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Fruit localisation is a crucial step in developing a robotic fruit-harvesting system. This

paper aims to improve the localisation accuracy of fruits in 3D space. In the machine vision

system of a harvesting robot, in a single view the visible area of a target is often incomplete

and therefore, cannot be directly used to accurately determine the target location. A 3D

shape completion method is proposed that can be used on the partially visible images of

strawberries obtained from a single view. This method proposed a given number of sym-

metric plane candidates based on the assumption that the targets are symmetrical, which

is normally true for fruits such as such apples, citrus fruits and strawberries. Corre-

sponding rating rules were proposed to select the optimal symmetry to be used for the

shape completion. The algorithm was then tested on reconstructed point clouds and

implemented on a strawberry harvester equipped with a Red Green Blue-Depth (RGB-D)

camera. The evaluation on reconstructed strawberry data showed that the intersection

over union (IoU) and centre deviation between the results obtained by this method and

ground truth were 0.77 and 6.9 mm, respectively, whilst those of the unprocessed partial

data were 0.56 and 14.1 mm. The evaluation results of the strawberry data captured with

the RGB-D camera showed that the IoU and centre deviation between the results obtained

by this method and ground truth were 0.61 and 5.7 mm, respectively, whilst those of the

unprocessed partial data were 0.47 and 8.9 mm.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).
1. Introduction

The shortage of human pickers and increasing labour costs

have led to a high demand for the automation in fruit har-

vesting. Many research projects on agricultural robots are

engaged in various aspects of agricultural automation, such
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as apple and sweet pepper harvesting and wine grape har-

vesting (Bac et al., 2017; Lehnert, English, McCool, Tow, &

Perez, 2017; Reis et al., 2012; Silwal, Davidson, Karkee,

Zhang, Lewis, 2017). However, challenges remain regarding

the development of a robust and commercially available

robot, which include, but are not limited to, target detection

and localisation (Gongal, Amatya, Karkee, Zhang, & Lewis,
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Nomenclature

Symbols

c A constant to determine the point position on

the line

Dist ref Reference distance for the size of the

strawberry

Dist tol A tolerant distance

Dist2c Distance between mirrored point and the

detected strawberry centre

Dist2c 0 radii of a circle to define point position

Dist2c 1 radii of a circle to define point position

j The number of rotations along x

j1 A constant to define value of Dist tol

j2 A constant to define value of Dist2c 0

j3 A constant to define value of Dist2c 1

k The number of rotations along y

k1�k5 Rating adjustment constant

m The number of translations along depth

Mp Mask of detected strawberry

Mp0 Projected mask of mirrored point cloud P0

n0 A normal vector that is perpendicular to the

initial hypothetical plane

nnew A normal vector that is perpendicular to the

new hypothetical plane

p A point in the detected strawberry point cloud

p0 The mirrored point of p

P Original point cloud of the detected strawberry

P0 Mirrored point cloud of P

pH Any point on the initial hypothetical plane

pH0 A point on the initial hypothetical plane

pHL A point on both the line pL and the hypothetical

plane

pL A line (any point on the line) passes though pL0
and perpendicular to the hypothetical plane

pL0 A point in the detected strawberry point cloud

and on the line pL

p0n De-projected 3D point of p0nm
p0m Projected point of p0

p0nm Nearest point of p0m in Mp

R Rotation matrix in 3D

Vec2n Vector from mirrored point p0 to nearest point

p0n
Dd A regular distance interval along depth

direction

Dq1 A regular rotation angle interval along x axis

Dq2 A regular rotation angle interval along y axis

Abbreviations

CCD Charge coupled device

IoU Intersection over union

RGB-D Red Green Blue-Depth

TOF Time of flight
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2015), as well as end effector design and manipulation al-

gorithm development. Localisation refers to the goal of

detection in harvesting vision system and is essential to

further fruit manipulation. Therefore, the accurate
localisation of fruits along with the effective manipulation

algorithms are key factors to determine the performance of

robotic harvesting.

In a precision agricultural systems, localisation can be

achieved in different ways, for example using a monocular

vision system with other predefined conditions or methods

(De-An, Jidong, Wei, Ying, & Yu, 2011; Mehta & Burks, 2014;

Reis et al., 2012; Xiong, Ge, Liang, & Blackmore, 2017), stereo

cameras (Bac, Hemming, & Van Henten, 2014; Ji, Meng, Qian,

Xu, & Zhao, 2017; Mehta & Burks. 2016) and other 3D cam-

eras (Vitzrabin & Edan, 2016; Wang, Walsh, & Verma, 2017;

Xiong, Peng, Grimstad, From, 2019). Several researchers and

practitioners are starting to favour RGB-D cameras because of

their simplicity and high localisation accuracy. However,

regardless of the camera used, the harvesting system can only

obtain partial target information using a single camera from a

single view, whilst 3D reconstructions can acquire complete

information, but it usually requires a scanning motion from

the camera and is therefore computational expensive and not

practical in a real-time harvesting system. However, a com-

plete shape of a target fruit is essential for localisation in 3D

space, especially when the targets are clustered together, such

as with strawberries.

Therefore, here the aim was to improve localisation ac-

curacy by completing the target position for partially visible

targets. The complete shape information can be obtained

with 3D scanning methods (Le Cozler et al., 2019; Mack et al.,

2018; Mack, Lenz, Teurine, Steinhage, 2017). However, as

described above, these are not viable choices in harvesting

systems. Researchers are working on alternative methods to

recover the entire shape of the targets, especially for the

purpose of grasping (Bohg et al., 2011; Makhal, Thomas, &

Gracia, 2018; Schiebener, Schmidt, Vahrenkamp, & Asfour,

2016). The most common method for completing the shape

of a fruit by proposing symmetry was initiated by Thrun and

Wegbreit (2005).

The scenario involved in most shape completion methods

is the presence of a plane table with objects in a laboratory

environment; holding objects for robotic grasping. However,

the targets of interest here are the table-top grown straw-

berries that naturally have different poses. Therefore, the

symmetry-based idea is further developed in this study to

complete 3D strawberry shapes for strawberry localisation

and harvesting purposes. The contributions are summarised

as follows,

� A shape completion method is proposed that aims to

localise strawberry fruits more accurately. To select the

best plane, a series of symmetrical planes is hypoth-

esised and a novel rating method based on the shape of

strawberries and the possible locations of mirrored

points is developed. The optimal symmetrical plane

that can be used to recover the complete points is used

for fruit localisation.

� A test dataset is generated from reconstructed 3D

strawberry data, on which the shape 20 completion

methods are evaluated. Moreover, the method is

implemented and evaluated on the vision system of a

strawberry harvester.

https://doi.org/10.1016/j.biosystemseng.2020.07.003
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2. Related work

2.1. Target localisation for fruit harvesting robot

Localisation methods can be divided into different categories

according to the vision system used, including monocular

vision, stereo vision and other 3D vision systems.

2.1.1. Monocular vision-based localisation
Some agricultural robots generally use a monocular vision

system due to its simplicity and cost efficiency. Among these

robots, some make pre-assumptions or add additional sen-

sors to acquire 3D location. For example, Xiong et al. (2017)

designed a laser weeding system with a single RGB camera

for weed detection in which it was assumed that the ground

is parallel to the camera frame over a fixed distance. The 3D

information was calculated based on the spatial geometric

relationship. Yin, Chai, Yang, and Mittal (2009) reported a

tomato harvesting system that used a Charge Coupled Device

(CCD) camera for tomato detection. They added a laser

sensor to the system to acquire the distance information and

calculated the 3D coordinates for tomato localisation.

Bulanon, Okamoto, and Hata (2005) used a CCD camera for

apple detection and a laser ranging sensor to measure the

distance from the camera to the fruit. Their method required

the target to be placed at the centre of the image and the

manipulator to be controlled according to the centre when

approaching the fruit.

Somemonocular vision systems used localisationmethods

that are similar to visual servoing. De-An et al. (2011) used a

CCD sensor on the end effector as a hand-eye camera for apple

harvesting. The apples were localised within the image and

compared with the image centre to obtain deviations. The end

effector was then controlled to take small steps according to

the deviation and to gradually control the arm and locate the

apple. Mehta and Burks (2014) obtained the 3D position of

citrus fruit using a fixed monocular camera, which assumed

that the size of target citrus fruit was the average size of

sample citrus fruits. Based on this assumption, the depth in-

formation could be estimated using perspective trans-

formation. In addition to the fixed camera, the system used a

hand-eye camera to regulate the end effector to locate the

target fruit, leading to greater complexity and reduced speed

of operation.

2.1.2. Stereo matching-based localisation
Many harvesting systems use stereo cameras as detection

and localisation sensors. Font et al. (2014) proposed a fruit-

harvesting system using a low-cost stereo camera to

localise apples and pears. Similarly, Mehta and Burks (2016)

presented a multi-camera fruit matching and localisation

method using pseudo-stereo camera. The method was

feasible since the fruit was sparsely dispersed in the image.

Bac et al. (2014) used stereo matching to localise the stems of

sweet peppers. A CCD camera was mounted on a pneumatic

slide. Once the first image was taken, the pneumatic slide

was moved to allow the camera to take a second image. Ji

et al. (2017) used stereo matching to localise an apple

branch based on skeleton points. Yang, Chang, Bao, Fan, and
Xun (2018) used the stereo vision system to acquire the

spatial information of White Chrysanthemums by stereo

matching. Mehta, Ton, Asundi, and Burks (2017) proposed a

localisation method using a stereo camera. The approach

aimed at eliminating the detection errors in image processing

and localising the fruit in the presence of fruit motion.

However, the algorithm assumed that the stereo matching

problem was solved, meaning that a given fruit must be

matched in multiple cameras.

In general, localisation using stereo cameras requires the

use of the matching method while the accuracy is not

adequate for some precision farming purposes. Furthermore,

the matching can be a problem in the outdoor environment

due to the various lighting conditions.

2.1.3. Other 3D vision-based localisation
Popular 3D vision cameras include Time of Flight (TOF) cam-

era (Gongal et al., 2015), RGB-D camera (Barnea, Mairon, &

Ben-Shahar, 2016). An RGB-D camera is efficient in capturing

both colour and depth images. Usually, an RGB-D camera

consists of a colour sensor and two depth sensors, allowing

the acquired images to not only be used in detecting the tar-

gets, but also to locate the targets in a 3D space. RGB-D cam-

eras are also used in many harvesting and detection systems

(Silwal et al., 2017; Vitzrabin & Edan, 2016; Wang et al., 2017).

3D vision-based localisation is normally straightforward

when using coordinate transformation, but as mentioned

above, it can only obtain a partial shape using a single camera

observing a single view.
2.2. Shape completion

Shape completion in 3D is therefore essential for 3D object

localisation and grasping. The following sections introduce

two existing methods to obtain a complete shape. One

method is to obtain the complete 3D points directly through

the 3D scanning, and the other method is to complete the

partial points based on shape completion.

2.2.1. Complete points from 3D reconstruction
Reconstruction methods are usually based on scanning to

obtain the initial point cloud data to be used for other pur-

poses. For example, Le Cozler et al. (2019) built a shape

reconstruction system for the body of cows. Five

cameraelaser pairs were used to take images of a cow from

different angles and locations. A complete 3D point cloud was

generated by merging the point clouds from the five

cameraelaser pairs to monitor the growth of the cow. The

entire data capturing and analysis process took around

15 min. Furthermore, similar methods were used for fruits as

well. For example, Scholer and Steinhage (2015), Mack et al.

(2018) utilised reconstruction methods to recreate grape

bunches. They used laser range sensor or a 3D Artec spider

scanner (Artec 3d, Santa Clara, CA, USA) to acquire the 3D

point clouds of grape bunches for classification and segmen-

tation. Determining complete points from 3D reconstruction

usually is computationally expensive and this was obtained

offline. Therefore, it is not therefore amethod suited for use in

real-time fruit harvesting robots.

https://doi.org/10.1016/j.biosystemseng.2020.07.003
https://doi.org/10.1016/j.biosystemseng.2020.07.003
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2.2.2. Shape completion based on partial points
Thrun and Wegbreit (2005) proposed the idea of recon-

structing a 3D partial surface using symmetry. The data

being processed was partially visible surface points

captured from a single 3D view. Their algorithm searched

for different symmetry types and parameters and they were

used to find the most plausible symmetry. The shape

reconstruction could be obtained based on the proposed

symmetry. Bohg et al. (2011) used a similar concept to reveal

a symmetry in an incomplete view of points for the pur-

poses of grasping. Their method assumed that a symmetric

object stands on the table plane with its symmetry

perpendicular to the table surface. This assumption sim-

plifies the symmetry searching process for their specific

scenario. Hypotheses were proposed based on the assump-

tions, and the symmetric planes were scored to find the

symmetry for completing the shape.

Some researchers adopted this idea for their specific

tasks. Ilonen, Bogh and Kyrki (2014) used the same as-

sumptions and method but fused the visual and tactile

sensing to achieve object reconstruction. Similarly,

Schiebener et al. (2016) adapted the hypothesis testing idea,

adding more hypotheses for the table planes to gain more

information from the surrounding scene. Figueiredo,

Moreno, and Bernardino (2017) utilised a similar method to

complete 3D shapes for kitchenware objects. Makhal et al.

(2018) also used the same method for shape completion,

and similarly, they assumed that the symmetry was

perpendicular to the table and that symmetry could be ob-

tained via a 2D projection on the table.

The concept presented by Thrun and Wegbreit (2005) was

also implemented for application to extruded shapes. For

example, Kroemer, Amor, Ewerton, and Peters (2012) presented

amethod to complete a partial shape by using extrusions. Their

method first searched for planer symmetries for extruded

shapes. The detected symmetries were then used to search for

suitable extrusion parameters. The proposed extrusion was

rated according to a scoring system, and then the selected

parameter was used to complete the extruded shape. Quispe

et al. (2015) used a similar method to approximate the shape
Fig. 1 e Basic concept of the machine vision system for strawbe

workflow of entire machine vision system; (c) is a rough workfl
forgrasping thehouseholdobjectsandassumedthat theobjects

were extruded shapes. They obtained the symmetry by using

themethod described by Bohg et al. (2011) to propose hypothe-

ses for the axis of extrusion. The estimated axis was optimised

to improve the accuracy of the extrusion axis, which could be

used for grasping.

In addition to shape completion of partial surface from

symmetry, deep learning for 3D shape completion have also

shown promising results (Achlioptas, Diamanti, Mitliagkas, &

Guibas, 2018; Wang, Ang Jr, Lee, 2020; Yuan, Khot, Held, Mertz,

& Hebert, 2018), which could be an optional method to

investigate. In this paper, we mainly focus on the adoption of

the concept of symmetry-based shape completion to propose

a completion method for symmetric fruits, to achieve better

localisation accuracy of the machine vision system in har-

vesting robots.
3. Materials and methods

3.1. Procedures for the completion method

This methodwas designed as amachine vision system for our

table-top strawberry harvester (NORONN, www.noronn.com),

as shown in Fig. 1 (a), in which the RGB-D camera senses the

strawberry from the front. The algorithms of the machine

vision system are briefly summarised in Fig. 1 (b). First, the

detection and segmentation algorithm were designed to

detect each strawberry target and segment its pixels. The

dataset for training and fine tuning the model is the same as

that in Ge, Xiong, and From (2019), which includes strawberry

images from the Boxford Suffolk Farms (Colchester, UK) and a

strawberry polytunnel at NMBU, Norway. The detection re-

sults can be found in previous publications (Ge, Xiong, Tenorio

et al., 2019). The completion method was based on the seg-

mentation results, which were further employed for 3D point

extraction. The segmentation was evaluated using IoU be-

tween detected masks and the annotated ground truths. The

evaluation equation is intersection/union, where intersection is

the overlapped area and union is the area of twomasksminus
rry harvesting: (a) is the harvester; (b) is the algorithm

ow of the shape completion method.

http://www.noronn.com
https://doi.org/10.1016/j.biosystemseng.2020.07.003
https://doi.org/10.1016/j.biosystemseng.2020.07.003
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the area of intersection. Sixty images were tested with 160

detected strawberries, and an average IoU of 0.86 with a

standard deviation of 0.05. The result was considered accurate

for the segmentation. In addition, the noise of the trans-

formed 3D points was filtered using clustering methods (Ge,

Xiong, Tenorio et al., 2019) and therefore, the extracted

points were essentially good enough for the completion

method. The shape completion method was subsequently

designed to complete the extracted points to localise the fruit

more accurately.

The basic concept of this completion method can be seen

in Fig. 1 (c). The method proposes different planes of sym-

metry based on the position of the extracted 3D points and

obtains several pointsets by mirroring the same 3D points.

The core of this method is the rating algorithm, which iden-

tifies the position of eachmirrored point and provides a rating

based on that position. Based on the rating algorithm, the

optimal pointset that represents the actual shape of the object

can be obtained. The following section presents how our

method can achieve shape completion based on symmetry.

3.2. Initial hypothesis

First, it is necessary to generate an initial hypothesis onwhich

further symmetry hypotheses can be based. A 3D plane can be

defined by a point pH
0 on the plane and a normal vector n that is

perpendicular to the plane. The position vector of any point pH

on the plane can be expressed as:

n ,
�
pH �pH

0

�¼0 (1)

Since the initial hypothesis is a rough estimate of the plane

used for generating more hypotheses, average coordinates of

all the points in the point cloud P are used as the point on the

initial plane. A vector that is parallel to the z axis of the camera

coordinate frame was used to represent the normal vector of

the initial hypothetical plane.
3.3. Generation of symmetric plane hypotheses

The generation of hypothetical planes includes translation

and rotation of the initial hypothetical plane. The translation

occurred along the depth direction over a regular distance

interval Dd and the rotation was along the x and y axis over
Fig. 2 e Generation progress of the plane hypotheses: (a) shows t

(b) shows the rotated planes along x axis; (c) shows rotated pla

perspective of the camera.
regular angle intervals Dq1 and Dq2. To perform the trans-

lation, the point defined on the initial plane was moved a

specified distance along the depth direction. R, n was used to

perform a local rotation and generate the normal vector of

new hypothesis,

nnew ¼R,n0 (2)

where R is the rotation matrix generated by Dq1 and Dq2 as

shown in Eq. (3).

R¼
2
4
cos Dq �sin Dq 0
sin Dq cos Dq 0
0 0 1

3
5 (3)

In this way, m � Dd, j � Dq1 and k � Dq2 can be used to

generate a total of m � j � k hypotheses, in which m, j and k

represent the number of translations along depth, the number

of rotations along x, the number of rotations along y, respec-

tively. The process is illustrated in Fig. 2. In our algorithm for

strawberry, m, j and k was set to 4, 11 and 3, respectively. Less

rotations along y axis were generated because a strawberry

can bemostly regarded as axisymmetric body along y axis. Dd,

Dq1 and Dq2 were set to 0:2� len depth, 5�, and 5�, respectively,

where len depth is the length of depth of detected strawberry.

The values of the number of hypothesis could be larger while

the values of interval length could be smaller, so that more

situations can be included. However, by doing so, more hy-

pothetical planes would be generated, which would make the

algorithm slower. In our algorithm, these values were chosen

based on the size of strawberries and the need to balance

speed and performance.
3.4. Points mirroring

To obtain the complete shape the visible points need to be

mirrored based on the hypothetical plane. Furthermore, the

mirrored points will be used for rating during the next section.

In order to mirror the original point cloud P through the pro-

posed symmetric plane, the line equation in 3D space was

utilised. Figure 3 illustrates the calculation progress in 3D

space. The points can be regarded as vectors, marked by yel-

low dotted lines in Fig. 3. A line in 3D space can be determined

by a point on the line and a vector parallel to the line. Thus, a

line pL that passes through the point pL
0 in the original point
he initial hypothetical plane and its two translation planes;

nes in 3D space along y axis; axes on the right shows the

https://doi.org/10.1016/j.biosystemseng.2020.07.003
https://doi.org/10.1016/j.biosystemseng.2020.07.003


Fig. 3 e Schematic for points mirroring. The plane in the

middle is the hypothetical plane; p represents a point on

the strawberry while it is also a point pL
0 on the line; p0

represents the mirrored point.

b i o s y s t em s e ng i n e e r i n g 1 9 7 ( 2 0 2 0 ) 1 8 8e2 0 2 193
cloud P and is perpendicular to the plane can be defined as

follows:

pL ¼ c*nþ pL
0 (4)

where n is the normal vector of the plane and c is a constant to

determine the point position on the line. This line also passes

through the point p0 in the mirrored point cloud P0 and the

point pHL, which represents the intersection point between the

line and the plane hypothesis. Because pHL also satisfies the

plane equation Eq. (1), c in Eq. (4) and the coordinates of pHL

can be obtained by replacing pL with pHL in the Eq. (4). Since the

intersection point is the midpoint of p and p0, the mirrored

point can be obtained as follows:

p' ¼2pHL � p (5)

where of p, pHL and p0 can be regarded as vectors from the

coordinate origin to the corresponding scatter point, as illus-

trated by the orange lines in Fig. 3.
Fig. 4 e Different location cases for the mirrored points: (a)-loca

location 2: the mirrored point is in front of the original point clou

the original points; (a)-location 4: the mirrored point is in the in

dashed lines; (b)-location 4e1:the mirrored points are close to th

are in the reasonable region; (b)-location 4e3: the mirrored poin
3.5. Rating for generated hypotheses

3.5.1. Locations definition
The next step is to rate the mirrored points to find the optimal

hypothesis that can be used to obtain the complete strawberry

shape. As shown in Fig. 4 (a), a point p in the mirrored point

cloud P0 has the possibility to be located in four places. If a

mirrored point lies in locations 1 and 2 in Fig. 4 (a), it should

already been sensed as one of the points in the original point

cloud. Therefore, the mirrored point of locations 1 and 2 in

Fig. 4 (a) decreases the possibility of the corresponding point

cloud being a good candidate. If a mirrored point lies in loca-

tion 3 in Fig. 4 (a), it supports the hypothesis. If a mirrored

point lies in location 4 in Fig. 4 (a), it may be a supported point

that indicates the unseen side of the object. Thus, locations 3

and 4 in Fig. 4 (a) were considered as positive cases, and 1 and

2 as negative cases.

However, location 4 in Fig. 4 (a) covers a large part of the

area, as can be seen in the region marked with red dashed

lines. If the rating for location 4 in Fig. 4 (a) purely depends on

the distance to the nearest point in the original points, as in

themethod described by Bohg et al. (2011), themirrored points

may gather behind the visible points, resulting in inaccurate

shape recovery. Therefore, the area of location 4 in Fig. 4 (a)

was divided into three additional cases as shown in Fig. 4 (b).

Locations 4e1 and 4e3 in Fig. 4 (b) are the negative cases since

they are outside the reasonable region, while location 4e2 in

Fig. 4 (b) is the positive case because it is within the reasonable

region. The reasonable region is markedwith red dashed lines

in Fig. 4 (b).

3.5.2. Location identification
Before identifying where a point is located, some pre-

processing and distance calculations are required. The pa-

rameters defined in this section can be seen in Fig. 5. The

original points P and mirrored points P0 were projected to the

image plane to generate the corresponding mask Mp and Mp0.
Three distances were calculated and utilised for rating every

point p0 in P0. The first is a reference distanceDist_ref of the size
tion 1: the mirrored point is outside the detected mask; (a)-

d; (a)-location 3: the mirrored point is exceptionally close to

visible area behind the detected mask, marked with red

e centre of the object; (b)-location 4e2: the mirrored points

ts are far from the reasonable region.

https://doi.org/10.1016/j.biosystemseng.2020.07.003
https://doi.org/10.1016/j.biosystemseng.2020.07.003


Fig. 5 e Illustration of location identification: the axes on the left represent the axes of the RGB camera optical frame; the red

points on the right are the original points of strawberry while the blue points are the correspondingmirrored points through

the hypothetical plane; the plane in the middle shows the projected masks of the original points and mirrored points on the

image plane.

Table 1e List of parameters for location identification and
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of the target. The most substantial distance among the three

directions x, y and z was taken as the reference distance

Dist_ref. The distance of every point p0 in P0 was calculated in

relation to the centre of original points Dist2c and the depth

vector Vec2n from p0 to p0n. Points p0nm and p0m represent the

projected points of p0n and p0 in the projectedmaskMp andMp0.
The procedure aims to find the nearest point of p0n in Mp,

which is p0nm, which was then de-projected to the 3D space to

obtain p0n, so that the distance between p0 and p0n could be

calculated.

The identification of the location of a point is described in

this section. For a point p0 in P0, if the projected point in Mp0 of
point p0 in P0 is outside mask Mp, then it is recognised as

location 1. Otherwise, it is recognised as one of the other three

locations. For the remaining points, if the distance Vec2n is

negative and smaller than a predefined value V2n_pre around

zero, then it is recognised as location 2. If the distance Vec2n is

close to zero, then it is recognised as location 3. The remaining

points belong to location 4 and are divided into three more

locations. If Dist2c is smaller than the predefined distance

D2c_pre, it denotes location 4e1, while if Dist2c is larger than

the predefined distance D2c_pre, then it is considered as being

the location 4e3. Otherwise, it signifies location 4e2.
rating.

Usage No. Parameters Values

Location identification 1 Dist ref calculated

2 Dist2c calculated

3 Vec2n calculated

4 Dist tol j1*Dist ref ; j1 ¼ 0:05

5 Dist2c 0 j2*Dist ref ; j2 ¼ 0:6

6 Dist2c 1 j3*Dist ref ; j3 ¼ 1:2

Rating 7 k1 10

8 k2 1=j1

9 k3 1

10 k4 1=j2

11 k5 1=j3
3.5.3. Rating algorithm
The rating metrics for different locations are shown below.

When the point is at location 1, the score is negative. The

larger the distance between the point and its nearest point

Vec2n, the lower the score. The equation can be defined as:

Scoreðp0Þ ¼ � k1*
jVec2nj
Dist ref

(6)

where, k1 is a predefined constant used to adjust the rating.

The study set k1 ¼ 10 so that if jVec2nj=Dist ref is between

0 and 0.1, the score is between �1 and 0.
If the point is at location 2, the score is negative, as shown

in Eq. (7). If the point is further away from the nearest point,

the score is lower. A tolerant distance 1=k2 was set to define

location 2. If the Vec2n is less than � 1
k2
*Dist ref , it was rec-

ognised as location 2 and scored using the equation below:

Scoreðp0Þ ¼ � k2*
jVec2nj
Dist ref

(7)

The score of location 3 is positive because it is a positive

case, which can be expressed as:

Scoreðp0Þ ¼ k3 (8)

where, a constant number k3 ¼ 1 was used to score this case.

The score of location 4e1 is negative, as shown in Eq. (9). If

the point is closer to the centre point, the score is lower

Scoreðp0Þ ¼ � k4*
Dist ref
Dist2c

(9)

Also, the score of location 4e3 is negative, as shown in Eq.

(10). If the point is further away from the centre point, the
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Algorithm 1
Rating for the proposed candidates of the mirrored points.

Fig. 6 e Visible points generation: (a) is to generate

different poses of strawberry; (b) is to generate visible

points from the complete point cloud.
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score is lower. The score of location 4e2 is a positive case, and

its equation is same as Eq. (9).

Scoreðp0Þ ¼ � k5*
Dist2C
Dist ref

(10)

The parameters appearing in section 3.5 are listed inTable 1.

The parameters 1e6 were used for the location identification of

mirrored points. Dist ref , Dist2c and Vec2n are calculated based

on the size of detected strawberry, the distance between

mirrored point and the detected strawberry centre and vector

from mirrored point to nearest point, respectively, as can be

seen in Fig. 5. Dist tol, Dist2c 0 and Dist2c 1are used in location

identification, by comparing with Dist2c and Vec2n, their values

are shown in Table 1, in which Dist tol is a tolerant distance to

define location 2 and it should be a thin region along the

strawberry surface, so j1 is set to 0.05. Dist2c 0 and Dist2c 1 are

the radii of two circles, used to set the boundary of location 4e2,

as shown inFig. 4. The valuesofDist2c 0 andDist2c 1were set to

0.6 and 1.2 of Dist ref and the values were defined according to

the size and shape of strawberry and a few trials during the test.

Parameters k1 to k5 were used as rating adjustment con-

stants, as can be seen from Eq. (6) to Eq. (10). The criteria for

defining these values is to balance the impact of each score on

the overall score. The score of amirrored point was set to 1 if it

is within the reasonable region, while its score was set in the

range of (�1, 0) if it is not in the reasonable region but close to

it. In addition, the score of a pointwas set to less than�1 if it is

considered to be far from the reasonable region. Based on the

above criteria, location 3 and location 4e2 were positive cases

within the reasonable region, then the score for them was set

to the same value k3, which is 1. For location 2, k1 was set to 10

so that when jVec2nj=Dist ref is between 0 and 0.1, the score is

in the range of (�1, 0). k2 was set to 1=j1, so that the score of

location 2 is in the range of (�1, 0), while k4 was set to 1= j2, so

that the rating score of location 4e1 is in the range of (�1, 0).

The value of k5 was set to 1 in this study so that the score

would be smaller than �1.

The rating algorithm for one pointset is shown in

Algorithm 1. The outlined rating flow was applied to every
generated candidate of the mirrored points, to obtain the

scores fS1;S2;…;Sng. for a the candidates P01;P
0
2;…;P0n. The best

candidate is represented by the mirrored points with the

highest average score Sbest ¼ maxfS1; S2; …; Sng. The first

pointset appeared in the array was determined as the optimal

candidate if several pointsets were scored the same.

3.6. Estimation of the 3D position

Based on the proposed shape completion method, a 3D loca-

tion of the target strawberry can be estimated. The range of all

the strawberry points was extracted in three coordinate di-

rections to build up a cube. The position of this cube was used

to represent the strawberry location in the 3D space and was

sent to the robot control system.
4. Evaluationon the reconstructedpoint cloud

4.1. Data preparation from the reconstructed data

The first evaluation was performed on the fully reconstructed

3D strawberry data, which are dense point clouds from 3D

scanning of real strawberries. In this case, the ground truth of

the 3D position of the strawberry could be accurately defined.

The data was kindly provided by He, Harrison, and Li (2017),

who implemented a reconstruction method to obtain point

clouds from various strawberries. The reconstructed point

cloud is dense with more than ten thousand points, which is

unnecessary in a real-time robotic system and, in turn, in-

crease the processing time. To speed up the algorithm, a

down-sampling process was conducted. Six hundred points

were randomly selected from the reconstructed point cloud,

which represents the approximate number of points for one

strawberry from the RGB-D camera, in terms of the machine

vision system in our strawberry harvester.

In a practical table-top scenario, strawberries have

different poses, this may affect the results of shape comple-

tion. Therefore, the down-sampled points were rotated along

the x to generate targets with different poses. The initial po-

sition was set when the axis of strawberry is approximately

parallel to the y axis of the camera. The rotation was
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Fig. 7 e Two examples regarding the visualisation of the results of the reconstructed strawberry data: (a). the reconstructed

dense strawberry point cloud; (b). down-sampled points; (c). the invisible points removed; (d). the visible points with the

best symmetry hypothesis; (e). the completed strawberry points, including visible points and mirrored points.

ground truth (GT)

generated (GR)

overlapping

center of GT

center of GR

center deviation

Fig. 8 e IoU and centre deviation in 3D.
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performed every five degrees, up to 45� degrees, in a clockwise

and anti-clockwise direction. The generation process is

roughly illustrated in Fig. 6 (a). During this process, 19 poses

were generated for each strawberry point cloud, and the data

from ten reconstructed strawberry point clouds were used.

Therefore, the instances to be tested were 190 in total.

After the rotation, the invisible points were removed from

the generated points allowing the remaining points to repre-

sent the visible points from the camera. The method of

generating visible points is shown in Fig. 6 (b). The first step is

to find the two points with the smallest and largest y co-

ordinates in the visible area of the camera. These two points

form a plane that is also perpendicular to the xz plane. The

points in front of the plane are visible to the camera. In this

way, the visible 3D pointswere generated and could be used as

input for the shape completion algorithm.

4.2. Evaluation and results

Figure 7 shows two examples of the data generation processes

(Fig. 7 (b) and (c)) and the shape completion results (Fig. 7 (d)

and (e)). The coordinate system markers in the image show

how the camera perceived the strawberry, where z is the

depth direction. Figure 7 (1) signifies a fruit whose larger side

with calyx can be seen from the camera, while Fig. 7 (2) pre-

sents onewhere the tip side that can be seen from the camera.

The results in Fig. 7 (e) show that themethod can complete the

shape in the correct direction.

The shape completion aimed to estimate the location of

each fruit accurately. The 3D bounding box position was sent

from the machine vision system to the robot control system

(Xiong, Ge, Grimstad, & From, 2020). Therefore, the bounding

box was utilised to determine if the shape completion can

improve the accuracy of fruit localisation. The IoU between

the generated complete points and the ground truth points

was calculated, as well as the IoU between the visible input
points and the ground truth points. The equation can be

expressed as follows:

IoU¼ ovelapping volumn
combined volumn

(12)

where the overlapping volume signifies the volume of the

overlapping cube shown in Fig. 8.

The combined volume is the “ground truth” volume plus

the “generated volume” minus the “overlapping” volume. In

addition to the IoU in 3D, the deviation of the centre of the

bounding box between the ground truth and visible points as

well as the completed shape, was also calculated. These two

measurements are presented in Fig. 8. So far, the data and

metrics for evaluation have been defined, and the evaluation

procedures are now outlined in Algorithm 2.

Figures 9 and 10 show the evaluation results from all the

different angles provided by the strawberries data, from �45�

to þ45�, using box plots. The cross within the box denotes the

mean, while the short linewithin the box signifies themedian.

The length of the box reflects the magnitude of the deviation,

while the maximum and minimum values can also be found

on the boxes. Therefore, the IoUs of the completed points are

larger than those of the visible points while the centre de-

viations of the completed points are smaller than those of the

visible points.
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Algorithm 2
Rating procedure for proposed candidates of mirrored
points.
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The average value of IoU and centre deviation are shown in

Table 2. The IoU between the results and ground truth is 0.77,

and the centre deviation is 6.9 mm, while the IoU and centre

deviation of unprocessed partial points are 0.56 and 14.1 mm.
5. Application in real environment

5.1. System architecture of the machine vision system

Variousmethods have been used by previous researchwork to

obtain the 3D target position for a harvesting robot. The

method presented in this paper used Mask ReCNN process

(He and Gkioxari et al., 2017) for the instance segmentation

and acquired 3D positions through coordinate transformation

(Ge, Xiong, Tenorio et al., 2019). The system architecture of the

detection, segmentation and shape completion is presented in

Fig. 11. As illustrated in Fig. 11, the 3D points of the target

fruits were obtained via camera observation and perception to

facilitate further shape completion.

5.2. Data from the RGB-D camera

An RGB-D camera (D435, Intel, USA) was employed to capture

data, and the subsequent point cloud that is presented in
Fig. 9 e The overall evaluation results of centre deviations ac
Fig. 12 (a), which shows that only the front side of these

strawberries is visible to the camera. Therefore, the shape

completion method was used here to estimate the complete

position of these fruits.

Figure 12 (b) shows four examples of strawberries thatwere

extracted from the visible side of the RGB-D camera.

Furthermore, 30 strawberry instanceswere extracted from the

point cloud and the ground truth of bounding boxes were

manfully annotated.

5.3. Evaluation and results

Figure 13 shows the two examples of visualised input points

from an RGB-D camera and the corresponding completion

results. Figures 13 (a), (b) and (c) show the extracted 3D

points, the points with the optimal hypothesis plane and the

completed points, respectively. In addition, Fig. 14 shows

three examples of the detection and shape completion re-

sults visualised in point cloud with bounding boxes. The

segmented masks of strawberries using Mask ReCNN, as

shown in Fig. 14 (a), were transformed from the image frame

to the RGB camera optical frame, as signified by the black

points in Fig. 14 (d) and (e), while the white points in Fig. 14

(e) represent the points of the other completed part. Fig. 14

(b) and (c) denote the original point cloud from camera, in

which the original strawberry points are visible. The

bounding boxes in Fig. 14 (b)e(e) enclose the whole

competed points.

A test was conducted to evaluate the time requirements of

the completion method. A total of 132 cases were used for the

testing. With the current number of hypotheses, the average

time to execute the completion was 0.26 s with a standard

deviation of 0.01s. Our harvesting system uses static picking

(Xiong, Peng, Grimstad, From, & Isler, 2019, 2020), which

means that the platform stops at certain point until and it

finishes the picking in current image frame. The machine

vision system excluding the completion method take an

average of 0.82 s per image frame (Ge, Xiong, Tenorio et al.,

2019). Therefore, the processing time of one to two seconds

for one image frame is acceptable to our system.
cording to the data derived from the 3D reconstruction.
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Fig. 10 e The overall evaluation results of centre deviations according to the data derived from the 3D reconstruction.

Table 2 e The average evaluation results of pointsets of
strawberry derived from the 3D reconstruction.

Average IoU Average Centre Dev

Input
points

Generated
points

Input
points

Generated
points

0.56 0.77 14.1 mm 6.9 mm
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The IoU of the 3D bounding boxes and the centre deviation

were established by comparing the visible points and

completed points with the ground truth. The ground truths

were manually annotated for all targets. The overall results

are shown in Fig. 15, including mean, deviation, median,

maximum and minimum values. The average results are lis-

ted in Table 3. The IoU between the generated points and

ground truth is 0.61, and the centre deviation is 5.7 mm, while

the IoU and centre deviation of unprocessed partial points are

0.47 and 8.9 mm, respectively.
Fig. 11 e System architecture for shape completion in a real en

Mask ReCNN trained on corresponding fruit data; each of the res

transformed from the image frame to the RGB camera optical fr

which can be further processed by the shape completion meth
5.4. Discussions and limitations

The completion algorithmwas performed after the strawberry

points have been extracted. The pre-processing steps include

strawberry detection, strawberry pixel segmentation and co-

ordinate transformation based on the segmented pixels. The

pixel segmentation and coordinate transformation have been

tested robust enough during the experiments. Detection could

be a problem when an unripe strawberry was detected as a

ripe strawberry, resulting a failure picking. However, we

believe that this problem does not influence the completion

algorithm.

When the point clouds from the camera are accurate, ac-

curate 3D strawberry points could be obtained through coor-

dinate transformation and the clustering method. However,

the strawberry points might be dragged to the front and back

along the depth direction by adjacent objects, such as leaves,

other strawberries, or stems. This results in deformed points.

It can be seen that the results obtained from the 3D
vironment: the RGB image of the fruits is segmented using

ultedmasks represents a target fruit whose coordinates are

ame; then the 3D points of the target fruits are obtained,

od.
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Fig. 12 e Point cloud data: (a) the visualisation of the point cloud data of the table-top strawberries: from the left to right is

normal view (front view), side-front view and side view respectively; (b) four examples of data extracted from the point

cloud: for each example, left is the front view, right is the side view.
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reconstructed data were superior to the data provided by RGB-

D camera, indicating that the reconstructed data are more

accurate, complete, and can represent the actual surface of

the target, while the data from the RGB-D camera may be

deformed due to the limited accuracy of the depth camera.
Fig. 13 e Two examples of visualisation of results according to th

visible points with the best hypothesis of symmetry; (c) complet

points.
Therefore, the completion method requires further improve-

ment by advancing the performance of camera and refining of

surface points.

Occlusions can cause more severe deformation because it

is difficult for the camera to perfectly transition between
e reconstructed strawberry data: (a) extracted 3D points; (b)

ed strawberry points, including visible points and mirrored
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https://doi.org/10.1016/j.biosystemseng.2020.07.003


Fig. 14 e The visualisation of the shape completion results, in which the red, green and blue axes represents x, y and z

directions, respectively and the bounding boxes enclose the completed strawberry points: (a) represents the segmentation

results of strawberries using Mask ReCNN; (b) and (c) represent the front view and side view of the original strawberry point

cloud; (d) and (e) represent the front view and side view of the completed points, including the extracted strawberry point

cloud obtained via segmentation and coordinate transformation, and represented by the black points, as well as the point

cloud of the other half part obtaining from the shape completion, and represented by the white colour.
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objects, therefore may influence the results of completion.

Slight occlusions were included in the experiments, while

severe deformations caused by severe occlusions were not
Fig. 15 e The overall evaluation results of the data from the

RGB-D camera: (a) represents the evaluation results of 3D

IoU on the data from the RGB-D camera; (b) represents the

evaluation results of the centre deviation on the data from

RGB-D camera.
included because severely deformed strawberry point clouds

provide inaccurate location information and therefore, lose

their role in localisation. In addition to using a camera with

better accuracy, future work could investigate the algorithm

to identify severely deformed points so that they can be

skipped in the current image view.

Another factor that affect the results is the strawberry po-

sition pose. As introduced in section 3.1 and can be seen in

Fig. 1 (a), our camera has a front view of strawberry tabletops.

The pose of the strawberries, as seen from the perspective of

the camera, is mostly visible along the long axis of the fruit.

Therefore, the method is only effective in this type of system

setting, where the strawberries are observed along their long

axis.
Table 3 e The average evaluation results of the data from
the RGB-D camera.

Average IoU Average Centre Dev

Input
points

Generated
points

Input
points

Generated
points

0.47 0.61 8.9 mm 5.7 mm
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6. Conclusions

This paper proposed a shape completion method for a

strawberry-harvesting robot for accurate fruit localisation.

Based on the observation that strawberries are symmetrical in

shape, several hypothetical planes were proposed as sym-

metries for shape completion. For every proposed hypothesis

for the symmetric plane, the corresponding mirrored pointset

can be obtained from the visible points. A rating system was

proposed to identify the optimal hypothetical plane of sym-

metry and the corresponding mirrored pointset, based on the

positions of the mirrored points. The entire shape of the

strawberry fruit can be obtained by merging the mirrored

points and the visible points.

The method was evaluated on completely reconstructed

strawberry point clouds and implemented in a strawberry

harvesting robot using an RGB-D camera in a farm setting

where table-top strawberries were grown. The evaluation of

3D IoU showed that the 3D bounding boxes of the completed

points could align with the ground truth by 0.77 and 0.61 for

the reconstructed point cloud and the data from the RGB-D

camera, respectively, while the unprocessed points align

with the ground truth by 0.56 and 0.47 for the reconstructed

point cloud and the data from the RGB-D camera, respec-

tively. Also, using this method, the centre deviations be-

tween the completed points and the ground truth were

6.9 mm and 5.7 mm for the test data generated from recon-

structed point clouds and from the RGB-D camera, respec-

tively, while the ones found between unprocessed points and

the ground truth were 14.1 mm and 8.9 mm, for the test data

generated from reconstructed point clouds and from the

RGB-D camera, respectively. Therefore, the proposed

method presented accurate localisation results for the target

fruits of the strawberry-harvesting robot. Furthermore, we

think the proposed completion method could also be appli-

cable to other fruits with symmetries, such as apples and

oranges.
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