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Abstract

Purpose

Cancer is the second leading cause of death globally and was responsible for an
estimated 9.6 million deaths in 2018 [1]. One of the treatments used to cure
cancer is radiotherapy, where a precise delineation of the cancer is crucial. The
radiation therapy needs to be precise not to damage any surrounding tissues or, in
the worst-case organs. However, the delineation process is both time-consuming
and affected by inter-observer variability. Automating this process will free up
time for the radiologist, fasten the treatment time, and remove the inter-observer
variability.

Theory and Method

Before the machine learning model can assist with medical delineations, it must
perform well. In this thesis, use of U-Net architecture is used to train the model on
CT (Computed Tomography), and PET (Positron Emission Tomography) scans
gathered from the University Hospital in Oslo. The dataset consists of 197 patients
and is divided into three sets; 142 in the training set, 40 in the test, and 15 in
the validation set. New aspects of this research are implementing two types of
image representations, histogram of oriented gradients (HOG) and local binary
pattern (LBP). The U-Net is run on different models using combinations of the
already existing medical images and the new image representations. Several model
parameters have also been tested, such as augmentation, windowing, and the use
of dilated convolutions.

The HOG images are created by using local contrast normalized blocks of his-
tograms of oriented gradients. The different image representations take multiple
parameters into account when created. This thesis has focused on the descriptor
and normalization blocks’ different sizes when creating the HOG images. In con-
trast to earlier work, this thesis uses the image representation of HOG and not its
descriptor vector, which is commonly used in earlier studies.

LBP uses local structural changes to represent each pixel. Different radius sizes
and number of descriptive points have been tested to find the optimal LBP -
parameters.
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Results

The result found that augmentation is vital for a precise delineation, increasing all
the different model’s performance. The results also show that the image repres-
entations perform best when the descriptor blocks and radius are small. HOG is
the best performing of the two image representations. However, they do not beat
the medical images alone (0.666). The highest performance was reached when
combining the medical images and HOG image representation using both the CT
and PET channels (0.675).

Conclusion

The thesis has shown that adding new image representation to the model can im-
prove performance. However, the score has only increased the performance by one
percent, and there is a significant computational cost creating these image repres-
entations. There are still multiple ways to improve the image representations, and
HOGs full potential has not been exploited. This thesis, therefore, leaves room for
numerous future works regarding the usage of the HOGs image representation and
possibilities for implementing other image representations for segmentation tasks.
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Chapter 1

Introduction

1.1 Motivation

There are more than 200 types of cancer [2]. The common denominator is that
some of the body’s cells start to divide without stopping and spreading into sur-
rounding tissues [3]. Cancer is the second leading cause of death globally and was
responsible for an estimated 9.6 million deaths in 2018 [1]. An estimated 300 000
cases of head and neck cancer in 2014 [4]. In 2019, head and neck cancers accounted
for 4% of new cancer cases in the USA [5]. The most significant risks for evolving
cancer in the head and neck region are tobacco use and alcohol consumption [6].

The treatment for head and neck cancer differs, but the main types are medical,
radiation, and surgical. Radiation therapy, also known as radiotherapy destroying
cancer cells by using high-intensity radiation. It can be both the primary and
secondary treatment for head and neck cancer. The treatment could be used after
surgery to destroy the remaining cancer cells, mainly if the tumor is located in a
difficult spot that cannot be removed surgically [3].

1.1.1 Effective delineation using deep learning

Before the treatment of head and neck cancer, an CT/PET scan is taken. The
scan is interpreted by radiologists and further used to remove tumors. This process
is time-consuming, and the demand for radiologists is higher than ever. With an
increasing number of imaging machines, there is also a growing demand to interpret

1



2 CHAPTER 1. INTRODUCTION

images. This makes implementing machine learning to automate the delineation
process both important and exciting. Automating this process may reduce the
radiologist’s load and make the process more efficient so more people can get help.
Before this happens a precise delineation of the tumor is vital.

1.1.2 Implementation of new image representation

To achieve a good delineation of the tumor, the computer must get as much helpful
information as possible, such as the PET/CT images are known to have and is
the reason these images have been used for a long time. This thesis will be trying
to make use of image representations to unlock further information and help the
model see new patterns that might improve the performance of the segmentation.

1.2 Aims of the master thesis

This thesis will focus on radiation therapy and cancer segmentation using ma-
chine learning on medical images (PET-CT). The aims of the thesis are to see if
implementing new image representations such as; histogram of oriented gradients
(HOG) and Local Binary Patterns (LBP) can improve the delineation, and see
what information they bring. This is done by adding them as new channels in the
model both alone as separate channels and together with the medical images.

In Chapter 2, this thesis explains head- and neck cancer and the theory behind
the HOG images. It will also deal with the methods used in machine learning to
predict cancer tumors. Chapter 3 will explain the methodology used before the
results are presented in Chapter 4 and discussed in Chapter 5. Chapters 6 and 7
contain respectively further work and conclusion.

1.3 Previous work

The image representations used are HOG and LBP, both of which have been used
for over a decade. HOG got its breakthrough in Dalal and Triggs Paper in 2005
on detecting standing people in images with almost perfect accuracy. [7], where
a lot of their theory regarding contrast normalization was based on Lowe’s paper
”Distinctive image features from scale-invariant key points” presented in 2004 [8].
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Dalal and Triggs used the HOGs vector output, together a Support vector machine
(SVM) and a sliding window for segmentation purposes, which still is the most
common way to use the HOG descriptor, done by several people after them [9] [7]
[10].

Later a combination of HOG and LBP have been tested, where information from
both the LBP and HOG values were fed into an SVM classifier [10] [11]. Follow-
ing Reddy tested out using the sliding window for image segmentation purposes
[12]. Where there have been tested out numerous different parameters, both the
R-HOG and C-HOG [7] and the segmental-HOG descriptor block [13]. These
descriptor blocks will be discussed in the theory chapter. But the use of the image
representation of HOG is not common.

This thesis will give an overview of how the image representations were imple-
mented and the results of it. The thesis is built on the earlier research by former
students at the Norwegian university of life science (NMBU), where some have
tried out using radiomics for segmentation [14] [15], while others have used U-Net
structures, which has lead to this thesis [16] [17].



4 CHAPTER 1. INTRODUCTION



Chapter 2

Theory

Section 2.1, and 2.2 provide some background on cancer and how the medical
images are constructed. Further, in sections 2.3 and 2.4, the theory behind creating
HOG- and LBP -image representations will be explained. The last sections, 2.5
and 2.6, will present the theory behind the segmentation. Section 2.5 gives an
introduction to deep learning, followed up in section 2.6 by how the convolutional
network works.

2.1 Cancer

Cancers can vary in behavior, how they spread and grow [18]. Some can be found
in a solid form, made up of a mass of tissues, while other types, such as leukemia,
will not have a tangible form. Malignant tumors can spread to other places, while
benign tumors do not spread and are not considered cancer tumors [3].

Our body is continuously changing the cells. New cells replace old and dying cells.
Each cell contains genetic material (DNA). DNA can be described as the recipe
of the cell and controls how it evolves. It tells the cell what types of action it
should perform and how to divide and grow [19]. A genetic mutation occurs if
there is an error in the genetic material. These errors may entail that healthy cells
act differently, and in the worst case, lead to cancer. The most typical genetic
mutation leading to cancer are; allowing for rapid cell-division, failing to stop cell
growth, and making mistakes when repairing DNA errors [19]. If the cells start to
divide uncontrollably, it will lead to an overflow of cells in that area. If this cell

5
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growth is restricted, in a lump, encapsulated, its called a tumor.

The genetic mutations can be inherited from parents or developed independently
on it is own. The majority of cancers are caused by errors in the body’s cell
division, leading to genetic mutations [18]. Throughout blood veins and lymph,
the cancer cells can spread to new places, making the treatment harder [20]. One
of the most common cancers is head and neck cancer.

2.1.1 Head- and neck cancer

Head- and Neck cancer (HNC) makes up around 550,000 annual cases worldwide
each year. It is the 6th leading cancer by incidents and is responsible for approx-
imately 300 000 deaths annually [4]. HNC describes several different cancers in
the head and neck region. The common denominator is that they all are malig-
nant tumors located in the region around the throat, larynx, nose, sinuses, and
mouth [21]. Over 90% of HNC originate from squamous cell carcinomas [4]. The
squamous cell makes up the outer layers of the skin and cancers originating here
can spread further into the body [22]. The squamous cells are the outer part of the
”epithelium”-layer. Cancers started in these cells can often be seen on the skin.

The location of the cancer often tells us what kind of cancer it is. An example
is cancers originating from the buccal mucosa area. These are the cells in the
squamous layer making up the lining of the inner cheeks and the back of the lips,
and it is called ”carcinoma buccal mucosa” [23].

Cancers in the squamous cell layer, that have not spread further, are called ”car-
cinoma in situ”. If the cancer has grown beyond this cell layer an spread deeper
into the body, it is called ”invasive squamous cell carcinoma” (SCC) [24]. The
symptoms can be all from the loosening of teeth to sore throat.

2.1.2 Risk factors and prevention

A risk factor is anything that increases the risk of getting cancer. The terms of risks
are many, but the most prominent factors are age, gender, tobacco- and alcohol
consumption. Men are more likely to get HNCs than women [6]. The different
causes for this are not entirely clear. However, some scientists have presented
hypotheses where lifestyle factors are considered the main reason, while others
believe lower willingness to seek the necessary treatment are more decisive [25].
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Age is a risk factor for many different types of cancer. Cancers including HNCs is
a conseqence of errors in the cell division. This is because with time there comes
the body have done more cell division, an therefore increasing the chance for a
error in the division leading to a cancer [26]. However this research have the last
years been questioned in multiple reports points, some claiming the lifestyle of the
elders and not the necessarily the age [27] [28]. The general denominator for all
the risk factors is increasing the chance for errors and creating a mutation in cell
division mutation.

The most significant factor that can be easily influenced is the consumption of
alcohol and usage of tobacco. The use of tobacco is the single most considerable
risk of cancer and can link to around 85% of the cases [6]. Alcohol consumption
increases the risk for cancer in the region between the mouth and esophagus.
Combining them makes the risk even higher [6]. Other risk factors are prolonged
sun exposure, Human Papillomavirus (HPV), and Epstein Barr Virus (EBV).

2.1.3 Treatments

This section will provide a brief overview of different treatments and present a
detailed description of the term ”standard of care.” The ”standard of care” is the
treatments that are currently state of the art for a specific cancer indication. The
standard of care consists of different therapies depending on the cancer type, size,
and place. The standard treatments are; surgery, radiation therapy, chemotherapy,
and targeted therapy [3]. Surgery removes the tumor and some surrounding tissues
by hand and is applied if the cancer is easily accessible. Radiation therapy uses
a high level of radiation, usually X-rays, but protons or other types of energy
could also be used. The radiation after-effects can last for a long time, which will
keep killing cancer cells up to several months after the intervention. It is applied
when the tumor is hard to access [3]. Target Therapy targets the protein that
controls how a cell grows, divide and spread [29]. Chemotherapy is the last of the
commonly used methods. It involves the use of medication to treat the cancer
[30]. The medicine may also give severe side effects, such as hair loss and reduced
immune system, and others [31]. This thesis will focus on radiation therapy. Here,
it is essential to determine where the tumor’s location, size, and shape.

A team of oncologists analyses various factors that are influential on the treatment,
such as; the tumor’s location, accessibility, cancer type, and whether it could be
treated with radiation, medication, or target therapy. The common denominator
is that the treatments need a precise detection of the specific location and size



8 CHAPTER 2. THEORY

of the tumor. Medical images can obtain this information. PET-CT is the most
commonly used type of medical imaging to acquire this information [32].

2.2 PET and CT -images

PET and CT are the two most used medical imaging techniques to detect cancer.
PET is an abbreviation for Positron Emission Tomography, and CT stands for
Computed Tomography. From these images, it is possible to locate the tumor,
see how large the tumor is, and if the tumor is malignant or not. The images
have been used for over a decade and are still state of the art. The two methods
differ significantly, and combining the images, creates a good understanding of the
tumor’s location [32].

In the last years, new scanners have been introduced that can simultaneously
generate CT and PET scans. These machines have made the imaging process less
time-consuming and can handle more patients than before. Earlier, these were two
separate machines which made it less effective and also more costly [33].

2.2.1 Positron Emission Tomography

Positron Emission Tomography (PET) uses radio-labeled glucose known as tracers.
These tracers could be made from molecules in the body and could be all from
sugar, protein to a hormone. The tracers are designed depending on what part of
the body is being inspected. For the brain, glucose is often used as the radioactive
molecule injected.

The molecule is made radioactive from a biological synthesizer, which makes the
molecule give out positrons for the following hours, so this must be done straight
before the PET scan. The molecules are then injected into the body’s bloodstream.
The tracers are gathered where there is a high number of cell activity going on,
often around a tumor.

When the positron is let out, it will fly around in the brain until it crashes into an
electron. These two particles destroy each other, sending two gamma-rays in the
exact opposite directions. When the PET machine detects two gamma rays on
opposite sides, the doctors can calculate the position of the tracers. The gamma
rays are captured in the PET scan by using a ring of Geiger-counters. These
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machines can detect thousands of gamma rays each second. With the help of some
computations, it can get an accurate estimate and an image of where the tracers
are located [34].

After a few hours, the molecules have sent out all the positrons, and the body is
back to the normal state.

2.2.2 Computed Tomography

Computed Tomography (CT) is an X-ray technique. The CT instrument fires a
large number of X-rays into the body. Depending on how many of the X-rays
are absorbed by each tissue, it is possible to tell what tissue it is. Some tissues
like bone and more rigid material in our body absorb more X-rays and will be
shown as a bright pixel in an image; softer tissues tend to absorb less and appear
darker. This may provide information on what type of tissue it is and if something
is unusual. Each image represents a thin slice of the body. They are taken from
multiple different angles. The images are computed to a 3d image [35]. In some
cases, adding a contrast fluid makes room for a higher difference in the intensity
values in the image and possibly easier to detect organs, bones, etc. The three-
dimensional image given out is super detailed. Instead of using a color spectrum
with 256 values, it uses a spectrum that reaches several thousands of different
intensities to visualize the image.

Windowing

The spectrum of color intensities in a CT-SCAN is vast and can range over several
thousand different intensity values. However, it is not always something that is
possible in an image with an 8-bit color spectrum.

It is usually not crucial for cancer detection how much the bone structure absorbs
since most cancer occurs in softer tissues where there is a higher amount of cell
division. When the spectrum is vast, and the intensity change between cancer
tissue and normal tissue can be minor, applying a windowing operation could help.
This operation enhances the part of the spectrum that is of interest and changes
the values outside this part to maximum or minimum in our new spectrum [36].
This means if a spectrum is between 0 and 1000, but the cancer is known to be
in the spectrum range 250-750, a windowing operation can scale up this part and
put the values ≤ 250 to 250 and the values ≥ 750 to 750. Figure 2.1 illustrates



10 CHAPTER 2. THEORY

how windowing works, where the left line represents 250 and the right line 750.

Figure 2.1: Illustration of how windowing creates a new spectrum from a section of
the old one.

2.3 Histogram of Oriented Gradients

The following chapter is inspired by Granheim’s semester assignment, written as
a preparation for this thesis, and can be found in appendix A.

2.3.1 Overview of Method

One of the image representations presented in this paper is the Histogram of Ori-
ented Gradients (HOG). This section gives an overview of the theory behind man-
ufacturing the HOG images. It will go through each step of the creation separately.
The idea involves using locally contrast normalized blocks in a dense grid of ori-
ented gradients. The oriented gradients are calculated from edge-detection filters
and are then placed into a histogram that compresses the data.

HOG-images have been used for over a decade, used for fast image segmentation
tasks such as self driving cars and facial recognition. The method got its break-
through in 2005 after Dalal and Triggs used HOG and a sliding window to detect
standing people in images with almost perfect accuracy [7]. After this, it has been
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frequently used in face detection and application where a fast decision is crucial,
such as self-driving cars.

HOG transforms the image to a descriptor vector, capturing the entire vectors
information. This vector can be fed into a classifier, such as the Support Vector
Machines. Which is the same as Dalal and Triggs used back in 2005 [7]. This
thesis will use the vector’s image representation as an input channel in the U-Net
model, which will be explained later in this chapter.

A digital image is created by several pixels placed in a grid-like structure. Each
pixel contains information about what color and light intensity lies in that specific
pixel. A black and white image uses only one number to represent each pixel. The
number reaches between zero and 255. Where zero means the pixel is black, and
255 is white, the rest represents the range of grey levels. In this thesis, all images
can be assumed to be digital.

To define a colored image, each pixel would be represented by multiple channels.
These channels combined represent a color given from a color map, the most
frequently used color map is RGB, using red, green, and blue to represent all colors.
An RGB image is usually made up of 3 channels, where each channel represents
one of the mentioned colors. However, there are other color maps where there can
be used other color combinations to represent the images. Sometimes there is also
added an extra channel to identify the intensity of the color.

PET and CT scans create one channeled images (Black and White), which will be
used as the starting image for creating HOG. With a colored image, HOG would
look at the highest number in each pixel and treat it as a one-channeled image.
Merging the CT and PET scans down to one channel is not wanted, so for the
next chapters, it is assumed that the functions are applied on them separately and
they are both handled as one-channeled images.

2.3.2 Edge detection

The largest amount of information is usually gathered around the edges of an
image. From edges, it is possible to identify objects’ shapes and sizes and capture
a sense of the texture in the material. An edge operation simplifies an image down
to its edges. This can remove wanted information, but also potentially remove
unnecessary noise, and capture the vital parts of an image. There are several edge
detections that can be used. The one used in this thesis is a simplified Sobel filter.
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Sobel filter

The edge detector used in this thesis is a variant of the Sobel filter. The Sobel
filter is a simple matrix that iterates over the image, calculating the edges in both
horizontal and vertical directions in two steps, with the eight neighboring pixels
help. The Sobel filter uses a 3x3 matrix that iterates over the image, calculating
the gradients of the central pixels. The most common Sobel filters are:

For horizontal calculation:




1 1 1

0 0 0

−1 −1 −1







1 2 1

0 0 0

−1 −2 −1




For vertical calculation:



−1 0 1

−2 0 2

−1 0 1






−1 0 1

−1 0 1

−1 0 1




The Sobel filter iterates over the pixels covering the entire image. If the change
is prominent in the horizontal or vertical direction, the respective filters will give
a significant value. The output is provided into two new matrices, one matrix for
the horizontal edges and one for the vertical edges.

The difference between the two examples above is that the right side values the
corner pixels the same as the closest pixels. In contrast, the right side’s filters
value the nearest pixels two times more than the corner pixels.

The last one, is a simplified version. It uses a 1x3 and 3x1 filter instead, making
the computational cost less. This means that it only looks at the X-axis’s closest
pixels when calculating the horizontal edges and the Y-axis pixels when calculating
the vertical edges.

The simplified sobel filter:
[
1 0 −1

]



1

0

−1




After running these two filters you are left with two new matrices that represent
the edges in the horizontal and vertical directions.
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2.3.3 Creation of Gradients

Two matrices are given from the edge detection, one for the horizontal edges and
the other for the vertical edges. The edges’ magnitude is provided by the size of
the color/intensity-change in the filter; however, only two directions are calculated.
It is possible to combine these to matrices using simple trigonometry to calculate
each pixel gradient’s magnitude and direction.

Using arctangent and the vertical and horizontal magnitude, you can calculate the
direction of the edge for each pixel by:

Θ = arctan(
Gy

Gx

) (2.1)

With Pythagoras’s Theorem, you can calculate the total magnitude G by:

G =
√
G2

x +G2
y (2.2)

Here Gy is the magnitude of the edge in the vertical direction, and Gx is the
magnitude of the edge in the horizontal direction, both are given from the Sobel
filter.

The new information is transformed into two new matrices; one magnitude and
one orientation matrix. An example is visualized in Figure 2.2

Figure 2.2: The figure shows how the image magnitude and orientation function is
created, starting with finding the vertical and horizontal edges, these two matrices are
combined to find the orientation and magnitude of each pixel
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2.3.4 Creation of histogram

From the magnitude and gradient matrices, it is possible to divide the data into
histograms. This is done in several ways, but all of them distribute the magnitude
values into bins corresponding to their orientations.

The first factor when creating the histograms is how each orientation in the bin
is represented. Creating a 360 bin histogram will make one bin for each degree.
This has been tried out but has shown to give almost the same result, with an
increase in computational cost [7]. Later research from Dalal and Triggs found
a small increase in performance when using signed gradients on detection of e.g.
cars and motorbikes. Dividing the orientation into larger bin sizes has proven to
give better results [7]. The most used bin size is 20 degrees in each bin. This
makes 18 bins if you use a signed spectral with 360 degrees or nine bins if you are
using unsigned degrees. Unsigned degrees use 180-degree spectral and negative
magnitudes to represent the last 180 degrees.

The magnitude is placed into the bin where the orientation fits the most. If the
orientation is between two of the containers, the magnitude is divided into two.
How much of the magnitude that goes to which of the bins is determined by how
close the orientation was to the bins. If the direction were located precisely in the
middle of the bins, the magnitude would be divided 50/50 between them. Figure
2.3 shows an example of how the magnitude is distributed.

This operation compresses the image a lot. Compressing the image down to only
9 or 18 values makes little sense. Since so much of the data will be lost if one tries
to capture the essence in 9 values. Therefore the image is divided into blocks and
creating multiple histograms. This will still compress the image, however, it will
leave room for capturing more of the information. The size of these blocks varies
depending on how detailed the image should be. Standard values are dividing 8x8
blocks into nine bin-histograms [37].
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Figure 2.3: Orientation and magnitude matrix to vector, the red lines shows how a
magnitude is directly placed into a bin if the orientation is in the middle of the bin. The
blue line shows an example of how the magnitude is divided if the orientation is exactly
in the middle of two bins.
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Figure 2.4: A visualization of how one descriptor blocks HOG histogram can be seen
after the vector is created.
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2.3.5 Descriptor blocks

The edge gradients in an image can be transparent or stretch over multiple pixels.
These scenarios are essential to catch and gather the most amount of information
in the shot possible. This is also why a contrast normalization across multiple
histogram blocks has proven to give the best results. Which descriptor block used,
decides what blocks, and how many that is taken into the contrast normalization.
The normalization process will be explained in the next section. There have mainly
been tested out two different descriptor block shapes on HOG, the R-HOG and
the C-HOG.

It is possible to choose a step length on the iterating descriptor block so that
each histogram is counted even more times or only once. There are two common
different descriptor blocks sizes; R-HOG and C-HOG.

R-HOG

R-HOG is the most common descriptor block used in the creation of HOG images.
This is also the simplest of the two explained in this thesis. It uses a rectangular
receptive field, which fits very well with the rectangular histogram blocks. The
most common R-HOG uses a three-by-three receptive field. This means that all the
cells gather information from their eight adjacent cells, merging all the cells vectors
down to one large vector for each cell. If there were used a nine bin histogram and
a three-by-three descriptor block each cell would consist of a histogram of 81 bins
after the cross normalization. This large histogram can be seen as a vector, which
will then be normalized.

C-HOG

C-HOG uses a circular receptive field instead of R-HOG’s rectangular. The idea
behind C-HOG is that it only uses the closest pixels. To gather the information
that lies closest to the center pixel, a circle should be used. The distance between
the center and the delimiter of a circle is constant, while the distance between
the center point and the delimiter in the rectangular is not. Here the corners are
the furthest away from the center, while the middle point on the long sides is the
closest.

Dalal and Triggs tested this idea [7], however they did not reach as good a score
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as with R-HOG.

Figure 2.5: A visualisation of how a vector with illustration of histogram could look
after using a normalization block, covering three block. Here all of the three blocks
histograms are identical, which is usually not the case.

2.3.6 Normalization in HOG

There can be used different normalizations in HOG. The four most commonly
used methods are offspring from the L1 and L2 regularization. These are the same
methods implemented in the SciKit-HOG function package and what is frequently
tested out when researching this subject [7] [37].

The concept of normalization is to re-scale the values down to the same scale. Usu-
ally this scale is between zero and one. There are multiple reasons for normalizing
the data, most important for the machine learning is that the values are easily
comparable and that they match the weight initialisation. This will save run-time
and epoch by avoiding that the weights have to learn the class imbalance first.
An other important thing is that the gradients in the image is sensitive for the
overall lighting. For instance, dividing all the intensity values by two, the image
will get darker and the gradients will change by half. Ideally the histogram is not
affected by the background lighting, and the descriptor is independent. Normal-
ization helps to achieve this. With a high span in values, it can be challenging to
weigh them correctly. This is because the higher values easily can be more strongly
weighted. How you want to re-scale them is different depending on what normal-
ization and regularization used. The common denominator is that they find the
total vector sum and divide each value by it. The total weight varies depending
on the ”penalty” that is added. The most commonly used is L2-norm.
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The bins in the histogram result in the vector. The size of the normalization
blocks tells us how many of the histogram that goes into making one vector. With
a 3-by-3 descriptor block and a nine bin histogram, we would end up with a vector
”W” with 81 elements(3x3x9). A figure with a three structured normalization
block can be seen in Figure 2.5.

This vector then adds a normalization parameter before it gets normalized. What
is common for all of the methods is that they add a penalty term ε to the vectors
sum, and divide each element in the original vector with this sum. Vector Wj is
the original vector W with the added the penalty ε.

Wj = W + ε = [W0,W1, ...,WN , ε] (2.3)

L2 uses the squared value when calculating the sum of the vector. However the
related L1-approach uses the absolute value instead.

Definition 2.3.1. Definition of L1 norm and L2 norm

L2 : ‖Wj‖2 =

√√√√
m∑

j=1

W2
j (2.4)

L1 : ‖Wj‖1 =
m∑

j=1

|Wj| (2.5)

In these functions ‖Wj‖2 is the sum using the L2-normalisation, ‖Wj‖1 is the
sum using the L1-normalisation.

The normalized vector is then calculated by taking the original vector and dividing
it by the sum of Wj.
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Definition 2.3.2.

L2 : WN =
W

‖Wj‖2
(2.6)

L1 : WN =
W

‖Wj‖1
(2.7)

The normalized vector WN , is calculated by taking the original output-vector
W and dividing it by the sum. The sum is given from the calculation in
definition 2.3.1 depending on what normalization used, where ‖W‖2 is the L2s
sum and ‖W‖1 is L1s.

The main difference between these are that the L1 penalty can tend to place the
weights closer to the end of the specter, while the round penalty term L2 is better
at keeping the features. The other two outsprings from these methods are the
L1-sqrt and L2-Hys -normalization.

L2-Hys is the second method and uses the same normalization as L2 but limits
the maximum values to not be higher than 0.2.

Definition 2.3.3. Definition of L1-sqrt, using the same as L1 but adding a
square root.

W =

√
W

‖Wj‖1
(2.8)

2.3.7 Creation of vector

From the normalization, multiple larger histograms are created. How large these
histograms are depend on numerous factors, the most important: the size of the
bins, descriptor blocks and the normalization blocks. The values can be folded out,
creating a long array of numbers representing the image, then further fed into an
machine learning model such as a support vector machine. This is what is mainly
used in earlier researches regarding HOG [7]. This thesis will not use the vector
but an image representation of the vectors.
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2.3.8 Creation of image

Each histogram consists of several bins. Each bin has an orientation and a value
representing the magnitude. From these two numbers, a pixel representation of the
star-histogram can be presented. In the star-histogram, each bin will be rotated in
the same orientation that it corresponds to, and the length of the bin is dependent
on the magnitude: the higher the magnitude, the longer the bin.

Figure 2.6: A figure showcasing the process of creating one of the star histograms in
HOG, without the use of a normalization block

One star histogram will be made for every block in the image. The image repres-
entation is then made by adding all the star histograms to a black surface in their
respective places. The process can be seen in the end of the HOG template shown
in Figure 2.6. The figure shows how the image is divided into cells of 3x3 pixels,
creating the magnitude and orientation matrices. Thereafter the vector is calcu-
lated, before showing the image representations of the star histogram for the same
grid like structure it was divided in at the beginning of the process. The figure
does not show the normalization process which would take place after placing the
magnitude into bins.

2.4 Local Binary Pattern

Local binary pattern (LBP) is the second image representation used in this master
thesis. It has been frequently used in face detection earlier and has made room
for the algorithm to find new patterns. This method is often seen as a method to
study local properties in an image and identify these parts’ characteristics [38].
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2.4.1 Overview of the method

The concept behind LBP is to describe the neighboring pixel using binary codes
[38]. LBP creates a new value for each pixel. The value is generated by creating
a binary vector combining the center cell with its surrounding eight neighboring
cells. The vector is generated using a threshold function, where the center value
is set as the threshold and compared with its surrounding pixels.

2.4.2 Creation of the Binary vector

Figure 2.7: LBP-template, here the yellow pixel is the center pixel (CP) and the red
box marks the neighbouring pixels (NP), the second image shows the neighbouring values
after threshold the image, before the output is shown in the last part.

First, it will look into a section of the image to see what is being gathered. From
Figure 2.7, the yellow pixel is being calculated, and the red box marks the neigh-
boring pixels. The threshold is set to the center pixels value, in this case, 28. The
middle matrix shows the image after the threshold, where the values above the
center value are set to one and the values below zero. The number is then put
into a vector gathered in a counter-clockwise direction. With the pixel to the right
being the first. This order can also be changed, as long as it is the same order for
the entire picture. In this example, the vector would be: [1, 1, 1, 1, 0, 0, 1, 0]
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2.4.3 From vector to number

The vector is transformed as if it were in the binary system to the decimal system.
Here the first number in the vector is multiplied by 20, the second with 21, and so
on until the last digit with 27. The LBP equation can be seen as:

C(x) =

{
1, if x ≥ 0

0, if x < 0
(2.9)

C gives out 1 or 0 depending on the difference between the center value and
neighboring values.

LBP (CP,NP ) =
P−1∑

p=0

C(NP − CP )× 2p (2.10)

Here CP is the Center pixels value/threshold, the NP is the neighbor pixels, and C
is the function 2.9 seen above. This output will represent the center value. Then
it will iterate over the entire picture, calculating the LBP values for all the pixels.

For the example given above the calculation would be:

LBP = 20∗1+21∗1+22∗1+23∗1+24∗0+25∗0+26∗1+27∗0 = 1+2+4+8+64 = 79
(2.11)

Figure 2.8: LBP-texture analysis, here the neighbouring values are drawn black or
white depending on whether they are above the threshold or not.

How the LBP numbers can show information is visualized in Figure 2.8. These
patterns are represented by a number, which can decide whether it is a corner, a
spot, or line end, etc. Together with the rest of the image, this information can
give a way of visualizing and hopefully find new patterns in the data.
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2.4.4 Different parameters

Two main components can be tweaked when working with the LBP function.
These are the number of neighboring points (P) and the radius (R) from the center
value to the adjacent pixel. Figure 2.9 explains where the neighboring pixels would
have been located depending on what parameter values were used.

Figure 2.9: LBP-experimental setups, here it can be seen how the radius (R) and the
number of points (P) affect the LBP setup.

The images created from the medical images are then fed into a machine learning
algorithm which will try to exploit new patterns in the data set and make the best
possible cancer segmentation. How the patterns are found will be explained in the
next two subchapters.

2.5 Deep Learning

The term Artificial intelligence, known as AI, is defined in many different ways.
One of the term’s founders, John McCarthy defined it as ”the science and engin-
eering of making intelligent machines [39].” It refers to all types of simulations that
mimic human intelligence. Machine Learning, known as ML, is considered a subset
of artificial intelligence and refers to the concept that computers can learn and ad-
apt to new data without human assistance. This thesis uses deep learning, known
as DL, which again is a subset of machine learning. DL is a set of algorithms,
often referred to as a deep artificial neural network [40]. DL uses deeper neural
networks while ML usually uses more classic model-based heuristic methods for
pattern detection and prediction. DL contains a more complex structure with a
deeper network, containing a higher number of trainable parameters.
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Simple Neural Network

Figure 2.10: Example of a neural network diagram structure, showcasing which parts
of the network are involved in the computations of one node.

2.5.1 Introduction to deep artificial neural networks

Neural networks are built up of three main types of layers; an input layer, hidden
layers, and an output layer. These layers are used to mimic the human brain. The
input layer takes in the information given, passing it on to the hidden layers to
train up different scenarios before the output layer provides us with a prediction.
Each layer contains nodes that hold the information and make room for finding
combinations in the data. In Figure 2.10, a diagram of a simple neural network is
presented. The figure starts with an input layer containing four nodes, where the
top node is the ”bias node.” The input layer then goes into a hidden layer. The
hidden layer has three nodes, including the bias node. It ends with the output
layer, where the number of nodes represents the number of possible outcomes and
is therefore called the output layer. There is some computations between each of
the layers to generate as much information as possible. The lines in the diagram
represent the weights between each layer. The neural network’s purpose is to find
the combination of weights that give the best possible prediction.
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Artificial Neuron

Figure 2.11: Example of a artificial neuron, this figure represent the red markings in
Figure 2.10

The data fed into the computer is the starting information in the node and will
be called L. Here x0, x1, x2, x3 will represent the four nodes in the input layer. x0
is called the bias and is not gathered from our data, but is added in all layers.
The bias allows for the activation function to be shifted in one direction or the
other. This will help move the decision boundary and make it possible to change
the boundary away from the origin, which it could not have done without the bias.
The rest of the input nodes are given from our data.

Each of the nodes has weights w corresponding to them, these weights are the
trainable parameters that is being optimised to get the model to perform as good
as possible. The optimising of the weights happens during the back propagation,
explained later in this chapter. The weights are used to calculate the next layers
input. The input layer L, and the transposed weights wT could be written as:
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wT =
[
w0 w1 w2 w3

]
and L =




x0

x1

x2

x3




Each node is calculated by summing these two matrices as follows:

z = w0 · x0 + w1 · x1 + w2 · x2 + w3 · x3 = wT · L (2.12)

A visualization of this calculation can be seen in Figure 2.11, and what parts of
the network going into one calculation marked red in Figure 2.10.

The sum is fed into an activation function (φ(z)), which will add non-linearity
to the network. Activation functions will be explained later in this chapter. The
activation will give us an output that will be used as input in one of the following
layer nodes. This process is marked in red in figure 2.10. The process will be done
for both of the bottom nodes in the hidden layer, and a new bias is added to the
hidden layer before the same calculation from the hidden layer to the output layer
is computed [41].

The previous example shows how one of the nodes in the next layer is computed.
For the rest of this thesis, all of the nodes in the next layer will be calculated at the
same time, combining all the matrices in one larger matrix calculation. A formula
can be seen below, where the bias is not implemented as x0 it is added separately,
both ways can be used to describe the calculation.

φ(wT · L) = φ(z) (2.13)

φ
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
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
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...
...

...
. . .

...
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·


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x1
...

xn





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= φ


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
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z1

z2
...

zn







(2.14)

Here z represents the nodes in the next layer, where Z1 is the first, Z2 the second,
and so on... x1 and x2 are the first and second node in the current layer. X0

represents the bias, and w00, ..., w0n its weights. φ(..) is the activation function.
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2.5.2 Activation functions

An activation function is added to the end of each layers calculation, deciding the
next layers input. It takes the information from the previous layer and decides
what to forward into the next layer’s nodes. One of the most significant points
of having an activation function is that it adds a non-linearity to the network,
allowing the network to learn much more complex tasks. Converting z too different
functions, using the non linear functions. Without the activation functions, the
entire network could be refactored down to a simple linear operation. How the
activation functions add that non-linearity depends on the activation functions.
They have distinct advantages and disadvantages. In this thesis there are mainly
focuses on two activation functions; the Rectified Linear Units function (ReLU)
and the sigmoid activation function.

Sigmoid

Definition 2.5.1. Sigmoid activation function definition [42] [43]:

φsigmoid(z) =
1

1 + exp(−z)
(2.15)

Definition 2.5.2. Derived sigmoid activation function definition:

dφsig

dz
=

exp(−z)

(1 + exp(−z))2
(2.16)

The sigmoid function is a smooth, continuous, S-shaped function. Making both
the sigmoid function and its derived continuously differential. This makes the
computation simpler which can help in the back-propagation, explained later in
the chapter. The function and its derivative can be seen in figure 2.12.

When training the weights, the derivative of the activation function is used. This
makes it possible to encounter what is known as the vanishing gradient problem
when the derivative function is small. The vanishing gradient problem occurs
during the back-propagation, which will be discussed later [44]. Many algorithms
have started to use activation functions where the derived function does not set to
approximately zero to avoid this problem.
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Figure 2.12: In red is the Sigmoid activation function, and its derived function in
orange

Rectified Linear Units

The last activation function used is Rectified Linear Units, also known as ReLU.
It is the most used activation function in machine learning [45]. And is only used
in the hidden layers of neural networks.

Definition 2.5.3. ReLUs definition [42][46]:

φReLU(z) = max(0, z) (2.17)

Definition 2.5.4. ReLUs derived activation function:

dφ(z)

dz
=

{
0, for z < 0

1, for z ≥ 0
(2.18)
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Rectified Linear Units activation function

Figure 2.13: ReLU activation function, with its derivate

ReLU is also a non-linear function but it is better suited for back-propagating than
the sigmoid (or tanh) activation functions. It was found to increase the learning
rate of the weights compared to many of the S-shaped activation functions. The
problem with the S-shaped activation functions, such as sigmoid is that it derivate
of the function almost go to zero when Z is either really large or small. The derivate
is used in the back-propagation, training the weights, and this can lead to dead
neurons, where the weights do not improve or update. The ReLU derivate is one
for all z-values above zero, solving this problem.

The disadvantage of using ReLU is that it is not differentiable at zero. The func-
tion is unbounded. The dead neuron caused by values below zero can lead to
the neurons not getting updated during the backpropagation. This is called the
dying ReLU problem [46]. The dead neurons can be avoided by using a reduced
learning rate and a bias, or using an offspring of the ReLU function such as the
”leaky ReLU” [47]. Leaky ReLU is an outspring from the ReLU. Instead of setting
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values to zero, it adds a mild slope on the negative values of z, keeping the same
advantages as ReLU but being updated in the backpropagation. The disadvantage
is that it lets large negative values still affect the predictions.

2.5.3 Loss functions

The loss function tells us how far the predicted output is from the base truth.
There are different ways to compute the loss, and therefore multiple loss functions.
Some of the most common ones are using the mean absolute error (MAE) or the
root means squared error (RMSE) [42]. It is possible to add in regularization
similar to the normalization in the HOG chapter to generalize the data. The cost
function gives the sum across several samples from the loss functions. The target
is to minimize the cost function since this will give the lowest sum of errors. This
is done by using the cost function gradient to find its minimum using gradient
descent.
The function for the root mean squared error is:
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Figure 2.14: Loss functions, where the square loss is marked in red and the absolute
loss in blue. Showing how the loss is calculated depending on far the prediction is from
the ground truth.

J(w) =

√∑
n(y(n) − φ(z)(n))2

N
(2.19)

Here J(w) is the cost function, depending on the weights, y is the base truth, φ(z)
is the activation function of the net output, and N is the total number[48].

w := w + ∆w (2.20)

The weight is updated incrementally for each of the epochs in the process.

∆w = −η ∂J
∂wj

(2.21)
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In what direction the weights should be updated is determined by using the neg-
ative cost function gradient. This value will always look for the weight direction
that decreases the cost the most. How much the weights learn for each epoch is
controlled by a learning rate (η). A too big learning rate can lead to ”uncontrolled”
big updates and weights never settling towards a minimum. At the same time, a
too-small weight update can lead to the weights settling too fast and maybe just
finding a local minimum.

This process shows only how one neuron is updated. With multiple layers, the
weights are updated from the output layer of the neural network and working
their way back into the input layer. An example is shown in Figure 2.15. This
is called back-propagation and is how all of the layers get updated in a neural
network [49].

Figure 2.15: A figure visualizing the total process of forward and backward propaga-
tion. The blue arrows symbolizes the forward propagation and thee red arrows the back
propagation
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2.6 Convolutional Neural Network

The convolutional neural network is the most used method for machine learning
on images and has become one of the most used techniques within deep learning
[50]. A convolutional neural network (CNN), also known as ConvNet, is a network
containing the same principles as the deep neural network, but its architecture
is different. CNN’s are usually used on data with a grid-like topology, such as a
digital image. It then uses convolutional matrix transformations on the pictures
to gather patterns and structures in the image. This matrix transformation is
what characterizes the neural network and where it has its name from. What type
of convolutional transformation used can vary, and the structure in the network
can be varied. CNN’s are usually built up of three main layers; a convolutional
layer, a pooling layer, and a fully connected layer. The critical factor with a
convolutional network is that the convolutions make it possible to catch up on the
spatial relationship between pixels/data [51], making up an image. This chapter
will introduce the matrix transformations used in the different layers, how they
are used, and the network structure. For this thesis, CNN will be used as semantic
segmentation. Meaning it will label each pixel in the image.

Convolutional Neural Network

Figure 2.16: Example of a Convolutional neural network diagram structure created by
LeNail visualization tool, 2019 [52] [53]
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In this thesis, multiple images will serve as input to the model. A multidimensional
image contains multiple layers of information. These data structures will be called
”tensors.” A tensor represents a multidimensional vector space that can hold in-
formation about both the image shape, which is the pixel-height × pixel-width,
and the number of layers/dimensions. An image containing four layers, with the
image height equal to 100 pixels and width equal to 200 pixels, can be written as
a tensor with the shape (100, 200, 4). All of the images are digital images and will
be called images for the rest of the thesis.

There are three main types of layers in the convolutional network; i) the convo-
lutional layer, holds the weights of the filter and are responsible for learning the
patterns; ii) the pooling layer; responsible for smoothing or sharpening of the im-
age; and iii) the fully connected layer; which is often used in the end to make
a prediction. In this thesis there is not used a fully connected layer in the end,
instead, the data are transposed back to their original shape.

The neurons in a CNN have their weights built differently from the models dis-
cussed in the deep learning chapter. This is to capture the distance between
the pixels and reduce the total number of trainable parameters, so the computa-
tional less expensive. Instead of putting the weights into an array, they are placed
in a matrix and uses convolutions transformations to catch the changes in the
data. This can be followed by a pooling layer, which uses a form of non-linear
down-sampling, progressively reducing the spatial size of the representation, thus
reducing the computation and parameters in the network.

Between the convolutional layer and the pooling layer, there is an activation func-
tion. The activation functions used in this thesis are the ReLU and Sigmoid,
which are explained in the previous chapter. The models contain multiple layers
with convolutions and pooling. Adding more layers makes the network deeper and
detects more complex patterns in the data, making room for over-fitting.

2.6.1 Filter operations

Before the layers are explained, the thesis will take a look into the filter operations
that can be used before the CNN. They are usually used for image sharpening,
image smoothing, edge detection, and generally enhancing the image [54]. This
is done using an iterating filter. This filter iterates over the image and performs
a matrix transformation creating a new image. What features get enhanced or
smoothed out depends on what type of filter that iterates over the image. This
type of filter operation can be compared to the calculation of HOG gradients,
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explained earlier in this chapter. The iterating filter can be thought of as a sliding
window, sliding over the image and taking the dot product between the sliding
window and the values under it.

Figure 2.18 shows one step of the calculation. The function in the figure can do
multiple different operations depending on the size of the different weights in the
filter. If you choose a filter like the one in the HOG chapter, you will enhance the
edges in the image. An example of these filter types can be seen to the left in the
figure below. These filters are called Sobel filters and are used in edge detection
[54]. The same is done for the convolutional layer, however, in the convolutional
layers, the weights are updated in the backpropagation. Which will be explained
later in this chapter.

Figure 2.17: An illustration of different filters used in filter operations, the two furthest
to the left can be used for edge enhancing, while the right one for smoothing out the
image.

The edge detection filter will give a high value if there is a big intensity difference
between the pixels on the opposite sides of the center pixel. This will enhance the
area with high-intensity changes, and therefore enhance the edges since edges can
be seen as intensity changes in an image. The two matrices to the left in the figure
above enhance the edges in their respective direction. If you want the total edge,
you can add the two new matrices created on top of each other.

Another filter operation often used is smoothing. These filters can be seen to the
right in figure 2.17. This filter will take the average of the center pixel and its eight
surrounding neighboring pixels. This will make the image more toned down and
smoothed since the high intensities will get scaled down by their surrounding lower
values. The lower intensities will increase from their higher intensity neighboring
pixels. Creating the span of intensity smaller and also reducing the amount of
noise. After the filter operations, they are fed into the neural network.
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2.6.2 The Convolutional layer

The convolutional layer is essential and is responsible for most of the computational
cost in the network [55]. These layers use a dot product between a matrix with
trainable parameters/weights and the receptive part of the image. The weights
are stored in a grid-shaped order and called the kernel. The kernel moves across
the image, calculating the dot product with each receptive part of the image until
the entire image is calculated. The number of weights is dependent on the rank of
the image and how many parameters there are in one filter.

Figure 2.18: An example of a convolutional calculation, the layer to the left is the
input layer, the middle layer is the filter containing all the weights W1-W9, the output
layer shows the output Q given the formula in the upper-right corner

The kernel matrix contains all the trainable parameters, the weights. These
weights get trained to recognize the image patterns. The kernel matrix iterates
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over the image with the same depth/number of channels as the image. This means
that if you have a filter with the size 3 x 3 and a rank of 4 with a bias, there will
be in total 37 trainable parameters ((3x3) x 4 + 1) for one layer. The calculation
between a rank one image and its weight can be seen in Figure 2.18. After the
convolutional layer, the information is fed through an activation function. In this
thesis, it is used ReLU in the network and a sigmoidal function for the output.
Both are explained earlier in the Deep learning chapter. After the convolutional
layer, the data is fed into a pooling layer.

2.6.3 Downsampling

Pooling layer

The pooling layer is the second and last layer discussed in this thesis and is one of
the building blocks in CNN. The pooling layers task is to reduce the dimensions of
the feature maps [56]. This means that it is trying to summarise the image’s pixel
values in a smaller dimension space. The pooling operation uses the same type of
iteration kernel over the image as the other layers and filter operations. Different
types of pooling operations could be used, but the most common functions are max-
, min-, and mean-pooling. It is possible to run a CNN without using down- and
up-sampling. However, using up and downsampling will reduce the computational
cost. The reason why is visualized and explained in the segmentation chapter.
The reduced computational cost makes it possible to use more layers and deeper
structures and hopefully detect more complex patterns.
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Figure 2.19: A visualization of the three common pooling operations

The pooling iterates over the image. For the max-pooling, the image extracts the
maximum value for each filter operation. Then it iterates to the next value, with
a given stride. The stride decides how close each operation should be to the other.
With a more significant stride, there will be fewer iterations and a bigger down-
scaling. The min-pooling extracts the minimum value for each operation, and the
mean-pooling gathers the mean for each process, as you can see in Figure 2.19.
The size of the image after the down-scaling is given from the definition2.6.1.
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Definition 2.6.1. The output shape of an image after a pooling operation
can be illustrated as:

⌊
(nh − f + 1)

s

⌋
×
⌊

(nw − f + 1)

s

⌋
× nc (2.22)

Here, n is the image, where nh is the height, nw the width and nc the number
of channels. f is the filter size and is assumed to be square, and s is the stride
of the iteration.

The stride, filter size, and padding are what decides the image output shape. The
padding adds information to the edges of the image to control the dimension of the
image and will be explained later in this chapter. The task of down-sampling is to
keep the information while reducing the image. Earlier research has shown that
there can occur discarding of the high-frequency information when down-sampling
[57]. Therefore it is essential to find the best possible way to scale down the data.
A second way is to use dilated kernels.

Dilated Kernel

A dilated kernel increases the size of the filter without increasing the number of
parameters of the filter. The advantage of using a dilated kernel compared with
a pooling layer is the possibility to catch up with new spatial relationships, that
can go over further distances.

Figure 2.20: An illustration of how a dilated kernel can be extracted from a regular
kernel
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Dilated Convolutional process

The process of implementing dilated convolutional process has been used by several
others, including in medical image segmentation [58] The dilation process works in
the same way as the convolutional layer, but here there is added spatial distance
to the weights, shown in figure 2.21. The similarities between the dilation and
convolutional operation can be seen by looking into the computation of the two of
them, shown in the Definition (2.6.2).

Definition 2.6.2. Let F : Z2 → R be a discrete function. Ωr = [−r, r]2 ∪ Z2

and let k : Ωr be a discrete filter of size (2r + 1)2. The discrete convolution
operator ∗ can be defined as [59]:

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t) (2.23)

Here are the following generalization operator for dilation factor, using l as the
dilation factor and l be defined as:

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t) (2.24)

The difference between the computations is the dilated term ”l” is added.

Figure 2.21: An illustration of how a dilated kernel gathers information in an image
with a stride of one and a dilation rate = 2×2
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2.6.4 Upsampling

After using downsampling, an up-sampling has to be used to get the input and
output data on the same form. This needs to be done for the semantic segmenta-
tion, where the task is to label each pixel of the image. For image classification the
output from the downsampling could be flatten and feed into a dense layer. The
downsampling frees up memory, since the convolutional layer works on a smaller
set of the data with fewer parameters for each downsampling, and the computa-
tional cost is reduced.

There are several up-sampling methods. The one used in this thesis is transposed
convolution layer and can also be found under the name ”up convolutions” or
”upconv” but is also often confused with ”deconvolution” in other papers, which
is miss-leading [60]. Deconv refers to when you are trying to recreate the exact
image after the downsampling, which will not leave room for improving the weights.
While the upconv uses convolutions that makes room for learning the weights.

The difference between upsampling and up convolutional layers are that up-sampling
only uses simple operation comparing it to its nearest neighbor. An example can
be seen in the figure below. At the same time, the transposed convolution uses
more convolutions and more computation. The advantage of upsampling is that
it cost less computational power.

Figure 2.22: An illustration of how the upsampling works, where it first doubles the
number of rows then the column, making the matrix 2 times bigger

The convolutional transpose uses both upsampling then convolutional calculations
to get the best estimate when scaling up the data. The upconv adds zero to the
matrix first to get the desired output shape.
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Figure 2.23: An illustration of how the transposed convolutional layer works, here
the green squares are the input information. The rest of the matrix is zeros, to get the
desired output shape. The red square represents the filter and the output matrix is the
output after the transposed convolutional, illustrating the change in dimensions

With this information, it is possible to understand how the structure of the U-Net,
and how the semantic segmentation works.

Figure 2.24: An illustration on how the transpose calculates the output matricies, the
figure uses a padding = one and a stride = (2,2)

The figure above shows how the output image is calculated and how the images
are increased in dimensions.
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2.7 U-Net

2.7.1 Semantic image segmentation

The purpose of semantic segmentation is to label all pixels in an image to the
correct class. This type of prediction can be called a dense prediction. It is crucial
to notice that semantic segmentation does not separate subclass within the class.
For this thesis, it will mean it treats cancers and lymphs as the same class. It will
only detect if the pixel contains cancer/lymph or not, i.e., binary classification.

This type of segmentation is used everywhere, from autonomous self-driven cars
to face detection. To detect pedestrian or to unlock your phone. In this thesis the
segmentation is done using a U-Net.

This convolutional model architecture has the shape of the letter ”U”, because of
the downsampling followed by an upsampling with the help of the skip-connections,
which is the reason it is named ”U-Net.” Figure 2.25 shows an example of the ”U”
shape.

Figure 2.25: The image shows an example of a U-Nets structure [61]
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2.7.2 Skip connections

U-Net is a type of CNN containing both convolutional up and down-scaling, which
characterizes this model. An example of the structure can be seen in Figure 2.25.
The idea that makes the U-Net different from other up and down-scaling models
is that the output mapping is directly dependant on the input space. This means
the up-scaling is dependant on the down-scaling, using a ”skip”-connection.

The skip connection is used to carry information to other parts of the network. The
means the information is not used in the next step, and the information skips on til
another part of the network. Therefore a ”skip connection”. The skip connections
allow for a different path for the gradients. What is special for the U-Net is the
long symmetrical skip connections that can bee seen as the grey arrows from the
encoder side to the decoder side of Figure 2.25.

The purpose of skipping the layers, is to reduce the number of layers to train. This
speeds up the learning, and reduces the chance for a vanishing gradient problem
because of the fewer numbers of layers to back propagate through.
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Chapter 3

Material and Method

The goals of this master thesis are to (I) find out if new image representation
can improve the cancer segmentation and (II) see how the predictions are affected
using them. It was hypothesized that adding more channels could improve the
model and performance because of the more extensive data. This chapter will give
an overview of the approach taken when creating the new image representations,
what type of data, prepossessing, software, and models used.

This chapter will use the same notations and definitions as the ones applied in
Chapter 2.

3.1 Software

In this thesis, different modules and coding languages were implemented. The
scripts are written in Python, which is an open software programming language
available for everyone. The models parameters are stored JSON files. While the
data, models, and predictions are in a hierarchical data format, also known as
hdf5 or h5 -files. Both JSON and H5 files will be explained later in this chapter.
Python contains multiple modules that can easily be integrated and let the system
run more effectively [62]. The Deoxys framework, created by Ngoc Hyuhn, has
been used to run the models [63] [64]. Orion is an external server and has been
used to speed up the processes [65]. Both the Orion and Deoxys will be introduced
in the following sub-chapters.

47
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Scikit-learn, often called sklearn, is an additional package containing many tools
regarding preprocessing and machine learning [66]. Skimage is a separate module,
which enhances the functionalities of sklearn. This module includes the transform-
ation function for both the LBP and HOG [67] [68]. Matplotlib is a library for
creating static, animated, and interactive visualizations in Python [69] and visu-
alizes the different images and models. Numpy and Pandas are used to structure
the data and comparing the models [70] [71]. Following below is a table of versions
of the various modules used for preprocessing the data.

Table 3.1: Table over the different modules versions used in this thesis.

Module Version

Python 3.7.9

Numpy 1.17.0

Pandas 1.1.3

Matplotlib 3.3.2

seaborn 0.11.0

H5py 2.10.0

Sklearn 0.23.2

Skimage 0.17.2

Tensorflow 2.3.1

Keras 2.3.0

3.2 Data-structure

3.2.1 Hierarchical data format 5

All of the data in this thesis is stored in a hierarchical data format. This thesis uses
the fifth version, known as hdf5 or h5. This format can keep huge, complex, and
heterogeneous data. This is done by creating structures within the files, which can
be thought of as a ”file directory.” This leaves room for creating organized designs
from big datasets and is used for storing the dataset, predictions, and models in
this thesis.
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3.2.2 The dataset

The dataset used in this thesis combines CT and PET images and their segment-
ation masks. The data is collected from 197 patients that underwent treatments
at the Norwegian Radium Hospital. The segmentation masks are drawn by radi-
ologists at the hospital and will be used as the target values when predicting.

The data set is split into three groups for deep learning. The three sets are; (I)
a training set, which will train our network; (II) a validation set to validate our
models; and (III) a test set for testing the results from the model [16]. The patients
are grouped as follows:

Table 3.2: The number of patients in each dataset. The same split is used in both Moe
and Hyunh thesis which are using the same dataset [16] [17].

Datasets No. patients

train 142

val 15

test 40

The sub-datasets are organized by dividing the information into four new keys; (I)
input, where the images are stored, (II) target; where the segmentation masks from
the radiologist are stored, (III) patient IDX: contains the patient No., indicating
which person the slice is from, and (IV) slice IDX, indicating which slice from the
number of images taken in a 3d stack of images.

Table 3.3: Overview of the sub-files structure.

Datasets Shape Datatype Content

image [No. images, x, y, c] float32 The input images

target [No. images, x, y, m] float32 The target masks

patient idx [No. images] int32 Patient number

slice idx [No. images] int32 Slice index

This thesis uses multiple different datasets. All of them are combinations of the
images and image representations presented in the theory section. Each of them
follows the same file structure. There have been tested out combinations of the
LBP-data, HOG-data, and MED-data. In this thesis, it is assumed that both
the PET and CT channel is included if it is not specified anything else. This
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means that the ”MED” data will consist of both the medical PET and CT images
(MEDPET and MEDCT). The same is true for the HOG and LBP datasets.

3.3 Deoxys software

This thesis has been using numerous different models. They all have been tested
using the newly developed Deoxys framework, created by Hyunh, as a preparation
for her master and further worked on during her master and doctorate [64] [63]
[17] The goal of Deoxys is to make it possible to run multiple CNN models in
order to find out which model that performs best and use this model further in
the research [63]. The framework is built on Keras [72]. Keras is an open-source
API written in Python and which can easily be integrated into other programming
platforms. Deoxys makes it possible for users to create configuration files, and to
choose their model’s structure. There are multiple parameters that can be changed
in the models structure, such as; loss function, size of the U-Net, number of layers,
and many other hyperparameters, which made it possible to increase the amount
of simulation in this thesis.

It also makes room for creating your own activation functions, loss functions, etc.
Deoxys can be run on both computers but also external GPUs, such as Orion [73].
The minimum software requirement for the Deoxys framework to work correctly
are Python 3.7 and Keras 2.3.0 [17].

3.4 Orion cluster

Orion is a server owned by the Norwegian University of Life Science (NMBU) and
was used in this thesis. The Orion server is a high-performance computing (HPC)
cluster infrastructure available to course participants, master students, doctoral
students, and employees at NMBU [73]. Orion is a SLURM-based Linux cluster
with high specs. It has 580 CPUs, 7 TB RAM, and 550 TB storage space [65]. This
cluster made room for speeding up the simulation process and made the research
run more effectively and efficiently.
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3.5 Preprocessing

This chapter will look into what preprocessing methods are applied before and
after creating the new image representations.

Figure 3.1: A visualization of the preprocessing template.

The medical data were usually not preprocessed before creating new image rep-
resentations. The preprocessing was usually done after creating the dataset and
before entering the model. The only prepossessing tried out before the data cre-
ation was windowing on the medical CT scan. Windowing is explained in chapter
2.2. Windowing enhances the desired spectral of the image, and an example of the
transformation can be seen below.

Figure 3.2: A visualization of before and after the windowing operation is used
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3.6 Creation of the image representations

This thesis has used two new image representations, HOG, and LBP. The creation
of them is explained in the theory chapter. This chapter will define the different
parameters considered when creating the images and how they affect them. The
various parameters in Table 3.4 are for both the creations of the LBP and HOG
image representations.

Table 3.4: An overview of the different parameters taken into consideration creating
the HOG and LBP images.

HOG-parameters standard size

Orientations 9

Pixels Per Cell 8x8

Cells Per Block 3x3

Block Norm L2-Hys

Visualize True

Transform False

Feature Vector True

Multi Channel None

LBP-parameters standard size

radius 2

number of points 16

3.6.1 HOG-Parameters

There are multiple different HOG parameters. Only the first four in the Table 3.4
have been tested out. The last four are choosing what input and output wanted.
(I) the visualization tells us if it should give out the image or not; (II) the trans-
formation tells us if the image input should be normalized before transforming it;
(III) the feature vector tells us if the function should give out the vector, something
which is not necessary when this thesis is only using the image representations. It
has only been used for looking into each of the bins in the histogram.

The last one is (IV) the multi-channel. It tells us whether the input is regarded as
a multi-channel image such as a colored image, or as an image with one channel,
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for instance, a black and white image. If there is a multi-dimensional image as
input, this function will break down the image to a one-channel before running
the HOG function. This is done by taking the highest value from each channel in
their respective position. Our medical data scan consists of two tracks, the PET
and CT. These channels are independent and do not complement each other the
same way a colored image does. Therefore it is not possible to treat the PET/CT
image as a multi channel image. The HOG function is done on each of the channels
separately and then merged afterward.

Orientation

The orientation tells us the number of bins used in each of the histograms, which
will determine how detailed each star histogram is.

Figure 3.3: A representation showing the difference between using 9 and 18 orienta-
tions.

Pixel per cell

The Pixel Per Cell (PPC) parameter decides the size of each descriptor block. This
means, if you have a large PPC, there would be a bigger descriptor block, creating
bigger cells and decreasing the number of star histograms. This is because each
cell contains one histogram. However, with a big descriptor block, there would
be more information going into each of the histograms. An example of these two
scenarios can be seen in Figure 3.4.
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(a) A representation of an image
divided into nine (3x3) descriptor-
blocks.

(b) A representation of an image di-
vided into 64 (8x8) descriptor-blocks.

Figure 3.4: Representation of how the size of the descriptor-blocks change the number
of parameters.

This thesis tests out four different descriptor-blocks sizes; 2x2, 4x4, 8x8, 16x16.

Cells Per Block

Cells Per Block (CPB) controls how many of the surrounding cells are taken into
account when normalizing each block. A cell has the same size as a descriptor-
block seen from the figure above. If the size of CPB is 1x1, it will normalize each
of the cells separately, not taking the neighboring cells into account. Increasing
the CPB will increase the number of histograms/adjacent cells that are taken into
account when normalizing. If you have a nine bin histogram in each cell and a
3x3 CPB, the normalization will use the surrounding eight neighboring cells. The
normalized vector will have a total of 9 × (3x3) parameters, in total 81 different
parameters.
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This parameter will decide how much information from the surrounding cells
should be captured. The different CPB sizes tested out in this thesis are 1x1,
3x3, and 5x5.

Normalization

There are mainly two different normalizations tested out. These are the L2- and
the L2-Hys Normalization. These are explained in Chapter 2.3. Both of them use
a squared penalty term, however L2-Hys sets a cap on the normalization, so it
cannot go higher than 0.2, forcing it not to weigh some values too high.

Dataset-combinations

In total there have been created 12 HOG-datasets that have been run alone and
with the other models.

Table 3.5: An overview of the name and parameters for the different HOG-datasets.

Name Orientation pixel per cell cells per block Block Norm

HOG(3-4) 9 4x4 3x3 L2-Hys

HOG(3-2) 9 2x2 3x3 L2-Hys

HOG(3-2)-L2 9 2x2 3x3 L2

HOG(3-16) 9 16x16 3x3 L2-Hys

HOG(1x2) 9 2x2 1x1 L2-Hys

HOG(1x4) 9 4x4 1x1 L2-Hys

HOG(1x8) 9 8x8 1x1 L2-Hys

HOG(1x16) 9 16x16 1x1 L2-Hys

HOG(5x2) 9 2x2 5x5 L2-Hys

HOG(5x4) 9 4x4 5x5 L2-Hys

HOG(5x8) 9 8x8 5x5 L2-Hys

HOG(5x16) 9 16x16 5x5 L2-Hys

WindowedHOG 9 8x8 3x3 L2-Hys
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3.6.2 LBP-Parameters

There are two parameters tested out creating the LBP image representations in this
thesis. These are the radius, controlling the distance between the center pixel and
its surrounding pixels, and the number of points, controlling how many different
points are taken into each calculation.

Radius and number of points

Figure 3.5: An image to show the different parameters used in LBP, Here R represents
the radius and P the number of points.

The different radiuses used are one and two, which are the most common ones.
Figure 3.5 above shows how the other parameters affect the LBP calculations. The
most common number of points is eight times the radius, which is valid for both
of the two LBP datasets used in this thesis, as can be seen in the following table.

Table 3.6: An overview of the name and parameters in the different LBP datasets.

Name Radius Number of Points

LBP 2 16

LBP1 1 8

3.7 Model Parameters

The primary preprocessing method is augmentation and windowing. Windowing
was run on the medical CT-channel and has been tried out both before and after
creating the new datasets. The theory is explained in Chapter 2.2.
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Data augmentation

Data augmentation creates new slightly modified image representations, using
simple transformations of the data. This makes it possible to create more im-
ages from the same number of data. This gives a regularisation effect reducing
the chance of overfitting. The different methods could be for instance; mirroring
the images, use different zooms, tilt and rotate the original images. The augment-
ations in this thesis consists of multiple factors, but there are mainly used two
different augmentations setups in this thesis. The ”def” augmentation, also called
”A” is provided in a master thesis by earlier master students at NMBU [16][17].
The ”A2” augmentation is provided by one of this year’s master students, Maria
Odegaard, working with the same dataset and optimization of the augmentation.

Table 3.7: A Table showing the different parameters in the two different augmentation
setups

Augmentation Affine Transformations

Name Rotation Zoom Shift Flip

Def(A) 90 [0.8 - 1.2] [10, 10] 0

A2 90 [0.5 - 1.5] [10, 10] 0

Table 3.8: A table showing the different Points and filter operations parameters in the
two augmentation setups

Augmentation Points and filter operations

Name brigthness contrast noise variance noise ch blur range blur ch

Def(A) [0.8 -1.2] [0.7 -1.3] 0,05 1 [0.5 -1.5] 1

A2 NONE

When the numbers are in brackets, it symbolizes the upper and lower limit. It is
then generated images that are rotated with a random angle between 0-90. There
is no difference between the DEF(A) and A2 augmentation regarding the rotation.
The zoom, zooms into the images with a random factor drawn from the zoom
range. The same is done for the other parameters, augmenting more data.
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3.8 Models used for analysis

In this thesis, there were tested out numerous hyperparameters, parameters, and
datasets in the model. Where the augmentation, dilated convolutions, and what
type of dataset used are the most tested. In this thesis, there have been focused
on how the different datasets models perform and compared them against each
other, with a main focus on the HOG dataset and whether it adds a benefit to the
models’ prediction.

All of the data is fed into a model with a U-Net shape and run on the Orion
server to speed up the process with the help of the Deoxys framework Deoxys
makes it possible to choose numerous different model-parameters, for instance,
layer type, loss functions, optimizer, the architecture structure, and the run-time
through the number of epochs. It can also generate architectures. There have
been tested out two types of architectures, one regular seen in the figure below,
and one using dilated kernels, with different dilation rates. The different dilation
rates implemented are a 2x2 dilation, 3x3, and 5x5 dilation rate.

The run time is chosen by the number of iterations. However, it is controlled by
an early stopping function, the early stopping makes it possible to stop the model
earlier if it has not improved over the last number of iteration. The number of
iteration before stopping can be chosen.

3.9 Analysis of the model performance

The performance is measured using dice score or F1-score, which for this thesis
will be the same calculation. In this thesis, the dice score is used to measure the
different models’ performances. Then other statistical methods have been applied
to find a significant change in the data. From the Deoxys framework, both the
dice score per patient and the dice score per slice are given. For measuring the
performance of the model, the average dice per patient is used.

Dice score
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Definition 3.9.1. Definition of dice score:

Dice =
2TP

2TP + FN + FP
(3.1)

Here TP is the True Positive, FN the False Negative, and the FP the False
Positive. The terms are all explained in Figure 3.6.

Figure 3.6: A figure showing what is meant of the different false positive terms. Here
the true positive and negative are marked in green and the false positive and negative
are drawn in red.

The equation takes two times the number of true positives which in this thesis
will mean the correctly predicted cancer pixels. Then it is dividing it by the total
number of predicted cancer pixels added with the total number of actual pixels
containing cancer. This means that if all of the pixels are correctly classified the
dice score will be equal to one (2TP / 2TP), if none is classified correctly the dice
score equals zero (TP = 0).

3.10 Statistical methods

Multiple tests have been used to find out if there is a significant difference between
the performance of models. This thesis looked into the dice score per patient and
the dice score per slice to look for substantial differences in the different datasets.
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First, tests are performed to see if the datasets are normally distributed. The dice
score per patient is the average dice score for all the slices to the patients.

3.10.1 Tests for normality

To test if the data is normally distributed a Q-Q plot is used.

Quantile-quantile-plot

The quantile-quantile plots (Q-Q-plots) helps us visualize if the data is normally
distributed. It tests this by taking the quantiles of your data and plotting it against
the quantiles of a normal distribution. This is done by taking the lowest quantile
of your data and plotting it against the lowest quantile of the normally distributed
data. Then the process is repeated for the second-lowest until the highest quantile
is plotted. If the plot is a straight line, the quantiles for the data follow identical
distributions and are normally distributed.

3.10.2 Parametric tests

The following methods are for testing for a significant difference in results from
various models. They all assume a null hypothesis (H0) that says there is no dif-
ference between the models. Then, tests will be performed to prove a significant
difference between the models. The parametric tests perform mathematical calcu-
lations on datasets assuming the data is normally distributed. One of these tests
is the ANOVA test.

ANOVA

Analysis of variance is also known as ANOVA. ANOVA is used to measure variance
in data. ANOVA tries to see if there is a significant difference between the means
of each dataset. This is done by looking at the ratio of the between-group variance
and the within-group variance.
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3.10.3 Non-parametric tests

Non-parametric tests are used if the data used are not drawn from a particular
distribution, such as a normal distribution. In this thesis, there have been used
multiple non-parametric tests. This section looks into different tests, how the math
is calculated, and the difference between them. Some differences are that some
tests can use multiple datasets, while others are for separating two datasets. The
tests are done in python using the Scipy module.

Wilcoxons test

Since the data used in the different datasets are from the same patients, ”matched
pair”, it is possible to use the Wilcoxon signed-rank test. The test looks at the
difference between the data and ranks them in order of their difference. This means
that the highest differences are weighed the most. After this, all of the ranks get
signed depending on if the difference is negative or positive. With the help of a
table of critical values for Wilcoxon’s Ranks Test and the number of samples (n)
it is possible to determine if there is a significant difference. If the sample size is
considerable, it could be approximated with z in a normal distribution table and
read out if the difference is significant.

Definition 3.10.1. A definition is used to calculate the Z-Score when the
sample size is large and can then use a standard table for z -score.

Z =

∣∣T − 1
4
n(n+ 1)

∣∣
√

n(n+1)(2n+1)
24

(3.2)

Here n is the sample size, and T is the sum of the different ranks.

Mann-Whitney U test

Mann-Whitney U test, also known as Wilcoxon Rank Sum test, uses the same
principles as the previous method. This method ranks the data depending on the
size of the dice score. So the lowest dice scores are valued the smallest, while the
highest the most. The test can also handle differences in sample size between the
sets, but there will be the same size for all tests in this test. The sums of each
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class are then calculated and compared using a Wilcoxon rank-sum test, which
will give out the values that it has to be above to see a significant change in the
data.

Definition 3.10.2. A definition used to calculate the Z-Score when the sample
size is significant, using a normal distribution table for the Mann-Whitney U
Test.

E(T1) =
1

2
n1(n1 + n2 + 1) (3.3)

Z =
|T1 − E(T1)|√
n1n2(n1+n2+1)

12

(3.4)

Here T is the sum of the ranks, E(T) is the function taking the sample size
of both groups into account, n1 and n2 is the sample size for their respective
groups.

The common denominator for these two functions is that they use ranked data.
The Wilcoxon rank is given from the difference in performance, while the Mann-
Whitney is provided from the actual dice-score. Then the sum of the different
classes is used in their respective tables. If the sample size is too large for the
tables, for instance, the normal distribution can be used when using the dice per
slice. They can also only be used to compare a maximum of two datasets. The
following method handles several datasets at once.

Kruskal Wallis H test

Kruskal Wallis uses the rank of the datasets, ranking the lowest to the highest.
Then it calculates the value H given from the following definition and compares it
in the Kruskal Wallis table depending on the number of degrees of freedom.
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Definition 3.10.3. Kruskal Wallis definition:

H =
12

N(N + 1)
(

N∑

n=i

T 2
i

ni

)− 3(N + 1) (3.5)

H is the Kruskal Wallis number. N is the total number of samples, n is the
number of samples within each group, and T is the sum of the ranks within
each group.

Friedman’s test

Friedman does also used ordinal/ranked data. But it ranks each row separately.
An example, if you have a row that is [23, 43, 12], the ranked column would now
be [2, 3, 1]. This is done for all of the rows. A difference to the Kruskal Wallis
definition is that Friedman has to have the same number of samples within each
group.

Definition 3.10.4. Friedman test definition:

H =
12

nk(k + 1)
(
∑

T 2
i − 3n(k + 1)) (3.6)

Here H is the output measured against the table, n is the number of samples
in the groups, k is the number of groups, and T is the sum for each of the
groups.

Both of the H values from the Kruskal Wallis test and Friedman are compared in
a table to find significance using the degrees of freedom and alpha. Alpha controls
how sure you want to be, the level of significance. Comparing your calculated
score with the score from the table, it is possible to see if you can discard the null
hypothesis, with a decided level of significance. The degrees of freedom (df) is
calculated by taking the number of groups minus one; df = k-1.
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Chapter 4

Results

These tests are done with numerous different datasets, augmentations, and hy-
perparameters. The performance of the models is measured using a dice score
per patient for the patients in the validation set. The models have been conduc-
ted using the Deoxys framework and the external server “Orion” to speed up the
process, both are explained in the method chapter. This chapter will present the
results gathered throughout this master period, and what hyperparameters and
augmentation affecting the different datasets. The thesis will further explore the
other dataset’s best model to find structural differences between them and use
different statistical methods to look for significant changes between them. Firstly,
this section will explain the different datasets. The best models will be compared
from section 4.5.

4.1 Datasets

The performance of the models used is shown in the Table 4.1.

Table 4.1 shows that the medical images perform best, and implementing new
channels only leads to lower scores. The table also indicates that the HOG and
LBP images alone manage to capture a significant amount of the information. It
also tells that HOG and LBP reduce the score of the image representations when
implemented with the medical data. By implementing multiple image representa-
tions, the score decreases further.

65
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Table 4.1: The different models performance, without any augmentation

Data-set Dice Score

MED 0.60516

HOG 0.58591

LBP 0.55944

MED HOG 0.59737

MED LBP 0.58183

HOG LBP 0.55988

MED HOG LBP 0.56390

4.2 PET and CT

Table 4.2: Table showing what data goes into the different PET and CT models

Datasets CT PET Both

MED MEDCT MEDPET MED

HOG HOGCT HOGPET HOG

MED HOG MEDCT HOGCT MEDPET HOGPET MED HOG

Table 4.2 shows what datasets go into each model. Where the general assumption is
a dataset that has not specified what channel uses both the CT and PET-channel.

Table 4.3: The table shows the performance of the models using the CT and PET
channel separately, using the default augmentation and windowing (WC = 1073, WW
= 200)

Datasets No Augmentation Aug Wind Wind and Aug

MEDCT 0.42854 0.53450 0.50228 0.54897

MEDCT HOGCT 0.41874 0.51922 0.44423 0.5062

MEDPET 0.58146 0.58717 - -

MEDPET HOGPET 0.58085 0.58011 - -

Before going into the different datasets and model parameters, HOG’s effect on
the PET and CT separately will be analyzed. Table 4.3 shows how the medical
data with and without HOG is affected by using augmentation and windowing.
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Computational topography

Table 4.3 shows that both the augmentation and windowing increase the perform-
ance using only the CT channel. However, implementing the HOGCT decreases
the score.

Positron emission tomography

The PET channel is the second and last channel of the medical dataset. Table 4.3
shows the performance of the PET model alone and when the HOG representation
is added as an extra channel. It also presents the effect augmentation has on the
two different setups. The table shows that the accuracy for the PET dataset is
slightly higher than for the CT, be that as it may, the same pattern on implement-
ing HOG can be seen here. HOG decreases the score, but the augmentation also
improves this setup.

Comparison

Following in Figure 4.1 and 4.2, two cat-plot showcasing the difference between
augmentation and implementation of HOG is shown. Figure 4.1 shows the ef-
fect of implementing HOG as an extra channel, while Figure 4.2 shows the effect
augmentation has on the performance.
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Figure 4.1: Cat plot visualizing the effect implementing HOG has on the two different
channels.

Figure 4.2: Catplot visualision the difference augmentation has on the two channels.
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4.3 HOG-hyperparameters

When creating the HOG images, there are multiple parameters taken into account.
The main parameters are the size of the descriptor block and the normalization
filter. These parameters decide the size of the star histograms in the image and
how much of the information of the neighboring pixels it should contain. Following
is a table containing the names for the different datasets and which parameters
have created them.

Table 4.4: A table showing the name of the most used HOG-models, and what datasets
that goes into them.

Descriptor Blocks

Normal 2d-unet 2x2 4x4 8x8 16x16

1x1 HOG1-2 HOG1-4 HOG1-8 HOG1-16

3x3 HOG3-2 HOG3-4 HOG3-8 HOG3-16

Normalization 5x5 HOG5-2 HOG5-4 HOG5-8 HOG5-16

A visualization of the HOG images can be seen in figure 4.3. The figure shows
how the different descriptor block sizes affect how the HOG images appear.

The performance for all the image representation setups shown in Table 4.4 is
presented in Table 4.5

Table 4.5: A table presenting the performance for the different HOG-models shown in
table 4.4.

Descriptor Blocks

Normal 2d-U-Net 2x2 4x4 8x8 16x16

1x1 0.587916 0.589168 0.563940 0.509215

3x3 0.605604 0.577251 0.565728 0.520242

Normalization 5x5 0.581331 0.588807 0.570478 0.514236

The table shows that reducing the descriptor block can improve the amount of
information gained. HOG3-2 and HOG1-4, and HOG5-4 gave the best predictions.
The rest of the thesis will use HOG3-2, also called HOG2.
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Figure 4.3: Effect of the different descriptor-block sizes
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4.4 LBP-hyperparameters

There have been two different setups creating the LBP image representation, Table
4.6 shows the performance of the two different setups, with and without the medical
images.

Table 4.6: A table showing the performance of the two LBP setups, with and without
the medical images included.

Name Dice Score

LBP 0.581825

LBP1 0.568232

MED LBP 0.583391

MED LBP1 0.570390

4.5 Model Parameters

4.5.1 Dilation

It has been tested whether the dilation rate could improve the model. Following
are three tables with the results from the different dilation rates: (2, 2), (3, 3),
and (5, 5). For the rest of the thesis, it will be assumed that the dilation rate is
squared and referred to by one number. Example: a dilation rate = 2 equals a
dilation rate equal to (2, 2).

Figure 4.4 shows a cat-plot visualizing the performance for five different HOG
datasets using three different dilation rates.
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Table 4.7: A table showing the results using a dilation rate = 2, using the datasets
with the highest prediction from table 4.5.

Table A: Dilation rate: Two

Dilated 2d-U-Net Descriptor-blocks

Dilation rate = 2 2x2 4x4 8x8

1x1 0.603580

3x3 0.58836 0.587468 0.58369

Normalization 5x5 0.583908

Table B: Dilation rate: Three.

Dilated 2d-U-Net Descriptor-blocks

Dilation rate = 3 2x2 4x4 8x8

1x1 0.575948

3x3 0.57864 0.563597 0.57445

Normalization 5x5 0.584474

Table C: Dilation rate: Five.

Dilated 2d-U-Net Descriptor-blocks

Dilation rate = 5 2x2 4x4 8x8

1x1 0.551873

3x3 0.51602 0.572577 0.526714

Normalization 5x5 0.563007
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Figure 4.4: A cat-plot to visulize the different dilation rates on the HOG datasets with
the highest predictions from table 4.5.
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4.5.2 Dilation rates with medical images

Table 4.9: An overview of how dilation with both MED and HOG works.

MED HOG 3-2 Augmentation

Dilation rate NO AUG AUG A2 AUG

2 0.58636 0.64453 0.64965

3 0.56782 0.63033 0.63713

5 0.52029 0.61531 0.61638

4.5.3 Augmentation

One of the most critical parameters for the model is augmentation. In this thesis,
there has mainly been tested out two types: the default augmentation and A2
Augmentation. These are explained in the method chapter. An overview of the
parameter setup can be found in Table 3.7 and 3.8

Dataset No - AUG Def - AUG A2 - AUG

MED 0.60516 0.66097 0.67056

HOG2 0.60560 0.62848 0.62876

LBP 0.55944 0.58406 0.57225

MED HOG2 0.60317 0.67317 0.65341

MED LBP 0.58183 0.62972 0.64302

HOG LBP 0.55988 0.57582 0.56861

MED HOG LBP 0.56390 0.62355 0.62672

mean 0.58271 0.62511 0.62333

Table 4.10: The dice score of the different augmentation used on the different datasets.

From Table 4.10, it is seen that augmented MED and MED HOG images give
the best predictions. The thesis will further take the highlighted models and look
deeper into each of the different segmentation to understand how, where, and if
HOG contributes to the segmentation.
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4.6 Comparison of the best models

This section will look into the four best models given from the augmentations in
Table 4.10. In this section ”HOG” refers to HOG(2-3) / HOG2, which was shown
to be the best performing of the HOG datasets earlier in the chapter. An overview
of the different datasets, augmentations, and names can be seen in the Table 4.11

Name of the datasets Augmentation

Datasets Default (A) A2

MED MED A MED A2

MED and HOG(2-3) MED HOG A MED HOG A2

Table 4.11: An overview of the names and what is included in the best models.

The best performing models were rerun. This time there was a slight change in
performance, and the following table shows how they did this time. It is the rerun
that is visualized in this chapter. The second run are showed in the Table ??,
followed by the difference between the runs in the Table 4.13.

Table 4.12: Results from the rerun of the four best models.

Dataset Dice score Std

MED A 0.65880 0.262005

MED A2 0.66589 0.257878

MED HOG A 0.66052 0.259745

MED HOG A2 0.67544 0.259273

Table 4.13: The table shows the change in performance between the two runs of the
models.

- MED A MED A2 MED HOG A MED HOG A2

first run 0.66097 0.67056 0.67317 0.65341

second run 0.65880 0.66589 0.66052 0.67544

difference -0.00217 -0.00467 -0.1265 0.01803
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4.6.1 Statistical Methods

The four statistical methods were tested for all the possible combinations on both
the performance per slice and performance per patient on the different datasets,
and none of them proved any significant change.

4.6.2 Difference per patient

Figure 4.5: BOX-Plot to visualise the difference between the patients in the validation
set for the different models. The center of the box is the median of the dice score
for the patient, and the box represents the distribution from the 25% quantile to the
75% quantile. The end of the whiskers (lines) are representing the min and max of the
distribution, while the points are the outliers.

Figure 4.5 visualizes the dice score for each patient using a box plot. From the
figure it is seen that patient 177 is the worst performing patient and patient. No.
90, 38, and 246 predictions vary a lot between the models.
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4.6.3 Comparing the dice score per slice for the different
models

From the 15 patients in the validation set, there is a total of 1033 slices /images
containing cancer. The following figure shows the difference between implementing
HOG images to the medical model using different augmentations.

Figure 4.6: Plotting the dice score for the validation patients sorted by size within
each model, where the left side shows the difference between MED and MED HOG
where both using default augmentation. The right side shows the same scenario with
A2 augmentation.

Figure 4.6 shows that both the Default (A) and A2 Augmentation follow a similar
distribution. If the plot had the same distribution of dice scores the line would
be straight. There is a tiny change in the left side of each plot, showing there are
fewer lower dice scores for the MED models. That means it is slightly below the
rest of the plot since the mean is the same. Both of the figure are almost in a
straight line, meaning they have nearly the same distribution of dice score. For
both scenarios, the data follows the same trend making it challenging to find a
pattern in the data and to conclude with anything.
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4.6.4 The tumor size effect on performance

The results go deeper into the data. After plotting the slices per patient, seen
in Appendix C, it was clear that the performance between the models differs the
most in the beginning and ends of the tumors. There was an assumption that
this was because of the size of the tumor. Figure 4.7 shows all the slices, but the
slice index for the patient is scaled down to be between zero and one. Both of the
figures show a high difference in performance at the end of the tumors.

Figure 4.7: Plot showing the difference in data against each other, where the x - axis
is the new scaled down slice axis.

Since the tumors are not necessarily small at the end of the slice, a figure plotting
the difference in the model against the tumor size was created. Figure 4.8 shows
the difference in models plotted against the size of the tumor, summing all the
pixels containing tumors. The smallest tumor performance is drawn to the right
in the figures, and the most extensive tumors slice performance to the right. It
shows that the most significant changes are in the regions where the tumor is
smaller.
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Figure 4.8: Plotting the difference in performance, between the datasets, against the
size of the tumor. The difference is computed taking the performance of MED HOG -
MED.
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Chapter 5

Discussion

The thesis’ goal is to determine if it is possible to improve the existing cancer
segmentation using new image representations. In this thesis HOG and LBP were
tested. The results indicate that HOG is the highest performing image repres-
entation out of the two and that LBP did not add as much improvement. The
HOG alone does not outperform the medical images. However, when combining
the medical and HOG datasets, the same score as the top-performing model was
reached. The thesis then looked deeper into each segmentation to find out how
these differ and to find structural changes within the data.

This section will go through the process leading to the results, the different para-
meters and models, how the parameters were chosen, and the results. Furthermore,
it will be discussed which changes that could have been implemented, also address-
ing how this research can help to solve other similar problems and finally consider
possible future research.

5.1 Dataset

5.1.1 Creation of medical images

The data leave some uncertainty. The PET and CT images were taken around a
decade ago. Since then, the CT and PET imaging machines have become better
and faster [74] [75], due to improved technology. For instance, now a CT exam can
collect the images in less than two seconds, while it 20 years ago used 30 minutes.
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There is a saying, “One year in real life, is like ten years in CT time [74].” The
images used are still relatively new and up to date. However, also state-of-the-art
machines are improving, and these images can also lead to better performance.

5.1.2 Contouring of tumor

Another factor causing uncertainty is the huge variety of radiologists, oncologists,
and doctors participating. Using different personnel to perform contouring can
lead to varying mask-drawings of the same tumor. Weiss and Hess showed that
the variation of mask-drawings provided by different oncologists was one the most
significant factors for uncertainty regarding the contouring of the tumors. For some
tumors, the location was the most crucial factor leading to geometric inaccuracy
[76].

5.1.3 Splitting of dataset

The data is divided into three groups; test, train, validation, as mentioned in
Section 3.1. In this thesis mainly the validation sets of the different models have
been compared. The validation data only represent 15 patients, where two of the
patients have consistently been hard to segment correctly. These are patient No.
90 and No. 177. While the average across the slices for these two patients can
vary a lot and reach scores down to 0,05, the remaining 13 patients generally lie on
the same level, as observed in the figures in Section 4.4. The overall performance
is firmly dependent on how well the prediction is of these patients. The per-
patient score may be observed from the slice plots in Appendix A and the box
plots in Section 4.4, which among others shows that patient No. 177 is the worst
performing patient in the four best models. MED HOG A2 is one of the few models
that manage to achieve an overall dice score that is slightly larger than the rest.
This is also one of the reasons why the performance for MED HOG A2 is slightly
higher than the three others.

5.2 Dataset Parameters

Firstly, the differences between the various datasets will be discussed. It is clear
from the tables in Section 4.0 that there are differences in the performance of the
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various datasets. None of the image representations manage to reach the same level
of performance as the medical dataset. However, both of the image representations
manage to capture a significant amount of the information alone. Nevertheless,
when trying to combine the datasets, the models performance was not as high.
Implementing HOG image representation was the one that decreased the score the
least. Including LBP in addition to MED reduced the performance by almost five
percent when alone and two percent if implemented with the medical images. The
HOG decreases the score by around two percent when alone and when implemented
with the medical images. After trying out the different datasets, the parameters
that went into the creation of the image representation were optimized.

5.2.1 HOG-Parameters

The tables in Section 4.1 show how the different HOG parameters affect the models
performance. Several parameters have been tested when creating the HOG image
representation. The Cells Per Block (CPB) and Pixels Per Cell (PPC) size are the
parameters that have been experimented with the most, creating the hog images.
These parameters were chosen because the effect they have on the images change
can easily be seen. Since the image representation is used, it is assumed that these
effects have the biggest impact. The result of changing the descriptor block can
be seen in figure 4.3.

Descriptor Block (PPC)

From Table 4.5 it may be observed that decreasing the size of the descriptor block
generally increases the performance of the prediction. However, in most previous
studies regarding HOG, such a small descriptor block has been used. The main
reason for this is that in their thesis they have used the output vector and not
the image representation. A smaller descriptor block size will lead to additional
blocks/histograms to cover the image. This will further lead to more computations
and an increased length of vectors. This affects the creation of the HOG data, but
mainly when it is being fed into the classifier [7] [13]. However, in this thesis, it
only affects the creation of the images. Since here, the image representations are
used and not the vector. The size of the image size is set to the same resolution
as the medical image, making the data size constant. This also makes it more
tolerable to use a smaller descriptor block.

However, just the computational cost of creating the HOG images is still substan-
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tial. Therefore in this thesis, one-pixel descriptor blocks have not been tried out.
However, this could have been interesting future work. The result here would look
more like an edge detector since there will only be one magnitude to place in each
histogram for all the pixels in the image without the normalization blocks. With
only one magnitude, the maximum number of bins used for each histogram will
be two.

Another important factor that has not been tested is the usage of different descriptor
block shapes. In the theory chapter, both the C-HOG and R-HOG have been dis-
cussed. Both got their breakthrough from Dalal and Triggs paper in 2005 [7].
They achieved good results with both C-HOG and R-HOG but a slightly better
score using the R-HOG. This has also been the case in numerous later studies.
Therefore, the R-HOG has become the most used normalization block. It also
benefits from easier implementation. A third option that has been discovered in
the last decade is the Segmental-HOG. The Segmental-HOG, known as S-HOG,
uses a flexible block division. The method was developed in 2015 by Tsuyoshi
Kato and was used on microscopic images of kidneys to segment out ”glomerium
”[77]. This method achieved significantly better performance, halving the number
of false negatives while keeping the same number of true positives as the R-HOG.
This paper is also using a sliding window with an SVM for classification.

Normalization Blocks (BPC)

The different normalization block results are shown in Table 4.5, with the usage
of dilation in the tables in Section 4.3. From the tables, it is not possible to see a
direct pattern change over the four different descriptor blocks. From earlier studies,
the overlapping local contrast normalization has improved the segmentation [7].
As described in the last section, these results are done using the vector and not
feed into a CNN. The reason the normalization filter does not perform so well
might be because of the U-Nets structure. The convolutional layers may manage
to capture the relationships between each pixel so well that using overlapping
blocks is unnecessary.

Another reason why the performance does not increase might be because the image
does not manage to show such a detailed star histogram. With a small descriptor
block, the star histogram becomes so small that the change in the image is hard to
visualize because the normalization increases the vector by taking the surround-
ing blocks vectors into account. Each of these vectors is to be shown by the 9
bin histogram in the plot. It is possible that the image representation does not
capture the added information that well. A vector can capture the information
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of multiple bins oriented in the same direction by extending the vector. Still, an
image representation might have trouble with handling the same scenario because
it has to be presented as an image.

5.2.2 LBP-Parameter

The LBP image representation has not been tested as much as HOG. In this thesis,
there have mainly been used two different parameter setups with LBP, which are
shown in Table 3.6. One setup used a one-pixel radius with eighth number of
points while the other with a two-pixel radius and 16 number of points. The
tables in Section 4.2 showed that the smaller radius performed better than the
larger radius. This corresponds well with other research undertaken on similar
data segmentation [78]. There could also have been tested parameter setups with
a higher number of points on a one-pixel radius. Proven to give a high accuracy
in rectal cancer earlier [78].

5.2.3 Model hyper-parameters

The two main different parameters tested in the model are dilation and augment-
ation. Explained in the theory and method.

Dilation

The dilation used is explained in the theory chapter (section 2.6). It involves in-
creasing the convolutional kernel without increasing the number of weights, which
is achieved by adding a spatial distance between them, called dilation rate. Differ-
ent spacing in the dilated kernels was tested. However, the dilation rate within the
model was always the same. The dilation was tried out on the HOG data alone
and on the HOG data combined with the medical data. The tables in section 4.3
show that the model does not improve when implementing dilated kernels. In fact,
the performance decreased as the dilation rate went up. This might be because the
close spatial relationship in the medical images is crucial for a good delineation.
Other research has tried replacing the pooling layer with a pyramid dilated kernel
with success on medical image segmentation [79]. However, they still used the
normal convolutional network.
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Augmentation

The augmentation data used in this thesis is gathered from another master thesis
from this year and earlier year master students work on the same dataset. The
augmentation showed to be one of the most important factors for improving the
delineation. The different parameters in the two setups used can be seen in Table
3.7 and 3.8. There is a large number of options to how to augment the data, so
finding the perfect setup would take too long to implement in this master thesis.
As a result, only these two augmentation setups were used. From Table 4.10,
it is obvious that both the ”def”/”A” augmentation and the ”A2” augmentation
increase the performance of all the datasets models. This correlates well with both
earlier work done with the same dataset [16] [17] and work done on other medical
data [80].

Since the augmentations are found testing multiple parameter setups on only the
medical images, it means that these parameters are not necessarily the best for
the HOG and LBP image representations. Future work could be to find an aug-
mentation to improve the HOG prediction.

Windowing

One of the other parameters that could be classified under preprocessing is win-
dowing. The windowing chooses which specter of the tissues we want to enhance
and visualize. Choosing the right specter is important for a good delineation.

,

5.3 Analysis of the models

This section will review and compare the performance of the different models.

5.3.1 PET and CT

The PET- and CT-channels are the base channels for all image representations.
Table 4.3 shows that both channels capture a lot of the information and that the
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PET channel alone performs slightly better than the CT channel alone. From
Table 4.10, it may be observed that the combination of them (”MED”), improves
the prediction even further. The cat-plot in section 4.0 showcases the difference
between implementing augmentation and adding the corresponding HOG images.
It is clear that combining the CT and PET images gave the best results, and im-
plementing the HOG image representations of them decreased the performance.
However, they also show that implementing preprocessing methods such as aug-
mentation and windowing increases the performance significantly.

5.3.2 The best models

Section 4.5 shows the best models performance. The four best models are medical
images with ”def” augmentation, ”A2” augmentation, with and without the HOG
data. These four tests were rerun, and the performance of the new run varied.
The variation between the two runs can be seen in Table 4.13. The result from
the table indicates that the model’s performances are quite close to one another,
and it seems that only the initialization of weights may explain any differences in
performance. The best HOG model performs slightly better than the best medical
dataset. However, there is a higher computational cost for creating the image
representations.

From Appendix C, the dice score per slice is plotted for each of the patients in the
validation set. Both of the run performance plots can be found there. These plots
show that the prediction varies and that maybe all models should have been run
multiple times to get a better estimate for each of the models. However, there has
not been time to rerun the tests, except for the four best models.

The models’ performance also varies because of the sample size. The validation
data consists of only 15 patients, and the models have been run on both the test
data and a second dataset on rectal cancer. These performances are shown in
Section 4.7. The performance on the test data is generally increased. This might
be due to the high percentage of patients in the validation set where predictions
are poor.

However, it is hard to tell if there is any significant change to the data from
the dice scores alone, something that was also concluded based on the statistical
analysis. In Section 4.5 the performance was further analyzed to see if there were
any structural changes between the models.
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Performance per patient

Figure 4.5 shows the performance of all 15 patients in the validation set for all four
models. From figure it can be observed that all patients follow the same pattern,
where each patient’s performance stays almost the same in each of the models.

5.3.3 Dice score across slices

The per slice section mainly looked into two structural differences: the distribution
of the dice scores and the performance compared against tumor size.

Dice distribution

From Figure 4.6 the sorted dice distribution is plotted against each other. The
plots are similar to a Q-Q plot, and they show a slight difference in the number
of poor predictions favoring the model based on medical images only. However,
the plots are making up a straight line and hardly any differences are observed
between the models.

Tumors size per slice

The dice distribution per patient was also analyzed. The plots are seen in Appendix
C. It is clear from the plot that the models vary mostly at the beginning and end
of the tumors when the tumors are smaller in size. This was expected since it
is harder to detect smaller objects. Figure 4.7 shows the beginning and end of
the tumors. However, there is not always the first slice of the tumor that is the
smallest, and Figure 4.8, shows how the different models’ dice scores differ from
each other depending on the size of the tumor. Moreover, this could also be caused
by the performance measurement, which will be discussed in Section 5.4.

5.4 Analysis of the static methods used

The original plan for this thesis was to treat the data as if it was normally dis-
tributed, and use an ANOVA test. However, the results were shown to not follow
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a normal distribution, using a Q-Q plot. There were then used multiple non-
parametric methods to see if there was any significant change between the dataset.
Where none of them prove a significant change between the models predictions.

Statistical methods

One of the main difficulties in proving any significant differences in the models,
is the large number of slices that achieve a zero performance and that no pixels
predicted correctly.

5.5 Analysis of the performance metric

Dice Score

The dice score is calculated using the formula shown in definition (3.9.1). The
definition takes the total number of values that is predicted right (TP) times two
divided by the sum of the predicted cancer cells (TP + FN) and actual cancel
cells (FN + TN). The performance does not value the size of the tumor. Each
pixel for a smaller cancer prediction is valued higher. This might be one of the
reasons why the smaller cancer segmentation is varying more when it comes to the
segmentation, seen in the figures in Section 4.4.

5.6 Use of research

The research in this thesis focus on the segmentation of cancer. Be that as it may,
the study could be generalized for multiple segmentation tasks. Using the image
representation for segmentation and not their descriptor vector for classification is
proved to give positive feedback. This research concludes that it could be possible
to include the HOG images as external channels for other types of segmentation
tasks.
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Chapter 6

Conclusion

Conclusion

In this thesis, it has been tested whether new image representations can boost
the all-ready existing cancer segmentation using a U-Net structure. The image
representations used are histograms of oriented gradients (HOG) and local bin-
ary patterns (LBP). Numerous different parameters and parameter combinations
within these image representations, in particular HOG, have been tested. The size
and the normalization of the histogram have been the most tested parameters.
The image representations are created in Python using modules from sklearn.

The thesis found that the image representation alone decreased the score slightly.
However, the image representations managed to capture a lot of the information.
The performance of all the image representations was higher on the PET images
compared to the CT-scans images. Further, implementing HOG with a smaller
descriptor block gave a dice score of 0.675 on the validation set (second run, MED
HOG A2). This result was higher than the best performance using only the medical
data, which reached a dice score of 0.67056 (first run, MED A2).

Multiple different setups have been used when creating the image representations.
In order to compare the models, the dice score on the validation set was used. The
best model was further combined using the other images and image representation
as new channels in the U-Net to see if this could improve the performance. The
model was tested with multiple augmentations and the use of dilational convolu-
tional layers in the U-Net. The augmentation proved to be an essential parameter
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for the model’s performance, but the dilation did not add any improvement. The
augmentation was created by the former master and doctoral students working on
the medical data. It is possible that optimizing the augmentation setup to fit the
image representations could increase the performance even further.

Then, the best performing models were rerun and the prediction for each of the
slices and patients were compared to see whether there were any structural changes
in the data. From the patient information, it was found that performance is
following almost the same pattern. Be that as it may, it was seen that the tumor
size was an essential factor for the performance. The differences in the models
dice score were more remarkable when the tumor was smaller. The dice scores
calculation could be one of the reasons for this.

Overall, the LBP is the worst performing of the two image representations. There
was also found a slight improvement combining the medical data with the HOG
data. The slight improvement might be worth the extra computational cost since
it can be a matter of life and death. However, HOG has still not reached its full
potential. The HOGs image representation proved to provide a lot of informa-
tion, making it attractive for implementation in further works related to image
segmentation.



Chapter 7

Future work

This thesis raises several issues to be addressed in future projects. Among others,
this may be to consider the parameter in the creation of HOG. In this thesis,
the focus has been on PPC and CPB. But the other parameters, the number of
orientation, the normalization, and the shape of the descriptor block should also
be tested in more detail. It is possible to change the shape of the descriptor block.
Test for instance C-HOG or S-HOG described earlier in this thesis, or try to create
a new one. There is also potential to try to make an optimized augmentation for
HOG and LBP.

For LBP, the Local Structure Local Binary Pattern (LS LBP) could be tested to
see if it is possible to capture more of the data.

It could also be adding a new image representation. The most used comparison
to the HOG and LBP is the Haar cascade classifier, also known as the Haar
classifier. Haar cascade uses the Haar features to detect patterns in the data.
These are achieved by taking the sum of regions in an image and comparing them
to the adjacent areas. The regions are linearly separable and known as a ”weak
classifier.” By using multiple classifications and boosting, hopefully, an even better
segmentation could be reached.

Further work regarding machine learning is implementing boosting to the current
models. Boosting is an ensemble method, with the purpose of training the com-
puter to use the best model for each slice in the segmentation, combining the
different models.

The use of the HOG vector and a classifier such as SVM for segmentation could
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also be a subject for further testing. This is the most common way to use the
HOG, LBP, and Haar descriptors. However, for Haar, LBP, and the HOG-vector,
the most common approach is to use a sliding window. The sliding window could
make it challenging to get an accurate segmentation, compared to CNN networks.

There is a lot of possible future work. Both in terms of the preprocessing part;
creation of new image representation, optimizing parameters/model and augment-
ation, or in the direction of machine learning; boosting the models, implementing
Haar classifier, and HOG vector representation.
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1 Summary

This paper aims to show how Histograms of oriented Gra-
dients can help improve the computational cost of cancer
segmentation and visualize medical data. The aim is to
understand how it can help reduce the load on radiolo-
gists and leave more of the segmentation to the computer.
HOG uses the orientation and magnitude of small pixel-
patches in an image to represent it as a histogram of ori-
ented gradients and then contrast normalize each patch. This
method is used on Positron-Emission-Tomography(PET) -
and Computer-Tomography(CT) -scans gathered from Oslo
University Hospital. The results show that the HOG images
catch up a lot of the essence in PET and CT scans. When
the model is finished, the prediction can tell us whether it
provides a better result or not. The paper shows us what the
different parameters can help us achieve and what methods
can help receive as clear images as possible.

2 Introduction

The need for radiologists(interpreters) has become larger and
larger over the last decades. More medical images are pro-
duced from a growing number of medical equipment. Ana-
lyzing all these images is both times consuming and hard.
Implementing data science into this process can help shorten
down this process a lot. This issue has been investigated for
many years by computer scientists. The medical data may be
huge, which makes it computationally expensive.

To reduce the computational cost, an approach known as
HOG(Histogram of oriented gradients) is used in this paper.
HOG is a feature descriptor that reduces the data size by
only catching the important parts and removing the rest. It
reduces a 2-dimensional image down to a single array. This
array can, e.g., be trained by classifiers to recognize cancer.
HOG can handle almost any type of image data, making it
robust and easy to implement. That is also one reason it has
been used for more than a decade after Dalal and Triggs got
their breakthrough in 2005 to detect standing people.[1]

This paper will look into the HOG functions, find the im-
portant information in an image, discard the useless infor-
mation, and reduce the data size. It will also discuss some
pre-processing methods to boost the performance of the pre-
dictions. The paper will mainly focus on how the data can be
optimized and not on the prediction results. The latter will
be further discussed in my master thesis.

The data-set used here consists of Head and Neck scans
gathered from Oslo university hospital. The data con-
tains both Computer- Tomography(CT)-scans and Positron-
Emission-Tomography(PET) scans for 198 patients. We will
look into how to pre-process each value and what parameters
can help optimize the HOG output.

The rest of the paper will explain the dataset in section 3,
explain the theory and the method/implementation in section
4, the result from HOG transformation in section 5, discuss
possible changes in section 6 and provide a conclusion in sec-
tion 7 before further work and references are shown.

3 Dataset

The data used for this research is gathered from Oslo Univer-
sity Hospital. It contains both CT-scans and PET-scans. The
data is gathered from 197 different cancer-patients. The scan
is taken layer by layer from the patient’s neck to the top of
their head. To reduce the data, all scans that do not contain
cancer have been removed. This makes the images per patient
different since the tumor size can be different from patient to
patient. In total, there are 13750 images. The scans are seen
from above the head and down. Making the first slice for
each patient the top of the scalp, and the last slice for each
patient the bottom of the neck. Each image slice has a corre-
lating cancer-mapping, an image where a radiologist predicts
cancer. These slices are seen as the truth, and we wish the
computer to estimate after the training process.

4 Theory and Method

4.1 Overview of Method

This section gives an overview of the method used to man-
ufacture the HOG-images and each step’s theory. It will go
through each of the steps on how the HOG-features are cre-
ated. The math behind the different operations is based on
simple calculus and trigonometry.

The method uses a locally contrast normalized histogram
of oriented gradients given from the edge gradients in a dense
grid of the image. From previous works, it is observed that
the distribution of local intensity gradients can represent an
image. This is done by dividing the image into blocks and
using each pixel’s gradient values to make a histogram repre-
sentation of the block. In the end, it uses descriptor blocks
to normalize the image.

This transforms the image into a one-dimensional array.
This array contains the same number of features for each im-
age slice and can be seen as a feature vector. The images can
then easily be represented as a matrix where each image is a
row, and the column space is made out of the output-array.

Figure 1: Overall method for extraction of HOG-features[2]

4.2 Creating histogram of oriented gradients

The histogram’s creation is based on the gradients and mag-
nitude for each pixel in one of the many blocks in an image. In
an image, the highest amount of information is found around
the edges. The edges tell us the shape of an object and give
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us an indication of depth and texture in an image from the
shadowing.

4.2.1 Edge detection

Figure 2: An image to represent the effect of edge detectors
[3]

From Figure,2 it is possible to see the difference between the
original image and the results after edge detection. It is still
clear that there is a house that has been photographed. So
it is possible to see that a lot of the information in the im-
age is gone, but the main parts are still captured. Using this
method reduces the amount of unnecessary information and
still captures the essential parts. There are multiple ways to
find the edges. The most simple method and what is used in
this article is an approximation of the Sobel edge-detector.[4]

The Sobel filter uses a 3x3 filter that iterates over the im-
age. This paper has used 2 matrices with dimensions: 1x3 and
3x1 to do the same. The two matrices calculate the gradients
in the x and y dimensions. The filters look at the surrounding
pixel-intensities. If the image is a color image, it will look at
all the color channels at once and pick out the highest value.
Below follows a representation of the filter used:

[
1 0 −1

]



1
0
−1




It is also possible to use more than just the neighbor pixels
to calculate the gradients, which is done in this research for
simplicity reasons. T2he two gradients have been combined to
make a complete image by taking the maximum value from
the two separate matrices in Figure. Instead of combining
the X-gradient and Y-gradient matrices to plot the edge de-
tection, they are used to find the gradient’s angle and magni-
tude for each pixel.

In the paper from Dalal and Triggs[1] about detection hu-
mans, they considered a more complex filter, using both a 3x3

Sobel filter and diagonal filters and the combination of the di-
agonal filters. However, they all performed more poorly than
the 1x3 and 3x1 filter shown above. They also tried to use a
Gaussian smoothing before applying the filters but found no
effects.

Dalal and Triggs tested other, more complex tasks, such as
the 3x3 Sobel mask or diagonal masks, but these masks gen-
erally performed more poorly in detecting humans in images.
They also experimented with Gaussian smoothing before ap-
plying the derivative mask but similarly found that omission
of any smoothing performed better in practice.[1]

4.2.2 Calculation of magnitude and gradient

After the edge detection, there are two matrices, one gradient
matrix and one direction matrix for all of the original image
pixels. These two new matrices can be combined to calculate
the gradient’s orientation and magnitude for each pixel. The
gradient and magnitude are given by[5]:

Θ = arctan(
Gy

Gx
)

G =
√
G2

x +G2
y

Where the same pixel location gives Gx and Gy from the
two gradient matrices. This will result in two new matrices,
one for each pixel’s magnitude and one for the gradient of
each pixel.

4.2.3 Creating of histogram

To compress the data, even more, it can be represented as a
histogram. However, reducing the entire image down to one
histogram will lead to a big data loss. Instead, the images
are divided into blocks. The block-size is the same for the
entire image, but different block-sizes will lead to different
data compression. The bigger the blocks are, the more com-
pressed the data will be. The histograms are calculated from
the magnitude and gradient matrices. A nice illustration is
given from OpenCVlearn[4]. An 8x8 block of the image is
divided into a nine-bin histogram. Each of these nine bins
represents 20 degrees, so in total, there can be 180 degrees.
Here the magnitude will be negative if the orientation is on
the other side of the 180-degree specter. It is also possible
to increase the bin size to a 360-degree specter and have only
positive magnitudes. The histograms are calculated using the
magnitude and orientation matrices.
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Figure 3: Calculation of histogram from magnitude and ori-
entation matrices [4]

The magnitude of the pixels is placed in the bin that fits
the pixel’s orientation the most. If the orientation falls be-
tween two bins, it is divided into the two respective groups.
How much of the magnitude that goes into each group is de-
pendent on how close the orientation is to the two different
bins. If it is exactly in the middle, it is split 50/50 into the
two groups, as shown in Figure3.

Other options are adding the entire magnitude into the
group that fits the most, not split it into different groups,
or adding one to each bin that fits the gradient and not the
magnitude. The third option is to divide the histogram into
180/360 bins so it doesn’t have to split the magnitude. These
options are all more clearly explained in Aishwarya Singh’s
paper Analytics Vidhya. [6]

Figure 4: Image to visualize the block structure

4.3 Descriptor blocks and normalization

The gradient edges can be clear or stretch over multiple pix-
els. Both of the scenarios are really important to detect.

That is why a local contrast normalization has shown to
be the most successful way to normalize the data. In this
way, local information doesn’t get lost by normalizing the
entire picture. With smaller normalization-groups, the local
changes are taken more into account. Moreover, with bigger
normalization-blocks, the clear and big edges will be better
perceived.

There are several different ways to local contrast-
normalize an image. Several of these normalization methods
are investigated in this paper. A review of the two most com-
mon detector blocks used in HOG calculations, R-HOG and
C-HOG, is presented. Both of them used by Dalal and Triggs
in their ”detection of standing people”-paper [1]

The detector blocks decide how much and what should be
considered when normalizing patch by patch in the image.

4.3.1 R-HOG

The R-HOG is the most used descriptor block when using
HOG. The R in R-HOG stands for rectangular. This de-
scriptor block is also the simplest of the two taken into con-
sideration. The detector blocks iterate over the image while
normalizing one patch at a time. This makes it a local nor-
malization. To catch up with the changes between blocks,
it contrast normalizes with the neighbor blocks. This means
that if a 3x3 normalization is used, it will take the eight blocks
closest to the block that is being normalized. The nine bins
in each of the histograms for the nine blocks will be used to
normalize. The 81 normalized values (9bins * 9blocks) will be
added to the block. This process is continued for each block
in the image.

This makes the descriptor-blocks overlap so that all blocks
will be used multiple times to normalize the surrounding
blocks. This can be avoided by iterating with a bigger step-
size, but it has positively affected the image[1]. Instead of
having nine bins in each block, there are now 81 normalized
values. This makes the data-set bigger. However, also more
robust to noise.

Figure 5: Image to visualise C-HOG vs R-HOG[7]

4.3.2 C-HOG

The C-HOG uses a circular detection-block instead of the
rectangular, which is used in R-HOG. The C stands for cir-
cular. Instead of using blocks, it looks directly at the pixels’
orientations. The idea came from Lowe’s article released in
2004 [7]. The concept revolves around using the closest pixels
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to the normalization center. In the example above, the center
pixels are divided into 4 bins, used to normalize.

Lowe’s article method was fundamental for Dalal and
Triggs C-HOG, but they also added neighbor blocks to con-
trast normalization. They reached better results using the
outer layer but not better results than the R-HOG.[1]

4.4 Normalization

There is four main block normalization scheme used in HOG.
All of them are rather similar to L1 and L2. They are all used
in Dalal and Triggs paper as well as they are the four built-in
methods in SciKit-Image’s HOG-function[1] [8].

The normalization concept is to re-scale the data into a
scale between 0-1, so you get all the bins in the histogram
into a common scale. This is done by finding the sum of the
vector’s values and dividing each value by it. How you cal-
culate the total value is different for each function. With L2,
you use the squared value:

L2 : ‖W‖2 =
m∑

j=1

W2
j (1)

Here W is the sum of the vector squared. The vector is
the bins in the histogram, M is the number of values, and j is
the iteration factor, iterating through each of the histogram
bins. Then each value is divided by the sum, which will be
clearly shown later in the text.

A related approach we can use to reduce the model com-
plexity is the L1 regularization

L1 : ‖W‖ =
m∑

j=1

|Wj | (2)

In the L1-Regularization, we are taking the absolute val-
ues of the weights into account instead of the squared value
used in the L2- regularization.

In the two examples, Wj is an unnormalized value, given
by the histograms in each of the descriptor-blocks. W is the
sum of the vector.

The normalized vector is calculated by dividing the un-
normalized vector by the vector’s sum and adding a penalty
term. The penalty adds a value to the term, seen as the bias.
The bias makes the prediction a bit ”worse” but makes it
easier to generalize and reduce the chance of overfitting.

L2-normal uses the square of every value in the vector,
adding a penalty term and normalizing each number by this
factor. Below is the function for the normalization where the
penalty term ε is included. ε ranges from 0 and upwards.
With zero penalties, the prediction can tend to overfit the
data easier. With a high penalty term, important features
can go missing.

W =
W√

‖W‖22 + ε2
(3)

L2-His is the second method and uses the same normaliza-
tion as L2-normal but limits the maximum values to be less

than or equal to 0.2. To avoid getting values to overrule the
others.

L1 uses the absolute values instead of the square root as
in L2. The L1’s function has the same variables as L2 and is
given by:

W =
W

(‖W‖1 + ε)
(4)

L1-sqrt is the same as L1 followed by a square root:

W =

√
W

‖W‖1 + ε
(5)

This gives a normalized descriptor vector that can be seen
as a probability distribution using the Bhattacharya distance
between them. The Bhattacharya distance measures the sim-
ilarity between two distributions.

4.5 Creating vector

The vector for each block is then added together to create
one long vector. This vector can be used as a feature vector
for each image, creating a matrix where the number of rows
is equal to the number of pictures and columns equal to the
number of features given from the HOG-vector. This matrix
can be fed into a classifier and be used for prediction.

4.6 Theory behind image

PET and CT images have been used for a long time and com-
plement each other very well. The PET is good at catching
up with the parts where there is a lot of cell division, often
found in the soft tissues. The CT looks more into the head
structure and contains obvious images of the different tissues.
Combining these two methods has provided good results for
a long time.

4.6.1 PET-scan

Positron emission tomography (PET) uses radio-labeled sub-
stances, also known as ”tracers.” These are introduced to
the body, and the PET camera catches up with their
distribution.[9] These ”tracers” will gather up where there
is a lot of cell activity going on, catching the brain’s chem-
ical activity. The cancer cells have a higher metabolic rate
level, which results in brighter spots than regular cells in the
brain. These brighter spots are good for detecting the cancer
cells, see if the cancer is spreading, checking if the treatment
is working, and finding cancer recurrence.

4.6.2 CT-SCAN

Computer tomography is an x-ray operation. The CT fires X-
rays into the head, and depending on how many of the X-rays
are absorbed; it can tell what type of tissue it is. The more
of the X-ray absorbed, the brighter the spot shown in the
image. Like bones, hard tissues collect a lot of X-rays, while
soft tissues like brain and cancer tumors absorb less. This
scan can give a really detailed image of the head, with up to
multiple thousands of gray tones. That can be hard to see on
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a computer without looking at the exact gray-tones/specter
under investigation. This can be achieved using windowing.

4.6.3 Windowing

A common way to pre-process the CT-images is called ”win-
dowing.” Windowing is used to enhance special intensity lev-
els in the images. This is mainly used to enhance the specter
where the difference is small, like soft tissues where the inten-
sity variation is little. This is done by looking at the specific

gray-level specter of the image. A CT-image can contain up
to several thousand grey levels. They are calculated from
the number of X-rays absorbed or how much they attenu-
ated at each location in the brain. The measurement is done
in Houndsfield Units (HU). The more the X-rays attenuated,
the brighter the spot will be. The brightest spots have the
highest HU values and are usually bones and other hard tis-
sues. These can range between a couple hundred to several
thousand. Water is set to be at 0 HU, and the air is set to
-1000HU.

Figure 6: An illustration of the windowing method [10]

To enhance the contrast in the image and get a good rep-
resentation of specific tissues, windowing can be used. Win-
dowing will choose a specter from the CT image and represent
it as a gray-level specter with intensity values from 0-255. All
the brighter values than the specter will be shown as white,

and all colors darker will be shown as black. Two parameters
choose the specter; the center of the specter and the specter’s
width. The center is called WL, and the width is called WW
in the figure6.
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5 Results

This section presents the different results and compares them to the original images. All images are taken from the same slice
of the same patient. All the images are gathered from the University of Oslo (UiO). The images are not in raw format. They
have been worked on in several earlier written masters and doctoral degrees at the Norwegian University of Life Science.
Most of the raw file’s extraction work is done by Moe [11] and further worked on by Huynh [12].

The HOG images have been reduced, and only the clearest visible parts are left. The output of HOG is a vector, and
the images are just a representation of the vectors. The image is represented by plotting the histogram for each block. The
histogram is shown as a star histogram where the orientation has been taken into account. A larger bin in the histogram will
be shown as a brighter and longer line in the image. This makes it possible to visualize both the direction and magnitude
for each bin in each histogram.

5.1 CT-images

Figure 7: Original CT + HOG

In Figure 7, the result of using HOG on CT images is shown. The CT image on the left was used as the input, and the right
is the result after HOG. The different parts of the brain and the bone structure can still be seen clearly. The brighter parts
in the CT image are hard. Often these represent bones and other ”hard” tissues. In this CT image, the left bright side is
the jaw, and the middle bright part is the spine.
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5.2 PET-images

Figure 8: Original PET-scan and HOG

Figure 8 shows the PET scan on the right and the HOG on the left. The PET scan detects the brain’s activity, and there
can only be active cancers where there is cell division. This leaves a lot of noise out of the image, detecting only small parts
of the head. This makes it easy for HOG to catch the edges. We can clearly see that the brightest parts are in the same area
for the two images, as shown in Figur9, where the tumor is drawn in. It can be observed that the PET and HOG detect the
changes and that the HOG image and tumor contour fit nicely.

Figure 9: Combination of PET and Tumor
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5.3 Combination

Figure 10: Combination from the different scans and the tumor prediction, using Yngve M. Moe’s ”MedVis” repository to
show the images.[13] The red line is the tumor prediction, and the red heat map is gathered from the PET-scan. The gray
parts are gathered from the CT-scans.

Figure 10 shows all the scans combined. Here the correlation between the PET-scan in red dots and the cancer markings(red
line) can be clearly seen.

Figure 11: The image before and after windowing. Here the Window width is 200 and the center value is 1094. The method
is gathered from Moe’s Master Thesis[11]

Figure 11 shows the difference between the original image
and the windowed image. There are plenty of different win-
dow sizes and center values to test out. This gives a represen-

tation of how the image can look like after the transformation.
It is clearly observed that the contrasts get higher.
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6 Discussion

The cancer prediction result is still not ready and will be pre-
sented in my Master Thesis alongside the analysis of the pre-
diction methods. This section presents possible changes that
could lead to better results, mainly focusing on the HOG-
images and their output.

There are multiple factors in the creation of HOG-images.
The blocks’ size, normalization, what descriptor-block to use,
and what normalization to apply are some of them. They all
lead to different results. This section will also discuss other
features that could be implemented to boost the possible pre-
diction results.

6.1 Pre-processing

6.1.1 Normalization

The first section of the calculation of the HOG-Images is us-
ing an edge detector. However, some work could be done be-
fore this point. Normalizing the image before calculating the
HOG vectors has been shown to make it more computation-
ally demanding. Nevertheless, if it improves the prediction, it
should definitely be a part of the calculation. Previously Dalal
and Triggs tried out multiple methods as Gamma/power-law
Normalization, square root, and log normalization, but only
received a better result using Square Root normalization on
color images and not on a grayscale.[1] However, this perfor-
mance boost was so small that they decided to leave it out
from the rest of the prediction.

The medical data does not contain color channels but a
CT and PET- channel. This may lead to other results. The
log normalization tends to be too strong and remove impor-
tant features in the data. At least on delicate data where
the gray-level in the image has a lot to say about where the
tumors are. While the gamma/power and square-root nor-
malization usually perform equally. Contrast normalization
has been used for decades, and different normalization meth-
ods could lead to improvements.

6.1.2 Windowing

A second pre-process method is using different window sizes
and center values. This can be used to either enhance the
contrast or take with a bigger window-patch. With higher
contrast, the edges will be clearer, which will lead to higher
magnitudes. This affects the normalization is unclear, but it
will hopefully make the tumors sharper and easier to predict.
Some disadvantages are that it could make unnecessary in-
formation clearer or even remove important features of the
images that can fall outside the window range.

6.2 Parameter tuning

6.2.1 Histogram parameters

After the pre-processing, the main parts that can be changed
in creating the HOG-images are optimizing the HOG parame-
ters. All of them will be tested against the results to see which
of the parameters leads to the best possible results. The first
parameters which can be changed are the orientations.

The orientations are mainly divided into two groups,
signed or unsigned. Signed orientation uses a 360-degree
specter and captures gradients in every orientation. Unsigned
angels use a 180-degree specter and use negative magnitudes
to replace the specter’s angles. Unsigned angle specter has
been used for a long time because it usually gives the same
results or even better, and the computational cost is a bit less.
The better results could come from the fact that the unsigned
value uses the total magnitude. If some orientation points in
the opposite direction of the rest, they will be over-ruled by
the majority. This can help improve the estimation since
often, these orientations are noise in an image. With signed
values, these orientations are taken into their own bins. These
bins are small but still there and can make a difference.

The block size is the number of pixels in each block. Here,
testing will lead to the best parameter. However, with a too
low block-size, the majority will not be as dominant to noise
and could easily lead to overfitting. This will make it much
more computational heavy. With two big blocks, the local
information features might be gone because the domain fea-
tures overrule the small details, and important information
can get lost.

The bin-size is the number of bins in each histogram. With
a low number of bins, some of the information can go lost, but
with a two-high number of bins, the computational cost may
become large. Doubling the bin-size will double the computa-
tional cost. It can also lead to overfitting and loss of the over-
all features. The descriptor blocks will try to avoid overfitting
by combining with neighbor blocks. With good parameters
from the bin size, the block normalization will be easier.

6.3 Normalization

After all the histograms are made, only the block-
normalization is left before the prediction stage. The block
normalization is divided into two sections, the detector blocks
and the choice of normalization method.

The detector block decides the area that is being normal-
ized over. The two methods used and described in the theory
section are R-HOG and C-HOG. However, other blocks can
be used and have been tested by others. The third option
which has been considered is using vertical and horizontal de-
tector blocks and the combination of them. This method is
tried out earlier in the standing people paper by Dalal and
Triggs without any luck [1]. This descriptor block’s basic con-
cept is that it will be a method in between the R-HOG and
C-HOG. It uses square blocks, but just the closest ones. If
3x1 and 1x3 are used for vertical and horizontal descriptor
blocks, the diagonal representation will use the four closest
blocks when normalizing. This method will reduce computa-
tional demand. This will lead to a reduction in overlapping
blocks. From Dalal and Triggs paper [1], They got a better
result by adding overlapping blocks, but the reason for the
improvement was unclear.

The two most common block-normalization methods are
L1 and L2, where both have been used, and the difference
in the HOG-images is minor but can lead to different pre-
dictions. It is not entirely clear which one that has the best
performance. L1 tends to leave features out because of its
absolute value penalty. Occasionally the L1 can leave out
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important information or value the wrong features more. In
that case, L2 would perform well because it does not discard
features that easily. L1 tends to be more generalizing with
sparse solutions than L2.

A combination of these two features is called an elastic
net. Here you use a percentage of L1 and a percentage of L2.
This could potentially lead to better results. The relation be-
tween L1 and L2 normalization can be chosen, and this is a
parameter that can be tuned.

6.4 Dimension reduction

The dimension reduction is determined by the parameters
that give the best prediction. The computational cost can
vary a lot depending on the different variables. Below, there
is a function for the number of variables given from the HOG
function, where R-HOG is used as a descriptor block, and the
step length is set to one.

NrF =

⌊
X

Xb
− (Xn − 1)

⌋
∗
⌊
Y

Yb
− (Yn − 1)

⌋
∗H ∗Xn ∗ Yn

(6)

N - Number of Features (The size of the Vector output
from HOG)

X, Y - Is the image size
Xn, Yn - descriptor block-size
Xb, Yb - block-size
H - number of bins
The function tells us that with a big descriptor block or a

small block-size, the Number of Features will become large.

Table 1: Show the number of features depending on what
descriptor block-size and block-size used, the estimation is
done with R-HOG as descriptor block type and step length

equal to one
BS/DB 1x1 2x2 3x3
4x4 27198 107640 233280
8x8 6831 25344 52731

12x12 2970 10584 21060

The original image contains around fifty thousand pixel-
values. The output vector from HOG is still huge. Extracting
information from over 10 000 features can be hard and has a
huge potential for overfitting. Even if most of the image does
not contain any information and can be removed, there will
still be many features to handle.

7 Conclusion

In conclusion, this paper has shown how HOG can be used
to visualize medical data. It has discussed different pre-
processing methods, how each parameter affects the result
and how to optimize the HOG output. There are a lot of
different variables to take into consideration. What parame-
ters give the best result will be found from prediction when
machine learning could be applied. Further work will be to
get an image-segmentation from the HOG-image ready and
train up the parameters. Afterward, include the CT-scans,

PET-scans, and possibly more image-representation, e.g., Lo-
cal Binary Patterns(LBP) in the prediction, to find new fea-
tures the data can use to optimize the prediction.
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8.2 Appendix B: Codes

8.2.1 CreateDataSet-Class

Following is the structure of the class used to generate the new datasets. The
parent Class ”createdataset” stores the functions and variables used to create
both a train, test, val structured dataset and a dataset divided into folds. The
Head Neck Cancer dataset is an example of a train, test, val structured dataset,
while the Maastro dataset uses a k-fold structure.

The Parent class contain two sub classes shown further down in the code; the HNC
containing the information peculiar for creating train, test, val structured datasets,
while the Maastro class contains the functions peculiar for the k-fold structure.

1 import numpy as np
2 import h5py
3 import matplotlib.pyplot as plt
4 from skimage import data , color , feature
5

6

7 class create_data_set(object):
8 def __init__(self):
9 self.set_parameters

10

11 def set_parameters(self , orientations =9, PPC=(2, 2), CPB = (3,
3), block_norm='L2',

12 visualize=True , transform_sqrt=False ,
feature_vector=False , multichannel=None ,

13 radius=1, n_points = 8, window_center = 1094,
window_width = 200):

14 # HOG -params
15 self.orientations = orientations
16 self.PPC = PPC
17 self.CPB = CPB
18 self.block_norm = block_norm
19 self.visualize = visualize
20 self.transform_sqrt = transform_sqrt
21 self.feature_vector = feature_vector
22 self.multichannel = multichannel
23 # LBP -params
24 self.radius = radius
25 self.n_points = n_points
26 # Datasets
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27 self.WIN_CT = False
28 self.MED_CT = False
29 self.MED_PET = False
30 self.HOG_CT = False
31 self.HOG_PET = False
32 self.LBP_CT = False
33 self.LBP_PET = False
34 # Windowing
35 self.window_center = window_center
36 self.window_width = window_width
37

38

39 def HOG_calculation(self , image):
40 HOG = feature.hog(image , self.orientations , self.PPC , self.

CPB , self.block_norm ,
41 self.visualize , self.transform_sqrt , self.

feature_vector , self.multichannel)
42 return HOG[1]
43

44 def LBP_calculation(self , image):
45 LBP = feature.local_binary_pattern(image , self.radius , self.

n_points)
46 return LBP
47

48 def what_datasets(self , WIN_CT = False , MED_CT=False , MED_PET=
False , HOG_CT=False , HOG_PET=False , LBP_CT=False , LBP_PET=
False):

49 self.WIN_CT = WIN_CT
50 self.MED_CT = MED_CT
51 self.MED_PET = MED_PET
52 self.HOG_CT = HOG_CT
53 self.HOG_PET = HOG_PET
54 self.LBP_CT = LBP_CT
55 self.LBP_PET = LBP_PET
56

57 def windowing(self , image_window): # ww 100 -300 try out 200 -400
58 image_window = image_window - self.window_center
59 image_window[image_window < -self.window_width / 2] = -self.

window_width / 2
60 image_window[image_window > self.window_width / 2] = self.

window_width / 2
61 return image_window
62

63 class HNC(create_data_set):
64 def __init__(self):
65 super().__init__ ()
66

67

68 def gather_data(self ,data):
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69 X_train = []
70 X_test = []
71 X_val = []
72

73 if self.WIN_CT:
74 X_train.append(self.Windowed_CT_train_img)
75 X_test.append(self.Windowed_CT_test_img)
76 X_val.append(self.Windowed_CT_val_img)
77

78 if self.MED_CT:
79 X_train.append(self.CT_train)
80 X_test.append(self.CT_test)
81 X_val.append(self.CT_val)
82

83 if self.MED_PET:
84 X_train.append(self.PET_train)
85 X_test.append(self.PET_test)
86 X_val.append(self.PET_val)
87

88 if self.LBP_CT:
89 X_train.append(self.LBP_CT_train_img)
90 X_test.append(self.LBP_CT_test_img)
91 X_val.append(self.LBP_CT_val_img)
92

93 if self.LBP_PET:
94 X_train.append(self.LBP_PET_train_img)
95 X_test.append(self.LBP_PET_test_img)
96 X_val.append(self.LBP_PET_val_img)
97

98 if self.HOG_CT:
99 X_train.append(self.HOG_CT_train_img)

100 X_test.append(self.HOG_CT_test_img)
101 X_val.append(self.HOG_CT_val_img)
102

103 if self.HOG_PET:
104 X_train.append(self.HOG_PET_train_img)
105 X_test.append(self.HOG_PET_test_img)
106 X_val.append(self.HOG_PET_val_img)
107

108 X_train = np.moveaxis(X_train , 0, -1)
109 X_test = np.moveaxis(X_test , 0, -1)
110 X_val = np.moveaxis(X_val , 0, -1)
111 return X_train , X_test , X_val
112

113 def gather_target_data(self ,data):
114 train_y = np.asarray(data['train ']['target '])
115 test_y = np.asarray(data['test']['target '])
116 val_y = np.asarray(data['val']['target '])
117 return train_y , test_y , val_y
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118

119 def create_file(self , save_path , file_name , data):
120 # Next get the shape of your data
121 img_dim1 , img_dim2 , num_channel = self.X_train.shape [1:]
122

123 # Finally create your file
124 path = save_path+ file_name
125 with h5py.File(path , 'a') as f:
126 train_group = f.create_group('train ')
127 train_group.create_dataset('x', data=self.X_train , dtype

='f4',
128 chunks =(1, img_dim1 , img_dim2

, num_channel),
129 compression='lzf')
130 train_group.create_dataset('y', data=self.train_y , dtype

='f4',
131 chunks =(1, img_dim1 , img_dim2

, 1),
132 compression='lzf')
133

134 val_group = f.create_group('val')
135 val_group.create_dataset('x', data=self.X_val , dtype='f4

',
136 chunks =(1, img_dim1 , img_dim2

, num_channel),
137 compression='lzf')
138 val_group.create_dataset('y', data=self.val_y , dtype='f4

',
139 chunks =(1, img_dim1 , img_dim2

, 1),
140 compression='lzf')
141

142 test_group = f.create_group('test')
143 test_group.create_dataset('x', data=self.X_test , dtype='

f4',
144 chunks =(1, img_dim1 , img_dim2

, num_channel),
145 compression='lzf')
146 test_group.create_dataset('y', data=self.test_y , dtype='

f4',
147 chunks =(1, img_dim1 , img_dim2

, 1),
148 compression='lzf')
149

150

151 def create(self , save_path , file_name , data):
152 if self.WIN_CT:
153 self.Windowed_CT_train_img = np.stack([np.asarray(

windowing(im)) for im in data['train ']['input '
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][:,:,:,0]])
154 self.Windowed_CT_test_img = np.stack(np.asarray(

windowing(im)) for im in data['test']['input '
][:,:,:,0])

155 self.Windowed_CT_val_img = np.stack(np.asarray(windowing
(im)) for im in data['val']['input '][:,:,:,0])

156

157 if self.MED_CT:
158 self.CT_train = np.asarray(data['train ']['input '

][:,:,:,0])
159 self.CT_test = np.asarray(data['test']['input '

][:,:,:,0])
160 self.CT_val = np.asarray(data['val']['input '][:,:,:,0])
161

162 if self.MED_PET:
163 self.PET_train = np.asarray(data['train ']['input '

][:,:,:,1])
164 self.PET_test = np.asarray(data['test']['input '

][:,:,:,1])
165 self.PET_val = np.asarray(data['val']['input '][:,:,:,1])
166

167 if self.LBP_CT:
168 self.LBP_CT_train_img = np.stack((np.asarray(self.

LBP_calculation(im, n_points , radius)) for im in
data['train ']['input '][:,:,:,0]))

169 self.LBP_CT_test_img = np.stack((np.asarray(self.
LBP_calculation(im, n_points , radius)) for im in
data['test']['input '][:,:,:,0]))

170 self.LBP_CT_val_img = np.stack((np.asarray(self.
LBP_calculation(im, n_points , radius)) for im in
data['val']['input '][:,:,:,0]))

171

172 if self.LBP_PET:
173 self.LBP_PET_train_img = np.stack((np.asarray(self.

LBP_calculation(im, n_points , radius)) for im in
data['train ']['input '][:,:,:,1]))

174 self.LBP_PET_test_img = np.stack((np.asarray(self.
LBP_calculation(im, n_points , radius)) for im in
data['test']['input '][:,:,:,1]))

175 self.LBP_PET_val_img = np.stack((np.asarray(self.
LBP_calculation(im, n_points , radius)) for im in
data['val']['input '][:,:,:,1]))

176

177 if self.HOG_CT:
178 self.HOG_CT_train_img = np.stack((np.asarray(self.

HOG_calculation(im)) for im in data['train ']['input '
][:,:,:,0]))

179 self.HOG_CT_test_img = np.stack((np.asarray(self.
HOG_calculation(im)) for im in data['test']['input '
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][:,:,:,0]))
180 self.HOG_CT_val_img = np.stack((np.asarray(self.

HOG_calculation(im)) for im in data['val']['input '
][:,:,:,0]))

181

182 if self.HOG_PET:
183 self.HOG_PET_train_img = np.stack((np.asarray(self.

HOG_calculation(im)) for im in data['train ']['input '
][:,:,:,1]))

184 self.HOG_PET_test_img = np.stack((np.asarray(self.
HOG_calculation(im)) for im in data['test']['input '
][:,:,:,1]))

185 self.HOG_PET_val_img = np.stack((np.asarray(self.
HOG_calculation(im)) for im in data['val']['input '
][:,:,:,1]))

186

187 self.X_train , self.X_test , self.X_val = self.gather_data(
data)

188 self.train_y , self.test_y , self.val_y = self.
gather_target_data(data)

189

190 self.create_file(save_path , file_name , data)
191

192

193 class maastro(create_data_set):
194 def __init__(self ,):
195 super().__init__ ()
196

197

198 def create_lists(self , data): # g j r generaliserende hvis tid
199 # print(['Fold_{}'. format(i) for i in range (8)])
200

201 input_0 = data['fold_0 ']['input ']
202 target_0 = data['fold_0 ']['target ']
203 ptidx_0 = data['fold_0 ']['patient_idx ']
204

205 input_1 =data['fold_1 ']['input ']
206 target_1 = data['fold_1 ']['target ']
207 ptidx_1 = data['fold_1 ']['patient_idx ']
208

209 input_2 = data['fold_2 ']['input ']
210 target_2 = data['fold_2 ']['target ']
211 ptidx_2 = data['fold_2 ']['patient_idx ']
212

213 input_3 = data['fold_3 ']['input ']
214 target_3 = data['fold_3 ']['target ']
215 ptidx_3 = data['fold_3 ']['patient_idx ']
216

217 input_4 = data['fold_4 ']['input ']
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218 target_4 = data['fold_4 ']['target ']
219 ptidx_4 = data['fold_4 ']['patient_idx ']
220

221 input_5 = data['fold_3 ']['input ']
222 target_5 = data['fold_3 ']['target ']
223 ptidx_5 = data['fold_3 ']['patient_idx ']
224

225 input_6 = data['fold_3 ']['input ']
226 target_6 = data['fold_3 ']['target ']
227 ptidx_6 = data['fold_3 ']['patient_idx ']
228

229 input_7 = data['fold_3 ']['input ']
230 target_7 = data['fold_3 ']['target ']
231 ptidx_7 = data['fold_3 ']['patient_idx ']
232

233 self.input = [input_0 , input_1 , input_2 , input_3 , input_4 ,
input_5 , input_6 , input_7]

234 self.target = [target_0 , target_1 , target_2 , target_3 ,
target_4 , target_5 , target_6 , target_7]

235 self.ptidx = [ptidx_0 , ptidx_1 , ptidx_2 , ptidx_3 , ptidx_4 ,
ptidx_5 , ptidx_6 , ptidx_7]

236

237

238 def concat(self , X, element):
239 if X == 0:
240 X = element
241 else:
242 X = np.concatenate ((X, element), axis =3)
243

244 return X
245

246

247 def get_fold(self , index):
248 X = 0
249

250 if self.WIN_CT:
251 self.WIN_CT_list = np.asarray(self.WIN_CT_list)
252 element = np.expand_dims(self.WIN_CT_list[index], axis

=3)
253 X = self.concat(X, element)
254

255 if self.MED_CT:
256 self.MED_CT_list = np.asarray(self.MED_CT_list)
257 element = np.expand_dims(self.MED_CT_list[index], axis

=3)
258 X = self.concat(X, element)
259

260 if self.MED_PET:
261 self.MED_PET_list = np.asarray(self.MED_PET_list)
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262 element = np.expand_dims(self.MED_PET_list[index], axis
=3)

263 X = self.concat(X, element)
264

265

266 if self.LBP_CT:
267 self.LBP_CT_list = np.asarray(self.LBP_CT_list)
268 element = np.expand_dims(self.LBP_CT_list[index], axis

=3)
269 X = self.concat(X, element)
270

271 if self.LBP_PET:
272 self.LBP_PET_list = np.asarray(self.LBP_PET_list)
273 element = np.expand_dims(self.LBP_PET_list[index], axis

=3)
274 X = self.concat(X, element)
275

276 if self.HOG_CT:
277 self.HOG_CT_list = np.asarray(self.HOG_CT_list)
278 element = np.asarray(self.HOG_CT_list)
279 X = self.concat(X, element)
280

281

282 if self.HOG_PET:
283 self.HOG_PET_list = np.asarray(self.HOG_PET_list)
284 element = np.asarray(self.HOG_PET_list)
285 X = self.concat(X, element)
286

287 target = np.asarray(self.target)
288 y = target[index]
289

290 return X, y
291

292

293 def create_file(self , save_path ,file_name):
294 # Loop through your data and create your dataset
295 path = save_path + file_name
296 print(self.get_fold (0) [0]. shape)
297 dim1 , dim2 , num_channel = self.get_fold (0) [0]. shape [1:]
298

299 for i in range (8):
300 with h5py.File(path , 'a') as f:
301 group = f.create_group(f'fold_{i}')
302 data_x , data_y = self.get_fold(i)
303 group.create_dataset('input ', data=data_x , dtype='

f4',
304 chunks =(1, dim1 , dim2 ,

num_channel),
305 compression='lzf')
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306 group.create_dataset('target ', data=data_y , dtype='
f4',

307 chunks =(1, dim1 , dim2 ,
num_channel),

308 compression='lzf')
309

310

311

312

313 def create(self , save_path , file_name , data):
314 self.WIN_CT_list = []
315 self.MED_CT_list = []
316 self.MED_PET_list = []
317 self.HOG_CT_list = []
318 self.HOG_PET_list = []
319 self.LBP_CT_list = []
320 self.LBP_PET_list = []
321 self.list = []
322

323 self.create_lists(data)
324

325 for k in self.input:
326 if self.WIN_CT:
327 windowed_CT = np.stack([np.asarray(windowing(im))

for im in k[:,:,:,0]])
328 self.WIN_CT_list.append(windowed_CT)
329

330 if self.MED_CT:
331 MED_CT = np.asarray(k[:,:,:,0])
332 self.MED_CT_list.append(MED_CT)
333

334 if self.MED_PET:
335 MED_PET = np.asarray(k[:,:,:,1])
336 self.MED_PET_list.append(MED_PET)
337

338 if self.HOG_CT:
339 HOG_CT = np.stack((np.asarray(self.HOG_calculation(

im)) for im in k[:,:,:,0]))
340 self.HOG_CT_list.append(HOG_CT)
341

342 if self.HOG_PET:
343 HOG_PET = np.stack((np.asarray(self.HOG_calculation(

im)) for im in k[:,:,:,1]))
344 self.HOG_PET_list.append(HOG_PET)
345

346 if self.LBP_CT:
347 LBP_CT = np.stack((np.asarray(self.LBP_calculation(

im, n_points , radius)) for im in k[:,:,:,0]))
348 self.LBP_CT_list.append(LBP_CT)
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349

350 if self.LBP_PET:
351 LBP_PET = np.stack((np.asarray(self.LBP_calculation(

im, n_points , radius)) for im in k[:,:,:,1]))
352 self.LBP_PET_list.append(LBP_PET)
353

354 self.create_file(save_path , file_name)

Listing 8.1: Create Dataset Class

8.2.2 Example usage

1 test = HNC()
2 test.set_parameters(orientations = 18,
3 PPC = (2,2),
4 CPB = (3,3),
5 block_norm = 'L2-Hys')
6

7 test.what_datasets(MED_CT = True ,
8 MED_PET = True ,
9 HOG_CT = True ,

10 HOG_PET = True)
11

12 test.create(save_path = 'E:/ OneDriveFreeSpace/Data/' ,
13 file_name = 'MED_HOG2_Ori_18.h5',
14 data=data)

Listing 8.2: Example Code of how to use the class

8.3 Appendix C: Extra plots

Slices per patient, second run
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8.4 Appendix D: Example structure of Model-

parameters

Model-Structure

An example of Model files used, stored in a JSON file. This is the model used to
achieve the highest Val Dice Score.

1 {
2 "dataset_params": {
3 "class_name": "H5Reader",
4 "config": {
5 "filename": "/net/fs -1/ home01/mgranhei/datasets/headneck

/MED_HOG2.h5",
6 "batch_size": 16,
7 "x_name": "x",
8 "y_name": "y",
9 "batch_cache": 10,

10 "shuffle": true ,
11 "fold_prefix": "",
12 "train_folds": [
13 "train"
14 ],
15 "val_folds": [
16 "val"
17 ],
18 "test_folds": [
19 "test"
20 ],
21 "preprocessors": [
22 {
23 "class_name": "HounsfieldWindowingPreprocessor",
24 "config": {
25 "window_center": 70,
26 "window_width": 200,
27 "channel": 0
28 }
29 },
30 {
31 "class_name": "ImageNormalizerPreprocessor",
32 "config": {
33 "vmin": [
34 -200,
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35 0
36 ],
37 "vmax": [
38 200,
39 25
40 ]
41 }
42 }
43 ],
44 "augmentations": {
45 "class_name": "ImageAugmentation2D",
46 "config": {
47 "rotation_range": 90,
48 "zoom_range": [
49 0.8,
50 1.2
51 ],
52 "shift_range": [
53 10,
54 10
55 ],
56 "flip_axis": 0,
57 "brightness_range": [
58 0.8,
59 1.2
60 ],
61 "contrast_range": [
62 0.7,
63 1.3
64 ],
65 "noise_variance": 0.05,
66 "noise_channel": 1,
67 "blur_range": [
68 0.5,
69 1.5
70 ],
71 "blur_channel": 1
72 }
73 }
74 }
75 },
76 "train_params": {
77 "epochs": 5,
78 "callbacks": [
79 {
80 "class_name": "EarlyStopping",
81 "config": {
82 "monitor": "val_loss",
83 "patience": 30
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84 }
85 }
86 ]
87 },
88 "input_params": {
89 "shape": [
90 191,
91 265,
92 4
93 ]
94 },
95 "model_params": {
96 "loss": {
97 "class_name": "BinaryFbetaLoss"
98 },
99 "optimizer": {

100 "class_name": "adam",
101 "config": {
102 "learning_rate": 0.0001
103 }
104 },
105 "metrics": [
106 {
107 "class_name": "BinaryFbeta"
108 },
109 {
110 "class_name": "Dice"
111 }
112 ]
113 },
114 "architecture": {
115 "type": "Unet",
116 "layers": [
117 {
118 "class_name": "Conv2D",
119 "config": {
120 "filters": 64,
121 "kernel_size": 3,
122 "activation": "relu",
123 "kernel_initializer": "he_normal",
124 "padding": "same"
125 },
126 "normalizer": {
127 "class_name": "BatchNormalization"
128 }
129 },
130 {
131 "name": "conv2",
132 "class_name": "Conv2D",
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133 "config": {
134 "filters": 64,
135 "kernel_size": 3,
136 "activation": "relu",
137 "kernel_initializer": "he_normal",
138 "padding": "same"
139 },
140 "normalizer": {
141 "class_name": "BatchNormalization"
142 }
143 },
144 {
145 "class_name": "MaxPooling2D"
146 },
147 {
148 "class_name": "Conv2D",
149 "config": {
150 "filters": 128,
151 "kernel_size": 3,
152 "activation": "relu",
153 "kernel_initializer": "he_normal",
154 "padding": "same"
155 },
156 "normalizer": {
157 "class_name": "BatchNormalization"
158 }
159 },
160 {
161 "name": "conv4",
162 "class_name": "Conv2D",
163 "config": {
164 "filters": 128,
165 "kernel_size": 3,
166 "activation": "relu",
167 "kernel_initializer": "he_normal",
168 "padding": "same"
169 },
170 "normalizer": {
171 "class_name": "BatchNormalization"
172 }
173 },
174 {
175 "class_name": "MaxPooling2D"
176 },
177 {
178 "class_name": "Conv2D",
179 "config": {
180 "filters": 256,
181 "kernel_size": 3,
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182 "activation": "relu",
183 "kernel_initializer": "he_normal",
184 "padding": "same"
185 },
186 "normalizer": {
187 "class_name": "BatchNormalization"
188 }
189 },
190 {
191 "name": "conv6",
192 "class_name": "Conv2D",
193 "config": {
194 "filters": 256,
195 "kernel_size": 3,
196 "activation": "relu",
197 "kernel_initializer": "he_normal",
198 "padding": "same"
199 },
200 "normalizer": {
201 "class_name": "BatchNormalization"
202 }
203 },
204 {
205 "class_name": "MaxPooling2D"
206 },
207 {
208 "class_name": "Conv2D",
209 "config": {
210 "filters": 512,
211 "kernel_size": 3,
212 "activation": "relu",
213 "kernel_initializer": "he_normal",
214 "padding": "same"
215 },
216 "normalizer": {
217 "class_name": "BatchNormalization"
218 }
219 },
220 {
221 "name": "conv8",
222 "class_name": "Conv2D",
223 "config": {
224 "filters": 512,
225 "kernel_size": 3,
226 "activation": "relu",
227 "kernel_initializer": "he_normal",
228 "padding": "same"
229 },
230 "normalizer": {
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231 "class_name": "BatchNormalization"
232 }
233 },
234 {
235 "class_name": "MaxPooling2D"
236 },
237 {
238 "class_name": "Conv2D",
239 "config": {
240 "filters": 1024,
241 "kernel_size": 3,
242 "activation": "relu",
243 "kernel_initializer": "he_normal",
244 "padding": "same"
245 },
246 "normalizer": {
247 "class_name": "BatchNormalization"
248 }
249 },
250 {
251 "class_name": "Conv2D",
252 "config": {
253 "filters": 1024,
254 "kernel_size": 3,
255 "activation": "relu",
256 "kernel_initializer": "he_normal",
257 "padding": "same"
258 },
259 "normalizer": {
260 "class_name": "BatchNormalization"
261 }
262 },
263 {
264 "name": "conv_T_1",
265 "class_name": "Conv2DTranspose",
266 "config": {
267 "filters": 512,
268 "kernel_size": 3,
269 "strides": 1,
270 "kernel_initializer": "he_normal",
271 "padding": "same"
272 }
273 },
274 {
275 "class_name": "Conv2D",
276 "config": {
277 "filters": 512,
278 "kernel_size": 3,
279 "activation": "relu",
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280 "kernel_initializer": "he_normal",
281 "padding": "same"
282 },
283 "normalizer": {
284 "class_name": "BatchNormalization"
285 },
286 "inputs": [
287 "conv8",
288 "conv_T_1"
289 ]
290 },
291 {
292 "class_name": "Conv2D",
293 "config": {
294 "filters": 512,
295 "kernel_size": 3,
296 "activation": "relu",
297 "kernel_initializer": "he_normal",
298 "padding": "same"
299 },
300 "normalizer": {
301 "class_name": "BatchNormalization"
302 }
303 },
304 {
305 "name": "conv_T_2",
306 "class_name": "Conv2DTranspose",
307 "config": {
308 "filters": 256,
309 "kernel_size": 3,
310 "strides": 1,
311 "kernel_initializer": "he_normal",
312 "padding": "same"
313 }
314 },
315 {
316 "class_name": "Conv2D",
317 "config": {
318 "filters": 256,
319 "kernel_size": 3,
320 "activation": "relu",
321 "kernel_initializer": "he_normal",
322 "padding": "same"
323 },
324 "normalizer": {
325 "class_name": "BatchNormalization"
326 },
327 "inputs": [
328 "conv6",
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329 "conv_T_2"
330 ]
331 },
332 {
333 "class_name": "Conv2D",
334 "config": {
335 "filters": 256,
336 "kernel_size": 3,
337 "activation": "relu",
338 "kernel_initializer": "he_normal",
339 "padding": "same"
340 },
341 "normalizer": {
342 "class_name": "BatchNormalization"
343 }
344 },
345 {
346 "name": "conv_T_3",
347 "class_name": "Conv2DTranspose",
348 "config": {
349 "filters": 128,
350 "kernel_size": 3,
351 "strides": 1,
352 "kernel_initializer": "he_normal",
353 "padding": "same"
354 }
355 },
356 {
357 "class_name": "Conv2D",
358 "config": {
359 "filters": 128,
360 "kernel_size": 3,
361 "activation": "relu",
362 "kernel_initializer": "he_normal",
363 "padding": "same"
364 },
365 "normalizer": {
366 "class_name": "BatchNormalization"
367 },
368 "inputs": [
369 "conv4",
370 "conv_T_3"
371 ]
372 },
373 {
374 "class_name": "Conv2D",
375 "config": {
376 "filters": 128,
377 "kernel_size": 3,
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378 "activation": "relu",
379 "kernel_initializer": "he_normal",
380 "padding": "same"
381 },
382 "normalizer": {
383 "class_name": "BatchNormalization"
384 }
385 },
386 {
387 "name": "conv_T_4",
388 "class_name": "Conv2DTranspose",
389 "config": {
390 "filters": 64,
391 "kernel_size": 3,
392 "strides": 1,
393 "kernel_initializer": "he_normal",
394 "padding": "same"
395 }
396 },
397 {
398 "class_name": "Conv2D",
399 "config": {
400 "filters": 64,
401 "kernel_size": 3,
402 "activation": "relu",
403 "kernel_initializer": "he_normal",
404 "padding": "same"
405 },
406 "normalizer": {
407 "class_name": "BatchNormalization"
408 },
409 "inputs": [
410 "conv2",
411 "conv_T_4"
412 ]
413 },
414 {
415 "class_name": "Conv2D",
416 "config": {
417 "filters": 64,
418 "kernel_size": 3,
419 "activation": "relu",
420 "kernel_initializer": "he_normal",
421 "padding": "same"
422 },
423 "normalizer": {
424 "class_name": "BatchNormalization"
425 }
426 },
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427 {
428 "class_name": "Conv2D",
429 "config": {
430 "filters": 1,
431 "kernel_size": 3,
432 "activation": "sigmoid",
433 "kernel_initializer": "he_normal",
434 "padding": "same"
435 }
436 }
437 ]
438 }
439 }

Listing 8.3: Model Structure
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153

Thank you.
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