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Abstract 
 

 

The core purpose of this thesis was to investigate whether the methylphenidate-based 

(MPH) treatment of male children patients having attention-deficit/hyperactivity 

disorder (ADHD) led to changes to five subcortical brain structures (hippocampus, 

caudate, pallidum, putamen, and thalamus). The methylphenidate treated trials were 

compared to the placebo group. This was explored by using magnetic resonance (MR) 

images obtained from the effects of Psychotropic drugs On Developing brain (ePOD) 

study.  

 

 A radiomics approach was exploited to extract descriptors from T1-weighted MR 

images. Radiomics features including Local Binary Pattern (LBP), shape features and 

several texture features were derived from the right and left side of the chosen 

subcortical structures. In this context, a new feature extraction program for generating 

3D LBP biomarkers was developed and a new feature selection method Repeated 

Elastic Net Technique (RENT) appropriate for short-wide datasets were utilised. 

Thereafter, four different classification experiments were used to predict the 

medication class (medicated vs placebo) by using a nested cross-validation algorithm 

and nine supervised classifiers. The area under receiving operator curve (AUC) metric 

was used for evaluating the performance of classification tasks. 

 

The performance scores suggested that there was a detectable change in the selected 

brain structures using MPH medication. The classification models showed AUC scores 

mostly above 85% especially in experiments where LBP features were used as stand-

alone features or in addition to standard radiomics features. It appears that the LBP 

features were the most informative descriptor in this study.  

 

The classification results were approximately the same in experiments with correlated 

features and without correlated features. Additionally, the higher performance 

obtained in our study on the same dataset as in a previous study exploiting several 

feature selectors indicated the capability of our feature selection method (RENT) in 

selecting robust features.   
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1 Introduction and Motivation 

 

Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder 

among adolescents [1]–[6]. The most common medication for ADHD is 

methylphenidate-based treatment (MPH). However, its precise influence on the brain 

in the long-term is under debate [7], [8]. Since the maturation of the brain structure 

takes place during childhood, the usage of the drug during this sensitive phase of life 

can have persistent effects on brain development [9], [10].   

 

The current research is based on the effects of Psychotropic drugs On the Developing 

brain (ePOD) study [11]. Currently, there are few papers linked to the ePOD study 

[11]. In this context, the results of Bouziane et al. demonstrates the influence of 

methylphenidate on the white matter of the brain [4]. Walhovd et al. (2020) assessed 

the effect of MPH on cortical thickness in ADHD patients [7]. They found that the usage 

of methylphenidate affected the development of grey matter in the right medial cortex 

of children. Schrantee et al. in 2016 [12] presented an age-dependent study of the 

cerebral blood flow (CBF) response to methylphenidate medication. They observed 

that the subcortical thalamic CBF was reduced in children treated by MPH. Another 

study in 2020 by Tamminga et al. [8] explored the effect of MPH on the patient’s 

performance after the treatment. They concluded that the improvement of working 

memory and response speed in ADHD patients was related to the treatment period 

and not after the treatment.  

 

Furthermore, Grünbeck (2020) examined the changes in the grey matter of the human 

brain caused by  MPH treatment using radiomics [13]. Grünbeck performed several 

classification tasks and used various feature selection methods to examine the impact 

of MPH medication on the five subcortical structures of the brain, including the 

hippocampus, caudate, thalamus, putamen, and pallidum. Her study found that some 

image features, particularly from pallidum and putamen, appear to be associated with 

MPH treatment, but these findings required further confirmation. 

 

Radiomics is a developing field of study that aims to mine quantitative biomarkers from 

medical images to help the clinical decision-making process [14], [15]. Radiomics 

exploits advanced technologies in artificial intelligence to ameliorate the accuracy of 

diagnosis and treatment based on the extracted radiomics features [16]. Radiomics 
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features refer to the different types of features that can be derived from an image. 

Generally, they are categorised into four main groups (shape-based, intensity-based, 

texture-based, and higher-order features) [17]. Radiomics utilisation needs 

programming and machine learning (ML) knowledge. In this context, having a standard 

and user-friendly tool for researchers, scientists, radiologists, and oncologists to 

extract reproducible and comparable biomarkers from images is demanding. The 

Biorad framework [18], [19] using the pyradiomics package [20] tried to address this 

issue. The pyradiomics package covered common methods for extracting image 

texture features like the Grey Level Co-occurrence Matrix, Grey Level Run Length 

Matrix and so forth. However, the powerful feature extraction method Local Binary 

Patterns (LBP) [21] was not included.  

 

In radiomics studies, issues regarding medical image acquisition and the privacy 

policies regarding patient information complicate the sample gathering process [17]. 

In addition, in the feature extraction phase of radiomics, many biomarkers are 

extracted from the medical images. In this context, radiomics studies suffer from high 

dimensional data and few samples [22]. Repeated Elastic Net Technique (RENT) [23] 

is a brand-new user-friendly feature selection tool that works by training several 

ensemble sub-models on unique subsets of the dataset. The authors claimed that it is 

appropriate for short-wide datasets and that it provides high performance relative to 

other feature selection methods as Laplacian score, relief, mRMR and Fisher score 

[23].  

 

In this thesis, our primary objectives were to construct a robust classification model 

and extended the radiomics dataset in Grünbeck’s study of MPH on adolescent brains 

[13]. We utilised the radiomics approach to analyse the changes caused by ADHD 

medication in five subcortical structures of the brain by comparing treated patients to 

the control (placebo) group based on the images of the ePOD study [11]. In this thesis, 

we developed a 3D LBP extraction module that is not included in the pyradiomics 

package [20] and added it to the Biorad framework [19]. Thereafter, we examined 

classification results based on LBP features and compare them to the results obtained 

from other texture features and shape features. We tested RENT for selecting features 

and examined the robustness of features selected by RENT by modelling.  

 

All in all, the goals of this thesis were: 1) examine whether MPH medication alters the 

brain structure of ADHD-diagnosed ten- to twelve-year-old male patients; 2) explore 

the entire radiomics pipeline for an ADHD study; 3) develop a feature extraction tool 

for 3D LBP features; 4) explore the efficiency of RENT as a feature selection tool; 5) 

employ methods for examining the short-wide datasets; 6) tackle the lack of unseen 

data in the radiomics study. 
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This thesis’ chapters are structured according to the IMRaD (Introduction, Method, 

Results and Discussion) format [24]. Chapter 1 contains a brief introduction to our 

work and motivations. Chapter 2 contains the theoretical background of the thesis. 

Methods and Materials used in this thesis are outlined in chapter 3. The thesis's 

findings and experimental results are described in chapter 4. A discussion of the 

results and observations, and suggestions for future work are covered in chapter 5. In 

chapter 6, the conclusion of the goals of this thesis is given. The results that were not 

covered in chapter 4 are presented in chapter 7 as appendices.  
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2 Theory 

 

2.1 Attention-Deficit/Hyperactivity Disorder 

Attention-deficit/hyperactivity disorder (ADHD) is among the most frequently 

diagnosed childhood neurodevelopmental disorders, with an overall prevalence of 

5%–8% in children worldwide [1], [4]–[6]. Boys are twice as prone to be affected by 

ADHD as girls [6]. ADHD manifests itself with symptoms such as hyperactivity, severe 

impulsiveness, distractibility, and inattention. Therefore, it adversely affects social, 

educational, and emotional activities [1]–[3], [6], [25]. These side effects may continue 

into adulthood and result in a long-lasting impairment [5], [25]. 

 

Methylphenidate (MPH) treatment is a viable and safe medication prescribed broadly 

for ADHD patients; however, its exact neurochemical behaviour is under discussion, 

and knowledge about its long-term side effects on the children’s brains is limited [3], 

[9], [25]. 

 

Adolescence and childhood are exceptionally sensitive and susceptible time of brain 

development. During this time, the development of several parts of the brain happens. 

Hence, medications given during the delicate beginning stages of life may influence 

neurodevelopmental directions that can have more significant impacts later in life [9], 

[10]. 

 

Studies on Magnetic Resonance Imaging (MRI) have shown that stimulant medication 

influences brain development, to such an extent that untreated kids with ADHD show 

faster cortical thinning and smaller white matter volumes than children with ADHD 

using stimulant prescription [10]. Studies of medical images can play a helpful role in 

diagnosing and treating diseases and examining long-term changes in brain structure 

due to medication [1]. 
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Recently, MRIs have been widely used in the study of patient’s brain structures [25]. 

MRIs empower research to examine the structure of brains noninvasively. Thereby, it 

is possible to study different brain tissues (white matter and grey matter) and various 

cortical and subcortical brain structures [5].  

2.2 Radiomics 

Recently, the advancement of digital medical records in clinics and hospitals and the 

availability of medical images have facilitated the introduction of a new approach to 

extract data from medical images, called "Radiomics" [17], [26]. Radiomics is 

concerned with the concept that radiological images can reveal information that is not 

visible to the human eye. Radiomics investigates the quantitative features of digital 

images and converts the images into mineable data, incorporated into clinical 

decision-support [17], [27]–[30].  

 

The radiomics pipeline (Figure 1) comprises several steps, which will be discussed in 

this chapter. The steps are 1) image acquisition, 2) segmentation, 3) feature selection, 

4) feature extraction, and 5) modelling and evaluation. 

 

 

Figure 1. Radiomics pipeline includes the sequential activities of image acquisition, 
segmentation, feature selection, feature extraction, modelling and evaluation. 

 

2.2.1  Step 1: Image Acquisition 

Radiomics is the process of quantifying the characteristics of medical images [31]. It 

can be applied to different modalities of digital imaging [32]. There is no standardised 

image acquisition technology to use in a radiomics study [31].  

 

The most common medical imaging protocols are Computed Tomography (CT) Scans, 

Positron Emission Tomography (PET) Scans, and Magnetic Resonance Imaging 

(MRI). 

• PET Scan: This technique uses radioactive substances to scan the reaction of 

the organs and tissues to the drug. Utilising PET scans in combination with CT 

scans or MRI scans can lead to better disease diagnosis [33]. 

• CT Scan: Multiple X-ray images are captured from various angles around the 

body and combined by a computer algorithm to constitute cross-sectional 

images of the region inside the body [34].  
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• MRI: This screening technology uses a magnetic field and computerised radio 

waves. It produces high-resolution images of part of the body [35]. MRI has 

become an advanced technology that provides a non-invasive analysis of 

pathology [36]. 

 

The imaging protocols between sites and studies are usually not standardised. Also, 

the devices and scanners used for image acquisition may introduce noise that will 

affect the radiomics pipline [28]. Hence, in radiomics studies, the raw images are 

revised by pre-processing procedures, such as noise reduction, artefacts correction, 

normalisation and so forth [36]. 

 

2.2.2  Step 2: Segmentation 

Lesion segmentation is a critical step in a radiomics study as the image delineation 

affects the quality of features extracted from the corresponding region of interest (ROI) 

[14], [17], [26], [36].  

 

Segmentation can be done in manual, semi-automated or automated ways [14], [31], 

[32], [36].   

• Manual method: an expert or group of experts annotate the boundaries of the 

lesion region [36], [37]. Manual segmentation is vital in the studies as a high 

degree of lesion border accuracy is necessary [31]. 

• Semi-automated algorithms: refers to the usage of standard segmentation 

techniques such as thresholding or region-growing. These methods usually use 

manual correction [32]. 

• Automated solutions: Nowadays, several open-source or commercial 

software and tools for lesion segmentation are available [14], [32]. 

 

2.2.3  Step 3: Feature Extraction 

Feature extraction is at the heart of the radiomics pipeline. In this step, the images are 

converted to mineable data. The different types of biomarkers that can be extracted 

are categorised into three main groups as follows: 

 

• Shape features: are the most direct attributes related to the geometry of the 

ROI, such as volume, sphericity or compacity [27], [38]. 

• First-order features: refer to the statistical distribution of the voxel intensity 

values within the segmented region, and include measures like the mean, 

median, uniformity, randomness, skewness, kurtosis [5], [28], [38]. 

• Second-order features: generally, are described as texture features. This type 

of features is statistical descriptors related to spatial relationships between 
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voxels. There are many texture features. Examples of texture features are Local 

Binary Pattern (LBP), the Grey Level Co-Occurrence Matrix (GLCM), the Grey 

Level Run Length Matrix (GLRLM), the Neighbouring Grey Tone Difference 

Matrix (NGTDM) and so forth [26], [38], [39]. 

• Higher-order features: are determined by applying filters and advanced 

methods to the images to extract patterns difficult to distinguish by eye, such 

as Laplacian of Gaussian filter, Fourier transform, and Gabor transform [27], 

[38], [39]. 

 

 

In the rest of this section, the different texture features used in our study will be 

described.  

  

Three-Dimensional Local Binary Pattern (3D LBP) 

LBP is categorised as a texture feature. The basic concept of LBP was introduced by 

Ojala et al. (1996) [40]. After that, many extensions to it have been proposed. Some 

studies proposed an extension of LBP to capture 3D textures and patterns for 3D 

images. In our study, we used the approach presented by Montagne et al. (2013) [41]. 

 

LBP Basic Process 

The LBP basic calculation for both 2D and 3D space is the same. For calculating LBP 

code for each pixel/voxel in our image, the steps are as follows [41]–[44]: 

 

1) Calculate the difference between the intensity value of the central cell (𝑔𝑐) and 

its neighbours (𝑔𝑖), denoted as (𝑔𝑖 − 𝑔𝑐) 

2) Provide a sign function (𝑠(𝑥)) that means if the neighbour cell has an intensity 

value greater or equal to the central voxel, it is set to 1 else 0. By concatenating 

obtained zero or one values, we have a binary code of length P for each centre 

point. 

3) Convert the binary code to a base-ten decimal number by the LBP operator 

(Equation 1). Each decimal number represents a unique textured pattern. 

 

𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑖 − 𝑔𝑐)2𝑖𝑃−1
𝑖=0     where    𝑠(𝑥) =  {

1     𝑖𝑓 𝑥 ≥ 0 ,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

P is the number of neighbouring voxels at a distance R from the central node. 

 

4) Derive the LBP features by counting the frequency of each decimal output 

(histograms of patterns). This last step is necessary when we use the LBP operator 

for extracting texture features.  
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Figure 2 outlines the process of acquiring the decimal number in a 2D LBP. 

 

 

Figure 2. Example of a 2D LBP computation, P = 8 and R = 1 [42]. The intensity value of 
central cell (6) works as a threshold for assigning zero or one to the eight adjacent cells and 

making a binary code. 𝑖 is the index of the neighbouring pixels in a clockwise direction. The 

decimal is the base-ten format of the binary code. 

 

3D LBP 

According to Montagne et al. [41], in 3D LBP, we only considered the direct neighbours 

on the axes x, y, z and excluded the neighbouring voxels on diagonals in 3D space. 

The direct neighbours are surrounding voxels with R equal to 1 (Figure 3).  

 

Figure 3. Direct neighbours of a specific cell in 3D space on the x, y, z axes. a) The spatial 
schematic of the central node and its adjacent cells. White nodes are 0 (lower intensity value 
than c), and black nodes indicate 1 (higher or equal to c). The number on each circle shows 
the indexing order of nodes (𝑖). c (the intensity value of central voxel) denotes the threshold 
value. b) The enumeration order and the position of direct neighbours on each axis with the 
central node as the origin point [41]. 

 

The LBP operator output (Equation 1) produces 2𝑃 different values, referring to 2𝑃 

binary patterns (each neighbouring voxel can only have the value 0 or 1 in LBP 



Theory 

9 
 

computation). Hence, if the number of adjacent cells equals 6, we have 26 (= 64) 

patterns [45].  

 

Rotation Invariance 

It is important to recognise unique patterns from redundant ones because this 

increases interpretability and decreases computation time. According to [42], rotation 

of the image results in a different interpretation of LBP pattern location (Figure 4). 

 

Figure 4. The effect of rotation on the neighbourhood points [42]. 

 

The rotation-invariant concept states that some patterns counted as a new pattern are 

generated repeatedly by rotating the image. Actually, these patterns occur by 

displacement of the neighbouring cells along the perimeter of the circle (if we assume 

a circle around the central voxel with the neighbouring cells on its perimeter) [45]. 

Grouping the patterns of similar scenarios enables us to remove the effect of image 

rotation.  

 

According to [41], three distinct scenarios can occur at each axis by considering each 

coordinate (x, y, z) separately. These scenarios are: 

 

I. Both neighbouring nodes on the axis are lower than the centre voxel (zero value) 

II. One of the adjacents is lower than the centre value; the other is higher than (or 

equals) the centre node.  

III. Both adjacent cells on one axis are higher than or equal to the centre point (one 

value) 

 

We used the above scenarios to remove redundant patterns and reduce the number 

of patterns to 10 distinct patterns instead of 64 (26). Figure 5 demonstrates these 

patterns. The mentioned scenarios were also used to name the different patterns. For 

example, LBP_300 shows the pattern has only zero points on all three axes (pattern 

1 in Figure 5), whilst LBP_003 represents the pattern with all nodes equal to 1 on all 

three coordinates (pattern 10 in Figure 5). By contrast, the LBP_030 is the pattern in 
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which there exists one node of 1 and one node of 0 on each axis (pattern 6 in Figure 

5). Table 1 provides the number of times each pattern can arise and the pattern name. 

  

 

Figure 5. All possible groups of rotation invariant patterns in a 6-neighbour 3D LBP. The 
intensity value of the central voxel (c) is the threshold value. White nodes are cells with a lower 
intensity value than c (0), and black nodes indicate cells with a value higher or equal to c (1). 
The number on each circle shows the indexing order of nodes (𝑖) [41]. 

 

Table 1. Name and frequency of different arrangements of 6-neighbour 3D LBP patterns 
depicted in Figure 5. 

Pattern Number Name Multiplicities Pattern Number Name Multiplicities 

Pattern 1 LBP_300 1 Pattern 6 LBP_030 8 

Pattern 2 LBP_210 6 Pattern 7 LBP_102 3 

Pattern 3 LBP_201 3 Pattern 8 LBP_021 12 

Pattern 4 LBP_120 12 Pattern 9 LBP_012 6 

Pattern 5 LBP_111 12 Pattern 10 LBP_003 1 
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Grey Level Co-occurrence Matrix (GLCM) 

The texture representation technique of the co-occurrence matrix is one of the oldest 

statistical methods. This method determines the texture by means of grey level 

distribution [46]. The value of (𝑖, 𝑗)𝑡ℎ element of the matrix is the count of voxels with 

grey level 𝑗 that exists in a distance of 𝑑 along the direction 𝜃 from a voxel with the 

value of 𝑖 [21], [46]. Figure 6 shows an example of GLCM calculation. 
 

 

Figure 6. An example of GLCM computation with d = 1 and θ = 0. The element (2,1) of the 
GLC matrix equals 1 since only one combination of connecting voxels with intensity values of 
2 and 1 in the horizontal direction exists. modified from [13], [47]. 

 

According to [21], the features such as autocorrelation, difference entropy, contrast 

and so forth are calculated for the GLC matrix. 

 

Grey Level Dependence Matrix (GLDM) 

The GLD matrix presents the dependencies in a grey scale image [21]. The calculation 

of GLDM is illustrated in Figure 7. The element (𝑖, 𝑗) of the output matrix is the number 

of times that the centre voxel with grey level 𝑖 has 𝑗 dependent neighbour voxels. The 

centre voxel with intensity level 𝑖 is dependent on its neighbour cell with grey level 𝛾 

at the distance 𝑑 if |𝑖 − 𝛾| ≤ 𝛼 (𝛼 is a given scalar) [13], [21]. 

 

One can calculate Gray Level Variance, Dependence Non-Uniformity, Large 

Dependence Emphasis and so forth for the GLD matrix [21]. 
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Figure 7. An example of GLDM computation of an image with four grey levels. Here, the 
distance d equals 1, and the scalar α is 0. The lineated element of the GLD matrix equals 1 
since there exists only one centre voxel with value 2 and two dependencies. Modified from 
[13]. 

 

Grey Level Run Length Matrix (GLRLM) 

GLRLM is another statistical texture method. This method constructs the output GLRL 

matrix by calculating the count of cells with the same grey level in a specific direction 

of 𝛼 [46]. For instance, two voxels with the same intensity value in the horizontal 

direction provide one run with length two [47]. In Figure 8, the calculation of a GLRL 

matrix is shown. 

 

 

Figure 8. An example of GLRLM computation of an image with four grey levels in the direction 
of α = 0. The element (2, 3) of the GLRL matrix equals 1 since only one run with the grey level 
2 and length 3 in the horizontal direction exists. Modified from [13], [47] . 

 

Several features such as Short Run Emphasis, Run Percentage, Run Length Non-

Uniformity and so forth are calculated for the GLRL matrix [21]. 
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Grey Level Size Zone Matrix (GLSZM) 

The grey level size zone matrix considers the area with the cells of the same grey 

level. The basis of extracting GLSZM features is like GLRLM construction. The matrix 

(𝑖, 𝑗)𝑡ℎ element shows the number of zones with the size 𝑗 and intensity value 𝑖 (Figure 

9). This matrix manifests a homogeneous texture if the matrix elements show large 

areas of the same grey level toward any direction [46].  

 

 

Figure 9. An example of GLSZM computation of an image with four grey levels. The element 
(3, 3) of the GLSZ matrix equals 1 since only one zone has grey level 3 and size three. 
Modified from [13]. 

 

For the GLSZ matrix, various features such as Zone Percentage, Large Area 

Emphasis, Size-Zone Non-Uniformity and so forth are calculated [21]. 

 

Neighbouring Grey Tone Difference Matrix (NGTDM) 

The NGTDM provides the difference between the grey level of a voxel and the average 

intensity values of its neighbouring voxels at a distance 𝑑. The matrix consists of the 

sum of absolute differences for intensity value 𝑖 [21]. Figure 10 illustrates the 

computation of NGTDM.  

 

The features such as coarseness, contrast, busyness, complexity, and strength are 

calculated for the NGTD matrix [21]. 
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Figure 10. An example of a 2D NGTD matrix calculation. 𝑠𝑖 indicates the sum of the absolute 
difference between grey level 𝑖 and its adjacent cells. The figure shows the computation of 

𝑠3 (𝑖 = 3, 𝑑 = 1) 𝑠3 =  |3 −
4+4+1+2+3

5
| +  |3 −

4+4+3+2+2+1+2+3

8
| +  |3 −

4+4+3+1+2

5
| = 0.78. 

modified from [13]. 

 

 

Although LBP is a texture feature, from here on, the term "texture feature" refers to the 

second-order features including GLCM, GLDM, GLRLM, GLSZM and NGTDM, 

excluding LBP. Whenever we aimed at referring to the LBP feature, we mentioned its 

name directly.  

 

2.2.4  Step 4: Feature Selection 

According to [48], feature selection is crucial for problems with short-wide datasets for 

three reasons: 1) to tackle the “curse of dimensionality”; 2) to compact the input data 

for reducing model execution time; 3) to improve the result comprehensibility. 

 

Thus, feature selection is a critical step in the radiomics pipeline because plenty of 

features are obtained during the feature extraction step. In addition, due to the 

limitations for gathering samples in clinical studies, the dataset has a small number of 

samples compared to plenty of features. Therefore, in this context, datasets are short-

wide (few samples with many features). Moreover, the radiomics features are highly 

correlated, redundant, or irrelevant, affecting model performance [17], [22].  

 

Feature selection focuses on searching for a subset of the input data with fewer 

features that can represent the given dataset effectively and improve the learning 

accuracy by decreasing the side effects of noise or redundant features [49], [50]. In 

past years, several methods have been proposed for answering the need for selecting 

features. In general, the feature selection methods are categorised as filter methods, 

wrapper methods and hybrid methods. 
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The filter approach refers to the algorithms for selecting features without training by 

any predictive model [48]. On the other hand, wrapper methods rely on learning by a 

predefined model and using its performance as the criteria to select features [51]. In 

contrast, the hybrid methods are a combination of both filter and wrapper methods 

[52]. 

 

Repeated Elastic Net Technique (RENT) 

RENT [23] is a brand-new feature selection method introduced by the Norwegian 

University of Life Sciences. It is an ensemble based approach and well designed for 

short–wide datasets [23]. It tries to select robust features by employing logistic 

regression (LR) model with elastic net regularisation for binary classification tasks.  

 

 

Figure 11. The blue frame demonstrates the RENT process. RENT splits and trains the input 
dataset across the K sub-models and selects the robust features based on three criteria 

(𝜏1, 𝜏2, 𝜏3). The output is a dataset with the selected features  [23].  

 

According to  [23], in a binary classification problem, RENT first splits the input dataset 

into several unique subset models (Figure 11). Then, it uses the penalised LR 

algorithm to train each subset model 𝑀𝑖 separately. In each sub-model, a different 

subset of features may be selected by the elastic net regularisation. Finally, based on 

the quality criteria and the user given cut-off values. A feature will be added to the 

output dataset if it fulfils all of the following criteria together [23]: 

 

1. The feature has a high score, which means that it is selected in most of the K 

models (𝜏1). A user-defined threshold (𝑡1) determines how many times the 

feature should be selected among all K models. 

2. The feature is stable if it has few weights’ signs alternation (𝜏2). A feature with 

weights of the same sign (either all positive or all negative) is ideal. The user 

can provide the preferred number of proportions of feature weights with the 

same sign (𝑡2). 
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3. The feature frequently has non-zero weights across the K sub-models with low 

variance (𝜏3). User can specify a threshold value (𝑡3) for the level of 

significance.  

 

All the quality metrics are bounded between 0 and 1 (𝜏1, 𝜏2, 𝜏3 ∈  [0, 1]) [23]. It has to 

be stressed that a feature is selected if and only if 𝜏1 ≥ 𝑡1 𝑎𝑛𝑑 𝜏2 ≥ 𝑡2  𝑎𝑛𝑑 𝜏3 ≥ 𝑡3. 

 

The possibility of defining three threshold values (𝑡1 , 𝑡2 , 𝑡3), instead of specifying the 

desired number of features, makes the user capable of adjusting the strictness of the 

feature selection process.  

 

Elastic Net 

Elastic net is a regularisation method introduced by Zou and Hastie (2005) [53]. 

Equation 2 shows the elastic net regularisation term (𝜆𝑒𝑛𝑒𝑡) calculation [23]. 

 

𝜆𝑒𝑛𝑒𝑡(𝛽) =  𝛾[𝛼 𝜆1(𝛽) + (1 − 𝛼) 𝜆2(𝛽)] (2) 

 

The penalty parameter 𝜆1  (named L1 regularisation) penalise the sum of absolute 

values of 𝛽 (regression coefficients), and the penalty parameter 𝜆2 (named L2 

regularisation) penalises the sum of squared values of 𝛽  [23], [54]. 

 

In equation 2, 𝛾 denotes the regularisation strength and is a positive decimal number. 

𝛼 is a mixing parameter in the range of [0,1] [23]. RENT uses the LR classifier 

implemented in scikit-learn [55]. In this package, the 𝛼 parameter is indicated by the 

l1_ratio parameter, and instead of  𝛾 parameter, the inverse of 𝛾 named C parameter 

is used [55].   

 

Compared to other regularisation models (Lasso and Ridge), the elastic net advantage 

is in exploiting both 𝜆1 and 𝜆2 penalty parameters that empower the algorithm to 

combine shrinkage and the variable selection [54].  

 

In [23], RENT is compared to various feature selection methods by performing several 

empirical experiments, and Fisher score (F- Score) and recursive feature elimination 

(RFE) methods provided competitive results. Thus, we chose these two feature 

selection methods to describe as examples of filter methods (F- Score) and wrapper 

methods (RFE).   

 

Fisher Score Method 

The Fisher score (F-Score) method selects features by measuring the class 

discriminant of each feature based on its F-Score value [56]. It is a filter-based method, 
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which means that features scores are calculated, and the features are selected in 

terms of their score ranks [57].  

 

The idea behind this method is to provide a subset of features with larger distances 

between samples in a different class and a smaller distance between data points of 

an individual class [57]. The final selected feature subset contained features with a 

higher F-Score [56]. Equation 3 is used for calculating F-Score [58]. 

 

𝐹(𝑥𝑗) =  
∑ 𝑛𝑘(𝜇𝑘

𝑗
−  𝜇𝑗)

2
𝑐
𝑘=1

(𝜎𝑗)2
 (3) 

 

Where:  

𝑥𝑗 is the j-th feature 

𝜇𝑘
𝑗
 is the mean of the jth feature in the k-th class  

𝜎𝑘
𝑗
 is the standard deviation of the j-th feature in the k-th class c  

𝜇𝑗  is the mean of the j-th feature for the whole dataset  

𝜎𝑗  is the standard deviation of the j-th feature in the whole dataset  

 

Although the features selected by the F-Score algorithm are often suboptimal, this 

heuristic algorithm has some deficiencies. The F-Score method fails in cases where 

features have low individual score and a very high score when considering together 

as a whole. Another drawback is related to its weakness in handling redundant 

features [57]. 

 

Recursive Feature Elimination Method 

The recursive feature elimination (RFE) method is a simple and popular wrapper 

method. RFE uses various ML algorithms as the core training method [59].  

 

The algorithm starts by fitting an ML model on the given dataset. Then it continues by 

eliminating the least important features or features with lower weight coefficients. This 

process is repeated until the desired number of features is reached [59], [60].  

 

Even though this method is quick and straightforward, it is not appropriate for problems 

with plenty of highly correlated features [61]. 

 

2.2.5  Step 5: Modelling and Evaluation 

Machine learning is a subfield of the artificial intelligent area and has evolved 

remarkably fast [15]. Machine learning shows its unique capabilities in research areas. 

It plays an essential role as an interface between medical research and computer 
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science studies [22]. The analysis of image data through machine learning concepts 

can empower us to understand illnesses and medications, and it can provide effective 

treatments and personalised medication [62].  

 

Model Building 

In radiomics studies, the objective is to exploit machine learning concepts to predict 

the target based on radiomics features [14]. Machine learning algorithms are 

categorised into two main groups: 

 

• Supervised learning uses labelled samples as the target variable to predict 

the output. The target can have continuous values in a regression model or a 

categoric value in a classification model [15], [63]. 

• Unsupervised learning does not use expert labelled data. Instead, it tries to 

find the patterns in the data by methods such as clustering and predict the new 

data structure [62], [63].  

 

Supervised Classifiers 

As mentioned before, classification problems belong to the family of supervised 

learning methods. With regards to the number of class labels, the classification tasks 

can be binary or multi-class problems. There are only two class labels in binary 

classification; by contrast, multi-class tasks have more than two class labels. The 

current study is a binary classification work. 

 

There are a variety of classifiers used in supervised learning for binary classification. 

In this research, we used the following classifiers:  

 

• Logistic Regression (LR) Classifier is an easy-to-implement algorithm. It is 

broadly used in medical studies because it is appropriate for defining the 

disease state [64]. Despite its name, it is a binary classifier that forecasts the 

target value using the logistic function [63]. It is not necessary to have normally 

distributed predictors or linearly related ones, but these will increase the model 

power. It assumes a linear relationship between the logit of the dependent 

variable (outcome) and the independent variable (predictor) [64].  
 

• Support Vector Machines Classifier (SVC) It is an effective machine learning 

method. Its objective is to maximise the distance between decision boundaries 

and the samples [55].  
 

• K Nearest Neighbors (KNN) Classifier seeks the given number of samples 

(k) near the desire training example based on a distance metric and provides 

the class label of the desired sample by majority voting [55]. 
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• Multi-Layer Perceptron (MLP) Classifier is a basic neural network algorithm. 

It has multiple nodes and layers (similar to a direct graph). The layers are the 

input layer, the hidden layer(s) and the output layer. All nodes in one layer are 

connected to the nodes in the preceding layer [65].  
 

• Decision Tree (DT) Classifier is the basic tree classifier that is based on rules. 

It groups the samples based on rules and decision making [55]. 
 

• Random Forest (RF) Classifier refers to the algorithm that models an 

ensemble of decision tree sub-models and provides the output based on the 

majority class label in all sub-models [66]. It uses a random bootstrap sample 

size [55]. 
 

• Ridge Classifier corresponds to an L2 regularised model [55], [67]. This 

algorithm moderates the weight coefficients by minimising the sum of squared 

residuals [68]. 
 

• Adaptive Boosting (AdaBoost) Classifier is an ensemble algorithm. It trains 

many weak learners by generating a sequence of classifiers and reweighting 

the importance of samples to find the best classifier. Larger weights are 

assigned to misclassified samples until the algorithm attains a model that can 

classify them correctly [67]. 
 

• Extremely Randomised Tree Classifier It is also an ensemble model based 

on decision trees. Its difference from the random forest is that it uses the entire 

sample instead of bootstrapping. Also, it randomly chooses the cut-points for 

splitting the nodes. Similarly to other ensemble models for final prediction, it 

uses a majority voting [69]. 
 

• Light Gradient Boosting Machine (LGBM) Classifier is a method that uses 

a gradient boosting decision tree procedure. It uses histogram-based concepts 

which convert continuous values into discrete groups (bins) [70].  

 

Hyper Parameter Tuning 

Hyperparameters correspond to any parameter of the ML algorithm set before model 

training starts [71]. For instance, in an ANN model, the batch size or the number of 

layers are hyperparameters because they are fixed before training begins; in contrast, 

the weights are not hyperparameters since their values are assigned during the 

training process [71], [72]. Because hyperparameters control the training process 

directly, they impact model performance significantly [72]. Simple ML algorithms do 

not have any hyperparameters; conversely, some others require plenty of 

hyperparameters to be set beforehand; in some cases, the hyperparameters are 

related to each other [73].  
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Hyperparameter tuning refers to the process of finding the combinations of 

hyperparameters that lead to the highest performance [72]. There are a wide variety 

of automatic tuning methods. Grid Search is a popular hyperparameter search 

technique that finds the best combination of given hyperparameters by checking the 

different combination of algorithm parameters from a predetermined parameters grid 

[72], [73]. Despite being simple, it is time-consuming when the dataset is large, and 

the parameter grid contained many alternatives [73]. Since the dataset used in this 

study is very short, we used this method for hyperparameter optimisation. 

 

Model Validation 

The model performance should be evaluated on unseen data, ideally data from other 

institutions [74], [75]. Due to patient privacy policies, gathering many medical images 

as samples is difficult, and medical datasets can suffer from small samples availability 

[17]. 

 

If independent data is not available, it is possible to split the data into train and 

validation groups. In this way, the algorithm can learn from the train set and predict 

the output based on the validation set, which is untouched during the learning process. 

However, when the dataset contains few samples, the splitting approach does not 

work properly due to insufficient train and validation data. In this situation, cross-

validation techniques are utilised for increasing the model’s generalizability [74], [75]. 

Among the various types of cross-validation methods, the nested cross-validation 

technique is useful when the model is prone to overfitting (such as small dataset issue) 

and whenever there is a need for hyperparameter tunning [55], [74].  

 

Nested Cross-Validation 

The cross-validation techniques assess the model's generalizability by dividing the 

data into training and validation sets [63]. In nested cross-validation, instead of a single 

layer, there are multiple layers, generally, two layers of cross-validation inner loop and 

outer loop [76].  

 

Figure 12 shows a 5×3 nested cross-validation (five folds in the outer layer and three 

folds in the inner layer). A 5×3 nested cross-validation splits the data into five folds in 

the outer loop; four folds are the train set and one fold as a validation set playing the 

role of unseen data. The train set is again split into three folds in the inner loop, two 

folds for training and one fold as a test set. The model execution is repeated by 

changing the folds until all the folds are used as train and validation sets in the outer 

loop and train and test sets in the inner loop. The hyperparameter tuning is done in 

the inner loop. In the outer loop, the best hyperparameter set (obtained from the inner 

loop) is used for making the final prediction on the validation set [63], [75], [76].  
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The added outer loop removes the bias in the flat cross-validation method since the 

validation data has not been used to select the optimal model. This process gives us 

a more reliable model than the basic cross-validation form [77].  

 

 

Figure 12. A 5×3 nested cross-validation (five folds in the outer loop and three folds in the 
inner loop). 

 

Model Evaluation 

There are a variety of metrics for evaluating the performance of classification models. 

In medical studies, it is vital to differentiate between false positive (FP) and false 

negative (FN) misclassification [17], and the metrics used must take this into account. 

In classification prediction, true positive (TP) and true negative (TN) refers to the 

situation that a sample is classified correctly. In contrast, false positive (FP) and false 

negative (FN) correspond to misclassification cases. Various metrics are calculated 

using FP and FN concepts; among them, the area under the receiver operating curve 

(AUC) is a common metric proper for a balanced dataset [74].  

 

Area Under Curve 
 

According to [63], for computing AUC, the first step is to plot the receiver operating 

curve (ROC) based on true positive rate (TPR) and false positive rate (FPR), then 

calculate the area under this curve. Equation 4 shows the TPR and FPR computation 

[63]. 
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𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4) 

 

Figure 13 illustrates the receiver operating curve. It is clear from the figure that the 

AUC ranges from 0.0 (no correct classifications) to 1.0 (no incorrect classifications). 

In this plot, the AUC of 0.5 shows the random classification rates.  

 

Figure 13. An example of the Receiver Operating Curve with the Area Under Curve of 0.79. 
The blue dashed line shows the random guess line [55]. 
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3 Materials and Methods 

 

3.1 Image Acquisition and Segmentation 

3.1.1  The ePOD-MPH Study 

In this study, images from the ePOD-MPH study [11] were considered. In 2011, a 

randomised double-blinded project named “the effects of Psychotropic drugs On 

Developing brain (ePOD)" was conducted. This research was designed to be placebo-

controlled. The Clinical Research Unit of the Academic Medical Center at the 

University of Amsterdam in the Netherlands was the responsible authority for this 

project. The ePOD-MPH study was one of the three categories in the ePOD project.  

 

In the ePOD-MPH study, the participants were randomised to receive methylphenidate 

or the placebo for 16 weeks. After that, a week wash-out period was conducted. The 

MRIs were taken before the beginning of treatment (baseline), during the treatment 

(after the eight weeks), and after the wash-out period (17-week). In our thesis, we 

referred to the baseline images as pre-treatment images and the 17-week MRIs as 

post-treatment images. 

 

In the ePOD-MPH study, 100 male ADHD patients were involved in the experiment. 

There was an equal number of children (10- to 12-year-old) and adults (23- to 40-year-

old) among the participants. This master study is limited to examining the MRIs 

obtained from male adolescents. Four subjects were excluded from the current study 

regarding the exclusion rule: 1) The trials with no baseline or 17-week MRI led to image 

exclusion. 2) In addition, the images disrupted by head motion were removed from this 

study. Thus, 46 samples were included for analysis containing 24 placebo-treated 

patients and 22 MPH-treated trials, giving a balanced dataset.  

 



Materials and Methods 

 

24 
 

Figure 14 shows the distribution of class labels. The trials were labelled in terms of the 

medication group. The cases in the MPH group were labelled as class 1 (samples’ ID 

from 0 to 21) versus subjects in the placebo group labelled as class 0 (samples’ ID 

from 22 to 45).  

 

 

Figure 14. The distribution of class labels. Class 0 indicates the placebo group, while class 1 
denotes the MPH treated group. 

 

3.1.2  Image Segmentation 

The images and masks used in this thesis were obtained from the study by Grünbeck 

[13]. In her study, raw T1-weighted MR images were used, and five subcortical brain 

structures named hippocampus, caudate, putamen, thalamus, and pallidum were 

selected for analysis. Grünbeck [13] created binary masks for the left and right side of 

the mentioned subcortical structures separately. 

 

3.2 Feature Extraction 

The feature extraction steps in our study contained two separate phases. The first one 

was related to the extracted shape and texture features done by Grünbeck [13], and 

the second one was related to the LBP features, which were extracted by a new 

programme developed in this thesis. We also modified the Biorad application [19] to 

add our new 3D LBP feature extraction module. This framework was developed by 

Langberg [18] and upgraded into a user-friendly tool for extracting radiomics features 

by Albuni [19].   

 

In this section, we first explain generating shape and texture features as done by 

Grünbeck; then, we elaborated the LBP module and modifications of Biorad to adapt 

this new LBP module. 
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3.2.1  Shape and Texture Features Extraction 

Grünbeck [13] used Biorad [19] for generating radiomics features. The Biorad 

framework [18], [19] uses pyradiomics [20], an open-source python package for 

generating radiomics features. This package aims to provide a reference for radiomics 

studies and introduce an easy tool for extracting reproducible radiomics features.  

 

Grünbeck used the default parameters of pyradiomics for generating radiomics 

features. This means that for GLCM, GLDM and NGTDM, the distance between voxels 

was set to 1, and the threshold scalar of dependence in GLDM was set to zero.  

 

Before extracting texture features, Grünbeck discretised the images’ intensity by using 

bin sizes of two and four to reduce the intensity level range of images from 256 to 128 

and 64 intensity levels, respectively. This process generates two distinct feature sets 

named 128-bin and 64-bin sets. Furthermore, the features were extracted from the left 

and the right side of each subcortical brain structure. The number of radiomics features 

extracted by Grünbeck for one side of one of the subcortical brain structures is shown 

in Table 2.  

 

Table 2. The number of radiomics features extracted from the images for one subcortical 
structure on one side of the brain. 

Shape 
(3D) 

Texture 

GLCM GLDM GLRLM GLSZM NGTDM 

128-bin 64-bin 128-bin 64-bin 128-bin 64-bin 128-bin 64-bin 128-bin 64-bin 

14 24 24 14 14 16 16 16 16 5 5 

 

3.2.2  3D LBP Features Extraction 

As there is no tool in the python language (at the date of writing this thesis) for 

generating 3D LBP features, we developed a 3D LBP feature extraction module and 

integrated it into the Biorad framework [19]. Thus, now it is possible to extract LBP 

features in addition to pyradiomics features [21] by using the Biorad framework [19]. 

The code for extracting 3D LBP features is available in Appendix A. We used NiBabel, 

an open-source python package that supports standard neuroimaging file formats, for 

converting the images and binary masks into arrays [78].   

 

According to chapter 2, only direct neighbours were considered (6 neighbours located 

on x, y, z axes).  

 

The steps of extracting 3D LBP features are as follows: 

1. Read the image and corresponding mask 
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2. Convert the image and mask into arrays 

3. Calculate the LBP value (considering direct neighbours, which means P=6 and 

R=1) for the voxels in the binary mask area (as mentioned in chapter 2) 

4. Map the LBP value to the corresponding rotation invariant pattern (based on 

the rotation_invariant_pattern table in Appendix B)  

5. Calculate the frequency of patterns 

6. Compute the following fraction:  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠
  

 

Ten LBP features were extracted for each side of the subcortical structure of the brain.  

  

Modifications of Biorad Feature Extraction Module 

After developing the feature extraction programme for extracting 3D LBP features from 

medical images, we upgraded the last version of the Biorad framework from the Albuni 

study [19] to make it compatible with generating 3D LBP features. The modified code 

of Biorad is available in Appendix C. The list of modifications of the Biorad feature 

extraction module is as follows: 

 

1. Imported the 3D LBP module. 

2. Added the “LBP” to its feature list. 

3. Added our code to the functions named “extract_radiomics_features“ and 

“get_selected_features”. 

4. Added the LBP column to the template.csv file.  

5. Modified the requirement.txt file of the Biorad framework to install our necessary 

python packages (NiBabel, Collections, Six, Pandas and Numpy). For the 

required packages of Biorad, see [19]. 

 

The input to the feature extraction module of Biorad is a CSV file (named template.csv) 

containing the location of the images and masks files and the output file location. Also, 

the user should choose the desired radiomics features to be extracted by inserting a 

1 value in the related columns (Figure 15).  

 

 

Figure 15. A sample data of template.csv file used by Biorad as an input setting for generating 
radiomics features. In this setting, the LBP features are selected. 

 

The template.csv file contained the following data as an input configuration to the 

Biorad feature extraction module: 

 

• image_dir: the image files’ directory.  
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• mask_dir: the mask files' directory. The name of the masks should match 

exactly the name of the corresponding image.  

• output_file_name: the name of the output file or its directory. If the user did not 

insert the file path, the output file would be saved in the working folder.   

• bin_width: the specific grey levels. 

• The rest of the columns have the name of radiomics features: if the user typed 

a 1 in any of these columns, that feature would be extracted. 

 

The output file is a CSV file containing the name of images and the specified radiomics 

features with their corresponding values. Figure 16 shows an example output file for 

LBP extracted features and shape features.  

 

 

Figure 16. An example output file from the Biorad feature extraction module showing extracted 
shape and LBP features with the name of the corresponding image. 

 

3.2.3  The Feature Matrices 

Grünbeck [13] used two sets of MR images to analyse the changes in the brain 

structure of MPH-treated and placebo groups. The pre-treatment set or the baseline 

images was acquired before treatment started. The other set, the post-treatment, 

referred to the images captured at the 17-week of treatment. After the features were 

derived from the pre-treatment and post-treatment images separately, we obtained 

output files containing the extracted radiomics features for each side of the brain for 

each subcortical. The goal of this study was to assess potential changes in the brain 

structure due to MPH treatment. Therefore, for constructing the final datasets for each 

subcortical structure of the brain, pre-treatment (𝑃𝑟𝑒_𝑠𝑒𝑡) features were subtracted 

from the corresponding post-treatment (𝑃𝑜𝑠𝑡_𝑠𝑒𝑡) features by using equation 5 [13]:  

 

𝐶𝑚,𝑛 = 𝑃𝑜𝑠𝑡_𝑠𝑒𝑡𝑚,𝑛 −  𝑃𝑟𝑒_𝑠𝑒𝑡𝑚,𝑛 (5) 

 

Here 𝐶𝑚,𝑛 indicates the change of the feature value related to feature 𝑚, and sample 

𝑛, in the feature set. Thus, the feature matrices contained the change of the 

corresponding radiomics feature. For each subcortical structure of the brain, we 

concatenated the feature matrices of the left and right part of the structure to construct 

the final datasets. The example in Table 3 illustrates the structure of the final dataset.  
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Table 3. An example of the structure of the final dataset constructed based on the change 
between post-treatment and pre-treatment features. Class 1 indicates the MPH-treated group, 
and class 0 denotes the placebo group [13]. 

Participant 
ID 

Class 
Left Segment 

Feature 1 

Left Segment 

Feature 2 

Right Segment 
Feature 1 

Right Segment 
Feature 2 

0 1 𝐶𝑙1,0 𝐶𝑙2,0 𝐶𝑟1,0 𝐶𝑟2,0 

1 1 𝐶𝑙1,1 𝐶𝑙2,1 𝐶𝑟1,1 𝐶𝑟2,1 

…      

22 0 𝐶𝑙1,22 𝐶𝑙2,22 𝐶𝑟1,22 𝐶𝑟2,22 

23 0 𝐶𝑙1,23 𝐶𝑙2,23 𝐶𝑟1,23 𝐶𝑟2,23 

…      

 

 

3.2.4  Datasets 

For each subcortical structure (hippocampus, caudate, putamen, thalamus, and 

pallidum), three datasets were used as an input for modelling and comparison, the 

"initial dataset" and an "expanded dataset", and the "LBP dataset".  

 

Initial Dataset 

The “initial dataset” contained the shape features and texture features acquired in 

Grünbeck’s thesis [13]. In this way, we can compare our results with the results of her 

study. The “initial dataset” for each of the five subcortical brain structures has 46 rows 

corresponding to the 46 participants. The columns contained an ID column identifying 

patients, a Label column indicating class labels (0 or 1) and 328 radiomics features 

(28 shape feature and 300 texture features). Figure 17 illustrates the type and number 

of radiomics features included in the “initial dataset”.  
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Figure 17. The structure of the radiomics features (in total 328) in the “initial dataset” for every 
subcortical structure of the brain. 

 

The distribution of features in the "initial dataset" is illustrated in Figure 18. The shape 

feature comprised 8% of the whole dataset compared to texture feature 128-bin (46%) 

and 64-bin (46%). There was an equal number of features from each side of the brain. 
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Figure 18. Pie chart shows the distribution of various radiomics features in the “initial dataset”. 
128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey level 
discretisation. Shape denotes the shape features. 

 

LBP Dataset 

The “LBP dataset” for each subcortical brain structure has 46 rows corresponding to 

the 46 participants. The columns are an ID column identifying patients, a Label column 

indicating class labels (0 or 1) and 20 radiomics features (referring to 10 LBP pattern 

for each side of the brain). Figure 19 illustrates the type and number of radiomics 

features included in the “LBP dataset”. 

 

 

Figure 19. The structure of radiomics features (in total 20) in the “LBP dataset” for every 
subcortical structure of the brain. 

 

Expanded Dataset 

The “expanded dataset” contained the features in the “initial dataset” and the features 

in the “LBP dataset” (Figure 20). Thus, the “expanded dataset” for each subcortical 

brain structure, same as the mentioned datasets, has 46 rows corresponding to the 
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46 participants as well as an ID and a Label column. This dataset contained 348 

radiomics features (28 shape feature, 300 texture features and 20 LBP features)  

 

 

Figure 20. The structure of the “expanded dataset”. It contains the features from both the 
“initial dataset” (shape and texture features) and the “LBP dataset” (LBP features). 

 

Figure 21 shows the distribution of features that exists in the “expanded dataset”. The 

LBP features comprised 6% of the whole dataset in comparison to shape feature (8%) 

texture feature 128-bin (43%) and 64-bin (43%). The number of features from each 

side of the brain was equal. 

 

 

Figure 21. The pie chart shows the distribution of various radiomics features in the “expanded 
dataset”. 128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey 
level discretisation. Shape denotes the shape features, and LBP corresponds to LBP features. 
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3.3 Experiments 

In this study, we performed four different experiments for each subcortical structure of 

the brain, separately, and we compared the results of these experiments in the result 

section. The overall workflow for performing each experiment is shown in Figure 22.  

 

 

Figure 22. The workflow used for assessment for all experiments. 

 

The only difference in the experiments is the different datasets used as the input 

dataset per experiment. All other steps are the same (Figure 22). For an overall 

overview of different experiments, see Table 4.  

 

Table 4. An overview of various experiments. Note that the LBP dataset contained only 20 
features; thus, experiment 4 did not have any feature selection step. 

 Input Dataset Feature selection method 

Experiment 1  Initial dataset RENT 

Experiment 2 Expanded dataset RENT 

Experiment 3 Cleaned dataset by removing highly 
correlated features from "expanded 
dataset".  

RENT 

Experiment 4 LBP dataset Not Applicable 

 

 

3.3.1  Correlation Analysis 

The radiomics features are prone to be highly correlated. Therefore, in experiment 3, 

we tried to examine the correlation between features. We aimed to investigate how 

RENT selects correlated features and assess our model without the correlated 

features. The “expanded dataset” was used in this experiment to analyse the 
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correlation coefficient of features. A cleaned dataset was created by removing the 

highly correlated features from the "expanded dataset" and used as the input dataset 

in experiment 3. We used Spearman's Rank Correlation Coefficient (SCC) [79] to find 

the correlation between features, and we removed one of the highly correlated (having 

SCC above 95%) features from pairs. We used the code from [80], which is available 

in Appendix D. In this code, one of the features from highly correlated pairs were 

arbitrarily removed. Also, the threshold value (95%) was selected arbitrarily. The 

cleaned dataset for each subcortical brain structure differed. In the result section, we 

describe the selected features and removed features in more detail. 

  

Spearman’s Rank Correlation Coefficient (SCC) 

Spearman’s Rank Correlation Coefficient (SCC) [79] measures the statistical 

association of two features in terms of their ranks [81]. It is a nonparametric 

(distribution free) metric [81]. It is used when the data between two features is not 

normally distributed [82]. Equation 6 presents the calculation of SCC for two features, 

A and B: 

 

𝑆𝐶𝐶(𝐴, 𝐵)  =  𝜌𝑟𝐴,𝑟𝐵
=  

𝐶𝑂𝑉(𝑟𝐴, 𝑟𝐵)

𝜎𝑟𝐴
. 𝜎𝑟𝐵

 (6) 

 

Here 𝜌 is the Pearson correlation coefficient of the ranked features (𝑟𝐴, 𝑟𝐵), 

𝐶𝑂𝑉(𝑟𝐴, 𝑟𝐵) is the covariance matrix, and 𝜎𝑟𝐴
 and 𝜎𝑟𝐵

 are the standard deviations.  

 

SCC ranges from -1 to +1, where both endpoints show a perfect negative or positive 

correlation, respectively [82]. Thus, SCC = 0 represents lack of correlation.  

 

3.3.2  Feature Selection Using RENT 

In current study, we used RENT for selecting feature (and dimension reduction). RENT 

is a new feature selection method designed for short-wide datasets [23]. By RENT, we 

could reduce the dimension of our dataset from hundreds of features to a few features.  

 

As is mentioned in chapter 2, RENT tries to select robust features by creating many 

ensemble models [23]. In our study, we configured RENT to build the ensemble 

penalised LR models based on accuracy score. The accuracy score is a widespread 

metric in classification defined as the proportion of correctly predicted samples [63]. 

Here, we used 100 sub-models. In each model, 80% of the samples were randomly 

assigned to the train set, and the remaining 20% of the samples were assigned to the 

test set. All of the configurations of RENT models performed in this research are 

available in Appendix E. 
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It should be pointed out that in experiments related to the hippocampus set, we 

performed RENT two times to make robust models and to test RENT’s ability in making 

polynomial features. The polynomial option of RENT makes new features by squaring 

each variable to capture nonlinearities and multiplying pairs of variables to obtain 

variable interactions. In the rest of the structures sets (putamen, caudate, thalamus 

and pallidum), we only performed RENT once without polynomial features because 

the original features had sufficient power to show satisfactory prediction performances 

without modification.  

 

3.3.3  Modelling and Evaluation 

 Nested Cross-Validation 

One of the limitations of this study was the lack of an unseen validation set. In addition, 

there were very few samples that make the modelling prone to be overfitted. For 

decreasing the generalisation error (overfitting degree), we used nested cross-

validation with five outer and three inner folds. For implementing the nested cross-

validation, we used the modified code published in [83].  

 

Nested cross-validation is also appropriate when we need to optimise the 

hyperparameters [55]. We used GridSearchCV from the Scikit-learn package [55], 

which performs an exhaustive search over different combinations of given parameters 

for a classifier. GridSearchCV is one of the basic tuning methods which is suitable for 

small datasets. Since our final datasets (after feature selection) were small, the 

execution time of performing GridSearchCV was not an issue in our modelling phase.  

 

Figure 23 illustrates the modelling and evaluation process employed in our research 

for each classifier. First, the hyperparameters were tuned in the inner loop of the 

nested cross-validation. Then, in the outer loop, the prediction model was established 

on the validation fold using the best hyperparameters of training in the inner loop. After 

that, one model showing the less difference between training and validation 

performance scores from all outer loops was chosen to make the final prediction on 

the whole dataset. In the case of an available external dataset, this final prediction 

should be made on this dataset. 
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Figure 23. The entire process of modelling for a typical classifier using nested cross-validation 
and hyperparameter tuning. 

 

 Supervised Classifiers 

The modelling has been done by applying several supervised classifiers suitable for 

binary classification to examine whether the class labels were detectable based on 

radiomics features. We tried to include all of the algorithms used in Grünbeck’s study 

[13] to compare our results with the results achieved in that study (Ridge, LGBM, SVC, 

DT, LR, ET). We also applied some other popular classifiers (such as RF, KNN, MLP, 

AdaBoost). The name of the classifiers used is shown in Table 5. For an understanding 

of abbreviations, see the List of Abbreviations.  

Table 5. Supervised classifiers names. All of the classifiers were from scikit-learn except Light 
Gradient Boosting Machine. This classifier was implemented by the LGBM python package. 

Classifier Source 

Logistic Regression (LR) Scikit-learn [55] 

Support Vector Machine (SVC) 

K Nearest Neighbours (KNN) 

Multi-Layer Perceptron (MLP) 

Decision Tree (DT) 

Random Forest (RF) 

Ridge Regression (Ridge) 

AdaBoost  

Extremely Randomised Tree (ET) 

Light Gradient Boosting Machine (LGBM) LightGBM [70] 
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4 Results 

 

This chapter outlines the results obtained from performing the experiments mentioned 

earlier in chapter 3, including feature selection and modelling and evaluation steps 

from the radiomics pipeline (Figure 1). 

 

First, we presented the detailed results of experiments related to the brain's 

hippocampus region (both left and right side). Then, we described the final selected 

features and the classifiers’ performance scores regarding other subcortical structures 

(caudate, pallidum, putamen, thalamus).  

 

4.1 The Hippocampus 

4.1.1  Feature Selection by RENT 

In this study, RENT was used as the feature selection method for all the experiments. 

As mentioned in chapter 3, for the hippocampus set, we applied RENT two times; first, 

we performed RENT for feature reduction. Then we applied RENT to both feature 

reduction and improve our model by generating polynomial features (quadratic form 

and interaction between features). We noted that this approach ameliorated the final 

classification results remarkably by enhancing the effect of powerful features. 

 

RENT Parameters Selection Matrices 

RENT tries to find the best combination of C (the inverse of regularisation strength) 

and l1_ratio (the elastic net mixing parameter) by training several sub-models. In 

RENT, the three matrices (scores, zeroes and harmonic) are the basis for choosing 

the best C and l1_ratio combination. RENT aims to attain the highest possible 

performance by the largest possible feature reduction. We can perceive how RENT 

decides on the best combination of parameters by observing these three matrices: 
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• The scores matrix shows the model performance of the various combinations 

of C and l1_ratio based on accuracy score. We can acquire the maximum 

performance by observing this matrix.  

• The proportion of features set to zero in every combination are shown in the 

zeroes matrix. This matrix gives us the combination of C and l1_ratio with the 

greatest possible feature reduction. 

• Finally, to choose the best combination and fulfil the highest possible 

performance with the largest possible feature reduction goal, we should bring 

the mentioned metrics in one comparable scale. Thus, RENT makes a 

harmonic matrix contained the harmonic mean of scores and zeroes matrices. 

The maximum value from the harmonic matrix provides the optimal combination 

of parameters. The harmonic mean formula is shown in equation 7. 

 

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 𝑚𝑒𝑎𝑛 (𝑠𝑐𝑜𝑟𝑒𝑠, 𝑧𝑒𝑟𝑜𝑒𝑠) =  2 ×  (
𝑠𝑐𝑜𝑟𝑒𝑠 ×  𝑧𝑒𝑟𝑜𝑒𝑠

𝑠𝑐𝑜𝑟𝑒𝑠 +  𝑧𝑒𝑟𝑜𝑒𝑠
) (7) 

 

It should be borne in mind that the rows and columns in the zeroes matrix with 

precisely 0 or 1 values are overlooked because the values of this matrix provide the 

ratio of features weights set to zero. Hence, a 1 value presents the case of choosing 

no feature (all the weights are zero), while the 0 value corresponds to the situation that 

all the features are selected (none of the weights is set to zero). It is clear that these 

two situations are not desired. 

 

The values for the optimal l1_ratio and the C parameter found for each experiment 

below were used as the basis for the RENT feature selection for these experiments.  

 

RENT Matrices for Experiment 1  

As shown in Figure 24, the maximum accuracy score (0.664) was obtained by the 

combination l1_ratio = 1 and C = 10, whereas the largest possible feature reduction 

was not obtained for this combination. The greatest proportion of features (0.999) were 

set to zero by having l1_ratio = 0.1 and C = 0.01 and also with l1_ratio = 1 and C = 

0.1. To determine which combination accomplished the aim of RENT (the highest 

accuracy score with the highest feature reduction), the harmonic mean of these two 

matrices (scores and zeroes) was calculated.  

 

In the harmonic matrix (Figure 24), we could observe that the best combination with 

the highest harmonic mean value (0.796) was obtained for l1_ratio = 0.2 and C = 0.1. 

This combination was the optimal parameters’ combination for RENT to select features 

in experiment 1. For this combination, the accuracy score was 0.634, and 0.773 of the 

feature weights were set to zero. 
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Figure 24. RENT determinative matrices in experiment 1 for the hippocampus. Scores, Zeroes 
and Harmonic Mean matrices show the accuracy score, the fraction of feature weights set to 
zero, and the harmonics mean of these two matrices, respectively. The l1_ratio values are 
specified in the first column, and the C parameter (inverse of regularisation strength) values 
are specified in the remaining columns. The red boxes lineate the highest value of that matrix. 

 

RENT Matrices for Experiment 2  

In Figure 25, one can see that in the scores matrix, the highest accuracy (0.856) was 

attained by the l1_ratio = 0.4 and C = 1. At the same time, in the zeroes matrix, the 

maximum fraction of features (0.982) was set to zero by the combination of the l1_ratio 

= 1 and C = 0.1. However, the best combination was acquired by the l1_ratio = 1 and 
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C = 1 from the harmonic matrix with the harmonic value of 0.884. This combination 

had a performance score of 0.832, and 0.841 of features’ weights was set to zero.  

 

 

Figure 25. RENT determinative matrices in experiment 2 for the hippocampus. Scores (the 
accuracy score), Zeroes (the fraction of feature weights set to zero) and Harmonic Mean 
(harmonics mean of Scores and Zeroes two matrices). The l1_ratio values are specified in the 
first column, and the C parameter (inverse of regularisation strength) values are specified in 
the remaining columns. The red boxes marked the highest value of that matrix.  

 

RENT Matrices for Experiment 3  

Although the best score (0.856) was attained by the l1_ratio = 0.5 and C = 1, the 

largest feature reduction (0.991) was achieved by the l1_ratio = 1 and C = 0.1. 
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Therefore, the harmonic mean was computed to find the best trade-off. The l1_ratio = 

0.8 and C = 1 was used by RENT as the optimal parameters with the highest harmonic 

mean value of 0.909. This combination had a score of 0.840, and 0.868 of feature 

weights were set to zero (Figure 26). 
 

 

Figure 26. RENT determinative matrices in experiment 3 for the hippocampus. Scores, Zeroes 
and Harmonic Mean matrices show the accuracy score, the fraction of feature weights set to 
zero, and the harmonics mean of these two matrices, respectively. The l1_ratio values are 
specified in the first column, and the C parameter (inverse of regularisation strength) values 
are specified in the remaining columns. The red boxes indicate the highest value of that matrix.  
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Selected Features Characteristics 

As mentioned above, for the hippocampus set, we performed RENT two times. It 

should be noted that for presenting the selection rate in pie charts of this section 

(related to the hippocampus set), the polynomial features were counted in such a way 

that if we had an interaction between two features, we counted each one as one time 

of selection. A feature in quadratic form was counted two times. We used this approach 

to consider the effect of polynomial features. 

 

Selected Features in Experiment 1  

As mentioned in chapter 3, experiment 1 used the “initial dataset” for analysis (see 

Figure 18). In experiment 1, at the first round of applying RENT, we obtained a reduced 

dataset with 17 features (from the 328 radiomics features in the "initial dataset"). 

However, this was not the final selected features set. We used this reduced dataset to 

perform RENT a second time to generate polynomial features of these 17 features 

and RENT again selected some features from this new dataset. The final selected 

features set contained 14 features where 5 features were polynomial, and the 

remaining 9 features were as in the “initial dataset”. This dataset with 14 features was 

used for modelling and evaluation for the hippocampus in experiment 1. A list of 

selected features’ names for experiment 1 is provided in Table 6.  

Table 6. Selected features attribute in experiment 1 for the hippocampus. 128-bin and 64-bin 
refer to the texture features with 128 and 64 grey level discretisation. Right or Left indicate the 
right or left side of the brain, respectively. 

Feature Name Polynomial Side Feature Type 

128_GrayLevelVariance_right No Right 128-bin 

128_LargeAreaLowGrayLevelEmphasis_right No Right 128-bin 

128_HighGrayLevelRunEmphasis_left No Left 128-bin 

128_HighGrayLevelEmphasis_left No Left 128-bin 

128_LargeDependenceLowGrayLevelEmphasis_right No Right 128-bin 

128_SmallDependenceHighGrayLevelEmphasis_right No Right 128-bin 

64_GrayLevelVariance_right No Right 64-bin 

64_HighGrayLevelEmphasis_left No Left 64-bin 

64_LargeDependenceLowGrayLevelEmphasis_right No Right 64-bin 

128_GrayLevelVariance_right*128_HighGrayLevelRun
Emphasis_left 

Yes 
Right & 
Left 

128-bin 

128_GrayLevelVariance_right*128_ShortRunHighGray
LevelEmphasis_left 

Yes 
Right & 
Left 

128-bin 

128_GrayLevelVariance_right*128_HighGrayLevelEm
phasis_left 

Yes 
Right & 
Left 

128-bin 

128_GrayLevelVariance_right*64_HighGrayLevelEmp
hasis_left 

Yes 
Right & 
Left 

128-bin & 64-bin 

64_LargeDependenceLowGrayLevelEmphasis_right^2 Yes Right 64-bin 
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The final selected features characteristics are depicted in Figure 27. It can be 

perceived that all the selected features were texture features; 68% were of the 128-

bin type versus 32% from the 64-bin type. No features from the shape features 

category were chosen for the final reduced dataset in experiment 1. Figure 27b shows 

that most of the selected features were from the right side of the brain (65%). 

 

 

Figure 27. Pie charts show the distribution of selected features from the "initial dataset" in 
experiment 1 for the hippocampus after the second run of RENT considering polynomial 
features. a) the distribution of selected features based on the feature type. 128-bin and 64-bin 
refer to the texture features with 128 and 64 grey level discretisation. Shape denotes the shape 
features. b) the distribution of features selected from the left or right sides of the brain. 

 

Selected Features in Experiment 2  

In experiment 2, we utilised the “expanded dataset” containing LBP features plus the 

shape feature and texture features of 128 and 64 grey scale discretisation (see Figure 

21). 

 

Here, 12 features (from 348 radiomics features in the "expanded dataset”) were 

selected at the first run of RENT. We used these selected features and their polynomial 

forms as the input for the second round of performing RENT for constituting the final 

reduced dataset. From this set, RENT selected 13 features (4 polynomial features 

versus 9 features that existed in the “expanded dataset”) as the final selected feature 

set. Subsequently, this reduced dataset (with 13 features) was used for modelling and 

evaluation in experiment 2. Table 7 provides the list of selected features’ names for 

experiment 2.  
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Table 7. Selected features attribute in experiment 2 for the hippocampus. Shape denotes the 
shape features. LBP corresponds to LBP features. 128-bin refers to the texture features with 
128 grey level discretisation. Right or Left indicate the right or left side of the brain, 
respectively. 

Feature Name Polynomial Side Feature Type 

Shape_MeshVolume_right No Right Shape 

128_SizeZoneNonUniformity_right No Right 128-bin 

128_LargeDependenceLowGrayLevelEmphasis_right No Right 128-bin 

LBP_111_left No Left LBP 

LBP_300_left No Left LBP 

LBP_300_right No Right LBP 

LBP_021_right No Right LBP 

LBP_030_right No Right LBP 

LBP_102_right No Right LBP 

LBP_111_left^2 Yes Left LBP 

LBP_012_left^2 Yes Left LBP 

LBP_012_left*LBP_030_right Yes 
Left & 
Right 

LBP 

LBP_300_right*LBP_102_right Yes Right LBP 

 

By observing the selection rates of the final selected features set (Figure 28a) and the 

selected feature set attributes (Table 7), it is apparent that LBP features were 

dominated having the selection rate of 82%. Notably, the polynomial forms were all 

from LBP features. On the other hand, only 12% of selected features were texture 

128-bin features versus none of the 64-bin features. In this experiment, 6% of selected 

features were shape feature. Figure 28b shows that the features from the right side of 

the brain had higher selection rate (56%) than from the left side (44%). 
 

 

Figure 28. Pie charts show the characteristics of selected features from the "expanded 
dataset" in experiment 2 for the hippocampus after the second run of RENT considering 
polynomial features. a) the distribution of selected features based on the feature type. LBP 
corresponds to the LBP features. 128-bin and 64-bin refer to the texture features with, 
respectively, 128 and 64 grey level discretisation. Shape denotes the shape features. b) the 
distribution of features selected from the left or right sides of the brain. 
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Selected Features and Feature Correlation in Experiment 3  

Features Collinearity 

We examined the correlation of the features selected by RENT in experiment 2 after 

the first round of feature selection. The corresponding heatmap of selected features’ 

correlations in terms of Spearman Correlation Coefficient (SCC) is shown in Figure 

29. The features are the 12 features (from 348 radiomics features in the "expanded 

dataset”) obtained after the first round of performing RENT in experiment 2.  
 

 

Figure 29. The correlation heatmap of features selected by RENT in the first round of 
performing RENT in experiment 2 for the hippocampus. The values show the Spearman 
Correlation Coefficient between pairs of features. 
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Figure 29 demonstrates that the only features with correlation above 70% in the 

features selected by RENT in experiment 2 were 

128_DependenceNonUniformity_right and 128_SizeZoneNonUniformity_right. We 

can see in Table 7 that after the second run of RENT, only one of these two features 

(128_SizeZoneNonUniformity_right) was included in the final reduced dataset of 

experiment 2. 

 

Selected Features Selection in Experiment 3 

In experiment 3, we removed one of the features from pairs having above 95% SCC 

in the “expanded dataset” (having 348 features). There were 159 features highly 

correlated to another feature. We removed these features from the “expanded dataset” 

and used this reduced dataset (with 189 features) as the input to RENT. After that, we 

performed RENT two times (for the hippocampus set).  

 

The distribution of features in the dataset obtained after removing highly correlated 

features is shown in Figure 30. The LBP features comprised 11% of the whole dataset 

compared to shape feature 14%, texture feature 128-bin 43% and 64-bin 32% (Figure 

30a). It should be pointed out that all the LBP features were included after removing 

highly correlated features. The features set contained features 52% from the right side 

of the brain (Figure 30b). 

 

 

Figure 30. The pie charts show the distribution of various radiomics features in the dataset 
obtained after removing highly correlated features from the "expanded dataset" in experiment 
3 for the hippocampus. a) the distribution of features based on the feature type. 128-bin and 
64-bin refer to the texture features, respectively, 128 and 64 grey level discretisation. Shape 
denotes the shape features. LBP corresponds to LBP features. b) the distribution of features 
from the left or right sides of the brain. 
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In experiment 3, after removing highly correlated features, we used this dataset as the 

input to RENT. At the first round of applying RENT, we obtained a reduced dataset 

with 18 features (from 189 radiomics features). Then, we performed RENT a second 

time to generate polynomial forms of these 18 features. The selected features 

(contained 10 features where 3 features were polynomial) were used as the input for 

modelling and evaluation in experiment 3. In Table 8, the name and characteristics of 

selected features in experiment 3 is illustrated. 

Table 8. Selected features attribute in experiment 3 for the hippocampus. Shape denotes the 
shape features. LBP corresponds to LBP features. 128-bin refers to the texture features with 
128 grey level discretisation. Right or Left indicate the right or left side of the brain, 
respectively. 

Feature Name Polynomial Side Feature Type 

Shape_MeshVolume_right No Right Shape 

128_SizeZoneNonUniformity_right No Right 128-bin 

LBP_111_left No Left LBP 

LBP_300_left No Left LBP 

LBP_300_right No Right LBP 

LBP_021_right No Right LBP 

LBP_102_right No Right LBP 

Shape_Maximum2DDiameterColumn_right*
128_SizeZoneNonUniformity_right 

Yes Right Shape & 128-bin 

LBP_111_left^2 Yes Left LBP 

LBP_300_right*LBP_102_right Yes Right LBP 

 

From Figure 31a and Table 8 one could observe that most of the selected features 

(69%) were LBP features. On the other hand, only 15% of selected features were 

texture 128-bin features versus none of the 64-bin features. In this experiment, 16% 

of selected features were shape feature. Figure 31b demonstrates that the features 

from right side of the brain were preferred to the left side (69% versus 31%). 

 



Results 

47 
 

 

Figure 31. The pie charts show the characteristics of selected features from the dataset 
obtained after removing highly correlated features from the "expanded dataset" and after the 
second run of RENT considering polynomial features in experiment 3 for the hippocampus. a) 
the distribution of selected features based on the feature type. LBP corresponds to the LBP 
features. 128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey 
level discretisation. Shape denotes the shape features. b) the distribution of features selected 
from the left or right sides of the brain. 

 

4.1.2  Classification Modelling and Evaluation 

We conducted four classification experiments regarding different datasets. In each 

classification experiment, various classifiers (for each) with the best hyperparameters 

and a nested cross-validation model approach were used. First, we present how the 

best models were selected by using nested cross-validation and hyperparameter 

tuning, and after that, the models' performances are compared.  

 

Train and Validation Curves 

The train and validation curves were the basis for finding the best classifiers’ 

hyperparameters in a nested cross-validation model. These train and validation curves 

also helped us perceive classifiers' prediction behaviour on unseen data. Moreover, in 

the lack of independent validation set, it was a way of reducing the risk of overfitting 

and making more reliable decision in selecting the final hyperparameters. 

 

In this section, the train curves present the GridSearchCV’s best score of training folds 

of every outer fold, and validation curves demonstrate the prediction performance of 

the classifier (with the best hyperparameters set) on the validation fold of the same 

outer fold (see Figure 23). We chose the estimator’s configuration having the smallest 

difference between its train and validation score as the hyperparameters of the final 

prediction task.  
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Figure 32 to Figure 35 presents the train and validation curves used to choose the 

classifier's best hyperparameters’ configuration for each experiment. There was 

variation between folds observed in the train and validation curve plots, showing how 

dependent this small dataset is on the splits. Although the train and validation AUC of 

the LGBM classifier overlapped, we will see in the overall performance that in our 

study, LGBM had a poor performance. 

 

Figure 32. Train and validation curves of nested cross-validation in different outer folds using 
various classifiers in experiment 1 on the “initial dataset” for hippocampus. The red squares 
lineate the smallest difference between train and validation curves selected as the 
configuration of hyperparameters for the final prediction task.  
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Figure 33. Train and validation curves of nested cross-validation in different outer folds using 
various classifiers in experiment 2 on the “expanded dataset” for hippocampus. The red 
squares specified the smallest difference between train and validation curves selected as the 
configuration of hyperparameters for the final prediction task.  
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Figure 34. Train and validation curves of nested cross-validation in different outer folds using 
various classifiers in experiment 3 using the dataset obtained after removing highly correlated 
features from the "expanded dataset" for hippocampus. The red squares showed the smallest 
difference between train and validation curves selected as the configuration of 
hyperparameters for the final prediction task.  
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Figure 35. Train and validation curves of nested cross-validation in different outer folds using 
various classifiers in experiment 4 using the LBP dataset for hippocampus. The red squares 
lineate the smallest difference between train and validation curves selected as the 
configuration of hyperparameters for the final prediction task.  
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Comparing Classification Performance 

The datasets containing selected feature sets for each experiment were described in 

the previous section. We used these reduced datasets as the input of classification 

tasks for the corresponding experiment. In this section, we elaborated the 

classification performance results per experiment in terms of the AUC metric. 

 

Experiment 1 AUC Comparison 

In Figure 36, the receiver operating curve (ROC) shows the performance of different 

classifiers in experiment 1 on the “initial dataset”. The highest AUC performance (85%) 

was obtained by AdaBoost, following by LR, SVC and MLP (83%). The poorest 

performance was related to the LGBM classifier (50%). Apart from LGBM, other 

classifiers had an AUC of around 70% or more. The Random Forest classifier with 

76% AUC outperformed the Ridge classifier (70%), KNN and ET (69%).  

 

 

Figure 36. The ROC diagram shows the performance of classifiers based on AUC in 
experiment 1 on the “initial dataset” for the hippocampus.  

 

Experiment 2 AUC Comparison 

The AUC scores of performing several classification tasks in experiment 2 on the 

“expanded dataset” (Figure 37) shows that LR obtained the highest performance score 

(94%). Ridge and AdaBoost had a score of 93%. By the score of 91%, ET was superior 

to RF and MLP and KNN (all have a score of 87%), SVC 78% and DT 72%. As for the 

other experiments, the worst case was related to the LGBM classifier (50%). 
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Figure 37. The performance of classifiers based on AUC in experiment 2 on the “expanded 
dataset” for the hippocampus.  

 

Experiment 3 AUC Comparison 

Figure 38 demonstrates the classification performance of various classifiers in 

experiment 3 on the dataset obtained after removing highly correlated features from 

the "expanded dataset".  
 

 

Figure 38. The ROC diagram illustrates the AUC score of classifiers’ performances in 
experiment 3 for the hippocampus on the dataset obtained after removing highly correlated 
features from the "expanded dataset".  
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SVC, with an excellent performance score of 98%, had the best prediction score. MLP 

(96%), Ridge and AdaBoost with 95% also exhibited high prediction power. LR (93%), 

KNN (91%), RF and ET (89%) also had competitive results. Apart from the DT 

classifier with a score of 72% and LGBM with 50%, all other classifiers had scores 

around 90% or more. 
 

Experiment 4 AUC Comparison 

The ROC diagram in Figure 39 presents the prediction performance of different 

classification models in experiment 4 on the LBP dataset. KNN, with a score of 87%, 

had superior results in comparison to other classifiers. LR, SVC and AdaBoost had an 

AUC score of 85%, followed by ET (82%), Ridge (80%) and RF (76%). MLP had a 

score of 70%, and DT had a score of 68%. Again, the LGBM classifier score was the 

worst (50%). 

 

 

Figure 39. The diagram shows the AUC score of classifiers’ prediction performances in 
experiment 4 on the LBP dataset.  

 

4.1.3  Heatmap Comparison of the Experiments 

Figure 40 shows a heatmap providing a performance comparison of the four 

experiments on datasets related to the hippocampus brain structure. We removed the 

result from LGBM as it had constantly poor results.  

 

The scores varied from 68% to 98%. The highest score belonged to SVC in experiment 

3 with 98%; in contrast, the lowest score (68%) was obtained by the DT classifier in 

experiment 4. From Figure 40, we observe that the DT classifier had a relatively 

consistent performance across all experiments since it varied from 68% to 72%. 
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Furthermore, one could see that the LR and AdaBoost showed acceptable results by 

having scores around 85% and more in all experiments. Apart from DT, the rest of the 

classifiers presented competitive results across all experiments. 

 

It is clear that the performance scores in experiment 3 outperformed classifiers 

performance in experiment 1 and 4.  The scores of classifiers in experiment 2 and 3 

were very close to each other. Apart from SVC, classifiers in experiment 2 obtained 

higher scores than in experiment 1.  

 

In experiment 3, by overlooking DT performance (72%), all classifiers had a high 

performance score of around 90% or more. Moreover, if we exclude DT (72%) and 

SVC (78%) in experiment 2, the rest of the classifiers showed scores higher than 85%. 

In experiments 1 and 4, the results showed acceptable prediction performance of 

around 70% and more.  

  

 

 

Figure 40. The overall heatmap compares the classifier performance based on the AUC score 
in four experiments on hippocampus datasets. 
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4.2 The Caudate 

4.2.1  Selected Features using RENT 

As mentioned in chapter 3, we performed RENT one time in the caudate experiments 

without generating any polynomial features. Therefore, the features in their original 

format were selected. In the continuation of this section, we described the selected 

features set attributes in every experiment on the caudate.  

 

Selected Features in Experiment 1  

In experiment 1 the “initial dataset” was used for analysis, consisting of shape and 

texture features of 128 and 64 grey level discretisation from the left and right side of 

the brain (see Figure 18).  

 

In this experiment, RENT selected 19 features (from 328 radiomics features in the 

“initial dataset”) to be used as the input for modelling and evaluation. A list of selected 

features’ names for experiment 1 is provided in Table 9. 

Table 9. Selected features attribute in experiment 1 on the caudate using the “initial dataset”. 
128-bin and 64-bin refer to the texture features with 128 and 64 grey level discretisation. Right 
or Left indicate the right or left side of the brain, respectively. 

 Feature Name Side Feature Type 

1 Shape_Flatness_left Left Shape 

2 Shape_MinorAxisLength_right Right Shape 

3 128_ClusterProminence_d_1_left Left 128-bin 

4 128_MaximumProbability_d_1_right Right 128-bin 

5 128_Complexity_right Right 128-bin 

6 128_LowGrayLevelZoneEmphasis_left Left 128-bin 

7 128_SmallAreaLowGrayLevelEmphasis_left Left 128-bin 

8 128_GrayLevelNonUniformity_left.1 Left 128-bin 

9 128_GrayLevelNonUniformity_left.2 Left 128-bin 

10 128_SmallDependenceLowGrayLevelEmphasis_left Left 128-bin 

11 64_ClusterProminence_d_1_left Left 64-bin 

12 64_HighGrayLevelZoneEmphasis_right Right 64-bin 

13 64_SmallAreaHighGrayLevelEmphasis_right Right 64-bin 

14 64_HighGrayLevelRunEmphasis_right Right 64-bin 

15 64_LongRunLowGrayLevelEmphasis_right Right 64-bin 

16 64_LowGrayLevelRunEmphasis_right Right 64-bin 

17 64_ShortRunLowGrayLevelEmphasis_right Right 64-bin 

18 64_DependenceEntropy_right Right 64-bin 

19 64_LowGrayLevelEmphasis_right Right 64-bin 
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Figure 41a illustrates that texture features of the 128-bin type were selected more than 

other feature types (128-bin type 47% versus 42% from 64-bin type and 11% from 

shape feature category). Figure 41b shows that 58% of the selected features were 

from the right side of the brain. 

 

 

Figure 41. Pie charts show the distribution of selected features for the caudate from "initial 
dataset" in experiment 1. a) the distribution of selected features based on the feature type. 
128-bin and 64-bin refer to the texture features with 128 and 64 grey level discretisation. 
Shape denotes the shape features. b) the distribution of features selected from the left or right 
sides of the brain. 

 

Selected Features in Experiment 2 

As mentioned in chapter 3, experiment 2 utilised the “expanded dataset” containing 

LBP features plus the shape feature and texture features of 128 and 64 grey scale 

discretisation (see Figure 21). 

 

17 features (from 348 radiomics features in the "expanded dataset”) were selected by 

running RENT. We used these selected features for constituting the final reduced 

dataset. Subsequently, this reduced dataset (with 17 features) was used to model and 

evaluate experiment 2. Selected features’ names for experiment 2 is listed in Table 

10.  

 

Most of the selected features were texture features, the 64-bin (47%) plus the 128-bin 

(6%) (Figure 42a). The LBP features constituted 47% of the selected features in the 

reduced dataset. None of the shape features was selected. 59% of the selected 

features were from the right side of the brain (Figure 42b). 
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Table 10. Selected features attribute in experiment 2 on the caudate using the “expanded 
dataset”.  LBP corresponds to LBP features. 128-bin and 64-bin refer to the texture features 
with, respectively, 128 and 64 grey level discretisation. Right or Left indicate the right or left 
side of the brain, respectively. 

 Feature Name Side Feature Type 

1 128_MCC_d_1_right Right 128-bin 

2 64_LowGrayLevelZoneEmphasis_left Left 64-bin 

3 64_GrayLevelVariance_right Right 64-bin 

4 64_SmallAreaHighGrayLevelEmphasis_right Right 64-bin 

5 64_LongRunLowGrayLevelEmphasis_right Right 64-bin 

6 64_LowGrayLevelRunEmphasis_right Right 64-bin 

7 64_ShortRunLowGrayLevelEmphasis_right Right 64-bin 

8 64_LargeDependenceLowGrayLevelEmphasis_right Right 64-bin 

9 64_LowGrayLevelEmphasis_right Right 64-bin 

10 LBP_111_left Left LBP 

11 LBP_030_left Left LBP 

12 LBP_021_left Left LBP 

13 LBP_300_left Left LBP 

14 LBP_102_left Left LBP 

15 LBP_003_left Left LBP 

16 LBP_012_right Right LBP 

17 LBP_003_right Right LBP 

 

 

 

Figure 42. Pie charts show the characteristics of selected features from the "expanded 
dataset" in experiment 2 for the caudate. a) the distribution of selected features based on the 
feature type. LBP corresponds to the LBP features. 128-bin and 64-bin refer to the texture 
features with 128 and 64 grey level discretisation. Shape denotes the shape features. b) the 
distribution of features selected from the left or right sides of the brain. 
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 Selected Features and Feature Correlation in Experiment 3 

 

Features Collinearity 

Figure 43 shows the heatmap of correlations between the 17 features selected by 

RENT from the “expanded dataset” in experiment 2. It is clear, the features with 

correlation strictly greater than 70% (in the selected features by RENT in experiment 

2) were: 

• 64_LowGrayLevelRunEmphasis_right 

• 64_ShortRunLowGrayLevelEmphasis_right 

• 64_LowGrayLevelEmphasis_right 

• 64_LongRunLowGrayLevelEmphasis_right 
 

 
Figure 43. The correlation heatmap of features selected by RENT in experiment 2 for the 
caudate. The values show the Spearman Correlation Coefficient between pairs of features. 
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Selected Features in Experiment 3 

In this experiment we were left with 170 features (out of the 348 features) after 

removing one of the features from pairs (having SCC above 95%) in the “expanded 

dataset”.  

 

Figure 44 illustrates the distribution of features in the dataset obtained after removing 

highly correlated features. The LBP features comprised 12% of this dataset compared 

to shape feature 17%, texture feature 128-bin 42% and 64-bin 29% (Figure 44a). It 

should be pointed out that all the LBP features were included in this reduced dataset, 

which means they did not correlate highly. 

 

The features set contained 46% features from the right side of the brain versus 54% 

from the left side (Figure 44b). 

 

 

Figure 44. Pie charts show the distribution of various radiomics features in the dataset 
obtained after removing highly correlated features from the "expanded dataset" in experiment 
3 for the caudate. a) the distribution of features based on the feature type. 128-bin and 64-bin 
refer to the texture features, respectively, 128 and 64 grey level discretisation. Shape denotes 
the shape features. LBP corresponds to LBP features. b) the distribution of features from the 
left or right sides of the brain. 

 

In experiment 3, RENT was performed on this dataset with 170 radiomics features 

(after removing highly correlated features). The reduced dataset contained 13 features 

was used as the final selected features for modelling and evaluation in experiment 3. 

The list of selected features’ names and characteristics for experiment 3 is presented 

in Table 11.  



Results 

61 
 

Table 11. Selected features attribute in experiment 3 for the caudate. LBP corresponds to LBP 
features. 128-bin and 64-bin refer to the texture features with 128 and 64 grey level 
discretisation, respectively. Right or Left indicate the right or left side of the brain. 

 Feature Name Side Feature Type 

1 128_MCC_d_1_right Right 128-bin 

2 64_LowGrayLevelZoneEmphasis_left Left 64-bin 

3 64_GrayLevelVariance_right Right 64-bin 

4 64_SmallAreaHighGrayLevelEmphasis_right Right 64-bin 

5 64_LongRunLowGrayLevelEmphasis_right Right 64-bin 

6 64_LargeDependenceLowGrayLevelEmphasis_right Right 64-bin 

7 LBP_030_left Left LBP 

8 LBP_021_left Left LBP 

9 LBP_300_left Left LBP 

10 LBP_102_left Left LBP 

11 LBP_003_left Right LBP 

12 LBP_012_right Right LBP 

13 LBP_003_right Right LBP 

 

In experiment 3, the LBP features had the highest selection rate (54%) (Figure 45a). 

The 64-bin texture features comprised 38% of selected features, versus 128-bin 

features were 8% of selected features. In this experiment, none of the selected 

features was shape features. Figure 45b shows that were mostly from the right side of 

the brain (62%). 

 

 

Figure 45. Pie charts show the characteristics of selected features from the dataset obtained 
after removing highly correlated features from the "expanded dataset" in experiment 3 for the 
caudate. a) the distribution of selected features based on the feature type. LBP corresponds 
to the LBP features. 128-bin and 64-bin refer to the texture features with, respectively, 128 
and 64 grey level discretisation. Shape denotes the shape features. b) the distribution of 
features selected from the left or right sides of the brain. 

 



Results 

 

62 
 

4.2.2  Heatmap Comparison of the Experiments 

The overall heatmap of the caudate experiments is shown in Figure 46. Because of 

very poor performance, LGBM was excluded from this diagram. The scores ranges 

from 50% to 100%. The highest score obtained by LR and AdaBoost in experiment 2 

as well as MLP and AdaBoost in experiment 3 with a score of 100%; in contrast, the 

lowest score (50%) was obtained by the SVC classifier in experiments 2 and 3. From 

Figure 46, we observe that the LR classifier had performance scores with high 

variations across all experiments since it varied from 57% to 100%. Similarly, SVC 

scores dropped strangely in experiments 2 and 3 (50%) while it had acceptable scores 

in experiments 1 and 4 (70% and 85%, respectively). Furthermore, one could see that 

the rest of the classifiers showed promising results by having scores above 80% in 

experiments 2, 3 and 4.  

 

The performance scores in experiment 3 (apart from SVC and LR) outperformed 

experiments 1 and 4. Classifiers in experiment 2, except for SVC, outperformed 

classifiers' scores in experiment 1.  

 
 

 

Figure 46. The overall heatmap shows the comparison between the performance of classifiers 
based on the AUC score in four experiments on caudate datasets. 
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4.3 The Putamen 

 

4.3.1  Selected Features using RENT 

 

For the putamen’s experiments, RENT was performed once without generating any 

polynomial features. 

 

Selected Features in Experiment 1  

In experiment 1, by applying RENT on the “initial dataset” (see Figure 18), we obtained 

a reduced dataset with 16 features out of 328 radiomics features. The modelling and 

evaluation tasks in experiment 1 was done on this reduced dataset. The names of 

selected features are provided in Table 12.  

Table 12. Selected features attribute in experiments for the putamen on the “initial dataset”. 
Shape denotes shape features. 128-bin and 64-bin refer to the texture features with, 
respectively, 128 and 64 grey level discretisation. Right or Left indicate the right or left side of 
the brain. 

 Feature Name Side Feature Type 

1 Shape_Maximum3DDiameter_left Left Shape 

2 Shape_Sphericity_right Right Shape 

3 Shape_SurfaceVolumeRatio_right Right Shape 

4 128_GrayLevelVariance_right Right 128-bin 

5 128_DependenceEntropy_right Right 128-bin 

6 128_DependenceVariance_right Right 128-bin 

7 64_GrayLevelNonUniformityNormalized_right Right 64-bin 

8 64_GrayLevelVariance_right Right 64-bin 

9 64_LongRunLowGrayLevelEmphasis_left Left 64-bin 

10 64_LowGrayLevelRunEmphasis_left Left 64-bin 

11 64_ShortRunLowGrayLevelEmphasis_left Left 64-bin 

12 64_LongRunLowGrayLevelEmphasis_right Right 64-bin 

13 64_LargeDependenceLowGrayLevelEmphasis_left Left 64-bin 

14 64_LowGrayLevelEmphasis_left Left 64-bin 

15 64_LargeDependenceLowGrayLevelEmphasis_right Right 64-bin 

16 64_LowGrayLevelEmphasis_right Right 64-bin 
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Figure 47 illustrates that most of the selected features were texture features of the 64-

bin type (62%) versus 19% from the 128-bin type. 19% of selected features were from 

the shape features category (Figure 47a). And 63% of the selected features were from 

the right side of the brain (Figure 47b). 

 

 

Figure 47. Pie charts show the distribution of selected features for the putamen from "initial 
dataset" in experiment 1. a) the distribution of selected features based on the feature type. 
128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey level 
discretisation. Shape denotes the shape features. b) the distribution of features selected from 
the left or right sides of the brain. 

 

Selected Features in Experiment 2  

For the “expanded dataset” containing LBP features plus the shape feature and texture 

features of 128 and 64 grey scale discretisation (see Figure 21), 15 features out of 

348 radiomics features were selected by RENT. These 15 features, listed in Table 13, 

constituted the reduced dataset used for modelling in experiment 2.  

 

Most of the selected features (Figure 48a) were LBP features comprising 46% of the 

features in the reduced dataset. Both groups of texture features (128-bin and 64-bin) 

had a selection rate of 27%. On the other hand, none of the shape features was 

selected. Figure 48b shows that features from the left side of the brain had the majority 

(67%). 
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Table 13. Selected features attribute in experiment 2 for the putamen on the “expanded 
dataset”. LBP corresponds to LBP features. 128-bin and 64-bin refer to the texture features 
with 128 and 64 grey level discretisation, respectively. Right or Left indicate the right or left 
side of the brain. 

 Feature Name Side Feature Type 

1 128_MCC_d_1_left Left 128-bin 

2 128_LongRunLowGrayLevelEmphasis_left Left 128-bin 

3 128_LargeDependenceLowGrayLevelEmphasis_left Left 128-bin 

4 128_LowGrayLevelEmphasis_left Left 128-bin 

5 64_LowGrayLevelRunEmphasis_left Left 64-bin 

6 64_ShortRunLowGrayLevelEmphasis_left Left 64-bin 

7 64_LowGrayLevelEmphasis_left Left 64-bin 

8 64_SmallDependenceLowGrayLevelEmphasis_left Left 64-bin 

9 LBP_120_left Left LBP 

10 LBP_102_left Left LBP 

11 LBP_021_right Right LBP 

12 LBP_030_right Right LBP 

13 LBP_201_right Right LBP 

14 LBP_012_right Right LBP 

15 LBP_003_right Right LBP 

 

 

 

 

Figure 48. Pie charts show the characteristics of selected features from the "expanded 
dataset" in experiment 2 for the putamen. a) the distribution of selected features based on the 
feature type. LBP corresponds to the LBP features. 128-bin and 64-bin refer to the texture 
features with, respectively, 128 and 64 grey level discretisation. Shape denotes the shape 
features. b) the distribution of features selected from the left or right sides of the brain. 
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Selected Features and Feature Correlation in Experiment 3 

Features Collinearity 

Figure 49 shows the heatmap obtained for correlations between the 15 features (from 

348 radiomics features in the "expanded dataset”), selected by RENT in experiment 

2). Features with correlation above 70% in the selected features were: 

• 128_LargeDependenceLowGrayLevelEmphasis_left 

• 128_LowGrayLevelEmphasis_left 

• 128_LongRunLowGrayLevelEmphasis_left 

• 64_LowGrayLevelRunEmphasis_left 

• 64_ShortRunLowGrayLevelEmphasis_left 

• 64_LowGrayLevelEmphasis_left 

• 64_SmallDependenceLowGrayLevelEmphasis_left 
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Figure 49. The correlation heatmap of features selected by RENT in experiment 2 for the 
putamen. The values show the Spearman Correlation Coefficient between pairs of features. 

 

Selected Features in Experiment 3 

We constructed a reduced dataset with172 features (out of 348 features) by removing 

one of the features from pairs having above 95% SCC in the “expanded dataset”. The 

LBP features comprised 12% of these features (Figure 50) in comparison to shape 

feature (14%), texture feature 128-bin (47%) and 64-bin (27%). All the LBP features 

were included in this dataset, and none of them was removed because of high 

correlation. The dataset contained 51% features from the right side of the brain (Figure 

50b). 
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Figure 50. Pie charts show the distribution of various radiomics features in the dataset 
obtained after removing highly correlated features from the "expanded dataset" in experiment 
3 for the putamen. a) the distribution of features based on the feature type. 128-bin and 64-
bin refer to the texture features, respectively, 128 and 64 grey level discretisation. Shape 
denotes the shape features. LBP corresponds to LBP features. b) the distribution of features 
selected from the left or right sides of the brain. 

 

In experiment 3, we performed RENT on the dataset with 172 features constituting a 

reduced dataset with 14 features (Table 14). This reduced dataset was used as the 

final selected features for modelling and evaluation in experiment 3.  

Table 14. Selected features attribute in experiment 3 for the putamen. LBP corresponds to 
LBP features. 128-bin and 64-bin refer to the texture features with 128 and 64 grey level 
discretisation, respectively. Right or Left indicate the right or left side of the brain, respectively. 

 Feature Name Side Feature Type 

1 128_MCC_d_1_left Left 128-bin 

2 128_LongRunLowGrayLevelEmphasis_left Left 128-bin 

3 128_LargeDependenceLowGrayLevelEmphasis_left Left 128-bin 

4 64_LowGrayLevelZoneEmphasis_left Left 64-bin 

5 64_SmallAreaLowGrayLevelEmphasis_left Left 64-bin 

6 64_LongRunLowGrayLevelEmphasis_left Left 64-bin 

7 LBP_111_left Left LBP 

8 LBP_120_left Left LBP 

9 LBP_102_left Left LBP 

10 LBP_021_right Right LBP 

11 LBP_030_right Right LBP 

12 LBP_201_right Right LBP 

13 LBP_012_right Right LBP 

14 LBP_003_right Right LBP 
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Figure 51 shows that the LBP features had the highest selection rate (57%). 21% of 

selected features were 64-bin features versus 22% of the 128-bin features. In this 

experiment, none of the selected features was shape features. 64% of the selected 

features were from the left side of the brain (Figure 51b). 

 

 

 

Figure 51. Pie charts show the characteristics of selected features from the dataset obtained 
after removing highly correlated features from the "expanded dataset" in experiment 3 for the 
putamen. a) the distribution of selected features based on the feature type. LBP corresponds 
to the LBP features. 128-bin and 64-bin refer to the texture features with, respectively, 128 
and 64 grey level discretisation. Shape denotes the shape features. b) the distribution of 
features selected from the left or right sides of the brain. 

 

4.3.2  Heatmap Comparison of the Experiments 

Figure 52 shows the overall heatmap of the putamen experiments. The result from 

LGBM was excluded because of its poor performance. The scores varied from 61% to 

96%. LR achieved the highest score in experiment 3 (96%); in contrast, the AdaBoost 

classifier in experiment 1 and the DT classifier in experiment 4 had the lowest score 

(61%). The scores in experiment 3 outperformed the scores of experiments 1 and 4. 

All classifiers in experiment 2 outperformed the classifiers' scores in experiment 1. 

Furthermore, the performance of classifiers in experiments 2 and 3 are very close to 

each other (except for DT and KNN).  
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Figure 52. The overall heatmap compares the prediction performance of classifiers based on 
the AUC score in four experiments on putamen datasets. 

 
 

4.4 The Thalamus 

 

4.4.1 Selected Features using RENT 

 

In the thalamus experiments, we performed RENT one time without generating any 

polynomial features.  

 

Selected Features in Experiment 1  

In experiment 1, by applying RENT, we obtained a reduced dataset with 16 features 

(out of 328 features) given in Table 15.   
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Table 15. Selected features attribute in experiment 1 on “initial dataset” for the thalamus. 
Shape denoted shape features 128-bin and 64-bin refer to the texture features with 128 and 
64 grey level discretisation. Right or Left indicate the right or left side of the brain. 

 Feature Name Side Feature Type 

1 Shape_MajorAxisLength_left Left Shape 

2 Shape_Elongation_right Right Shape 

3 Shape_Maximum2DDiameterRow_right Right Shape 

4 Shape_MinorAxisLength_right Right Shape 

5 Shape_Sphericity_right Right Shape 

6 Shape_SurfaceArea_right Right Shape 

7 128_ClusterShade_d_1_left Left 128-bin 

8 128_DifferenceVariance_d_1_left Left 128-bin 

9 128_SmallAreaLowGrayLevelEmphasis_left Left 128-bin 

10 128_SizeZoneNonUniformityNormalized_right Right 128-bin 

11 128_SmallAreaEmphasis_right Right 128-bin 

12 128_LargeDependenceLowGrayLevelEmphasis_left Left 128-bin 

13 128_LargeDependenceHighGrayLevelEmphasis_right Right 128-bin 

14 64_ClusterShade_d_1_left Left 64-bin 

15 64_DifferenceVariance_d_1_left Left 64-bin 

16 64_Busyness_left Left 64-bin 

 

 

The distribution of selected features in Figure 53 shows that most of the selected 

features were texture features of the the128-bin type (44%) versus 19% of the 64-bin 

type. 37% of selected features were from the shape features category. Figure 53b 

shows that 53% of the selected features were from the right side of the brain. 

 

 

Figure 53. Pie charts show the distribution of selected features from the "initial dataset" in 
experiment 1 for the thalamus. a) the distribution of selected features based on the feature 
type. 128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey level 
discretisation. Shape denotes the shape features. b) the distribution of features selected from 
the left or right sides of the brain. 
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Selected Features in Experiment 2  

In experiment 2, 15 features out of 348 radiomics features in the "expanded dataset” 

(see Figure 21) were selected by RENT. We used these selected features, listed in 

Table 16, for constituting the final reduced dataset.  

Table 16. Selected features attribute in experiment 2 on “expanded dataset” for the thalamus. 
Shape denotes the shape features. LBP corresponds to LBP features. 128-bin and 64-bin 
refer to the texture features with 128 and 64 grey level discretisation, respectively. Right or 
Left indicate the right or left side of the brain, respectively. 

 Feature Name Side Feature Type 

1 Shape_Sphericity_right Right shape 

2 Shape_SurfaceArea_right Right shape 

3 128_ClusterShade_d_1_right Right 128-bin 

4 128_LargeAreaHighGrayLevelEmphasis_left Left 128-bin 

5 64_ClusterShade_d_1_left Left 64-bin 

6 64_ClusterShade_d_1_right Right 64-bin 

7 LBP_111_left Left LBP 

8 LBP_021_left Left LBP 

9 LBP_300_left Left LBP 

10 LBP_201_left Left LBP 

11 LBP_003_left Left LBP 

12 LBP_021_right Right LBP 

13 LBP_012_right Right LBP 

14 LBP_003_right Right LBP 

15 LBP_102_right Right LBP 

 

 

 

Figure 54. Pie charts show the characteristics of selected features from the "expanded 
dataset" in experiment 2 for the thalamus. a) the distribution of selected features based on the 
feature type.  LBP corresponds to the LBP features. 128-bin and 64-bin refer to the texture 
features with, respectively, 128 and 64 grey level discretisation. Shape denotes the shape 
features. b) the distribution of features selected from the left or right sides of the brain. 
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From Figure 54a and Table 16, we can observed that the majority of the selected 

features were LBP features (60%), followed by texture features (26%) and shape 

features (14%) (Figure 54a) and from the left side of the brain (Figure 54b).   

 

Selected Features and Feature Correlation in Experiment 3 

Features Collinearity 

The heatmap of features correlations between 13 features selected by RENT in 

experiment 2 is shown in Figure 55.  The only pairs of features with correlation above 

70% was 64_ClusterShade_d_1_right and 128_ClusterShade_d_1_right.  

 

 
Figure 55. The correlation heatmap of the 13 features selected by RENT in experiment 2 for 
the thalamus. The values show the Spearman Correlation Coefficient between pairs of 
features. 
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Selected Features in experiment 3  

The distribution of features in the “expanded dataset” obtained after removing highly 

correlated features is shown in Figure 56. 195 out of the 348 features were highly 

correlated to another feature and were removed, giving a reduced dataset with 153 

features. The LBP features constructed 13% of this dataset in comparison to shape 

feature (16%), texture feature 128-bin (41%) and 64-bin (30%). All the LBP features 

were included in this reduced dataset showing no highly correlated features among 

LBP features. The features were approximately equally distributed from the left and 

right side of the brain (Figure 56b). 

 

 

 

Figure 56. Pie charts show the distribution of various radiomics features in the dataset 
obtained after removing highly correlated features from the "expanded dataset" in experiment 
3 for the thalamus. a) the distribution of features based on the feature type. 128-bin and 64-
bin refer to the texture features, respectively, 128 and 64 grey level discretisation. Shape 
denotes the shape features. LBP corresponds to LBP features. b) the distribution of features 
from the left or right sides of the brain. 

 

 

After performing RENT on the dataset without highly correlated feature, we obtained 

a reduced dataset with 13 features (from 153 radiomics features), given in Table 17. 

57% of these features were LBP features (Figure 57a), and most of the features were 

selected from the left side of the brain (Figure 57b).  
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Table 17. Selected features attribute in experiment 3 for the thalamus. Shape denotes the 
shape features. LBP corresponds to LBP features. 128-bin refers to the texture features with 
128 grey level discretisation. Right or Left indicate the right or left side of the brain, 
respectively. 

 Feature Name Side Feature Type 

1 Shape_Sphericity_right Right Shape 

2 Shape_SurfaceArea_right Right Shape 

3 128_ClusterShade_d_1_left Left 128-bin 

4 128_ClusterShade_d_1_right Right 128-bin 

5 128_LargeAreaHighGrayLevelEmphasis_left Left 128-bin 

6 LBP_111_left Left LBP 

7 LBP_021_left Left LBP 

8 LBP_300_left Left LBP 

9 LBP_003_left Left LBP 

10 LBP_021_right Right LBP 

11 LBP_012_right Right LBP 

12 LBP_003_right Right LBP 

13 LBP_102_right Right LBP 

 

 

 

Figure 57. Pie charts show the characteristics of selected features from the dataset obtained 
after removing highly correlated features from the "expanded dataset" in experiment 3 for the 
thalamus. a) the distribution of selected features based on the feature type. LBP corresponds 
to the LBP features. 128-bin and 64-bin refer to the texture features with, respectively, 128 
and 64 grey level discretisation. Shape denotes the shape features. b) the distribution of 
features selected from the left or right sides of the brain. 

 

4.4.2  Heatmap Comparison of the Experiments 

Figure 58 shows the overall heatmap of the thalamus experiments having AUC scores 

from 40% to 100%. The LGBM result was excluded from the heatmap. SVC had the 

highest performance in experiment 2 with a score of 100%; in contrast, the lowest 
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score (40%) was related to the MLP classifier in experiment 1. The scores in 

experiments 2,3, and 4 outperformed the scores of experiments 1.  

 

 

Figure 58. The overall heatmap shows the comparison between the performance of the 
classifiers based on the AUC score in four experiments on the thalamus datasets. 

 

4.5 The Pallidum 

4.5.1  Selected Features using RENT 

In the pallidum experiments, we performed RENT one time without generating any 

polynomial features.  

 

Selected Features in Experiment 1  

In experiment 1, by applying RENT to the “initial dataset” (see Figure 18), we obtained 

a reduced dataset with 17 features out of 328 radiomics features, given in Table 18. 

Most of the selected features were texture features from the right side of the brain 

(Figure 59). 

 

Table 18. Selected features attribute in experiment 1 on the “initial dataset” for the pallidum. 
Shape denotes the shape features. 128-bin and 64-bin refer to the texture features with, 
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respectively, 128 and 64 grey level discretisation. Right or Left indicate the right or left side of 
the brain, respectively. 

 Feature Name Side Feature Type 

1 Shape_MajorAxisLength_left Left Shape 

2 Shape_MajorAxisLength_right Right Shape 

3 Shape_Maximum2DDiameterColumn_right Right Shape 

4 Shape_Maximum2DDiameterRow_right Right Shape 

5 Shape_Maximum2DDiameterSlice_right Right Shape 

6 128_ClusterProminence_d_1_left Left 128-bin 

7 128_JointAverage_d_1_left Left 128-bin 

8 128_SumAverage_d_1_left Left 128-bin 

9 128_MaximumProbability_d_1_right Right 128-bin 

10 128_ZoneEntropy_right Right 128-bin 

11 64_ClusterProminence_d_1_left Left 64-bin 

12 64_JointAverage_d_1_left Left 64-bin 

13 64_SumAverage_d_1_left Left 64-bin 

14 64_MaximumProbability_d_1_right Right 64-bin 

15 64_LowGrayLevelRunEmphasis_right Right 64-bin 

16 64_ShortRunLowGrayLevelEmphasis_right Right 64-bin 

17 64_LowGrayLevelEmphasis_right Right 64-bin 

 

 

Figure 59. Pie charts show the distribution of selected features from the "initial dataset" in 
experiment 1 for the pallidum. a) the distribution of selected features based on the feature 
type. 128-bin and 64-bin refer to the texture features with, respectively, 128 and 64 grey level 
discretisation. Shape denotes the shape features. b) the distribution of features selected from 
the left or right sides of the brain. 

Selected Features in Experiment 2 

In this experiment, 14 features out of 348 radiomics features in the "expanded dataset” 

(see Figure 21) were selected by RENT (Table 19). Most of the selected features were 

LBP features (Figure 60) and from the left side of the brain. 
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Table 19. Selected features attribute in experiment 2 on the “expanded dataset” for the 
pallidum. Shape denotes the shape features. LBP corresponds to LBP features. 128-bin and 
64-bin refer to the texture features with 128 and 64 grey level discretisation, respectively. Right 
or Left indicate the right or left side of the brain, respectively. 

 Feature Name Side Feature Type 

1 Shape_Maximum2DDiameterColumn_right Left Shape 

2 Shape_Maximum2DDiameterRow_right Left Shape 

3 Shape_Maximum2DDiameterSlice_right Left Shape 

4 128_ClusterProminence_d_1_left Left 128-bin 

5 128_Imc1_d_1_right Left 128-bin 

6 64_ClusterProminence_d_1_left Left 64-bin 

7 LBP_111_left Left LBP 

8 LBP_030_left Left LBP 

9 LBP_021_left Left LBP 

10 LBP_201_left Left LBP 

11 LBP_003_left Right LBP 

12 LBP_030_right Right LBP 

13 LBP_201_right Right LBP 

14 LBP_102_right Right LBP 

 

 

Figure 60. Pie charts show the characteristics of selected features from the "expanded 
dataset" in experiment 2 for the pallidum. a) the distribution of selected features based on the 
feature type. LBP corresponds to the LBP features. 128-bin and 64-bin refer to the texture 
features with, respectively, 128 and 64 grey level discretisation. Shape denotes the shape 
features. b) the distribution of features selected from the left or right sides of the brain. 

 

 

Selected Features and Feature Correlation in Experiment 3 

Features Collinearity 

The correlation between the 14 features selected by RENT (from 348 radiomics 

features in the "expanded dataset”, experiment 2) is shown in Figure 61.  
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The features with correlation above 70% were 64_ClusterProminence_d_1_left and 

128_ClusterProminence_d_1_left. 

 

 

 

Figure 61. The correlation heatmap of features selected by RENT in experiment 2 for the 
pallidum. The values show the Spearman Correlation Coefficient between pairs of features. 

 

 

Selected Features in Experiment 3 

After removing the highly correlated features, we were left with 194 out of 348 features 

of the “expanded dataset”. Most of these selected features were texture features 
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(Figure 62a). About an equal number of features were selected from the right and left 

side of the brain (Figure 62b). 

 

 

Figure 62. Pie charts show the distribution of various radiomics features in the dataset 
obtained after removing highly correlated features from the "expanded dataset" in experiment 
3 for the pallidum. a) the distribution of features based on the feature type. 128-bin and 64-bin 
refer to the texture features, respectively, 128 and 64 grey level discretisation. Shape denotes 
the shape features. LBP corresponds to LBP features. b) the distribution of features from the 
left or right sides of the brain. 

 

By performing RENT, we reduced the number of features to 15 (from 194 radiomics 

features), given in Table 20. Most of the selected features were LBP features (Figure 

63a) and from the right side of the brain (Figure 63b).  

 

 

 

Figure 63. Pie charts show the characteristics of selected features from the dataset gained 
after removing highly correlated features from the "expanded dataset" in experiment 3 for the 
pallidum. a) the distribution of selected features based on the feature type. LBP corresponds 
to the LBP features. 128-bin and 64-bin refer to the texture features with, respectively, 128 
and 64 grey level discretisation. Shape denotes the shape features. b) the distribution of 
features selected from the left or right sides of the brain. 
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Table 20. Selected features attribute in experiment 3 for the pallidum. Shape denotes the 
shape features. LBP corresponds to LBP features. 128-bin and 64-bin refer to the texture 
features with 128 and 64 grey level discretisation, respectively. Right or Left indicate the right 
or left side of the brain, respectively. 

 Feature Name Side Feature Type 

1 Shape_MinorAxisLength_left Left Shape 

2 Shape_Maximum2DDiameterColumn_right Right Shape 

3 Shape_Maximum2DDiameterRow_right Right Shape 

4 Shape_Maximum2DDiameterSlice_right Right Shape 

5 128_ClusterProminence_d_1_left Left 128-bin 

6 128_Imc1_d_1_right Right 128-bin 

7 64_LongRunLowGrayLevelEmphasis_right Right 64-bin 

8 LBP_111_left Left LBP 

9 LBP_030_left Left LBP 

10 LBP_021_left Left LBP 

11 LBP_201_left Left LBP 

12 LBP_003_left Left LBP 

13 LBP_030_right Right LBP 

14 LBP_201_right Right LBP 

15 LBP_102_right Right LBP 

 

 

4.5.2  Heatmap Comparison of the Experiments 

The overall heatmap of the pallidum experiments is shown in Figure 64. We eliminated 

the result from LGBM as it had constantly poor results. The highest scores were 

obtained in experiments 1 and 3, closely followed by experiment 4. Note that the SVC 

classifier obtained a score of only 50% in experiments 2 and 3.  
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Figure 64. The overall heatmap compares classifiers' performance based on the AUC score 
in four experiments on pallidum datasets. 
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5 Discussion and Further work 

 

The main objective of this study was to examine whether ADHD medication alters the 

structures in the grey matter of brains of male patients aged 10 to 12. The output of 

the classification experiments suggested detactable patterns in the five subcortical 

brain structures (hippocampus, caudate, pallidum, putamen, and thalamus) due to the 

assigned medication. These findings, along with the findings related to the secondary 

objectives, will be discussed in the first two sections of this chapter. At the end of this 

chapter, we will present some areas for future work. 

  

5.1 Selected Features  

By observing the overall results of selected features distribution (Table 21), one could 

observe that features from the right side of the brain were preferred to the features 

from the left side. Mainly, the right side of the hippocampus and caudate structures 

always prevailed over the left side of those structures. In a previous study by Grünbeck 

[13], similarly, the right-sided ROIs dominated among several feature selection 

methods. This was also mentioned in the papers review by Frodl et al. [84] that the 

right side of the brain structures was influenced by ADHD and perhaps by MPH 

medication. 

 

 

 

 

 

 

 

 

 



Discussion and Further Work 

 

84 
 

Table 21. A comparison between selected features by RENT (input dataset for modelling 
step). This table shows which feature type and side (left or right) of the brain had the highest 
selection rate. LBP corresponds to LBP features. 128-bin and 64-bin refer to the texture 
features with 128 and 64 grey level discretisation, respectively. 

 Experiment 1 Experiment 2 Experiment 3 

Side Type Side Type Side Type 

Hippocampus Right 128-bin Right LBP Right LBP 

Caudate Right 64-bin Right LBP & 64-bin Right LBP 

Putamen Right 64-bin Left LBP Left LBP 

Thalamus Right 128-bin Left LBP Left LBP 

Pallidum Right 64-bin Left LBP Right LBP 

 

Furthermore, Table 21 shows that the texture features (including LBP, 128-bin and 64-

bin features) were always preferred to the shape features. Therefore, it appears that 

the relevant information for discriminating between MPH and controls was found in the 

texture features, particularly LBP features and not in the shape of the structure. 

Similarly, the results of using various feature selectors in the study by Grünbeck [13] 

showed that most of the selected features were from the texture features and not the 

shape features.  

 

The LBP descriptor is known for being straightforward and, at the same time, highly 

discriminative. It is less sensitive to the inhomogeneity of image and noise artefacts 

[47]. It has not been frequently used in radiomics studies. Because the medical images 

used in radiomics studies may be three dimensional, having a 3D LBP implementation 

in Python was necessary. Hence, we developed a 3D LBP feature extraction 

programme. The calculation of LBP was simpler and faster than other texture or shape 

features.  

 

Table 21 demonstrates that whenever LBP features were presented in a dataset, they 

were the dominant feature type selected, showing that they capture more of the 

relevant texture than the other feature types. Even though the number of LBP features 

in the dataset before feature selection was much lower than the number of other 

texture features (20 versus 300), most selected features were still LBP features. 

Likewise, in the study by Peeken et al. [85], LBP features achieved better prediction 

results than shape features and other texture features.  

 

5.2 Classification Performance  

From the classification results in chapter 4, we observed that the AUC scores varied 

across different experiments showing improvements compared to the previous study 

done by Grünbeck [13]. In our study, most of the AUC scores were above 85%, 
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especially in experiments 2, 3 and 4, in which LBP features were included in addition 

to the standard radiomics features or stand-alone features. However, in the study by 

Grünbeck, where only the standard radiomics features were included, no brain 

structure obtained scores above 80%. The better performance achieved by 

experiments 2, 3 and 4 indicates that adding LBP features improved the model 

performance compared to the situations that only used standard radiomics features as 

demonstrated in the result of experiment 1 of this study and Grünbeck’s study.  

 

Furthermore, although removing highly correlated features improved the performance 

in some cases, there was no marked performance increase between experiment 2 

using a dataset with correlated features and experiment 3 using a dataset where 

correlated features had been removed. This showed that RENT had selected robust 

features.  

 

If we compare the classification results of experiment 1, in which we used the same 

dataset as Grünbeck [13], but with a different feature selection method, we observed 

that we attained higher classification performance for all the brain structures. 

Grünbeck [13] employed several feature selection algorithms such as Low Variance 

Threshold, Fisher Score, a modified version of Mutual Information Classifier and 

ReliefF, along with no feature selection. In her study, the brain structures showed AUC 

performance scores below 60%, and the AUC scores rarely surpassed 70%, while the 

AUC of experiment 1 (the same dataset as Grünbeck’s study based on the dataset 

containing standard radiomics features) of our study mainly were close to 70% and 

more. In experiment 1, the highest AUC score was achieved for the hippocampus set 

(85%), followed by pallidum (84%), putamen (80%), caudate (78%) and thalamus 

(74%) compared to the results achieved by Grünbeck where the best score was 

obtained for the pallidum set (79%) followed by putamen (76%), hippocampus (71%), 

caudate (64%) and thalamus (64%). This can indicate the RENT’s ability in selecting 

features that are more discriminant than the feature selection methods used in 

Grünbeck’s study. Furthermore, it should be pointed out that RENT provides two 

validation studies to evaluate its performance with diagrams presented in Appendix F. 

These statistical tests showed that the selected features by RENT give significantly 

higher classification performance than randomly selected features or permuted test 

labels. 

 

As we saw in the heatmaps of classifier performances in chapter 4, Ridge, AdaBoost 

and ET were the classifiers that showed AUC scores above 80% most of the time. If 

we have a closer look at the definition of these algorithms, we may know the reason 

for their higher performance relative to the other classifiers. Ridge is a regularisation 

algorithm. The regularisation techniques reduce the variance of the model and 

increase the model generalisability [86]. AdaBoost and ET are ensemble algorithms 

trying to combine several weak classifiers into one robust classifier [87], [88].  
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Ridge achieved acceptable results in the study by Langberg [18] in which the 

biomarkers related to disease free survival in head and neck cancers were examined. 

The AdaBoost algorithm has been used widely in classification studies based on 

medical images because of its robust and stable prediction performance [89]. For 

instance, Zhang et al. (2019) [90] examined arteriovenous malformation related 

hematomas using radiomics where the AdaBoost algorithm had superiority compared 

to other classifiers (such as DT, RF, LR, SVC, KNN). There are some studies in 

radiomics that used ET classifier and attained good results. For example, Gabryś et 

al. (2018) [91] studied the risk assessment of xerostomia by using radiomics and other 

methods. In their study, the ET algorithm outperformed SVM, LR and KNN classifiers. 

In Grünbeck’s study [13], DT and ET showed relatively higher scores than other 

classifiers included in her study (Ridge, LGBM, SVC and LR).  

 

However, in current research, SVC and DT showed the worst performance having 

prediction scores mostly below 80%. Despite the acceptable performance of the 

LGBM classifier in Grünbeck’s study, in our study, this classifier had a poor 

performance by predicting all the labels as class 0, which led to the constantly poor 

score of 50% in all experiments.  

 

The AUC scores of different experiments showed that the highest score for 

hippocampus was 98% and for putamen was 96%, while the best scores of thalamus, 

caudate, and palladium were 100% showing a possibility of overfitting. In 2017, 

Hoogman et al. [92]  examined several brain structures, including the five structures 

used in this study. They reported reduced volumes in hippocampus, caudate and 

putamen in ADHD patients.  In another study, Schrantee et al. (2016) [10] explored 

the effect of MPH on the dopaminergic system of ADHD children. They observed an 

impact of MPH treatment on caudate, putamen and thalamus.  

 

It should be stressed that because of not having any independent validation dataset 

and having very few samples, our models were prone to overfit potentially. We used 

the nested cross-validation method to tackle the overfitting issue and visualise the 

model's behaviour on unseen data. However, because of few samples, the risk of 

overfitting still existed. The nested cross-validation was used in studies with few 

samples where hyperparameter tuning is required [93]–[96]. For instance, in the study 

by Smit et al. (2007) [93], nested cross-validation for modelling was used and 

evaluated on a dataset with very few samples. In another study, a review paper on 

cross-validation methods in neuroimaging, Varoquaux et al. (2017) [96] mentioned that 

the nested cross-validation could be the choice in case of the limited amount of data. 

According to Maleki et al. (2020) [95], when dealing with few samples, nested cross-

validation is a better alternative than cross-validation, especially when the 

hyperparameter tunning process is included because it can provide a reliable 
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generalisation error versus the cross-validation, which estimates the error over-

optimistically. Nested cross-validation can tackle the overfitting problem because, in 

nested cross-validation, the prediction takes place in the outer loop on the data, which 

is new to the predictive model [93]. 

 

Overall, the results presented suggest that there may be detectable changes in the 

brain structure due to MPH medication. This requires more examinations, gathering 

more samples or having external validation data to remove the possibility of overfitting. 

 

5.3 Further Work 

The high performance scores in almost every classification experiment and the 

comparison with the previous study by Grünbeck [13] on a similar dataset suggest 

differences between the two treated groups, connected to detectable changes due to 

MPH treatment.  

 

One of the limitations of radiomics studies is having datasets with very few samples 

and a lack of unseen data. These limitations can make the prediction process suffer 

from overfitting. We tried to decrease this risk by using the nested cross-validation 

method and observing the train and validation curves. From these curves, we can get 

a better understanding of the classifier's prediction behaviour. Despite employing the 

nested cross-validation method to increase the generalisability of classification tasks, 

our predictive models can still be susceptible to overfitting. Thus, we suggest 

performing similar training and validation experiments by including more samples and 

validating unseen external data to confirm the promising results of this research. 

 

Another limitation in radiomics studies is that the extracted features are not interpreted 

because many features are included and the radiomics features (especially texture 

features and higher-order features) are slightly non-understandable. We propose a 

further study on investigating the selected features’ interpretation. Moreover, we 

suggest the inclusion of demographic information and other characteristics of the 

patients. 

 

In our study, we also followed the idea of developing a 3D LBP feature extraction tool. 

We observed that LBP features were more informative than shape features and other 

texture feature. Our 3D LBP code can be upgraded by considering more neighbours, 

for example, the neighbours on the diagonal (considering 26 neighbours instead of 6 

neighbours) or having user-defined values for the number of neighbouring nodes (P) 

and the distance of the neighbourhood cells from the centre node (R). In addition, we 

recommend using other extensions of the LBP method. For instance, the Local 

Ternary Pattern (LTP) descriptor [97] instead of the LBP operator. LTP is a 
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generalisation of LBP introduced by Tan et al. (2010). LTP encodes the surrounding 

voxels into three labels (less than zero, equal to zero and greater than zero). In 

contrast, LBP thresholds the intensity values into two class labels (to equal or greater 

than zero or less than zero). According to [97], LTP is less sensitive to noise and more 

discriminative in uniform and near-uniform areas than LBP. Also, LTP has the LBP 

advantage of computational efficiency [97].  
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6 Conclusion  

 

The main goal of this thesis was to investigate changes to five brain structures caused 

by MPH medication in ADHD male children. Features of these brain structures were 

extracted from MR images acquired from the ePOD-MPH study [11]. We achieved 

very promising results, which suggest detectable changes to the five subcortical 

structures of the brain (hippocampus, caudate, pallidum, putamen, and thalamus). We 

achieved high performance scores for classifying the children into the MPH medication 

group or the placebo group.   

 

Four classification experiments based on four different datasets were done. The 

results were very promising, with AUC scores mostly above 80% indicating 

improvement compared to a previous study by Grünbeck [13] on the same data. This 

and the relatively similar prediction performance achieved in experiment 2 (using a 

dataset contained LBP and other standard radiomics features with correlated features) 

and experiment 3 (using the dataset with the same feature types as in experiment 2 

but excluding highly correlated features) showed the efficiency of RENT versus 

various feature selectors used in Grünbeck’s study (Low Variance Threshold, Fisher 

Score, modified version of Mutual Information Classifier and ReliefF besides no 

feature selection step). 

 

In the current study, we analysed a short-wide dataset utilising the radiomics pipeline. 

It is very common in radiomics studies to assess a short-wide dataset (high dimension 

with few samples). In this thesis, we explored a new feature selection tool, RENT which 

was claimed to be appropriate for this kind of dataset (short-wide). For tackling the 

issues of the lack of a validation set (unseen data), we used nested cross-validation 

and visualised classifiers behaviour by depicting train and validation curves to give the 

reader a clearer observation of the classification process. However, our models may 

be inclined to overfitting, particularly in the models with AUC scores above 95%.  
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The LBP features have shown their high discriminative power in computer vision 

studies over the years. They are not frequently used in radiomics studies. Therefore, 

another objective of this thesis was to develop a feature extraction tool for extracting 

3D LBP features in the Python programming language. The code is available in 

Appendix A and added to the Biorad feature extraction module. In this research, 

whenever LBP was included in a dataset, they were preferred to the shape features 

and other texture features. Also, the classification experiments using LBP features 

(either as a stand-alone feature or in addition to the standard radiomics features) had 

very high prediction scores. 
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Appendix 
 

A.  Code of 3D LBP feature extraction 
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B.  Rotation Invariant Table 
The following table provides the content of the file named 

“rotation_invariant_pattern.txt” imported in the 3D LBP code. This file was constructed 

based on the rotation invariant concept showing each decimal number belongs to 

which pattern group. This file is used for labelling of the LBP features in the code (see 

Appendix A). “Original” denotes the decimal LBP value. 

 

original minvalue Rotation_Invariant original minvalue Rotation_Invariant 

0 0 300 32 1 210 

1 1 210 33 5 120 

2 1 210 34 5 120 

3 3 201 35 7 111 

4 1 210 36 5 120 

5 5 120 37 21 030 

6 5 120 38 21 030 

7 7 111 39 23 021 

8 1 210 40 5 120 

9 5 120 41 21 030 

10 5 120 42 21 030 

11 7 111 43 23 021 

12 3 201 44 7 111 

13 7 111 45 23 021 

14 7 111 46 23 021 

15 15 102 47 31 012 

16 1 210 48 3 201 

17 5 120 49 7 111 

18 5 120 50 7 111 

19 7 111 51 15 102 

20 5 120 52 7 111 

21 21 030 53 23 021 

22 21 030 54 23 021 

23 23 021 55 31 012 

24 5 120 56 7 111 

25 21 030 57 23 021 

26 21 030 58 23 021 

27 23 021 59 31 012 

28 7 111 60 15 102 

29 23 021 61 31 012 

30 23 021 62 31 012 

31 31 012 63 63 003 
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C. Modifications of Biorad feature extraction module 
The modifications made in Biorad feature extraction [19] are surrounded by a red box. 
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D. Code for Removing Correlated Features 
The code for removing highly correlated features [80] is as follows. 
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E. RENT Configuration 
 

❖ Hippocampus Experiment 1 
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❖ Hippocampus Experiment 2 
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❖ Hippocampus Experiment 3 
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❖ Caudate Experiment 1 

 
 
 
 

❖ Caudate Experiment 2 
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❖ Caudate Experiment 3 

 
 
 
 

❖ Pallidum Experiment 1 
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❖ Pallidum Experiment 2 

 
 
 
 
 

❖ Pallidum Experiment 3 
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❖ Putamen Experiment 1 

 
 
 
 

❖ Putamen Experiment 2 
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❖ Putamen Experiment 3 

 
 
 
 

❖ Thalamus Experiment 1 
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❖ Thalamus Experiment 2 
 

 
 
 
 
 
 

❖ Thalamus Experiment 3 
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F. RENT Validation Study 
 

❖ Hippocampus Experiment 1 

 
 

❖ Hippocampus Experiment 2 
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❖ Hippocampus Experiment 3 

 
 

❖ Caudate Experiment 1 
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❖ Caudate Experiment 2 

 
 

❖ Caudate Experiment 3 
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❖ Pallidum Experiment 1 

 

❖ Pallidum Experiment 2 
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❖ Pallidum Experiment 3 

 
 

❖ Putamen Experiment 1 
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❖ Putamen Experiment 2 

 
 

 

 

❖ Putamen Experiment 3 
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❖ Thalamus Experiment 1 

 
 

 

 

❖ Thalamus Experiment 2 
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❖ Thalamus Experiment 3 

 

 
 

 

 

 

 

 

 



 

 

 


