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Abstract This is the first study reporting a full three-dimensional (3D) non-
normal-mode onset of convection in a porous medium. In this paper, the onset
of thermal convection in a vertical porous cylinder is investigated theoreti-
cally. In particular, the contribution includes the following novelties. The ho-
mogeneous cylinder has a circular cross-section. The eigenvalue problem is
non-separable in space because of a constant heat flux condition at the upper
boundary. In addition, a partly conducting cylinder wall is represented by a
Robin parameter a. All boundaries are impermeable. The eigenvalue problem
is solved numerically in the COMSOL Multiphysics environment. The criti-
cal Rayleigh number for the lowest onset modes are reported as a function
of the ratio of the cylinder radius and its height. The only mode-number, m,
represents azimuthal dependency. The axisymmetric mode m = 0 corresponds
to the preferred mode of convection for a small-cylinder radii. The numerical
onset criterion is validated with the well-known analytical limit case, a→∞.
Finally, we performed a visual comparison of the thermo-mechanical eigenfunc-
tions against an established problem, where the only difference is the thermal
condition at the upper boundary. The present 3D analysis is a step towards
a full adequate modeling of experimental reality for convection onset, beyond
the standard constraints of mathematical convenience.
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1 Introduction

The onset of convection in a horizontal porous layer heated from below was first
investigated in two pioneering papers [1], [2]. The lower and upper boundary
were assumed impermeable and thermally conducting, leading to normal-mode
type eigenfunctions in the vertical direction. With infinite horizontal extent,
a Fourier decomposition in the horizontal direction implies normal-mode de-
pendency. Beck [3] generalized the original theory to a rectangular porous
cavity with impermeable and thermally insulating walls, which preserves the
normal-mode type of solution in the horizontal directions.

Tyvand and Storesletten [4] pointed out that normal modes in a spatial
direction represent a degeneracy of the eigenvalue problem, reducing it from a
fourth-order problem to an essentially second-order problem. While Wooding
[5] had shown how normal modes could be applied to the onset problem for any
vertical cylinder with insulating and impermeable cylinder walls, his analysis
was confirmed and extended in [4].

Vertical cylinders are the only class of three-dimensional (3D) porous cavi-
ties where the onset modes for convection can be composed by normal modes,
because of the lack of curvature in a vertical cross-section. If a porous cavity
has a vertical cross-section with curved or sloping boundary, normal modes
can no longer constitute the eigenfunctions. It implies that normal modes are
not available for solving an onset problem in 3D porous cavities other than
vertical cylinders.

Convection in a horizontal circular cylinder was investigated by Storeslet-
ten and Tveitereid [6]. The 2D version of their theory was generalized to ar-
bitrary cross-sections by Rees and Tyvand [7], who discovered that the onset
problem for a 2D porous cavity could be solved by a Helmholtz equation when
the cavity has thermally conducting and impermeable walls. Normal modes
will then contribute to the eigenfunctions, but only after a horizontal Fourier
component has been separated out. This separation takes care of a horizon-
tal phase shift of a quarter of a wavelength between the eigenfunctions for
the temperature and stream-function. This phase shift applies to internal iso-
lines for temperature versus stream-function, while these isolines have no mu-
tual phase shift at the exterior boundary. The degeneracy of such eigenvalue
problems makes any set of temperature and stream-function eigenfunctions
interchangeable. These nice properties of thermo-mechanical eigenfunctions,
discovered in [7], apply only 2D cavities.

The present work contains a full 3D analysis. It is the first study of non-
normal modes for the onset of convection in a vertical cylinder heated from
below. The starting point for developing the present model is our recent work
[8] with steady non-normal modes for convection onset in a porous rectangle.
This previous work involved one single corner where the thermo-mechanical
eigenfunctions are non-analytical, defying local Taylor expansions, but with
locally analytical eigenfunctions around the three other corners. We take the
2D geometry of our first non-normal mode paper [8] and make it 3D by gen-
erating axisymmetry by revolving the 2D cross-section around the vertical z
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Fig. 1 Perspective 3D sketch of the vertical porous cylinder. The length unit is the height
h of the cylinder. The horizontal cross-section is circular, with a dimensionless radius R.
The direction of gravity is indicated. (a) Geometric configuration with 2D computational
domain for the 3D flow. The eigenvalue problem is to be formulated in the vertical half cross-
section OABC. (b) The chosen thermal boundary conditions. All boundaries are assumed
impermeable.

axis. Thereby we arrive at only one thermo-mechanical boundary for the hor-
izontal direction, which is a mathematical simplification in comparison with
the previous 2D geometry [8].

The present non-degenerate onset problem for a 3D cylinder contrasts pre-
vious work summarized in [4], where the spatial dependencies separate due to
normal modes either horizontally or vertically. We will investigate the quali-
tative and quantitative effects of this full fourth-order eigenvalue problem.

The remainder of the paper is organized as follows. Section 2 formulates the
problem mathematically from first principles. Then, the eigenvalue problem is
described in Section 3. In Section 4, the numerical results for the conducting
cylinder wall are presented. The results are validated against well-knows ana-
lytical solutions in Section 5. A qualitative comparison is also made in Section
6, where one thermal condition is modified. Finally, Section 7 summarizes and
concludes the paper.

2 Mathematical formulation

A three-dimensional porous medium is bounded by horizontal planes z =
0 and z = h. The porous medium is homogeneous and isotropic. Cartesian
coordinates (x, y, z) are introduced. The z axis is directed vertically upwards.
We will consider a vertical circular cylinder, noting that the linear theory has
been established both for impermeable insulating walls (Wooding [5]), and for
open conducting walls (Barletta and Storesletten [9]).

The velocity vector v has Cartesian components (u, v, w). The temperature
field is represented as T (x, y, z, t) with t denoting time. In the undisturbed
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state, the lower plane z = 0 is kept at a constant temperature T = T0. The
upper plane z = h has a given temperature gradient −β. Here β is positive.
The heat flux is thus given through the impermeable upper boundary. The
gravitational acceleration g is written in vector form as g.

The standard Darcy-Boussinesq equations for free thermal convection in a
porous medium can be written

∇P +
µ

K
v + ρ0α (T − T0)g = 0, (1)

∇ · v = 0, (2)

(ρcp)m
∂T

∂t
+ (ρcp)f v · ∇T = λm∇2T. (3)

In these equations, P is the dynamic pressure, α is the coefficient of thermal
expansion, ρ = ρ0 is the fluid density at the reference temperature T0, µ is
the dynamic viscosity of the saturating fluid, K is the permeability, cp is the
specific heat at constant pressure, and λm is the thermal conductivity of the
saturated porous medium. The subscript m refers here to an average over the
solid/fluid mixture, while the subscript f refers to the saturating fluid alone.

The lower and upper boundaries support a given temperature gradient β
across the porous layer. The undisturbed basic state of pure conduction has a
given temperature at the lower boundary

T = T0 +∆T, at z = 0, (4)

while the temperature gradient is given at the upper boundary

∂T

∂z
= −β, at z = h. (5)

The temperature difference in the undisturbed state is ∆T = βh, and T0 is
a reference temperature. This basic state is to be disturbed with infinitesimal
perturbations.

The kinematic conditions for the impermeable lower and upper boundaries
are

w = 0, at z = 0, (6)

w = 0, at z = h. (7)

Figure 1 shows a definition sketch for the vertical porous cylinder with
circular cross-section. The direction of gravity is indicated. A vertical half
cross-section OABC is depicted. This is the domain of computation for the
eigenvalue problem.
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2.1 Dimensionless equations

From now on we work with dimensionless variables. The length unit is the
height of the vertical cylinder, and the dimensionless radius of its circular
cross-section is denoted by R. We reformulate the mathematical problem in
dimensionless form by means of the transformations

1

h
(x, z)→ (x, z),

h

κm
(u, v, w)→ (u, v, w), h∇ → ∇,

1

∆T
(T − T0)→ T,

K

µκm
(P − P0)→ P,

(ρcp)fκm
(ρcp)mh2

t→ t,

(8)

where κm = λm/(ρ0cp)f is the thermal diffusivity of the saturated porous
medium. We denote the vertical unit vector by k, directed upwards.

The dimensionless governing equations can then be written

v +∇P −RaTk = 0. (9)

∇ · v = 0 (10)

∂T

∂t
+ v · ∇T = ∇2T, (11)

with the boundary conditions of impermeable and conducting lower plane

w = T − 1 = 0, z = 0, (12)

and impermeable upper plane with a negative unit temperature gradient

w =
∂T

∂z
+ 1 = 0, z = 1. (13)

The Rayleigh number Ra is defined as

Ra =
ρ0gαKβh

2

µκm
. (14)

2.2 Basic solution

The stationary basic solution of eqs. (9)-(13) is given subscript ”b”.

vb = 0, Tb = 1− z, Pb = Ra z
(

1− z

2

)
. (15)

This basic state has a linear temperature profile.
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2.3 Linearized perturbation equations

In our stability analysis we disturb the basic state (15) with perturbed fields

v = vb + v, T = Tb(z) +Θ, P = Pb(z) + p. (16)

where the perturbations v, Θ, p are functions of x, y, z and t. Linearizing eqs.
(9)-(11) with respect to perturbations and eliminating the pressure gives

∇2w = Ra∇2
1Θ, (17)

∂Θ

∂t
− w = ∇2Θ. (18)

In eq. (17), we introduce the horizontal Laplacian operator ∇2
1 = ∂2/∂x2 +

∂2/∂y2. Since the vertical component of the vorticity is zero, and the flow is
incompressible, one single scalar function Ψ(x, y, z) is sufficient for representing
the entire 3D thermo-mechanical vector field. The velocity field is

v = ∇× (∇× kΨ), (19)

where k is the unit vector in the vertical direction. The components of this
vectorial relationship are

(u, v, w) =

(
∂2Ψ

∂x∂z
,
∂2Ψ

∂y∂z
,−∇2

1Ψ

)
. (20)

Inserting w = −∇2
1Ψ in eq. (17) leads to the conclusion that the perturbation

temperature is given by
Θ = −Ra−1∇2Ψ, (21)

after having integrated out the common 2D Laplace operator on each side
of the resulting vorticity equation. This can be done because the 2D Laplace
equation has only a trivial solution with homogeneous boundary condition.

The heat equation (18) becomes

∇2
1Ψ = ∇2Θ − ∂Θ

∂t
. (22)

2.4 Governing equations in cylinder coordinates

We will formulate the problem in the cylinder coordinates (r, φ, z) where the
coordinates in the horizontal plane are defined as

r =
√
x2 + y2, φ = arctan

(y
x

)
. (23)

The velocity vector in cylinder coordinates has the components (vr, vφ, w),
which are defined by

(vr, vφ, w) =

(
∂2Ψ

∂r∂z
,

1

r

∂2Ψ

∂φ∂z
,−∇2

1Ψ

)
. (24)
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We can reformulate the governing equations by introducing the versions in
cylinder coordinates of the Laplacian operators ∇2

1 and ∇2, where

∇2
1Ψ =

1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂φ2
, ∇2Ψ = ∇2

1Ψ +
∂2Ψ

∂z2
. (25)

The governing equations are now expressed in cylinder coordinates as

Ra Θ +
1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂φ2
+
∂2Ψ

∂z2
= 0, (26)

1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂φ2
=

1

r

∂

∂r

(
r
∂Θ

∂r

)
+

1

r2
∂2Θ

∂φ2
+
∂2Θ

∂z2
− ∂Θ

∂t
. (27)

2.5 Boundary conditions at the cylinder wall

We will now introduce a choice of thermo-mechanical conditions at the ver-
tical cylinder walls. As thermal boundary condition we take a general Robin
condition

Θ + a n · ∇Θ = 0, at the cylinder contour, (28)

where a ≥ 0 is a dimensionless parameter of partial conduction. This condi-
tion was derived by Nyg̊ard and Tyvand [10], assuming that there is a thin
cylindrical layer separating the thermoconvective flow domain of the porous
cylinder from a surrounding medium that is perfectly conducting. As kinematic
condition we take the simple condition of impermeable walls

n · v = 0, at the cylinder contour, (29)

where n is the horizontal unit normal vector on the cylinder surface, pointing
out from the porous cylinder.

3 The eigenvalue problem in the vertical r, z plane

We will formulate the eigenvalue problem in the vertical r, z plane. We intro-
duce the dimensionless radius R of the circular cross-section of the cylinder.
We separate out the tangential φ dependency as follows

Ψ = ψ(r, z)eimφeσt, Θ = θ(r, z)eimφeσt. (30)

We have introduced the exponential growth factor σ = σr + iσi, where i is
the imaginary unit. Marginal stability is defined by σr = 0. We assume that
σi = 0, after having performed some computations which confirm that the
onset mode is non-oscillatory.

For each given azimuthal mode number (m = 0, 1, 2, 3, ..) we thus have a
set of eigenfunctions ψ = ψm(r, z) and θ = θm(r, z). The governing equations
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are now formulated with a subscript m = 0, 1, 2, .. representing the azimuthal
mode for each eigenfunction

Ra θm +
1

r

∂

∂r

(
r
∂ψm
∂r

)
− m2

r2
ψm +

∂2ψm
∂z2

= 0, (31)

1

r

∂

∂r

(
r
∂ψm
∂r

)
− m2

r2
ψm =

1

r

∂

∂r

(
r
∂θm
∂r

)
− m2

r2
θm +

∂2θm
∂z2

, (32)

Insertion of eq. (31) into eq. (32) yields

−∂
2ψm
∂z2

−Ra θm =
1

r

∂

∂r

(
r
∂θm
∂r

)
− m2

r2
θm +

∂2θm
∂z2

, (33)

which makes the Rayleigh number appear in both the vorticity equation and
the heat equation. This is beneficial for the numerical stability. We introduce
the azimuthal mode number m in eq. (25) and reformulate the horizontal
Laplacian

∇2
1ψm =

1

r

∂

∂r

(
r
∂ψm
∂r

)
− m2

r2
ψm, (34)

We formulate the boundary conditions. At the lower boundary we have

θm = ψm = 0, z = 0, (35)

and at the upper boundary

∂θm
∂z

= ψm = 0, z = 1. (36)

As boundary conditions at the cylinder wall we take a Robin-type thermal
condition (28) rewritten as

θm + a
∂θm
∂r

= 0, r = R, (37)

while the kinematic condition of an impermeable cylinder wall (29) takes the
form

∂ψm
∂r

= 0, r = R. (38)

Note that the radial derivative of the 3D scalar function ψm expresses that
the outer boundary is a streamline, different from the similar condition for a
2D streamfunction.

The Robin parameter a is a non-negative number representing partial con-
duction. The lower limit a = 0 is the case of conducting cylinder wall, studied
by Haugen and Tyvand [11] in the presence of normal modes in the vertical
direction, where the thermal condition of the upper boundary differs from the
present one.

The asymptotic limit a → ∞ for the Robin parameter is the case of an
insulating cylinder wall. This case will serve as our benchmarking case, and it
has been studied by Wang [12].
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Fig. 2 Sketches of the vertical half cross-section plane OABC shown in Fig. 1, including
boundary conditions and governing equations.

Axisymmetry is represented by the lowest azimuthal mode number m =
0. Our general theory includes non-axisymmmetric modes with the integer
parameter m > 0, which is the azimuthal mode number. Haugen and Tyvand
[11] found that the axisymmetric mode is preferred for all aspects ratios when
the cylinder wall is conducting, but this will not be the case for the present
model.

The concept of streamlines applies only to the axisymmetric case. For fully
3D flows, there will be stagnation points in the vertical plane, also for non-
axisymmetric flows (m ≥ 1). According to eq. (24) these stagnation points are
given by

e−imφ(vr, w) =

(
∂2ψm
∂r∂z

,−1

r

∂

∂r

(
r
∂ψm
∂r

)
+
m2

r2
ψm

)
= (0, 0). (39)

Figure 2 illustrates the general eigenvalue problem in the half cross section
plane OABC that we have introduced in Figure 1. The 3D eigenvalue problem
is formulated in the r, z plane, even if it is not an axisymmetric problem. This
is because the azimuthal mode number m is separated out. Note that the
Rayleigh number is directly effecting both equations in the model (eqs. 31 and
32 modified for numerical stability).

3.1 The Stokes stream function for axisymmetric flow

The flow field can be visualized by streamlines for the axisymmetric case m =
0, by introducing the Stokes stream function χ(r, z) which we define by

vr =
1

r

∂χ

∂z
, w = −1

r

∂χ

∂r
, (40)
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Ra = 301.93

Ra = 81.255 Ra = 171.92 Ra = 220.87

Ra = 357.57 Ra = 437.17

Fig. 3 Axisymmetric eigenfunction plots (m = 0) for a slender cylinder (R = 0.5). Black
lines and coloring represent isotherms, while white lines are streamlines. Conducting cylinder
wall (a = 0).

and thereby we can link χ(r, z) to the axisymmetric polodial vector potential
ψ(r, z) as follows

χ = r
∂ψ

∂r
. (41)

The axisymmetric streamlines are then represented by the set of isolines χ(r, z) =
constant in the r, z plane. This computation of streamlines is limited to the
axisymmetric modes m = 0.

4 Numerical results for conducting cylinder wall (a = 0)

We will show numerical solutions of the thermo-mechanical eigenvalue prob-
lem, based on the commercial finite-element environment of COMSOL Mul-
tiphysics. The following plots for the eigenfunctions represent the half cross-
section OABC shown in Figure 1, where the left-hand side of each figure
follows the vertical z axis, where r = 0.
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Ra = 37.487 R = 71.198 R = 125.42

R = 142.61 R = 173.71 R = 198.70

Fig. 4 Axisymmetric eigenfunction plots (m = 0) for a cylinder with dimensionless radius
R = 1. Black lines and coloring represent isotherms, while white lines are streamlines.
Conducting cylinder wall (a = 0).

4.1 Axisymmetric mode (m = 0)

We start with displaying the results for the axisymmetric mode m = 0. Ax-
isymmetry is required in order to be able to plot streamlines, which provide a
broader understanding of the eigenfunctions than the non-axisymmetric case
that follows below.

The thermal condition of the upper boundary is that the heat flux is
given, while the lower boundary has zero temperature perturbation (conduct-
ing lower plane). Thereby buoyancy is active near the upper plane, which
means that the upper plane destabilizes the classical Horton-Rogers-Lapwood
problem [1], [2]. Nield [13] investigated this destabilization due to given heat
flux at the upper boundary, which reduces the critical Rayleigh number (for
an unlimited horizontal layer) from its classical critical value Rac = 4π2

to Rac = 27.10. Barletta et al. [14] computed the precise numerical values
(Rac, kc) = (27.09763, 2.326215) for this onset problem, where kc denotes the
horizontal wave-number of the preferred mode of disturbance. Nield’s results
had already been confirmed by Wang [12] who solved the onset problem to a
vertical cylinder with wall conditions compatible with normal-modes depen-
dency over the circular cross-section of the cylinder.

Our numerical results for conducting wall (a = 0) show that the con-
ducting outer wall tends to stabilize the porous cylinder because it gives a
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Ra = 29.910

Ra = 49.233 Ra = 66.813

Ra = 37.405

Ra = 89.892 Ra = 118.09

Fig. 5 Axisymmetric eigenfunction plots (m = 0) for a short cylinder (R = 2). Black lines
and coloring represent isotherms, while white lines are streamlines. Conducting cylinder wall
(a = 0).

higher critical Rayleigh number than the value Rac = 27.10, which is the
asymptotic limit as R → ∞ found by Nield [13]. Figures 3-5 give plots for
the thermo-mechanical eigenfunctions for the axisymmetric case m = 0, rep-
resenting the six eigenfunctions with the lowest Rayleigh numbers for each
value of R. Figure 3 the eigenfunctions for a slender cylinder where R = 0.5.
Figure 4 gives similar plots for a cylinder where the half cross-section is a
square (R = 1). The short-cylinder case R = 2 is illustrated in Figure 5. We
note from Figures 3-5 that the lowest Rayleigh number approaches Nield’s
asymptotic value 27.10 as R increases.

The thermo-mechanical eigenfunctions in Figures 3-5 are axisymmetric
and include both isotherms (black lines with color marking) and streamlines
(white lines). Since these are non-normal modes eigenfunctions, their spatial
dependencies in the radial and vertical directions are not separable. All stream-
lines are confined within the impermeable boundaries. The isotherms for the
temperature perturbations are perpendicular to the upper boundary, due to
the constant heat flux condition there. At the three other boundaries, the
isotherms are tangential to the boundaries, which is the same behavior as that
of the streamlines.
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There are flow cells, all of which are finite structures enclosed within the
porous cylinder. Moreover, there are thermal cells, which are not necessarily
closed because the isotherms are perpendicular to the upper boundary. It is
important to distinguish between external cell walls and internal cell walls. The
external cell walls coincide with external physical boundaries. The internal cell
walls are walls between neighboring cells within the porous cylinder. Because of
the spatially non-separable eigenfunctions, no internal cell walls will be exactly
vertical or horizontal. These non-normal modes eigenfunctions cannot have
separate mode numbers for the horizontal (radial) direction and the vertical
direction, so they are ranked in the order of increasing Rayleigh numbers.

An interesting difference between axisymmetric flow patterns and their
associated isotherms is the mass balance constraint which implies the existence
of a vertical streamline along the cylinder axis (where r = 0), while the similar
symmetry for the isotherms makes them horizontal instead of vertical at r = 0.
The thermal cell walls and the flow cell walls must necessarily coincide at
the cylinder wall where the isotherms and streamlines are tangential to the
boundary. Thus the outer cylinder boundary serves as a thermal cell wall
and a flow cell wall, in contrast to the properties of internal cell walls, where
the thermal cell walls and the flow cell walls will not coincide but have mutual
spatial displacement, which is well-known from eigenfunctions of normal-mode
type.

Normal-mode eigenfunctions in the horizontal direction will have a quarter
of a wavelength displacement between a thermal cell and a flow cell. Each flow
cell has a central stagnation point, which would be located at the boundary
between two neighboring thermal cells if these cells were of normal-mode type.

In Figures 3-5, we observe how these stagnation points are displaced away
from the respective thermal cell walls, because of the non-normal modes eigen-
functions. We also note that the vertical position of the stagnation points will
not be identical for two neighboring flow cells, which is an effect of non-normal
modes. A cell wall for the flow is defined by a streamline connected to dividing
streamlines going all the way to the outer wall. A thermal cell wall is defined
by zero perturbation temperature.

When we compare the cases of increasing radii, from R = 0.5 in Figure 3
to R = 2 in Figure 5, we note that the behavior of the eigenfunctions become
more similar to normal modes when R increases. When an internal thermal cell
wall is farther than one length unit from the cylinder wall, we can expect that
this thermal cell wall (defined by zero perturbation temperature) is located
close to a stagnation point for the flow, which we will keep in mind when we
turn our attention to onset modes that are not axisymmetric.

At the upper circular boundary (z = 1, r = R), we expect a weak singu-
larity for the flow, somewhat similar to the 2D problem [8], but even more
difficult mathematically. Near this troublesome contour circle, we observe the
contrasting behaviors of the streamlines versus isotherms: (i) At the cylinder
wall r = R near the top (z slightly smaller than one), the streamlines are
parallel to the isotherms. (ii) At the cylinder to z = 1 just inside the cylin-
der wall (R slightly smaller than R), the streamlines are perpendicular to the
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Ra = 42.767 Ra = 80.898

Ra = 137.29 Ra = 143.14

Fig. 6 Non-axisymmetric eigenfunction plots (m = 1) for a cylinder with dimensionless ra-
dius R = 1. Black lines and coloring represent isotherms, while the green dots are stagnation
points for the streamlines. Conducting cylinder wall (a = 0).

isotherms. This contrasting behavior, as (r, z) approaches (R, 1) from inside
the porous cylinder, makes it impossible to derive a valid Taylor expansion
around the upper corner (r, z) = (R, 1) of the computational domain. This is
a non-analytical corner, which is probably singular, but we will not pursue the
mathematical challenges in the present work. Our numerical solution seems
to work well for the outer flow (in a matched-asymptotic expansion), which
indicates that singularities are weak, not affecting the Rayleigh number of the
convection onset.

4.2 First azimuthal mode m = 1

We include one figure for the first azimuthal modem = 1 where there is angular
periodicity with an angle 2π of periodicity around the symmetry axis r = 0.
This is Figure 6, where we have chosen the value R = 1 for the dimensionless
cylinder radius, and we still assume that the cylinder wall is conducting (a =
0). The stagnation points in the vertical cross-section OABC are included as
green dots in Figure 6. We note that most of these stagnation points are fairly
close to the thermal cell walls, more so than in the axisymmetric case displayed
in Figure 5. We note the emergence of several stagnation points located at
the z axis. In the case of axisymmetry, stagnation points along the symmetry
axis could only occur when there were two or more flow cells in height.

The most important constraint for the non-axisymmetric temperature fields
is that the perturbation temperature is zero along the cylinder axis r = 0.
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Ra = 143.69 Ra = 162.47

Fig. 7 Non-axisymmetric eigenfunction plots (m = 2) for a cylinder with dimensionless ra-
dius R = 1. Black lines and coloring represent isotherms, while the green dots are stagnation
points for the streamlines. Conducting cylinder wall (a = 0).

This means that the non-axisymmetric isotherms are vertical at z axis, while
we noted that the axisymmetric isotherms are horizontal at the z axis. Thus
there is a great contrast between axisymmetric isotherms that are normal to
the cylinder axis, while all non-axisymetric isotherms are perpendicular to the
cylinder axis. We note this difference when we compare Figure 6 with the
preceding Figures 3-5 representing axisymmetric non-normal modes.

Non-axisymmetric modes with the azimuthal mode number m ≥ 1 will
have m periodic cells in a horizontal plane, which requires that the z axis
represents an intersection between the cell walls, and any thermal cell wall is
defined by θ = 0.

4.3 Second azimuthal mode m = 2

We also include one figure for the second azimuthal mode m = 2 where there
is angular periodicity with an angle π of periodicity around the symmetry axis
r = 0. This is Figure 7, where we chose the same dimensionless radius R = 1
as in Figure 6.

We note that the stagnation points (green dots) in Figure 7 are even closer
to the cell walls of the thermal cells than in Figure 6. This has to do with the
higher number (m = 2) of azimuthal modes, in Figure 7.

The lowest modes in Figures 6 and 7 share the property that the entire
cross-section has a positive perturbation temperature, which does not happen
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for axisymmetric thermal eigenfunctions. The reason that positive temper-
ature perturbation is admissible over a cross-section is that the azimuthal
periodicity (with m ≥ 1) provides an opposite sign of the temperature half
an azimuthal wavelength apart. Thus the periodicity provides a full balance
between domains of hot and cold fluid in the porous medium.

4.4 The Rayleigh number as a function of the radius

In Figures 8 and 9, we plot the Rayleigh number at marginal stability, but
it would be too much to plot all the eigenfunctions in one figure. We choose
to show only the axisymmetric modes m = 0 in Figure 8, and the twelve
lowest axisymmetric modes are displayed. In Figure 9 we show only the lowest
mode (with the lowest Rayleigh number) for each azimuthal mode number m,
ranging from m = 0 (axisymmetry) to m = 5. Color marking shows the
domains with different values of m, and we note that the two lowest azimuthal
modes m = 0 and m = 1 are the ones that represent the onset of convection,
within our computed parameter range 0 < R < 4. Table 1 shows the values
(Ra,R) of the four intersection points where the preferred value of m switches
back and forth between m = 0 and m = 1.

We note from Figure 9 that each preferred mode for the different azimuthal
modes m show a Rayleigh number Ra that decreases monotonously with the
radius R. As a contrast, Figure 8 is limited to the axisymmetric mode m = 0,
but illustrates that the higher modes for fixed m can have a more complicated
behavior.

A model which is comparable with the present one was presented by Hau-
gen and Tyvand [11]. They considered a vertical circular cylinder with con-
ducting walls, and the only difference from the present model was that the
upper boundary was assumed to be thermally conducting. In this previous
model [11], axisymmetry was always preferred, since this gave a more stable
situation with no buoyancy near the symmetric lower and upper boundaries.
Figure 9 shows that the axisymmetric mode is either preferred or gives a
Rayleigh number only slightly above the overall critical Rayleigh number.
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Fig. 8 Rayleigh numbers (Ra) at marginal stability as a function of dimensionless radius
(R) for the 12 first eigenfunctions for m = 0. The filled circles refer to the cases displayed
in Figs. 3, 4 and 5.

5 Numerical and analytical results for a > 0

So far we have made computations only for the case of a conducting cylinder
wall (a = 0). We will now investigate the class of eigenvalue problems where
the cylinder wall is partly or fully insulating (a > 0).

5.1 Numerical results for finite Robin parameter a

Our first computation for a partly conducting cylinder wall is shown in Figure
10, where we choose the value a = 1 for the Robin parameter. Figure 10 shows
the critical Rayleigh number for the onset of convection as a function of the
dimensionless radius. Figure 10 is analogous to Figure 9 (for a = 0), repre-
senting the lowest non-normal onset mode for each azimuthal mode number,
ranging from m = 0 to m = 5. Color markings are again applied for visual-
izing the preferred value of m in the different intervals of the dimensionless
radius R. While our computations showed that only m = 0 and m = 1 would
represent the preferred onset mode when a = 0 (Figure 9), the computations
for a = 1 (Figure 10) show narrow radius intervals where either m = 2 or
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m = 3 gives the preferred mode of convection onset. Another interesting pecu-
liarity of Figure 10 is that the onset Rayleigh numbers Ra(R) for each value
of m are no longer monotonously decreasing functions of R, as they are for a
conducting wall (Figure 9).

In Figure 12 below, we will give more detailed numerical results for the
Rayleigh number dependency of the Robin parameter a, but surprisingly we
will need analytical results for interpreting Figure 12.

5.2 Analytical theory for the separable case a =∞

The limit case of a thermally conducting cylinder wall is now solved for the
purpose of benchmarking our numerical results. The case a = ∞ has been
solved analytically by Wang [12]. This case is a 3D thermo-mechanical eigen-
value problem separable in space. Tyvand and Storesletten [4] showed that the
separate 2D subproblem for the cross-section is degenerate with normal modes
as solutions. We will now complement and confirm the analysis of Wang [12].

The vertical eigenvalue problem separates out, so we may write the thermal
eigenfunction as θ = F (r, φ)Z(z) to be determined by the procedure given by
Barletta et al. [16]. The following two variables ζ and η are introduced

ζ =

√
k(
√
Ra+ k), η =

√
k(
√
Ra− k). (42)

Normal modes are eigenfunctions of a Helmholtz equation, where the wave
number k serves as the eigenvalue.

5.2.1 Normal modes for the circle cross-section

The horizontal eigenfunctions are expressed in polar coordinates as

F (r, φ) = Jm(kr)eimφ, (43)

where Jm denotes the Bessel function of the first kind. The degenerate eigen-
value problem has the joint thermal and kinematic boundary condition

∂F

∂r

∣∣∣∣
r=R

= 0, implying J′m(kR) = 0. (44)

Wooding [5] and Zebib [15] applied this boundary conditions at the cylinder
wall. Thereby one introduces the sequence of wave numbers k = kn satisfying
J′m(knR) = 0, ranking these wave-numbers according to increasing magni-
tude. Each value of the azimuthal mode number m has its own set of radial
eigenvalues (wave number) which may be denoted by kn,m.
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5.2.2 1D non-normal modes for the vertical direction

In the special case, a = ∞, we separate out the normal-mode dependency
horizontally. We are left with non-normal modes for the vertical z direction,
and this 1D problem that can be solved analytically. Following Barletta et al.
[16] we find the dispersion relation

ζ tan(η) + η tanh(ζ) = 0, (45)

in agreement with Wang [12]. Each legal value of the wave number k = kn,m
provides a set of values Raq for the Rayleigh number, where q = 1, 2, .. repre-
sents increasing values of Ra, starting with the lowest possible value.

In Figure 11, we have solved the limit case a =∞ numerically to provide
a quite complete picture of the relationship Rac(R,m) for the onset of con-
vection. The critical Rayleigh number Rac is here represented as a function
of R for all relevant azimuthal modes m. Explicit benchmarking is performed
with the displayed results from Wang [12], and the agreement is excellent.
Color marking is applied for visualizing the selected values of m as R varies.
The different branches that are represented in Fig. 11. Each of the azimuthal
modes m = 0, m = 1 and m = 2 refer to increasing radial modes, as specified
in detail by Wang [12].

5.3 Numerical results in comparison with analytical results

Figure 11 has also been checked analytically by making new computations
for m = 0, m = 1 and m = 2. The generalization of Figure 11 to the full
range of values for the Robin parameter a is given in Figure 12. Figure 12
shows the critical Rayleigh number as a function of R for the following values
of the Robin parameter: a = 0, a = 1/3, a = 1, a = 3, a =∞. For the sake of
clarity, we give separate plots for each azimuthal mode m = 0, 1, 2, 3, 4, 5, in
Figure 12. For a =∞ we get a slope discontinuity each time the radial mode n
changes, as explained above in connection with eq. (44), and well-known from
Zebib [15]. The most spectacular of these slope discontinuities is the lowest
one for m = 1, where the critical Rayleigh number rises up to a value around
34, which gives a notable stabilization compared with the lowest value 27.10,
which appears over and over again for finite values of R, each time the wave-
number k fits with the value k = 2.33 for an unlimited horizontal layer. We
have calculated the highest point of slope discontinuity with m = 1, and the
results are

R = 1.34361, Ra = 34.1673, (46)

evaluating the above analytical formulas with Mathematica. The same point
has been evaluated by COMSOL Multiphysics, and the results are

R = 1.3434, Ra = 34.1594, (47)

which gives a satisfactory agreement.
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Fig. 9 The first Rayleigh number as a function of the dimensionless radius (R) for m = 0,
m = 1, m = 2, m = 3 and m = 4, with a = 0.
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Fig. 10 The first Rayleigh number as a function of the dimensionless radius (R) for m = 0,
m = 1, m = 2, m = 3, m = 4 and m = 5, with a = 1.
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Fig. 11 The first Rayleigh number as a function of the dimensionless radius (R) for m = 0,
m = 1, m = 2, m = 3, m = 4 and m = 5, with a = ∞. Assessment against Wang (1999).

The plots in Figure 12 confirm that Ra(R) for a = 0 gives curves that are
monotonously decreasing with R. However, we see the surprising result that
the points of slope discontinuities for a = ∞ (as exemplified by eq. (46)) do
not seem to change at all with varying a. This suggests a conclusion concern-
ing the curves for a = 0, which is remarkable because these curves represent
non-normal modes, for which no analytical methods are available: The points
of slope discontinuities in the function Ra(R) for a = ∞ provide constraints
for the smooth curves Ra(R) with a = 0. There is one particular physical
reason for such a constraint: This is the requirement that any increased rate
of conduction at the cylinder walls will stabilize the porous cylinder, which
means that any onset curve Ra(R, a2) (with m given) must lie above a curve
Ra(R, a1), if a2 < a1, and do so for any value of R. These surprising results
emphasize the importance of using analytical theory, not only for benchmark-
ing but also for interpreting results that lie outside the range of validity of
analytical solution methods.

Table 1 Inter-sectional points between azimuthal mode m = 0 and m = 1 for the first
eigenfunction with a = 0 (Points are indicated in Figure 9).

Description Symbol Intersect. 1 Intersect. 2 Intersect. 3 Intersect. 4

Rayleigh number Ra 30.7869 29.2061 28.2061 27.8743
Dimensionless radius R 1.7069 2.2557 3.0672 3.6525
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6 On changing the thermal condition at the upper boundary

The constant-flux Neumann type thermal condition at the upper boundary
z = 1 is responsible for the non-normal mode dependency in the vertical direc-
tion, which makes the 3D eigenvalue problem non-separable, defying analytical
solutions. We will now illustrate the significance of the thermal condition at
z = 0 by visual comparisons with the model by Haugen and Tyvand [11]. They
applied the Dirichlet condition of a conducting upper boundary (θ|z=0 = 0) to
make the eigenvalue problem separable, with normal-mode dependency in the
vertical direction. Thereby the 1D radial eigenvalue problem could be solved
analytically in spite of being of non-normal mode type. Their model is the
same as our present model with a = 0, except for the thermal condition at the
upper boundary.

Figure 13 shows a double-cut through the porous cylinder with conducting
wall a = 0, where the preferred axisymmetric eigenfunctions are displayed
for R = 0.5, R = 1 and R = 2. The left-hand cross-sections represent the
present problem where the upper boundary has a constant heat flux, while
the right-hand cross-section represents a conducting upper boundary, studied
by Haugen and Tyvand [11]. These authors did not plot streamlines, but here
we can compare those streamlines and isotherms with the present model to
visualize the effects of buoyancy at the upper boundary, due to the condition
of given heat flux. The effects on the isotherms are obviously strongest since
they meet the upper boundary perpendicularly instead of tangentially. The
difference in the streamline patterns is not so easy to see, but we know that
the model by Haugen and Tyvand [11] always gives internal cell walls that are
horizontal or vertical, which will never be the case for non-normal modes.
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Fig. 12 The first Rayleigh number as a function of the dimensionless radius (R) for a = 0,
a = 1/3, a = 1, a = 3 and a = ∞, with m = 0, m = 1, m = 2, m = 3, m = 4 and m = 5.
Local maximum for m = 1 and a = ∞ is highlighted with coordinates. Markings of the
three curves with finite values of the Robin parameter a are omitted in the upper subplot
due to space limitations, but they follow the color coding of the other subplots.
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a)

b)

c)

Fig. 13 Three-dimensional view of the first thermal and stream eigenfunctions for dimen-
sional radius equal to a) R = 0.5, b) R = 1, c) R = 2. Left-hand side shows present model.
Right-hand side shows the model by Haugen and Tyvand (2003) for comparison.

7 Summary and conclusions

In this contribution, we study the fourth-order Darcy-Bénard eigenvalue prob-
lem for the onset of thermal convection in a vertical porous cylinder with im-
permeable walls theoretically. The three-dimensional (3D) problem is analyzed
numerically in a reduced two-dimensional (2D) form for the vertical r, z plane
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in cylinder coordinates. A Robin-type thermal boundary condition of partial
conduction is applied at the cylinder wall, introducing a as a parameter of
partial conduction at the cylinder wall. The lower the value of a, the cylinder
wall will become more conductive, with a = 0 as the limit of perfect conduc-
tion with zero perturbation temperature at the wall. The limit of insulating
cylinder wall a → ∞ is an important case for benchmarking our numerical
results since it has an analytical solution elaborated by Wang [12].

Partial conduction at the cylinder wall is allowed in the present model.
It obtains a gradual transition between the non-normal modes (with a finite)
and the well-known analytical solution for a = ∞ [12]. Thereby, we have the
opportunity of addressing an interesting question; We want to know whether
a more insulating wall (implying a reduction of the parameter a) will always
stabilize the physical system. The answer is yes, which is remarkable when we
consider Figure 12 with the pronounced peaks in the dispersion relation plots
in the R,Ra plane (radius versus Rayleigh number). At these sharp peaks (re-
ferring only a =∞), the solution switches between two different Fourier-Bessel
components in the radial direction. As a result, we have found that the points
with peaks do not change with changing the parameter a, but they become
smooth instead of sharp once a gets a finite value. The dispersion relation for
the limit case of a conducting wall (a = 0) provides a monotonous curve that
goes through the peaks where the analytical solution switches between two
preferred modes for an insulating wall (a = ∞). In fact, this is a surprising
effect, indicating that the pointwise switching between preferred modes for the
analytical normal-mode solution (when a =∞) delivers precise constraints for
the non-normal mode solution, even though it cannot be found analytically.

The present work appears as a 3D version in analogy with our first paper
on non-normal modes for convection in a porous rectangle [8]. Instead of a
non-analytical corner of a porous rectangle in 2D, we have obtained a non-
analytical circle contour for the 3D cylinder. A corner or boundary curve is
called non-analytical when there exists no locally valid Taylor expansion for
the thermo-mechanical eigenfunctions. There is probably a weak singularity
there, but it is very challenging mathematically and is left for future work.

A weak singularity will, by definition, not affect the eigenvalue of the crit-
ical Rayleigh number. It will be governed by the outer solution in terms of a
matched asymptotic expansion. This appears to be the type of solution that
we have studied numerically. The present fully 3D work on non-normal modes
of convection onset is a step in the direction of a physically adequate modeling
that can capture the full experimental reality going beyond artificial mathe-
matical constraints.
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