an additional fee per minute a charging point is occupied (thereby incentivizing fast charging vehicles), prices were estimated assuming fast charging a 52.8 kWh battery in 60 minutes. Furthermore, to reflect the difference in ownership shares among vendors, prices were weighted according to the number of charging locations operated by each vendor in the network considered, as shown in Table 3.2. Consequently, the estimated cost per $\mathrm{kWh} C_{e r}$ is NOK 3.96.

Table 3.2 The cost of charging 52.8 kWh in 60 minutes in NOK, weighted by share of ownership in the considered network

Vendor	Locations	Share of total	Price (NOK)
BKK	29	3.97%	9.05
Circle K	24	3.28%	8.65
E.ON	12	1.64%	3.47
Fortum charge \& drive	233	31.87%	59.29
Ionity	9	1.23%	2.65
Kople	45	6.16%	13.12
Mer	121	16.55%	40.38
Supercharge	2	0.27%	0.62
Tesla	31	4.24%	5.75
Oslo kommune	225	30.78%	66.27
Total	$\mathbf{7 3 1}$	$\mathbf{1 0 0 . 0 0} \%$	$\mathbf{2 0 9 . 2 6}$

The cost of energy at the depot is also estimated to account for the significant difference in the cost of using public charging infrastructure compared to privately owned chargers. Using the average cost of energy in Norway for 2020, including grid rent and taxes, $C_{e t}$ is estimated to be NOK 0.79 per kWh (Statistics Norway, 2021a).

Lastly, the cost of energy for DCVs is derived using the average litre price of diesel in 2020, equal to NOK 13.86 (Statistics Norway, 2021b). Assuming an energy density of $12 \mathrm{kWh} / \mathrm{kg}$ and $1.161 / \mathrm{kg}$ diesel, the cost per kWh for DCVs, $C_{e d,}$, is estimated to be NOK 1.34 (Norwegian Environment Agency, 2021).

3.3.6 Vehicle specifications

While the formulations for the proposed models incorporate agent-specific variables, enabling the solving of problems with heterogeneous vehicle fleets, the results in Chapter 4 are obtained using a homogenous fleet where all vehicles have identical characteristics. This is a compromise made to ensure that even the largest problem instances can be solved at a MIP-gap of 0.6 within six hours, a self-imposed limit to ensure model revisions can be made within reasonable time if needed, as the number of possible solutions is significantly reduced. As demonstrated in Lin and Zhou (2020), a heterogeneous fleet of vehicles with different battery sizes, charging times, and loading capacities would likely result in a better solution, as one can tailor vehicle
characteristics to specific routes. This is particularly true if one considers the total cost-ofownership of ECVs, where a vehicle's battery pack constitutes a significant share of its acquisition cost, meaning vehicles with long ranges should only be acquired if that capacity is utilized.

SElectric is solved using a Mitsubishi Fuso eCanter (Mitsubishi Fuso, 2021). The vehicle is selected as it is the only ECV currently available to BHD with the characteristics necessary to deliver all types of goods. Two such vehicles are currently undergoing testing by BHD as part of a pilot project to evaluate their suitability for last-mile deliveries. To determine the diesel vehicle to utilize in the alternative C-VRTPW, a dataset containing all vehicles currently owned or contracted by BHD was obtained. The Mercedes-Benz Sprinter 5500 diesel truck was chosen, as it is the most similar to the aforementioned ECV with regards to loading capacity and vehicle weight, and therefore best suited for comparative analysis (Mercedes-Benz, 2019). A summary of the vehicles' specifications is shown in Table 3.3.

Table 3.3 Vehicle specifications

Manufacturer	Mitsubishi Fuso eCanter	Mercedes Benz Sprinter Long 5500
Model name	66	-
Fuel tank capacity (1)	-	71
Energy per fuel tank (kWh)	-	734
Charging rate (kW)	50	-
Vehicle curb weight (kg)	3,110	2,360
Vehicle load capacity (kg)	4,130	3,140
Frontal surface area $\left(\mathrm{m}^{2}\right)$	4.45	5.80

One should note that a significant difference between the vehicles chosen is the higher load capacity of the ECV compared to the DCV. Depending on the impact of the weight carried by vehicles on the energy consumption, this may significantly influence the number of routes included in a given solution and the node visiting order. However, as the ECV chosen is considered the most viable zero-emission vehicle available to BHD, and the DCV is the most comparable combustion-engine vehicle currently used by BHD, they are deemed suitable for answering the research questions.

3.3.7 Ambient temperatures

The ambient temperature in which ECVs operate is known to significantly impact their range, primarily due to increased energy consumption from auxiliary systems to regulate the temperature of the battery cells and vehicle cabin. While combustion engine vehicles are also affected, their less efficient drivetrains produce excess thermal energy which is redirected to climatize the vehicle cabin, and they contain no batteries which require heating or cooling. Based on the findings of Reyes et al. (2016) and Anisimov et al. (2017), the impact of ambient temperatures on vehicle range relative to their measured range at $20^{\circ} \mathrm{C}$ is summarized in Figure

3.2.

Figure 3.2 Vehicle range at different ambient temperatures, as percentage of measured range at $20^{\circ} \mathrm{C}$

As ECVs are significantly more sensitive to ambient temperatures, their performance will also be subject to greater variation across seasons, or even days. Consequently, the omission of temperatures in modelling would likely render solutions that deviate significantly from realworld operations, particularly in regions subject to large seasonal differences.

With an API request, weather data from the Norwegian Centre for Climate Service's publicly available database was collected, confirming significant variations in ambient temperatures. Daily observations for the period 01.01.2016 to 31.12.2020 from weather station SN18269, located in close vicinity of $t 01$, showed that temperatures ranged from -22 to $33^{\circ} \mathrm{C}$, equal to a
difference of $55.3^{\circ} \mathrm{C}$. Following the selection of dates that would constitute scenarios, as described in Section 3.4, the scenarios were categorized according to the season in which they occurred, as shown in Table 3.4.

Table 3.4 Categorization of scenarios according to season

Scenario	Date	Season	Season span
Worst case	04.12 .2020	Winter	December - February
Medium case	02.07 .2019	Summer	June - August
Best case	28.03 .2018	Spring	March - May

The AT incorporated in the solution of each problem instance were then derived using the median seasonal temperature in the period 01.01.2016 to 31.12.2020. Furthermore, the minimum seasonal temperatures from the same periods are collected to enable a discussion of how sensitive the proposed solutions are to this variable in Chapter 4. The temperatures and corresponding impact on ECV and DCV range are summarized in Table 3.5.

Table 3.5 Ambient temperatures used in scenarios, and the corresponding
impact on vehicle range relative to their performance at $20^{\circ} \mathrm{C}$

| | Temperature $\left({ }^{\circ} \mathbf{C}\right)$ | | ECV range (\%) | | DCV range (\%) | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Scenario | Median | Minimum | Median | Minimum | Median | Minimum |
| Worst case | -0.7 | -22.0 | 58% | 40% | 94% | 87% |
| Medium case | 15.9 | 12.6 | 90% | 83% | 99% | 98% |
| Best case | 5.4 | -8.4 | 67% | 48% | 96% | 92% |

3.4 Scenario selection criteria

As the feasibility of making last-mile deliveries using only ECVs appears dependent on factors such as network size, customer density and total travel distance (Davis \& Figliozzi, 2013; Feng \& Figliozzi, 2013; Lin et al., 2016), it was deemed appropriate to examine the performance of an ECV fleet in a range of scenarios. Following the steps described in Section 3.3.1, order data from BHD was analysed to identify dates where the level of demand would constitute suitable best-, medium-, and worst-case scenarios. In this context, it should be noted that "best" refers
to the lowest, and thereby assumed most manageable, level of demand for last-mile deliveries BHD has had to satisfy in recent years. Similarly, "worst" signifies the scenario in which BHD has had to service the highest level of demand, while "medium" refers to what could be considered a day of average demand.

Firstly, a measure of demand was established. The number of orders scheduled for delivery per date was deemed most appropriate, as each row in the dataset constitutes a single order which is generated automatically as a customer requests delivery of an item from BHD. Consequently, there are no errors stemming from manual input, and no missing data that could cause erroneous quantities of demand. Alternative measures considered included the total weight or volume of goods delivered per day. However, the volume of items delivered appeared prone to incorrect or missing input, evident from frequently missing values or discrepancies between order descriptions and their stated size. Therefore, it was discarded from consideration and subsequently omitted as a model constraint entirely. Meanwhile, the total weight of goods demanded displayed a significant correlation coefficient of 0.83 at the 0.01 level with the daily number of orders, suggesting that the two could be used interchangeably without considerable impact on the final problem set. Another appropriate measure could have been the total distance travelled to make the deliveries historically. However, while the routes in which orders were included could be determined from the data collected, inconsistent registration of delivery times rendered the order in which deliveries were made unattainable. Consequently, reliable estimates of the total distance covered could not be made.

Using on the number of daily deliveries as a measure, the highest level of demand was identified as having occurred on 04.12.2020, and selected as the worst-case scenario. Furthermore, both the mean and median number of orders delivered had occurred on 02.07.2019, which was therefore selected as an appropriate medium-case scenario. Lastly, the dataset contained multiple dates on which only a single order had been delivered, and several others where the level of demand was deemed too small to constitute a meaningful problem instance for analysis. Consequently, the best-case scenario was identified as the date where the level of demand was closest to two standard deviations below the mean, which occurred on 28.03.2018. The subsequent problem set contained three problem instances. Each instance constitutes a scenario, the characteristics of which are summarized in Table 3.6. Coincidentally, the level of demand correlates to network size, so that the best-case scenario constitutes the smallest network geographically, while the worst-case scenario is the largest. A visual representation of the network size and geographic area considered in each scenario is shown in Figure 3.3.

Table 3.6 Summary of scenario characteristics

Scenario	Date	No. of orders	Total weight $(\mathbf{k g})$	Network size (km ${ }^{2}$)
Worst case	04.12 .2020	648	88,650	324,978
Medium case	02.07 .2019	329	72,143	129,891
Best case	28.03 .2018	72	13,217	36,865

Figure 3.3 The network size and geographic area of each scenario, with the terminal represented as a red dot (scale 1:175 000)

4 Findings and analysis

In the following chapter, the simulation results of $S_{\text {Electric }}$ are presented and compared to those of $S_{\text {Diesel. }}$. First, the solutions to each scenario are detailed and critically discussed, followed by cross-scenario analyses of how the models' characteristics and sensitivity to a range of factors differ. Detailed solutions to all problem instances are provided in Appendix C.

4.1 Best-case scenario

As shown in Table 4.1, the solution proposed by $S_{\text {Electric }}$ for the best-case scenario consists of four routes, denoted by Route_ID, of 21, 22, 19 and 10 deliveries, respectively. Six charging stops are included to reach all customer nodes, and the total time spent at charging locations is estimated to be 3.59 hours. The total operational cost (OC) is estimated to be NOK 12,912.

It should be noted that while the model is solved assuming an ambient temperature of $5.4^{\circ} \mathrm{C}$ as shown in Table 3.5, a sensitivity analysis of the impact of this variable shows that delivering on the coldest day observed would increase energy consumption such that nine charging stops would be necessary. On the other hand, if one does not account for ambient temperatures at all, the proposed solution would require only two charging stops in total. This is further discussed in Section 4.4.3.

Table 4.1 Summary of routes in best-case scenario generated by $S_{\text {Electric }}$

Route_ID	Deliveries	In timewindow	Charging stops	Payload (kg)	Travel dist. (km)	Travel time (h)	Charging time (h)	Route duration	Energy cost (kWh)	$\begin{array}{r} \text { OC } \\ \text { (NOK) } \end{array}$
r_01	21	16	2	3,559	177.81	6.56	1.23	7.79	127.40	3,840
r_02	22	16	2	3,690	171.55	6.59	1.54	8.13	142.97	4,056
r_03	19	19	1	3,741	124.56	5.42	0.59	6.01	95.64	2,903
r_04	10	8	1	2,227	122.39	4.21	0.22	4.43	77.16	2,113
Total	72	59	6	13,217	596.32	22.78	3.59	26.36	443.17	12,912

The solution proposed by $S_{\text {Diesel }}$ for the same problem instance is summarized in Table 4.2. Here, six routes of $19,12,7,9,10$ and 15 stops are generated, and the total OC is estimated to be NOK 12,611 . The most energy-demanding route is $\mathrm{r}_{-} 04$ with 128.55 kWh , well below the energy available per tank of diesel for the chosen DCV, meaning no refuelling stops are required. Sensitivity analysis of the impact of ambient temperatures shows that refuelling stops
would not be necessary even in the coldest operating conditions, suggesting that the solution is more robust to changes in weather conditions.

Table 4.2 Summary of routes in best-case scenario generated by $S_{\text {Diesel }}$

Route_ID	Deliveries	In time- window	Payload $(\mathbf{k g})$	Travel dist. $(\mathbf{k m})$	Route duration (\mathbf{h})	Energy cost $(\mathbf{k W h})$	OC (NOK)
r_01	19	19	2,612	168.51	6.15	103.35	2,938
r_02	12	12	1,286	37.00	3.05	23.45	1,419
r_03	7	7	2,081	90.78	3.29	58.70	1,578
r_04	9	9	2,807	126.93	4.16	128.55	2,065
r_05	10	10	2,716	133.80	4.40	72.87	2,101
r_06	15	15	1,715	146.60	5.26	122.00	2,560
Total	$\mathbf{7 2}$	$\mathbf{7 2}$	$\mathbf{1 3 , 2 1 7}$	$\mathbf{7 0 3 . 6 2}$	$\mathbf{2 6 . 3 1}$	$\mathbf{5 0 8 . 9 2}$	$\mathbf{1 2 , 6 6 1}$

These findings indicate that there is a difference in the total OC of NOK 251 in the best-case scenario in favour of the DCV fleet. This constitutes an arguably negligible difference equal to an average of NOK 3.46 per delivery. It should be noted that the solution proposed by $S_{\text {Diesel }}$ requires two more routes, presumably in part due to the lower vehicle load capacity of the DCVs relative to the ECVs, meaning fewer items can be transported simultaneously. However, while 13 of 72 deliveries are made too late when using ECVs, the absence of refuelling stops means that none of the time windows in the problem instance is violated with the DCV fleet. However, while the time windows included in the historical data set are occasionally violated, the duration of all routes in both solutions suggests that demand could be satisfied with both models within a single day of operation.

4.2 Medium-case scenario

In the medium-case scenario, $S_{\text {Electric }}$ is solved with 26 routes, with the number of deliveries per route ranging from one to 29 . There are 15 charging stops included, and a total of 9.34 hours is spent at charging locations. The resulting total OC is estimated to be NOK 56,964.

Table 4.3 Summary of routes in medium-case scenario generated by $S_{\text {Electric }}$

Route_ID	Deliveries	In timewindow	Charging stops	Payload (kg)	Travel dist. (km)	Travel time (h)	Charging time (h)	Route duration	Energy cost (kWh)	$\begin{array}{r} \mathrm{OC} \\ \text { (NOK) } \end{array}$
r_01	9	8	1	4,074	196.13	5.31	0.45	5.75	88.28	2,758
r_02	8	8	0	3,408	55.00	2.83	-	2.83	28.16	1,316
r_03	9	9	0	2,419	97.53	3.67	-	3.67	65.57	1,669
r_04	6	6	1	3,696	220.61	5.33	0.73	6.06	102.56	2,953
r_05	11	11	0	3,209	41.53	2.99	-	2.99	42.41	1,380
r_06	9	9	0	3,203	43.49	2.76	-	2.76	29.24	1,287
r_07	16	16	0	2,329	148.41	5.42	-	5.42	58.19	2,475
r_08	13	12	0	3,844	75.81	3.82	-	3.82	45.36	1,756
r_09	13	13	1	3,770	101.92	4.26	0.22	4.48	76.82	2,130
r_10	9	9	1	3,520	88.12	3.51	0.01	3.52	66.48	1,654
r_11	9	9	3	3,383	355.09	7.96	2.32	10.28	182.04	5,189
r_12	21	21	0	2,312	63.23	4.65	-	4.65	40.88	2,138
r_13	18	9	3	3,807	228.34	7.02	2.24	9.26	178.15	4,710
r_14	17	17	3	4,003	217.29	6.70	2.18	8.88	174.89	4,524
r_15	16	16	0	2,868	101.96	4.65	-	4.65	51.08	2,128
r_16	23	23	1	2,758	129.82	6.02	0.30	6.32	80.80	2,986
r_17	18	18	0	2,328	42.86	3.92	-	3.92	19.29	1,822
r_18	17	17	0	2,687	53.90	3.98	-	3.98	29.93	1,839
r_19	10	10	0	2,013	70.34	3.34	-	3.34	20.55	1,556
r_20	3	3	0	493	26.98	1.71	-	1.71	5.28	825
r_21	13	13	0	2,278	32.91	3.11	-	3.11	10.33	1,458
r_22	10	10	0	2,316	46.97	2.95	-	2.95	21.25	1,378
r_23	2	2	0	188	26.11	1.57	-	1.57	6.55	758
r_24	29	25	1	3,493	128.51	6.78	0.90	7.68	111.05	3,726
r_25	19	19	0	3,331	51.17	4.19	-	4.19	25.94	1,939
r_26	1	1	0	413	14.02	1.23	-	1.23	3.57	609
Total	329	314	15	72,143	2,658.04	109.69	9.34	119.03	1,564.66	56,964

As the scenario analysed occurred during the summer season, the problem instance is solved assuming an ambient temperature of $15.9^{\circ} \mathrm{C}$. This is close to the approximate ideal operating temperature of ECVs at $20^{\circ} \mathrm{C}$ and above (Reyes et al., 2016), and thereby the most favourable conditions among the considered scenarios. The coldest mean temperature in the sample period was $12.6^{\circ} \mathrm{C}$, in which the increased energy consumption of the ECV fleet would result in a total of 17 charging stops, only two more than the proposed solution. If the effect of ambient temperature is omitted from the model entirely, the total energy consumed would still require 11 charging stops.

Table 4.4 Summary of routes in medium-case scenario, generated by $S_{\text {Diesel }}$

Route_ID	Deliveries	In timewindow	Payload (kg)	Travel dist. (km)	Route duration (h)	Energy cost (kWh)	$\begin{array}{r} \mathrm{OC} \\ (\mathrm{NOK}) \end{array}$
r_01	11	11	3,083	173.12	5.19	144.03	2,554
r_02	9	9	3,009	79.88	3.37	52.93	1,606
r_03	9	9	2,580	61.43	3.06	44.13	1,454
r_04	9	9	2,419	165.39	4.80	116.94	2,341
r_05	2	2	368	15.39	1.39	7.04	641
r_06	7	7	2,557	41.10	2.47	21.06	1,151
r_07	1	1	141	8.21	1.14	3.72	523
r_08	9	9	2,689	157.41	4.66	117.07	2,280
r_09	4	4	1,656	23.40	1.78	11.18	825
r_10	2	2	938	22.99	1.51	12.14	705
r_11	10	10	3,054	231.74	6.03	137.46	2,931
r_12	6	6	2,060	302.91	6.70	204.00	3,324
r_13	5	5	2,984	49.46	2.34	32.45	1,111
r_14	13	13	3,081	111.43	4.42	116.89	2,168
r_15	1	1	460	43.78	1.73	19.76	814
r_16	3	3	1,493	20.34	1.60	9.12	740
r_17	9	9	2,717	87.66	3.50	43.30	1,652
r_18	3	3	1,979	177.27	4.21	81.57	2,028
r_19	19	19	2,625	105.07	5.09	86.14	2,434
r_20	18	18	2,235	120.50	5.22	83.83	2,488
r_21	18	18	2,241	49.28	4.03	30.83	1,877
r_22	6	6	1,943	24.32	2.06	13.99	955
r_23	17	17	2,734	64.28	4.15	61.18	1,972
r_24	12	12	2,607	192.07	5.63	144.28	2,758
r_25	7	7	1,675	105.04	3.53	75.21	1,708
r_26	14	14	2,136	165.96	5.46	122.81	2,649
r_27	23	23	2,723	128.10	6.00	119.19	2,890
r_28	9	9	2,136	90.66	3.55	48.23	1,681
r_29	20	20	2,555	54.34	4.38	37.03	2,042
r_30	18	18	2,516	40.94	3.89	24.06	1,804
r_31	10	10	2,090	148.57	4.65	88.48	2,234
r_32	14	14	2,488	47.65	3.48	40.89	1,641
r_33	11	11	2,171	36.76	2.91	20.09	1,353
Total	329	329	72,143	3,146.43	123.92	2,171.03	59,335

The solution proposed by $S_{\text {Diesel }}$ is summarized in Table 4.4. Once again, the deliveries are distributed across a larger number of routes than the zero-emission alternative, with 33 routes of between one and 23 deliveries. While this may in part be caused by the DVCs limited load capacity, the total payload, $72,143 \mathrm{kgs}$, would in theory only require 23 routes to be distributed without violating the DCV's weight constraint. This may suggest that other restrictions, such as the hard time windows, are instead the principal driver for the addition of routes. None of the generated routes require refuelling, even if driven in the coldest observed summer conditions.

Of particular interest is the higher total OC than that of the ECV fleet, at NOK 59,335. While the difference is again minor, at an average of NOK 7.21 per delivery, the electrified vehicle
fleet is able to deliver to all customers at a lower operational cost than the combustion engine alternative. However, it should again be noted that while the DCV fleet conforms to all timewindow constraints, the ECV fleet arrives at 15 customer nodes after the prearranged timeframe.

4.3 Worst-case scenario

In the worst-case scenario, summarized in Table 4.5, the solution proposed by $S_{\text {Electric contains }}$ 34 routes of between four and 32 deliveries each. The routing strategy requires 71 charging stops and a total of 57.68 hours spent at charging locations. In total, $4,542 \mathrm{~km}$ are travelled, and the resulting total OC is estimated to be NOK 125,504.

It should be noted that eleven of the routes, marked in red in Table 4.5, are deemed infeasible due to an absence of necessary charging locations, preventing the ECV fleet from reaching all customer nodes. As described in Section 3.1, when a route is infeasible due to a lack of charging infrastructure, their OC is calculated as if necessary charging infrastructure exists on the arc between customer nodes, so that the cost of these routes is reflected in the solution. As visually presented in Figure 4.1, the density of charging infrastructure is much higher in urban areas, while deliveries to remote areas often combine long travel distance with poor access to charging locations. Furthermore, a selection of routes requires a considerable number of charging stops, such as $r_{-} 02$, $r_{-} 07$, and $r_{-} 27$, with six, eleven, and nine charging nodes visited, respectively. This reflects the extensive customer network to be covered, at $324,978 \mathrm{~km} 2$ as illustrated in Figure 3.3, and the unfavourable weather conditions imposed on the problem instance, which occurs during the winter season. The ambient temperature is assumed to be $-0.7^{\circ} \mathrm{C}$, where the ECV's range is estimated to be 58% of its regular range. Furthermore, had the problem been solved using the lowest temperature observed, at $-22^{\circ} \mathrm{C}$, this would require an estimated 106 charging stops. Meanwhile, if one does not account for ambient temperatures at all, the same problem instance could be solved with 28 charging stops.

Table 4.5 Summary of routes in worst-case scenario generated by $S_{\text {Electric }}$

Route_ID	Deliveries	In timewindow	Charging stops	Payload (kg)	Travel dist. (km)	Travel time (h)	Charging time (h)	Route duration (h)	Energy cost (kWh)	$\begin{array}{r} \mathrm{OC} \\ (\mathrm{NOK}) \end{array}$
r_01	31	25	2	3,743	132.99	7.12	1.87	8.98	159.28	4,509
r_02	18	13	6	3,368	217.59	6.84	4.34	11.17	282.85	5,996
r_03	21	15	3	3,232	189.08	6.75	2.99	9.74	215.30	5,075
r_04	32	17	4	3,900	137.89	7.33	3.41	10.73	236.28	5,611
r_05	24	24	1	3,757	83.49	5.38	0.48	5.86	90.04	2,814
r_06	10	10	0	1,158	44.68	2.91	-	2.91	51.19	1,338
r_07	15	7	11	2,181	354.32	8.73	9.10	17.83	521.21	9,970
r_08	10	10	0	3,617	40.89	2.85	-	2.85	25.26	1,329
r_09	14	14	0	3,318	38.05	3.32	-	3.32	26.89	1,543
r_10	11	11	0	3,008	41.06	2.98	-	2.98	47.55	1,373
r_11	25	25	1	2,930	71.95	5.32	0.02	5.33	66.78	2,482
r_12	23	22	3	2,851	238.64	7.84	2.99	10.83	215.48	5,571
r_13	23	23	0	2,098	42.22	4.56	-	4.56	25.37	2,109
r_14	25	25	0	2,767	62.10	5.16	-	5.16	54.60	2,356
r_15	27	27	2	3,132	94.95	5.96	0.21	6.17	103.20	3,006
r_16	20	20	0	1,993	62.95	4.52	-	4.52	39.65	2,077
r_17	19	19	0	2,013	58.85	4.32	-	4.32	30.86	1,994
r_18	29	14	5	2,889	231.63	8.50	4.07	12.57	269.56	6,580
r_19	15	6	5	1,756	217.81	6.45	4.46	10.91	288.86	5,899
r_20	22	21	1	2,766	96.35	5.34	0.88	6.21	109.81	3,052
r_21	20	14	4	1,595	262.91	7.85	3.55	11.41	243.69	5,947
r_22	4	4	0	125	32.04	1.92	-	1.92	15.21	915
r_23	17	11	3	2,467	233.15	6.97	2.20	9.17	176.15	4,661
r_24	30	26	1	3,797	83.49	6.16	0.73	6.89	102.58	3,333
r_25	26	21	1	2,074	129.06	6.40	0.98	7.38	115.08	3,606
r_26	14	14	0	2,955	30.77	3.20	-	3.20	22.84	1,491
r_27	14	8	9	2,081	536.38	11.63	9.23	20.86	527.30	11,372
r_28	18	18	1	3,833	47.94	4.01	0.02	4.03	66.98	1,888
r_29	22	21	1	3,255	58.60	4.71	0.09	4.79	70.29	2,249
r_30	16	16	2	2,373	137.89	5.25	1.52	6.77	141.95	3,432
r_31	24	16	2	3,354	136.48	6.26	2.03	8.30	167.72	4,231
r_32	11	11	1	928	82.08	3.67	0.43	4.10	87.56	2,002
r_33	6	6	0	1,482	28.63	2.13	-	2.13	19.91	1,003
r_34	12	12	2	1,854	285.35	7.19	2.09	9.28	170.72	4,690
Total	648	546	71	88,650	4,542.26	189.52	57.68	247.20	4,788.01	125,504

Figure 4.1 A heatmap showing the density of charging locations, with customer nodes from worst-case scenario superimposed in purple (scale 1:270 000)
$S_{\text {Diesel }}$ solves the same problem instance as a total of 58 routes, ranging from one to 29 in the number of deliveries, as summarized in Table 4.6. The total distance travelled is $6,294 \mathrm{~km}$, resulting in a total CO of NOK 114,713. Again, no route requires the consumption of one entire tank of diesel, even when subjected to the lowest ambient winter temperature observed. The model estimates that the most energy-intensive route (r_05), would require a total of 512.28 kWh if driven in the coldest weather conditions, nearly 200 kWh less than the 712 kWh stored in one tank of the modelled DCV. Consequently, the DCV fleet can complete all routes without refuelling across all scenarios.

As in the best-case scenario, $S_{\text {Diesel }}$ outperforms $S_{\text {Electric }}$ both in terms of total cost and timeliness. The total OC using DCVs is lower by NOK 10,791, equal to an average of NOK 16.65 per delivery. Meanwhile, all time windows are upheld, while 102 (or 15.74%) of the 648 deliveries are made outside their assigned time window with $S_{\text {Electric. }}$

Table 4.6 Summary of routes in worst-case scenario, generated by $S_{\text {Diesel }}$

Route_ID	Deliveries	In timewindow	Payload (kg)	Travel dist. (km)	Route duration (h)	Energy cost (kWh)	$\begin{array}{r} \text { OC } \\ (\mathrm{NOK}) \end{array}$
r_01	25	25	2,849	141.09	6.47	82.05	3,057
r_02	26	26	2,904	178.34	7.22	118.64	3,448
r_03	10	10	2,191	81.82	3.53	49.63	1,675
r_04	16	16	1,866	51.85	3.81	39.44	1,790
r_05	23	23	1,765	371.79	10.06	445.68	5,177
r_06	12	12	790	145.07	4.85	66.17	2,296
r_07	24	24	2,392	67.12	5.11	45.44	2,387
r_08	14	14	1,595	88.19	4.16	50.52	1,962
r_09	5	5	1,797	22.67	1.90	10.51	878
r_10	13	13	1,244	32.43	3.10	17.19	1,435
r_11	7	7	520	68.47	2.92	56.31	1,406
r_12	9	9	815	131.03	4.22	63.21	2,008
r_13	6	6	1,279	73.69	2.88	33.52	1,355
r_14	17	17	2,536	205.95	6.51	151.77	3,169
r_15	11	11	1,759	81.56	3.66	45.51	1,727
r_16	20	20	2,622	210.89	6.98	176.95	3,418
r_17	16	16	1,949	210.19	6.45	180.62	3,181
r_18	20	20	2,403	188.34	6.61	181.30	3,252
r_19	16	16	2,363	73.82	4.18	52.57	1,974
r_20	26	26	2,769	92.69	5.79	76.51	2,741
r_21	23	23	2,505	120.77	5.87	92.56	2,798
r_22	2	2	83	25.61	1.56	10.97	724
r_23	7	7	2,962	45.60	2.54	27.15	1,193
r_24	16	16	2,710	220.81	6.63	146.09	3,215
r_25	10	10	1,811	54.95	3.09	39.78	1,458
r_26	12	12	2,326	150.30	4.94	150.92	2,450
r_27	6	6	2,906	62.78	2.70	42.55	1,285
r_28	11	11	1,899	380.39	8.64	259.55	4,282
r_29	3	3	182	265.98	5.69	107.72	2,737
r_30	4	4	973	31.03	1.91	14.01	887
r_31	2	2	398	34.55	1.71	14.75	796
r_32	3	3	198	146.85	3.71	66.17	1,777
r_33	23	23	1,981	187.32	6.98	128.88	3,352
r_34	3	3	317	125.11	3.35	55.21	1,597
r_35	4	4	596	102.98	3.11	46.76	1,477
r_36	13	13	2,148	133.39	4.78	75.24	2,279
r_37	2	2	68	149.55	3.62	64.15	1,735
r_38	2	2	166	11.94	1.33	5.24	612
r_39	16	16	2,595	131.02	5.13	108.00	2,482
r_40	17	17	1,305	299.17	8.07	146.62	3,869
r_41	21	21	2,377	215.02	7.18	132.36	3,448
r_42	3	3	497	18.84	1.57	8.36	728
r_43	2	2	960	41.81	1.83	18.30	856
r_44	5	5	371	50.76	2.37	21.98	1,107
r_45	29	29	2,976	61.61	5.67	53.24	2,652
r_46	14	14	1,162	77.58	3.98	42.26	1,870
r_47	3	3	372	76.43	2.53	34.14	1,199
r_48	2	2	360	71.85	2.33	32.10	1,103
r_49	8	8	2,588	31.15	2.43	18.07	1,130
r_50	16	16	3,068	108.22	4.75	117.19	2,322
r_51	13	13	2,295	64.53	3.64	38.92	1,707
r_52	10	10	1,059	52.84	3.05	26.49	1,424
r_53	6	6	421	54.87	2.56	23.08	1,199

Table 4.6 continued

Route_ID	Deliveries	In time- window	Payload $(\mathbf{k g})$	Travel dist. $(\mathbf{k m})$	Route duration (\mathbf{h})	Energy cost $(\mathbf{k W h})$	OC (NOK)
r_54	12	12	1,628	39.73	3.09	24.05	1,440
r_55	2	2	442	25.68	1.56	11.76	725
r_56	4	4	225	44.56	2.13	17.05	994
r_57	2	2	137	44.67	1.87	19.62	880
r_58	1	1	1,175	16.25	1.27	7.77	589
Total	$\mathbf{6 4 8}$	$\mathbf{6 4 8}$	$\mathbf{8 8 , 6 5 0}$	$\mathbf{6 , 2 9 3 . 5 1}$	$\mathbf{2 3 9 . 5 9}$	$\mathbf{4 , 1 9 2 . 6 0}$	$\mathbf{1 1 4 , 7 1 3}$

4.4 Cross-scenario analysis of SElectric and SDiesel performance

In the following sections, the characteristics of the solutions generated by $S_{\text {Electric }}$ and $S_{\text {Diesel }}$ are presented and analysed, alongside cross-scenario performance measures. We identify differences in how the two models solve the considered problem instances and how their sensitivity to input variables vary.

4.4.1 Route characteristics

From the solutions described in the preceding sections, it is evident that minimization of operational costs requires distinctly different routing strategies depending on the mode of transportation employed. A selection of distinct characteristics for $S_{\text {Electric }}$ and $S_{\text {Diesel }}$ across all scenarios are summarized in Table 4.7 below.

Table 4.7 Summary of solution characteristics

		Avg. distance per delivery (km)	Average route duration (h)	Deliveries per charging stop
Best case	$S_{\text {Electric }}$	8.28	6.59	12.00
	$S_{\text {Diesel }}$	9.77	4.38	$\mathrm{~N} / \mathrm{A}$
Medium case	$S_{\text {Electric }}$	8.08	4.58	21.93
	$S_{\text {Diesel }}$	9.56	3.76	$\mathrm{~N} / \mathrm{A}$
Worst case	$S_{\text {Electric }}$	7.01	7.27	9.13
	$S_{\text {Diesel }}$	9.71	4.13	$\mathrm{~N} / \mathrm{A}$

The total distance travelled by the ECV fleet is consistently shorter than that of the DCVs in all scenarios. This reflects the higher unit cost of energy for ECVs relative to DCVs, which incentivises $S_{\text {Electric }}$ to carefully choose routes where travelling distance is minimized, while avoiding arcs where elevation differences between nodes would yield a higher total OC. Furthermore, it should be emphasized that the initial stage in the model solution does not consider the costs associated with charging en route, which would constitute a significant incentive for generating shorter, less energy-intensive routes.

4.4.2 Vehicle fleet size

Additionally, while $S_{\text {Electric }}$ generates fewer routes than $S_{\text {Diesel }}$ in all problem instances, it should be emphasized that this does not necessarily indicate that BHD could satisfy demand with a smaller ECV fleet than would be needed to service the same customer network using DCVs. While fewer in number, most ECV routes are considerably longer in duration, reflecting the impact charging stops has on the time required to visit all customer nodes. Intuitively, one can assume that a smaller proportion of an ECV fleet would be available to complete two or more routes in a working day than a DCV fleet.

While the acquisition cost and total cost-of-ownership for the respective fleets falls outside the scope of this thesis, and therefore is not subject to optimization in the objective function, the number of vehicles required in the proposed solutions are presented in Table 4.8. Across all scenarios, the solutions of $S_{\text {Electric }}$ conform to the constraints proposed by Davis and Figliozzi (2013), where ECV fleets may be competitive in terms of total cost-of-ownership as long as fleet sizes do not exceed that of DCVs. However, factors such as the dissimilar loading capacities of the ECV and DCV modelled, the omission of acquisition costs from the objective function, and the fact that a selection of routes are infeasible using the considered ECV, renders conclusive findings regarding overall cost unattainable. Additionally, it should be noted that in the worst-case scenario, eleven of the routes generated by $S_{\text {Electric }}$ are deemed infeasible, which could, in part, be remedied by dispatching more ECVs.

Table 4.8 Estimated size of vehicle fleet in each scenario

	Estimated size of vehicle fleet		
	Best case	Medium case	Worst case
$S_{\text {Electric }}$	4	15	21
$S_{\text {Diesel }}$	6	15	31

4.4.3 Energy efficiency and sensitivity to ambient temperatures

To examine the impact of energy efficiency on the competitiveness of ECVs, the average energy consumption per kilometre travelled is calculated as shown in Table 4.9 below. In the one problem instance where the ECV fleet outperforms its alternative with regards to total OC, the medium-case scenario, the fleet's energy consumption is significantly more efficient than in the other problem instances, and lower than the DCV in the same scenario. Furthermore, by examining the difference in energy efficiency when ambient temperatures are omitted from the model, we make two observations: Firstly, $S_{\text {Electric }}$ would perform far more consistently across scenarios with regards to energy efficiency if the ambient temperatures assigned to each problem instance were equal instead of seasonal. Secondly, $S_{\text {Diesel }}$ is far less sensitive to changes in ambient temperatures, possibly explaining in part why it outperforms $S_{\text {Electric }}$ with regards to total CO in the scenarios where ambient temperatures deviate most from the vehicles' ideal operating conditions.

Table 4.9 Comparison of energy consumption sensitivity to ambient temperatures

		Energy use per $\mathbf{k m}$ ($\mathrm{kWh} / \mathrm{km}$)		
		Observed median temperature	Ambient temperature omitted	Difference
Best case	$S_{\text {Electric }}$	0.74	0.50	0.25
	$S_{\text {Diesel }}$	0.72	0.68	0.04
Medium case	$S_{\text {Electric }}$	0.59	0.53	0.06
	$S_{\text {Diesel }}$	0.69	0.68	0.01
Worst case	$S_{\text {Electric }}$	1.05	0.61	0.44
	$S_{\text {Diesel }}$	0.67	0.64	0.03

4.4.4 Additional performance measures

An additional measure that indicates when the ECV fleet is most competitive is the number of deliveries per charging stop, as shown in Table 4.7 above. In the medium case scenario, the ECV fleet completes an average of 21.93 deliveries per charge, while this value is 9.13 and 12 in the best- and worst-case scenario, respectively. As the DCV fleet is consistently able to deliver all goods without incurring any penalty from time spent refuelling, maintaining a high number of deliveries per charge is crucial for the ECV fleet to perform at a comparable total OC. While the feasibility of doing so is again dependent on factors such as ambient temperatures, one can assume that the deliveries per charge are negatively correlated with the density of customer nodes in a network. As shown in Figure 4.2, the network size and customer density differ significantly across scenarios, meaning the distance travelled to reach all nodes is subject to substantial variation across dates and their corresponding demand levels.

Figure 4.2 A heatmap showing the density of customer nodes in each scenario (scale 1:260 000)

Furthermore, the average OC per delivery, as shown in Table 4.10 below, indicates that while the proposed solution of $S_{\text {Electric }}$ outperforms $S_{\text {Diesel }}$ in one problem instance, the model's per delivery OC is far less consistent across scenarios. Even when subject to the significant differences in the number of deliveries, customer densities, the number of routes and ambient temperatures unique to the different scenarios, the DCV fleet only differs NOK 4.51 in per delivery OC. In contrast, the ECV fleet exhibits a difference of NOK 20.54 between the highest and lowest observed value. Similarly, if one considers the OC per kilometre driven, the DCV fleet exhibits a difference of only NOK 0.86 across scenarios, while the corresponding value for the ECVs' is NOK 6.20. This suggests that while the solutions of $S_{\text {Diesel }}$ are consistently longer with regards to travel distance, this has a negligible impact on the total OC. Meanwhile, as customer nodes in a problem set are increasingly far apart, the ECV fleet becomes less competitive.

Table 4.10 Comparison of OC per delivery and kilometre travelled

		OC per delivery (NOK)	OC per km (NOK/km)
Best case	$S_{\text {Electric }}$	179.34	21.65
	$S_{\text {Diesel }}$	175.84	17.99
Medium case	$S_{\text {Electric }}$	173.14	21.43
	$S_{\text {Diesel }}$	180.35	18.86
Worst case	$S_{\text {Electric }}$	193.68	27.63
	$S_{\text {Diesel }}$	177.03	18.23

5 Discussion

The following chapter discusses our main findings in relation to the research questions and their implications to both practice and theory.

5.1 Implications to practice

Through the simulation of real-world data conducted in this thesis, we demonstrate how a logistics provider such as BHD can assess the feasibility of delivering to a set of customers using an ECV fleet. Additionally, the estimation of the incurred OC enables an evaluation of the commercial viability of zero-emission last-mile deliveries. By simulating three distinctly different scenarios, our findings help to not only assess feasibility, but provides insight into how the OC of the respective fleets is impacted by a range of different factors.

Our findings suggest that feasibility is contingent on the availability of charging infrastructure, which, if accessible, alleviates challenges caused by limited vehicle ranges and long travel distances to customers. The results presented in Section 4.3 shows how a selection of routes in the worst-case scenario were deemed infeasible, primarily due to a combination of remote customer locations and the absence of charging infrastructure, as illustrated in Figure 4.1.

For deliveries to rural areas with low customer density to be viable, improvements to either ECV ranges or the expansiveness of charging infrastructure is required. It should be noted, however, that even if charging locations were ubiquitous, the need for multiple recharges to reach customers would render it challenging to uphold time windows. This implies that one would either need to deploy more vehicles to service the same customer set or be willing to compromise on delivery times. In some cases, where customers are densely located far away from the terminal, it is likely the travel time to the cluster itself which has the most impact on total OC and travel time, not the delivery to customer nodes once there. Hence, dispatching additional ECVs would only partially mitigate the challenges posed by deliveries to remote areas. Nevertheless, rapid technological progress and infrastructure expansion could still render all routes feasible before BHD's self-imposed 2025-time limit to transition to an ECV fleet.

As mentioned, ECVs' reliance on charging infrastructure to reach remote areas negatively impacts their ability to uphold time windows. One possible remedy is to limit the time windows available to customers depending on their location. For instance, customers located in zip-codes known to incur long travel times, may only be able to schedule deliveries in the afternoon,
increasing the likelihood that ECVs can arrive in time. Furthermore, our model employs an ECV with a fixed charging rate of 50 kW and assumes the same rate at all charging locations. In reality, charging rates will vary across locations and vehicles. Assuming a heterogeneous vehicle fleet, BHD could dispatch ECVs with faster charging capabilities where most beneficial, and the unique characteristics of charging nodes could be incorporated in the model to minimize total charging times. Intuitively, one can assume that routes would be modelled to accept longer travel distances in favour of shorter recharging times, if doing so results in lower total OC or the conformity to time windows.

Our second research question concerns the OC associated with an ECV fleet. Our findings suggest that the OC of an ECV fleet is comparable to that of a DCV fleet. Most notably, in the medium-case scenario, ECVs outperformed the DCVs in terms of total OC. However, these findings must be seen in their appropriate context to render meaningful conclusions.

Firstly, as the purpose of this thesis is to compare the cost of operating an ECV fleet relative to BHDs current operations, the vehicles used in simulations are selected accordingly. As discussed in Section 3.3.6, the Mitsubishi Fuso eCanter is chosen as the most viable ECV currently available to BHD, while the Mercedes-Benz Sprinter 5500 is the most similar DCV currently operated by BHD. While the ECV has a higher loading capacity, enabling the delivery of more goods per route on average, the DCV has a more favourable range, meaning their estimated OCs are not directly comparable. Ultimately, this thesis aims to assess OC using realworld data, which is why vehicles with differing characteristics are simulated and compared. Nevertheless, the low difference in OC suggests that a transition to an ECV fleet with characteristics similar to the Fuso eCanter is possible without compromising BHD's competitiveness in the market. It should be noted that the acquisition cost of the respective vehicle fleets is not considered, as BHD's business model relies on the leasing of vehicles from sub-contractors, but this could have a significant impact on the financial viability of an ECV fleet.

Secondly, the OC of an ECV fleet is found to be significantly more sensitive to changes in ambient temperatures. This finding is of particular relevance when operating in Norway, which is subject to significant seasonal changes in ambient temperatures. This sensitivity will cause OC to vary considerably from summer to winter, or potentially between days, even if demand remains constant. This suggests that the competitiveness of ECVs relative to DCVs could be contingent on externalities that are challenging or impossible to mitigate. For instance, while ambient temperatures had no significant impact on the DCV fleet, large variations in ECV range
and need for en route charging could suggest that BHD would need to ensure constant access to additional ECVs and drivers in case of unfavourable weather conditions. Maintaining this excess capacity, even if done through sub-suppliers, would undoubtedly incur additional costs,. Lastly, our proposed model design does not incorporate the costs associated with potential detours of the route for recharging. In remote locations, it is likely that routes will be longer due to the scarcity of available charging infrastructure. The costs associated with time spent driving to and from these charging stations and the incurred energy consumption are not incorporated in the OC. It is likely that these costs can vary from close to zero for routes consisting of deliveries in cities, while they may amount to significant additional costs on remote routes with low density of charging infrastructure.

5.2 Implications to theory

The work presented in this thesis contributes to existing VRP literature by demonstrating how a wide range of real-world dynamics can be incorporated in the solution of a large C-EVRPTW. Due to the multitude of factors to which an ECV fleet is sensitive, EVRPs are inherently limited by their computational complexity. Current literature can be characterized as a balancing-act between the provision of near-optimal solutions to small problem instances (Lin et al., 2016), the incorporation of a high number of real-world variables for accurate cost measures (Basso et al., 2019), or a compromise between the two to enable the solving of larger customer networks (Lin \& Zhou, 2020). By employing the two-stage solution method proposed in this thesis, we increase the number of nodes that can be considered as part of a problem instance while retaining a comprehensive objective function, thereby increasing the replicability of dynamics found in real-world systems.

Furthermore, by solving multiple problem instances with distinctly different characteristics, we demonstrate how the same case study subject may render different conclusions regarding the feasibility and competitiveness of ECV fleets, depending on the applied selection criteria for problem sets, model parameters and input variables. For instance, the sensitivity analysis conducted on the impact of ambient temperatures on ECV performance show how the omission of, or changes to, a single variable can have significant impact on whether a solution is deemed feasible. Furthermore, the solutions of $S_{\text {Diesel }}$ were more consistent and robust across scenarios and sensitivity analyses than $S_{\text {Electric, }}$ indicating that findings from constructed problem sets will
be less transferable to real-world problems when concerning ECVs, and emphasizing the importance of careful collection and consideration of data in future work.

6 Conclusion

This thesis examines the feasibility of transitioning to a fully electrified vehicle fleet for lastmile deliveries, using a Norwegian logistics provider as a case study. Our two-stage method enables the solving of a Capacitated Electric Vehicle Routing Problem with Time Windows (CEVRPTW) with a customer and charging node network equal in magnitude to the highest demand levels experienced by the case study subject, while incorporating a large number of variables that would render the computational complexity too high to solve if not segmented. Using the proposed method, we solve three problem instances representing low, average, and high levels of demand, and incorporate instance-specific data to accurately reflect real-world dynamics. Our findings indicate that the operational costs of an ECV fleet are comparable to that of a conventional DCV fleet in all scenarios, and was in one problem instance found to be lower. However, the performance of an ECV fleet, comprised of measures such as route duration, the operational cost per delivery, and the corresponding total operational cost, is subject to greater variation, and considerably more sensitive to changes in factors such as customer density and ambient temperatures. Furthermore, the servicing of customers in the most remote areas of the networks is deemed infeasible due to limited vehicle ranges, a lack of charging infrastructure and long charging times. However, the utilization of a non-exhaustive overview of charging locations in the model solution, rapid deployment of new infrastructure and technological advancements to battery technology suggests that ECVs may constitute viable substitutes for DCV fleets in the near future.

7 Future research

The purpose of this thesis is to increase the applicability of simulation theory to challenges encountered by providers of last-mile deliveries, as their transition to zero-emission vehicle fleets becomes increasingly urgent. While our model relies heavily on real-world data collection, there are still many factors that could be incorporated to reduce the gap between theoretical models and real-world systems. For instance, while this thesis neglects the total cost-of-ownership of vehicles to reflect the business model of the case study subject, incorporating the acquisition cost and depreciation of vehicles in the objective function could increase its applicability to other enterprises. Additionally, future iterations of the C-EVRPTW would benefit from considering the impact of en-route charging stops in the first stage of the model, as this would increase the number of routes where time windows are upheld. Lastly, the sensitivity of ECVs to variables not considered in this thesis should be explored, such as the impact of drivers' experience and skill level on energy efficiency.

References

Akcelik, R., \& Besley, M. (2007). Operating cost, fuel consumption and emission models in aaSIDRA and aaMOTION.

Albatayneh, A., Assaf, M., Alterman, D., \& Jaradat, M. (2020). Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles. Environmental and Climate Technologies, 24, 669-680. https://doi.org/10.2478/rtuect-2020-00

Anenberg, S., Miller, J., Henze, D., \& Minjares, R. (2019). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. I. C. o. C. Transportation. https://www.ccacoalition.org/en/resources/global-snapshot-air-pollution-related-health-impacts-transportation-sector-emissions-2010

Anisimov, I., Ivanov, A., Chikishev, E., Chainikov, D., Reznik, L., \& Gavaev, A. (2017). Assessment Of Adaptability Of Natural Gas Vehicles By The Constructive Analogy Method. International Journal of Sustainable Development and Planning, 12, 10061017. https://doi.org/10.2495/SDP-V12-N6-1006-1017

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., \& Stewart, W. R. (1995). Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1), 9-32. https://doi.org/10.1007/BF02430363

Barth, M., \& Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment, 14(6), 400-410. https://doi.org/https://doi.org/10.1016/j.trd.2009.01.004

Barth, M., Younglove, T., \& Scora, G. (2005). Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model. PATH research report.

Basso, R., Kulcsár, B., Egardt, B., Lindroth, P., \& Sánchez-Díaz, I. (2019). Energy consumption estimation integrated into the Electric Vehicle Routing Problem. Transportation Research Part D: Transport and Environment, 69, 141-167. https://doi.org/10.1016/j.trd.2019.01.006

Bektaş, T., \& Laporte, G. (2011). The Pollution-Routing Problem. Transportation Research Part B: Methodological, 45(8), 1232-1250. https://doi.org/https://doi.org/10.1016/j.trb.2011.02.004

Bøe, V. (2012). Welcome to the charging station database NOBIL. NOBIL. Retrieved May 9, 2021 from https://info.nobil.no/eng

Braekers, K., Ramaekers, K., \& Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers \& Industrial Engineering, 99, 300-313. https://doi.org/https://doi.org/10.1016/j.cie.2015.12.007

Bräysy, O., \& Gendreau, M. (2005). Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transportation Science, 39, 104118. https://doi.org/10.1287/trsc.1030.0056

Clarke, G., \& Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 12(4), 568-581. https://doi.org/10.1287/opre.12.4.568

Conrad, R., \& Figliozzi, M. (2011). The Recharging Vehicle Routing Problem. Proc. of the 61st Annual IIE Conference.

Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J.-Y., \& Semet, F. (2002). A Guide to Vehicle Routing Heuristics. Journal of the Operational Research Society, 53, 512522. https://doi.org/10.1057/palgrave.jors. 2601319

Dantzig, G. B., \& Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91. https://EconPapers.repec.org/RePEc:inm:ormnsc:v:6:y:1959:i:1:p:80-91

Davis, B., \& Figliozzi, M. (2013). A Methodology to Evaluate the Competitiveness of Electric Delivery Trucks. Transportation Research Part E-logistics and Transportation Review, 49, 8-23.

Desaulniers, G., Madsen, O. B. G., \& Ropke, S. (2014). Chapter 5: The Vehicle Routing Problem with Time Windows. In Vehicle Routing (pp. 119-159). Society for Industrial and Applied Mathematics. https://doi.org/doi:10.1137/1.9781611973594.ch5

Eksioglu, B., Vural, A. V., \& Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers \& Industrial Engineering, 57(4), 1472-1483. https://doi.org/https://doi.org/10.1016/j.cie.2009.05.009

Erdoğan, S., \& Miller-Hooks, E. (2012). A Green Vehicle Routing Problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100-114. https://doi.org/https://doi.org/10.1016/j.tre.2011.08.001

European Union. (2019). Transport sector economic analysis. EU Science Hub. Retrieved April 30, 2021 from https://ec.europa.eu/jrc/en/research-topic/transport-sector-economic-analysis

Feng, W., \& Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transportation Research Part C-emerging Technologies, 26, 135-145.

Figliozzi, M. (2010). Vehicle Routing Problem for Emissions Minimization. Transportation Research Record, 2197(1), 1-7. https://doi.org/10.3141/2197-01

Gambardella, L. M. (1999). Multiple Ant Colony Optimization System for Vehicle Routing Problems with Time Windows (VRPTW). Retrieved 20 April, 2021 from https://people.idsia.ch//~luca/macs-vrptw/welcome.htm

Gayialis, S. P., Konstantakopoulos, G. D., \& Tatsiopoulos, I. P. (2019). Vehicle Routing Problem for Urban Freight Transportation: A Review of the Recent Literature. Operational Research in the Digital Era - ICT Challenges, Cham.

Giannelli, R., Nam, E., Helmer, K., Younglove, T., Scora, G., \& Barth, M. (2005). HeavyDuty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters. https://doi.org/10.4271/2005-01-3549

Goeke, D., \& Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81-99. https://EconPapers.repec.org/RePEc:eee:ejores:v:245:y:2015:i:1:p:81-99

Gonçalves, F., Cardoso, S. R., Relvas, S., \& Barbosa-Póvoa, A. (2011, 18-20 April 2011). Optimization of a distribution network using electric vehicles: A VRP problem. IO2011-15 Congresso da associação Portuguesa de Investigação Operacional, Coimbra, Portugal.

Hall, R., \& Partyka, J. (2014). Vehicle Routing Software Survey: VR delivers the goods. OR/MS Today.

Hovi, I. B., Pinchasik, D. R., Mjøsund, C. S., \& Jensen, S. A. (2019). Nullutslipp fra varedistribusjon i byer innen 2030? Hvilke virkemidler og insentiver finnes? (Norwegian only). https://www.toi.no/publikasjoner/nullutslipp-fra-varedistribusjon-i-byer-innen-2030-hvilke-virkemidler-og-insentiver-finnes-article35984-8.html

Ichimori, T., Ishii, H., \& Nishida, T. (1983). Two routing problems with the limitation of fuel. Discrete Applied Mathematics, 6(1), 85-89. https://doi.org/https://doi.org/10.1016/0166-218X(83)90103-8

International Energy Agency. (2019). Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030

International Energy Agency. (2020). Tracking Transport 2020. IEA. Retrieved April 30, 2021 from https://www.iea.org/reports/tracking-transport-2020

Kek, A. G. H., Cheu, R. L., \& Meng, Q. (2008). Distance-constrained capacitated vehicle routing problems with flexible assignment of start and end depots. In.

Keskin, M., Akhavan-Tabatabaei, R., \& Çatay, B. (2019). Electric Vehicle Routing Problem with Time Windows and Stochastic Waiting Times at Recharging Stations. https://doi.org/10.1109/WSC40007.2019.9004766

Keskin, M., Çatay, B., \& Laporte, G. (2021). A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations. Computers \& Operations Research, 125, 105060. https://doi.org/https://doi.org/10.1016/j.cor.2020.105060

Laporte, G., Nobert, Y., \& Desrochers, M. (1985). Optimal Routing under Capacity and Distance Restrictions. Operations Research, 33(5), 1050-1073. http://www.jstor.org/stable/170853

Lenstra, J. K., \& Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221-227. https://doi.org/https://doi.org/10.1002/net. 3230110211

Lin, J., \& Zhou, W. (2020). Important factors to daily vehicle routing cost of battery electric delivery trucks. International Journal of Sustainable Transportation, 1-18. https://doi.org/10.1080/15568318.2020.1770903

Lin, J., Zhou, W., \& Wolfson, O. (2016). Electric Vehicle Routing Problem. Transportation Research Procedia, 12, 508-521. https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007

Maden, W., Eglese, R., \& Black, D. (2010). Vehicle routing and scheduling with time-varying data: A case study. Journal of the Operational Research Society, 61(3), 515-522. https://doi.org/10.1057/jors.2009.116

Meira, L., Martins, P., Menzori, M., \& Zeni, G. (2017). Multi-Objective Vehicle Routing Problem Applied to Large Scale Post Office Deliveries.

Mercedes-Benz. (2019). Tekniske data, mål og vekt for Sprinter chassis. Retrieved April 22, 2021 from https://www.mercedes-benz.no/vans/no/sprinter/cab-chassis/technical-data

Mitsubishi Fuso. (2021). eCanter. Retrieved February 19, 2021 from https://www.mitsubishifuso.com/product/ecanter/

Nikel, D. (2019). Electric Cars: Why Little Norway Leads The World In EV Usage. Forbes. Retrieved May 3, 2021 from https://www.forbes.com/sites/davidnikel/2019/06/18/electric-cars-why-little-norway-leads-the-world-in-ev-usage/?sh=6045794513e3

Norwegian Electric Vehicle Association. (2020). Dette koster hurtiglading (Norwegian only). Norwegian Electric Vehicle Association. Retrieved February 23, 2021 from https://elbil.no/dette-koster-hurtiglading/

Norwegian Environment Agency. (2021). Greenhouse Gas Emissions 1990-2019, National Inventory Report. The Norwegian Environment Agency.

Norwegian Hydrogen Association. (2021). Her finner du hydrogenstasjonene i Norge (Norwegian only). Retrieved May 24, 2021 from https://www.hydrogen.no/stasjoner/kart-over-stasjoner

Norwegian Ministry of Transport and Communications. (2017). National Transport Plan 2018-2029. Retrieved May 3, 2021 from https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/engb/pdfs/stm201620170033000engpdfs.pdf

Pullen, H., \& Webb, M. (1967). A computer application to a transport scheduling problem. Comput. J., 10, 10-13.

Reyes, J. R. M. D., Parsons, R. V., \& Hoemsen, R. (2016). Winter Happens: The Effect of Ambient Temperature on the Travel Range of Electric Vehicles. IEEE Transactions on Vehicular Technology, 65(6), 4016-4022. https://doi.org/10.1109/TVT.2016.2544178

Ruan, M., Lin, J., \& Kawamura, K. (2012). Modeling Commercial Vehicle Daily Tour Chaining. Transportation Research Part E Logistics and Transportation Review, 48, 1169-1184. https://doi.org/10.1016/j.tre.2012.06.003

Sbihi, A., \& Eglese, R. (2010). Combinatorial optimization and Green Logistics. Annals of Operations Research, 175, 254-5330. https://doi.org/10.1007/s10479-009-0651-z

Schjøll, A., \& Thorjussen, C. B. H. (2019). Menneskerettigheter og etisk forbruk (Norwegian only) SIFO 2020:09, https://hdl.handle.net/10642/9038

Schneider, M., Stenger, A., \& Goeke, D. (2014). The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transportation Science, 48(4), 500-520. https://doi.org/10.1287/trsc. 2013.0490

SINTEF. (2008). Solomon benchmark. Retrieved May 5, 2021 from https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/

Solomon, M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Oper. Res., 35, 254-265.

Sripad, S., \& Viswanathan, V. (2017). Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck. ACS Energy Letters, 2(7), 16691673. https://doi.org/10.1021/acsenergylett.7b00432

Statistics Norway. (2021a). Electricity price, grid rent and taxes for households, by contents and quarter. Retrieved May 15, 2021 from https://www.ssb.no/en/statbank/sq/10052189

Statistics Norway. (2021b). Prices on engine fuel (NOK per litres), by petroleum products, contents and month. Retrieved February 21, 2021 from https://www.ssb.no/en/statbank/sq/10052190

The Confederation of Norwegian Enterprise. (2018). Hovedavtale NHO 2018-2021 (Norwegian only). Yrkestrafikkforbundet.no. Retrieved February 19, 2021 from https://ytf.no/page/tariffavtaler-gods

The Norwegian Tax Administration. (2020). Employer's national insurance contributions. Skatteetaten.no. Retrieved February 19, 2021 from https://www.skatteetaten.no/en/Rates/Employers-national-insurancecontributions/?year=2020\#rateShowYear

Toth, P., \& Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications. (2 ${ }^{\text {nd }}$ ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611973594

Velázquez-Martínez, J., \& Cottrill, K. (2020). E-commerce retailers should put more value on green delivery options. Retrieved May 24, 2021 from
https://www.greenbiz.com/article/e-commerce-retailers-should-put-more-value-green-delivery-options

Wang, S., \& Ge, M. (2019). Everything You Need to Know About the Fastest-Growing Source of Global Emissions: Transport. Retrieved April 30, 2021 from https://www.wri.org/insights/everything-you-need-know-about-fastest-growing-source-global-emissions-transport

Wappelhorst, S., \& Cui, H. (2020). Growing momentum: Global overview of government targets for phasing out sales of new internal combustion engine vehicles. https://theicct.org/blog/staff/global-ice-phaseout-nov2020

Xiao, Y., Zuo, X., Kaku, I., Zhou, S., \& Pan, X. (2019). Development of energy consumption optimization model for the electric vehicle routing problem with time windows. Journal of Cleaner Production, 225, 647-663. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.03.323

Yrkestrafikkforbundet. (2020). Lønnstabeller 2020: Distribusjon og naertransport (Norwegian only). Yrkestrafikkforbundet. Retrieved February 19, 2021 from https://ytf.no/page/lonnstabeller-gods

Zhang, S., Gajpal, Y., Appadoo, S. S., \& Abdulkader, M. M. S. (2018). Electric vehicle routing problem with recharging stations for minimizing energy consumption. International Journal of Production Economics, 203, 404-413. https://doi.org/https://doi.org/10.1016/j.ijpe.2018.07.016

Zuo, X., Xiao, Y., You, M., Kaku, I., \& Xu, Y. (2019). A new formulation of the electric vehicle routing problem with time windows considering concave nonlinear charging function. Journal of Cleaner Production, 236, 117687. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117687

Appendix A: Numerical values of common input parameters

Notation	Description	Value	Reference
$C_{t t}$	Hourly labour cost of vehicle (NOK)	455.28	(The Confederation of Norwegian Enterprise, 2018; the Norwegian Tax Administration, 2020; Yrkestrafikkforbundet, 2020)
$C_{e r}$	Cost of energy (NOK/kW) en route	3.96	(Norwegian Electric Vehicle Association, 2020)
$C_{e t}$	Cost of energy ($\mathrm{NOK} / \mathrm{kW} \mathrm{)} \mathrm{at} \mathrm{terminal} \mathrm{{ }}^{\text {a }}$ (${ }^{\text {a }}$ (0.79	(Statistics Norway, 2021a)
$C_{e d}$	Diesel cost (NOK/kW)	1.34	(Norwegian Environment Agency, 2021; Statistics Norway, 2021b)
C_{d}	Coefficient of air drag	0.70	(Akcelik \& Besley, 2007)
C_{r}	Coefficient of rolling resistance	0.0064	(Basso et al., 2019)
e_{f} (ECV)	Engine efficiency (input energy/output energy)	85\%	(Sripad \& Viswanathan, 2017)
$e_{f}(\mathrm{DCV})$	Engine efficiency (input energy/output energy)	48\%	(Giannelli et al., 2005)
ρ	Air density (kg/m ${ }^{3}$)	1.225	
A (ECV)	Frontal surface area of vehicle (m^{2})	4.45	(Mitsubishi Fuso, 2021)
A (DCV)	Frontal surface area of vehicle (m^{2})	5.80	(Mercedes-Benz, 2019)
r	Charging rate (kW)	50	
g	Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)	9.81	
W (ECV)	Curb weight of vehicle (kg)	3,110	(Mitsubishi Fuso, 2021)
W (DCV)	Curb weight of vehicle (kg)	2,360	(Mercedes-Benz, 2019)
$Q w(\mathrm{ECV})$	Vehicle load capacity (kg)	4,130	(Mitsubishi Fuso, 2021)
$Q w(\mathrm{DCV})$	Vehicle load capacity (kg)	3,140	(Mercedes-Benz, 2019)
Qe (ECV)	Battery capacity, usable (kWh)	66	(Mitsubishi Fuso, 2021)
Qe (DCV)	Fuel tank energy capacity (kWh)	734	(Mercedes-Benz, 2019; Norwegian Environment Agency, 2021)

Appendix B: Model formulation in pseudocode

```
B.I First stage
"""Enumerating locations to lists"""
location = {i : 0 for i in V }
for i,11 in enumerate(N):
    location[11] = location from data
for i,11 in enumerate(O):
    location[11] = location from data
"""Creating matrices"""
# Distance
locations = locations from distance matrix
dist ={(l, l):0 for l in locations }
for i,l1 in enumerate(locations):
    for j,12 in enumerate(locations):
        if i < j:
            dist[11,12] = distances from distance matrix
            dist[12,11] = dist[11,12]
```

distance $=\{(1,1): 0$ for 1 in V$\}$
for $\mathrm{i}, 11$ in enumerate (V) :
for $\mathrm{j}, 12$ in enumerate(V):
distance[11,12] = dist[location[i], location[j]]

```
# Elevation/Alpha
locations = locations from alpha matrix
alt ={(1, 1):0 for 1 in locations }
for i,l1 in enumerate(locations):
    for j,12 in enumerate(locations):
        if i<j:
            alt[11,12] = alphas from alpha matrix
            alt[12,11] = dist[11,12]
alpha ={(1, l):0 for 1 in V }
for i,a1 in enumerate(V):
    for j,a2 in enumerate(V):
        alpha[a1,a2] = alt[location[i], location[j]]
Dw}={\textrm{i}:0\mathrm{ for i in V }
for i,l1 in enumerate(N):
    Dw[11] = weight data
Dv={i:0 for i in V }
for i,11 in enumerate(N):
    Dv[11] = volume data
    # Creating Gurobi model
    Model('FirstStepElectric)
```

\# Adding decision variables
$\mathrm{x}=\mathrm{BINARY}, \in \mathrm{A}$
$\mathrm{lw}=$ CONTINUOUS, $\in \mathrm{V}$

Objective: MINIMIZE(sum((C_e*alpha[i,j]*W*distance[i,j]*x[i,j])/e_f for $\mathrm{i}, \mathrm{j} \in \mathrm{A})$
$+\operatorname{sum}\left(\left(\mathrm{C}_{-} \mathrm{e}^{*} \mathrm{beta}^{*} \mathrm{v}^{*} * 2 * \operatorname{distance}[\mathrm{i}, \mathrm{j}] * \mathrm{x}[\mathrm{i}, \mathrm{j}]\right) / \mathrm{e} _\mathrm{f}\right.$ for $\left.\mathrm{i}, \mathrm{j} \in \mathrm{A}\right)$
$+\operatorname{sum}\left(\mathrm{C}_{-} \mathrm{tt} *(\operatorname{distance}[\mathrm{i}, \mathrm{j}] / \mathrm{v}) * \mathrm{x}[\mathrm{i}, \mathrm{j}]\right.$ for $\left.\left.\mathrm{i}, \mathrm{j} \in \mathrm{A}\right)\right)$
"""Restrictions""
\#Customer visit constraints
$\operatorname{sum}(\mathrm{x}[\mathrm{i}, \mathrm{j}]$ for j in V if $\mathrm{j}!=\mathrm{i})=1$ for $\mathrm{i} \in \mathrm{N}$
$\operatorname{sum}(x[i, j]$ for i in V if $\mathrm{i}!=\mathrm{j})=1$ for $\mathrm{j} \in \mathrm{N}$
\# Weight
$(x[i, j]==1) \gg(1 w[i]+D w[i]=\operatorname{lw}[j])$ for $i, j \in A$ if $i!=0$ if $j!=0$
$\operatorname{lw}[\mathrm{i}]>=\mathrm{Dw}[\mathrm{i}]$ for $\mathrm{i} \in \mathrm{V}$
$\operatorname{lw}[\mathrm{i}]<=\mathrm{Qw}$ for $\mathrm{i} \in \mathrm{V}$
"""Model optimization"""
MIPGap $=0.6$
optimize()

```
B.II Second stage
"""Enumerating locations to lists"""
location = {i:0 for i in V }
for i,11 in enumerate(N):
    location[11] = location from data
for i,11 in enumerate(O):
    location[11] = location from data
```

```
"""Creating matrices"""
```

"""Creating matrices"""

Distance

Distance

locations = locations from distance matrix
locations = locations from distance matrix
dist ={(l,) : 0 for l in locations }
dist ={(l,) : 0 for l in locations }
for i,l1 in enumerate(locations):
for i,l1 in enumerate(locations):
for j,12 in enumerate(locations):
for j,12 in enumerate(locations):
if i < j:
if i < j:
dist[11,12] = distances from distance matrix
dist[11,12] = distances from distance matrix
dist[12,11] = dist[11,12]
dist[12,11] = dist[11,12]
distance = {(1, 1):0 for 1 in V }
for i,11 in enumerate(V):
for j,12 in enumerate(V):
distance[11,12] = dist[location[i], location[j]]

```
```


Elevation/Alpha

locations = locations from alpha matrix
alt ={(1, 1):0 for 1 in locations }
for i,l1 in enumerate(locations):
for j,12 in enumerate(locations):
if i < j:
alt[11,12] = alphas from alpha matrix
alt[12,11] = dist[11,12]
alpha ={(1, 1):0 for 1 in V }
for i,a1 in enumerate(V):
for j,a2 in enumerate(V):
alpha[a1,a2] = alt[location[i], location[j]]
Dw}={\textrm{i}:0\mathrm{ for i in V }
for i,11 in enumerate(N):
Dw[l1] = weight data
Dv={i:0 for i in V }
for i,11 in enumerate(N):
Dv[11] = volume data
tStart = {i : 0 for i in N }
for i,11 in enumerate(N):
tStart[11] = time window data
tEnd ={i:0 fori in N }

```
for i,l1 in enumerate( N ):
tEnd[11] = time window data
```

weight = Dw.values()
total_weight = sum(weight)

```
\# Creating Gurobi model
Model('C-ERVPTW')
\# Adding decision variables
\(x=\operatorname{BINARY}, \in A\), name="x"
lw = CONTINUOUS, \(\in\) V, name="weight"
\(\mathrm{d}=\) CONTINUOUS, \(\in \mathrm{V}\), name="distance")
\(\mathrm{t}=\) CONTINUOUS, \(\in \mathrm{V}\), name="time" \# Time tracker
\(\mathrm{e}=\) CONTINUOUS, \(\in \mathrm{V}\), name="eConsumption"

Objective: \(\left.\operatorname{MINIMIZE(sum((C\_ e*alpha[i,j]*3.11*distance[i,j]*x[i,j])/e\_ f~for~} \mathrm{i}, \mathrm{j} \in \mathrm{A}\right)\)
\(+\operatorname{sum}\left(\left(\mathrm{C} \_\mathrm{e}^{*}\right.\right.\) alpha[i,j]*((total_weight-lw[i])/1000)*distance[i,j])/e_f for \(\left.\mathrm{i}, \mathrm{j} \in \mathrm{A}\right)\)

\(+\operatorname{sum}\left(C_{-} t t^{*}\left(\right.\right.\) distance \(\left.[i, j] / v \_h\right) * x[i, j]\) for \(\left.\left.\mathrm{i}, \mathrm{j} \in \mathrm{A}\right)\right)\)
"""Restrictions""
\#Customer visit constraints
```

sum(x[i,j] for j in V if j!=i)= 1 for i }\in\textrm{N
sum(x[i,j] for i in V if i!=j)=1 for j \in N

Weight

(x[i,j]==1) >> (lw[i] + Dw[i] = lw[j])
for i,j }\inA\mathrm{ if }\textrm{i}!=0\mathrm{ if }\textrm{j}!=
lw[i] >= Dw[i] for i }\in\textrm{V
lw[i]<= Qw for i \in V

Time windows

(x[i,j]==1) >> (t[i]+h[i]+(distance[i,j]/v_h) = t[j])
for i,j\inA if j>0
t[j] >= tStart[j] for j }\in\textrm{N
t[j] <= tEnd[j] for j }\in\textrm{N

Distance tracker

(x[i,j]==1) >> (d[i] + distance[i,j] = d[j])
for i,j }\in\textrm{A}\mathrm{ if }\textrm{j}>0

```
\# Energy consumption
\((x[i, j]==1) \gg((\) alpha \([i, j] *(W+(\) total_weight-lw[i])) \()\)
    \(+\left(\right.\) beta*distance \(\left.\left.[\mathrm{i}, \mathrm{j}] *\left(\mathrm{v}^{* *} 2\right)\right) / \mathrm{e} \_\mathrm{f}\right) *\) joules \(\left.=\mathrm{e}[\mathrm{j}]\right)\)
for \(\mathrm{i}, \mathrm{j} \in \mathrm{A}\) if \(\mathrm{j}>0\)
"""Model optimization"""
MIPGap \(=0.6\)
```

optimize()
"""Pseudocode incorporation of charginge infrastructure (F)"""
for C-EVRPTW
initialize by setting i=0
for (j=1,n):
when eConsumption[i,m] ("total energy consumed at node i") +e[i,j,m]
>= Qe[m] (battery capacity of vehicle m):
from i of V:
search nearest f}\in
Update C-EVRPTW with f after i and set i=j
if d[i,f] <= 51220:
render feasible
else:
render infeasible
for (j=f,n):
when eConsumption[i,m] ("total energy consumed at node i") +e[i,j,m]
>= 0.8*Qe[m] (" }80%\mathrm{ of battery capacity of vehicle m"):
from i }\in\textrm{V}\mathrm{ :
search nearest f \in F
Update C-EVRPTW with f after i and set i=j
if d[i,f] <= 51220:
render feasible
else:
render infeasible
return

```
"""Pseudocode for charging time at charging stations"""

\section*{for C-EVRPTW}
for \(\mathrm{i} \in \mathrm{F}\) :
charge_time[i] \(=(\) eConsumption[i+1] - eConsumption[i] \() / r\)

\section*{Appendix C: Model output}

\section*{C.I Best case Selectric}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy
consumption
\((\mathrm{kWh})\) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & End of TW (h) & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_01 & 0 & t01 & - & - & - & 2.23 & - & 2.23 & - & - & 66.00 \\
\hline r_01 & 1 & a070 & - & 16.64 & 55,091 & 4.15 & - & 4.15 & 8.00 & 62.00 & 49.36 \\
\hline r_01 & 2 & a040 & - & 0.18 & 55,157 & 4.28 & - & 4.28 & 8.00 & 74.00 & 49.18 \\
\hline r_01 & 3 & a010 & - & 0.23 & 55,242 & 4.41 & - & 4.41 & 8.00 & 34.00 & 48.95 \\
\hline r_01 & 4 & a005 & - & 11.61 & 59,516 & 4.61 & - & 4.61 & 8.00 & 19.00 & 37.33 \\
\hline r_01 & 5 & a023 & - & 0.40 & 60,094 & 4.75 & - & 4.75 & 8.00 & 43.00 & 36.94 \\
\hline r_01 & 6 & a022 & - & - & 60,094 & 4.88 & - & 4.88 & 8.00 & 34.00 & 36.94 \\
\hline r_01 & 7 & a006 & - & 19.21 & 67,267 & 5.13 & - & 5.13 & 8.00 & 34.00 & 17.73 \\
\hline r_01 & 8 & a019 & - & 1.21 & 74,410 & 5.38 & - & 5.38 & 8.00 & 11.00 & 16.52 \\
\hline r_01 & 9 & a049 & - & 1.12 & 77,258 & 5.56 & - & 5.56 & 8.00 & 550.00 & 15.41 \\
\hline r_01 & 10 & a067 & - & 0.02 & 77,307 & 5.69 & - & 5.69 & 8.00 & 85.00 & 15.39 \\
\hline r_01 & 11 & a008 & - & 2.51 & 78,354 & 5.84 & - & 5.84 & 8.00 & 53.00 & 12.88 \\
\hline r_01 & 12 & a013 & - & 0.26 & 78,969 & 5.98 & - & 5.98 & 8.00 & 19.00 & 12.61 \\
\hline r_01 & 13 & a061 & - & 6.46 & 82,899 & 6.17 & - & 6.17 & 8.00 & 59.00 & 6.15 \\
\hline r_01 & 14 & a065 & - & 0.50 & 96,614 & 6.53 & - & 6.53 & 8.00 & 103.00 & 5.65 \\
\hline r_01 & 15 & c613 & 850.20 & - & - & - & 0.93 & 7.46 & - & - & 51.96 \\
\hline r_01 & 16 & a012 & - & 23.85 & 106,990 & 6.83 & - & 7.76 & 8.00 & 1.00 & 28.10 \\
\hline r_01 & 17 & a015 & - & 0.92 & 109,375 & 7.00 & - & 7.93 & 8.00 & 9.00 & 27.18 \\
\hline r_01 & 18 & a064 & - & 0.95 & 110,352 & 7.15 & - & 8.08 & 8.00 & 1,172.00 & 26.23 \\
\hline r_01 & 19 & a063 & - & 4.54 & 112,863 & 7.32 & - & 8.25 & 8.00 & 152.00 & 21.69 \\
\hline r_01 & 20 & a039 & - & - & 112,863 & 7.45 & - & 8.38 & 8.00 & 24.00 & 21.69 \\
\hline r_01 & 21 & a011 & - & 19.25 & 123,954 & 7.77 & - & 8.69 & 8.00 & 83.00 & 2.44 \\
\hline r_01 & 22 & a024 & - & 2.44 & 130,176 & 8.00 & - & 8.93 & 8.00 & 938.00 & - \\
\hline r_01 & 23 & c469 & 3,888.57 & - & - & 0.30 & - & 9.23 & - & - & 15.09 \\
\hline r_01 & 24 & t01 & - & 15.09 & 177,814 & 8.79 & - & 10.02 & - & - & - \\
\hline r_02 & 0 & t01 & - & - & - & 1.50 & - & 1.50 & - & - & 66.00 \\
\hline r_02 & 1 & a029 & - & 2.79 & 7,328 & 2.63 & - & 2.63 & 6.00 & 226.00 & 63.21 \\
\hline r_02 & 2 & a037 & - & 1.59 & 12,372 & 2.84 & - & 2.84 & 6.00 & 36.00 & 61.62 \\
\hline r_02 & 3 & a069 & - & 4.45 & 20,871 & 3.11 & - & 3.11 & 6.00 & 19.00 & 57.17 \\
\hline r_02 & 4 & a046 & - & 28.10 & 30,979 & 3.41 & - & 3.41 & 6.00 & 82.00 & 29.07 \\
\hline r_02 & 5 & a007 & - & 6.49 & 33,342 & 3.58 & - & 3.58 & 6.00 & 10.00 & 22.58 \\
\hline r_02 & 6 & a056 & - & 1.91 & 40,139 & 3.82 & - & 3.82 & 6.00 & 77.00 & 20.67 \\
\hline r_02 & 7 & a033 & - & 2.49 & 41,057 & 3.97 & - & 3.97 & 6.00 & 200.00 & 18.18 \\
\hline r_02 & 8 & a018 & - & 1.87 & 41,769 & 4.11 & - & 4.11 & 6.00 & 10.00 & 16.31 \\
\hline r_02 & 9 & a014 & - & 3.87 & 43,246 & 4.27 & - & 4.27 & 6.00 & 10.00 & 12.44 \\
\hline r_02 & 10 & a002 & - & 4.40 & 44,928 & 4.42 & - & 4.42 & 6.00 & 14.00 & 8.03 \\
\hline r_02 & 11 & a054 & - & 0.32 & 46,639 & 4.58 & - & 4.58 & 6.00 & 50.00 & 7.71 \\
\hline r_02 & 12 & a047 & - & 6.96 & 49,322 & 4.76 & - & 4.76 & 6.00 & 59.00 & 0.76 \\
\hline r_02 & 13 & a053 & - & 0.39 & 50,159 & 4.90 & - & 4.90 & 6.00 & 97.00 & 0.37 \\
\hline r_02 & 14 & c130 & 243.28 & - & - & - & 0.92 & 5.82 & - & - & 46.38 \\
\hline r_02 & 15 & a066 & - & 0.46 & 52,053 & 5.06 & - & 5.98 & 6.00 & 32.00 & 45.92 \\
\hline r_02 & 16 & a071 & - & 4.67 & 58,048 & 5.29 & - & 6.21 & 6.00 & 71.00 & 41.25 \\
\hline r_02 & 17 & a043 & - & 6.22 & 60,551 & 5.46 & - & 6.38 & 6.00 & 53.00 & 35.03 \\
\hline r_02 & 18 & a032 & - & 23.46 & 70,075 & 5.75 & - & 6.67 & 6.00 & 855.00 & 11.57 \\
\hline r_02 & 19 & a059 & - & 1.22 & 77,133 & 6.00 & - & 6.92 & 6.00 & 60.00 & 10.34 \\
\hline r_02 & 20 & a026 & - & 5.99 & 80,010 & 6.18 & - & 7.10 & 8.00 & 991.00 & 4.35 \\
\hline r_02 & 21 & a020 & - & 4.35 & 82,611 & 6.35 & - & 7.27 & 8.00 & 108.00 & - \\
\hline r_02 & 22 & c248 & 166.24 & - & - & \% & 0.62 & 7.89 & , & . & 30.96 \\
\hline r_02 & 23 & a036 & - & 8.98 & 110,944 & 6.95 & - & 8.49 & 8.00 & 51.00 & 21.98 \\
\hline r_02 & 24 & a052 & - & 10.70 & 137,509 & 7.53 & - & 9.07 & 8.00 & 579.00 & 11.28 \\
\hline r_02 & 25 & t01 & - & 11.28 & 171,552 & 8.09 & - & 9.63 & - & - & - \\
\hline r_03 & 0 & t01 & - & - & & 0.88 & - & 0.88 & - & - & 66.00 \\
\hline r_03 & 1 & a042 & - & 2.83 & 7,038 & 2.00 & - & 2.00 & 6.00 & 1,288.00 & 63.17 \\
\hline r_03 & 2 & a038 & - & 10.45 & 11,383 & 2.20 & - & 2.20 & 6.00 & 98.00 & 52.72 \\
\hline r_03 & 3 & a045 & - & 1.18 & 15,084 & 2.39 & - & 2.39 & 6.00 & 60.00 & 51.55 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & \begin{tabular}{l}
Energy
consumption \\
(kWh)
\end{tabular} & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & End of TW (h) & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_03 & 4 & a003 & - & 7.52 & 18,298 & 2.58 & - & 2.58 & 6.00 & 26.00 & 44.03 \\
\hline r_03 & 5 & a017 & - & 0.32 & 19,550 & 2.73 & - & 2.73 & 6.00 & 18.00 & 43.71 \\
\hline r_03 & 6 & a021 & - & 2.08 & 24,125 & 2.93 & - & 2.93 & 6.00 & 453.00 & 41.63 \\
\hline r_03 & 7 & a025 & - & 0.60 & 25,108 & 3.08 & - & 3.08 & 6.00 & 46.00 & 41.02 \\
\hline r_03 & 8 & a050 & - & 1.49 & 27,486 & 3.25 & - & 3.25 & 6.00 & 137.00 & 39.54 \\
\hline r_03 & 9 & a057 & - & 0.28 & 27,946 & 3.39 & - & 3.39 & 6.00 & 89.00 & 39.25 \\
\hline r_03 & 10 & a016 & - & 5.50 & 30,669 & 3.56 & - & 3.56 & 6.00 & 26.00 & 33.75 \\
\hline r_03 & 11 & a035 & - & 0.69 & 31,596 & 3.71 & - & 3.71 & 6.00 & 91.00 & 33.06 \\
\hline r_03 & 12 & a062 & - & 0.36 & 32,333 & 3.85 & - & 3.85 & 6.00 & 42.00 & 32.69 \\
\hline r_03 & 13 & a031 & - & 3.53 & 34,138 & 4.01 & - & 4.01 & 6.00 & 598.00 & 29.17 \\
\hline r_03 & 14 & a004 & - & 4.27 & 36,638 & 4.18 & - & 4.18 & 6.00 & 12.00 & 24.90 \\
\hline r_03 & 15 & a051 & - & 5.65 & 53,131 & 4.59 & - & 4.59 & 6.00 & 204.00 & 19.25 \\
\hline r_03 & 16 & a060 & - & 2.38 & 61,093 & 4.85 & - & 4.85 & 6.00 & 130.00 & 16.87 \\
\hline r_03 & 17 & a028 & - & 6.52 & 65,266 & 5.05 & - & 5.05 & 6.00 & 49.00 & 10.34 \\
\hline r_03 & 18 & a048 & - & 3.28 & 74,740 & 5.34 & - & 5.34 & 8.00 & 156.00 & 7.07 \\
\hline r_03 & 19 & c143 & 5,148.20 & - & 5,148 & 0.59 & - & 5.93 & - & - & 36.71 \\
\hline r_03 & 20 & a034 & - & 26.86 & 92,914 & 5.77 & - & 6.36 & 8.00 & 218.00 & 9.84 \\
\hline r_03 & 21 & t01 & - & 9.84 & 124,565 & 6.30 & - & 6.89 & - & - & - \\
\hline r_04 & 0 & t01 & - & - & - & 2.08 & - & 2.08 & - & - & 66.00 \\
\hline r_04 & 1 & a041 & - & 6.39 & 23,408 & 3.48 & - & 3.48 & 6.00 & 182.00 & 59.61 \\
\hline r_04 & 2 & a044 & - & 0.24 & 24,061 & 3.62 & - & 3.62 & 6.00 & 29.00 & 59.37 \\
\hline r_04 & 3 & a009 & - & 40.22 & 49,262 & 4.17 & - & 4.17 & 8.00 & 210.00 & 19.15 \\
\hline r_04 & 4 & a030 & - & 2.22 & 60,018 & 4.48 & - & 4.48 & 8.00 & 928.00 & 16.93 \\
\hline r_04 & 5 & a068 & - & 1.59 & 63,972 & 4.67 & - & 4.67 & 8.00 & 233.00 & 15.33 \\
\hline r_04 & 6 & a001 & - & 4.27 & 68,130 & 4.87 & - & 4.87 & 8.00 & 1.00 & 11.06 \\
\hline r_04 & 7 & a058 & - & 6.79 & 88,132 & 5.33 & - & 5.33 & 6.00 & 128.00 & 4.27 \\
\hline r_04 & 8 & a055 & - & 4.03 & 92,268 & 5.53 & - & 5.53 & 6.00 & 449.00 & 0.24 \\
\hline r_04 & 9 & c354 & 2,064.53 & - & - & - & 0.22 & 5.76 & - & - & 11.41 \\
\hline r_04 & 10 & a072 & - & 3.57 & 100,838 & 5.81 & - & 6.03 & 6.00 & 28.00 & 7.84 \\
\hline r_04 & 11 & a027 & - & 3.00 & 104,701 & 6.00 & - & 6.22 & 6.00 & 39.00 & 4.84 \\
\hline r_04 & 12 & t01 & - & 4.84 & 122,392 & 6.29 & - & 6.52 & - & - & - \\
\hline
\end{tabular}
C.II Medium case SElectric
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy
consumption
\((k W h)\) & \[
\begin{aligned}
& \text { Distance } \\
& \text { (m) }
\end{aligned}
\] & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_01 & 0 & t01 & - & - & - & 0.67 & - & 0.67 & - & - & 66 \\
\hline r_01 & 1 & a097 & - & 4.22 & - & 2.00 & - & 2.00 & 6.00 & 763.00 & 61.78 \\
\hline r_01 & 2 & a129 & - & 14.92 & 20,015 & 2.82 & - & 2.82 & 8.00 & 569.00 & 46.86 \\
\hline r_01 & 3 & a143 & - & 3.26 & 61,710 & 3.16 & - & 3.16 & 8.00 & 1,130.00 & 43.60 \\
\hline r_01 & 4 & a155 & - & 2.75 & 73,851 & 3.40 & - & 3.40 & 8.00 & 482.00 & 40.85 \\
\hline r_01 & 5 & a153 & - & 21.98 & 80,382 & 3.77 & - & 3.77 & 8.00 & 7.00 & 18.87 \\
\hline r_01 & 6 & a189 & - & 14.84 & 95,187 & 4.82 & - & 4.82 & 8.00 & 897.00 & 4.03 \\
\hline r_01 & 7 & a098 & - & - & 150,118 & 4.95 & - & 4.95 & 6.00 & 101.00 & 4.03 \\
\hline r_01 & 8 & a178 & - & 1.84 & 150,118 & 5.25 & - & 5.25 & 6.00 & 73.00 & 2.19 \\
\hline r_01 & 9 & c409 & 876.11 & - & 160,212 & - & 0.45 & 5.69 & - & - & 24.46 \\
\hline r_01 & 10 & a132 & - & 18.20 & , & 5.64 & - & 6.09 & 6.00 & 52.00 & 6.26 \\
\hline r_01 & 11 & t01 & - & 6.26 & 176,012 & 5.98 & - & 6.42 & - & - & - \\
\hline r_02 & 0 & t01 & - & - & 196,127 & 3.41 & - & 3.41 & - & - & 66 \\
\hline r_02 & 1 & a242 & - & 3.43 & & 4.67 & - & 4.67 & 6.00 & 92.00 & 62.57 \\
\hline r_02 & 2 & a079 & - & 5.87 & 15,567 & 4.85 & - & 4.85 & 6.00 & 813.00 & 56.70 \\
\hline r_02 & 3 & a090 & - & 0.56 & 18,570 & 5.07 & - & 5.07 & 6.00 & 834.00 & 56.14 \\
\hline r_02 & 4 & a133 & - & 0.52 & 24,009 & 5.25 & - & 5.25 & 6.00 & 516.00 & 55.62 \\
\hline r_02 & 5 & a084 & - & 9.77 & 27,225 & 5.51 & - & 5.51 & 6.00 & 175.00 & 45.85 \\
\hline r_02 & 6 & a227 & - & 1.03 & 34,823 & 5.70 & - & 5.70 & 6.00 & 125.00 & 44.82 \\
\hline r_02 & 7 & a130 & - & 1.98 & 38,415 & 5.86 & - & 5.86 & 6.00 & 799.00 & 42.84 \\
\hline r_02 & 8 & a013 & - & 0.71 & 40,074 & 6.00 & - & 6.00 & 6.00 & 54.00 & 42.13 \\
\hline r_02 & 9 & t01 & - & 4.28 & 40,822 & 6.24 & - & 6.24 & - & - & 37.84 \\
\hline r_03 & 0 & t01 & - & - & 55,002 & 0.90 & - & 0.90 & - & - & 66 \\
\hline r_03 & 1 & a081 & - & 1.80 & - & 2.00 & - & 2.00 & 6.00 & 75.00 & 64.20 \\
\hline r_03 & 2 & a127 & - & 2.63 & 6,112 & 2.31 & - & 2.31 & 8.00 & 57.00 & 61.57 \\
\hline r_03 & 3 & a017 & - & 1.80 & 16,635 & 2.46 & - & 2.46 & 8.00 & 29.00 & 59.77 \\
\hline r_03 & 4 & a157 & - & 1.36 & 17,988 & 2.67 & - & 2.67 & 8.00 & 163.00 & 58.41 \\
\hline r_03 & 5 & a128 & - & 0.99 & 23,096 & 2.82 & - & 2.82 & 8.00 & 437.00 & 57.42 \\
\hline r_03 & 6 & a142 & - & 1.24 & 23,871 & 3.03 & - & 3.03 & 8.00 & 158.00 & 56.18 \\
\hline r_03 & 7 & a083 & - & 44.71 & 28,644 & 3.84 & - & 3.84 & 8.00 & 1,288.00 & 11.47 \\
\hline r_03 & 8 & a326 & - & 0.76 & 69,733 & 4.08 & - & 4.08 & 8.00 & 102.00 & 10.72 \\
\hline r_03 & 9 & a110 & - & 8.19 & 76,140 & 4.41 & - & 4.41 & 8.00 & 110.00 & 2.53 \\
\hline r_03 & 10 & t01 & - & 2.09 & 88,570 & 4.56 & - & 4.56 & - & - & 0.43 \\
\hline r_04 & 0 & t01 & - & - & 97,526 & 2.68 & - & 2.68 & - & - & 66 \\
\hline r_04 & 1 & a181 & - & 19.52 & - & 5.00 & - & 5.00 & 13.00 & 1,872.00 & 46.48 \\
\hline r_04 & 2 & a302 & - & 2.52 & 79,355 & 5.28 & - & 5.28 & 13.00 & 55.00 & 43.95 \\
\hline r_04 & 3 & a323 & - & 2.30 & 88,599 & 5.55 & - & 5.55 & 13.00 & 52.00 & 41.66 \\
\hline r_04 & 4 & c608 & 5,345.60 & - & 96,592 & - & 0.73 & 6.28 & - & - & 78.21 \\
\hline r_04 & 5 & a197 & - & 54.04 & - & 6.26 & - & 6.99 & 8.00 & 706.00 & 24.17 \\
\hline r_04 & 6 & a306 & - & 6.73 & 131,476 & 6.82 & - & 7.55 & 8.00 & 989.00 & 17.44 \\
\hline r_04 & 7 & a091 & - & 1.82 & 157,087 & 6.98 & - & 7.71 & 8.00 & 22.00 & 15.62 \\
\hline r_04 & 8 & t01 & - & 15.62 & 158,860 & 8.00 & - & 8.74 & - & - & - \\
\hline r_05 & 0 & t01 & - & - & 220,605 & 0.94 & - & 0.94 & - & - & 66 \\
\hline r_05 & 1 & a225 & - & 2.56 & , & 2.00 & - & 2.00 & 6.00 & 49.00 & 63.44 \\
\hline r_05 & 2 & a199 & - & 10.27 & 3,666 & 2.22 & - & 2.22 & 6.00 & 319.00 & 53.17 \\
\hline r_05 & 3 & a180 & - & 12.29 & 9,234 & 2.47 & - & 2.47 & 6.00 & 464.00 & 40.88 \\
\hline r_05 & 4 & a174 & - & 4.98 & 16,273 & 2.65 & - & 2.65 & 6.00 & 720.00 & 35.90 \\
\hline r_05 & 5 & a177 & - & 0.38 & 19,380 & 2.80 & - & 2.80 & 6.00 & 300.00 & 35.52 \\
\hline r_05 & 6 & a188 & - & 0.81 & 20,337 & 2.98 & - & 2.98 & 6.00 & 73.00 & 34.71 \\
\hline r_05 & 7 & a212 & - & 0.11 & 23,556 & 3.12 & - & 3.12 & 6.00 & 96.00 & 34.60 \\
\hline r_05 & 8 & a195 & - & 4.39 & 24,048 & 3.31 & - & 3.31 & 6.00 & 266.00 & 30.22 \\
\hline r_05 & 9 & a126 & - & 2.15 & 27,600 & 3.47 & - & 3.47 & 6.00 & 82.00 & 28.06 \\
\hline r_05 & 10 & a239 & - & 0.25 & 29,467 & 3.62 & - & 3.62 & 6.00 & 138.00 & 27.81 \\
\hline r_05 & 11 & a101 & - & 0.60 & 30,608 & 3.76 & - & 3.76 & 6.00 & 702.00 & 27.22 \\
\hline r_05 & 12 & t01 & - & 3.63 & 31,157 & 3.93 & - & 3.93 & - & - & 23.59 \\
\hline r_06 & 0 & t01 & - & - & 41,533 & 3.40 & - & 3.40 & - & - & 66 \\
\hline r_06 & 1 & a118 & - & 1.74 & & 4.52 & - & 4.52 & 6.00 & 58.00 & 64.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_06 & 2 & a102 & - & 8.92 & 6,794 & 4.73 & - & 4.73 & 6.00 & 205.00 & 55.35 \\
\hline r_06 & 3 & a123 & - & 0.06 & 11,646 & 4.89 & - & 4.89 & 6.00 & 816.00 & 55.29 \\
\hline r_06 & 4 & a175 & - & 0.90 & 13,441 & 5.05 & - & 5.05 & 6.00 & 144.00 & 54.38 \\
\hline r_06 & 5 & a170 & - & 3.36 & 15,047 & 5.21 & - & 5.21 & 6.00 & 636.00 & 51.02 \\
\hline r_06 & 6 & a103 & - & 4.29 & 17,320 & 5.40 & - & 5.40 & 8.00 & 935.00 & 46.73 \\
\hline r_06 & 7 & a038 & - & 5.91 & 20,668 & 5.63 & - & 5.63 & 6.00 & 8.00 & 40.82 \\
\hline r_06 & 8 & a107 & - & 0.40 & 26,616 & 5.83 & - & 5.83 & 6.00 & 218.00 & 40.43 \\
\hline r_06 & 9 & a200 & - & 0.07 & 30,889 & 6.00 & - & 6.00 & 6.00 & 183.00 & 40.36 \\
\hline r_06 & 10 & t01 & - & 3.60 & 33,336 & 6.17 & - & 6.17 & - & - & 36.76 \\
\hline r_07 & 0 & t01 & - & - & 43,493 & 2.84 & - & 2.84 & - & - & 66 \\
\hline r_07 & 1 & a223 & - & 1.02 & - & 3.91 & - & 3.91 & 6.00 & 141.00 & 64.98 \\
\hline r_07 & 2 & a120 & - & 6.65 & 4,104 & 4.13 & - & 4.13 & 6.00 & 29.00 & 58.34 \\
\hline r_07 & 3 & a119 & - & - & 9,328 & 4.26 & - & 4.26 & 6.00 & 21.00 & 58.34 \\
\hline r_07 & 4 & a253 & - & 0.49 & 9,328 & 4.44 & - & 4.44 & 6.00 & 109.00 & 57.84 \\
\hline r_07 & 5 & a222 & - & 0.15 & 12,461 & 4.57 & - & 4.57 & 6.00 & 306.00 & 57.69 \\
\hline r_07 & 6 & a251 & - & 1.89 & 12,585 & 4.80 & - & 4.80 & 6.00 & 124.00 & 55.81 \\
\hline r_07 & 7 & a036 & - & 5.86 & 18,525 & 5.02 & - & 5.02 & 6.00 & 1.00 & 49.94 \\
\hline r_07 & 8 & a027 & - & 6.60 & 23,899 & 5.25 & - & 5.25 & 6.00 & 20.00 & 43.34 \\
\hline r_07 & 9 & a056 & - & 8.76 & 29,953 & 5.89 & - & 5.89 & 8.00 & 28.00 & 34.58 \\
\hline r_07 & 10 & a316 & - & 2.21 & 60,570 & 6.22 & - & 6.22 & 8.00 & 1,032.00 & 32.37 \\
\hline r_07 & 11 & a179 & - & 0.36 & 72,252 & 6.36 & - & 6.36 & 8.00 & 59.00 & 32.01 \\
\hline r_07 & 12 & a176 & - & 0.99 & 72,725 & 6.51 & - & 6.51 & 8.00 & 36.00 & 31.03 \\
\hline r_07 & 13 & a190 & - & 0.72 & 74,061 & 6.68 & - & 6.68 & 8.00 & 174.00 & 30.30 \\
\hline r_07 & 14 & a152 & - & 1.78 & 76,880 & 6.86 & - & 6.86 & 8.00 & 118.00 & 28.53 \\
\hline r_07 & 15 & a086 & - & 8.86 & 79,515 & 7.22 & - & 7.22 & 8.00 & 42.00 & 19.66 \\
\hline r_07 & 16 & a115 & - & 8.90 & 93,411 & 8.00 & - & 8.00 & 8.00 & 89.00 & 10.77 \\
\hline r_07 & 17 & t01 & - & 2.96 & 132,416 & 8.27 & - & 8.27 & - & - & 7.81 \\
\hline r_08 & 0 & t01 & - & - & 148,411 & 2.35 & - & 2.35 & - & - & 66 \\
\hline r_08 & 1 & a108 & - & 3.29 & - & 3.56 & - & 3.56 & 8.00 & 1,029.00 & 62.71 \\
\hline r_08 & 2 & a248 & - & 2.01 & 13,018 & 3.77 & - & 3.77 & 6.00 & 56.00 & 60.70 \\
\hline r_08 & 3 & a226 & - & 6.63 & 17,413 & 3.95 & - & 3.95 & 6.00 & 102.00 & 54.07 \\
\hline r_08 & 4 & a191 & - & 1.42 & 20,657 & 4.09 & - & 4.09 & 6.00 & 194.00 & 52.65 \\
\hline r_08 & 5 & a229 & - & 1.09 & 21,364 & 4.33 & - & 4.33 & 6.00 & 86.00 & 51.56 \\
\hline r_08 & 6 & a216 & - & 6.85 & 28,071 & 4.52 & - & 4.52 & 8.00 & 929.00 & 44.71 \\
\hline r_08 & 7 & a234 & - & 0.47 & 31,626 & 4.69 & - & 4.69 & 8.00 & 112.00 & 44.25 \\
\hline r_08 & 8 & a249 & - & 1.51 & 33,571 & 4.91 & - & 4.91 & 6.00 & 124.00 & 42.73 \\
\hline r_08 & 9 & a136 & - & 10.83 & 39,057 & 5.15 & - & 5.15 & 6.00 & 279.00 & 31.90 \\
\hline r_08 & 10 & a139 & - & 0.16 & 45,970 & 5.30 & - & 5.30 & 6.00 & 34.00 & 31.75 \\
\hline r_08 & 11 & a238 & - & 1.80 & 46,996 & 5.58 & - & 5.58 & 6.00 & 65.00 & 29.95 \\
\hline r_08 & 12 & a244 & - & 0.17 & 55,883 & 5.80 & - & 5.80 & 6.00 & 96.00 & 29.78 \\
\hline r_08 & 13 & a135 & - & 6.25 & 61,193 & 6.00 & - & 6.00 & 6.00 & 738.00 & 23.53 \\
\hline r_08 & 14 & t01 & - & 2.89 & 65,591 & 6.17 & - & 6.17 & - & - & 20.64 \\
\hline r_26 & 0 & t01 & - & - & 75,808 & 2.35 & - & 2.35 & & - & 66 \\
\hline r_26 & 1 & a218 & - & 1.72 & & 3.46 & - & 3.46 & 6.00 & 413.00 & 64.28 \\
\hline r_26 & 2 & t01 & - & 1.85 & 7,009 & 3.58 & - & 3.58 & - & - & 62.43 \\
\hline r_09 & 0 & t01 & - & - & 14,018 & 0.93 & - & 0.93 & & - & 66 \\
\hline r_09 & 1 & a214 & - & 0.98 & - & 2.00 & - & 2.00 & 6.00 & 336.00 & 65.02 \\
\hline r_09 & 2 & a193 & - & 0.99 & 4,363 & 2.14 & - & 2.14 & 6.00 & 86.00 & 64.04 \\
\hline r_09 & 3 & a122 & - & 9.24 & 4,833 & 2.34 & - & 2.34 & 6.00 & 777.00 & 54.80 \\
\hline r_09 & 4 & a124 & - & - & 9,283 & 2.47 & - & 2.47 & 6.00 & 61.00 & 54.80 \\
\hline r_09 & 5 & a168 & - & 7.80 & 9,283 & 3.04 & - & 3.04 & 8.00 & 570.00 & 47.00 \\
\hline r_09 & 6 & a329 & - & 0.83 & 35,399 & 3.20 & - & 3.20 & 8.00 & 301.00 & 46.17 \\
\hline r_09 & 7 & a035 & - & 0.30 & 37,518 & 3.34 & - & 3.34 & 8.00 & 39.00 & 45.87 \\
\hline r_09 & 8 & a203 & - & 1.12 & 37,710 & 3.53 & - & 3.53 & 8.00 & 279.00 & 44.75 \\
\hline r_09 & 9 & a192 & - & 3.10 & 41,852 & 3.70 & - & 3.70 & 8.00 & 130.00 & 41.66 \\
\hline r_09 & 10 & a077 & - & 39.96 & 43,987 & 4.30 & - & 4.30 & 6.00 & 655.00 & 1.69 \\
\hline r_09 & 11 & a224 & - & 1.54 & 72,335 & 4.55 & - & 4.55 & 6.00 & 264.00 & 0.15 \\
\hline r_09 & 12 & c008 & 674.61 & - & 79,226 & - & 0.22 & 4.76 & - & - & 10.98 \\
\hline r_09 & 13 & a236 & - & 1.87 & - & 4.78 & - & 5.00 & 6.00 & 221.00 & 9.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_09 & 14 & a121 & - & 7.35 & 85,632 & 5.03 & - & 5.25 & 6.00 & 51.00 & 1.76 \\
\hline r_09 & 15 & t01 & - & 1.76 & 92,578 & 5.19 & - & 5.40 & - & - & - \\
\hline r_10 & 0 & t01 & - & - & 101,917 & 0.64 & - & 0.64 & - & - & 66 \\
\hline r_10 & 1 & a145 & - & 5.50 & , & 2.00 & - & 2.00 & 8.00 & 460.00 & 60.50 \\
\hline r_10 & 2 & a319 & - & 2.97 & 21,889 & 2.27 & - & 2.27 & 8.00 & 217.00 & 57.53 \\
\hline r_10 & 3 & a208 & - & 15.61 & 30,273 & 2.54 & - & 2.54 & 8.00 & 546.00 & 41.92 \\
\hline r_10 & 4 & a206 & - & 4.77 & 38,743 & 2.72 & - & 2.72 & 8.00 & 182.00 & 37.16 \\
\hline r_10 & 5 & a150 & - & 2.98 & 41,591 & 2.88 & - & 2.88 & 8.00 & 1,560.00 & 34.17 \\
\hline r_10 & 6 & a237 & - & 2.96 & 43,434 & 3.19 & & 3.19 & 8.00 & 240.00 & 31.21 \\
\hline r_10 & 7 & a230 & - & 19.58 & 54,228 & 3.63 & & 3.63 & 6.00 & 52.00 & 11.64 \\
\hline r_10 & 8 & a228 & - & 8.59 & 72,659 & 3.89 & & 3.89 & 6.00 & 160.00 & 3.05 \\
\hline r_10 & 9 & a104 & - & 2.70 & 80,869 & 4.07 & & 4.07 & 6.00 & 103.00 & 0.35 \\
\hline r_10 & 10 & c023 & 460.01 & - & 83,580 & & 0.01 & 4.08 & & & 0.83 \\
\hline r_10 & 11 & t01 & - & 0.83 & & 4.14 & & 4.15 & & - & - \\
\hline r_11 & 0 & t01 & - & & 88,119 & 2.43 & & 2.43 & & - & 66 \\
\hline r_11 & 1 & a144 & - & 22.62 & & 5.00 & & 5.00 & 13.00 & 84.00 & 43.38 \\
\hline r_11 & 2 & a125 & - & 12.35 & 94,432 & 5.24 & & 5.24 & 13.00 & 1,307.00 & 31.03 \\
\hline r_11 & 3 & a096 & - & 29.47 & 100,795 & 5.69 & & 5.69 & 8.00 & 370.00 & 1.56 \\
\hline r_11 & 4 & c670 & 125.84 & - & 119,965 & & 0.43 & 6.11 & & & 22.94 \\
\hline r_11 & 5 & a167 & - & 2.41 & & 6.00 & & 6.43 & 8.00 & 66.00 & 20.53 \\
\hline r_11 & 6 & a328 & - & 1.76 & 130,904 & 6.19 & & 6.62 & 8.00 & 268.00 & 18.77 \\
\hline r_11 & 7 & a088 & - & 6.17 & 134,485 & 6.40 & & 6.82 & 8.00 & 92.00 & 12.60 \\
\hline r_11 & 8 & c666 & 5,738.15 & - & 139,155 & & 1.32 & 8.14 & & & 78.49 \\
\hline r_11 & 9 & a075 & - & 65.40 & & 7.37 & & 9.11 & 13.00 & 820.00 & 13.09 \\
\hline r_11 & 10 & a028 & - & 1.70 & 189,785 & 7.53 & & 9.27 & 13.00 & 89.00 & 11.39 \\
\hline r_11 & 11 & a322 & - & 11.39 & 191,420 & 8.42 & & 10.16 & 13.00 & 287.00 & - \\
\hline r_11 & 12 & c671 & 1,580.23 & - & 237,048 & & 0.58 & 10.74 & & & 28.77 \\
\hline r_11 & 13 & t01 & - & 28.77 & & 10.38 & & 12.71 & & - & - \\
\hline r_12 & 0 & t01 & - & - & 355,085 & 8.05 & & 8.05 & & - & 66 \\
\hline r_12 & 1 & a318 & - & 1.71 & - & 9.19 & & 9.19 & 10.00 & 308.00 & 64.29 \\
\hline r_12 & 2 & a296 & - & 4.13 & 8,422 & 9.38 & & 9.38 & 10.00 & 74.00 & 60.17 \\
\hline r_12 & 3 & a313 & - & 0.56 & 11,831 & 9.54 & & 9.54 & 10.00 & 118.00 & 59.61 \\
\hline r_12 & 4 & a280 & - & 7.94 & 13,881 & 9.79 & & 9.79 & 10.00 & 88.00 & 51.67 \\
\hline r_12 & 5 & a058 & - & 5.55 & 20,776 & 10.00 & & 10.00 & 15.00 & 16.00 & 46.13 \\
\hline r_12 & 6 & a019 & - & 8.37 & 25,708 & 10.25 & & 10.25 & 15.00 & 19.00 & 37.75 \\
\hline r_12 & 7 & a320 & - & 0.54 & 33,190 & 10.49 & & 10.49 & 15.00 & 232.00 & 37.22 \\
\hline r_12 & 8 & a209 & - & 1.53 & 39,592 & 10.65 & & 10.65 & 15.00 & 232.00 & 35.68 \\
\hline r_12 & 9 & a072 & - & 0.56 & 41,064 & 10.79 & & 10.79 & 15.00 & 36.00 & 35.12 \\
\hline r_12 & 10 & a022 & - & 0.31 & 41,644 & 10.92 & & 10.92 & 15.00 & 60.00 & 34.81 \\
\hline r_12 & 11 & a310 & - & 0.31 & 41,963 & 11.09 & & 11.09 & 15.00 & 51.00 & 34.51 \\
\hline r_12 & 12 & a261 & - & 1.81 & 44,135 & 11.25 & & 11.25 & 15.00 & 84.00 & 32.69 \\
\hline r_12 & 13 & a037 & - & 0.14 & 46,097 & 11.38 & & 11.38 & 15.00 & 16.00 & 32.55 \\
\hline r_12 & 14 & a235 & - & 0.33 & 46,252 & 11.54 & & 11.54 & 15.00 & 29.00 & 32.23 \\
\hline r_12 & 15 & a052 & - & 0.65 & 47,752 & 11.68 & & 11.68 & 15.00 & 15.00 & 31.58 \\
\hline r_12 & 16 & a217 & - & 0.35 & 48,484 & 11.83 & & 11.83 & 15.00 & 112.00 & 31.23 \\
\hline r_12 & 17 & a076 & - & 2.23 & 49,504 & 12.00 & & 12.00 & 15.00 & 3.00 & 29.00 \\
\hline r_12 & 18 & a002 & - & 0.75 & 52,135 & 12.15 & & 12.15 & 15.00 & 30.00 & 28.25 \\
\hline r_12 & 19 & a008 & - & 0.18 & 53,027 & 12.28 & & 12.28 & 15.00 & 93.00 & 28.07 \\
\hline r_12 & 20 & a039 & - & 0.34 & 53,482 & 12.43 & & 12.43 & 15.00 & 5.00 & 27.73 \\
\hline r_12 & 21 & a196 & - & 0.15 & 54,288 & 12.56 & & 12.56 & 15.00 & 691.00 & 27.58 \\
\hline r_12 & 22 & t01 & - & 2.45 & 54,805 & 12.71 & & 12.71 & & - & 25.12 \\
\hline r_13 & 0 & t01 & - & - & 63,227 & 8.11 & & 8.11 & & - & 66 \\
\hline r_13 & 1 & a205 & - & 3.96 & - & 9.39 & & 9.39 & 15.00 & 150.00 & 62.04 \\
\hline r_13 & 2 & a286 & - & 4.88 & 16,541 & 9.70 & & 9.70 & 15.00 & 199.00 & 57.16 \\
\hline r_13 & 3 & a025 & - & 31.39 & 27,840 & 10.08 & & 10.08 & 15.00 & 75.00 & 25.77 \\
\hline r_13 & 4 & a029 & - & 12.66 & 42,643 & 10.86 & & 10.86 & 15.00 & 90.00 & 13.10 \\
\hline r_13 & 5 & a149 & - & 3.01 & 81,629 & 11.25 & & 11.25 & 15.00 & 119.00 & 10.09 \\
\hline r_13 & 6 & a166 & - & 2.67 & 97,238 & 11.47 & & 11.47 & 15.00 & 118.00 & 7.43 \\
\hline r_13 & 7 & c194 & 1,167.70 & - & 102,432 & & 1.00 & 12.46 & & & 57.21 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_13 & 8 & a161 & - & 43.95 & & 11.96 & & 12.96 & 15.00 & 1,226.00 & 13.26 \\
\hline r_13 & 9 & a148 & - & 13.26 & 124,444 & 12.23 & & 13.23 & 15.00 & 322.00 & - \\
\hline r_13 & 10 & c482 & 5,084.13 & - & 132,637 & & 1.08 & 14.31 & & & 54.24 \\
\hline r_13 & 11 & a160 & - & 5.64 & & 12.74 & & 14.82 & 15.00 & 79.00 & 48.60 \\
\hline r_13 & 12 & a171 & - & 2.15 & 155,270 & 12.97 & & 15.05 & 15.00 & 213.00 & 46.45 \\
\hline r_13 & 13 & a134 & - & 1.91 & 161,278 & 13.12 & & 15.20 & 15.00 & 839.00 & 44.54 \\
\hline r_13 & 14 & a099 & - & 21.60 & 162,611 & 13.56 & & 15.64 & 15.00 & 27.00 & 22.95 \\
\hline r_13 & 15 & a297 & - & 3.45 & 181,071 & 13.91 & & 15.99 & 15.00 & 71.00 & 19.50 \\
\hline r_13 & 16 & a137 & - & 1.31 & 194,195 & 14.06 & - & 16.14 & 15.00 & 124.00 & 18.19 \\
\hline r_13 & 17 & a082 & - & 12.35 & 195,349 & 14.37 & - & 16.45 & 15.00 & 14.00 & 5.84 \\
\hline r_13 & 18 & a005 & - & 4.67 & 206,560 & 14.57 & - & 16.65 & 15.00 & 74.00 & 1.17 \\
\hline r_13 & 19 & a309 & - & 1.17 & 210,817 & 14.76 & - & 16.84 & 15.00 & 29.00 & 0.00 \\
\hline r_13 & 20 & c035 & 146.56 & & 214,340 & & 0.16 & 17.01 & & - & 8.12 \\
\hline r_13 & 21 & a070 & - & 6.89 & - & 15.00 & - & 17.24 & 15.00 & 38.00 & 1.23 \\
\hline r_13 & 22 & t01 & - & 1.23 & 220,808 & 15.13 & - & 17.37 & - & - & - \\
\hline r_14 & 0 & t01 & - & - & 228,343 & 6.49 & - & 6.49 & - & - & 66 \\
\hline r_14 & 1 & a049 & - & 8.12 & & 8.00 & - & 8.00 & 15.00 & 12.00 & 57.88 \\
\hline r_14 & 2 & a262 & - & 4.81 & 30,436 & 8.35 & - & 8.35 & 15.00 & 64.00 & 53.07 \\
\hline r_14 & 3 & a207 & - & 22.13 & 43,840 & 8.64 & - & 8.64 & 15.00 & 364.00 & 30.94 \\
\hline r_14 & 4 & a146 & - & 2.67 & 53,352 & 8.79 & - & 8.79 & 15.00 & 71.00 & 28.27 \\
\hline r_14 & 5 & a031 & - & 13.23 & 54,558 & 9.02 & - & 9.02 & 15.00 & 47.00 & 15.04 \\
\hline r_14 & 6 & a194 & - & 0.32 & 60,596 & 9.18 & - & 9.18 & 15.00 & 258.00 & 14.72 \\
\hline r_14 & 7 & a138 & - & 4.53 & 62,185 & 9.35 & - & 9.35 & 15.00 & 793.00 & 10.19 \\
\hline r_14 & 8 & a006 & - & 8.06 & 64,344 & 9.55 & - & 9.55 & 15.00 & 242.00 & 2.13 \\
\hline r_14 & 9 & a140 & - & 0.53 & 68,695 & 9.77 & - & 9.77 & 15.00 & 644.00 & 1.60 \\
\hline r_14 & 10 & a162 & - & - & 74,116 & 9.90 & - & 9.90 & 15.00 & 49.00 & 1.60 \\
\hline r_14 & 11 & a154 & - & - & 74,116 & 10.03 & - & 10.03 & 15.00 & 18.00 & 1.60 \\
\hline r_14 & 12 & c410 & 4,406.02 & - & 74,116 & - & 1.02 & 11.05 & - & - & 52.48 \\
\hline r_14 & 13 & a113 & & 1.75 & - & 10.18 & - & 11.19 & 15.00 & 1,040.00 & 50.73 \\
\hline r_14 & 14 & a164 & - & 1.54 & 75,238 & 10.36 & - & 11.38 & 15.00 & 37.00 & 49.19 \\
\hline r_14 & 15 & a151 & - & 49.19 & 78,330 & 11.16 & - & 12.17 & 15.00 & 208.00 & - \\
\hline r_14 & 16 & c441 & 7,219.33 & - & 118,442 & - & 0.94 & 13.12 & - & - & 47.23 \\
\hline r_14 & 17 & a007 & - & 45.13 & - & 11.93 & - & 13.90 & 15.00 & 40.00 & 2.10 \\
\hline r_14 & 18 & a030 & - & 0.22 & 157,278 & 12.18 & - & 14.15 & 15.00 & 72.00 & 1.88 \\
\hline r_14 & 19 & a294 & - & 1.88 & 164,523 & 12.45 & - & 14.41 & 15.00 & 44.00 & -,,,0.00 \\
\hline r_14 & 20 & c349 & 2,867.98 & - & 172,574 & - & 0.22 & 14.63 & - & - & 10.78 \\
\hline r_14 & 21 & t01 & - & 10.78 & - & 13.19 & - & 15.37 & - & - & - \\
\hline r_15 & 0 & t01 & - & - & 217,286 & 7.96 & - & 7.96 & - & - & 66 \\
\hline r_15 & 1 & a284 & - & 3.84 & - & 9.29 & - & 9.29 & 10.00 & 254.00 & 62.16 \\
\hline r_15 & 2 & a295 & - & 1.85 & 19,653 & 9.48 & - & 9.48 & 10.00 & 889.00 & 60.31 \\
\hline r_15 & 3 & a169 & - & 1.45 & 23,539 & 9.63 & - & 9.63 & 10.00 & 213.00 & 58.86 \\
\hline r_15 & 4 & a259 & - & 1.13 & 24,660 & 9.85 & - & 9.85 & 10.00 & 149.00 & 57.72 \\
\hline r_15 & 5 & a275 & - & 0.53 & 29,909 & 10.00 & - & 10.00 & 10.00 & 229.00 & 57.19 \\
\hline r_15 & 6 & a046 & - & 11.47 & 31,333 & 10.30 & - & 10.30 & 15.00 & 16.00 & 45.72 \\
\hline r_15 & 7 & a210 & - & 0.38 & 41,634 & 10.51 & - & 10.51 & 15.00 & 95.00 & 45.34 \\
\hline r_15 & 8 & a041 & - & 4.96 & 46,179 & 10.71 & - & 10.71 & 15.00 & 18.00 & 40.38 \\
\hline r_15 & 9 & a024 & - & 5.28 & 50,773 & 10.93 & - & 10.93 & 15.00 & 67.00 & 35.10 \\
\hline r_15 & 10 & a273 & - & 1.28 & 55,691 & 11.14 & - & 11.14 & 15.00 & 632.00 & 33.82 \\
\hline r_15 & 11 & a109 & - & 2.56 & 60,594 & 11.32 & - & 11.32 & 15.00 & 44.00 & 31.26 \\
\hline r_15 & 12 & a298 & - & 0.15 & 63,576 & 11.48 & - & 11.48 & 15.00 & 18.00 & 31.10 \\
\hline r_15 & 13 & a057 & - & 4.57 & 65,608 & 11.70 & - & 11.70 & 15.00 & 6.00 & 26.53 \\
\hline r_15 & 14 & a201 & - & 0.18 & 71,058 & 11.85 & - & 11.85 & 15.00 & 133.00 & 26.35 \\
\hline r_15 & 15 & a034 & - & 4.21 & 72,189 & 12.07 & - & 12.07 & 15.00 & 55.00 & 22.14 \\
\hline r_15 & 16 & a060 & - & 1.24 & 77,472 & 12.28 & - & 12.28 & 15.00 & 50.00 & 20.90 \\
\hline r_15 & 17 & t01 & - & 5.99 & 82,411 & 12.61 & - & 12.61 & - & - & 14.92 \\
\hline r_16 & 0 & t01 & - & - & 101,961 & 7.60 & - & 7.60 & - & . & 66 \\
\hline r_16 & 1 & a283 & - & 2.40 & , & 8.79 & - & 8.79 & 10.00 & 180.00 & 63.60 \\
\hline r_16 & 2 & a213 & - & 1.37 & 11,055 & 8.93 & & 8.93 & 10.00 & 149.00 & 62.23 \\
\hline r_16 & 3 & a315 & - & 1.05 & 11,956 & 9.13 & - & 9.13 & 10.00 & 80.00 & 61.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & \begin{tabular}{l}
Distance \\
(m)
\end{tabular} & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_16 & 4 & a185 & - & 1.87 & 16,346 & 9.29 & - & 9.29 & 10.00 & 70.00 & 59.30 \\
\hline r_16 & 5 & a172 & - & 4.11 & 17,634 & 9.46 & - & 9.46 & 10.00 & 848.00 & 55.19 \\
\hline r_16 & 6 & a021 & - & 3.61 & 20,503 & 9.64 & - & 9.64 & 10.00 & 30.00 & 51.58 \\
\hline r_16 & 7 & a078 & - & 3.68 & 23,584 & 10.00 & - & 10.00 & 10.00 & 92.00 & 47.90 \\
\hline r_16 & 8 & a066 & - & 5.45 & 37,084 & 10.21 & - & 10.21 & 15.00 & 7.00 & 42.45 \\
\hline r_16 & 9 & a204 & - & 1.16 & 41,893 & 10.39 & - & 10.39 & 15.00 & 314.00 & 41.29 \\
\hline r_16 & 10 & a055 & - & 2.94 & 44,679 & 10.56 & - & 10.56 & 15.00 & 20.00 & 38.35 \\
\hline r_16 & 11 & a232 & - & 2.15 & 47,523 & 10.81 & - & 10.81 & 15.00 & 141.00 & 36.20 \\
\hline r_16 & 12 & a047 & - & 21.63 & 54,370 & 11.30 & - & 11.30 & 15.00 & 66.00 & 14.57 \\
\hline r_16 & 13 & a245 & - & 2.08 & 76,334 & 11.52 & - & 11.52 & 15.00 & 156.00 & 12.48 \\
\hline r_16 & 14 & a105 & - & 4.09 & 81,274 & 11.72 & - & 11.72 & 15.00 & 58.00 & 8.39 \\
\hline r_16 & 15 & a051 & - & 5.11 & 85,740 & 11.95 & - & 11.95 & 15.00 & 15.00 & 3.28 \\
\hline r_16 & 16 & a211 & - & 0.18 & 91,426 & 12.13 & - & 12.13 & 15.00 & 85.00 & 3.10 \\
\hline r_16 & 17 & a061 & - & 2.70 & 94,498 & 12.31 & - & 12.31 & 15.00 & 43.00 & 0.40 \\
\hline r_16 & 18 & a065 & - & 0.07 & 97,609 & 12.44 & - & 12.44 & 15.00 & 20.00 & 0.33 \\
\hline r_16 & 19 & c316 & 3,902.00 & - & 97,654 & - & 0.30 & 12.74 & - & - & 15.13 \\
\hline r_16 & 20 & a042 & & 8.13 & - & 12.73 & - & 13.03 & 15.00 & 18.00 & 7.00 \\
\hline r_16 & 21 & a184 & - & 0.17 & 107,239 & 12.87 & - & 13.16 & 15.00 & 65.00 & 6.83 \\
\hline r_16 & 22 & a001 & - & 1.01 & 107,759 & 13.02 & - & 13.31 & 15.00 & 80.00 & 5.81 \\
\hline r_16 & 23 & a198 & - & 1.27 & 108,992 & 13.22 & - & 13.51 & 15.00 & 73.00 & 4.55 \\
\hline r_16 & 24 & a220 & - & 1.31 & 113,016 & 13.43 & - & 13.72 & 15.00 & 148.00 & 3.24 \\
\hline r_16 & 25 & t01 & - & 3.24 & 117,875 & 13.63 & - & 13.92 & - & - & - \\
\hline r_17 & 0 & t01 & - & - & 129,820 & 7.73 & - & 7.73 & - & - & 66 \\
\hline r_17 & 1 & a304 & - & 1.72 & , & 8.87 & - & 8.87 & 10.00 & 412.00 & 64.28 \\
\hline r_17 & 2 & a308 & - & 0.11 & 8,453 & 9.00 & - & 9.00 & 10.00 & 151.00 & 64.17 \\
\hline r_17 & 3 & a282 & - & 0.22 & 8,645 & 9.13 & - & 9.13 & 10.00 & 146.00 & 63.95 \\
\hline r_17 & 4 & a299 & - & 0.84 & 8,838 & 9.33 & - & 9.33 & 10.00 & 157.00 & 63.10 \\
\hline r_17 & 5 & a221 & - & 3.64 & 12,720 & 9.52 & - & 9.52 & 10.00 & 94.00 & 59.47 \\
\hline r_17 & 6 & a325 & - & 0.54 & 16,189 & 9.68 & - & 9.68 & 10.00 & 107.00 & 58.92 \\
\hline r_17 & 7 & a288 & - & 2.08 & 18,387 & 9.85 & - & 9.85 & 10.00 & 375.00 & 56.84 \\
\hline r_17 & 8 & a141 & - & 1.17 & 20,499 & 10.00 & - & 10.00 & 15.00 & 149.00 & 55.67 \\
\hline r_17 & 9 & a014 & - & 3.13 & 21,846 & 10.19 & - & 10.19 & 15.00 & 14.00 & 52.54 \\
\hline r_17 & 10 & a252 & - & 0.32 & 25,640 & 10.38 & - & 10.38 & 15.00 & 102.00 & 52.22 \\
\hline r_17 & 11 & a073 & - & 0.57 & 28,950 & 10.52 & - & 10.52 & 15.00 & 13.00 & 51.65 \\
\hline r_17 & 12 & a069 & - & 0.49 & 29,668 & 10.66 & - & 10.66 & 15.00 & 2.00 & 51.16 \\
\hline r_17 & 13 & a043 & - & 0.06 & 30,291 & 10.79 & - & 10.79 & 15.00 & 2.00 & 51.10 \\
\hline r_17 & 14 & a269 & - & 0.01 & 30,374 & 10.93 & - & 10.93 & 15.00 & 150.00 & 51.09 \\
\hline r_17 & 15 & a062 & - & 0.31 & 30,754 & 11.07 & - & 11.07 & 15.00 & 30.00 & 50.78 \\
\hline r_17 & 16 & a260 & - & 0.12 & 31,177 & 11.20 & - & 11.20 & 15.00 & 131.00 & 50.65 \\
\hline r_17 & 17 & a131 & - & 0.23 & 31,644 & 11.34 & - & 11.34 & 15.00 & 274.00 & 50.43 \\
\hline r_17 & 18 & a054 & - & 1.23 & 31,971 & 11.50 & - & 11.50 & 15.00 & 19.00 & 49.20 \\
\hline r_17 & 19 & t01 & - & 2.49 & 34,010 & 11.65 & - & 11.65 & - & - & 46.71 \\
\hline r_18 & 0 & t01 & - & - & 42,864 & 7.93 & - & 7.93 & - & - & 66 \\
\hline r_18 & 1 & a085 & - & 2.08 & - & 9.05 & - & 9.05 & 10.00 & 16.00 & 63.92 \\
\hline r_18 & 2 & a186 & - & 2.34 & 7,213 & 9.35 & - & 9.35 & 10.00 & 11.00 & 61.58 \\
\hline r_18 & 3 & a111 & - & 4.19 & 17,378 & 9.53 & - & 9.53 & 10.00 & 629.00 & 57.39 \\
\hline r_18 & 4 & a292 & - & 0.04 & 20,117 & 9.68 & - & 9.68 & 10.00 & 18.00 & 57.35 \\
\hline r_18 & 5 & a289 & - & 3.99 & 21,200 & 9.86 & - & 9.86 & 10.00 & 555.00 & 53.36 \\
\hline r_18 & 6 & a010 & - & 0.97 & 24,204 & 10.00 & - & 10.00 & 15.00 & 50.00 & 52.39 \\
\hline r_18 & 7 & a023 & - & 0.20 & 25,045 & 10.17 & - & 10.17 & 15.00 & 32.00 & 52.19 \\
\hline r_18 & 8 & a095 & - & 0.02 & 27,456 & 10.31 & - & 10.31 & 15.00 & 609.00 & 52.17 \\
\hline r_18 & 9 & a094 & - & - & 28,104 & 10.44 & - & 10.44 & 15.00 & 107.00 & 52.17 \\
\hline r_18 & 10 & a089 & - & 0.18 & 28,104 & 10.57 & - & 10.57 & 15.00 & 30.00 & 51.99 \\
\hline r_18 & 11 & a219 & - & 0.76 & 28,301 & 10.74 & - & 10.74 & 15.00 & 88.00 & 51.23 \\
\hline r_18 & 12 & a263 & - & 0.03 & 30,232 & 10.87 & - & 10.87 & 15.00 & 62.00 & 51.20 \\
\hline r_18 & 13 & a183 & - & 2.80 & 30,426 & 11.05 & - & 11.05 & 15.00 & 253.00 & 48.40 \\
\hline r_18 & 14 & a048 & - & 2.89 & 33,698 & 11.25 & - & 11.25 & 15.00 & 34.00 & 45.51 \\
\hline r_18 & 15 & a011 & - & 5.21 & 37,408 & 11.49 & - & 11.49 & 15.00 & 84.00 & 40.30 \\
\hline r_18 & 16 & a112 & - & 0.85 & 44,200 & 11.66 & - & 11.66 & 15.00 & 83.00 & 39.45 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_18 & 17 & a040 & - & 3.36 & 46,722 & 11.87 & - & 11.87 & 15.00 & 26.00 & 36.09 \\
\hline r_18 & 18 & t01 & - & 0.02 & 51,414 & 11.91 & - & 11.91 & - & - & 36.07 \\
\hline r_19 & 0 & t01 & - & - & 53,901 & 7.65 & - & 7.65 & - & - & 66 \\
\hline r_19 & 1 & a277 & - & 2.47 & - & 8.83 & - & 8.83 & 10.00 & 184.00 & 63.53 \\
\hline r_19 & 2 & a116 & - & 1.07 & 10,801 & 8.98 & - & 8.98 & 10.00 & 108.00 & 62.45 \\
\hline r_19 & 3 & a240 & - & 4.05 & 11,810 & 9.41 & - & 9.41 & 15.00 & 47.00 & 58.40 \\
\hline r_19 & 4 & a012 & - & 1.92 & 30,093 & 9.57 & - & 9.57 & 15.00 & 138.00 & 56.48 \\
\hline r_19 & 5 & a182 & - & 4.76 & 31,984 & 10.00 & - & 10.00 & 15.00 & 186.00 & 51.72 \\
\hline r_19 & 6 & a020 & - & 0.88 & 49,826 & 10.15 & - & 10.15 & 15.00 & 50.00 & 50.85 \\
\hline r_19 & 7 & a018 & - & 1.71 & 50,785 & 10.31 & - & 10.31 & 15.00 & 47.00 & 49.13 \\
\hline r_19 & 8 & a080 & - & 0.55 & 52,687 & 10.48 & - & 10.48 & 15.00 & 793.00 & 48.58 \\
\hline r_19 & 9 & a241 & - & 2.15 & 54,986 & 10.73 & - & 10.73 & 15.00 & 137.00 & 46.43 \\
\hline r_19 & 10 & a276 & - & 0.68 & 62,371 & 10.95 & - & 10.95 & 15.00 & 323.00 & 45.75 \\
\hline r_19 & 11 & t01 & - & 0.30 & 67,547 & 10.99 & - & 10.99 & - & - & 45.45 \\
\hline r_20 & 0 & t01 & - & - & 70,337 & 8.64 & - & 8.64 & - & - & 66 \\
\hline r_20 & 1 & a312 & - & 2.33 & - & 9.86 & - & 9.86 & 10.00 & 111.00 & 63.67 \\
\hline r_20 & 2 & a285 & - & 0.10 & 13,110 & 10.00 & - & 10.00 & 15.00 & 280.00 & 63.56 \\
\hline r_20 & 3 & a254 & - & 0.02 & 13,797 & 10.13 & - & 10.13 & 15.00 & 102.00 & 63.55 \\
\hline r_20 & 4 & t01 & - & 2.82 & 14,065 & 10.35 & - & 10.35 & - & - & 60.72 \\
\hline r_21 & 0 & t01 & - & - & 26,984 & 7.82 & - & 7.82 & - & - & 66 \\
\hline r_21 & 1 & a300 & - & 1.34 & & 9.00 & - & 9.00 & 10.00 & 94.00 & 64.66 \\
\hline r_21 & 2 & a314 & - & 0.14 & 10,799 & 9.15 & - & 9.15 & 10.00 & 5.00 & 64.52 \\
\hline r_21 & 3 & a092 & - & 0.94 & 11,637 & 9.29 & - & 9.29 & 10.00 & 481.00 & 63.59 \\
\hline r_21 & 4 & a256 & - & 0.10 & 12,384 & 9.43 & - & 9.43 & 10.00 & 70.00 & 63.49 \\
\hline r_21 & 5 & a267 & - & 0.18 & 12,876 & 9.57 & - & 9.57 & 10.00 & 59.00 & 63.31 \\
\hline r_21 & 6 & a324 & - & 0.43 & 13,563 & 9.73 & - & 9.73 & 10.00 & 508.00 & 62.88 \\
\hline r_21 & 7 & a327 & - & - & 15,243 & 9.86 & - & 9.86 & 10.00 & 152.00 & 62.88 \\
\hline r_21 & 8 & a281 & - & 0.68 & 15,243 & 10.00 & - & 10.00 & 15.00 & 109.00 & 62.20 \\
\hline r_21 & 9 & a044 & - & 1.29 & 16,029 & 10.16 & - & 10.16 & 15.00 & 26.00 & 60.91 \\
\hline r_21 & 10 & a004 & - & 0.12 & 17,590 & 10.29 & - & 10.29 & 15.00 & 74.00 & 60.79 \\
\hline r_21 & 11 & a106 & - & 0.73 & 17,739 & 10.46 & - & 10.46 & 15.00 & 60.00 & 60.06 \\
\hline r_21 & 12 & a158 & - & 0.12 & 20,061 & 10.61 & - & 10.61 & 15.00 & 625.00 & 59.94 \\
\hline r_21 & 13 & a093 & - & 0.44 & 21,273 & 10.75 & - & 10.75 & 15.00 & 15.00 & 59.50 \\
\hline r_21 & 14 & t01 & - & 3.83 & 22,025 & 10.93 & - & 10.93 & - & - & 55.67 \\
\hline r_22 & 0 & t01 & - & - & 32,905 & 8.28 & - & 8.28 & - & - & 66 \\
\hline r_22 & 1 & a317 & - & 2.81 & - & 9.50 & - & 9.50 & 10.00 & 899.00 & 63.19 \\
\hline r_22 & 2 & a287 & - & 3.56 & 13,000 & 9.69 & - & 9.69 & 10.00 & 143.00 & 59.62 \\
\hline r_22 & 3 & a265 & - & 1.46 & 16,457 & 9.84 & - & 9.84 & 10.00 & 136.00 & 58.16 \\
\hline r_22 & 4 & a059 & - & 1.54 & 17,939 & 10.00 & - & 10.00 & 15.00 & 6.00 & 56.62 \\
\hline r_22 & 5 & a270 & - & 1.20 & 19,567 & 10.19 & - & 10.19 & 15.00 & 715.00 & 55.42 \\
\hline r_22 & 6 & a279 & - & 0.89 & 22,904 & 10.37 & - & 10.37 & 15.00 & 101.00 & 54.53 \\
\hline r_22 & 7 & a071 & - & 0.26 & 25,921 & 10.50 & - & 10.50 & 15.00 & 47.00 & 54.27 \\
\hline r_22 & 8 & a009 & - & 2.80 & 26,303 & 10.70 & - & 10.70 & 15.00 & 52.00 & 51.47 \\
\hline r_22 & 9 & a064 & - & 0.41 & 30,440 & 10.86 & - & 10.86 & 15.00 & 20.00 & 51.06 \\
\hline r_22 & 10 & a016 & - & 3.41 & 31,981 & 11.07 & - & 11.07 & 15.00 & 197.00 & 47.65 \\
\hline r_22 & 11 & t01 & - & 2.90 & 37,190 & 11.24 & - & 11.24 & - & - & 44.75 \\
\hline r_23 & 0 & t01 & - & - & 46,967 & 13.65 & - & 13.65 & - & - & 66 \\
\hline r_23 & 1 & a264 & - & 2.51 & - & 14.87 & - & 14.87 & 15.00 & 127.00 & 63.49 \\
\hline r_23 & 2 & a266 & - & - & 13,056 & 15.00 & - & 15.00 & 15.00 & 61.00 & 63.49 \\
\hline r_23 & 3 & t01 & - & 4.04 & 13,056 & 15.22 & - & 15.22 & - & - & 59.45 \\
\hline r_24 & 0 & t01 & - & - & 26,112 & 7.98 & - & 7.98 & - & - & 66 \\
\hline r_24 & 1 & a165 & - & 1.68 & & 9.15 & - & 9.15 & 10.00 & 174.00 & 64.32 \\
\hline r_24 & 2 & a268 & - & 0.36 & 10,294 & 9.29 & - & 9.29 & 10.00 & 170.00 & 63.96 \\
\hline r_24 & 3 & a187 & - & 3.88 & 10,847 & 9.45 & - & 9.45 & 10.00 & 164.00 & 60.09 \\
\hline r_24 & 4 & a303 & - & 4.76 & 12,857 & 9.81 & - & 9.81 & 10.00 & 29.00 & 55.33 \\
\hline r_24 & 5 & a117 & - & 6.21 & 26,833 & 10.00 & - & 10.00 & 10.00 & 125.00 & 49.12 \\
\hline r_24 & 6 & a087 & - & 4.00 & 30,154 & 10.17 & - & 10.17 & 15.00 & 3.00 & 45.13 \\
\hline r_24 & 7 & a243 & - & 1.72 & 32,338 & 10.41 & - & 10.41 & 15.00 & 93.00 & 43.41 \\
\hline r_24 & 8 & a291 & - & 2.63 & 38,931 & 10.61 & - & 10.61 & 15.00 & 129.00 & 40.77 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_24 & 9 & a278 & - & 9.54 & 43,470 & 10.83 & - & 10.83 & 15.00 & 138.00 & 31.24 \\
\hline r_24 & 10 & a114 & - & 14.40 & 48,887 & 11.10 & - & 11.10 & 15.00 & 397.00 & 16.84 \\
\hline r_24 & 11 & a074 & - & 10.59 & 57,265 & 11.34 & - & 11.34 & 15.00 & 24.00 & 6.25 \\
\hline r_24 & 12 & a147 & - & 2.70 & 63,900 & 11.58 & - & 11.58 & 15.00 & 147.00 & 3.55 \\
\hline r_24 & 13 & a033 & - & 0.01 & 70,534 & 11.71 & - & 11.71 & 15.00 & 46.00 & 3.54 \\
\hline r_24 & 14 & a293 & - & 1.15 & 70,539 & 11.91 & - & 11.91 & 15.00 & 127.00 & 2.39 \\
\hline r_24 & 15 & a321 & - & 0.37 & 74,807 & 12.14 & - & 12.14 & 15.00 & 155.00 & 2.02 \\
\hline r_24 & 16 & c340 & 2,408.25 & - & 80,404 & - & 0.90 & 13.04 & - & - & 47.07 \\
\hline r_24 & 17 & a015 & & 31.11 & - & 12.63 & - & 13.53 & 15.00 & 46.00 & 15.96 \\
\hline r_24 & 18 & a003 & - & 2.90 & 101,979 & 12.79 & - & 13.69 & 15.00 & 54.00 & 13.07 \\
\hline r_24 & 19 & a307 & - & 1.08 & 104,009 & 12.98 & - & 13.88 & 15.00 & 46.00 & 11.99 \\
\hline r_24 & 20 & a053 & - & 2.05 & 107,420 & 13.13 & - & 14.03 & 15.00 & 16.00 & 9.93 \\
\hline r_24 & 21 & a246 & - & 0.04 & 108,891 & 13.28 & - & 14.18 & 15.00 & 55.00 & 9.89 \\
\hline r_24 & 22 & a159 & - & 1.71 & 109,977 & 13.43 & - & 14.33 & 15.00 & 38.00 & 8.18 \\
\hline r_24 & 23 & a231 & - & 0.11 & 111,219 & 13.57 & - & 14.47 & 15.00 & 99.00 & 8.07 \\
\hline r_24 & 24 & a163 & - & 0.89 & 111,813 & 13.71 & - & 14.61 & 15.00 & 594.00 & 7.18 \\
\hline r_24 & 25 & a100 & - & 1.66 & 112,484 & 13.87 & - & 14.77 & 15.00 & 57.00 & 5.52 \\
\hline r_24 & 26 & a257 & - & 0.81 & 113,927 & 14.02 & - & 14.92 & 15.00 & 72.00 & 4.71 \\
\hline r_24 & 27 & a272 & - & 0.20 & 115,568 & 14.17 & - & 15.07 & 15.00 & 251.00 & 4.51 \\
\hline r_24 & 28 & a068 & - & 0.18 & 116,775 & 14.31 & - & 15.21 & 15.00 & 52.00 & 4.33 \\
\hline r_24 & 29 & a250 & - & 0.16 & 116,951 & 14.46 & - & 15.36 & 15.00 & 149.00 & 4.17 \\
\hline r_24 & 30 & a067 & - & 1.16 & 118,120 & 14.61 & - & 15.51 & 15.00 & 43.00 & 3.01 \\
\hline r_24 & 31 & t01 & - & 3.01 & 119,313 & 14.76 & - & 15.66 & - & - & 0.00 \\
\hline r_25 & 0 & t01 & - & - & 128,513 & 8.01 & - & 8.01 & - & - & 66 \\
\hline r_25 & 1 & a202 & - & 2.37 & - & 9.21 & - & 9.21 & 10.00 & 182.00 & 63.63 \\
\hline r_25 & 2 & a247 & - & 0.35 & 12,094 & 9.38 & - & 9.38 & 10.00 & 151.00 & 63.28 \\
\hline r_25 & 3 & a301 & - & 0.01 & 14,374 & 9.52 & - & 9.52 & 10.00 & 112.00 & 63.27 \\
\hline r_25 & 4 & a255 & - & 1.78 & 15,033 & 9.66 & - & 9.66 & 10.00 & 70.00 & 61.48 \\
\hline r_25 & 5 & a290 & - & 0.22 & 16,026 & 9.80 & - & 9.80 & 10.00 & 188.00 & 61.26 \\
\hline r_25 & 6 & a305 & - & 2.19 & 16,596 & 10.00 & - & 10.00 & 10.00 & 734.00 & 59.07 \\
\hline r_25 & 7 & a156 & - & 5.39 & 20,642 & 10.19 & - & 10.19 & 15.00 & 328.00 & 53.69 \\
\hline r_25 & 8 & a050 & - & 3.41 & 24,254 & 10.36 & - & 10.36 & 15.00 & 16.00 & 50.28 \\
\hline r_25 & 9 & a215 & - & 0.43 & 26,704 & 10.58 & - & 10.58 & 15.00 & 29.00 & 49.85 \\
\hline r_25 & 10 & a258 & - & 0.08 & 32,135 & 10.72 & - & 10.72 & 15.00 & 173.00 & 49.77 \\
\hline r_25 & 11 & a274 & - & 0.07 & 32,605 & 10.86 & - & 10.86 & 15.00 & 124.00 & 49.70 \\
\hline r_25 & 12 & a233 & - & 1.23 & 33,433 & 11.01 & - & 11.01 & 15.00 & 201.00 & 48.47 \\
\hline r_25 & 13 & a026 & - & 1.15 & 34,388 & 11.15 & - & 11.15 & 15.00 & 28.00 & 47.32 \\
\hline r_25 & 14 & a045 & - & 0.30 & 35,332 & 11.30 & - & 11.30 & 15.00 & 8.00 & 47.02 \\
\hline r_25 & 15 & a311 & - & 0.23 & 36,219 & 11.44 & - & 11.44 & 15.00 & 98.00 & 46.79 \\
\hline r_25 & 16 & a271 & - & 2.50 & 36,818 & 11.60 & - & 11.60 & 15.00 & 128.00 & 44.29 \\
\hline r_25 & 17 & a063 & - & 0.21 & 38,938 & 11.74 & - & 11.74 & 15.00 & 16.00 & 44.07 \\
\hline r_25 & 18 & a173 & - & 0.28 & 39,125 & 11.90 &  & 11.90 & 15.00 & 713.00 & 43.79 \\
\hline r_25 & 19 & a032 & - & 0.61 & 41,247 & 12.04 & - & 12.04 & 15.00 & 32.00 & 43.18 \\
\hline r_25 & 20 & t01 & - & 3.12 & 41,915 & 12.20 & - & 12.20 & - & - & 40.06 \\
\hline
\end{tabular}
C.III Worst case SElectric
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy
consumption
\((k W h)\) & \[
\begin{aligned}
& \text { Distance } \\
& \text { (m) }
\end{aligned}
\] & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_01 & 0 & t01 & - & - & - & 1.15 & - & 1.15 & - & - & 66 \\
\hline r_01 & 1 & a386 & - & 8.02 & 19,830 & 2.49 & - & 2.49 & 6.00 & 750.00 & 57.98 \\
\hline r_01 & 2 & a314 & - & 6.83 & 22,078 & 2.65 & - & 2.65 & 6.00 & 45.00 & 51.15 \\
\hline r_01 & 3 & a243 & - & - & 22,078 & 2.78 & - & 2.78 & 6.00 & 19.00 & 51.15 \\
\hline r_01 & 4 & a060 & - & 12.35 & 26,184 & 2.98 & - & 2.98 & 6.00 & 30.00 & 38.80 \\
\hline r_01 & 5 & a209 & - & 0.21 & 26,769 & 3.12 & - & 3.12 & 6.00 & 26.00 & 38.59 \\
\hline r_01 & 6 & a068 & - & 7.97 & 29,444 & 3.30 & - & 3.30 & 6.00 & 27.00 & 30.62 \\
\hline r_01 & 7 & a456 & - & 0.07 & 30,123 & 3.44 & - & 3.44 & 6.00 & 132.00 & 30.55 \\
\hline r_01 & 8 & a302 & - & 2.46 & 30,971 & 3.58 & - & 3.58 & 6.00 & 8.00 & 28.09 \\
\hline r_01 & 9 & a258 & - & 8.30 & 33,834 & 3.76 & - & 3.76 & 6.00 & 28.00 & 19.78 \\
\hline r_01 & 10 & a074 & - & 16.47 & 39,539 & 3.98 & - & 3.98 & 6.00 & 32.00 & 3.31 \\
\hline r_01 & 11 & a463 & - & 3.14 & 46,273 & 4.23 & - & 4.23 & 6.00 & 387.00 & 0.18 \\
\hline r_01 & 12 & c413 & 19,717.41 & - & - & - & 1.01 & 1.01 & - & - & 50.89 \\
\hline r_01 & 13 & a348 & & 10.68 & 50,248 & 4.42 & - & 5.44 & 6.00 & 1,046.00 & 40.21 \\
\hline r_01 & 14 & a401 & - & 1.08 & 53,985 & 4.61 & - & 5.63 & 6.00 & 86.00 & 39.14 \\
\hline r_01 & 15 & a420 & - & 0.60 & 57,753 & 4.81 & - & 5.82 & 6.00 & 114.00 & 38.54 \\
\hline r_01 & 16 & a402 & - & 4.20 & 59,762 & 4.97 & - & 5.98 & 6.00 & 72.00 & 34.34 \\
\hline r_01 & 17 & a166 & - & 9.01 & 64,146 & 5.17 & - & 6.19 & 6.00 & 36.00 & 25.33 \\
\hline r_01 & 18 & a263 & - & 0.45 & 66,780 & 5.35 & - & 6.36 & 6.00 & 57.00 & 24.88 \\
\hline r_01 & 19 & a213 & - & 7.69 & 70,607 & 5.54 & - & 6.56 & 6.00 & 27.00 & 17.19 \\
\hline r_01 & 20 & a007 & - & 3.18 & 72,199 & 5.70 & - & 6.71 & 6.00 & 36.00 & 14.01 \\
\hline r_01 & 21 & a460 & - & 0.35 & 72,833 & 5.84 & - & 6.85 & 6.00 & 41.00 & 13.66 \\
\hline r_01 & 22 & a070 & - & 3.70 & 74,721 & 6.00 & - & 7.01 & 6.00 & 40.00 & 9.96 \\
\hline r_01 & 23 & a486 & - & 0.39 & 75,685 & 6.15 & - & 7.16 & 10.00 & 48.00 & 9.57 \\
\hline r_01 & 24 & a231 & - & 9.57 & 80,673 & 6.36 & - & 7.37 & 10.00 & 33.00 & - \\
\hline r_01 & 25 & c370 & 5,274.43 & - & - & - & 0.85 & 1.87 & - & - & 42.57 \\
\hline r_01 & 26 & a133 & - & 15.07 & 88,593 & 6.62 & - & 8.49 & 10.00 & 200.00 & 27.50 \\
\hline r_01 & 27 & a494 & - & 2.66 & 95,145 & 6.86 & - & 8.73 & 10.00 & 74.00 & 24.84 \\
\hline r_01 & 28 & a008 & - & 6.80 & 98,982 & 7.05 & - & 8.92 & 10.00 & 80.00 & 18.05 \\
\hline r_01 & 29 & a527 & - & 1.70 & 102,780 & 7.25 & - & 9.11 & 10.00 & 44.00 & 16.35 \\
\hline r_01 & 30 & a318 & - & 3.48 & 104,813 & 7.41 & - & 9.28 & 10.00 & 18.00 & 12.87 \\
\hline r_01 & 31 & a283 & - & 2.79 & 106,454 & 7.57 & - & 9.43 & 10.00 & 136.00 & 10.07 \\
\hline r_01 & 32 & a290 & - & 1.03 & 108,868 & 7.74 & - & 9.60 & 10.00 & 25.00 & 9.05 \\
\hline r_01 & 33 & a503 & - & 2.99 & 111,681 & 7.92 & - & 9.78 & 10.00 & 46.00 & 6.06 \\
\hline r_01 & 34 & t01 & - & 6.06 & 132,988 & 8.27 & - & 10.14 & & - & - \\
\hline r_02 & 0 & t01 & - & - & - & 0.70 & - & 0.70 & & - & 66 \\
\hline r_02 & 1 & a435 & - & 2.88 & 9,121 & 1.85 & - & 1.85 & 6.00 & 155.00 & 63.12 \\
\hline r_02 & 2 & a287 & - & 3.91 & 10,442 & 2.00 & - & 2.00 & 2.00 & 63.00 & 59.20 \\
\hline r_02 & 3 & a145 & - & 0.14 & 10,490 & 2.13 & - & 2.13 & 6.00 & 20.00 & 59.06 \\
\hline r_02 & 4 & a001 & - & 2.16 & 11,228 & 2.27 & - & 2.27 & 6.00 & 82.00 & 56.91 \\
\hline r_02 & 5 & a384 & - & 5.26 & 17,211 & 2.50 & - & 2.50 & 6.00 & 435.00 & 51.65 \\
\hline r_02 & 6 & a440 & - & 0.18 & 18,013 & 2.65 & - & 2.65 & 6.00 & 64.00 & 51.46 \\
\hline r_02 & 7 & a150 & - & 15.75 & 23,967 & 2.88 & - & 2.88 & 6.00 & 30.00 & 35.71 \\
\hline r_02 & 8 & a201 & - & 0.07 & 24,198 & 3.01 & - & 3.01 & 6.00 & 39.00 & 35.64 \\
\hline r_02 & 9 & a059 & - & 9.40 & 27,795 & 3.20 & - & 3.20 & 6.00 & 134.00 & 26.25 \\
\hline r_02 & 10 & c167 & 16,233.34 & - & - & - & 1.04 & 1.04 & - & - & 78.40 \\
\hline r_02 & 11 & a003 & - & 53.96 & 48,973 & 3.68 & - & 4.73 & 6.00 & 65.00 & 24.44 \\
\hline r_02 & 12 & a599 & - & 23.44 & 109,873 & 4.83 & - & 5.87 & 8.00 & 893.00 & 1.00 \\
\hline r_02 & 13 & a601 & - & 1.00 & 112,471 & 5.00 & - & 6.04 & 8.00 & 56.00 & - \\
\hline r_02 & 14 & c643 & 20,648.86 & - & - & - & 0.28 & 1.32 & - & - & 13.80 \\
\hline r_02 & 15 & a569 & & 13.80 & 119,163 & 5.24 & - & 6.56 & 8.00 & 168.00 & - \\
\hline r_02 & 16 & c643 & 25,167.08 & - & - & - & 2.63 & 3.95 & - & - & 131.46 \\
\hline r_02 & 17 & c643 & 20,044.04 & - & - & - & - & 3.95 & - & - & 131.46 \\
\hline r_02 & 18 & c332 & 79,901.03 & & , &  & - & 3.95 & & - & 131.46 \\
\hline r_02 & 19 & a526 & - & 131.46 & 185,491 & 6.48 & - & 10.43 & 10.00 & 117.00 & - \\
\hline r_02 & 20 & c332 & 58,988.15 & - & - & - & 0.39 & 4.34 & - & - & 19.43 \\
\hline r_02 & 21 & a366 & - & - & 185,491 & 6.61 & - & 10.94 & 10.00 & 788.00 & 19.43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_02 & 22 & a502 & - & 3.91 & 197,697 & 6.94 & - & 11.28 & 10.00 & 119.00 & 15.52 \\
\hline r_02 & 23 & a500 & - & 2.32 & 199,250 & 7.10 & - & 11.43 & 10.00 & 80.00 & 13.21 \\
\hline r_02 & 24 & a320 & - & 8.76 & 205,276 & 7.33 & - & 11.66 & 10.00 & 60.00 & 4.45 \\
\hline r_02 & 25 & t01 & - & 4.45 & 217,591 & 7.53 & - & 11.87 & - & - & - \\
\hline r_03 & 0 & t01 & - & - & - & 0.57 & - & 0.57 & - & - & 66 \\
\hline r_03 & 1 & a364 & - & 2.93 & 9,312 & 1.72 & - & 1.72 & 6.00 & 40.00 & 63.07 \\
\hline r_03 & 2 & a244 & - & 16.35 & 14,971 & 1.94 & - & 1.94 & 6.00 & 31.00 & 46.72 \\
\hline r_03 & 3 & a445 & - & 4.04 & 26,317 & 2.26 & - & 2.26 & 6.00 & 59.00 & 42.69 \\
\hline r_03 & 4 & a167 & - & 37.37 & 39,451 & 2.61 & - & 2.61 & 6.00 & 117.00 & 5.32 \\
\hline r_03 & 5 & c424 & 3,129.44 & - & - & - & 0.73 & 0.73 & - & - & 41.86 \\
\hline r_03 & 6 & a624 & & 9.41 & 52,445 & 2.96 & - & 3.69 & 8.00 & 199.00 & 32.45 \\
\hline r_03 & 7 & a330 & - & 32.45 & 64,491 & 3.29 & - & 4.02 & 8.00 & 1,348.00 & - \\
\hline r_03 & 8 & c502 & 35,981.18 & - & & - & 0.86 & 1.59 & - & - & 42.91 \\
\hline r_03 & 9 & a052 & & 22.37 & 75,412 & 3.60 & - & 5.19 & 8.00 & 137.00 & 20.54 \\
\hline r_03 & 10 & a610 & - & 6.81 & 98,998 & 4.13 & - & 5.71 & 8.00 & 38.00 & 13.73 \\
\hline r_03 & 11 & a354 & - & 10.81 & 104,503 & 4.35 & - & 5.94 & 8.00 & 173.00 & 2.92 \\
\hline r_03 & 12 & a618 & - & 2.92 & 108,618 & 4.55 & - & 6.13 & 8.00 & 193.00 & - \\
\hline r_03 & 13 & c425 & 10,235.70 & - & - & - & 0.80 & 2.39 & - & - & 39.92 \\
\hline r_03 & 14 & a173 & - & 19.96 & 119,776 & 4.86 & - & 7.25 & 6.00 & 80.00 & 19.96 \\
\hline r_03 & 15 & a242 & - & 1.66 & 121,555 & 5.02 & - & 7.41 & 6.00 & 35.00 & 18.30 \\
\hline r_03 & 16 & a142 & - & 10.86 & 127,818 & 5.26 & - & 7.64 & 6.00 & 46.00 & 7.44 \\
\hline r_03 & 17 & a447 & - & 0.65 & 131,840 & 5.45 & - & 7.84 & 6.00 & 48.00 & 6.79 \\
\hline r_03 & 18 & a077 & - & 2.43 & 133,279 & 5.61 & - & 7.99 & 6.00 & 56.00 & 4.36 \\
\hline r_03 & 19 & a254 & - & 3.35 & 138,588 & 5.83 & - & 8.21 & 6.00 & 61.00 & 1.01 \\
\hline r_03 & 20 & a382 & - & 1.01 & 141,278 & 6.00 & - & 8.39 & 10.00 & 182.00 & 0.00 \\
\hline r_03 & 21 & - & - & - & - & - & 0.60 & 2.99 & - & - & 29.93 \\
\hline r_03 & 22 & a316 & - & 13.27 & 149,862 & 6.27 & - & 9.26 & 10.00 & 14.00 & 16.66 \\
\hline r_03 & 23 & a321 & - & 1.57 & 153,296 & 6.46 & - & 9.45 & 10.00 & 55.00 & 15.09 \\
\hline r_03 & 24 & a471 & - & 0.29 & 154,127 & 6.60 & - & 9.59 & 10.00 & 119.00 & 14.80 \\
\hline r_03 & 25 & a380 & - & 0.45 & 154,435 & 6.74 & - & 9.73 & 10.00 & 201.00 & 14.35 \\
\hline r_03 & 26 & t01 & - & 14.35 & 189,080 & 7.32 & - & 10.30 & - & - & - \\
\hline r_04 & 0 & t01 & - & - & - & 1.35 & - & 1.35 & - & - & 66 \\
\hline r_04 & 1 & a464 & - & 3.45 & 8,091 & 2.49 & - & 2.49 & 6.00 & 96.00 & 62.55 \\
\hline r_04 & 2 & a438 & - & 48.01 & 21,805 & 2.85 & - & 2.85 & 6.00 & 40.00 & 14.54 \\
\hline r_04 & 3 & a378 & - & 13.24 & 25,608 & 3.04 & - & 3.04 & 6.00 & 254.00 & 1.29 \\
\hline r_04 & 4 & a237 & - & 0.04 & 25,619 & 3.17 & - & 3.17 & 6.00 & 31.00 & 1.25 \\
\hline r_04 & 5 & c167 & 11,949.67 & - & - & - & 0.97 & 0.97 & - & - & 49.80 \\
\hline r_04 & 6 & a409 & - & 1.65 & 27,818 & 3.34 & - & 4.31 & 6.00 & 187.00 & 48.15 \\
\hline r_04 & 7 & a430 & - & 1.22 & 31,055 & 3.52 & - & 4.49 & 6.00 & 136.00 & 46.93 \\
\hline r_04 & 8 & a191 & - & 3.48 & 32,147 & 3.67 & - & 4.64 & 6.00 & 31.00 & 43.44 \\
\hline r_04 & 9 & a374 & - & 3.78 & 36,173 & 3.87 & - & 4.84 & 6.00 & 122.00 & 39.66 \\
\hline r_04 & 10 & a223 & - & 21.75 & 43,149 & 4.11 & - & 5.08 & 6.00 & 28.00 & 17.91 \\
\hline r_04 & 11 & a097 & - & 7.17 & 45,458 & 4.28 & - & 5.25 & 6.00 & 86.00 & 10.75 \\
\hline r_04 & 12 & a078 & - & 5.71 & 47,323 & 4.44 & - & 5.41 & 6.00 & 30.00 & 5.03 \\
\hline r_04 & 13 & a414 & - & 5.03 & 54,326 & 4.69 & - & 5.66 & 6.00 & 74.00 & - \\
\hline r_04 & 14 & c299 & 27,502.98 & - & & - & 0.86 & 1.83 & - & - & 43.11 \\
\hline r_04 & 15 & a295 & & 11.59 & 58,172 & 4.88 & - & 6.72 & 6.00 & 50.00 & 31.52 \\
\hline r_04 & 16 & a189 & - & 12.28 & 62,280 & 5.08 & - & 6.92 & 6.00 & 31.00 & 19.24 \\
\hline r_04 & 17 & a071 & - & 7.46 & 64,788 & 5.25 & - & 7.09 & 6.00 & 31.00 & 11.78 \\
\hline r_04 & 18 & a454 & - & 1.25 & 67,294 & 5.43 & - & 7.26 & 6.00 & 186.00 & 10.52 \\
\hline r_04 & 19 & a421 & - & 5.79 & 69,313 & 5.59 & - & 7.42 & 6.00 & 530.00 & 4.73 \\
\hline r_04 & 20 & a184 & - & 0.67 & 69,570 & 5.72 & - & 7.56 & 6.00 & 8.00 & 4.06 \\
\hline r_04 & 21 & a452 & - & 0.58 & 70,524 & 5.87 & - & 7.70 & 6.00 & 480.00 & 3.48 \\
\hline r_04 & 22 & a205 & - & - & 70,524 & 6.00 & - & 7.83 & 6.00 & 39.00 & 3.48 \\
\hline r_04 & 23 & a496 & - & 0.14 & 70,783 & 6.13 & - & 7.97 & 10.00 & 198.00 & 3.34 \\
\hline r_04 & 24 & a518 & - & 2.48 & 75,409 & 6.34 & - & 8.17 & 10.00 & 174.00 & 0.86 \\
\hline r_04 & 25 & a109 & - & 0.27 & 75,535 & 6.47 & - & 8.31 & 10.00 & 32.00 & 0.58 \\
\hline r_04 & 26 & a284 & - & 0.58 & 81,675 & 6.71 & - & 8.54 & 10.00 & 45.00 & - \\
\hline r_04 & 27 & c340 & 35,519.73 & - & - & - & 1.04 & 2.87 & - & - & 52.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & \[
\begin{gathered}
\text { Weight } \\
(\mathbf{k g})
\end{gathered}
\] & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_04 & 28 & a248 & - & 14.33 & 88,344 & 6.95 & - & 9.82 & 10.00 & 31.00 & 37.69 \\
\hline r_04 & 29 & a179 & - & 17.30 & 96,451 & 7.21 & - & 10.09 & 10.00 & 31.00 & 20.39 \\
\hline r_04 & 30 & a018 & - & 11.71 & 101,978 & 7.43 & - & 10.31 & 10.00 & 36.00 & 8.67 \\
\hline r_04 & 31 & a517 & - & 4.66 & 109,679 & 7.69 & - & 10.57 & 10.00 & 415.00 & 4.02 \\
\hline r_04 & 32 & a583 & - & 1.81 & 115,062 & 7.91 & - & 10.79 & 10.00 & 175.00 & 2.21 \\
\hline r_04 & 33 & a493 & - & 2.18 & 116,260 & 8.06 & - & 10.94 & 10.00 & 147.00 & 0.03 \\
\hline r_04 & 34 & a468 & - & 0.03 & 116,277 & 8.19 & - & 11.07 & 10.00 & 114.00 & 0.00 \\
\hline r_04 & 35 & c099 & 12,324.51 & , & , & & 0.53 & 3.41 & - & - & 26.61 \\
\hline r_04 & 36 & a047 & & 24.25 & 130,585 & 8.56 & - & 11.97 & 10.00 & 32.00 & 2.36 \\
\hline r_04 & 37 & t01 & - & 2.36 & 137,894 & 8.68 & - & 12.09 & - & - & - \\
\hline r_05 & 0 & t01 & - & - & - & 2.21 & - & 2.21 & - & - & 66 \\
\hline r_05 & 1 & a431 & - & 4.49 & 14,451 & 3.45 & - & 3.45 & 6.00 & 165.00 & 61.51 \\
\hline r_05 & 2 & a011 & - & 1.97 & 15,041 & 3.59 & - & 3.59 & 6.00 & 38.00 & 59.54 \\
\hline r_05 & 3 & a365 & - & 0.28 & 15,502 & 3.73 & - & 3.73 & 6.00 & 40.00 & 59.27 \\
\hline r_05 & 4 & a210 & - & 2.30 & 16,200 & 3.87 & - & 3.87 & 6.00 & 39.00 & 56.97 \\
\hline r_05 & 5 & a298 & - & 0.21 & 17,962 & 4.03 & - & 4.03 & 6.00 & 40.00 & 56.76 \\
\hline r_05 & 6 & a344 & - & 0.06 & 18,761 & 4.18 & - & 4.18 & 6.00 & 416.00 & 56.70 \\
\hline r_05 & 7 & a411 & - & 1.82 & 22,471 & 4.37 & - & 4.37 & 6.00 & 130.00 & 54.88 \\
\hline r_05 & 8 & a423 & - & 3.91 & 25,175 & 4.54 & - & 4.54 & 6.00 & 131.00 & 50.97 \\
\hline r_05 & 9 & a426 & - & 1.06 & 28,292 & 4.72 & - & 4.72 & 6.00 & 164.00 & 49.91 \\
\hline r_05 & 10 & a398 & - & 3.50 & 29,520 & 4.87 & - & 4.87 & 6.00 & 800.00 & 46.41 \\
\hline r_05 & 11 & a005 & - & 6.92 & 32,320 & 5.05 & - & 5.05 & 6.00 & 25.00 & 39.49 \\
\hline r_05 & 12 & a118 & - & 2.03 & 34,551 & 5.22 & - & 5.22 & 6.00 & 40.00 & 37.46 \\
\hline r_05 & 13 & a015 & - & 4.45 & 36,375 & 5.38 & - & 5.38 & 6.00 & 27.00 & 33.01 \\
\hline r_05 & 14 & a418 & - & 6.24 & 42,152 & 5.61 & - & 5.61 & 6.00 & 95.00 & 26.77 \\
\hline r_05 & 15 & a279 & - & 13.56 & 47,848 & 5.83 & - & 5.83 & 6.00 & 7.00 & 13.21 \\
\hline r_05 & 16 & a368 & - & 2.39 & 50,231 & 6.00 & - & 6.00 & 10.00 & 293.00 & 10.82 \\
\hline r_05 & 17 & a357 & - & 7.19 & 53,447 & 6.18 & - & 6.18 & 10.00 & 188.00 & 3.62 \\
\hline r_05 & 18 & a508 & - & 0.72 & 56,700 & 6.37 & - & 6.37 & 10.00 & 278.00 & 2.90 \\
\hline r_05 & 19 & c332 & 56,306.85 & - & , & , & 0.48 & 0.48 & - & - & 26.94 \\
\hline r_05 & 20 & a465 & & 7.87 & 60,610 & 6.56 & - & 7.04 & 10.00 & 143.00 & 19.07 \\
\hline r_05 & 21 & a448 & - & 4.96 & 63,158 & 6.74 & - & 7.22 & 10.00 & 50.00 & 14.11 \\
\hline r_05 & 22 & a513 & - & 0.33 & 64,558 & 6.89 & - & 7.37 & 10.00 & 70.00 & 13.78 \\
\hline r_05 & 23 & a499 & - & 2.45 & 65,858 & 7.04 & - & 7.52 & 10.00 & 74.00 & 11.33 \\
\hline r_05 & 24 & a476 & - & 3.71 & 67,863 & 7.20 & - & 7.68 & 10.00 & 380.00 & 7.61 \\
\hline r_05 & 25 & a510 & - & 0.34 & 68,415 & 7.34 & - & 7.82 & 10.00 & 124.00 & 7.27 \\
\hline r_05 & 26 & t01 & - & 7.27 & 83,490 & 7.59 & - & 8.08 & - & - & - \\
\hline r_06 & 0 & t01 & - & - & - & 1.44 & - & 1.44 & - & - & 66 \\
\hline r_06 & 1 & a319 & - & 4.44 & 8,300 & 2.58 & - & 2.58 & 6.00 & 40.00 & 61.56 \\
\hline r_06 & 2 & a310 & - & 1.22 & 8,835 & 2.72 & - & 2.72 & 6.00 & 18.00 & 60.34 \\
\hline r_06 & 3 & a169 & - & 24.75 & 19,707 & 3.03 & - & 3.03 & 6.00 & 184.00 & 35.59 \\
\hline r_06 & 4 & a168 & - & 2.47 & 20,835 & 3.18 & - & 3.18 & 6.00 & 101.00 & 33.12 \\
\hline r_06 & 5 & a193 & - & 0.77 & 22,372 & 3.34 & - & 3.34 & 8.00 & 31.00 & 32.34 \\
\hline r_06 & 6 & a246 & - & 0.46 & 27,107 & 3.55 & - & 3.55 & 6.00 & 8.00 & 31.88 \\
\hline r_06 & 7 & a458 & - & 1.86 & 29,602 & 3.72 & - & 3.72 & 6.00 & 109.00 & 30.02 \\
\hline r_06 & 8 & a387 & - & 4.02 & 31,545 & 3.88 & - & 3.88 & 6.00 & 599.00 & 26.00 \\
\hline r_06 & 9 & a264 & - & 6.46 & 35,172 & 4.07 & - & 4.07 & 6.00 & 39.00 & 19.54 \\
\hline r_06 & 10 & a185 & - & 2.14 & 36,386 & 4.22 & - & 4.22 & 6.00 & 29.00 & 17.40 \\
\hline r_06 & 11 & t01 & - & 2.59 & 44,679 & 4.36 & - & 4.36 & - & - & 14.81 \\
\hline r_07 & 0 & t01 & - & - & - & 0.63 & - & 0.63 & - & - & 66 \\
\hline r_07 & 1 & a099 & - & 22.14 & 58,018 & 2.60 & - & 2.60 & 8.00 & 93.00 & 43.86 \\
\hline r_07 & 2 & a590 & & 1.99 & 62,896 & 2.81 & , & 2.81 & 8.00 & 61.00 & 41.87 \\
\hline r_07 & 3 & c475 & 2,638.31 & - & & - & 1.05 & 1.05 & - & - & 94.28 \\
\hline r_07 & 4 & a053 & - & 92.00 & 97,381 & 3.51 & - & 4.56 & 8.00 & 50.00 & 2.28 \\
\hline r_07 & 5 & a636 & - & 2.28 & 102,550 & 3.73 & - & 4.78 & 8.00 & 175.00 & 0.00 \\
\hline r_07 & 6 & c616 & 160,546.02 & - & & - & 0.59 & 1.64 & - & - & 29.74 \\
\hline r_07 & 7 & a609 & - & 0.67 & 102,811 & 3.87 & - & 5.51 & 8.00 & 48.00 & 29.07 \\
\hline r_07 & 8 & a608 & - & 28.63 & 114,096 & 4.18 & - & 5.83 & 8.00 & 34.00 & 0.44 \\
\hline r_07 & 9 & a606 & - & 0.44 & 114,269 & 4.32 & - & 5.96 & 8.00 & 129.00 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_07 & 10 & c620 & 64,532.09 & - & - & - & 3.57 & 5.21 & - & - & 178.60 \\
\hline r_07 & 11 & c620 & 60,827.23 & - & - & - & - & 5.21 & - & - & 178.60 \\
\hline r_07 & 12 & c620 & 60,827.23 & - & - & - & - & 5.21 & - & - & 178.60 \\
\hline r_07 & 13 & c620 & 60,827.23 & - & - & - & - & 5.21 & - & - & 178.60 \\
\hline r_07 & 14 & a029 & - & 178.60 & 186,899 & 5.66 & & 10.87 & 8.00 & 102.00 & - \\
\hline r_07 & 15 & c642 & 76,216.49 & - & , & - & 0.08 & 5.30 & - & - & 4.22 \\
\hline r_07 & 16 & a600 & - & 4.22 & 199,847 & 6.00 & & 11.30 & 8.00 & 63.00 & - \\
\hline r_07 & 17 & c641 & 204,098.89 & - & - & - & 3.09 & 8.39 & - & - & 154.51 \\
\hline r_07 & 18 & c641 & 162,790.18 & - & - & - & - & 8.39 & - & - & 154.51 \\
\hline r_07 & 19 & c509 & 169,666.15 & - & - & - & - & 8.39 & - & - & 154.51 \\
\hline r_07 & 20 & a090 & - & 152.60 & 263,966 & 7.20 & - & 15.59 & 8.00 & 98.00 & 1.90 \\
\hline r_07 & 21 & a294 & - & 0.90 & 267,202 & 7.39 & - & 15.77 & 8.00 & 10.00 & 1.00 \\
\hline r_07 & 22 & a328 & - & 1.00 & 271,139 & 7.58 & - & 15.97 & 8.00 & 968.00 & ,,,,0.00 \\
\hline r_07 & 23 & c494 & 1,954.08 & - & - & - & 0.71 & 9.10 & - & - & 35.73 \\
\hline r_07 & 24 & a586 & - & 4.08 & 277,743 & 7.82 & - & 16.92 & 8.00 & 108.00 & 31.65 \\
\hline r_07 & 25 & a093 & - & 5.36 & 280,700 & 8.00 & - & 17.10 & 8.00 & 102.00 & 26.29 \\
\hline r_07 & 26 & a515 & - & 22.52 & 344,776 & 9.20 & - & 18.30 & 10.00 & 140.00 & 3.77 \\
\hline r_07 & 27 & t01 & - & 3.77 & 354,317 & 9.36 & - & 18.46 & - & - & 0.00 \\
\hline r_08 & 0 & t01 & - & - & - & 4.18 & - & 4.18 & - & - & 66 \\
\hline r_08 & 1 & a141 & - & 4.76 & 12,435 & 5.38 & - & 5.38 & 6.00 & 36.00 & 61.24 \\
\hline r_08 & 2 & a340 & - & 0.07 & 13,906 & 5.54 & - & 5.54 & 6.00 & 902.00 & 61.17 \\
\hline r_08 & 3 & a153 & - & 2.85 & 14,914 & 5.69 & - & 5.69 & 6.00 & 76.00 & 58.32 \\
\hline r_08 & 4 & a342 & - & 2.02 & 17,601 & 5.86 & - & 5.86 & 6.00 & 672.00 & 56.31 \\
\hline r_08 & 5 & a400 & - & 0.52 & 18,135 & 6.00 & - & 6.00 & 10.00 & 10.00 & 55.79 \\
\hline r_08 & 6 & a470 & - & 0.27 & 18,871 & 6.14 & - & 6.14 & 10.00 & 141.00 & 55.52 \\
\hline r_08 & 7 & a519 & - & 0.46 & 19,858 & 6.29 & - & 6.29 & 10.00 & 738.00 & 55.06 \\
\hline r_08 & 8 & a433 & - & 3.66 & 21,647 & 6.45 & - & 6.45 & 10.00 & 325.00 & 51.40 \\
\hline r_08 & 9 & a478 & - & 0.61 & 24,179 & 6.62 & - & 6.62 & 10.00 & 693.00 & 50.79 \\
\hline r_08 & 10 & a392 & - & 4.97 & 27,373 & 6.80 & - & 6.80 & 10.00 & 24.00 & 45.82 \\
\hline r_08 & 11 & t01 & - & 5.08 & 40,886 & 7.03 & - & 7.03 & - & - & 40.74 \\
\hline r_09 & 0 & t01 & - & - & - & 3.52 & - & 3.52 & - & - & 66 \\
\hline r_09 & 1 & a086 & - & 2.44 & 7,197 & 4.64 & - & 4.64 & 6.00 & 433.00 & 63.56 \\
\hline r_09 & 2 & a338 & - & 1.41 & 11,649 & 4.85 & - & 4.85 & 6.00 & 826.00 & 62.14 \\
\hline r_09 & 3 & a635 & - & 0.08 & 12,053 & 4.98 & - & 4.98 & 6.00 & 101.00 & 62.06 \\
\hline r_09 & 4 & a345 & - & 1.64 & 12,756 & 5.12 & - & 5.12 & 6.00 & 327.00 & 60.42 \\
\hline r_09 & 5 & a186 & - & 1.75 & 13,557 & 5.27 & - & 5.27 & 6.00 & 25.00 & 58.67 \\
\hline r_09 & 6 & a405 & - & 0.48 & 14,362 & 5.41 & - & 5.41 & 6.00 & 147.00 & 58.19 \\
\hline r_09 & 7 & a202 & - & 0.90 & 14,789 & 5.55 & - & 5.55 & 6.00 & 26.00 & 57.30 \\
\hline r_09 & 8 & a459 & - & 0.17 & 15,039 & 5.68 & - & 5.68 & 6.00 & 69.00 & 57.13 \\
\hline r_09 & 9 & a239 & - & 5.10 & 17,523 & 5.85 & - & 5.85 & 6.00 & 44.00 & 52.03 \\
\hline r_09 & 10 & a143 & - & 2.04 & 18,527 & 6.00 & - & 6.00 & 10.00 & 46.00 & 49.98 \\
\hline r_09 & 11 & a371 & - & 2.11 & 21,868 & 6.19 & - & 6.19 & 10.00 & 1,093.00 & 47.88 \\
\hline r_09 & 12 & a511 & - & 0.84 & 24,868 & 6.37 & - & 6.37 & 10.00 & 42.00 & 47.04 \\
\hline r_09 & 13 & a388 & - & 1.36 & 25,796 & 6.51 & - & 6.51 & 10.00 & 138.00 & 45.68 \\
\hline r_09 & 14 & a300 & - & 1.74 & 27,037 & 6.66 & - & 6.66 & 10.00 & 1.00 & 43.94 \\
\hline r_09 & 15 & t01 & - & 4.83 & 38,054 & 6.85 & - & 6.85 & - & - & 39.11 \\
\hline r_10 & 0 & t01 & - & - & - & 3.62 & - & 3.62 & - & - & 66 \\
\hline r_10 & 1 & a203 & - & 2.11 & 3,893 & 4.69 & - & 4.69 & 6.00 & 44.00 & 63.89 \\
\hline r_10 & 2 & a436 & - & 1.78 & 9,151 & 4.91 & - & 4.91 & 6.00 & 226.00 & 62.10 \\
\hline r_10 & 3 & a362 & - & 7.91 & 12,238 & 5.09 & - & 5.09 & 6.00 & 1,287.00 & 54.19 \\
\hline r_10 & 4 & a267 & - & 7.96 & 16,324 & 5.29 & - & 5.29 & 6.00 & 8.00 & 46.24 \\
\hline r_10 & 5 & a117 & - & 5.62 & 19,216 & 5.46 & - & 5.46 & 6.00 & 85.00 & 40.62 \\
\hline r_10 & 6 & a643 & - & 0.09 & 21,320 & 5.63 & - & 5.63 & 6.00 & 65.00 & 40.53 \\
\hline r_10 & 7 & a455 & - & 8.69 & 25,966 & 5.84 & - & 5.84 & 6.00 & 163.00 & 31.84 \\
\hline r_10 & 8 & a528 & - & 0.73 & 27,924 & 6.00 & - & 6.00 & 10.00 & 113.00 & 31.11 \\
\hline r_10 & 9 & a521 & - & 7.66 & 32,329 & 6.20 & - & 6.20 & 10.00 & 50.00 & 23.45 \\
\hline r_10 & 10 & a349 & - & 2.78 & 33,949 & 6.36 & - & 6.36 & 10.00 & 265.00 & 20.67 \\
\hline r_10 & 11 & a492 & - & 1.98 & 38,242 & 6.56 & - & 6.56 & 10.00 & 702.00 & 18.69 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & \[
\begin{gathered}
\text { Distance } \\
\text { to charger } \\
(\mathrm{m})
\end{gathered}
\] & \begin{tabular}{l}
Energy
consumption \\
(kWh)
\end{tabular} & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \[
\begin{gathered}
\text { Charge } \\
\text { time } \\
\text { (h) }
\end{gathered}
\] & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End
of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_10 & 12 & t01 & - & 0.24 & 41,057 & 6.61 & - & 6.61 & - & - & 18.45 \\
\hline r_11 & 0 & t01 & - & - & - & 2.41 & - & 2.41 & - & - & 66 \\
\hline r_11 & 1 & a024 & - & 2.73 & 9,153 & 3.56 & - & 3.56 & 6.00 & 76.00 & 63.27 \\
\hline r_11 & 2 & a178 & - & 0.22 & 9,874 & 3.70 & - & 3.70 & 6.00 & 31.00 & 63.05 \\
\hline r_11 & 3 & a410 & - & 0.43 & 11,224 & 3.86 & - & 3.86 & 6.00 & 102.00 & 62.61 \\
\hline r_11 & 4 & a408 & - & 2.51 & 12,220 & 4.00 & - & 4.00 & 6.00 & 90.00 & 60.11 \\
\hline r_11 & 5 & a057 & - & 4.49 & 14,035 & 4.16 & - & 4.16 & 6.00 & 4.00 & 55.62 \\
\hline r_11 & 6 & a391 & - & 0.61 & 15,662 & 4.32 & - & 4.32 & 6.00 & 524.00 & 55.00 \\
\hline r_11 & 7 & a207 & - & 3.27 & 17,135 & 4.47 & - & 4.47 & 6.00 & 31.00 & 51.73 \\
\hline r_11 & 8 & a280 & - & 3.72 & 21,331 & 4.67 & - & 4.67 & 6.00 & 28.00 & 48.01 \\
\hline r_11 & 9 & a229 & - & 3.37 & 22,867 & 4.83 & - & 4.83 & 6.00 & 31.00 & 44.64 \\
\hline r_11 & 10 & a187 & - & 3.31 & 24,385 & 4.99 & - & 4.99 & 6.00 & 40.00 & 41.33 \\
\hline r_11 & 11 & a102 & - & 3.48 & 25,996 & 5.14 & - & 5.14 & 6.00 & 70.00 & 37.85 \\
\hline r_11 & 12 & a183 & - & 1.04 & 29,723 & 5.33 & - & 5.33 & 6.00 & 23.00 & 36.81 \\
\hline r_11 & 13 & a276 & - & 1.10 & 32,187 & 5.51 & - & 5.51 & 6.00 & 44.00 & 35.71 \\
\hline r_11 & 14 & a461 & - & 0.12 & 34,415 & 5.67 & - & 5.67 & 6.00 & 65.00 & 35.58 \\
\hline r_11 & 15 & a009 & - & 7.00 & 37,809 & 5.86 & - & 5.86 & 6.00 & 48.00 & 28.58 \\
\hline r_11 & 16 & a333 & - & 0.35 & 38,444 & 6.00 & - & 6.00 & 10.00 & 6.00 & 28.24 \\
\hline r_11 & 17 & a376 & - & 0.20 & 39,274 & 6.14 & - & 6.14 & 10.00 & 88.00 & 28.04 \\
\hline r_11 & 18 & a504 & - & 1.03 & 42,098 & 6.32 & - & 6.32 & 10.00 & 239.00 & 27.00 \\
\hline r_11 & 19 & a432 & - & 8.70 & 46,725 & 6.53 & - & 6.53 & 10.00 & 128.00 & 18.30 \\
\hline r_11 & 20 & a498 & - & 0.69 & 48,559 & 6.69 & - & 6.69 & 10.00 & 98.00 & 17.61 \\
\hline r_11 & 21 & a020 & - & 6.10 & 52,001 & 6.88 & - & 6.88 & 10.00 & 67.00 & 11.51 \\
\hline r_11 & 22 & a481 & - & 0.75 & 56,152 & 7.08 & - & 7.08 & 10.00 & 62.00 & 10.76 \\
\hline r_11 & 23 & a424 & - & 3.41 & 58,147 & 7.24 & - & 7.24 & 10.00 & 145.00 & 7.35 \\
\hline r_11 & 24 & a484 & - & 1.25 & 60,436 & 7.41 & - & 7.41 & 10.00 & 524.00 & 6.10 \\
\hline r_11 & 25 & a479 & - & 2.01 & 61,884 & 7.56 & - & 7.56 & 10.00 & 366.00 & 4.09 \\
\hline r_11 & 26 & c092 & 6,829.47 & - & - & - & 0.02 & 0.02 & - & - & 4.87 \\
\hline r_11 & 27 & t01 & - & 4.87 & 71,952 & 7.73 & - & 7.74 & - & - & - \\
\hline r_12 & 0 & t01 & - & - & - & - & - & - & - & - & 66 \\
\hline r_12 & 1 & a585 & - & 18.73 & 55,716 & 1.93 & - & 1.93 & 8.00 & 114.00 & 47.27 \\
\hline r_12 & 2 & a584 & - & 3.68 & 57,194 & 2.08 & - & 2.08 & 8.00 & 74.00 & 43.59 \\
\hline r_12 & 3 & a307 & - & 0.16 & 57,258 & 2.21 & - & 2.21 & 8.00 & 49.00 & 43.43 \\
\hline r_12 & 4 & a587 & - & 0.35 & 58,210 & 2.36 & - & 2.36 & 8.00 & 351.00 & 43.08 \\
\hline r_12 & 5 & a579 & - & 1.81 & 59,011 & 2.50 & - & 2.50 & 8.00 & 96.00 & 41.27 \\
\hline r_12 & 6 & a269 & - & 4.53 & 61,055 & 2.67 & - & 2.67 & 8.00 & 24.00 & 36.75 \\
\hline r_12 & 7 & a091 & - & 5.83 & 63,701 & 2.84 & - & 2.84 & 8.00 & 99.00 & 30.92 \\
\hline r_12 & 8 & a360 & - & 0.25 & 65,955 & 3.01 & - & 3.01 & 8.00 & 640.00 & 30.66 \\
\hline r_12 & 9 & a159 & - & 2.88 & 67,513 & 3.17 & - & 3.17 & 8.00 & 75.00 & 27.78 \\
\hline r_12 & 10 & a629 & - & 3.13 & 72,400 & 3.38 & - & 3.38 & 8.00 & 22.00 & 24.66 \\
\hline r_12 & 11 & a630 & - & 3.75 & 78,421 & 3.61 & - & 3.61 & 8.00 & 125.00 & 20.91 \\
\hline r_12 & 12 & a623 & - & 9.74 & 84,007 & 3.83 & - & 3.83 & 8.00 & 261.00 & 11.18 \\
\hline r_12 & 13 & c613 & 31,523.41 & - & - & - & 0.97 & 0.97 & - & - & 59.46 \\
\hline r_12 & 14 & a598 & - & 31.42 & 103,425 & 4.28 & - & 5.25 & 8.00 & 56.00 & 28.04 \\
\hline r_12 & 15 & a176 & - & 28.04 & 121,046 & 4.71 & - & 5.67 & 8.00 & 90.00 & - \\
\hline r_12 & 16 & c617 & 32,852.15 & - & - & - & 0.50 & 1.46 & - & - & 24.90 \\
\hline r_12 & 17 & a088 & - & 12.01 & 128,806 & 4.97 & - & 6.43 & 8.00 & 73.00 & 12.89 \\
\hline r_12 & 18 & a039 & - & 5.06 & 132,151 & 5.15 & - & 6.62 & 8.00 & 45.00 & 7.83 \\
\hline r_12 & 19 & a163 & - & 0.08 & 138,193 & 5.38 & - & 6.85 & 8.00 & 60.00 & 7.75 \\
\hline r_12 & 20 & a581 & - & 2.71 & 142,605 & 5.59 & - & 7.05 & 8.00 & 191.00 & 5.04 \\
\hline r_12 & 21 & a589 & - & 0.55 & 145,988 & 5.77 & - & 7.24 & 8.00 & 51.00 & 4.49 \\
\hline r_12 & 22 & a031 & - & 4.16 & 149,075 & 5.95 & - & 7.42 & 8.00 & 110.00 & 0.33 \\
\hline r_12 & 23 & a105 & - & 0.10 & 149,697 & 6.09 & - & 7.56 & 8.00 & 50.00 & 0.23 \\
\hline r_12 & 24 & a588 & - & 0.23 & 150,661 & 6.24 & - & 7.70 & 8.00 & 170.00 & - \\
\hline r_12 & 25 & c528 & 51,220.15 & - & - & - & 1.53 & 2.99 & - & - & 76.29 \\
\hline r_12 & 26 & a170 & - & 59.90 & 201,050 & 7.21 & - & 10.20 & 10.00 & 25.00 & 16.39 \\
\hline r_12 & 27 & t01 & - & 16.39 & 238,641 & 7.84 & - & 10.83 & - & - & - \\
\hline r_13 & 0 & t01 & - & 7 & - & 2.82 & - & 2.82 & - & - & 66 \\
\hline r_13 & 1 & a250 & - & 3.78 & 10,597 & 4.00 & - & 4.00 & 6.00 & 31.00 & 62.22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & Time (h) & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_13 & 2 & a218 & - & 1.30 & 11,318 & 4.14 & - & 4.14 & 6.00 & 25.00 & 60.91 \\
\hline r_13 & 3 & a278 & - & 0.00 & 11,915 & 4.28 & - & 4.28 & 6.00 & 22.00 & 60.91 \\
\hline r_13 & 4 & a417 & - & 0.13 & 12,677 & 4.42 & - & 4.42 & 6.00 & 94.00 & 60.78 \\
\hline r_13 & 5 & a233 & - & 0.22 & 12,801 & 4.55 & - & 4.55 & 6.00 & 31.00 & 60.56 \\
\hline r_13 & 6 & a273 & - & 0.08 & 13,010 & 4.69 & - & 4.69 & 6.00 & 23.00 & 60.48 \\
\hline r_13 & 7 & a227 & - & 0.86 & 13,512 & 4.82 & - & 4.82 & 6.00 & 29.00 & 59.62 \\
\hline r_13 & 8 & a180 & - & 0.59 & 13,859 & 4.96 & - & 4.96 & 6.00 & 24.00 & 59.03 \\
\hline r_13 & 9 & a232 & - & 0.73 & 15,321 & 5.11 & - & 5.11 & 6.00 & 22.00 & 58.31 \\
\hline r_13 & 10 & a226 & - & 4.05 & 17,736 & 5.28 & - & 5.28 & 6.00 & 31.00 & 54.26 \\
\hline r_13 & 11 & a230 & - & 0.44 & 18,741 & 5.43 & - & 5.43 & 6.00 & 26.00 & 53.82 \\
\hline r_13 & 12 & a449 & - & 0.52 & 20,370 & 5.59 & - & 5.59 & 6.00 & 279.00 & 53.30 \\
\hline r_13 & 13 & a422 & - & 0.41 & 20,640 & 5.72 & - & 5.72 & 6.00 & 38.00 & 52.89 \\
\hline r_13 & 14 & a453 & - & 0.13 & 21,236 & 5.86 & - & 5.86 & 6.00 & 92.00 & 52.76 \\
\hline r_13 & 15 & a129 & - & 0.65 & 21,681 & 6.00 & - & 6.00 & 10.00 & 140.00 & 52.11 \\
\hline r_13 & 16 & a215 & - & 0.11 & 21,954 & 6.13 & - & 6.13 & 10.00 & 76.00 & 52.00 \\
\hline r_13 & 17 & a014 & - & 1.35 & 22,955 & 6.28 & - & 6.28 & 10.00 & 76.00 & 50.65 \\
\hline r_13 & 18 & a204 & - & 0.53 & 24,304 & 6.43 & - & 6.43 & 10.00 & 22.00 & 50.12 \\
\hline r_13 & 19 & a224 & - & 0.17 & 24,923 & 6.57 & - & 6.57 & 10.00 & 25.00 & 49.96 \\
\hline r_13 & 20 & a514 & - & 0.63 & 26,207 & 6.73 & - & 6.73 & 10.00 & 36.00 & 49.33 \\
\hline r_13 & 21 & a473 & - & 1.53 & 27,407 & 6.88 & - & 6.88 & 10.00 & 207.00 & 47.80 \\
\hline r_13 & 22 & a253 & - & 2.21 & 29,286 & 7.04 & - & 7.04 & 10.00 & 4.00 & 45.59 \\
\hline r_13 & 23 & a346 & - & 2.55 & 33,587 & 7.24 & - & 7.24 & 10.00 & 745.00 & 43.04 \\
\hline r_13 & 24 & t01 & - & 2.41 & 42,216 & 7.38 & - & 7.38 & - & - & 40.63 \\
\hline r_14 & 0 & t01 & - & - & - & 3.02 & - & 3.02 & - & - & 66 \\
\hline r_14 & 1 & a032 & - & 2.57 & 5,645 & 4.12 & - & 4.12 & 6.00 & 110.00 & 63.43 \\
\hline r_14 & 2 & a429 & - & 2.44 & 13,870 & 4.38 & - & 4.38 & 6.00 & 101.00 & 60.99 \\
\hline r_14 & 3 & a247 & - & 1.23 & 14,391 & 4.52 & - & 4.52 & 6.00 & 27.00 & 59.76 \\
\hline r_14 & 4 & a195 & - & 6.67 & 17,231 & 4.70 & - & 4.70 & 6.00 & 22.00 & 53.09 \\
\hline r_14 & 5 & a044 & - & 0.81 & 17,578 & 4.84 & - & 4.84 & 6.00 & 162.00 & 52.28 \\
\hline r_14 & 6 & a306 & - & 0.13 & 17,888 & 4.97 & - & 4.97 & 6.00 & 23.00 & 52.15 \\
\hline r_14 & 7 & a303 & - & 0.92 & 18,298 & 5.11 & - & 5.11 & 6.00 & 34.00 & 51.23 \\
\hline r_14 & 8 & a339 & - & 0.27 & 18,775 & 5.25 & - & 5.25 & 6.00 & 415.00 & 50.96 \\
\hline r_14 & 9 & a194 & - & 1.00 & 19,267 & 5.38 & - & 5.38 & 6.00 & 25.00 & 49.96 \\
\hline r_14 & 10 & a245 & - & 1.34 & 20,697 & 5.54 & - & 5.54 & 6.00 & 31.00 & 48.62 \\
\hline r_14 & 11 & a076 & - & 0.18 & 20,785 & 5.67 & - & 5.67 & 6.00 & 10.00 & 48.44 \\
\hline r_14 & 12 & a181 & - & 2.39 & 23,339 & 5.84 & - & 5.84 & 6.00 & 31.00 & 46.05 \\
\hline r_14 & 13 & a457 & - & 0.29 & 25,007 & 6.00 & - & 6.00 & 6.00 & 68.00 & 45.76 \\
\hline r_14 & 14 & a241 & - & 8.12 & 29,160 & 6.20 & - & 6.20 & 10.00 & 44.00 & 37.64 \\
\hline r_14 & 15 & a216 & - & 3.02 & 30,721 & 6.36 & - & 6.36 & 10.00 & 11.00 & 34.63 \\
\hline r_14 & 16 & a480 & - & 0.95 & 35,457 & 6.56 & - & 6.56 & 10.00 & 52.00 & 33.68 \\
\hline r_14 & 17 & a266 & - & 6.62 & 38,935 & 6.75 & - & 6.75 & 10.00 & 1.00 & 27.06 \\
\hline r_14 & 18 & a370 & - & 0.25 & 39,663 & 6.89 & - & 6.89 & 10.00 & 534.00 & 26.81 \\
\hline r_14 & 19 & a016 & - & 0.73 & 40,106 & 7.03 & - & 7.03 & 10.00 & 29.00 & 26.08 \\
\hline r_14 & 20 & a291 & - & 0.82 & 42,016 & 7.19 & - & 7.19 & 10.00 & 12.00 & 25.25 \\
\hline r_14 & 21 & a238 & - & 0.59 & 42,379 & 7.33 & - & 7.33 & 10.00 & 22.00 & 24.66 \\
\hline r_14 & 22 & a477 & - & 0.92 & 44,398 & 7.49 & - & 7.49 & 10.00 & 40.00 & 23.75 \\
\hline r_14 & 23 & a026 & - & 8.98 & 50,018 & 7.72 & - & 7.72 & 10.00 & 48.00 & 14.77 \\
\hline r_14 & 24 & a281 & - & 0.71 & 53,020 & 7.90 & - & 7.90 & 10.00 & 37.00 & 14.05 \\
\hline r_14 & 25 & a582 & - & 2.18 & 57,263 & 8.10 & - & 8.10 & 10.00 & 878.00 & 11.87 \\
\hline r_14 & 26 & t01 & - & 0.47 & 62,102 & 8.18 & - & 8.18 & - & - & 11.40 \\
\hline r_15 & 0 & t01 & - & - & - & 1.45 & - & 1.45 & - & - & 66 \\
\hline r_15 & 1 & a416 & - & 3.68 & 12,450 & 2.66 & - & 2.66 & 6.00 & 91.00 & 62.32 \\
\hline r_15 & 2 & a214 & - & 2.22 & 13,252 & 2.80 & - & 2.80 & 6.00 & 31.00 & 60.10 \\
\hline r_15 & 3 & a108 & - & 1.32 & 13,730 & 2.94 & - & 2.94 & 6.00 & 20.00 & 58.79 \\
\hline r_15 & 4 & a359 & - & 0.65 & 15,018 & 3.09 & - & 3.09 & 6.00 & 7.00 & 58.13 \\
\hline r_15 & 5 & a571 & - & 0.17 & 15,451 & 3.23 & - & 3.23 & 6.00 & 196.00 & 57.96 \\
\hline r_15 & 6 & a197 & - & 3.27 & 16,687 & 3.38 & - & 3.38 & 6.00 & 25.00 & 54.69 \\
\hline r_15 & 7 & a236 & - & 0.23 & 17,595 & 3.52 & - & 3.52 & 6.00 & 22.00 & 54.47 \\
\hline r_15 & 8 & a190 & - & 6.53 & 20,085 & 3.69 & - & 3.69 & 6.00 & 10.00 & 47.93 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_15 & 9 & a397 & - & 0.48 & 22,325 & 3.86 & - & 3.86 & 6.00 & 64.00 & 47.45 \\
\hline r_15 & 10 & a251 & - & 4.39 & 24,023 & 4.02 & - & 4.02 & 6.00 & 9.00 & 43.06 \\
\hline r_15 & 11 & a240 & - & 2.49 & 24,986 & 4.17 & - & 4.17 & 6.00 & 31.00 & 40.57 \\
\hline r_15 & 12 & a272 & - & 0.24 & 25,599 & 4.31 & - & 4.31 & 6.00 & 30.00 & 40.33 \\
\hline r_15 & 13 & a255 & - & 0.87 & 25,940 & 4.44 & - & 4.44 & 6.00 & 57.00 & 39.46 \\
\hline r_15 & 14 & a441 & - & 1.52 & 28,837 & 4.62 & - & 4.62 & 6.00 & 47.00 & 37.94 \\
\hline r_15 & 15 & a066 & - & 10.48 & 33,020 & 4.82 & - & 4.82 & 6.00 & 27.00 & 27.46 \\
\hline r_15 & 16 & a367 & - & 1.56 & 34,867 & 4.98 & - & 4.98 & 6.00 & 53.00 & 25.89 \\
\hline r_15 & 17 & c314 & 1,948.97 & - & - & - & - & - & - & - & 52.73 \\
\hline r_15 & 18 & a069 & - & 33.84 & 48,587 & 5.34 & - & 5.34 & 6.00 & 23.00 & 18.89 \\
\hline r_15 & 19 & a274 & - & 0.99 & 49,841 & 5.49 & - & 5.49 & 6.00 & 8.00 & 17.90 \\
\hline r_15 & 20 & a419 & - & 7.59 & 64,799 & 5.87 & - & 5.87 & 6.00 & 181.00 & 10.31 \\
\hline r_15 & 21 & a337 & - & - & 64,799 & 6.00 & - & 6.00 & 10.00 & 607.00 & 10.31 \\
\hline r_15 & 22 & a506 & - & 1.54 & 72,419 & 6.26 & - & 6.26 & 10.00 & 770.00 & 8.78 \\
\hline r_15 & 23 & a466 & - & 8.16 & 77,205 & 6.47 & - & 6.47 & 10.00 & 255.00 & 0.61 \\
\hline r_15 & 24 & a497 & - & 0.61 & 78,531 & 6.62 & - & 6.62 & 10.00 & 87.00 & - \\
\hline r_15 & 25 & c277 & 5,822.04 & - & - & - & 0.21 & 0.21 & - & - & 10.36 \\
\hline r_15 & 26 & a171 & - & 1.74 & 79,662 & 6.77 & - & 6.98 & 10.00 & 80.00 & 8.62 \\
\hline r_15 & 27 & a505 & - & 0.22 & 80,316 & 6.91 & - & 7.12 & 10.00 & 167.00 & 8.40 \\
\hline r_15 & 28 & a620 & - & 0.48 & 81,241 & 7.05 & - & 7.26 & 10.00 & 148.00 & 7.92 \\
\hline r_15 & 29 & a485 & - & 1.94 & 82,678 & 7.21 & - & 7.42 & 10.00 & 86.00 & 5.97 \\
\hline r_15 & 30 & t01 & - & 5.97 & 94,945 & 7.41 & - & 7.62 & - & - & - \\
\hline r_16 & 0 & t01 & - & - & - & 5.68 & - & 5.68 & - & - & 66 \\
\hline r_16 & 1 & a042 & - & 2.32 & 6,918 & 6.80 & - & 6.80 & 10.00 & 232.00 & 63.68 \\
\hline r_16 & 2 & a523 & - & 0.00 & 7,170 & 6.93 & - & 6.93 & 10.00 & 78.00 & 63.68 \\
\hline r_16 & 3 & a327 & - & 4.43 & 9,990 & 7.11 & - & 7.11 & 10.00 & 60.00 & 59.25 \\
\hline r_16 & 4 & a317 & - & 0.39 & 10,245 & 7.24 & - & 7.24 & 10.00 & 50.00 & 58.85 \\
\hline r_16 & 5 & a396 & - & 0.02 & 14,950 & 7.45 & - & 7.45 & 10.00 & 457.00 & 58.83 \\
\hline r_16 & 6 & a041 & - & 1.46 & 16,075 & 7.60 & - & 7.60 & 10.00 & 39.00 & 57.37 \\
\hline r_16 & 7 & a495 & - & 0.47 & 17,821 & 7.76 & - & 7.76 & 10.00 & 126.00 & 56.90 \\
\hline r_16 & 8 & a509 & - & 1.01 & 19,666 & 7.92 & - & 7.92 & 10.00 & 94.00 & 55.89 \\
\hline r_16 & 9 & a033 & - & 9.63 & 27,852 & 8.18 & - & 8.18 & 10.00 & 40.00 & 46.26 \\
\hline r_16 & 10 & a516 & - & 1.23 & 34,247 & 8.42 & - & 8.42 & 10.00 & 107.00 & 45.03 \\
\hline r_16 & 11 & a512 & - & 0.92 & 35,083 & 8.56 & - & 8.56 & 10.00 & 68.00 & 44.11 \\
\hline r_16 & 12 & a036 & - & 2.63 & 37,536 & 8.74 & - & 8.74 & 10.00 & 57.00 & 41.48 \\
\hline r_16 & 13 & a520 & - & 0.47 & 38,825 & 8.89 & - & 8.89 & 10.00 & 58.00 & 41.01 \\
\hline r_16 & 14 & a489 & - & 1.80 & 40,595 & 9.05 & - & 9.05 & 10.00 & 73.00 & 39.21 \\
\hline r_16 & 15 & a072 & - & 0.38 & 40,981 & 9.18 & - & 9.18 & 10.00 & 10.00 & 38.83 \\
\hline r_16 & 16 & a621 & - & 1.26 & 43,802 & 9.36 & - & 9.36 & 10.00 & 130.00 & 37.57 \\
\hline r_16 & 17 & a522 & - & 2.03 & 46,012 & 9.53 & - & 9.53 & 10.00 & 48.00 & 35.55 \\
\hline r_16 & 18 & a488 & - & 1.81 & 48,038 & 9.69 & - & 9.69 & 10.00 & 193.00 & 33.74 \\
\hline r_16 & 19 & a256 & - & 1.49 & 49,903 & 9.85 & - & 9.85 & 10.00 & 28.00 & 32.24 \\
\hline r_16 & 20 & a040 & - & 0.86 & 51,001 & 10.00 & - & 10.00 & 10.00 & 45.00 & 31.38 \\
\hline r_16 & 21 & t01 & - & 5.03 & 62,946 & 10.20 & - & 10.20 & - & - & 26.35 \\
\hline r_17 & 0 & t01 & - & - & - & 1.82 & - & 1.82 & - & - & 66 \\
\hline r_17 & 1 & a123 & - & 4.21 & 12,868 & 3.04 & - & 3.04 & 6.00 & 40.00 & 61.79 \\
\hline r_17 & 2 & a399 & - & 2.81 & 20,626 & 3.30 & - & 3.30 & 6.00 & 232.00 & 58.98 \\
\hline r_17 & 3 & a450 & - & 0.66 & 25,630 & 3.51 & - & 3.51 & 6.00 & 364.00 & 58.32 \\
\hline r_17 & 4 & a212 & - & 1.30 & 26,537 & 3.66 & - & 3.66 & 6.00 & 22.00 & 57.02 \\
\hline r_17 & 5 & a434 & - & 0.40 & 27,583 & 3.80 & - & 3.80 & 6.00 & 62.00 & 56.61 \\
\hline r_17 & 6 & a006 & - & 2.71 & 29,528 & 3.97 & - & 3.97 & 6.00 & 28.00 & 53.90 \\
\hline r_17 & 7 & a437 & - & 1.18 & 31,740 & 4.13 & - & 4.13 & 6.00 & 60.00 & 52.72 \\
\hline r_17 & 8 & a252 & - & 1.55 & 32,883 & 4.28 & - & 4.28 & 6.00 & 28.00 & 51.18 \\
\hline r_17 & 9 & a404 & - & 0.41 & 34,140 & 4.43 & - & 4.43 & 6.00 & 342.00 & 50.76 \\
\hline r_17 & 10 & a351 & - & 1.59 & 35,490 & 4.58 & - & 4.58 & 6.00 & 437.00 & 49.18 \\
\hline r_17 & 11 & a462 & - & 0.63 & 36,817 & 4.74 & - & 4.74 & 6.00 & 48.00 & 48.55 \\
\hline r_17 & 12 & a446 & - & 1.22 & 38,114 & 4.89 & - & 4.89 & 6.00 & 52.00 & 47.33 \\
\hline r_17 & 13 & a439 & - & 1.39 & 39,629 & 5.04 & - & 5.04 & 6.00 & 58.00 & 45.94 \\
\hline r_17 & 14 & a002 & - & 1.62 & 41,443 & 5.20 & - & 5.20 & 6.00 & 49.00 & 44.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_17 & 15 & a442 & ) & 0.25 & 42,596 & 5.35 & ) & 5.35 & 6.00 & 59.00 & 44.07 \\
\hline r_17 & 16 & a627 & - & 0.09 & 42,870 & 5.49 & - & 5.49 & 6.00 & 22.00 & 43.97 \\
\hline r_17 & 17 & a249 & - & 2.32 & 45,669 & 5.66 & - & 5.66 & 6.00 & 31.00 & 41.65 \\
\hline r_17 & 18 & a425 & - & 0.23 & 47,081 & 5.82 & - & 5.82 & 6.00 & 52.00 & 41.42 \\
\hline r_17 & 19 & a013 & - & 2.47 & 50,219 & 6.00 & - & 6.00 & 6.00 & 27.00 & 38.95 \\
\hline r_17 & 20 & t01 & - & 3.81 & 58,854 & 6.14 & - & 6.14 & - & - & 35.14 \\
\hline r_18 & 0 & t01 & - & & , & 1.44 & - & 1.44 & - & - & 66 \\
\hline r_18 & 1 & a172 & - & 4.09 & 10,540 & 2.62 & - & 2.62 & 6.00 & 29.00 & 61.91 \\
\hline r_18 & 2 & a311 & - & 2.38 & 14,671 & 2.82 & - & 2.82 & 6.00 & 51.00 & 59.53 \\
\hline r_18 & 3 & a075 & - & 8.66 & 17,470 & 2.99 & - & 2.99 & 6.00 & 11.00 & 50.87 \\
\hline r_18 & 4 & a228 & - & 5.29 & 25,599 & 3.26 & - & 3.26 & 6.00 & 31.00 & 45.58 \\
\hline r_18 & 5 & a221 & - & 19.77 & 32,028 & 3.50 & - & 3.50 & 6.00 & 30.00 & 25.81 \\
\hline r_18 & 6 & c143 & 23,236.44 & - & , & - & 0.99 & 0.99 & - & - & 75.18 \\
\hline r_18 & 7 & a177 & & 29.93 & 41,808 & 3.79 & - & 4.78 & 8.00 & 60.00 & 45.24 \\
\hline r_18 & 8 & a648 & - & 0.94 & 45,373 & 3.98 & - & 4.97 & 8.00 & 116.00 & 44.30 \\
\hline r_18 & 9 & a637 & - & 22.81 & 53,036 & 4.24 & - & 5.22 & 8.00 & 40.00 & 21.49 \\
\hline r_18 & 10 & a304 & - & 1.61 & 53,581 & 4.38 & - & 5.36 & 8.00 & 25.00 & 19.88 \\
\hline r_18 & 11 & a104 & - & 0.05 & 53,597 & 4.51 & - & 5.49 & 8.00 & 50.00 & 19.83 \\
\hline r_18 & 12 & a642 & - & 0.66 & 55,097 & 4.66 & - & 5.65 & 8.00 & 104.00 & 19.18 \\
\hline r_18 & 13 & a379 & - & 1.21 & 55,517 & 4.80 & - & 5.79 & 8.00 & 200.00 & 17.97 \\
\hline r_18 & 14 & a235 & - & 17.97 & 61,992 & 5.04 & - & 6.02 & 8.00 & 61.00 & - \\
\hline r_18 & 15 & c375 & 78,766.49 & - & - & - & 1.05 & 2.04 & - & - & 52.56 \\
\hline r_18 & 16 & a331 & , & 23.43 & 115,902 & 6.07 & - & 8.10 & 15.00 & 5.00 & 29.13 \\
\hline r_18 & 17 & a632 & - & 23.73 & 165,917 & 7.03 & - & 9.07 & 8.00 & 121.00 & 5.40 \\
\hline r_18 & 18 & a297 & - & 5.40 & 167,926 & 7.19 & - & 9.23 & 8.00 & 40.00 & - \\
\hline r_18 & 19 & c375 & 83,972.53 & - & - & - & 0.41 & 2.45 & - & - & 20.37 \\
\hline r_18 & 20 & a130 & - & 11.33 & 172,173 & 7.39 & & 9.84 & 8.00 & 100.00 & 9.04 \\
\hline r_18 & 21 & a646 & - & 0.25 & 172,699 & 7.53 & & 9.98 & 8.00 & 200.00 & 8.79 \\
\hline r_18 & 22 & a645 & - & 2.81 & 173,812 & 7.68 & & 10.13 & 8.00 & 130.00 & 5.98 \\
\hline r_18 & 23 & a639 & - & 5.06 & 175,867 & 7.84 & & 10.29 & 8.00 & 146.00 & 0.92 \\
\hline r_18 & 24 & a644 & - & 0.92 & 177,376 & 8.00 & & 10.45 & 8.00 & 651.00 & - \\
\hline r_18 & 25 & c367 & 4,672.07 & - & - & - & 1.03 & 3.47 & - & - & 51.33 \\
\hline r_18 & 26 & a525 & & 51.33 & 202,062 & 8.54 & - & 12.01 & 10.00 & 45.00 & - \\
\hline r_18 & 27 & c180 & 22,154.69 & - & - & - & 0.60 & 4.07 & - & - & 29.93 \\
\hline r_18 & 28 & a115 & - & 4.76 & 204,374 & 8.71 & - & 12.78 & 10.00 & 105.00 & 25.18 \\
\hline r_18 & 29 & a116 & - & 1.26 & 206,930 & 8.88 & - & 12.95 & 10.00 & 56.00 & 23.92 \\
\hline r_18 & 30 & a622 & - & 1.63 & 208,838 & 9.04 & - & 13.12 & 10.00 & 138.00 & 22.28 \\
\hline r_18 & 31 & a530 & - & 5.85 & 211,892 & 9.23 & - & 13.30 & 10.00 & 61.00 & 16.44 \\
\hline r_18 & 32 & a443 & - & 9.84 & 217,109 & 9.44 & - & 13.51 & 10.00 & 183.00 & 6.60 \\
\hline r_18 & 33 & a309 & - & 1.37 & 217,871 & 9.58 & - & 13.66 & 10.00 & 18.00 & 5.23 \\
\hline r_18 & 34 & a487 & - & 1.76 & 220,240 & 9.75 & - & 13.83 & 10.00 & 82.00 & 3.47 \\
\hline r_18 & 35 & t01 & - & 3.47 & 231,633 & 9.94 & - & 14.02 & - & - & - \\
\hline r_19 & 0 & t01 & - & - & - & 0.63 & - & 0.63 & - & - & 66 \\
\hline r_19 & 1 & a369 & & 4.69 & 8,108 & 1.77 & - & 1.77 & 6.00 & 142.00 & 61.31 \\
\hline r_19 & 2 & c016 & 12,854.87 & & - & - & 0.66 & 0.66 & - & - & 94.53 \\
\hline r_19 & 3 & a286 & - & 88.99 & 44,135 & 2.50 & - & 3.16 & 8.00 & 22.00 & 5.54 \\
\hline r_19 & 4 & a638 & - & 5.02 & 52,497 & 2.77 & - & 3.43 & 8.00 & 145.00 & 0.52 \\
\hline r_19 & 5 & a647 & - & 0.52 & 56,016 & 2.96 & - & 3.62 & 8.00 & 58.00 & \[
, \ldots, \ldots .00
\] \\
\hline r_19 & 6 & c347 & 67,163.09 & - & - & - & 2.27 & 2.94 & - & - & 113.67 \\
\hline r_19 & 7 & c457 & 117,792.46 & - & & & - & 2.94 & - & - & 113.67 \\
\hline r_19 & 8 & a096 & -792.46 & 107.28 & 101,430 & 3.84 & - & 6.78 & 8.00 & 86.00 & 6.39 \\
\hline r_19 & 9 & a483 & - & 6.39 & 115,365 & 4.20 & - & 7.14 & 8.00 & 271.00 & - \\
\hline r_19 & 10 & c492 & 10,542.43 & - & - & - & 1.07 & 4.01 & - & - & 53.64 \\
\hline r_19 & 11 & a022 & & 14.21 & 121,848 & 4.44 & - & 8.45 & 8.00 & 26.00 & 39.43 \\
\hline r_19 & 12 & a361 & - & 0.56 & 122,633 & 4.59 & - & 8.60 & 8.00 & 56.00 & 38.88 \\
\hline r_19 & 13 & a592 & - & 7.36 & 140,240 & 5.01 & - & 9.02 & 8.00 & 472.00 & 31.52 \\
\hline r_19 & 14 & a208 & - & 4.36 & 142,504 & 5.18 & - & 9.19 & 8.00 & 39.00 & 27.16 \\
\hline r_19 & 15 & a325 & - & 1.27 & 144,312 & 5.34 & - & 9.35 & 8.00 & 38.00 & 25.89 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & \begin{tabular}{l}
Charge time \\
(h)
\end{tabular} & \begin{tabular}{l}
Total time \\
(h)
\end{tabular} & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_19 & 16 & a612 & - & 1.03 & 146,811 & 5.51 & - & 9.52 & 8.00 & 111.00 & 24.85 \\
\hline r_19 & 17 & a594 & - & 5.47 & 149,789 & 5.69 & - & 9.70 & 8.00 & 96.00 & 19.39 \\
\hline r_19 & 18 & a067 & - & 19.18 & 160,506 & 6.00 & - & 10.01 & 8.00 & 190.00 & 0.20 \\
\hline r_19 & 19 & a293 & - & 0.20 & 162,304 & 6.16 & - & 10.17 & 8.00 & 4.00 & ,,,,,0.00 \\
\hline r_19 & 20 & c463 & 97,157.78 & - & - & - & 0.45 & 4.46 & - & - & 22.34 \\
\hline r_19 & 21 & t01 & - & 22.34 & 217,805 & 7.08 & - & 11.54 & - & - & - \\
\hline r_20 & 0 & t01 & - & - & - & 8.96 & - & 8.96 & - & - & 66 \\
\hline r_20 & 1 & a501 & - & 1.19 & 2,317 & 10.00 & - & 10.00 & 15.00 & 71.00 & 64.81 \\
\hline r_20 & 2 & a125 & - & 12.38 & 7,416 & 10.21 & - & 10.21 & 15.00 & 120.00 & 52.43 \\
\hline r_20 & 3 & a012 & - & 0.04 & 7,433 & 10.35 & - & 10.35 & 15.00 & 46.00 & 52.39 \\
\hline r_20 & 4 & a536 & - & 4.45 & 11,926 & 10.55 & - & 10.55 & 15.00 & 175.00 & 47.95 \\
\hline r_20 & 5 & a017 & - & 34.71 & 27,261 & 10.94 & - & 10.94 & 15.00 & 76.00 & 13.23 \\
\hline r_20 & 6 & a613 & - & 1.42 & 30,575 & 11.12 & - & 11.12 & 15.00 & 64.00 & 11.81 \\
\hline r_20 & 7 & a050 & - & 2.74 & 31,821 & 11.27 & - & 11.27 & 15.00 & 60.00 & 9.08 \\
\hline r_20 & 8 & a148 & - & 3.26 & 36,446 & 11.48 & - & 11.48 & 15.00 & 30.00 & 5.82 \\
\hline r_20 & 9 & c179 & 31,243.36 & - & - & - & 0.88 & 0.88 & - & - & 49.63 \\
\hline r_20 & 10 & a051 & - & 8.39 & 40,342 & 11.67 & - & 12.55 & 15.00 & 66.00 & 41.24 \\
\hline r_20 & 11 & a591 & - & 4.14 & 51,359 & 11.99 & - & 12.86 & 15.00 & 143.00 & 37.10 \\
\hline r_20 & 12 & a631 & - & 0.89 & 51,768 & 12.12 & - & 13.00 & 15.00 & 706.00 & 36.21 \\
\hline r_20 & 13 & a597 & - & 2.68 & 53,330 & 12.28 & - & 13.16 & 15.00 & 41.00 & 33.54 \\
\hline r_20 & 14 & a602 & - & 0.43 & 55,564 & 12.45 & - & 13.32 & 15.00 & 357.00 & 33.10 \\
\hline r_20 & 15 & a625 & - & 0.47 & 57,056 & 12.60 & - & 13.48 & 15.00 & 93.00 & 32.64 \\
\hline r_20 & 16 & a196 & - & 0.09 & 57,118 & 12.73 & - & 13.61 & 15.00 & 31.00 & 32.55 \\
\hline r_20 & 17 & a539 & - & 2.64 & 64,344 & 12.98 & - & 13.86 & 15.00 & 125.00 & 29.90 \\
\hline r_20 & 18 & a343 & - & 18.37 & 77,418 & 13.33 & - & 14.21 & 15.00 & 376.00 & 11.53 \\
\hline r_20 & 19 & a363 & - & 0.20 & 77,928 & 13.47 & - & 14.35 & 15.00 & 66.00 & 11.33 \\
\hline r_20 & 20 & a140 & - & 4.27 & 81,507 & 13.66 & - & 14.54 & 15.00 & 46.00 & 7.06 \\
\hline r_20 & 21 & a080 & - & 3.95 & 84,881 & 13.85 & - & 14.72 & 15.00 & 10.00 & 3.11 \\
\hline r_20 & 22 & a259 & - & 0.30 & 87,574 & 14.02 & - & 14.90 & 15.00 & 27.00 & 2.81 \\
\hline r_20 & 23 & a271 & - & 0.43 & 89,203 & 14.18 & - & 15.05 & 15.00 & 37.00 & 2.38 \\
\hline r_20 & 24 & t01 & - & 2.38 & 96,354 & 14.30 & - & 15.17 & - & - & - \\
\hline r_21 & 0 & t01 & - & - & - & 7.31 & - & 7.31 & - & - & 66 \\
\hline r_21 & 1 & a605 & - & 24.79 & 66,808 & 9.42 & - & 9.42 & 15.00 & 81.00 & 41.21 \\
\hline r_21 & 2 & a146 & - & 5.50 & 69,065 & 9.59 & - & 9.59 & 15.00 & 36.00 & 35.71 \\
\hline r_21 & 3 & a021 & - & 13.48 & 74,634 & 9.81 & - & 9.81 & 15.00 & 81.00 & 22.24 \\
\hline r_21 & 4 & a611 & - & 6.96 & 90,297 & 10.20 & - & 10.20 & 15.00 & 73.00 & 15.28 \\
\hline r_21 & 5 & a616 & - & 2.02 & 96,562 & 10.44 & - & 10.44 & 15.00 & 490.00 & 13.26 \\
\hline r_21 & 6 & a155 & - & 5.22 & 99,032 & 10.61 & - & 10.61 & 15.00 & 42.00 & 8.05 \\
\hline r_21 & 7 & a064 & - & 2.55 & 100,251 & 10.76 & - & 10.76 & 15.00 & 51.00 & 5.50 \\
\hline r_21 & 8 & a149 & - & 1.38 & 101,736 & 10.91 & - & 10.91 & 15.00 & 72.00 & 4.12 \\
\hline r_21 & 9 & a596 & - & 2.62 & 110,086 & 11.18 & - & 11.18 & 15.00 & 99.00 & 1.50 \\
\hline r_21 & 10 & c439 & 55,135.33 & - & - & - & 0.95 & 0.95 & - & - & 48.98 \\
\hline r_21 & 11 & a614 & - & 3.03 & 121,247 & 11.50 & & 12.45 & 15.00 & 41.00 & 45.95 \\
\hline r_21 & 12 & a261 & - & 26.02 & 134,488 & 11.85 & & 12.80 & 15.00 & 27.00 & 19.93 \\
\hline r_21 & 13 & a475 & - & 5.45 & 152,141 & 12.27 & & 13.22 & 15.00 & 97.00 & 14.48 \\
\hline r_21 & 14 & a089 & - & 12.70 & 158,804 & 12.51 & & 13.46 & 15.00 & 98.00 & 1.78 \\
\hline r_21 & 15 & a406 & - & 1.78 & 163,505 & 12.72 & & 13.67 & 15.00 & 92.00 & 0.00 \\
\hline r_21 & 16 & c419 & 48,690.34 & - & & - & 1.09 & 2.04 & - & - & 54.67 \\
\hline r_21 & 17 & a395 & - & 54.67 & 193,629 & 13.35 & & 15.40 & 15.00 & 82.00 & - \\
\hline r_21 & 18 & c331 & 52,844.88 & - & - & - & 0.96 & 3.00 & - & & 47.92 \\
\hline r_21 & 19 & a305 & - & 39.41 & 215,825 & 13.85 & - & 16.86 & 15.00 & 24.00 & 8.51 \\
\hline r_21 & 20 & a098 & - & 3.59 & 217,862 & 14.02 & - & 17.02 & 15.00 & 86.00 & 4.92 \\
\hline r_21 & 21 & a219 & - & 4.92 & 227,158 & 14.30 & - & 17.31 & 15.00 & 1.00 & - \\
\hline r_21 & 22 & c299 & 26,226.88 & - & - & - & 0.55 & 3.55 & - & - & 27.62 \\
\hline r_21 & 23 & a082 & - & 17.36 & 237,237 & 14.60 & - & 18.16 & 15.00 & 14.00 & 10.26 \\
\hline r_21 & 24 & a312 & - & 5.75 & 253,333 & 15.00 & - & 18.55 & 15.00 & 8.00 & 4.51 \\
\hline r_21 & 25 & t01 & - & 4.51 & 262,907 & 15.16 & - & 18.71 & - & - & - \\
\hline r_22 & 0 & t01 & - & - & - & 8.98 & - & 8.98 & - & - & 66 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_22 & 1 & a073 & - & 4.97 & 13,389 & 10.21 & (h) & 10.21 & 15.00 & 11.00 & 61.03 \\
\hline r_22 & 2 & a234 & - & 0.06 & 14,053 & 10.35 & - & 10.35 & 15.00 & 31.00 & 60.96 \\
\hline r_22 & 3 & a034 & - & 4.17 & 16,804 & 10.52 & - & 10.52 & 15.00 & 60.00 & 56.79 \\
\hline r_22 & 4 & a277 & - & 2.46 & 23,827 & 10.77 & - & 10.77 & 15.00 & 23.00 & 54.33 \\
\hline r_22 & 5 & t01 & - & 3.54 & 32,036 & 10.91 & - & 10.91 & - & - & 50.79 \\
\hline r_23 & 0 & t01 & - & - & , & 8.73 & - & 8.73 & - & - & 66 \\
\hline r_23 & 1 & a607 & - & 15.83 & 40,424 & 10.40 & - & 10.40 & 15.00 & 71.00 & 50.17 \\
\hline r_23 & 2 & a372 & - & 43.01 & 57,061 & 10.81 & - & 10.81 & 15.00 & 119.00 & 7.17 \\
\hline r_23 & 3 & a619 & - & 6.29 & 73,143 & 11.21 & - & 11.21 & 15.00 & 1,067.00 & 0.88 \\
\hline r_23 & 4 & c405 & 75,889.47 & - & - & - & 0.95 & 0.95 & - & - & 48.22 \\
\hline r_23 & 5 & a356 & & 3.66 & 74,956 & 11.37 & - & 12.32 & 15.00 & 38.00 & 44.57 \\
\hline r_23 & 6 & a134 & - & 4.48 & 77,199 & 11.54 & - & 12.48 & 15.00 & 66.00 & 40.08 \\
\hline r_23 & 7 & a313 & - & 0.05 & 77,717 & 11.68 & - & 12.62 & 15.00 & 9.00 & 40.04 \\
\hline r_23 & 8 & a200 & - & 2.67 & 79,075 & 11.83 & - & 12.77 & 15.00 & 54.00 & 37.37 \\
\hline r_23 & 9 & a580 & - & 2.07 & 84,410 & 12.05 & - & 12.99 & 15.00 & 45.00 & 35.30 \\
\hline r_23 & 10 & a633 & - & 1.91 & 88,440 & 12.24 & - & 13.19 & 15.00 & 198.00 & 33.39 \\
\hline r_23 & 11 & a634 & - & 0.83 & 89,606 & 12.39 & - & 13.34 & 15.00 & 146.00 & 32.56 \\
\hline r_23 & 12 & a111 & - & 32.56 & 108,203 & 12.83 & - & 13.78 & 15.00 & 52.00 & - \\
\hline r_23 & 13 & c405 & 92843.52 & - & - & - & 0.92 & 1.87 & - & - & 45.92 \\
\hline r_23 & 14 & a137 & - & 12.33 & 140,355 & 13.50 & - & 15.36 & 15.00 & 44.00 & 33.59 \\
\hline r_23 & 15 & a562 & - & 7.25 & 162,617 & 14.00 & - & 15.87 & 15.00 & 155.00 & 26.34 \\
\hline r_23 & 16 & a081 & - & 9.34 & 168,347 & 14.23 & - & 16.09 & 15.00 & 23.00 & 17.00 \\
\hline r_23 & 17 & a626 & - & 0.27 & 169,288 & 14.37 & - & 16.24 & 15.00 & 129.00 & 16.73 \\
\hline r_23 & 18 & a094 & - & 12.73 & 177,459 & 14.64 & - & 16.50 & 15.00 & 165.00 & 4.00 \\
\hline r_23 & 19 & a095 & - & 4.00 & 187,892 & 14.94 & - & 16.81 & 15.00 & 86.00 & - \\
\hline r_23 & 20 & c405 & 74,557.53 & - & - & - & 0.34 & 2.20 & - & - & 16.89 \\
\hline r_23 & 21 & t01 & - & 16.89 & 233,154 & 15.70 & - & 17.90 & - & - & - \\
\hline r_24 & 0 & t01 & - & - & - & 8.80 & - & 8.80 & - & - & 66 \\
\hline r_24 & 1 & a355 & - & 3.66 & 12,185 & 10.00 & - & 10.00 & 15.00 & 842.00 & 62.34 \\
\hline r_24 & 2 & a375 & - & 1.36 & 14,042 & 10.16 & - & 10.16 & 15.00 & 165.00 & 60.98 \\
\hline r_24 & 3 & a132 & - & 2.98 & 15,045 & 10.31 & - & 10.31 & 15.00 & 107.00 & 58.00 \\
\hline r_24 & 4 & a472 & - & 0.11 & 15,912 & 10.45 & - & 10.45 & 15.00 & 338.00 & 57.90 \\
\hline r_24 & 5 & a265 & - & 7.79 & 18,742 & 10.63 & - & 10.63 & 15.00 & 7.00 & 50.11 \\
\hline r_24 & 6 & a257 & - & 8.11 & 21,690 & 10.81 & - & 10.81 & 15.00 & 27.00 & 42.00 \\
\hline r_24 & 7 & a043 & - & 12.90 & 26,405 & 11.02 & - & 11.02 & 15.00 & 93.00 & 29.10 \\
\hline r_24 & 8 & a158 & - & 2.33 & 31,221 & 11.23 & - & 11.23 & 15.00 & 82.00 & 26.77 \\
\hline r_24 & 9 & a107 & - & 5.53 & 33,304 & 11.39 & - & 11.39 & 15.00 & 100.00 & 21.24 \\
\hline r_24 & 10 & a199 & - & 0.99 & 36,207 & 11.57 & - & 11.57 & 15.00 & 39.00 & 20.25 \\
\hline r_24 & 11 & a323 & - & 5.23 & 42,589 & 11.81 & - & 11.81 & 15.00 & 5.00 & 15.02 \\
\hline r_24 & 12 & a292 & - & 9.65 & 46,325 & 12.00 & - & 12.00 & 15.00 & 12.00 & 5.37 \\
\hline r_24 & 13 & c336 & 1,326.76 & - & - & - & 0.73 & 0.73 & - & - & 41.95 \\
\hline r_24 & 14 & a127 & - & 6.79 & 48,957 & 12.17 & - & 12.90 & 15.00 & 100.00 & 35.16 \\
\hline r_24 & 15 & a540 & - & 0.14 & 51,222 & 12.34 & - & 13.07 & 15.00 & 118.00 & 35.02 \\
\hline r_24 & 16 & a394 & - & 12.50 & 56,274 & 12.55 & - & 13.29 & 15.00 & 58.00 & 22.52 \\
\hline r_24 & 17 & a100 & - & 5.15 & 58,380 & 12.72 & - & 13.45 & 15.00 & 91.00 & 17.37 \\
\hline r_24 & 18 & a217 & - & 0.91 & 61,114 & 12.90 & - & 13.63 & 15.00 & 39.00 & 16.46 \\
\hline r_24 & 19 & a119 & - & 1.55 & 61,762 & 13.04 & - & 13.77 & 15.00 & 70.00 & 14.92 \\
\hline r_24 & 20 & a025 & - & 1.37 & 62,344 & 13.18 & - & 13.91 & 15.00 & 58.00 & 13.55 \\
\hline r_24 & 21 & a113 & - & 0.14 & 62,776 & 13.31 & - & 14.04 & 15.00 & 78.00 & 13.40 \\
\hline r_24 & 22 & a299 & - & 0.22 & 64,699 & 13.48 & - & 14.21 & 15.00 & 30.00 & 13.18 \\
\hline r_24 & 23 & a065 & - & - & 64,699 & 13.61 & - & 14.34 & 15.00 & 50.00 & 13.18 \\
\hline r_24 & 24 & a556 & - & 0.80 & 65,729 & 13.75 & - & 14.48 & 15.00 & 154.00 & 12.38 \\
\hline r_24 & 25 & a559 & - & 0.69 & 66,726 & 13.90 & - & 14.63 & 15.00 & 280.00 & 11.69 \\
\hline r_24 & 26 & a144 & - & 1.36 & 67,395 & 14.04 & - & 14.77 & 15.00 & 55.00 & 10.33 \\
\hline r_24 & 27 & a548 & - & 0.17 & 67,731 & 14.18 & - & 14.91 & 15.00 & 228.00 & 10.15 \\
\hline r_24 & 28 & a529 & - & 1.32 & 68,425 & 14.32 & - & 15.05 & 15.00 & 463.00 & 8.83 \\
\hline r_24 & 29 & a381 & - & 0.80 & 68,901 & 14.46 & - & 15.19 & 15.00 & 84.00 & 8.03 \\
\hline r_24 & 30 & a385 & - & 0.17 & 69,624 & 14.60 & - & 15.33 & 15.00 & 6.00 & 7.86 \\
\hline r_24 & 31 & a110 & & 1.59 & 70,592 & 14.74 & - & 15.48 & 15.00 & 18.00 & 6.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_24 & 32 & t01 & - & 6.28 & 83,490 & 14.96 & - & 15.69 & - & - & - \\
\hline r_25 & 0 & t01 & - & - & - & 8.79 & - & 8.79 & - & - & 66 \\
\hline r_25 & 1 & a092 & - & 6.39 & 16,041 & 10.05 & - & 10.05 & 15.00 & 102.00 & 59.61 \\
\hline r_25 & 2 & a469 & - & 1.22 & 19,405 & 10.24 & - & 10.24 & 15.00 & 55.00 & 58.39 \\
\hline r_25 & 3 & a565 & - & 1.46 & 21,899 & 10.41 & - & 10.41 & 15.00 & 216.00 & 56.93 \\
\hline r_25 & 4 & a063 & - & 12.99 & 27,476 & 10.64 & - & 10.64 & 15.00 & 153.00 & 43.94 \\
\hline r_25 & 5 & a162 & - & 0.20 & 28,999 & 10.79 & - & 10.79 & 15.00 & 76.00 & 43.74 \\
\hline r_25 & 6 & a188 & - & 1.08 & 33,110 & 10.99 & - & 10.99 & 15.00 & 18.00 & 42.66 \\
\hline r_25 & 7 & a103 & - & 21.63 & 42,894 & 11.28 & - & 11.28 & 15.00 & 155.00 & 21.03 \\
\hline r_25 & 8 & a037 & - & 4.49 & 44,994 & 11.45 & - & 11.45 & 15.00 & 43.00 & 16.54 \\
\hline r_25 & 9 & a296 & - & 0.07 & 46,375 & 11.60 & - & 11.60 & 15.00 & 10.00 & 16.47 \\
\hline r_25 & 10 & a139 & - & 3.22 & 47,898 & 11.76 & - & 11.76 & 15.00 & 42.00 & 13.25 \\
\hline r_25 & 11 & a128 & - & 7.56 & 51,513 & 11.95 & - & 11.95 & 15.00 & 40.00 & 5.69 \\
\hline r_25 & 12 & a324 & - & 1.28 & 57,039 & 12.17 & - & 12.17 & 15.00 & 131.00 & 4.42 \\
\hline r_25 & 13 & a023 & - & 3.39 & 58,728 & 12.33 & - & 12.33 & 15.00 & 33.00 & 1.02 \\
\hline r_25 & 14 & a157 & - & 0.94 & 60,188 & 12.48 & - & 12.48 & 15.00 & 82.00 & 0.08 \\
\hline r_25 & 15 & c409 & 5,895.64 & - & & - & 0.98 & 0.98 & - & - & 49.17 \\
\hline r_25 & 16 & a152 & - & 2.18 & 61,304 & 12.63 & & 13.61 & 15.00 & 82.00 & 46.99 \\
\hline r_25 & 17 & a120 & - & 4.50 & 63,652 & 12.80 & - & 13.78 & 15.00 & 28.00 & 42.49 \\
\hline r_25 & 18 & a572 & - & 4.03 & 71,790 & 13.06 & - & 14.05 & 15.00 & 140.00 & 38.46 \\
\hline r_25 & 19 & a049 & - & 10.89 & 77,727 & 13.29 & - & 14.27 & 15.00 & 92.00 & 27.57 \\
\hline r_25 & 20 & a084 & - & 2.26 & 81,569 & 13.49 & - & 14.47 & 15.00 & 40.00 & 25.31 \\
\hline r_25 & 21 & a533 & - & 0.88 & 82,376 & 13.63 & - & 14.61 & 15.00 & 88.00 & 24.43 \\
\hline r_25 & 22 & a079 & - & 1.62 & 83,313 & 13.78 & - & 14.76 & 15.00 & 20.00 & 22.81 \\
\hline r_25 & 23 & a268 & - & 2.23 & 92,646 & 14.06 & - & 15.04 & 15.00 & 28.00 & 20.58 \\
\hline r_25 & 24 & a558 & - & 0.76 & 96,215 & 14.25 & - & 15.23 & 15.00 & 94.00 & 19.81 \\
\hline r_25 & 25 & a538 & - & 4.86 & 99,142 & 14.43 & - & 15.41 & 15.00 & 224.00 & 14.95 \\
\hline r_25 & 26 & a156 & - & 2.98 & 101,058 & 14.59 & - & 15.57 & 15.00 & 54.00 & 11.97 \\
\hline r_25 & 27 & a262 & - & 4.72 & 110,038 & 14.87 & - & 15.85 & 15.00 & 28.00 & 7.25 \\
\hline r_25 & 28 & t01 & - & 7.25 & 129,062 & 15.19 & - & 16.17 & - & - & - \\
\hline r_26 & 0 & t01 & - & - & - & 11.94 & - & 11.94 & - & - & 66 \\
\hline r_26 & 1 & a576 & - & 2.69 & 8,256 & 13.08 & - & 13.08 & 15.00 & 505.00 & 63.31 \\
\hline r_26 & 2 & a350 & - & 0.37 & 8,412 & 13.21 & - & 13.21 & 15.00 & 1,175.00 & 62.94 \\
\hline r_26 & 3 & a544 & - & 0.07 & 8,607 & 13.34 & - & 13.34 & 15.00 & 57.00 & 62.87 \\
\hline r_26 & 4 & a567 & - & 0.19 & 9,813 & 13.50 & - & 13.50 & 15.00 & 52.00 & 62.68 \\
\hline r_26 & 5 & a555 & - & 1.66 & 10,741 & 13.64 & - & 13.64 & 15.00 & 84.00 & 61.03 \\
\hline r_26 & 6 & a578 & - & 1.26 & 13,188 & 13.81 & - & 13.81 & 15.00 & 47.00 & 59.77 \\
\hline r_26 & 7 & a315 & - & 2.02 & 14,359 & 13.96 & - & 13.96 & 15.00 & 15.00 & 57.75 \\
\hline r_26 & 8 & a301 & - & 7.09 & 18,494 & 14.16 & - & 14.16 & 15.00 & 45.00 & 50.66 \\
\hline r_26 & 9 & a451 & - & 0.40 & 19,250 & 14.30 & - & 14.30 & 15.00 & 24.00 & 50.26 \\
\hline r_26 & 10 & a055 & - & 1.77 & 20,302 & 14.45 & - & 14.45 & 15.00 & 106.00 & 48.49 \\
\hline r_26 & 11 & a165 & - & - & 20,302 & 14.58 & - & 14.58 & 15.00 & 51.00 & 48.49 \\
\hline r_26 & 12 & a531 & - & 0.25 & 20,760 & 14.72 & - & 14.72 & 15.00 & 530.00 & 48.24 \\
\hline r_26 & 13 & a407 & - & 0.52 & 21,145 & 14.85 & - & 14.85 & 15.00 & 181.00 & 47.72 \\
\hline r_26 & 14 & a550 & - & 0.52 & 22,110 & 15.00 & - & 15.00 & 15.00 & 83.00 & 47.20 \\
\hline r_26 & 15 & t01 & - & 4.04 & 30,771 & 15.14 & - & 15.14 & - & - & 43.16 \\
\hline r_27 & 0 & t01 & - & - & - & 4.53 & - & 4.53 & - & - & 66 \\
\hline r_27 & 1 & a046 & - & 21.68 & 37,387 & 6.15 & - & 6.15 & 13.00 & 96.00 & 44.32 \\
\hline r_27 & 2 & a352 & - & 11.04 & 44,887 & 6.41 & - & 6.41 & 13.00 & 81.00 & 33.27 \\
\hline r_27 & 3 & a353 & - & - & 44,887 & 6.54 & - & 6.54 & 13.00 & 5.00 & 33.27 \\
\hline r_27 & 4 & a045 & - & 17.87 & 51,744 & 6.78 & - & 6.78 & 13.00 & 147.00 & 15.41 \\
\hline r_27 & 5 & a393 & - & 2.47 & 59,048 & 7.03 & - & 7.03 & 13.00 & 354.00 & 12.93 \\
\hline r_27 & 6 & c708 & 181,368.66 & - & - & - & 1.98 & 1.98 & - & - & 112.10 \\
\hline r_27 & 7 & c708 & 204,779.44 & - & - & - & - & 1.98 & - & - & 112.10 \\
\hline r_27 & 8 & a085 & - & 112.10 & 106,436 & 7.95 & - & 9.94 & 13.00 & 208.00 & - \\
\hline r_27 & 9 & c708 & 183,003.34 & - & - & & 0.71 & 2.69 & - & - & 35.48 \\
\hline r_27 & 10 & a027 & & 25.82 & 117,830 & 8.27 & - & 10.97 & 13.00 & 73.00 & 9.67 \\
\hline r_27 & 11 & a285 & - & 9.67 & 133,443 & 8.66 & - & 11.36 & 13.00 & 144.00 & - \\
\hline r_27 & 12 & c708 & 200,719.80 & - & & - & 2.55 & 5.25 & - & - & 127.67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & \[
\begin{gathered}
\text { Weight } \\
(\mathbf{k g})
\end{gathered}
\] & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_27 & 13 & c708 & 204,779.44 & - & - & - & - & 5.25 & - & - & 127.67 \\
\hline r_27 & 14 & a028 & - & 118.65 & 188,319 & 9.71 & - & 14.96 & 13.00 & 21.00 & 9.03 \\
\hline r_27 & 15 & a373 & - & 9.03 & 210,513 & 10.21 & - & 15.45 & 13.00 & 307.00 & - \\
\hline r_27 & 16 & c708 & 227,070.99 & & , & - & 0.50 & 5.75 & - & - & 25.18 \\
\hline r_27 & 17 & a341 & - & 25.18 & 223,070 & 10.55 & - & 16.30 & 13.00 & 177.00 & - \\
\hline r_27 & 18 & c708 & 215,558.83 & - & - & - & 1.56 & 7.31 & - & - & 78.05 \\
\hline r_27 & 19 & a087 & - & 78.05 & 263,718 & 11.36 & & 18.67 & 13.00 & 73.00 & - \\
\hline r_27 & 20 & c708 & 186,404.63 & - & - & - & 0.36 & 7.67 & - & - & 18.08 \\
\hline r_27 & 21 & a138 & & 13.93 & 311,741 & 12.29 & , & 19.96 & 13.00 & 42.00 & 4.15 \\
\hline r_27 & 22 & a383 & - & 4.15 & 320,381 & 12.56 & - & 20.23 & 13.00 & 353.00 & - \\
\hline r_27 & 23 & c708 & - & - & - & - & - & 9.23 & - & - & 77.66 \\
\hline r_27 & 24 & t01 & - & 77.66 & 536,381 & 16.16 & - & 25.39 & - & - & - \\
\hline r_28 & 0 & t01 & - & - & - & 11.13 & - & 11.13 & - & - & 66 \\
\hline r_28 & 1 & a175 & - & 0.91 & 2,006 & 12.16 & - & 12.16 & 15.00 & 20.00 & 65.09 \\
\hline r_28 & 2 & a549 & - & 2.60 & 6,324 & 12.37 & - & 12.37 & 15.00 & 363.00 & 62.49 \\
\hline r_28 & 3 & a490 & - & 11.52 & 9,814 & 12.55 & - & 12.55 & 15.00 & 123.00 & 50.97 \\
\hline r_28 & 4 & a561 & - & 1.91 & 14,255 & 12.76 & - & 12.76 & 15.00 & 102.00 & 49.06 \\
\hline r_28 & 5 & a541 & - & 4.42 & 15,640 & 12.91 & - & 12.91 & 15.00 & 116.00 & 44.65 \\
\hline r_28 & 6 & a403 & - & 13.50 & 19,944 & 13.11 & - & 13.11 & 15.00 & 667.00 & 31.15 \\
\hline r_28 & 7 & a551 & - & 0.86 & 22,484 & 13.28 & - & 13.28 & 15.00 & 93.00 & 30.28 \\
\hline r_28 & 8 & a552 & - & 0.60 & 23,106 & 13.43 & - & 13.43 & 15.00 & 405.00 & 29.68 \\
\hline r_28 & 9 & a482 & - & 9.03 & 26,608 & 13.61 & - & 13.61 & 15.00 & 285.00 & 20.65 \\
\hline r_28 & 10 & a038 & - & 2.69 & 27,708 & 13.76 & - & 13.76 & 15.00 & 51.00 & 17.96 \\
\hline r_28 & 11 & a542 & - & 0.41 & 27,885 & 13.89 & - & 13.89 & 15.00 & 62.00 & 17.55 \\
\hline r_28 & 12 & a122 & - & 7.12 & 30,865 & 14.07 & - & 14.07 & 15.00 & 60.00 & 10.43 \\
\hline r_28 & 13 & a568 & - & 0.21 & 31,841 & 14.22 & - & 14.22 & 15.00 & 580.00 & 10.22 \\
\hline r_28 & 14 & a121 & - & 1.68 & 32,648 & 14.36 & - & 14.36 & 15.00 & 75.00 & 8.54 \\
\hline r_28 & 15 & a604 & - & 0.72 & 34,224 & 14.52 & - & 14.52 & 15.00 & 158.00 & 7.82 \\
\hline r_28 & 16 & a427 & - & 2.23 & 35,355 & 14.67 & - & 14.67 & 15.00 & 34.00 & 5.59 \\
\hline r_28 & 17 & a377 & - & 1.19 & 35,967 & 14.81 & - & 14.81 & 15.00 & 361.00 & 4.40 \\
\hline r_28 & 18 & a563 & - & 1.57 & 39,600 & 15.00 & - & 15.00 & 15.00 & 278.00 & 2.82 \\
\hline r_28 & 19 & c081 & 15,722.70 & - & - & - & 0.02 & 0.02 & - & - & 3.80 \\
\hline r_28 & 20 & t01 & & 3.80 & 47,937 & 15.14 & - & 15.16 & - & - & - \\
\hline r_29 & 0 & t01 & - & - & - & 10.43 & - & 10.43 & - & - & 66 \\
\hline r_29 & 1 & a566 & - & 4.10 & 11,059 & 11.62 & - & 11.62 & 15.00 & 47.00 & 61.90 \\
\hline r_29 & 2 & a211 & - & 17.88 & 17,209 & 11.85 & - & 11.85 & 15.00 & 1.00 & 44.02 \\
\hline r_29 & 3 & a577 & - & 0.33 & 18,152 & 12.00 & - & 12.00 & 15.00 & 128.00 & 43.69 \\
\hline r_29 & 4 & a557 & - & 4.28 & 19,657 & 12.15 & - & 12.15 & 15.00 & 190.00 & 39.41 \\
\hline r_29 & 5 & a507 & - & 3.96 & 21,094 & 12.30 & - & 12.30 & 15.00 & 67.00 & 35.45 \\
\hline r_29 & 6 & a336 & - & 3.09 & 22,229 & 12.45 & - & 12.45 & 15.00 & 865.00 & 32.36 \\
\hline r_29 & 7 & a467 & - & 0.26 & 23,455 & 12.60 & - & 12.60 & 15.00 & 128.00 & 32.10 \\
\hline r_29 & 8 & a560 & - & 0.10 & 23,661 & 12.74 & - & 12.74 & 15.00 & 218.00 & 32.01 \\
\hline r_29 & 9 & a491 & - & 1.50 & 24,363 & 12.88 & - & 12.88 & 15.00 & 179.00 & 30.51 \\
\hline r_29 & 10 & a389 & - & 3.36 & 25,999 & 13.04 & - & 13.04 & 15.00 & 510.00 & 27.14 \\
\hline r_29 & 11 & a545 & - & 0.58 & 26,907 & 13.18 & - & 13.18 & 15.00 & 278.00 & 26.56 \\
\hline r_29 & 12 & a206 & - & 0.87 & 27,425 & 13.32 & - & 13.32 & 15.00 & 40.00 & 25.69 \\
\hline r_29 & 13 & a225 & - & 0.28 & 27,926 & 13.46 & - & 13.46 & 15.00 & 31.00 & 25.41 \\
\hline r_29 & 14 & a048 & - & 1.47 & 28,818 & 13.60 & - & 13.60 & 15.00 & 69.00 & 23.94 \\
\hline r_29 & 15 & a288 & - & 0.24 & 29,603 & 13.75 & - & 13.75 & 15.00 & 12.00 & 23.70 \\
\hline r_29 & 16 & a192 & - & 0.96 & 30,203 & 13.89 & - & 13.89 & 15.00 & 31.00 & 22.73 \\
\hline r_29 & 17 & a058 & - & 5.92 & 33,926 & 14.08 & - & 14.08 & 15.00 & 92.00 & 16.81 \\
\hline r_29 & 18 & a131 & - & 0.30 & 36,108 & 14.25 & - & 14.25 & 15.00 & 100.00 & 16.51 \\
\hline r_29 & 19 & a004 & - & 7.49 & 41,103 & 14.46 & - & 14.46 & 15.00 & 29.00 & 9.02 \\
\hline r_29 & 20 & a112 & - & 1.18 & 43,580 & 14.63 & & 14.63 & 15.00 & 48.00 & 7.84 \\
\hline r_29 & 21 & c087 & 9,931.26 & - & - & - & 0.09 & 0.09 & - & - & 12.13 \\
\hline r_29 & 22 & a083 & - & 8.15 & 49,153 & 14.85 & - & 14.94 & 15.00 & 162.00 & 3.98 \\
\hline r_29 & 23 & a326 & - & 0.22 & 50,199 & 15.00 & - & 15.09 & 15.00 & 30.00 & 3.76 \\
\hline r_29 & 24 & t01 & - & 3.76 & 58,601 & 15.14 & - & 15.23 & - & - & - \\
\hline r_30 & 0 & t01 & - & - & - & 7.31 & - & 7.31 & - & - & 66 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_30 & 1 & a289 & - & 18.19 & 47,312 & 9.10 & - & 9.10 & 15.00 & 35.00 & 47.81 \\
\hline r_30 & 2 & a161 & - & 6.20 & 49,500 & 9.26 & - & 9.26 & 15.00 & 154.00 & 41.62 \\
\hline r_30 & 3 & a030 & - & 19.77 & 56,670 & 9.51 & - & 9.51 & 15.00 & 45.00 & 21.84 \\
\hline r_30 & 4 & a603 & - & 0.98 & 64,694 & 9.78 & - & 9.78 & 15.00 & 41.00 & 20.87 \\
\hline r_30 & 5 & a628 & - & 5.40 & 70,793 & 10.01 & - & 10.01 & 15.00 & 50.00 & 15.47 \\
\hline r_30 & 6 & a061 & - & 13.20 & 75,696 & 10.22 & - & 10.22 & 15.00 & 514.00 & 2.27 \\
\hline r_30 & 7 & a136 & - & 0.26 & 76,131 & 10.36 & - & 10.36 & 15.00 & 90.00 & 2.01 \\
\hline r_30 & 8 & c442 & 97,912.17 & - & - & - & 0.46 & 0.46 & - & - & 24.95 \\
\hline r_30 & 9 & a101 & , & 5.25 & 78,315 & 10.52 & , & 10.98 & 15.00 & 91.00 & 19.70 \\
\hline r_30 & 10 & a617 & - & 1.43 & 79,852 & 10.68 & - & 11.14 & 15.00 & 69.00 & 18.27 \\
\hline r_30 & 11 & a593 & - & 0.72 & 80,162 & 10.81 & - & 11.27 & 15.00 & 699.00 & 17.55 \\
\hline r_30 & 12 & a358 & - & 6.73 & 83,541 & 11.00 & - & 11.46 & 15.00 & 196.00 & 10.81 \\
\hline r_30 & 13 & a010 & - & 7.52 & 87,505 & 11.20 & - & 11.65 & 15.00 & 48.00 & 3.29 \\
\hline r_30 & 14 & a615 & - & 0.57 & 88,335 & 11.34 & - & 11.80 & 15.00 & 85.00 & 2.72 \\
\hline r_30 & 15 & a595 & - & 2.72 & 89,816 & 11.49 & - & 11.95 & 15.00 & 79.00 & - \\
\hline r_30 & 16 & c442 & 95,837.71 & - & & - & 1.06 & 1.52 & - & - & 53.01 \\
\hline r_30 & 17 & a322 & & 40.57 & 112,399 & 12.00 & - & 13.52 & 15.00 & 23.00 & 12.44 \\
\hline r_30 & 18 & a062 & - & 1.73 & 113,369 & 12.15 & - & 13.67 & 15.00 & 154.00 & 10.70 \\
\hline r_30 & 19 & t01 & - & 10.70 & 137,889 & 12.56 & - & 14.07 & - & - & - \\
\hline r_31 & 0 & t01 & - & - & - & 8.98 & - & 8.98 & - & - & 66 \\
\hline r_31 & 1 & a275 & - & 7.83 & 20,087 & 10.32 & - & 10.32 & 15.00 & 22.00 & 58.17 \\
\hline r_31 & 2 & a147 & - & 8.58 & 22,877 & 10.49 & - & 10.49 & 15.00 & 20.00 & 49.60 \\
\hline r_31 & 3 & a019 & - & 11.93 & 26,771 & 10.69 & - & 10.69 & 15.00 & 77.00 & 37.67 \\
\hline r_31 & 4 & a124 & - & 0.63 & 27,543 & 10.83 & - & 10.83 & 15.00 & 60.00 & 37.04 \\
\hline r_31 & 5 & a535 & - & 4.42 & 40,607 & 11.18 & - & 11.18 & 15.00 & 46.00 & 32.62 \\
\hline r_31 & 6 & a564 & - & 1.17 & 42,450 & 11.34 & - & 11.34 & 15.00 & 224.00 & 31.45 \\
\hline r_31 & 7 & a332 & - & 16.97 & 48,364 & 11.57 & - & 11.57 & 15.00 & 194.00 & 14.49 \\
\hline r_31 & 8 & a543 & - & 0.01 & 48,652 & 11.70 & - & 11.70 & 15.00 & 166.00 & 14.48 \\
\hline r_31 & 9 & c322 & 41,837.89 & - & - & - & 0.87 & 0.87 & - & - & 57.80 \\
\hline r_31 & 10 & a154 & - & 16.94 & 54,935 & 11.94 & - & 12.81 & 15.00 & 46.00 & 40.86 \\
\hline r_31 & 11 & a413 & - & 4.62 & 61,513 & 12.18 & - & 13.04 & 15.00 & 150.00 & 36.24 \\
\hline r_31 & 12 & a547 & - & 1.82 & 68,453 & 12.42 & - & 13.29 & 15.00 & 396.00 & 34.42 \\
\hline r_31 & 13 & a270 & - & 17.69 & 75,786 & 12.68 & - & 13.54 & 15.00 & 78.00 & 16.72 \\
\hline r_31 & 14 & a524 & - & 0.31 & 76,079 & 12.81 & - & 13.68 & 15.00 & 234.00 & 16.42 \\
\hline r_31 & 15 & a415 & - & 4.22 & 77,942 & 12.97 & - & 13.84 & 15.00 & 60.00 & 12.20 \\
\hline r_31 & 16 & a575 & - & 1.19 & 84,981 & 13.22 & - & 14.09 & 15.00 & 186.00 & 11.01 \\
\hline r_31 & 17 & a553 & - & 11.01 & 90,112 & 13.43 & - & 14.30 & 15.00 & 59.00 & - \\
\hline r_31 & 18 & c340 & 39,174.05 & - & , & - & 1.17 & 2.03 & - & - & 58.40 \\
\hline r_31 & 19 & a174 & - & 31.48 & 104,978 & 13.81 & - & 15.85 & 15.00 & 35.00 & 26.92 \\
\hline r_31 & 20 & a546 & - & 0.19 & 107,366 & 13.98 & - & 16.02 & 15.00 & 155.00 & 26.73 \\
\hline r_31 & 21 & a574 & - & 0.87 & 108,895 & 14.14 & - & 16.17 & 15.00 & 142.00 & 25.85 \\
\hline r_31 & 22 & a573 & - & 6.27 & 112,096 & 14.32 & - & 16.36 & 15.00 & 228.00 & 19.58 \\
\hline r_31 & 23 & a198 & - & 11.19 & 118,145 & 14.55 & - & 16.59 & 15.00 & 28.00 & 8.40 \\
\hline r_31 & 24 & a554 & - & 0.34 & 118,550 & 14.69 & - & 16.72 & 15.00 & 650.00 & 8.05 \\
\hline r_31 & 25 & a054 & - & 1.73 & 119,688 & 14.84 & - & 16.87 & 15.00 & 48.00 & 6.32 \\
\hline r_31 & 26 & a570 & - & 0.90 & 121,616 & 15.00 & - & 17.03 & 15.00 & 50.00 & 5.42 \\
\hline r_31 & 27 & t01 & - & 5.42 & 136,481 & 15.25 & - & 17.28 & - & - & - \\
\hline r_32 & 0 & t01 & - & - & - & 8.73 & - & 8.73 & - & - & 66 \\
\hline r_32 & 1 & a428 & - & 7.51 & 16,206 & 10.00 & - & 10.00 & 15.00 & 145.00 & 58.49 \\
\hline r_32 & 2 & a220 & - & 7.38 & 20,279 & 10.20 & - & 10.20 & 15.00 & 10.00 & 51.11 \\
\hline r_32 & 3 & a135 & - & 6.70 & 23,988 & 10.39 & - & 10.39 & 15.00 & 30.00 & 44.41 \\
\hline r_32 & 4 & a641 & - & 1.89 & 28,559 & 10.60 & - & 10.60 & 15.00 & 352.00 & 42.52 \\
\hline r_32 & 5 & a640 & - & 15.14 & 37,879 & 10.88 & - & 10.88 & 15.00 & 54.00 & 27.37 \\
\hline r_32 & 6 & a160 & - & 19.90 & 50,325 & 11.22 & - & 11.22 & 15.00 & 40.00 & 7.47 \\
\hline r_32 & 7 & c143 & 21,922.98 & - & - & - & 0.43 & 0.43 & & - & 29.04 \\
\hline r_32 & 8 & a035 & - & 9.98 & 56,641 & 11.45 & - & 11.89 & 15.00 & 20.00 & 19.06 \\
\hline r_32 & 9 & a164 & - & 0.70 & 58,713 & 11.62 & - & 12.05 & 15.00 & 144.00 & 18.36 \\
\hline r_32 & 10 & a182 & - & 3.49 & 65,869 & 11.87 & - & 12.30 & 15.00 & 17.00 & 14.87 \\
\hline r_32 & 11 & a126 & - & 12.19 & 74,036 & 12.13 & - & 12.57 & 15.00 & 40.00 & 2.68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance to charger (m) & Energy consumption (kWh) & Distance (m) & \begin{tabular}{l}
Time \\
(h)
\end{tabular} & Charge time (h) & Total time (h) & \begin{tabular}{l}
End of TW \\
(h)
\end{tabular} & Weight (kg) & \[
\begin{gathered}
\text { SoC } \\
(\mathbf{k W h})
\end{gathered}
\] \\
\hline r_32 & 12 & a151 & - & 1.33 & 77,413 & 12.32 & - & 12.75 & 15.00 & 76.00 & 1.35 \\
\hline r_32 & 13 & t01 & - & 1.35 & 82,082 & 12.40 & - & 12.83 & - & - & 0.00 \\
\hline r_33 & 0 & t01 & - & - & - & 8.79 & - & 8.79 & - & - & 66 \\
\hline r_33 & 1 & a260 & - & 3.49 & 12,771 & 10.00 & - & 10.00 & 15.00 & 28.00 & 62.51 \\
\hline r_33 & 2 & a474 & - & 0.79 & 13,807 & 10.15 & - & 10.15 & 15.00 & 122.00 & 61.72 \\
\hline r_33 & 3 & a412 & - & 1.26 & 14,391 & 10.29 & - & 10.29 & 15.00 & 84.00 & 60.47 \\
\hline r_33 & 4 & a347 & - & 2.83 & 15,732 & 10.44 & - & 10.44 & 15.00 & 971.00 & 57.63 \\
\hline r_33 & 5 & a534 & - & 4.19 & 21,500 & 10.67 & - & 10.67 & 15.00 & 235.00 & 53.44 \\
\hline r_33 & 6 & a308 & - & 6.49 & 25,731 & 10.87 & - & 10.87 & 15.00 & 42.00 & 46.95 \\
\hline r_33 & 7 & t01 & - & 0.86 & 28,628 & 10.91 & - & 10.91 & - & - & 46.09 \\
\hline r_34 & 0 & t01 & - & - & & 4.53 & - & 4.53 & - & - & 66 \\
\hline r_34 & 1 & a329 & - & 44.21 & 113,397 & 7.42 & - & 7.42 & 13.00 & 40.00 & 21.79 \\
\hline r_34 & 2 & c641 & 183,239.96 & - & 13,397 & - & 0.75 & 0.75 & , & . & 59.08 \\
\hline r_34 & 3 & a106 & - & 34.62 & 126,893 & 7.77 & - & 8.52 & 13.00 & 88.00 & 24.46 \\
\hline r_34 & 4 & a282 & - & 10.98 & 152,262 & 8.33 & - & 9.07 & 13.00 & 154.00 & 13.47 \\
\hline r_34 & 5 & a335 & - & 13.47 & 182,485 & 8.96 & - & 9.71 & 13.00 & 37.00 & - \\
\hline r_34 & 6 & c492 & 17,253.61 & - & - & - & 1.35 & 2.09 & - & - & 67.44 \\
\hline r_34 & 7 & a532 & , & 20.94 & 237,008 & 10.00 & - & 12.09 & 15.00 & 61.00 & 46.50 \\
\hline r_34 & 8 & a056 & - & 17.24 & 244,185 & 10.25 & - & 12.34 & 15.00 & 106.00 & 29.26 \\
\hline r_34 & 9 & a114 & - & 0.50 & 245,625 & 10.40 & - & 12.50 & 15.00 & 116.00 & 28.76 \\
\hline r_34 & 10 & a222 & - & 5.72 & 253,363 & 10.66 & - & 12.76 & 15.00 & 39.00 & 23.04 \\
\hline r_34 & 11 & a537 & - & 0.58 & 255,336 & 10.83 & - & 12.92 & 15.00 & 33.00 & 22.45 \\
\hline r_34 & 12 & a334 & - & 15.78 & 262,316 & 11.07 & - & 13.17 & 15.00 & 737.00 & 6.67 \\
\hline r_34 & 13 & a390 & - & 0.94 & 263,574 & 11.22 & - & 13.32 & 15.00 & 223.00 & 5.73 \\
\hline r_34 & 14 & a444 & - & 3.03 & 278,677 & 11.60 & - & 13.70 & 15.00 & 220.00 & 2.70 \\
\hline r_34 & 15 & t01 & - & 2.70 & 285,354 & 11.72 & - & 13.81 & - & - & 0.00 \\
\hline
\end{tabular}

\section*{C.IV Best case Siesel}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \(\qquad\) consumption (kWh) \\
\hline r_01 & 0 & t01 & - & 2.77 & - & - \\
\hline r_01 & 1 & a038 & 6,453 & 3.88 & 98.00 & 2.83 \\
\hline r_01 & 2 & a063 & 55,615 & 4.83 & 152.00 & 23.66 \\
\hline r_01 & 3 & a064 & 58,126 & 5.00 & 1172.00 & 1.34 \\
\hline r_01 & 4 & a015 & 59,102 & 5.14 & 9.00 & 1.27 \\
\hline r_01 & 5 & a012 & 61,488 & 5.31 & 1.00 & 3.10 \\
\hline r_01 & 6 & a065 & 71,864 & 5.62 & 103.00 & 4.96 \\
\hline r_01 & 7 & a061 & 85,579 & 5.98 & 59.00 & 17.39 \\
\hline r_01 & 8 & a013 & 89,509 & 6.17 & 19.00 & 4.92 \\
\hline r_01 & 9 & a008 & 90,124 & 6.31 & 53.00 & 0.77 \\
\hline r_01 & 10 & a049 & 91,140 & 6.46 & 550.00 & 0.48 \\
\hline r_01 & 11 & a067 & 91,189 & 6.59 & 85.00 & 0.02 \\
\hline r_01 & 12 & a005 & 94,853 & 6.78 & 19.00 & 3.83 \\
\hline r_01 & 13 & a023 & 95,431 & 6.92 & 43.00 & 0.31 \\
\hline r_01 & 14 & a022 & 95,431 & 7.05 & 34.00 & - \\
\hline r_01 & 15 & a006 & 102,604 & 7.30 & 34.00 & 7.30 \\
\hline r_01 & 16 & a019 & 109,747 & 7.55 & 11.00 & 2.87 \\
\hline r_01 & 17 & a070 & 113,268 & 7.74 & 62.00 & 1.63 \\
\hline r_01 & 18 & a040 & 113,334 & 7.87 & 74.00 & 0.07 \\
\hline r_01 & 19 & a010 & 113,419 & 8.00 & 34.00 & 0.08 \\
\hline r_01 & 20 & t01 & 168,510 & 8.92 & - & 26.53 \\
\hline r_02 & 0 & t01 & - & 0.85 & - & - \\
\hline r_02 & 1 & a045 & 8,923 & 2.00 & 60.00 & 3.91 \\
\hline r_02 & 2 & a053 & 11,332 & 2.17 & 97.00 & 0.51 \\
\hline r_02 & 3 & a047 & 12,168 & 2.31 & 59.00 & 1.17 \\
\hline r_02 & 4 & a002 & 14,968 & 2.49 & 14.00 & 3.86 \\
\hline r_02 & 5 & a016 & 15,807 & 2.63 & 26.00 & 0.64 \\
\hline r_02 & 6 & a033 & 15,874 & 2.77 & 200.00 & 0.01 \\
\hline r_02 & 7 & a018 & 16,586 & 2.91 & 10.00 & 0.93 \\
\hline r_02 & 8 & a035 & 17,294 & 3.05 & 91.00 & 0.48 \\
\hline r_02 & 9 & a062 & 18,031 & 3.19 & 42.00 & 0.40 \\
\hline r_02 & 10 & a031 & 19,836 & 3.35 & 598.00 & 2.29 \\
\hline r_02 & 11 & a004 & 22,336 & 3.52 & 12.00 & 2.74 \\
\hline r_02 & 12 & a056 & 26,039 & 3.72 & 77.00 & 1.05 \\
\hline r_02 & 13 & t01 & 37,004 & 3.90 & - & 5.45 \\
\hline r_03 & 0 & t01 & - & 0.88 & - & - \\
\hline r_03 & 1 & a042 & 7,038 & 2.00 & 1288.00 & 3.31 \\
\hline r_03 & 2 & a037 & 19,092 & 2.33 & 36.00 & 12.43 \\
\hline r_03 & 3 & a060 & 20,968 & 2.49 & 130.00 & 0.88 \\
\hline r_03 & 4 & a028 & 25,140 & 2.69 & 49.00 & 4.10 \\
\hline r_03 & 5 & a048 & 34,614 & 2.98 & 156.00 & 4.36 \\
\hline r_03 & 6 & a034 & 52,788 & 3.41 & 218.00 & 16.79 \\
\hline r_03 & 7 & a051 & 82,785 & 4.04 & 204.00 & 13.39 \\
\hline r_03 & 8 & t01 & 90,777 & 4.18 & - & 3.43 \\
\hline r_04 & 0 & t01 & - & 0.82 & - & - \\
\hline r_04 & 1 & a046 & 11,026 & 2.00 & 82.00 & 5.33 \\
\hline r_04 & 2 & a032 & 21,878 & 2.31 & 855.00 & 19.57 \\
\hline r_04 & 3 & a052 & 39,656 & 2.74 & 579.00 & 8.47 \\
\hline r_04 & 4 & a036 & 66,221 & 3.31 & 51.00 & 36.84 \\
\hline r_04 & 5 & a020 & 94,553 & 3.91 & 108.00 & 38.88 \\
\hline r_04 & 6 & a026 & 97,154 & 4.09 & 991.00 & 1.82 \\
\hline r_04 & 7 & a059 & 100,031 & 4.26 & 60.00 & 0.99 \\
\hline r_04 & 8 & a071 & 106,783 & 4.51 & 71.00 & 3.18 \\
\hline r_04 & 9 & a007 & 114,040 & 4.76 & 10.00 & 7.36 \\
\hline r_04 & 10 & t01 & 126,929 & 4.97 & - & 6.10 \\
\hline r_05 & 0 & t01 & - & 1.68 & - & - \\
\hline r_05 & 1 & a011 & 52,623 & 3.56 & 83.00 & 24.53 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_05 & 2 & a024 & 58,845 & 3.79 & 938.00 & 3.39 \\
\hline r_05 & 3 & a009 & 59,351 & 3.93 & 210.00 & 0.75 \\
\hline r_05 & 4 & a030 & 70,108 & 4.24 & 928.00 & 4.10 \\
\hline r_05 & 5 & a068 & 74,062 & 4.44 & 233.00 & 2.15 \\
\hline r_05 & 6 & a001 & 78,219 & 4.64 & 1.00 & 4.49 \\
\hline r_05 & 7 & a025 & 102,234 & 5.17 & 46.00 & 11.22 \\
\hline r_05 & 8 & a066 & 110,476 & 5.43 & 32.00 & 3.72 \\
\hline r_05 & 9 & a029 & 123,924 & 5.79 & 226.00 & 14.21 \\
\hline r_05 & 10 & a069 & 128,885 & 6.00 & 19.00 & 2.36 \\
\hline r_05 & 11 & t01 & 133,801 & 6.08 & - & 1.96 \\
\hline r_06 & 0 & t01 & , & 0.85 & - & - \\
\hline r_06 & 1 & a043 & 17,216 & 2.14 & 53.00 & 8.17 \\
\hline r_06 & 2 & a017 & 26,539 & 2.42 & 18.00 & 14.46 \\
\hline r_06 & 3 & a003 & 27,791 & 2.57 & 26.00 & 1.94 \\
\hline r_06 & 4 & a054 & 28,640 & 2.72 & 50.00 & 0.54 \\
\hline r_06 & 5 & a021 & 31,499 & 2.90 & 453.00 & 4.36 \\
\hline r_06 & 6 & a041 & 39,644 & 3.16 & 182.00 & 4.21 \\
\hline r_06 & 7 & a044 & 40,297 & 3.30 & 29.00 & 0.32 \\
\hline r_06 & 8 & a039 & 74,204 & 4.00 & 24.00 & 45.13 \\
\hline r_06 & 9 & a058 & 109,581 & 4.72 & 128.00 & 17.69 \\
\hline r_06 & 10 & a055 & 113,717 & 4.92 & 449.00 & 5.32 \\
\hline r_06 & 11 & a072 & 122,287 & 5.19 & 28.00 & 5.49 \\
\hline r_06 & 12 & a027 & 126,150 & 5.38 & 39.00 & 4.44 \\
\hline r_06 & 13 & a057 & 131,618 & 5.60 & 89.00 & 1.47 \\
\hline r_06 & 14 & a050 & 132,077 & 5.74 & 137.00 & 0.51 \\
\hline r_06 & 15 & a014 & 133,366 & 5.89 & 10.00 & 1.38 \\
\hline r_06 & 16 & t01 & 146,600 & 6.11 & - & 6.57 \\
\hline
\end{tabular}

\section*{C.V Medium case SDiesel}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy
consumption
\((k W h)\) \\
\hline r_01 & 0 & t01 & - & - & - & - \\
\hline r_01 & 1 & a129 & 61,317 & 2.02 & 569.00 & 27.60 \\
\hline r_01 & 2 & a143 & 73,459 & 2.35 & 1,130.00 & 5.66 \\
\hline r_01 & 3 & a155 & 79,990 & 2.59 & 482.00 & 3.75 \\
\hline r_01 & 4 & a153 & 94,795 & 2.97 & 7.00 & 19.40 \\
\hline r_01 & 5 & a084 & 152,470 & 4.06 & 175.00 & 75.45 \\
\hline r_01 & 6 & a227 & 156,062 & 4.25 & 125.00 & 1.75 \\
\hline r_01 & 7 & a212 & 157,556 & 4.41 & 96.00 & 1.83 \\
\hline r_01 & 8 & a244 & 160,339 & 4.58 & 96.00 & 1.10 \\
\hline r_01 & 9 & a126 & 161,469 & 4.73 & 82.00 & 1.32 \\
\hline r_01 & 10 & a239 & 162,610 & 4.88 & 138.00 & 0.49 \\
\hline r_01 & 11 & a200 & 162,967 & 5.02 & 183.00 & 0.40 \\
\hline r_01 & 12 & t01 & 173,124 & 5.19 & - & 5.29 \\
\hline r_02 & 0 & t01 & - & 0.80 & - & - \\
\hline r_02 & 1 & a123 & 12,010 & 2.00 & 816.00 & 4.90 \\
\hline r_02 & 2 & a175 & 13,616 & 2.16 & 144.00 & 1.21 \\
\hline r_02 & 3 & a013 & 15,493 & 2.32 & 54.00 & 3.03 \\
\hline r_02 & 4 & a189 & 38,069 & 2.82 & 897.00 & 11.12 \\
\hline r_02 & 5 & a098 & 38,069 & 2.95 & 101.00 & - \\
\hline r_02 & 6 & a178 & 48,162 & 3.25 & 73.00 & 4.03 \\
\hline r_02 & 7 & a132 & 63,963 & 3.65 & 52.00 & 20.47 \\
\hline r_02 & 8 & a188 & 65,486 & 3.80 & 73.00 & 0.77 \\
\hline r_02 & 9 & a130 & 65,830 & 3.94 & 799.00 & 0.43 \\
\hline r_02 & 10 & t01 & 79,876 & 4.17 & - & 6.97 \\
\hline r_03 & 0 & t01 & - & 0.83 & - & - \\
\hline r_03 & 1 & a101 & 10,376 & 2.00 & 702.00 & 4.05 \\
\hline r_03 & 2 & a195 & 12,891 & 2.17 & 266.00 & 0.93 \\
\hline r_03 & 3 & a238 & 18,437 & 2.39 & 65.00 & 3.64 \\
\hline r_03 & 4 & a234 & 28,794 & 2.70 & 112.00 & 13.98 \\
\hline r_03 & 5 & a216 & 30,740 & 2.86 & 929.00 & 2.57 \\
\hline r_03 & 6 & a249 & 34,698 & 3.06 & 124.00 & 1.73 \\
\hline r_03 & 7 & a229 & 37,667 & 3.23 & 86.00 & 3.04 \\
\hline r_03 & 8 & a191 & 44,374 & 3.48 & 194.00 & 6.70 \\
\hline r_03 & 9 & a226 & 45,081 & 3.62 & 102.00 & 0.29 \\
\hline r_03 & 10 & t01 & 61,425 & 3.89 & - & 7.20 \\
\hline r_04 & 0 & t01 & - & 0.90 & - & - \\
\hline r_04 & 1 & a081 & 6,112 & 2.00 & 75.00 & 3.17 \\
\hline r_04 & 2 & a127 & 16,635 & 2.31 & 57.00 & 4.89 \\
\hline r_04 & 3 & a017 & 17,988 & 2.46 & 29.00 & 2.05 \\
\hline r_04 & 4 & a157 & 23,096 & 2.67 & 163.00 & 2.45 \\
\hline r_04 & 5 & a128 & 23,871 & 2.82 & 437.00 & 1.13 \\
\hline r_04 & 6 & a142 & 28,644 & 3.03 & 158.00 & 2.27 \\
\hline r_04 & 7 & a083 & 69,733 & 3.84 & 1,288.00 & 53.07 \\
\hline r_04 & 8 & a326 & 76,140 & 4.08 & 102.00 & 2.12 \\
\hline r_04 & 9 & a110 & 88,570 & 4.41 & 110.00 & 11.20 \\
\hline r_04 & 10 & t01 & 165,385 & 5.69 & - & 34.60 \\
\hline r_05 & 0 & t01 & - & 3.77 & - & - \\
\hline r_05 & 1 & a199 & 6,155 & 4.87 & 319.00 & 3.02 \\
\hline r_05 & 2 & a225 & 11,723 & 5.09 & 49.00 & 2.84 \\
\hline r_05 & 3 & t01 & 15,389 & 5.16 & - & 1.18 \\
\hline r_06 & 0 & t01 & - & 3.61 & - & - \\
\hline r_06 & 1 & a038 & 12,097 & 4.81 & 8.00 & 5.56 \\
\hline r_06 & 2 & a242 & 18,461 & 5.05 & 92.00 & 2.06 \\
\hline r_06 & 3 & a103 & 21,749 & 5.23 & 935.00 & 5.26 \\
\hline r_06 & 4 & a170 & 25,097 & 5.42 & 636.00 & 0.72 \\
\hline r_06 & 5 & a180 & 27,252 & 5.58 & 464.00 & 1.04 \\
\hline r_06 & 6 & a193 & 36,269 & 5.86 & 86.00 & 4.19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_06 & 7 & a214 & 36,739 & 6.00 & 336.00 & 0.20 \\
\hline r_06 & 8 & t01 & 41,102 & 6.07 & - & 2.05 \\
\hline r_07 & 0 & t01 & - & 0.93 & - & - \\
\hline r_07 & 1 & a223 & 4,104 & 2.00 & 141.00 & 2.06 \\
\hline r_07 & 2 & t01 & 8,208 & 2.07 & - & 1.66 \\
\hline r_08 & 0 & t01 & - & 0.64 & - & - \\
\hline r_08 & 1 & a319 & 28,384 & 2.11 & 217.00 & 13.17 \\
\hline r_08 & 2 & a152 & 46,401 & 2.54 & 118.00 & 31.89 \\
\hline r_08 & 3 & a316 & 48,459 & 2.70 & 1,032.00 & 1.35 \\
\hline r_08 & 4 & a179 & 48,932 & 2.84 & 59.00 & 0.68 \\
\hline r_08 & 5 & a176 & 50,268 & 2.99 & 36.00 & 1.91 \\
\hline r_08 & 6 & a190 & 53,088 & 3.17 & 174.00 & 1.50 \\
\hline r_08 & 7 & a306 & 77,284 & 3.70 & 989.00 & 11.32 \\
\hline r_08 & 8 & a091 & 79,058 & 3.86 & 22.00 & 1.94 \\
\hline r_08 & 9 & a086 & 107,768 & 4.47 & 42.00 & 31.21 \\
\hline r_08 & 10 & t01 & 157,412 & 5.30 & - & 22.11 \\
\hline r_09 & 0 & t01 & - & 0.85 & - & - \\
\hline r_09 & 1 & a135 & 10,217 & 2.02 & 738.00 & 4.40 \\
\hline r_09 & 2 & a102 & 10,718 & 2.16 & 205.00 & 0.67 \\
\hline r_09 & 3 & a177 & 12,092 & 2.32 & 300.00 & 0.24 \\
\hline r_09 & 4 & a218 & 16,391 & 2.52 & 413.00 & 2.65 \\
\hline r_09 & 5 & t01 & 23,400 & 2.63 & - & 3.21 \\
\hline r_10 & 0 & t01 & - & 0.80 & - & - \\
\hline r_10 & 1 & a174 & 12,046 & 2.00 & 720.00 & 4.69 \\
\hline r_10 & 2 & a107 & 14,782 & 2.18 & 218.00 & 3.50 \\
\hline r_10 & 3 & t01 & 22,994 & 2.31 & - & 3.94 \\
\hline r_11 & 0 & t01 & - & 1.36 & - & - \\
\hline r_11 & 1 & a224 & 5,952 & 2.46 & 264.00 & 2.78 \\
\hline r_11 & 2 & a236 & 12,358 & 2.70 & 221.00 & 3.59 \\
\hline r_11 & 3 & a253 & 21,317 & 2.97 & 109.00 & 4.30 \\
\hline r_11 & 4 & a222 & 21,440 & 3.11 & 306.00 & 0.21 \\
\hline r_11 & 5 & a251 & 27,381 & 3.34 & 124.00 & 3.41 \\
\hline r_11 & 6 & a036 & 32,755 & 3.56 & 1.00 & 8.70 \\
\hline r_11 & 7 & a144 & 111,620 & 5.00 & 84.00 & 38.59 \\
\hline r_11 & 8 & a125 & 117,983 & 5.24 & 1,307.00 & 10.15 \\
\hline r_11 & 9 & a096 & 137,153 & 5.69 & 370.00 & 23.54 \\
\hline r_11 & 10 & a328 & 149,636 & 6.02 & 268.00 & 5.83 \\
\hline r_11 & 11 & t01 & 231,741 & 7.39 & - & 36.36 \\
\hline r_12 & 0 & t01 & - & 2.68 & - & \\
\hline r_12 & 1 & a167 & 82,528 & 5.05 & 66.00 & 38.90 \\
\hline r_12 & 2 & a088 & 86,905 & 5.26 & 92.00 & 8.25 \\
\hline r_12 & 3 & a197 & 90,022 & 5.44 & 706.00 & 1.16 \\
\hline r_12 & 4 & a075 & 137,607 & 6.36 & 820.00 & 79.06 \\
\hline r_12 & 5 & a028 & 139,242 & 6.52 & 89.00 & 2.34 \\
\hline r_12 & 6 & a322 & 184,871 & 7.41 & 287.00 & 21.82 \\
\hline r_12 & 7 & t01 & 302,908 & 9.38 & - & 52.47 \\
\hline r_13 & 0 & t01 & - & 3.77 & - & - \\
\hline r_13 & 1 & a133 & 20,115 & 5.10 & 516.00 & 8.72 \\
\hline r_13 & 2 & a097 & 22,055 & 5.27 & 763.00 & 3.54 \\
\hline r_13 & 3 & a090 & 24,617 & 5.44 & 834.00 & 4.13 \\
\hline r_13 & 4 & a079 & 30,055 & 5.66 & 813.00 & 7.49 \\
\hline r_13 & 5 & a118 & 42,664 & 6.00 & 58.00 & 5.64 \\
\hline r_13 & 6 & t01 & 49,458 & 6.11 & - & 2.93 \\
\hline r_14 & 0 & t01 & - & 0.93 & - & - \\
\hline r_14 & 1 & a115 & 15,995 & 2.20 & 89.00 & 8.02 \\
\hline r_14 & 2 & a056 & 42,937 & 2.78 & 28.00 & 52.18 \\
\hline r_14 & 3 & a208 & 55,455 & 3.12 & 546.00 & 5.78 \\
\hline r_14 & 4 & a206 & 58,303 & 3.29 & 182.00 & 5.06 \\
\hline r_14 & 5 & a150 & 60,147 & 3.45 & 1,560.00 & 3.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_14 & 6 & a237 & 70,940 & 3.76 & 240.00 & 5.23 \\
\hline r_14 & 7 & a230 & 89,372 & 4.20 & 52.00 & 22.46 \\
\hline r_14 & 8 & a027 & 93,386 & 4.40 & 20.00 & 4.83 \\
\hline r_14 & 9 & a121 & 101,368 & 4.66 & 51.00 & 4.36 \\
\hline r_14 & 10 & a120 & 101,368 & 4.79 & 29.00 & 0.00 \\
\hline r_14 & 11 & a119 & 101,368 & 4.92 & 21.00 & - \\
\hline r_14 & 12 & a228 & 104,178 & 5.10 & 160.00 & 0.92 \\
\hline r_14 & 13 & a104 & 106,889 & 5.27 & 103.00 & 3.05 \\
\hline r_14 & 14 & t01 & 111,428 & 5.35 & - & 1.82 \\
\hline r_15 & 0 & t01 & - & 0.64 & - & - \\
\hline r_15 & 1 & a145 & 21,889 & 2.00 & 460.00 & 10.06 \\
\hline r_15 & 2 & t01 & 43,778 & 2.36 & - & 9.70 \\
\hline r_16 & 0 & t01 & , & 0.85 & - & - \\
\hline r_16 & 1 & a077 & 8,726 & 2.00 & 655.00 & 4.19 \\
\hline r_16 & 2 & a122 & 11,313 & 2.17 & 777.00 & 0.83 \\
\hline r_16 & 3 & a124 & 11,313 & 2.30 & 61.00 & - \\
\hline r_16 & 4 & t01 & 20,337 & 2.45 & - & 4.10 \\
\hline r_17 & 0 & t01 & - & 0.80 & - & - \\
\hline r_17 & 1 & a108 & 13,018 & 2.02 & 1,029.00 & 5.96 \\
\hline r_17 & 2 & a136 & 23,043 & 2.31 & 279.00 & 5.46 \\
\hline r_17 & 3 & a139 & 24,069 & 2.46 & 34.00 & 0.38 \\
\hline r_17 & 4 & a168 & 41,768 & 2.89 & 570.00 & 8.26 \\
\hline r_17 & 5 & a329 & 43,886 & 3.05 & 301.00 & 1.17 \\
\hline r_17 & 6 & a035 & 44,079 & 3.18 & 39.00 & 0.26 \\
\hline r_17 & 7 & a203 & 48,221 & 3.38 & 279.00 & 1.92 \\
\hline r_17 & 8 & a192 & 50,356 & 3.55 & 130.00 & 2.71 \\
\hline r_17 & 9 & a248 & 73,250 & 4.06 & 56.00 & 10.88 \\
\hline r_17 & 10 & t01 & 87,660 & 4.30 & - & 6.30 \\
\hline r_18 & 0 & t01 & - & 2.68 & - & - \\
\hline r_18 & 1 & a181 & 79,355 & 5.00 & 1,872.00 & 37.14 \\
\hline r_18 & 2 & a302 & 88,599 & 5.28 & 55.00 & 4.29 \\
\hline r_18 & 3 & a323 & 96,592 & 5.55 & 52.00 & 3.78 \\
\hline r_18 & 4 & t01 & 177,269 & 6.89 & - & 36.35 \\
\hline r_19 & 0 & t01 & - & 8.00 & - & - \\
\hline r_19 & 1 & a312 & 13,110 & 9.22 & 111.00 & 6.01 \\
\hline r_19 & 2 & a265 & 17,466 & 9.42 & 136.00 & 7.12 \\
\hline r_19 & 3 & a287 & 18,947 & 9.58 & 143.00 & 0.78 \\
\hline r_19 & 4 & a303 & 25,317 & 9.81 & 29.00 & 2.71 \\
\hline r_19 & 5 & a117 & 28,638 & 10.00 & 125.00 & 5.14 \\
\hline r_19 & 6 & a087 & 30,821 & 10.17 & 3.00 & 3.30 \\
\hline r_19 & 7 & a291 & 37,522 & 10.41 & 129.00 & 3.94 \\
\hline r_19 & 8 & a278 & 42,939 & 10.63 & 138.00 & 7.99 \\
\hline r_19 & 9 & a012 & 47,320 & 10.83 & 138.00 & 6.29 \\
\hline r_19 & 10 & a240 & 49,210 & 10.99 & 47.00 & 0.80 \\
\hline r_19 & 11 & a293 & 55,742 & 11.23 & 127.00 & 3.31 \\
\hline r_19 & 12 & a321 & 61,339 & 11.46 & 155.00 & 1.78 \\
\hline r_19 & 13 & a243 & 72,259 & 11.77 & 93.00 & 14.26 \\
\hline r_19 & 14 & a059 & 80,682 & 12.04 & 6.00 & 10.78 \\
\hline r_19 & 15 & a270 & 84,019 & 12.22 & 715.00 & 2.01 \\
\hline r_19 & 16 & a279 & 87,036 & 12.40 & 101.00 & 1.62 \\
\hline r_19 & 17 & a071 & 87,418 & 12.54 & 47.00 & 0.40 \\
\hline r_19 & 18 & a285 & 91,884 & 12.74 & 280.00 & 2.12 \\
\hline r_19 & 19 & a254 & 92,152 & 12.88 & 102.00 & 0.26 \\
\hline r_19 & 20 & t01 & 105,071 & 13.09 & - & 5.52 \\
\hline r_20 & 0 & t01 & - & 7.60 & - & - \\
\hline r_20 & 1 & a305 & 18,310 & 8.90 & 734.00 & 7.91 \\
\hline r_20 & 2 & a275 & 27,368 & 9.19 & 229.00 & 11.23 \\
\hline r_20 & 3 & a066 & 40,799 & 9.54 & 7.00 & 15.79 \\
\hline r_20 & 4 & a078 & 45,609 & 9.75 & 92.00 & 2.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \[
\begin{gathered}
\text { Energy } \\
\text { consumption }
\end{gathered}
\]
\[
(\mathbf{k W h})
\] \\
\hline r_20 & 5 & a024 & 52,855 & 10.00 & 67.00 & 8.32 \\
\hline r_20 & 6 & a041 & 57,774 & 10.21 & 18.00 & 2.38 \\
\hline r_20 & 7 & a210 & 62,368 & 10.42 & 95.00 & 2.20 \\
\hline r_20 & 8 & a046 & 66,913 & 10.62 & 16.00 & 4.99 \\
\hline r_20 & 9 & a273 & 77,858 & 10.94 & 632.00 & 4.20 \\
\hline r_20 & 10 & a298 & 79,634 & 11.10 & 18.00 & 0.82 \\
\hline r_20 & 11 & a105 & 85,613 & 11.33 & 58.00 & 5.44 \\
\hline r_20 & 12 & a065 & 90,922 & 11.54 & 20.00 & 4.75 \\
\hline r_20 & 13 & a061 & 90,967 & 11.68 & 43.00 & 0.04 \\
\hline r_20 & 14 & a063 & 102,601 & 12.00 & 16.00 & 3.42 \\
\hline r_20 & 15 & a045 & 104,468 & 12.16 & 8.00 & 1.63 \\
\hline r_20 & 16 & a023 & 107,270 & 12.34 & 32.00 & 2.44 \\
\hline r_20 & 17 & a263 & 108,912 & 12.49 & 62.00 & 0.83 \\
\hline r_20 & 18 & a219 & 109,107 & 12.63 & 88.00 & 0.16 \\
\hline r_20 & 19 & t01 & 120,497 & 12.82 & - & 5.12 \\
\hline r_21 & 0 & t01 & - & 8.12 & - & - \\
\hline r_21 & 1 & a296 & 12,118 & 9.32 & 74.00 & 4.84 \\
\hline r_21 & 2 & a267 & 14,694 & 9.49 & 59.00 & 3.68 \\
\hline r_21 & 3 & a314 & 16,003 & 9.64 & 5.00 & 0.66 \\
\hline r_21 & 4 & a317 & 21,009 & 9.86 & 899.00 & 3.51 \\
\hline r_21 & 5 & a064 & 21,855 & 10.00 & 20.00 & 0.98 \\
\hline r_21 & 6 & a009 & 23,396 & 10.16 & 52.00 & 1.78 \\
\hline r_21 & 7 & a307 & 25,237 & 10.32 & 46.00 & 1.08 \\
\hline r_21 & 8 & a053 & 26,708 & 10.47 & 16.00 & 1.66 \\
\hline r_21 & 9 & a246 & 27,793 & 10.62 & 55.00 & 0.35 \\
\hline r_21 & 10 & a159 & 29,036 & 10.77 & 38.00 & 1.37 \\
\hline r_21 & 11 & a231 & 29,630 & 10.91 & 99.00 & 0.24 \\
\hline r_21 & 12 & a093 & 30,231 & 11.05 & 15.00 & 0.64 \\
\hline r_21 & 13 & a158 & 30,983 & 11.19 & 625.00 & 0.24 \\
\hline r_21 & 14 & a281 & 32,592 & 11.35 & 109.00 & 0.70 \\
\hline r_21 & 15 & a026 & 33,954 & 11.50 & 28.00 & 1.17 \\
\hline r_21 & 16 & a235 & 35,381 & 11.66 & 29.00 & 0.80 \\
\hline r_21 & 17 & a052 & 36,113 & 11.80 & 15.00 & 0.62 \\
\hline r_21 & 18 & a100 & 38,907 & 11.97 & 57.00 & 1.15 \\
\hline r_21 & 19 & t01 & 49,283 & 12.15 & - & 5.37 \\
\hline r_22 & 0 & t01 & - & 8.09 & - & - \\
\hline r_22 & 1 & a304 & 8,453 & 9.23 & 412.00 & 3.53 \\
\hline r_22 & 2 & a282 & 8,453 & 9.36 & 146.00 & - \\
\hline r_22 & 3 & a308 & 8,645 & 9.50 & 151.00 & 0.13 \\
\hline r_22 & 4 & a289 & 11,895 & 9.68 & 555.00 & 3.52 \\
\hline r_22 & 5 & a111 & 13,507 & 9.84 & 629.00 & 1.50 \\
\hline r_22 & 6 & a010 & 15,360 & 10.00 & 50.00 & 1.39 \\
\hline r_22 & 7 & t01 & 24,316 & 10.15 & - & 3.92 \\
\hline r_23 & 0 & t01 & 0 & 8.03 & - & - \\
\hline r_23 & 1 & a318 & 8,422 & 9.17 & 308.00 & 3.56 \\
\hline r_23 & 2 & a247 & 12,312 & 9.36 & 151.00 & 6.38 \\
\hline r_23 & 3 & a301 & 12,971 & 9.50 & 112.00 & 0.19 \\
\hline r_23 & 4 & a221 & 16,190 & 9.69 & 94.00 & 5.04 \\
\hline r_23 & 5 & a185 & 18,866 & 9.86 & 70.00 & 4.12 \\
\hline r_23 & 6 & a198 & 19,391 & 10.00 & 73.00 & 0.28 \\
\hline r_23 & 7 & a156 & 22,689 & 10.18 & 328.00 & 4.95 \\
\hline r_23 & 8 & a211 & 26,685 & 10.38 & 85.00 & 3.39 \\
\hline r_23 & 9 & a051 & 29,756 & 10.56 & 15.00 & 4.25 \\
\hline r_23 & 10 & a014 & 43,137 & 10.92 & 14.00 & 18.46 \\
\hline r_23 & 11 & a264 & 50,120 & 11.16 & 127.00 & 2.10 \\
\hline r_23 & 12 & a233 & 50,590 & 11.30 & 201.00 & 0.63 \\
\hline r_23 & 13 & a311 & 52,520 & 11.46 & 98.00 & 0.81 \\
\hline r_23 & 14 & a106 & 53,523 & 11.61 & 60.00 & 1.26 \\
\hline r_23 & 15 & a173 & 54,170 & 11.75 & 713.00 & 0.44 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_23 & 16 & a183 & 54,662 & 11.89 & 253.00 & 0.26 \\
\hline r_23 & 17 & a032 & 55,024 & 12.02 & 32.00 & 0.35 \\
\hline r_23 & 18 & t01 & 64,283 & 12.18 & - & 4.71 \\
\hline r_24 & 0 & t01 & - & 6.72 & - & - \\
\hline r_24 & 1 & a205 & 16,541 & 8.00 & 150.00 & 7.23 \\
\hline r_24 & 2 & a146 & 46,012 & 8.62 & 71.00 & 47.55 \\
\hline r_24 & 3 & a140 & 57,690 & 8.95 & 644.00 & 18.61 \\
\hline r_24 & 4 & a162 & 57,690 & 9.08 & 49.00 & - \\
\hline r_24 & 5 & a154 & 57,690 & 9.21 & 18.00 & - \\
\hline r_24 & 6 & a164 & 61,126 & 9.39 & 37.00 & 2.53 \\
\hline r_24 & 7 & a113 & 64,218 & 9.57 & 1,040.00 & 4.28 \\
\hline r_24 & 8 & a006 & 69,929 & 9.80 & 242.00 & 6.23 \\
\hline r_24 & 9 & a151 & 107,082 & 10.55 & 208.00 & 17.66 \\
\hline r_24 & 10 & a294 & 146,989 & 11.34 & 44.00 & 16.80 \\
\hline r_24 & 11 & a025 & 154,510 & 11.60 & 75.00 & 7.16 \\
\hline r_24 & 12 & a309 & 186,346 & 12.26 & 29.00 & 13.93 \\
\hline r_24 & 13 & t01 & 192,070 & 12.36 & - & 2.31 \\
\hline r_25 & 0 & t01 & - & 11.52 & - & - \\
\hline r_25 & 1 & a297 & 20,168 & 12.85 & 71.00 & 8.67 \\
\hline r_25 & 2 & a137 & 21,322 & 13.00 & 124.00 & 1.28 \\
\hline r_25 & 3 & a134 & 46,104 & 13.54 & 839.00 & 26.69 \\
\hline r_25 & 4 & a160 & 52,298 & 13.78 & 79.00 & 2.42 \\
\hline r_25 & 5 & a171 & 58,307 & 14.01 & 213.00 & 2.77 \\
\hline r_25 & 6 & a040 & 99,517 & 14.82 & 26.00 & 31.28 \\
\hline r_25 & 7 & a276 & 102,251 & 15.00 & 323.00 & 1.11 \\
\hline r_25 & 8 & t01 & 105,041 & 15.05 & - & 0.98 \\
\hline r_26 & 0 & t01 & - & 8.51 & - & - \\
\hline r_26 & 1 & a186 & 5,734 & 9.60 & 11.00 & 2.68 \\
\hline r_26 & 2 & a292 & 8,130 & 9.77 & 18.00 & 1.07 \\
\hline r_26 & 3 & a241 & 14,081 & 10.00 & 137.00 & 8.23 \\
\hline r_26 & 4 & a112 & 21,244 & 10.25 & 83.00 & 9.63 \\
\hline r_26 & 5 & a070 & 26,847 & 10.47 & 38.00 & 7.40 \\
\hline r_26 & 6 & a286 & 52,177 & 11.02 & 199.00 & 11.62 \\
\hline r_26 & 7 & a030 & 80,206 & 11.62 & 72.00 & 35.16 \\
\hline r_26 & 8 & a007 & 87,452 & 11.87 & 40.00 & 8.94 \\
\hline r_26 & 9 & a031 & 100,810 & 12.23 & 47.00 & 4.71 \\
\hline r_26 & 10 & a138 & 103,547 & 12.40 & 793.00 & 1.09 \\
\hline r_26 & 11 & a194 & 105,705 & 12.57 & 258.00 & 1.03 \\
\hline r_26 & 12 & a207 & 112,612 & 12.81 & 364.00 & 2.97 \\
\hline r_26 & 13 & a262 & 122,124 & 13.10 & 64.00 & 4.26 \\
\hline r_26 & 14 & a049 & 135,528 & 13.45 & 12.00 & 10.64 \\
\hline r_26 & 15 & t01 & 165,964 & 13.96 & - & 13.39 \\
\hline r_27 & 0 & t01 & - & 7.83 & - & - \\
\hline r_27 & 1 & a315 & 15,121 & 9.08 & 80.00 & 6.55 \\
\hline r_27 & 2 & a284 & 22,203 & 9.33 & 254.00 & 12.03 \\
\hline r_27 & 3 & a280 & 24,418 & 9.50 & 88.00 & 3.60 \\
\hline r_27 & 4 & a169 & 26,325 & 9.66 & 213.00 & 3.05 \\
\hline r_27 & 5 & a295 & 27,446 & 9.81 & 889.00 & 0.09 \\
\hline r_27 & 6 & a259 & 31,300 & 10.00 & 149.00 & 4.98 \\
\hline r_27 & 7 & a232 & 53,940 & 10.51 & 141.00 & 28.31 \\
\hline r_27 & 8 & a055 & 60,787 & 10.75 & 20.00 & 8.29 \\
\hline r_27 & 9 & a204 & 63,632 & 10.93 & 314.00 & 0.88 \\
\hline r_27 & 10 & a058 & 81,707 & 11.36 & 16.00 & 20.19 \\
\hline r_27 & 11 & a047 & 85,948 & 11.56 & 66.00 & 4.72 \\
\hline r_27 & 12 & a245 & 90,888 & 11.77 & 156.00 & 3.02 \\
\hline r_27 & 13 & a109 & 91,677 & 11.92 & 44.00 & 0.83 \\
\hline r_27 & 14 & a019 & 97,183 & 12.14 & 19.00 & 5.71 \\
\hline r_27 & 15 & a057 & 100,220 & 12.32 & 6.00 & 0.49 \\
\hline r_27 & 16 & a201 & 101,351 & 12.47 & 133.00 & 0.43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_27 & 17 & a060 & 102,153 & 12.61 & 50.00 & 0.80 \\
\hline r_27 & 18 & a050 & 107,558 & 12.83 & 16.00 & 5.29 \\
\hline r_27 & 19 & a072 & 112,261 & 13.04 & 36.00 & 1.69 \\
\hline r_27 & 20 & a037 & 113,515 & 13.19 & 16.00 & 1.21 \\
\hline r_27 & 21 & a043 & 116,425 & 13.37 & 2.00 & 1.45 \\
\hline r_27 & 22 & a069 & 116,508 & 13.50 & 2.00 & 0.01 \\
\hline r_27 & 23 & a073 & 117,130 & 13.64 & 13.00 & 0.31 \\
\hline r_27 & 24 & t01 & 128,102 & 13.82 & - & 5.24 \\
\hline r_28 & 0 & t01 & - & 6.63 & - & - \\
\hline r_28 & 1 & a114 & 35,652 & 8.22 & 397.00 & 15.53 \\
\hline r_28 & 2 & a074 & 42,286 & 8.46 & 24.00 & 8.49 \\
\hline r_28 & 3 & a147 & 48,921 & 8.70 & 147.00 & 3.60 \\
\hline r_28 & 4 & a033 & 48,926 & 8.83 & 46.00 & 0.01 \\
\hline r_28 & 5 & a324 & 76,607 & 9.42 & 508.00 & 11.59 \\
\hline r_28 & 6 & a327 & 76,607 & 9.55 & 152.00 & - \\
\hline r_28 & 7 & a300 & 79,238 & 9.73 & 94.00 & 2.72 \\
\hline r_28 & 8 & a165 & 79,638 & 9.86 & 174.00 & 0.40 \\
\hline r_28 & 9 & a163 & 80,009 & 10.00 & 594.00 & 0.36 \\
\hline r_28 & 10 & t01 & 90,657 & 10.18 & - & 5.54 \\
\hline r_29 & 0 & t01 & - & 7.96 & - & - \\
\hline r_29 & 1 & a313 & 13,952 & 9.20 & 118.00 & 5.74 \\
\hline r_29 & 2 & a255 & 14,398 & 9.33 & 70.00 & 0.71 \\
\hline r_29 & 3 & a290 & 14,967 & 9.47 & 188.00 & 0.31 \\
\hline r_29 & 4 & a172 & 16,436 & 9.63 & 848.00 & 2.23 \\
\hline r_29 & 5 & a021 & 19,516 & 9.81 & 30.00 & 3.95 \\
\hline r_29 & 6 & a034 & 23,104 & 10.00 & 55.00 & 1.63 \\
\hline r_29 & 7 & a042 & 27,131 & 10.20 & 18.00 & 2.02 \\
\hline r_29 & 8 & a184 & 27,651 & 10.34 & 65.00 & 0.30 \\
\hline r_29 & 9 & a001 & 28,884 & 10.49 & 80.00 & 1.52 \\
\hline r_29 & 10 & a310 & 29,528 & 10.63 & 51.00 & 0.36 \\
\hline r_29 & 11 & a258 & 30,306 & 10.77 & 173.00 & 0.93 \\
\hline r_29 & 12 & a215 & 30,775 & 10.91 & 29.00 & 0.54 \\
\hline r_29 & 13 & a320 & 33,122 & 11.08 & 232.00 & 1.17 \\
\hline r_29 & 14 & a209 & 34,594 & 11.23 & 232.00 & 1.58 \\
\hline r_29 & 15 & a022 & 35,482 & 11.38 & 60.00 & 0.90 \\
\hline r_29 & 16 & a261 & 36,384 & 11.52 & 84.00 & 0.39 \\
\hline r_29 & 17 & a274 & 37,798 & 11.67 & 124.00 & 0.44 \\
\hline r_29 & 18 & a266 & 39,223 & 11.83 & 61.00 & 1.33 \\
\hline r_29 & 19 & a076 & 42,248 & 12.01 & 3.00 & 2.78 \\
\hline r_29 & 20 & a048 & 47,994 & 12.23 & 34.00 & 5.27 \\
\hline r_29 & 21 & t01 & 54,336 & 12.34 & - & 2.91 \\
\hline r_30 & 0 & t01 & - & 8.14 & - & - \\
\hline r_30 & 1 & a202 & 12,094 & 9.34 & 182.00 & 4.97 \\
\hline r_30 & 2 & a299 & 14,403 & 9.51 & 157.00 & 1.42 \\
\hline r_30 & 3 & a325 & 16,929 & 9.68 & 107.00 & 1.35 \\
\hline r_30 & 4 & a288 & 19,041 & 9.85 & 375.00 & 3.12 \\
\hline r_30 & 5 & a141 & 20,388 & 10.00 & 149.00 & 1.85 \\
\hline r_30 & 6 & a252 & 24,455 & 10.20 & 102.00 & 1.10 \\
\hline r_30 & 7 & a089 & 25,278 & 10.34 & 30.00 & 1.07 \\
\hline r_30 & 8 & a095 & 25,475 & 10.47 & 609.00 & 0.09 \\
\hline r_30 & 9 & a094 & 25,475 & 10.60 & 107.00 & - \\
\hline r_30 & 10 & a271 & 26,183 & 10.75 & 128.00 & 0.18 \\
\hline r_30 & 11 & a260 & 26,478 & 10.88 & 131.00 & 0.31 \\
\hline r_30 & 12 & a062 & 26,944 & 11.02 & 30.00 & 0.48 \\
\hline r_30 & 13 & a269 & 27,367 & 11.16 & 150.00 & 0.24 \\
\hline r_30 & 14 & a217 & 28,124 & 11.30 & 112.00 & 0.73 \\
\hline r_30 & 15 & a002 & 30,110 & 11.46 & 30.00 & 1.86 \\
\hline r_30 & 16 & a008 & 30,564 & 11.60 & 93.00 & 0.26 \\
\hline r_30 & 17 & a039 & 31,370 & 11.74 & 5.00 & 0.48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_30 & 18 & a054 & 32,083 & 11.88 & 19.00 & 0.38 \\
\hline r_30 & 19 & t01 & 40,937 & 12.03 & - & 4.17 \\
\hline r_31 & 0 & t01 & - & 8.29 & - & - \\
\hline r_31 & 1 & a085 & 7,213 & 9.41 & 16.00 & 3.44 \\
\hline r_31 & 2 & a099 & 34,698 & 10.00 & 27.00 & 12.32 \\
\hline r_31 & 3 & a148 & 62,623 & 10.60 & 322.00 & 13.28 \\
\hline r_31 & 4 & a161 & 70,816 & 10.86 & 1,226.00 & 3.95 \\
\hline r_31 & 5 & a029 & 95,322 & 11.40 & 90.00 & 22.49 \\
\hline r_31 & 6 & a166 & 108,274 & 11.75 & 118.00 & 5.50 \\
\hline r_31 & 7 & a149 & 113,468 & 11.96 & 119.00 & 4.46 \\
\hline r_31 & 8 & a082 & 129,217 & 12.36 & 14.00 & 13.01 \\
\hline r_31 & 9 & a005 & 133,475 & 12.56 & 74.00 & 3.50 \\
\hline r_31 & 10 & a011 & 143,516 & 12.85 & 84.00 & 4.44 \\
\hline r_31 & 11 & t01 & 148,568 & 12.94 & - & 2.09 \\
\hline r_32 & 0 & t01 & & 8.10 & - & - \\
\hline r_32 & 1 & a116 & 10,633 & 9.28 & 108.00 & 4.90 \\
\hline r_32 & 2 & a277 & 11,642 & 9.42 & 184.00 & 0.62 \\
\hline r_32 & 3 & a213 & 20,954 & 9.71 & 149.00 & 14.03 \\
\hline r_32 & 4 & a283 & 21,855 & 9.85 & 180.00 & 0.40 \\
\hline r_32 & 5 & a220 & 22,755 & 10.00 & 148.00 & 1.27 \\
\hline r_32 & 6 & a131 & 25,823 & 10.18 & 274.00 & 4.21 \\
\hline r_32 & 7 & a257 & 28,397 & 10.35 & 72.00 & 1.26 \\
\hline r_32 & 8 & a016 & 29,939 & 10.51 & 197.00 & 1.97 \\
\hline r_32 & 9 & a003 & 32,662 & 10.69 & 54.00 & 3.32 \\
\hline r_32 & 10 & a015 & 34,692 & 10.85 & 46.00 & 1.09 \\
\hline r_32 & 11 & a182 & 35,968 & 11.00 & 186.00 & 0.86 \\
\hline r_32 & 12 & a020 & 36,928 & 11.15 & 50.00 & 1.09 \\
\hline r_32 & 13 & a018 & 38,829 & 11.31 & 47.00 & 2.14 \\
\hline r_32 & 14 & a080 & 41,128 & 11.48 & 793.00 & 1.05 \\
\hline r_32 & 15 & t01 & 47,650 & 11.58 & - & 2.68 \\
\hline r_33 & 0 & t01 & , & 8.14 & - & - \\
\hline r_33 & 1 & a187 & 14,609 & 9.38 & 164.00 & 6.52 \\
\hline r_33 & 2 & a268 & 16,619 & 9.54 & 170.00 & 0.51 \\
\hline r_33 & 3 & a092 & 18,775 & 9.71 & 481.00 & 2.84 \\
\hline r_33 & 4 & a256 & 19,267 & 9.85 & 70.00 & 0.20 \\
\hline r_33 & 5 & a004 & 20,604 & 10.00 & 74.00 & 1.55 \\
\hline r_33 & 6 & a044 & 20,754 & 10.13 & 26.00 & 0.07 \\
\hline r_33 & 7 & a250 & 25,061 & 10.33 & 149.00 & 2.33 \\
\hline r_33 & 8 & a272 & 26,053 & 10.48 & 251.00 & 0.48 \\
\hline r_33 & 9 & a068 & 26,229 & 10.61 & 52.00 & 0.18 \\
\hline r_33 & 10 & a067 & 26,618 & 10.75 & 43.00 & 0.39 \\
\hline r_33 & 11 & a196 & 28,336 & 10.91 & 691.00 & 0.99 \\
\hline r_33 & 12 & t01 & 36,758 & 11.05 & - & 4.02 \\
\hline
\end{tabular}

\section*{C.VI Worst case SDiesel}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \begin{tabular}{l}
Energy
consumption \\
(kWh)
\end{tabular} \\
\hline r_01 & 0 & t01 & - & 0.27 & - & - \\
\hline r_01 & 1 & a250 & 10,597 & 1.45 & 31.00 & 4.72 \\
\hline r_01 & 2 & a218 & 11,318 & 1.59 & 25.00 & 1.35 \\
\hline r_01 & 3 & a195 & 11,517 & 1.73 & 22.00 & 0.37 \\
\hline r_01 & 4 & a306 & 11,927 & 1.86 & 23.00 & 0.15 \\
\hline r_01 & 5 & a303 & 12,337 & 2.00 & 34.00 & 0.76 \\
\hline r_01 & 6 & a446 & 12,933 & 2.14 & 52.00 & 0.31 \\
\hline r_01 & 7 & a194 & 13,691 & 2.28 & 25.00 & 1.39 \\
\hline r_01 & 8 & a339 & 14,183 & 2.42 & 415.00 & 0.23 \\
\hline r_01 & 9 & a462 & 14,408 & 2.55 & 48.00 & 0.03 \\
\hline r_01 & 10 & a197 & 15,273 & 2.70 & 25.00 & 1.46 \\
\hline r_01 & 11 & a236 & 16,181 & 2.84 & 22.00 & 0.37 \\
\hline r_01 & 12 & a298 & 18,997 & 3.02 & 40.00 & 0.96 \\
\hline r_01 & 13 & a587 & 60,217 & 3.84 & 351.00 & 20.71 \\
\hline r_01 & 14 & a091 & 61,271 & 3.99 & 99.00 & 1.64 \\
\hline r_01 & 15 & a159 & 63,612 & 4.15 & 75.00 & 0.77 \\
\hline r_01 & 16 & a629 & 68,498 & 4.37 & 22.00 & 3.29 \\
\hline r_01 & 17 & a360 & 73,771 & 4.58 & 640.00 & 7.91 \\
\hline r_01 & 18 & a579 & 75,985 & 4.75 & 96.00 & 1.01 \\
\hline r_01 & 19 & a269 & 78,028 & 4.91 & 24.00 & 2.62 \\
\hline r_01 & 20 & a163 & 78,631 & 5.05 & 60.00 & 0.77 \\
\hline r_01 & 21 & a420 & 112,762 & 5.75 & 114.00 & 16.30 \\
\hline r_01 & 22 & a476 & 124,321 & 6.08 & 380.00 & 5.75 \\
\hline r_01 & 23 & a488 & 128,584 & 6.28 & 193.00 & 2.26 \\
\hline r_01 & 24 & a016 & 129,564 & 6.42 & 29.00 & 1.03 \\
\hline r_01 & 25 & a253 & 130,078 & 6.56 & 4.00 & 0.31 \\
\hline r_01 & 26 & t01 & 141,090 & 6.75 & - & 5.59 \\
\hline r_02 & 0 & t01 & - & 0.31 & - & - \\
\hline r_02 & 1 & a214 & 12,304 & 1.51 & 31.00 & 5.23 \\
\hline r_02 & 2 & a108 & 12,782 & 1.65 & 20.00 & 0.91 \\
\hline r_02 & 3 & a351 & 13,263 & 1.79 & 437.00 & 0.21 \\
\hline r_02 & 4 & a232 & 13,691 & 1.93 & 22.00 & 0.76 \\
\hline r_02 & 5 & a457 & 18,420 & 2.14 & 68.00 & 4.10 \\
\hline r_02 & 6 & a181 & 20,088 & 2.29 & 31.00 & 2.92 \\
\hline r_02 & 7 & a345 & 23,345 & 2.48 & 327.00 & 0.31 \\
\hline r_02 & 8 & a627 & 23,690 & 2.61 & 22.00 & 0.12 \\
\hline r_02 & 9 & a442 & 23,963 & 2.75 & 59.00 & 0.45 \\
\hline r_02 & 10 & a359 & 27,052 & 2.93 & 7.00 & 5.00 \\
\hline r_02 & 11 & a571 & 27,485 & 3.07 & 196.00 & 0.21 \\
\hline r_02 & 12 & a365 & 28,605 & 3.22 & 40.00 & 1.75 \\
\hline r_02 & 13 & a210 & 29,304 & 3.36 & 39.00 & 1.08 \\
\hline r_02 & 14 & a328 & 84,868 & 4.41 & 968.00 & 28.67 \\
\hline r_02 & 15 & a361 & 87,749 & 4.59 & 56.00 & 1.18 \\
\hline r_02 & 16 & a325 & 103,765 & 4.99 & 38.00 & 19.73 \\
\hline r_02 & 17 & a401 & 142,314 & 5.76 & 86.00 & 18.01 \\
\hline r_02 & 18 & a008 & 148,874 & 6.00 & 80.00 & 7.84 \\
\hline r_02 & 19 & a527 & 152,672 & 6.19 & 44.00 & 1.93 \\
\hline r_02 & 20 & a499 & 157,185 & 6.40 & 74.00 & 5.23 \\
\hline r_02 & 21 & a620 & 160,627 & 6.59 & 148.00 & 1.59 \\
\hline r_02 & 22 & a522 & 160,852 & 6.72 & 48.00 & 0.25 \\
\hline r_02 & 23 & a300 & 164,648 & 6.91 & 1.00 & 4.09 \\
\hline r_02 & 24 & a256 & 165,014 & 7.05 & 28.00 & 0.39 \\
\hline r_02 & 25 & a291 & 167,459 & 7.22 & 12.00 & 1.00 \\
\hline r_02 & 26 & a238 & 167,822 & 7.36 & 22.00 & 0.39 \\
\hline r_02 & 27 & t01 & 178,336 & 7.53 & - & 5.29 \\
\hline r_03 & 0 & t01 & - & 3.43 & - & - \\
\hline r_03 & 1 & a378 & 24,238 & 4.84 & 254.00 & 10.89 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_03 & 2 & a237 & 24,249 & 4.97 & 31.00 & 0.02 \\
\hline r_03 & 3 & a059 & 26,787 & 5.14 & 134.00 & 3.59 \\
\hline r_03 & 4 & a097 & 36,071 & 5.42 & 86.00 & 5.10 \\
\hline r_03 & 5 & a078 & 37,936 & 5.59 & 30.00 & 2.51 \\
\hline r_03 & 6 & a409 & 47,024 & 5.87 & 187.00 & 4.24 \\
\hline r_03 & 7 & a018 & 47,197 & 6.00 & 36.00 & 0.22 \\
\hline r_03 & 8 & a517 & 54,898 & 6.26 & 415.00 & 4.42 \\
\hline r_03 & 9 & a478 & 61,843 & 6.50 & 693.00 & 7.99 \\
\hline r_03 & 10 & a433 & 64,374 & 6.68 & 325.00 & 2.39 \\
\hline r_03 & 11 & t01 & 81,820 & 6.97 & - & 8.26 \\
\hline r_04 & 0 & t01 & , & 3.19 & - & - \\
\hline r_04 & 1 & a319 & 8,300 & 4.33 & 40.00 & 4.01 \\
\hline r_04 & 2 & a310 & 8,835 & 4.47 & 18.00 & 0.69 \\
\hline r_04 & 3 & a117 & 10,488 & 4.63 & 85.00 & 2.13 \\
\hline r_04 & 4 & a643 & 12,593 & 4.79 & 65.00 & 0.63 \\
\hline r_04 & 5 & a185 & 18,461 & 5.02 & 29.00 & 7.30 \\
\hline r_04 & 6 & a264 & 19,675 & 5.17 & 39.00 & 0.37 \\
\hline r_04 & 7 & a193 & 24,397 & 5.38 & 31.00 & 5.78 \\
\hline r_04 & 8 & a168 & 25,934 & 5.54 & 101.00 & 1.87 \\
\hline r_04 & 9 & a169 & 27,062 & 5.69 & 184.00 & 0.19 \\
\hline r_04 & 10 & a387 & 29,401 & 5.85 & 599.00 & 0.93 \\
\hline r_04 & 11 & a115 & 30,336 & 6.00 & 105.00 & 0.89 \\
\hline r_04 & 12 & a530 & 32,174 & 6.16 & 61.00 & 0.92 \\
\hline r_04 & 13 & a116 & 35,194 & 6.34 & 56.00 & 2.73 \\
\hline r_04 & 14 & a622 & 37,102 & 6.50 & 138.00 & 1.11 \\
\hline r_04 & 15 & a521 & 43,943 & 6.75 & 50.00 & 5.79 \\
\hline r_04 & 16 & a349 & 45,563 & 6.90 & 265.00 & 1.35 \\
\hline r_04 & 17 & t01 & 51,853 & 7.01 & - & 2.77 \\
\hline r_05 & 0 & t01 & & 0.17 & - & - \\
\hline r_05 & 1 & a183 & 12,938 & 1.38 & 23.00 & 6.41 \\
\hline r_05 & 2 & a244 & 15,590 & 1.56 & 31.00 & 0.34 \\
\hline r_05 & 3 & a606 & 102,654 & 3.14 & 129.00 & 46.78 \\
\hline r_05 & 4 & a608 & 102,828 & 3.27 & 34.00 & 0.18 \\
\hline r_05 & 5 & a029 & 175,632 & 4.61 & 102.00 & 136.11 \\
\hline r_05 & 6 & a600 & 188,580 & 4.96 & 63.00 & 5.81 \\
\hline r_05 & 7 & a090 & 252,699 & 6.16 & 98.00 & 116.74 \\
\hline r_05 & 8 & a294 & 255,935 & 6.34 & 10.00 & 1.35 \\
\hline r_05 & 9 & a483 & 265,237 & 6.63 & 271.00 & 5.38 \\
\hline r_05 & 10 & a022 & 271,719 & 6.87 & 26.00 & 11.08 \\
\hline r_05 & 11 & a096 & 280,233 & 7.14 & 86.00 & 5.52 \\
\hline r_05 & 12 & a093 & 288,007 & 7.40 & 102.00 & 13.02 \\
\hline r_05 & 13 & a586 & 290,964 & 7.58 & 108.00 & 0.43 \\
\hline r_05 & 14 & a590 & 300,880 & 7.87 & 61.00 & 3.59 \\
\hline r_05 & 15 & a497 & 346,838 & 8.77 & 87.00 & 73.31 \\
\hline r_05 & 16 & a489 & 347,371 & 8.91 & 73.00 & 0.84 \\
\hline r_05 & 17 & a072 & 347,758 & 9.04 & 10.00 & 0.60 \\
\hline r_05 & 18 & a171 & 349,010 & 9.19 & 80.00 & 0.83 \\
\hline r_05 & 19 & a505 & 349,664 & 9.33 & 167.00 & 0.31 \\
\hline r_05 & 20 & a520 & 350,389 & 9.48 & 58.00 & 0.39 \\
\hline r_05 & 21 & a036 & 351,678 & 9.63 & 57.00 & 1.88 \\
\hline r_05 & 22 & a204 & 352,750 & 9.78 & 22.00 & 0.29 \\
\hline r_05 & 23 & a020 & 358,365 & 10.00 & 67.00 & 8.04 \\
\hline r_05 & 24 & t01 & 371,793 & 10.22 & - & 6.46 \\
\hline r_06 & 0 & t01 & - & 1.68 & - & - \\
\hline r_06 & 1 & a005 & 18,496 & 2.99 & 25.00 & 7.98 \\
\hline r_06 & 2 & a060 & 22,807 & 3.19 & 30.00 & 2.00 \\
\hline r_06 & 3 & a209 & 23,392 & 3.33 & 26.00 & 0.26 \\
\hline r_06 & 4 & a068 & 26,067 & 3.50 & 27.00 & 1.72 \\
\hline r_06 & 5 & a456 & 26,746 & 3.65 & 132.00 & 0.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy
consumption
\((\mathrm{kWh})\) \\
\hline r_06 & 6 & a302 & 27,593 & 3.79 & 8.00 & 0.51 \\
\hline r_06 & 7 & a612 & 72,110 & 4.66 & 111.00 & 19.70 \\
\hline r_06 & 8 & a594 & 75,088 & 4.84 & 96.00 & 1.67 \\
\hline r_06 & 9 & a099 & 83,188 & 5.11 & 93.00 & 4.32 \\
\hline r_06 & 10 & a166 & 118,316 & 5.82 & 36.00 & 15.28 \\
\hline r_06 & 11 & a318 & 121,183 & 6.00 & 18.00 & 1.26 \\
\hline r_06 & 12 & a357 & 125,881 & 6.21 & 188.00 & 2.07 \\
\hline r_06 & 13 & t01 & 145,072 & 6.53 & - & 9.11 \\
\hline r_07 & 0 & t01 & - & 3.00 & - & - \\
\hline r_07 & 1 & a032 & 5,645 & 4.10 & 110.00 & 2.93 \\
\hline r_07 & 2 & a429 & 13,870 & 4.37 & 101.00 & 3.53 \\
\hline r_07 & 3 & a247 & 14,391 & 4.50 & 27.00 & 0.81 \\
\hline r_07 & 4 & a002 & 17,859 & 4.69 & 49.00 & 5.36 \\
\hline r_07 & 5 & a245 & 19,786 & 4.85 & 31.00 & 1.07 \\
\hline r_07 & 6 & a076 & 19,874 & 4.99 & 10.00 & 0.13 \\
\hline r_07 & 7 & a186 & 20,930 & 5.13 & 25.00 & 0.23 \\
\hline r_07 & 8 & a202 & 21,735 & 5.28 & 26.00 & 0.43 \\
\hline r_07 & 9 & a405 & 22,161 & 5.41 & 147.00 & 0.27 \\
\hline r_07 & 10 & a423 & 28,803 & 5.66 & 131.00 & 3.50 \\
\hline r_07 & 11 & a015 & 32,602 & 5.85 & 27.00 & 5.40 \\
\hline r_07 & 12 & a368 & 33,903 & 6.00 & 293.00 & 0.33 \\
\hline r_07 & 13 & a465 & 36,062 & 6.17 & 143.00 & 0.13 \\
\hline r_07 & 14 & a480 & 40,938 & 6.38 & 52.00 & 2.12 \\
\hline r_07 & 15 & a040 & 44,148 & 6.56 & 45.00 & 4.08 \\
\hline r_07 & 16 & a241 & 46,950 & 6.74 & 44.00 & 1.64 \\
\hline r_07 & 17 & a216 & 48,511 & 6.89 & 11.00 & 1.94 \\
\hline r_07 & 18 & a511 & 51,803 & 7.08 & 42.00 & 0.91 \\
\hline r_07 & 19 & a388 & 52,732 & 7.22 & 138.00 & 1.14 \\
\hline r_07 & 20 & a317 & 56,350 & 7.41 & 50.00 & 4.29 \\
\hline r_07 & 21 & a327 & 56,605 & 7.55 & 60.00 & 0.08 \\
\hline r_07 & 22 & a346 & 56,806 & 7.68 & 745.00 & 0.13 \\
\hline r_07 & 23 & a026 & 58,197 & 7.83 & 48.00 & 1.30 \\
\hline r_07 & 24 & a281 & 61,199 & 8.01 & 37.00 & 1.22 \\
\hline r_07 & 25 & t01 & 67,123 & 8.11 & - & 2.46 \\
\hline r_08 & 0 & t01 & - & 3.60 & - & - \\
\hline r_08 & 1 & a102 & 16,553 & 4.88 & 70.00 & 7.46 \\
\hline r_08 & 2 & a342 & 17,218 & 5.02 & 672.00 & 0.22 \\
\hline r_08 & 3 & a187 & 18,309 & 5.17 & 40.00 & 1.01 \\
\hline r_08 & 4 & a399 & 18,666 & 5.30 & 232.00 & 0.15 \\
\hline r_08 & 5 & a150 & 19,725 & 5.45 & 30.00 & 0.89 \\
\hline r_08 & 6 & a201 & 19,956 & 5.58 & 39.00 & 0.10 \\
\hline r_08 & 7 & a374 & 26,771 & 5.83 & 122.00 & 3.26 \\
\hline r_08 & 8 & a179 & 29,348 & 6.00 & 31.00 & 2.03 \\
\hline r_08 & 9 & a284 & 41,532 & 6.33 & 45.00 & 5.14 \\
\hline r_08 & 10 & a170 & 46,099 & 6.54 & 25.00 & 3.50 \\
\hline r_08 & 11 & a033 & 69,978 & 7.07 & 40.00 & 18.10 \\
\hline r_08 & 12 & a498 & 71,064 & 7.22 & 98.00 & 0.61 \\
\hline r_08 & 13 & a400 & 71,520 & 7.35 & 10.00 & 0.33 \\
\hline r_08 & 14 & a470 & 72,255 & 7.50 & 141.00 & 0.32 \\
\hline r_08 & 15 & t01 & 88,193 & 7.76 & - & 7.39 \\
\hline r_09 & 0 & t01 & - & 4.33 & - & \\
\hline r_09 & 1 & a267 & 6,153 & 5.44 & 8.00 & 2.90 \\
\hline r_09 & 2 & a362 & 10,239 & 5.63 & 1,287.00 & 2.28 \\
\hline r_09 & 3 & a436 & 13,326 & 5.82 & 226.00 & 1.30 \\
\hline r_09 & 4 & a455 & 16,620 & 6.00 & 163.00 & 1.44 \\
\hline r_09 & 5 & a528 & 18,578 & 6.16 & 113.00 & 0.88 \\
\hline r_09 & 6 & t01 & 22,668 & 6.23 & - & 1.72 \\
\hline r_10 & 0 & t01 & - & 3.21 & . & . \\
\hline r_10 & 1 & a001 & 8,367 & 4.35 & 82.00 & 3.62 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_10 & 2 & a180 & 10,715 & 4.52 & 24.00 & 0.87 \\
\hline r_10 & 3 & a227 & 11,062 & 4.66 & 29.00 & 0.16 \\
\hline r_10 & 4 & a437 & 11,432 & 4.79 & 60.00 & 0.16 \\
\hline r_10 & 5 & a273 & 11,669 & 4.93 & 23.00 & 0.21 \\
\hline r_10 & 6 & a233 & 11,879 & 5.06 & 31.00 & 0.18 \\
\hline r_10 & 7 & a364 & 14,147 & 5.23 & 40.00 & 1.22 \\
\hline r_10 & 8 & a461 & 16,252 & 5.39 & 65.00 & 1.00 \\
\hline r_10 & 9 & a410 & 18,382 & 5.56 & 102.00 & 1.77 \\
\hline r_10 & 10 & a408 & 19,378 & 5.70 & 90.00 & 0.80 \\
\hline r_10 & 11 & a391 & 20,732 & 5.86 & 524.00 & 1.05 \\
\hline r_10 & 12 & a509 & 21,560 & 6.00 & 94.00 & 0.41 \\
\hline r_10 & 13 & a500 & 23,217 & 6.16 & 80.00 & 0.98 \\
\hline r_10 & 14 & t01 & 32,427 & 6.31 & - & 4.74 \\
\hline r_11 & 0 & t01 & , & 4.03 & - & - \\
\hline r_11 & 1 & a440 & 11,341 & 5.22 & 64.00 & 5.75 \\
\hline r_11 & 2 & a414 & 30,192 & 5.66 & 74.00 & 25.44 \\
\hline r_11 & 3 & a223 & 36,012 & 5.89 & 28.00 & 7.73 \\
\hline r_11 & 4 & a248 & 37,458 & 6.05 & 31.00 & 0.88 \\
\hline r_11 & 5 & a392 & 52,512 & 6.43 & 24.00 & 7.94 \\
\hline r_11 & 6 & a504 & 54,979 & 6.60 & 239.00 & 1.46 \\
\hline r_11 & 7 & a320 & 56,159 & 6.75 & 60.00 & 1.45 \\
\hline r_11 & 8 & t01 & 68,474 & 6.95 & - & 5.67 \\
\hline r_12 & 0 & t01 & - & 4.47 & - & - \\
\hline r_12 & 1 & a460 & 23,588 & 5.86 & 41.00 & 10.18 \\
\hline r_12 & 2 & a007 & 24,223 & 6.00 & 36.00 & 0.43 \\
\hline r_12 & 3 & a031 & 65,166 & 6.81 & 110.00 & 18.44 \\
\hline r_12 & 4 & a105 & 65,788 & 6.95 & 50.00 & 0.25 \\
\hline r_12 & 5 & a588 & 66,753 & 7.10 & 170.00 & 0.40 \\
\hline r_12 & 6 & a321 & 94,837 & 7.70 & 55.00 & 15.80 \\
\hline r_12 & 7 & a471 & 95,668 & 7.84 & 119.00 & 0.36 \\
\hline r_12 & 8 & a380 & 95,976 & 7.98 & 201.00 & 0.16 \\
\hline r_12 & 9 & a231 & 105,858 & 8.27 & 33.00 & 4.46 \\
\hline r_12 & 10 & t01 & 131,028 & 8.69 & - & 12.73 \\
\hline r_13 & 0 & t01 & - & 3.69 & - & - \\
\hline r_13 & 1 & a203 & 3,893 & 4.76 & 44.00 & 1.83 \\
\hline r_13 & 2 & a304 & 31,485 & 5.35 & 25.00 & 12.58 \\
\hline r_13 & 3 & a104 & 31,501 & 5.48 & 50.00 & 0.01 \\
\hline r_13 & 4 & a369 & 54,923 & 6.00 & 142.00 & 11.19 \\
\hline r_13 & 5 & a515 & 58,915 & 6.20 & 140.00 & 1.33 \\
\hline r_13 & 6 & a582 & 68,852 & 6.49 & 878.00 & 4.94 \\
\hline r_13 & 7 & t01 & 73,691 & 6.57 & - & 1.63 \\
\hline r_14 & 0 & t01 & - & 1.19 & - & - \\
\hline r_14 & 1 & a213 & 24,233 & 2.60 & 27.00 & 10.66 \\
\hline r_14 & 2 & a354 & 53,307 & 3.21 & 173.00 & 16.92 \\
\hline r_14 & 3 & a610 & 58,812 & 3.43 & 38.00 & 0.90 \\
\hline r_14 & 4 & a630 & 79,521 & 3.91 & 125.00 & 12.35 \\
\hline r_14 & 5 & a176 & 85,402 & 4.14 & 90.00 & 9.38 \\
\hline r_14 & 6 & a088 & 93,161 & 4.40 & 73.00 & 12.16 \\
\hline r_14 & 7 & a039 & 96,506 & 4.58 & 45.00 & 5.17 \\
\hline r_14 & 8 & a581 & 106,327 & 4.88 & 191.00 & 3.91 \\
\hline r_14 & 9 & a589 & 109,710 & 5.06 & 51.00 & 1.00 \\
\hline r_14 & 10 & a142 & 134,599 & 5.61 & 46.00 & 36.36 \\
\hline r_14 & 11 & a254 & 139,866 & 5.83 & 61.00 & 2.86 \\
\hline r_14 & 12 & a382 & 142,556 & 6.00 & 182.00 & 1.31 \\
\hline r_14 & 13 & a623 & 177,880 & 6.72 & 261.00 & 16.27 \\
\hline r_14 & 14 & a599 & 185,521 & 6.98 & 893.00 & 9.92 \\
\hline r_14 & 15 & a601 & 188,119 & 7.15 & 56.00 & 1.19 \\
\hline r_14 & 16 & a569 & 194,811 & 7.39 & 168.00 & 6.81 \\
\hline r_14 & 17 & a598 & 205,952 & 7.71 & 56.00 & 4.59 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \(\qquad\) consumption (kWh) \\
\hline r_14 & 18 & t01 & 205,951 & 7.71 & - & -,,,,,,,,,,,,,0.00 \\
\hline r_15 & 0 & t01 & - & 3.25 & - & - \\
\hline r_15 & 1 & a295 & 30,028 & 4.75 & 50.00 & 13.36 \\
\hline r_15 & 2 & a189 & 34,136 & 4.95 & 31.00 & 5.04 \\
\hline r_15 & 3 & a071 & 36,645 & 5.12 & 31.00 & 3.06 \\
\hline r_15 & 4 & a454 & 39,150 & 5.29 & 186.00 & 1.23 \\
\hline r_15 & 5 & a421 & 41,169 & 5.46 & 530.00 & 2.33 \\
\hline r_15 & 6 & a184 & 41,426 & 5.59 & 8.00 & 0.26 \\
\hline r_15 & 7 & a205 & 42,381 & 5.74 & 39.00 & 0.45 \\
\hline r_15 & 8 & a452 & 42,381 & 5.87 & 480.00 & - \\
\hline r_15 & 9 & a496 & 42,639 & 6.00 & 198.00 & 0.10 \\
\hline r_15 & 10 & a109 & 47,144 & 6.21 & 32.00 & 3.52 \\
\hline r_15 & 11 & a518 & 47,270 & 6.34 & 174.00 & 0.07 \\
\hline r_15 & 12 & t01 & 81,563 & 6.91 & - & 16.10 \\
\hline r_16 & 0 & t01 & - & 0.56 & - & - \\
\hline r_16 & 1 & a239 & 14,316 & 1.79 & 44.00 & 6.24 \\
\hline r_16 & 2 & a066 & 18,818 & 2.00 & 27.00 & 7.83 \\
\hline r_16 & 3 & a463 & 37,101 & 2.43 & 387.00 & 11.60 \\
\hline r_16 & 4 & a278 & 64,988 & 3.03 & 22.00 & 45.10 \\
\hline r_16 & 5 & a044 & 65,767 & 3.17 & 162.00 & 1.25 \\
\hline r_16 & 6 & a258 & 86,548 & 3.65 & 28.00 & 11.05 \\
\hline r_16 & 7 & a074 & 92,253 & 3.87 & 32.00 & 8.87 \\
\hline r_16 & 8 & a242 & 112,600 & 4.34 & 35.00 & 10.41 \\
\hline r_16 & 9 & a173 & 114,379 & 4.50 & 80.00 & 2.73 \\
\hline r_16 & 10 & a411 & 138,344 & 5.03 & 130.00 & 10.72 \\
\hline r_16 & 11 & a416 & 147,660 & 5.32 & 91.00 & 4.94 \\
\hline r_16 & 12 & a402 & 166,014 & 5.75 & 72.00 & 26.53 \\
\hline r_16 & 13 & a133 & 173,040 & 6.00 & 200.00 & 10.01 \\
\hline r_16 & 14 & a494 & 179,593 & 6.24 & 74.00 & 3.26 \\
\hline r_16 & 15 & a513 & 193,377 & 6.60 & 70.00 & 6.80 \\
\hline r_16 & 16 & a621 & 195,365 & 6.76 & 130.00 & 0.79 \\
\hline r_16 & 17 & a143 & 196,624 & 6.91 & 46.00 & 1.62 \\
\hline r_16 & 18 & a266 & 198,381 & 7.07 & 1.00 & 0.75 \\
\hline r_16 & 19 & a370 & 199,109 & 7.21 & 534.00 & 0.33 \\
\hline r_16 & 20 & a396 & 199,182 & 7.35 & 457.00 & 0.03 \\
\hline r_16 & 21 & t01 & 210,893 & 7.54 & - & 6.10 \\
\hline r_17 & 0 & t01 & - & 0.60 & - & - \\
\hline r_17 & 1 & a145 & 9,017 & 1.76 & 20.00 & 3.88 \\
\hline r_17 & 2 & a287 & 9,065 & 1.89 & 63.00 & 0.04 \\
\hline r_17 & 3 & a331 & 96,116 & 3.47 & 5.00 & 43.19 \\
\hline r_17 & 4 & a235 & 150,026 & 4.50 & 61.00 & 71.60 \\
\hline r_17 & 5 & a086 & 184,838 & 5.21 & 433.00 & 45.61 \\
\hline r_17 & 6 & a013 & 187,008 & 5.37 & 27.00 & 2.56 \\
\hline r_17 & 7 & a230 & 189,842 & 5.55 & 26.00 & 0.67 \\
\hline r_17 & 8 & a178 & 192,331 & 5.72 & 31.00 & 2.90 \\
\hline r_17 & 9 & a024 & 193,052 & 5.86 & 76.00 & 0.83 \\
\hline r_17 & 10 & a484 & 193,516 & 6.00 & 524.00 & 0.14 \\
\hline r_17 & 11 & a479 & 194,964 & 6.15 & 366.00 & 1.42 \\
\hline r_17 & 12 & a495 & 196,458 & 6.31 & 126.00 & 0.40 \\
\hline r_17 & 13 & a014 & 197,302 & 6.45 & 76.00 & 0.70 \\
\hline r_17 & 14 & a514 & 198,602 & 6.60 & 36.00 & 0.65 \\
\hline r_17 & 15 & a041 & 198,813 & 6.74 & 39.00 & 0.17 \\
\hline r_17 & 16 & a477 & 201,741 & 6.92 & 40.00 & 1.61 \\
\hline r_17 & 17 & t01 & 210,194 & 7.06 & - & 4.24 \\
\hline r_18 & 0 & t01 & - & 0.52 & - & - \\
\hline r_18 & 1 & a276 & 10,880 & 1.70 & 44.00 & 5.06 \\
\hline r_18 & 2 & a123 & 12,225 & 1.86 & 40.00 & 2.17 \\
\hline r_18 & 3 & a153 & 14,001 & 2.01 & 76.00 & 0.79 \\
\hline r_18 & 4 & a286 & 61,221 & 2.93 & 22.00 & 24.48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_18 & 5 & a638 & 69,583 & 3.20 & 145.00 & 4.93 \\
\hline r_18 & 6 & a647 & 73,101 & 3.39 & 58.00 & 1.24 \\
\hline r_18 & 7 & a464 & 123,350 & 4.36 & 96.00 & 75.83 \\
\hline r_18 & 8 & a449 & 131,498 & 4.62 & 279.00 & 12.06 \\
\hline r_18 & 9 & a453 & 132,049 & 4.76 & 92.00 & 0.23 \\
\hline r_18 & 10 & a422 & 132,645 & 4.90 & 38.00 & 0.82 \\
\hline r_18 & 11 & a280 & 137,961 & 5.12 & 28.00 & 7.23 \\
\hline r_18 & 12 & a229 & 139,497 & 5.28 & 31.00 & 2.08 \\
\hline r_18 & 13 & a191 & 150,198 & 5.58 & 31.00 & 14.36 \\
\hline r_18 & 14 & a438 & 158,611 & 5.85 & 40.00 & 4.65 \\
\hline r_18 & 15 & a583 & 159,516 & 6.00 & 175.00 & 0.47 \\
\hline r_18 & 16 & a519 & 165,034 & 6.22 & 738.00 & 7.00 \\
\hline r_18 & 17 & a432 & 165,742 & 6.36 & 128.00 & 0.74 \\
\hline r_18 & 18 & a047 & 177,968 & 6.70 & 32.00 & 12.39 \\
\hline r_18 & 19 & a523 & 181,167 & 6.88 & 78.00 & 1.31 \\
\hline r_18 & 20 & a042 & 181,419 & 7.02 & 232.00 & 0.25 \\
\hline r_18 & 21 & t01 & 188,337 & 7.13 & - & 3.23 \\
\hline r_19 & 0 & t01 & - & 2.83 & - & - \\
\hline r_19 & 1 & a338 & 11,817 & 4.03 & 826.00 & 5.24 \\
\hline r_19 & 2 & a635 & 12,221 & 4.17 & 101.00 & 0.16 \\
\hline r_19 & 3 & a459 & 13,613 & 4.32 & 69.00 & 1.85 \\
\hline r_19 & 4 & a279 & 17,944 & 4.52 & 7.00 & 5.65 \\
\hline r_19 & 5 & a418 & 23,640 & 4.75 & 95.00 & 5.15 \\
\hline r_19 & 6 & a118 & 28,458 & 4.96 & 40.00 & 6.14 \\
\hline r_19 & 7 & a263 & 36,037 & 5.22 & 57.00 & 2.39 \\
\hline r_19 & 8 & a445 & 37,796 & 5.37 & 59.00 & 0.78 \\
\hline r_19 & 9 & a314 & 43,243 & 5.60 & 45.00 & 6.69 \\
\hline r_19 & 10 & a243 & 43,243 & 5.73 & 19.00 & - \\
\hline r_19 & 11 & a419 & 44,113 & 5.87 & 181.00 & 0.16 \\
\hline r_19 & 12 & a337 & 44,113 & 6.00 & 607.00 & - \\
\hline r_19 & 13 & a283 & 44,891 & 6.14 & 136.00 & 0.76 \\
\hline r_19 & 14 & a290 & 47,305 & 6.31 & 25.00 & 1.16 \\
\hline r_19 & 15 & a503 & 50,118 & 6.49 & 46.00 & 2.02 \\
\hline r_19 & 16 & a448 & 56,782 & 6.73 & 50.00 & 6.10 \\
\hline r_19 & 17 & t01 & 73,823 & 7.02 & - & 8.34 \\
\hline r_20 & 0 & t01 & - & 2.08 & - & - \\
\hline r_20 & 1 & a435 & 9,121 & 3.23 & 155.00 & 4.01 \\
\hline r_20 & 2 & a417 & 9,999 & 3.38 & 94.00 & 1.58 \\
\hline r_20 & 3 & a252 & 11,469 & 3.53 & 28.00 & 2.60 \\
\hline r_20 & 4 & a404 & 12,726 & 3.68 & 342.00 & 0.59 \\
\hline r_20 & 5 & a226 & 13,145 & 3.82 & 31.00 & 0.70 \\
\hline r_20 & 6 & a251 & 16,704 & 4.01 & 9.00 & 1.75 \\
\hline r_20 & 7 & a367 & 21,781 & 4.22 & 53.00 & 3.09 \\
\hline r_20 & 8 & a397 & 26,838 & 4.44 & 64.00 & 2.01 \\
\hline r_20 & 9 & a434 & 33,184 & 4.67 & 62.00 & 3.43 \\
\hline r_20 & 10 & a212 & 34,230 & 4.82 & 22.00 & 1.67 \\
\hline r_20 & 11 & a006 & 35,256 & 4.97 & 28.00 & 1.63 \\
\hline r_20 & 12 & a057 & 36,075 & 5.11 & 4.00 & 0.67 \\
\hline r_20 & 13 & a207 & 38,478 & 5.28 & 31.00 & 1.17 \\
\hline r_20 & 14 & a450 & 39,190 & 5.42 & 364.00 & 0.29 \\
\hline r_20 & 15 & a430 & 50,354 & 5.74 & 136.00 & 16.29 \\
\hline r_20 & 16 & a493 & 58,252 & 6.00 & 147.00 & 4.64 \\
\hline r_20 & 17 & a468 & 58,269 & 6.13 & 114.00 & 0.02 \\
\hline r_20 & 18 & a129 & 67,624 & 6.42 & 140.00 & 12.55 \\
\hline r_20 & 19 & a215 & 67,897 & 6.55 & 76.00 & 0.14 \\
\hline r_20 & 20 & a512 & 68,679 & 6.69 & 68.00 & 0.45 \\
\hline r_20 & 21 & a516 & 69,515 & 6.84 & 107.00 & 0.34 \\
\hline r_20 & 22 & a466 & 72,316 & 7.01 & 255.00 & 3.43 \\
\hline r_20 & 23 & a224 & 74,691 & 7.18 & 25.00 & 2.73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_20 & 24 & a473 & 76,648 & 7.35 & 207.00 & 1.16 \\
\hline r_20 & 25 & a481 & 80,201 & 7.54 & 62.00 & 1.81 \\
\hline r_20 & 26 & a424 & 82,196 & 7.70 & 145.00 & 2.12 \\
\hline r_20 & 27 & t01 & 92,685 & 7.87 & - & 5.66 \\
\hline r_21 & 0 & t01 & - & 0.99 & - & - \\
\hline r_21 & 1 & a228 & 16,217 & 2.26 & 31.00 & 8.19 \\
\hline r_21 & 2 & a379 & 29,600 & 2.61 & 200.00 & 5.58 \\
\hline r_21 & 3 & a642 & 30,020 & 2.75 & 104.00 & 0.22 \\
\hline r_21 & 4 & a632 & 42,341 & 3.09 & 121.00 & 19.52 \\
\hline r_21 & 5 & a297 & 44,350 & 3.25 & 40.00 & 3.11 \\
\hline r_21 & 6 & a644 & 47,309 & 3.43 & 651.00 & 1.51 \\
\hline r_21 & 7 & a130 & 48,947 & 3.59 & 100.00 & 2.20 \\
\hline r_21 & 8 & a646 & 49,472 & 3.73 & 200.00 & 0.26 \\
\hline r_21 & 9 & a645 & 50,586 & 3.87 & 130.00 & 1.40 \\
\hline r_21 & 10 & a639 & 52,640 & 4.04 & 146.00 & 2.50 \\
\hline r_21 & 11 & a637 & 60,427 & 4.30 & 40.00 & 9.14 \\
\hline r_21 & 12 & a648 & 68,090 & 4.56 & 116.00 & 3.76 \\
\hline r_21 & 13 & a177 & 71,655 & 4.75 & 60.00 & 4.02 \\
\hline r_21 & 14 & a221 & 81,435 & 5.04 & 30.00 & 4.61 \\
\hline r_21 & 15 & a075 & 86,337 & 5.25 & 11.00 & 5.40 \\
\hline r_21 & 16 & a311 & 89,136 & 5.43 & 51.00 & 0.86 \\
\hline r_21 & 17 & a172 & 93,267 & 5.63 & 29.00 & 4.47 \\
\hline r_21 & 18 & a246 & 97,623 & 5.83 & 8.00 & 1.90 \\
\hline r_21 & 19 & a458 & 100,118 & 6.00 & 109.00 & 1.47 \\
\hline r_21 & 20 & a525 & 101,475 & 6.15 & 45.00 & 0.51 \\
\hline r_21 & 21 & a309 & 106,878 & 6.37 & 18.00 & 5.54 \\
\hline r_21 & 22 & a443 & 107,641 & 6.52 & 183.00 & 0.30 \\
\hline r_21 & 23 & a487 & 109,378 & 6.67 & 82.00 & 1.16 \\
\hline r_21 & 24 & t01 & 120,771 & 6.86 & - & 4.94 \\
\hline r_22 & 0 & t01 & - & - & - & - \\
\hline r_22 & 1 & a249 & 12,513 & 1.21 & 31.00 & 5.05 \\
\hline r_22 & 2 & a425 & 13,925 & 1.36 & 52.00 & 0.68 \\
\hline r_22 & 3 & t01 & 25,609 & 1.56 & - & 5.24 \\
\hline r_23 & 0 & t01 & - & 4.08 & - & - \\
\hline r_23 & 1 & a426 & 18,970 & 5.40 & 164.00 & 8.75 \\
\hline r_23 & 2 & a398 & 20,197 & 5.55 & 800.00 & 2.34 \\
\hline r_23 & 3 & a386 & 23,323 & 5.73 & 750.00 & 5.22 \\
\hline r_23 & 4 & a003 & 23,800 & 5.87 & 65.00 & 0.69 \\
\hline r_23 & 5 & a526 & 23,953 & 6.00 & 117.00 & 0.03 \\
\hline r_23 & 6 & a366 & 23,953 & 6.13 & 788.00 & - \\
\hline r_23 & 7 & a508 & 27,601 & 6.32 & 278.00 & 1.33 \\
\hline r_23 & 8 & t01 & 45,598 & 6.62 & - & 8.79 \\
\hline r_24 & 0 & t01 & - & 0.17 & - & - \\
\hline r_24 & 1 & a070 & 22,319 & 1.54 & 40.00 & 9.77 \\
\hline r_24 & 2 & a077 & 43,174 & 2.02 & 56.00 & 11.17 \\
\hline r_24 & 3 & a447 & 44,613 & 2.17 & 48.00 & 0.84 \\
\hline r_24 & 4 & a618 & 60,799 & 2.57 & 193.00 & 11.16 \\
\hline r_24 & 5 & a624 & 63,409 & 2.74 & 199.00 & 0.59 \\
\hline r_24 & 6 & a330 & 75,455 & 3.08 & 1,348.00 & 19.83 \\
\hline r_24 & 7 & a052 & 86,376 & 3.39 & 137.00 & 13.62 \\
\hline r_24 & 8 & a609 & 108,964 & 3.89 & 48.00 & 9.95 \\
\hline r_24 & 9 & a636 & 109,226 & 4.03 & 175.00 & 0.12 \\
\hline r_24 & 10 & a053 & 114,394 & 4.24 & 50.00 & 5.89 \\
\hline r_24 & 11 & a584 & 156,761 & 5.08 & 74.00 & 19.65 \\
\hline r_24 & 12 & a307 & 156,825 & 5.21 & 49.00 & 0.07 \\
\hline r_24 & 13 & a585 & 158,238 & 5.37 & 114.00 & 0.69 \\
\hline r_24 & 14 & a167 & 179,972 & 5.86 & 117.00 & 22.94 \\
\hline r_24 & 15 & a316 & 180,727 & 6.00 & 14.00 & 0.42 \\
\hline r_24 & 16 & a486 & 197,747 & 6.41 & 48.00 & 7.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_24 & 17 & t01 & 220,808 & 6.80 & - & 11.77 \\
\hline r_25 & 0 & t01 & - & 4.18 & - & - \\
\hline r_25 & 1 & a009 & 10,337 & 5.35 & 48.00 & 4.82 \\
\hline r_25 & 2 & a384 & 11,307 & 5.50 & 435.00 & 0.39 \\
\hline r_25 & 3 & a011 & 25,219 & 5.86 & 38.00 & 15.72 \\
\hline r_25 & 4 & a431 & 25,809 & 6.00 & 165.00 & 0.30 \\
\hline r_25 & 5 & a510 & 26,656 & 6.14 & 124.00 & 0.33 \\
\hline r_25 & 6 & a485 & 30,060 & 6.33 & 86.00 & 3.52 \\
\hline r_25 & 7 & a502 & 32,876 & 6.51 & 119.00 & 1.57 \\
\hline r_25 & 8 & a333 & 39,342 & 6.75 & 6.00 & 6.29 \\
\hline r_25 & 9 & a376 & 40,171 & 6.89 & 88.00 & 0.34 \\
\hline r_25 & 10 & a492 & 52,139 & 7.22 & 702.00 & 5.58 \\
\hline r_25 & 11 & t01 & 54,954 & 7.27 & - & 0.93 \\
\hline r_26 & 0 & t01 & - & 0.17 & - & - \\
\hline r_26 & 1 & a240 & 15,465 & 1.42 & 31.00 & 6.43 \\
\hline r_26 & 2 & a272 & 16,078 & 1.57 & 30.00 & 0.31 \\
\hline r_26 & 3 & a255 & 16,419 & 1.70 & 57.00 & 0.71 \\
\hline r_26 & 4 & a274 & 30,715 & 2.07 & 8.00 & 8.32 \\
\hline r_26 & 5 & a069 & 31,969 & 2.22 & 23.00 & 2.59 \\
\hline r_26 & 6 & a293 & 61,857 & 2.85 & 4.00 & 16.97 \\
\hline r_26 & 7 & a067 & 63,655 & 3.01 & 190.00 & 3.69 \\
\hline r_26 & 8 & a208 & 78,196 & 3.38 & 39.00 & 7.07 \\
\hline r_26 & 9 & a592 & 80,460 & 3.55 & 472.00 & 1.34 \\
\hline r_26 & 10 & a348 & 118,017 & 4.30 & 1,046.00 & 69.37 \\
\hline r_26 & 11 & a344 & 133,774 & 4.70 & 416.00 & 24.23 \\
\hline r_26 & 12 & a190 & 135,136 & 4.85 & 10.00 & 1.93 \\
\hline r_26 & 13 & t01 & 150,302 & 5.10 & - & 7.98 \\
\hline r_27 & 0 & t01 & - & 4.03 & - & - \\
\hline r_27 & 1 & a141 & 12,435 & 5.24 & 36.00 & 6.01 \\
\hline r_27 & 2 & a340 & 13,906 & 5.39 & 902.00 & 0.43 \\
\hline r_27 & 3 & a439 & 26,892 & 5.74 & 58.00 & 6.34 \\
\hline r_27 & 4 & a441 & 34,727 & 6.00 & 47.00 & 3.20 \\
\hline r_27 & 5 & a506 & 35,394 & 6.14 & 770.00 & 0.25 \\
\hline r_27 & 6 & a371 & 47,799 & 6.48 & 1,093.00 & 19.08 \\
\hline r_27 & 7 & t01 & 62,783 & 6.73 & - & 7.24 \\
\hline r_28 & 0 & t01 & - & 4.36 & - & - \\
\hline r_28 & 1 & a085 & 163,886 & 8.09 & 208.00 & 74.17 \\
\hline r_28 & 2 & a027 & 175,280 & 8.41 & 73.00 & 14.39 \\
\hline r_28 & 3 & a285 & 190,894 & 8.80 & 144.00 & 8.83 \\
\hline r_28 & 4 & a028 & 245,770 & 9.85 & 21.00 & 65.79 \\
\hline r_28 & 5 & a373 & 267,963 & 10.35 & 307.00 & 10.55 \\
\hline r_28 & 6 & a341 & 280,520 & 10.69 & 177.00 & 13.84 \\
\hline r_28 & 7 & a087 & 321,168 & 11.49 & 73.00 & 42.66 \\
\hline r_28 & 8 & a393 & 369,291 & 12.43 & 354.00 & 20.63 \\
\hline r_28 & 9 & a138 & 370,956 & 12.58 & 42.00 & 1.54 \\
\hline r_28 & 10 & a045 & 377,216 & 12.82 & 147.00 & 5.70 \\
\hline r_28 & 11 & a383 & 380,387 & 13.00 & 353.00 & 1.48 \\
\hline r_28 & 12 & t01 & 380,386 & 13.00 & - & - \\
\hline r_29 & 0 & t01 & - & 7.93 & - & - \\
\hline r_29 & 1 & a352 & 221,096 & 12.61 & 81.00 & 91.43 \\
\hline r_29 & 2 & a353 & 221,096 & 12.74 & 5.00 & - \\
\hline r_29 & 3 & a046 & 228,596 & 13.00 & 96.00 & 2.12 \\
\hline r_29 & 4 & t01 & 265,983 & 13.62 & - & 14.17 \\
\hline r_30 & 0 & t01 & - & 6.75 & - & - \\
\hline r_30 & 1 & a625 & 15,266 & 8.00 & 93.00 & 6.68 \\
\hline r_30 & 2 & a196 & 15,328 & 8.13 & 31.00 & 0.05 \\
\hline r_30 & 3 & a631 & 15,691 & 8.27 & 706.00 & 0.13 \\
\hline r_30 & 4 & a591 & 16,100 & 8.40 & 143.00 & 0.22 \\
\hline r_30 & 5 & t01 & 31,027 & 8.65 & - & 6.93 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \[
\begin{gathered}
\text { Energy } \\
\text { consumption }
\end{gathered}
\]
\[
(\mathbf{k W h})
\] \\
\hline r_31 & 0 & t01 & - & 6.72 & - & - \\
\hline r_31 & 1 & a597 & 16,825 & 8.00 & 41.00 & 7.01 \\
\hline r_31 & 2 & a602 & 19,059 & 8.17 & 357.00 & 0.96 \\
\hline r_31 & 3 & t01 & 34,554 & 8.43 & - & 6.78 \\
\hline r_32 & 0 & t01 & - & 5.80 & - & - \\
\hline r_32 & 1 & a021 & 72,213 & 8.00 & 81.00 & 30.55 \\
\hline r_32 & 2 & a146 & 77,782 & 8.22 & 36.00 & 2.28 \\
\hline r_32 & 3 & a605 & 80,039 & 8.39 & 81.00 & 1.00 \\
\hline r_32 & 4 & t01 & 146,847 & 9.50 & - & 32.34 \\
\hline r_33 & 0 & t01 & - & 6.12 & - & - \\
\hline r_33 & 1 & a475 & 52,865 & 8.00 & 97.00 & 23.55 \\
\hline r_33 & 2 & a406 & 58,536 & 8.22 & 92.00 & 7.62 \\
\hline r_33 & 3 & a064 & 73,987 & 8.61 & 51.00 & 20.35 \\
\hline r_33 & 4 & a149 & 75,472 & 8.77 & 72.00 & 1.10 \\
\hline r_33 & 5 & a155 & 77,395 & 8.93 & 42.00 & 0.13 \\
\hline r_33 & 6 & a611 & 85,772 & 9.20 & 73.00 & 3.69 \\
\hline r_33 & 7 & a616 & 92,036 & 9.43 & 490.00 & 2.76 \\
\hline r_33 & 8 & a596 & 98,267 & 9.67 & 99.00 & 6.86 \\
\hline r_33 & 9 & a089 & 110,922 & 10.01 & 98.00 & 13.57 \\
\hline r_33 & 10 & a010 & 126,569 & 10.40 & 48.00 & 16.33 \\
\hline r_33 & 11 & a128 & 134,891 & 10.67 & 40.00 & 4.30 \\
\hline r_33 & 12 & a139 & 138,506 & 10.86 & 42.00 & 1.65 \\
\hline r_33 & 13 & a296 & 140,030 & 11.01 & 10.00 & 0.71 \\
\hline r_33 & 14 & a037 & 141,410 & 11.17 & 43.00 & 1.38 \\
\hline r_33 & 15 & a103 & 143,510 & 11.33 & 155.00 & 0.82 \\
\hline r_33 & 16 & a324 & 147,043 & 11.52 & 131.00 & 1.39 \\
\hline r_33 & 17 & a023 & 148,732 & 11.68 & 33.00 & 1.53 \\
\hline r_33 & 18 & a157 & 150,193 & 11.83 & 82.00 & 0.77 \\
\hline r_33 & 19 & a152 & 151,308 & 11.98 & 82.00 & 0.97 \\
\hline r_33 & 20 & a120 & 153,657 & 12.15 & 28.00 & 1.99 \\
\hline r_33 & 21 & a199 & 158,796 & 12.37 & 39.00 & 2.10 \\
\hline r_33 & 22 & a188 & 160,622 & 12.53 & 18.00 & 1.51 \\
\hline r_33 & 23 & a114 & 161,965 & 12.68 & 116.00 & 1.10 \\
\hline r_33 & 24 & t01 & 187,319 & 13.10 & - & 12.69 \\
\hline r_34 & 0 & t01 & - & 5.96 & - & - \\
\hline r_34 & 1 & a626 & 62,360 & 8.00 & 129.00 & 26.26 \\
\hline r_34 & 2 & a081 & 63,301 & 8.15 & 23.00 & 0.33 \\
\hline r_34 & 3 & a094 & 71,729 & 8.42 & 165.00 & 3.62 \\
\hline r_34 & 4 & t01 & 125,110 & 9.31 & - & 25.00 \\
\hline r_35 & 0 & t01 & - & 12.25 & - & - \\
\hline r_35 & 1 & a607 & 40,424 & 13.93 & 71.00 & 17.26 \\
\hline r_35 & 2 & a372 & 57,061 & 14.33 & 119.00 & 8.86 \\
\hline r_35 & 3 & a640 & 72,106 & 14.71 & 54.00 & 6.54 \\
\hline r_35 & 4 & a641 & 81,427 & 15.00 & 352.00 & 4.04 \\
\hline r_35 & 5 & t01 & 102,980 & 15.36 & - & 10.06 \\
\hline r_36 & 0 & t01 & - & 6.26 & - & - \\
\hline r_36 & 1 & a595 & 44,498 & 8.00 & 79.00 & 19.99 \\
\hline r_36 & 2 & a615 & 45,979 & 8.15 & 85.00 & 0.44 \\
\hline r_36 & 3 & a358 & 49,997 & 8.35 & 196.00 & 5.72 \\
\hline r_36 & 4 & a617 & 53,067 & 8.53 & 69.00 & 2.15 \\
\hline r_36 & 5 & a593 & 53,377 & 8.67 & 699.00 & 0.42 \\
\hline r_36 & 6 & a101 & 55,078 & 8.83 & 91.00 & 1.94 \\
\hline r_36 & 7 & a061 & 56,993 & 8.99 & 514.00 & 2.13 \\
\hline r_36 & 8 & a136 & 57,429 & 9.13 & 90.00 & 0.22 \\
\hline r_36 & 9 & a628 & 62,600 & 9.34 & 50.00 & 2.62 \\
\hline r_36 & 10 & a603 & 68,699 & 9.57 & 41.00 & 5.60 \\
\hline r_36 & 11 & a030 & 76,724 & 9.84 & 45.00 & 7.27 \\
\hline r_36 & 12 & a161 & 83,893 & 10.09 & 154.00 & 3.43 \\
\hline r_36 & 13 & a289 & 86,082 & 10.25 & 35.00 & 0.74 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy consumption (kWh) \\
\hline r_36 & 14 & t01 & 133,394 & 11.04 & - & 22.59 \\
\hline r_37 & 0 & t01 & - & 5.83 & - & - \\
\hline r_37 & 1 & a614 & 70,298 & 8.00 & 41.00 & 29.59 \\
\hline r_37 & 2 & a261 & 83,539 & 8.35 & 27.00 & 3.03 \\
\hline r_37 & 3 & t01 & 149,552 & 9.45 & - & 31.53 \\
\hline r_38 & 0 & t01 & - & 8.90 & - & - \\
\hline r_38 & 1 & a125 & 5,973 & 10.00 & 120.00 & 2.49 \\
\hline r_38 & 2 & a012 & 5,990 & 10.13 & 46.00 & 0.00 \\
\hline r_38 & 3 & t01 & 11,936 & 10.23 & - & 2.74 \\
\hline r_39 & 0 & t01 & - & 10.44 & - & - \\
\hline r_39 & 1 & a211 & 16,171 & 11.71 & 1.00 & 6.85 \\
\hline r_39 & 2 & a034 & 18,978 & 11.89 & 60.00 & 4.87 \\
\hline r_39 & 3 & a570 & 21,090 & 12.06 & 50.00 & 1.54 \\
\hline r_39 & 4 & a552 & 21,565 & 12.19 & 405.00 & 0.81 \\
\hline r_39 & 5 & a551 & 22,186 & 12.33 & 93.00 & 0.98 \\
\hline r_39 & 6 & a054 & 24,289 & 12.50 & 48.00 & 3.27 \\
\hline r_39 & 7 & a403 & 24,965 & 12.64 & 667.00 & 0.28 \\
\hline r_39 & 8 & a554 & 25,426 & 12.78 & 650.00 & 0.17 \\
\hline r_39 & 9 & a198 & 25,832 & 12.91 & 28.00 & 0.47 \\
\hline r_39 & 10 & a082 & 34,194 & 13.18 & 14.00 & 9.57 \\
\hline r_39 & 11 & a574 & 35,554 & 13.34 & 142.00 & 0.65 \\
\hline r_39 & 12 & a305 & 46,737 & 13.65 & 24.00 & 12.28 \\
\hline r_39 & 13 & a575 & 47,916 & 13.80 & 186.00 & 0.45 \\
\hline r_39 & 14 & a553 & 53,047 & 14.02 & 59.00 & 5.31 \\
\hline r_39 & 15 & a395 & 75,403 & 14.52 & 82.00 & 22.76 \\
\hline r_39 & 16 & a098 & 96,375 & 15.00 & 86.00 & 20.85 \\
\hline r_39 & 17 & t01 & 131,021 & 15.58 & - & 16.89 \\
\hline r_40 & 0 & t01 & - & 7.30 & - & - \\
\hline r_40 & 1 & a329 & 113,397 & 10.19 & 40.00 & 50.05 \\
\hline r_40 & 2 & a106 & 126,893 & 10.55 & 88.00 & 12.97 \\
\hline r_40 & 3 & a282 & 152,262 & 11.10 & 154.00 & 11.71 \\
\hline r_40 & 4 & a335 & 182,485 & 11.74 & 37.00 & 13.98 \\
\hline r_40 & 5 & a532 & 237,008 & 12.77 & 61.00 & 24.48 \\
\hline r_40 & 6 & a572 & 240,679 & 12.97 & 140.00 & 2.01 \\
\hline r_40 & 7 & a049 & 246,616 & 13.19 & 92.00 & 4.86 \\
\hline r_40 & 8 & a084 & 250,458 & 13.39 & 40.00 & 1.93 \\
\hline r_40 & 9 & a533 & 251,265 & 13.53 & 88.00 & 0.50 \\
\hline r_40 & 10 & a079 & 252,202 & 13.68 & 20.00 & 0.71 \\
\hline r_40 & 11 & a268 & 261,535 & 13.96 & 28.00 & 3.90 \\
\hline r_40 & 12 & a056 & 266,155 & 14.17 & 106.00 & 3.42 \\
\hline r_40 & 13 & a322 & 271,428 & 14.39 & 23.00 & 2.37 \\
\hline r_40 & 14 & a062 & 272,398 & 14.53 & 154.00 & 0.68 \\
\hline r_40 & 15 & a162 & 274,165 & 14.69 & 76.00 & 0.83 \\
\hline r_40 & 16 & a063 & 275,688 & 14.85 & 153.00 & 0.96 \\
\hline r_40 & 17 & a323 & 276,973 & 15.00 & 5.00 & 0.58 \\
\hline r_40 & 18 & t01 & 299,174 & 15.37 & - & 10.68 \\
\hline r_41 & 0 & t01 & - & 5.95 & - & - \\
\hline r_41 & 1 & a111 & 63,199 & 8.00 & 52.00 & 29.91 \\
\hline r_41 & 2 & a137 & 95,352 & 8.67 & 44.00 & 16.06 \\
\hline r_41 & 3 & a562 & 117,613 & 9.17 & 155.00 & 10.07 \\
\hline r_41 & 4 & a580 & 124,789 & 9.42 & 45.00 & 3.59 \\
\hline r_41 & 5 & a633 & 128,819 & 9.61 & 198.00 & 2.21 \\
\hline r_41 & 6 & a634 & 129,986 & 9.76 & 146.00 & 0.83 \\
\hline r_41 & 7 & a313 & 132,793 & 9.94 & 9.00 & 3.98 \\
\hline r_41 & 8 & a134 & 133,311 & 10.08 & 66.00 & 0.73 \\
\hline r_41 & 9 & a200 & 134,678 & 10.23 & 54.00 & 0.52 \\
\hline r_41 & 10 & a619 & 137,362 & 10.41 & 1,067.00 & 1.14 \\
\hline r_41 & 11 & a356 & 139,175 & 10.57 & 38.00 & 1.93 \\
\hline r_41 & 12 & a095 & 141,935 & 10.74 & 86.00 & 2.91 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \begin{tabular}{l}
Energy
consumption \\
(kWh)
\end{tabular} \\
\hline r_41 & 13 & a035 & 181,752 & 11.54 & 20.00 & 40.91 \\
\hline r_41 & 14 & a164 & 183,823 & 11.70 & 144.00 & 0.93 \\
\hline r_41 & 15 & a182 & 190,979 & 11.95 & 17.00 & 3.70 \\
\hline r_41 & 16 & a271 & 198,296 & 12.20 & 37.00 & 3.22 \\
\hline r_41 & 17 & a259 & 199,925 & 12.36 & 27.00 & 1.57 \\
\hline r_41 & 18 & a080 & 202,618 & 12.53 & 10.00 & 2.57 \\
\hline r_41 & 19 & a140 & 205,992 & 12.72 & 46.00 & 1.08 \\
\hline r_41 & 20 & a126 & 206,971 & 12.87 & 40.00 & 0.92 \\
\hline r_41 & 21 & a151 & 210,349 & 13.05 & 76.00 & 1.59 \\
\hline r_41 & 22 & t01 & 215,018 & 13.13 & - & 1.99 \\
\hline r_42 & 0 & t01 & - & 8.95 & - & - \\
\hline r_42 & 1 & a308 & 2,897 & 10.00 & 42.00 & 1.22 \\
\hline r_42 & 2 & a534 & 7,127 & 10.20 & 235.00 & 1.85 \\
\hline r_42 & 3 & a444 & 12,160 & 10.41 & 220.00 & 2.08 \\
\hline r_42 & 4 & t01 & 18,837 & 10.53 & - & 3.21 \\
\hline r_43 & 0 & t01 & - & 13.51 & - & - \\
\hline r_43 & 1 & a390 & 20,405 & 14.85 & 223.00 & 8.97 \\
\hline r_43 & 2 & a334 & 21,663 & 15.00 & 737.00 & 0.88 \\
\hline r_43 & 3 & t01 & 41,812 & 15.34 & - & 8.44 \\
\hline r_44 & 0 & t01 & - & 8.64 & - & - \\
\hline r_44 & 1 & a537 & 21,783 & 10.00 & 33.00 & 9.21 \\
\hline r_44 & 2 & a222 & 23,755 & 10.16 & 39.00 & 0.81 \\
\hline r_44 & 3 & a565 & 27,782 & 10.36 & 216.00 & 1.73 \\
\hline r_44 & 4 & a469 & 30,275 & 10.53 & 55.00 & 0.83 \\
\hline r_44 & 5 & a262 & 31,733 & 10.69 & 28.00 & 0.46 \\
\hline r_44 & 6 & t01 & 50,757 & 11.00 & - & 8.93 \\
\hline r_45 & 0 & t01 & - & 8.85 & - & - \\
\hline r_45 & 1 & a407 & 9,178 & 10.00 & 181.00 & 3.95 \\
\hline r_45 & 2 & a567 & 9,842 & 10.14 & 52.00 & 0.58 \\
\hline r_45 & 3 & a555 & 10,770 & 10.29 & 84.00 & 1.76 \\
\hline r_45 & 4 & a491 & 12,482 & 10.45 & 179.00 & 3.20 \\
\hline r_45 & 5 & a467 & 13,131 & 10.59 & 128.00 & 1.18 \\
\hline r_45 & 6 & a507 & 14,544 & 10.74 & 67.00 & 0.61 \\
\hline r_45 & 7 & a542 & 17,178 & 10.91 & 62.00 & 1.94 \\
\hline r_45 & 8 & a038 & 17,354 & 11.05 & 51.00 & 0.31 \\
\hline r_45 & 9 & a412 & 21,654 & 11.25 & 84.00 & 2.09 \\
\hline r_45 & 10 & a385 & 22,405 & 11.39 & 6.00 & 1.28 \\
\hline r_45 & 11 & a381 & 23,129 & 11.53 & 84.00 & 1.23 \\
\hline r_45 & 12 & a559 & 24,381 & 11.68 & 280.00 & 0.55 \\
\hline r_45 & 13 & a556 & 25,377 & 11.83 & 154.00 & 1.58 \\
\hline r_45 & 14 & a065 & 26,408 & 11.98 & 50.00 & 1.59 \\
\hline r_45 & 15 & a299 & 26,408 & 12.11 & 30.00 & - \\
\hline r_45 & 16 & a025 & 28,536 & 12.27 & 58.00 & 3.24 \\
\hline r_45 & 17 & a113 & 28,967 & 12.41 & 78.00 & 0.19 \\
\hline r_45 & 18 & a144 & 29,968 & 12.56 & 55.00 & 0.71 \\
\hline r_45 & 19 & a548 & 30,305 & 12.69 & 228.00 & 0.19 \\
\hline r_45 & 20 & a132 & 31,154 & 12.84 & 107.00 & 1.19 \\
\hline r_45 & 21 & a472 & 32,021 & 12.98 & 338.00 & 0.32 \\
\hline r_45 & 22 & a265 & 34,852 & 13.16 & 7.00 & 3.58 \\
\hline r_45 & 23 & a092 & 36,669 & 13.32 & 102.00 & 2.29 \\
\hline r_45 & 24 & a004 & 42,226 & 13.54 & 29.00 & 6.85 \\
\hline r_45 & 25 & a112 & 44,703 & 13.71 & 48.00 & 1.36 \\
\hline r_45 & 26 & a048 & 48,401 & 13.90 & 69.00 & 4.47 \\
\hline r_45 & 27 & a578 & 48,970 & 14.04 & 47.00 & 0.19 \\
\hline r_45 & 28 & a206 & 49,491 & 14.18 & 40.00 & 0.61 \\
\hline r_45 & 29 & a545 & 50,010 & 14.32 & 278.00 & 0.27 \\
\hline r_45 & 30 & t01 & 61,614 & 14.51 & - & 5.95 \\
\hline r_46 & 0 & t01 & - & 8.69 & - & - \\
\hline r_46 & 1 & a540 & 18,532 & 10.00 & 118.00 & 7.99 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & Energy
consumption
\((\mathrm{kWh})\) \\
\hline r_46 & 2 & a217 & 20,681 & 10.17 & 39.00 & 1.83 \\
\hline r_46 & 3 & a119 & 21,330 & 10.31 & 70.00 & 0.55 \\
\hline r_46 & 4 & a100 & 24,430 & 10.49 & 91.00 & 2.55 \\
\hline r_46 & 5 & a394 & 26,536 & 10.65 & 58.00 & 0.94 \\
\hline r_46 & 6 & a043 & 35,721 & 10.94 & 93.00 & 7.14 \\
\hline r_46 & 7 & a156 & 42,272 & 11.18 & 54.00 & 3.04 \\
\hline r_46 & 8 & a558 & 43,478 & 11.33 & 94.00 & 0.53 \\
\hline r_46 & 9 & a107 & 46,533 & 11.51 & 100.00 & 2.16 \\
\hline r_46 & 10 & a538 & 47,819 & 11.66 & 224.00 & 0.58 \\
\hline r_46 & 11 & a158 & 49,188 & 11.81 & 82.00 & 0.83 \\
\hline r_46 & 12 & a257 & 53,538 & 12.01 & 27.00 & 2.00 \\
\hline r_46 & 13 & a292 & 56,107 & 12.19 & 12.00 & 1.08 \\
\hline r_46 & 14 & a127 & 58,740 & 12.36 & 100.00 & 1.51 \\
\hline r_46 & 15 & t01 & 77,585 & 12.67 & - & 9.54 \\
\hline r_47 & 0 & t01 & - & 8.38 & - & - \\
\hline r_47 & 1 & a524 & 36,966 & 10.00 & 234.00 & 15.64 \\
\hline r_47 & 2 & a270 & 37,260 & 10.13 & 78.00 & 0.10 \\
\hline r_47 & 3 & a415 & 39,220 & 10.30 & 60.00 & 0.82 \\
\hline r_47 & 4 & t01 & 76,429 & 10.92 & - & 17.57 \\
\hline r_48 & 0 & t01 & - & 8.40 & - & - \\
\hline r_48 & 1 & a543 & 35,913 & 10.00 & 166.00 & 15.19 \\
\hline r_48 & 2 & a332 & 36,202 & 10.13 & 194.00 & 0.11 \\
\hline r_48 & 3 & t01 & 71,852 & 10.73 & - & 16.80 \\
\hline r_49 & 0 & t01 & - & 8.86 & - & - \\
\hline r_49 & 1 & a225 & 11,631 & 10.06 & 31.00 & 5.15 \\
\hline r_49 & 2 & a375 & 14,064 & 10.23 & 165.00 & 1.30 \\
\hline r_49 & 3 & a529 & 15,055 & 10.38 & 463.00 & 0.02 \\
\hline r_49 & 4 & a355 & 16,707 & 10.53 & 842.00 & 3.11 \\
\hline r_49 & 5 & a389 & 17,680 & 10.68 & 510.00 & 0.49 \\
\hline r_49 & 6 & a451 & 19,487 & 10.84 & 24.00 & 0.47 \\
\hline r_49 & 7 & a531 & 21,245 & 11.00 & 530.00 & 1.25 \\
\hline r_49 & 8 & a277 & 22,940 & 11.16 & 23.00 & 2.24 \\
\hline r_49 & 9 & t01 & 31,149 & 11.29 & - & 4.05 \\
\hline r_50 & 0 & t01 & - & 8.85 & - & - \\
\hline r_50 & 1 & a544 & 8,771 & 10.00 & 57.00 & 3.99 \\
\hline r_50 & 2 & a535 & 31,149 & 10.50 & 46.00 & 44.75 \\
\hline r_50 & 3 & a154 & 41,831 & 10.81 & 46.00 & 21.22 \\
\hline r_50 & 4 & a547 & 44,509 & 10.99 & 396.00 & 1.65 \\
\hline r_50 & 5 & a413 & 51,449 & 11.23 & 150.00 & 12.88 \\
\hline r_50 & 6 & a564 & 68,363 & 11.64 & 224.00 & 8.02 \\
\hline r_50 & 7 & a219 & 70,884 & 11.82 & 1.00 & 4.40 \\
\hline r_50 & 8 & a234 & 87,480 & 12.22 & 31.00 & 7.88 \\
\hline r_50 & 9 & a073 & 88,145 & 12.36 & 11.00 & 1.15 \\
\hline r_50 & 10 & a482 & 89,990 & 12.52 & 285.00 & 0.54 \\
\hline r_50 & 11 & a604 & 93,445 & 12.71 & 158.00 & 1.36 \\
\hline r_50 & 12 & a122 & 94,652 & 12.86 & 60.00 & 1.93 \\
\hline r_50 & 13 & a336 & 96,050 & 13.01 & 865.00 & 0.57 \\
\hline r_50 & 14 & a568 & 97,076 & 13.16 & 580.00 & 0.52 \\
\hline r_50 & 15 & a121 & 97,883 & 13.31 & 75.00 & 0.93 \\
\hline r_50 & 16 & a550 & 99,562 & 13.46 & 83.00 & 1.00 \\
\hline r_50 & 17 & t01 & 108,223 & 13.61 & - & 4.41 \\
\hline r_51 & 0 & t01 & - & 8.81 & - & - \\
\hline r_51 & 1 & a055 & 11,529 & 10.00 & 106.00 & 4.91 \\
\hline r_51 & 2 & a165 & 11,529 & 10.13 & 51.00 & - \\
\hline r_51 & 3 & a560 & 13,022 & 10.28 & 218.00 & 0.39 \\
\hline r_51 & 4 & a301 & 13,341 & 10.42 & 45.00 & 0.46 \\
\hline r_51 & 5 & a474 & 14,916 & 10.58 & 122.00 & 1.14 \\
\hline r_51 & 6 & a110 & 15,937 & 10.72 & 18.00 & 1.43 \\
\hline r_51 & 7 & a347 & 16,397 & 10.86 & 971.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Route ID & Route stop & Node ID & Distance (m) & Total time (h) & Weight (kg) & \(\qquad\) consumption (kWh) \\
\hline r_51 & 8 & a260 & 16,871 & 11.00 & 28.00 & 0.52 \\
\hline r_51 & 9 & a557 & 19,108 & 11.17 & 190.00 & 0.93 \\
\hline r_51 & 10 & a577 & 20,613 & 11.32 & 128.00 & 0.69 \\
\hline r_51 & 11 & a546 & 32,809 & 11.65 & 155.00 & 12.24 \\
\hline r_51 & 12 & a174 & 35,197 & 11.82 & 35.00 & 2.29 \\
\hline r_51 & 13 & a573 & 38,342 & 12.01 & 228.00 & 1.28 \\
\hline r_51 & 14 & t01 & 64,529 & 12.44 & - & 12.58 \\
\hline r_52 & 0 & t01 & - & 12.13 & - & - \\
\hline r_52 & 1 & a501 & 2,317 & 13.17 & 71.00 & 1.05 \\
\hline r_52 & 2 & a536 & 6,279 & 13.37 & 175.00 & 2.14 \\
\hline r_52 & 3 & a175 & 8,601 & 13.54 & 20.00 & 1.75 \\
\hline r_52 & 4 & a549 & 12,919 & 13.74 & 363.00 & 1.99 \\
\hline r_52 & 5 & a490 & 16,409 & 13.93 & 123.00 & 2.24 \\
\hline r_52 & 6 & a541 & 21,698 & 14.15 & 116.00 & 2.33 \\
\hline r_52 & 7 & a147 & 29,113 & 14.40 & 20.00 & 4.23 \\
\hline r_52 & 8 & a275 & 31,903 & 14.58 & 22.00 & 1.22 \\
\hline r_52 & 9 & a561 & 39,236 & 14.83 & 102.00 & 3.21 \\
\hline r_52 & 10 & a566 & 41,777 & 15.00 & 47.00 & 1.10 \\
\hline r_52 & 11 & t01 & 52,836 & 15.18 & - & 5.23 \\
\hline r_53 & 0 & t01 & - & 7.60 & - & - \\
\hline r_53 & 1 & a613 & 18,870 & 8.91 & 64.00 & 8.01 \\
\hline r_53 & 2 & a051 & 25,612 & 9.16 & 66.00 & 2.90 \\
\hline r_53 & 3 & a148 & 29,508 & 9.35 & 30.00 & 1.67 \\
\hline r_53 & 4 & a050 & 34,133 & 9.56 & 60.00 & 1.86 \\
\hline r_53 & 5 & a017 & 37,642 & 9.75 & 76.00 & 1.35 \\
\hline r_53 & 6 & a539 & 44,984 & 10.00 & 125.00 & 3.09 \\
\hline r_53 & 7 & t01 & 54,866 & 10.16 & - & 4.20 \\
\hline r_54 & 0 & t01 & - & 8.86 & - & - \\
\hline r_54 & 1 & a563 & 8,337 & 10.00 & 278.00 & 3.64 \\
\hline r_54 & 2 & a326 & 8,434 & 10.13 & 30.00 & 0.10 \\
\hline r_54 & 3 & a576 & 8,938 & 10.27 & 505.00 & 0.25 \\
\hline r_54 & 4 & a131 & 16,405 & 10.52 & 100.00 & 6.90 \\
\hline r_54 & 5 & a058 & 18,587 & 10.69 & 92.00 & 1.95 \\
\hline r_54 & 6 & a315 & 21,647 & 10.87 & 15.00 & 1.00 \\
\hline r_54 & 7 & a192 & 22,311 & 11.01 & 31.00 & 0.57 \\
\hline r_54 & 8 & a288 & 22,910 & 11.15 & 12.00 & 0.28 \\
\hline r_54 & 9 & a083 & 25,794 & 11.33 & 162.00 & 2.45 \\
\hline r_54 & 10 & a312 & 28,280 & 11.50 & 8.00 & 1.00 \\
\hline r_54 & 11 & a427 & 29,455 & 11.65 & 34.00 & 0.52 \\
\hline r_54 & 12 & a377 & 30,067 & 11.79 & 361.00 & 0.48 \\
\hline r_54 & 13 & t01 & 39,727 & 11.95 & - & 4.91 \\
\hline r_55 & 0 & t01 & - & 8.79 & - & - \\
\hline r_55 & 1 & a363 & 12,789 & 10.00 & 66.00 & 5.46 \\
\hline r_55 & 2 & a343 & 13,299 & 10.14 & 376.00 & 0.23 \\
\hline r_55 & 3 & t01 & 25,675 & 10.34 & - & 6.07 \\
\hline r_56 & 0 & t01 & - & 8.73 & - & - \\
\hline r_56 & 1 & a428 & 16,206 & 10.00 & 145.00 & 6.61 \\
\hline r_56 & 2 & a135 & 23,319 & 10.25 & 30.00 & 2.07 \\
\hline r_56 & 3 & a220 & 27,028 & 10.44 & 10.00 & 1.61 \\
\hline r_56 & 4 & a160 & 32,687 & 10.66 & 40.00 & 1.58 \\
\hline r_56 & 5 & t01 & 44,561 & 10.86 & - & 5.19 \\
\hline r_57 & 0 & t01 & - & 8.63 & - & - \\
\hline r_57 & 1 & a019 & 22,193 & 10.00 & 77.00 & 9.26 \\
\hline r_57 & 2 & a124 & 22,966 & 10.14 & 60.00 & 0.31 \\
\hline r_57 & 3 & t01 & 44,671 & 10.50 & - & 10.06 \\
\hline r_58 & 0 & t01 & - & 8.86 & - & - \\
\hline r_58 & 1 & a350 & 8,126 & 10.00 & 1,175.00 & 3.74 \\
\hline r_58 & 2 & t01 & 16,252 & 10.14 & - & 4.03 \\
\hline
\end{tabular}


Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences

Postboks 5003 NO-1432 Ås Norway```

