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Abstract

Ionic concentration gradients can exist in the extracellular space (ECS) due to
neuronal activity that can change the local ionic composition. Diffusion and
electrical drift are two processes that move ions around in the extracellular
space. These processes can be described by the Nernst-Planck equation. Ions
diffuse along concentration gradients. Since ions carry charge, this process
can give rise to electric currents, which, in turn, can result in a diffusion
potential.

The question under investigation is if diffusion potentials in ECS are
large enough to affect the measurements of local field potentials (LFPs) in
the brain? Diffusion potentials are slow-changing potentials, so its possible
contributions to the LFPs would be for low frequencies [1]. To explore the
effect of diffusion potentials, I compared power spectrum densities (PSDs) of
diffusion potentials to PSDs of LFPs recordings.

I estimated the diffusion potentials from extracellular concentration data
collected from various articles. The concentration data were obtained from
different experiments. Instead of numerically simulating how the diffusion
potential changed, I approximated the diffusion potential by an exponentially
decaying function. For more realistic estimates, I used time constants from
temporal concentration data. Then, I estimated the PSDs of the diffusion
potentials from each data set.

For LFP data, I found and used data files with LFP recordings. For
these data files, I calculated average PSDs. In addition, I collected LFP data
represented as PSDs from figures in articles,

At low frequencies (< 1 Hz), I found that PSD of the highest diffusion
potentials had similar powers as the lowest PSDs of LFP measurements.
Therefore, there may be a slight possibility that diffusion potentials can
contribute to the LFP at the lowest frequencies.

I also estimated diffusion potentials at pathological conditions, such as
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spreading depression (SD), where concentration gradients are extremely large.
I used the same approach and found that the diffusion potentials in these
cases could be up to 10 times larger. The PSDs of the pathological diffusion
potentials had similar powers as the LFP recordings.
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Chapter 1

Introduction

Isn’t it weird how we humans have discovered our brain? Or is it the other
way around, how the brain has discovered itself? Today, the eagerness to find
out more about the human brain can be found in the field of neuroscience.
Neuroscience is the study of the brain and the nervous system. The nervous
system in vertebrates is divided into the peripheral nervous system (PNS)
and the central nervous system (CNS) [2]. The PNS is the part that connects
the nerve cells throughout our body with the nerve cells in the CNS (the brain
and the spinal cord) [2]. The building blocks of the nervous system are nerve
cells (also called neurons) and glial cells. Both cells have varying membrane
potentials but only neurons produce action potentials, which are important
for the electric information signaling in the brain.

The branched structure of neurons makes them different from cells in
other tissue. The standard neuron consists of the soma (cell body), dendrites,
and an axon. Neurons connect to thousands of other neurons, and they form
large networks in the brain. A neuron receives input from other neurons
through synapses at its dendrites, and the information moves towards the
soma. If the input is strong enough or numerous enough, the neuron produces
an action potential and propagates it along the axon. At the axon terminals,
the neuron connects to other neurons’ dendrites through synapses, and the
information can be forwarded to other parts of the network.

Neurons have a different distribution of ion species between the inside
(intracellular) and outside (extracellular). When the neurons are resting,
they are polarized, meaning that they have a potential difference over the
membrane. The neuron uses this concentration difference to generate action
potentials: sodium ions (Na+) flow into the neuron, followed by an efflux of
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potassium ions (K+) through the selective opening and closing of ion channels
in the membrane. Concentration changes, on the inside and the outside, due
to a single action potential are negligible.

The space between the cells in neural tissue is called the extracellular
space (ECS). The ECS contains a conductive saline solution and accounts
for about 20 % of the tissue volume in the brain (volume fraction α ∼ 0.20)
[3]. The volume fraction of ECS can vary across different brain regions, and
for various conditions, for example, it differs during sleep and waking hours.

During periods with prolonged and intense neuron firing, concentration
changes in ECS can become significant over time. Such concentration changes
in the ECS can affect the firing pattern of neurons [4]. Other effects, which
are more important for this project, is that concentration gradients in the
ECS can give rise to diffusion potentials. Electrical potentials in the ECS are
often measured to obtain information about the underlying neural activity.
But, is everything measured due to neuronal activity, or can other effects in
the ECS be visible in the measurements?

During periods with prolonged and intense neuron firing, concentration
changes in ECS can become significant over time. Such concentration changes
in the ECS can affect the firing pattern of neurons [4]. Other effects, which
are more important for this project, is that concentration gradients in the
ECS can give rise to diffusion potentials. Electrical potentials in the ECS are
often measured to obtain information about the underlying neural activity.
But, is everything measured due to neuronal activity, or can other effects in
the ECS be visible in the measurements?

There are many previous recordings of extracellular potentials. Local field
potential (LFP) is the low-frequency part of the extracellular potential and
is measured because it can tell us what neurons do. The main assumption
when recording LFP is that it only reflects neuronal activity. However, if
there exist concentration gradients in the ECS, there might also occur diffu-
sion potentials. So the questions are: Are diffusion potentials large enough
to affect LFP recordings in the ECS? Do the diffusion potential change fast
enough to be a meaningful part of the ECS potential recordings? The sec-
ond question is included because many LFP measurements have a cutoff
frequency of about 1 Hz, which means that very slow varying potentials will
be filtered out.

Halnes et al. [1] found through simulation of 10 pyramidal neurons,
with and without diffusion in ECS, that diffusion played a role in the slow
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timescale. They concluded that diffusion may play a role and contribute to
the lower frequencies of the potential. Since this was a simulation, the con-
clusions only apply to the stimulated system. Therefore, it motivates for a
follow-up study based on experimental data.

The objective of my project is to see if diffusion potentials in ECS can
contribute to the recorded extracellular potentials. Does the assumption
stating that diffusion potentials can be neglected apply to all cases? To do
so, I collected ionic concentration data in ECS from published articles. Then
I estimated diffusion potentials and their exponential decay through time.
Using this time series for the diffusion potentials, I calculated the power
spectrum densities (PSDs) to make comparisons easier. I also collected LFP
data from a database and PSD of LFP data from published articles. The
PSDs of diffusion potentials were compared to these PSDs of LFP recordings.
The questions become: Will the PSDs overlap? Or will the PSDs of LFP
recordings have higher power than the PSDs of diffusion potentials for the
entire frequency range?

This thesis is divided into five chapters. You are now on the last para-
graph of the introduction chapter. Later in the method chapter, I describe
the project approach and present the assumptions. After that comes a pre-
sentation of the results, followed by a discussion and conclusion chapter. The
next chapter contains the background theory relevant to this thesis. Enjoy!
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Chapter 2

Background

2.1 The Nernst-Planck equation

Diffusion is the movement of ions due to concentration gradients. Ions dif-
fuse with a flux toward places with lower concentrations. The diffusion flux
depends on the diffusion constant of an ion species and the concentration
gradient present. To find the diffusion flux of an ion species k, Jdiff,k, we can
use Fick’s law:

Jdiff,k = −D∗k∇ck, (2.1)

where D∗k is the diffusion coefficient and ∇ck is the concentration gradient
to ion species k. The diffusion coefficient is a material property and its
value for an ion species k depends on the material the ions diffuses in. We
obtain a high diffusion flux for ions with large diffusion constants or large
concentration gradients. A large diffusion flux means that ions diffuse faster,
leveling out the concentration gradient faster.

Ions can also move due to an electric field because of an ion’s charge.
The charge, positive or negative, decides which direction an ion moves in the
electric field. The valency, zk, (also called the charge number) represents the
number of elementary charges to an ion. The field flux of an ion species k,
Jfield,k, depends on the potential gradient and can be found by:

Jfield,k = −D
∗
kzkF

RT
ck∇Φ, (2.2)

where D∗k is the diffusion coefficient and zk is the valence of the ion. ck is
the concentration of ion species k and ∇Φ is the potential gradient. F is
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Faraday’s constant, R is the gas constant and T is the absolute temperature.
There exist table values for diffusion coefficients for different ion species

in saline solutions. The extracellular space (ECS) contains such a saline
solution, but it has a tortuous structure. Diffusion in ECS is, therefore,
prevented by hindrances, such as cell structures and, for example, other
molecules in the ECS. These hindrances can be corrected for by introducing
a tortuosity factor, λn. The diffusion coefficient, D∗k, in ECS is given by

D∗k = Dk

λ2
n

, (2.3)

where Dk is the diffusion constant in a saline solution. The value for tor-
tuosity is ∼1.6 in normal brain tissue [3]. Thus, the diffusion coefficient in
ECS is smaller than in dilute solutions, which means that ions diffuse slower
in the ECS.

To get an equation for the total flux of an ion species k, we can add the
diffusive flux, Jdiff,k, and field flux, Jfield,k, together:

Jk = Jdiff,k + Jfield,k = −Dk

λ2
n

∇ck −
DkzkF

λ2
nRT

ck∇Φ. (2.4)

This equation is called the Nernst-Planck equation, and it describes the pro-
cess of electrodiffusion: movements of ion species are affected by both a
concentration gradient and a potential gradient. Note that Equation 2.3 is
substituted into Equation 2.4.

To describe the relationship between the total flux of an ion species k
and the change of that ion’s concentration over time, we have the continuity
equation:

∂ck
∂t

= −∇ · Jk. (2.5)

Inserting the total flux, Jk, (Equation 2.4) into the continuity equation above,
we get:

∂ck
∂t

= −Dk

λ2
n

∇2ck + Dkzk
λ2
nΨ ∇ · (ck∇Φ), (2.6)

where Ψ = RT/F . This equation is a partial differential equation and is
called the time-dependent Nernst-Planck equation. The equation describes
the relationship between an ion’s concentration change, its concentration
gradient, and a potential gradient.

The diffusion flux Jdiff,k, and the field flux, Jfield,k, can be converted into
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diffusion current, Idiff,k, and field current, Ifield,k, by multiplying with zkF :

Idiff,k = zkFJdiff,k = zkF
Dk

λ2
n

∇ck, (2.7)

Ifield,k = zkFJfield,k = Dkz
2
kFck

λ2
nΨ ∇Φ. (2.8)

To derive an expression for the total ion current, we must sum the diffusion
current and the field current. The total current, including all ions, are then
obtained by summing all ion currents:

I =
∑
k

(Idiff,k + Ifield,k) = −
∑
k

zkF
Dk

λ2
n

∇ck −
∑
k

Dkz
2
kFck

λ2
nΨ ∇Φ. (2.9)

The first term on the right side of Equation 2.9 is the total diffusion current.
The second term is the total field current due to an electric field. Assuming
that the electric field follows Ohms law, V = RI or J = σE, the conductivity
σ can be defined as:

σ = F

Ψ
∑
k

Dk

λ2
n

z2
kck. (2.10)

2.2 Solution methods

Solving the time-dependent Nernst-Planck equation (Equation 2.6) is chal-
lenging. From Equation 2.6, we get a differential equation for each ion species
k. In addition, we also need an equation for the potential Φ. There exist
two frameworks: the Poisson-Nernst-Planck (PNP) and the electroneutral
scheme (also called Kirchhoffs-Nernst-Planck, KNP).

The PNP framework uses Poisson’s equation:

∇2Φ = −ρ
ε
, (2.11)

where ε is the permittivity of the medium (here the ECS), and ρ is charge
density [5]. This charge density is equal to the sum from all ion species:

ρ = F
∑
k

zkck. (2.12)

PNP give detailed simulations and physically correct results, but it is ineffi-
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cient for numerically solutions [5].
The KNP framework assumes electroneutrality at each point in the sys-

tem (∂c/∂t = 0), where there is no neuronal source or sink [5]. If there are
no sinks or sources, the net current must be zero. This means that the diffu-
sive and the electric field current must cancel each other out. Inserting the
conductivity, σ, (Equation 2.10) into the total current (Equation 2.9) and
setting the total current to zero, we get:

∑
k

zkF
Dk

λ2
n

∇ck = σ∇Φ. (2.13)

The potential Φ occurs because of concentration gradients (no sources or
sinks), such that the diffusion current and field current balance each other.
This potential is called the diffusion potential.

2.2.1 Arise of a diffusion potential
Contact between two saline solutions with different concentrations can lead
to a diffusion potential. Now I will explain how this occurs with a thought
experiment.

Assume that we have two solutions with different concentrations: high
concentration (left) and low concentration (right) (see Figure 2.1). At the
boundary between them, the concentration varies like a step function:

c (x, t = 0) =

chigh for x ≤ 0.
clow for x > 0.

(2.14)

Each solution contains the same number of cations (positive ions C+, red
dots) and anions (negative ions A−, blue dots). Both solutions are elec-
troneutral, and the net charge in each solution is zero at t = 0 (upper box
in Figure 2.1).

Both ion species will diffuse from the high concentrated solution to the
low concentrated solution (from left to right in Figure 2.1). Assuming that
the ions have different diffusion coefficients, DA− > DC+ , the flux of A− will
be larger than the flux of C+.

Shortly after the ions start to diffuse, there has been a net transport
of charge (2 blue dots and 1 red dot has moved across the boundary, as
seen in the middle box of Figure 2.1). Therefore, a small electric potential
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occurs at the boundary, which will counteract further net transport of charge
(lower box of Figure 2.1). The potential affects positive and negative ions in
opposite ways. The fast anion ions will slow down, while the cation ions will
accelerate, such that the ions move at the same speed (lower box in Figure
2.1). Now there is no net movement of charge over the boundary, and the
arisen potential is the diffusion potential.

Figure 2.1: Illustration: Thought experiment of how diffusion potentials can
occur. Two solutions with high and low concentrations of a cation (red) and an
anion (blue) (upper box). The anion has a larger diffusion coefficient and diffuses
faster than the cation (net movement of charge, middle box). This creates a
potential that is slowing the anion down while speeding up the cation. Now the
two ions diffuse at the same speed (lower box).

The time-scale for the potential to appear is within 10 nanoseconds [5].
Concentration changes occur on a much slower time scale (seconds). After
the diffusion potential is established, it will change on the same time scale
as the concentrations. During the first 10 ns, there is a net transport of
charge and a small deviation from electroneutrality. This deviation remains
and is the reason for the arisen diffusion potential. The net transport is so
small that it does not affect the concentrations significantly. The diffusion
potential reaches a quasi-stationary state, where the diffusion current and
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the field current balance each other, Idiff = −Ifield. That is, no net current
over the boundary and thereby no accumulation of charge.

The PNP framework models the entire system, including the first 10 ns
during the built-up of the potential. On the other hand, the KNP framework
neglects the first 10 ns entirely and finds the potential at the quasi-stationary
state directly. The system is assumed to be at this quasi stationary state and
the diffusion potential can then be found by Equation 2.13. When calculating
the diffusion potential, I will use the assumptions made under the KNP
formalism.

A last note on the thought experiment and Figure 2.1: If the anion and the
cation had equal diffusion coefficients, there would not be any net transport
of charge, no occurring potential, and no deviation from electroneutrality.
The ions would then diffuse with the same speed until they leveled out the
concentration differences.

2.2.2 Calculating the diffusion potential

There are many ways to approximate and calculate the diffusion potential.
Two know equations are the Goldman equation and the Henderson equation.
In neuroscience, these are mostly used to calculate the potential over neuronal
membranes. Then the potential is estimated between two points: the inside
and the outside of the membrane.

The neuronal membrane is a lipid bilayer that is impermeable to ions.
However, proteins in the membrane make passageways for ions, called ion
channels. Ion channels allow certain ions to move across the membrane,
and they contribute to the membrane’s selective permeability [2]. The mem-
brane separates ion species between the inside (intracellular) and outside
(extracellular) of the cells. The most important ion species in the brain are
potassium (K+), sodium (Na+), chlorine (Cl−), and calcium (Ca2+). Addi-
tionally, there are also ion species such as magnesium (Mg2+) and hydrogen
carbonate (HCO−3 ). Table 2.1 show typical values for baseline concentrations
of these ion species in the intracellular and the extracellular space. The dif-
ferent ion distribution of the inside and outside leads to a potential across
the cell membrane.

When the potential across the membrane is assumed constant it can be
determined by the Goldman equation (also called the Golman-Hodgkin-Katz
voltage equation) [7]. The potential difference Em over the neuronal mem-
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Table 2.1: Ionic concentrations inside and outside of a mammalian neuron. Val-
ues are taken from Somjen (Table 2-1) [6] with ionic concentrations in the central
nervous system neurons (intracellular) and in the cerebrospinal fluid (extracel-
lular). These concentration may vary according to different brain regions and
species.

Ion Intracellular [mM] Extracellular [mM]
K+ 125 2.9
Na+ 10 147
Cl− 6.6 119
Ca2+ 0.00006 1.0
Mg2+ 0.5 0.7
HCO−3 18 23.3

brane is given by:

Em = RT

F
ln
(∑

i+ Pi[ci+ ]in +∑
i− Pi[ci− ]out∑

i+ Pi[ci+ ]out +∑
i− Pi[ci− ]in

)
, (2.15)

where Pi is the membrane permeability of ion species i. Note that the neg-
ative ions are inverted relative to the positive ions in the fraction. The
Goldman equation can be derived from the Nernst-Planck equation (Equa-
tion 2.4), and the diffusion coefficient D is replaced by the permeability Pi
(diffusion coefficient of the membrane). With three ions, K+, Na+, and Cl−
the Goldman equation becomes

Em = RT

F
ln
(
PK [K+]in + PNa[Na+]in + PCl[Cl−]out
PK [K+]out + PNa[Na+]outPCl[Cl−]in

)
, (2.16)

where PK , PNa, and PCl is the membrane permeability to K+, Na+, and Cl−.
F is Faraday’s constant (96485.3 C/mol), R is the gas constant (8.314 J/mol
K) and T is the absolute temperature in units of Kelvin. It is sufficient to
use relative permeability for the ions since the permeabilities occur in both
numerator and denominator [7]. The relative permeabilities PK : PNa : PCl is
1:0.03:0.1 respectively in the squid giant axon [7]. Using the concentrations
of K+, Na+, and Cl− from Table 2.1 and a temperature of 37 oC ≈ 310 K,
the calculated membrane potential becomes -76 mV. A negative membrane
potential tell us that the inside of the neuron is slightly more negative than
the outside. When a neuron is in a resting state the potential across the
membrane is called the resting membrane potential.
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Each ion species has its own reversal potential over the cell membrane
because of the concentration gradients. The reversal potential Ek for an ion
species k can be calculated with the Nernst equation. The Nernst equation
is a special case of the Goldman equation, where the permeability is zero for
every ion species except one, and is given as

Ek = RT

zkF
ln cout
cin

, (2.17)

where cout is the concentration on the outside and cin is the concentration on
the inside of the cell. zk is the valence of the ion (for K+ it is +1 and for Cl−,
it is -1). The Nernst equation is an solution of the Nernst-Planck equation
when Idiff = −Ifield for ion current through an ion channel only permeable to
a single ion species k.

Using the Nernst equation (Equation 2.17) with values for K+ concen-
trations from Table 2.1 and a temperature of 310 K, the calculated reversal
potential of K+ is -0.1 V or -100 mV. For Na+, Cl−, Ca2+, Mg2+ and HCO−3
the reversal potentials are 72 mV, -77 mV, 130 mV, 4 mV, and -7 mV respec-
tively for the concentration values in Table 2.1.

The diffusion potential can also be referred to as a liquid junction poten-
tial since the potential is most prominent at the junction or the boundary
[8, 9]. Liquid junction potentials can be estimated by the Henderson equation
[8, 9]. Strutwolf et al. [8] gives the Henderson equation as

φj = RT

F

∑i ui
|zi|
zi

(ci,2 − ci,1)∑
i ui|zi|(ci,2 − ci,1)

 ln
(∑

i ui |zi| ci,1∑
i ui |zi| ci,2

)
, (2.18)

where ui is the mobility of ion species i, zi is the valence of ion species i,
and ci,1 and ci,2 is the concentration of ion species i in compartment 1 and
2. R is the gas constant, T is the absolute temperature and F is Faraday’s
constant. The Henderson equation can be derived from the Nernst-Planck
equation [8]. The derivation assumes a linear concentration profile within
the diffusion layer and it includes the electroneutrality criterion [8].

Perram and Stiles [9] states that the Henderson equation is more promis-
ing for calculating potentials over sufficiently thick membranes. When the
membrane thickness becomes thinner (nanometers), it is better to use the
Goldman equation for calculating potentials [9].
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2.3 Extracellular ion concentrations
During neuroscience experiments, the focus is mainly on what happens to
the neurons. Therefore, it is often only a few ion concentrations that are
measured. The ion species measured are often the ones with the most impact
on neuronal activity, such as calcium (Ca2+) or potassium (K+).

Dramatic ion concentration changes in ECS can occur ‘in real life’ in
somewhat extreme cases, for example, during epilepsy and spreading depres-
sion. These can cause rather severe concentration changes. Other ‘real life’
ECS concentration changes can probably also appear in less extreme cases,
for example, during sleep waves and probably to some degree during normal
wakeful brain activity.

Concentration changes in ECS can also be evoked artificially by experi-
mental stimuli to selected regions. Ionic concentration changes in ECS can
therefore be measured during numerous different situations and conditions.

In this project, I want to find data on extracellular ion concentrations so I
can estimate a diffusion potential and calculate PSDs. However, recorded ex-
tracellular ion concentrations for more than one ion species are not the easiest
to find. This calls for assumptions for concentration changes of unmeasured
ion species.

2.3.1 Assumptions on concentrations for unmeasured
ion species

Videm [10] proposed five different initial concentration scenarios including
three ion species: K+, Na+ and Cl−. Table 2.2 show these five scenarios.
For each scenario (except scenario 5), only one ion species is required to
calculate the others two. The scenarios are, therefore, very applicable with
ECS concentration data.

Scenario 1 states that the change in K+ is balanced by Na+. This means
that an increase in K+ leads to an equally large decrease in Na+. The Cl−
concentration change is zero. In scenario 2, the K+ increase is equally dis-
tributed between Na+ and Cl−. Scenario 3 assumes that the change in K+ is
balanced by Cl− and that the change in Na+ is zero. In the case of spread-
ing depression, Videm proposed and used scenario 4 [10]. In scenario 4, the
change in Na+ is double the change in K+ (opposite of each other), and Cl−
is equal to the change in K+. The fifth scenario is proposed when two ion

13



Table 2.2: Five scenarios for initial ionic concentrations proposed by Videm [10].
Scenario nr. Assumption

1 ∆[K+]0 = −∆[Na+]0 ∧ ∆[Cl−]0 = 0

2 ∆[K+]0 = −1
2∆[Na+]0 + 1

2∆[Cl−]0

3 ∆[K+]0 = ∆[Cl−]0 ∧ ∆[Na+]0 = 0

4 2∆[K+]0 = −∆[Na+]0 ∧ ∆[K+]0 = −∆[Cl−]0

5 ∆[K+]0 + ∆[Na+]0 = ∆[Cl−]0

species are known, and the third ion species is calculated so the electroneu-
trality criterion is fulfilled.

Videm compared all five scenarios against a simulation of the ideal case by
Halnes et al. [1] where all ion concentrations were known. This comparison
showed that scenario 5 was closest to the simulation, while scenario 1 was
the second-best [10].

Dietzel et al. [11] recorded extracellular concentrations of Na+, Cl−, Ca2+

and K+. They managed to measure two ion concentrations simultaneously
during experiments: Na+ and K+, Na+ and Ca2+, and Na+ and Cl−. The
focus of Dietzel et al. [11] was on the dynamics of the ion concentrations.
During a stimulus induced activity they found a 1:1 Na+/K+ exchange, af-
ter correction for Ca2+ measurement-interfering [11]. They also found that
changes in Cl− was slow. Dietzel et al. [11] described the conservation of
electroneutrality in the extracellular space by

[Cl−]e = [K+]e + [Na+]e.

Here they assumed that the positive charges remaining in the extracellu-
lar space ([Ca2+]e and [Mg2+]e) balances out the remaining negative charge
([HCO−3 ]e).

Spreading depression and ECS concentration change

Spreading depression (SD) is a transient event often described as a wave of
depolarization that can last for minutes [3, 12, 13]. During SD, the activity
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in the affected region is suppressed, and there seems to be a prolonged depo-
larization of the neuronal membranes [12]. In the ECS it can occur a large
negative potential shift [12, 13, 14] ranging from 10 mV to 40 mV [13]. SD
can occur spontaneously or be evoked by strong stimulation [12, 14].

During spreading depression, there is an accumulation of extracellular K+

to very high levels [15]. Observations show an initial rise of K+ concentration
to about 10-12 mM preceding concentration decreases in Na+, Cl− and Ca2+

in the extracellular space [12, 14, 15]. Ayata and Lauritzen [12] emphasized
the variability of this K+ threshold for different brain regions and species.

Sykova and Nicholson [3] observed an increase in tortuosity, λn, from ∼1.6
to 1.95-2.07 and a decrease in volume fraction, α, from ∼0.20 to 0.05-0.09
during spreading depression. Ayata and Lauritzen [12] reports a shrinkage
of the extracellular space by more than 50 %.

The accumulation of K+ occurs because clearing mechanisms in the ex-
tracellular space become overloaded [12]. With extensive K+ efflux the ex-
tracellular concentration can reach levels of ∼30-50 mM, which is high above
the baseline value of ∼3 mM [12]. In response, extracellular concentration
of Na+ and Cl− decrease to ∼60 mM and ∼75 mM respectively [15]. This
decrease is relatively not as dramatic as the increase of K+ because of their
respective baseline concentrations. The huge rise in K+ is important for the
spreading of the depolarizing wave. This is because the K+ concentration is
large enough to depolarize neighboring cells [12].

Kraig and Nicholson [14] discovered an equality in the concentration
changes of Na+ and Cl− during experiments of spreading depression: Na+

and Cl− seemed to decrease with similar amount. If only K+ and Cl− were
measured, the change in Na+ can be calculated from Cl− change as

[Na+] = [Na+]base −∆[Cl−], (∆[Na+] = ∆[Cl−]). (2.19)

To fulfill the electroneutrality requirement, they introduced an anion deficit
A− which is calculated from the concentrations of K+, Na+ and Cl−:

∆[A−] = ∆[K+] + ∆[Na+]−∆[Cl−]. (2.20)

Figure 2.2 shows the temporal concentration changes of K+, Na+, Cl−, and
A− during spreading depression. The anion deficit A− reflects the changes
in K+ since the changes in Na+ and Cl− are equal. From Figure 2.2 we also
see that Cl− and Na+ change with ∼100 mM while K+ and A− changed with
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Figure 2.2: ECS concentration changes during spreading depression. Left: ion
concentration changes over time. Na+ is calculated from Cl− and A− is included
to maintain electroneutrality. Data is taken from Kraig and Nicholson (Fig. 8)
[14]. Right: Checking the electroneutrality criterion.

about 40 mM. Scenario 4 from Videm [10], where Na+ change is assumed to
be two times the K+ change, is somewhat supported by this.

2.3.2 Assumptions on decay times for ion concentra-
tions in ECS

The diffusion potential is an instant function of the concentration gradients.
The potential will therefore change when the gradients change. Videm [10]
estimated the diffusion potential from the change of concentration gradients
due to diffusion. The concentration gradients can also change because of
various uptake mechanisms in neurons and glial cells.

The time course of K+ concentration decay in the ECS may tell something
about how fast the diffusion potential changes. Cordingley and Somjen [16]
studied half-decay times of extracellular K+ in the cortex and spinal cord of
cats. They found out that the half-decay time calculated for diffusion was
more than a hundred times longer than half-decay times observed for K+

transients in ECS [16]. Such may indicate that other uptake mechanisms
contribute the most to the K+ decay in ECS and that the K+ decay not only
can result from a diffusion process.

Cordingley and Somjen [16] also investigated if the depth of recording
affected the half-decay times of K+. The result was similar half-decay times
in all depths, but in the center, where the K+ concentration was highest, the
half-decay time was slightly shorter [16].
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2.4 Local Field Potentials
Potentials in the extracellular space are affected by the activity of surround-
ing neurons. ECS potentials are measured relative to a reference point by
small electrodes inserted in the brain [17]. The extracellular potential is often
divided into a high-frequency part and a low-frequency part.

Neuronal action potentials are fast-changing signals, and information
about them is visible in the high-frequency part (>300Hz) [18]. This part of
the extracellular potential is called the Multi-Unit Activity (MUA), and it
contains firing information from the surrounding neurons. Local field poten-
tial (LFP), on the other hand, is the low-frequency part of the ECS potential.
LFP contains frequencies below ∼250 Hz and reflects current flow associated
with synaptic activity [18].

Comparing different LFP measurements is difficult since they often ap-
pear to be similar. It is hard to discover underlying patterns in the mea-
surements. Therefore, it can be easier to compare the dominant frequency
components of the LFPs. One way of doing so is to calculate and compare
the power spectrum densities of the LFPs.

2.5 Power spectrum density
The power spectrum density (PSD) is often used in signal analysis. The goal
of using PSD is to make time-varying signals more comparable by looking at
which frequencies that dominates the signals. The PSD of a signal represents
the signal’s frequency components.

The first step in obtaining the PSD is to calculate the Fourier transform,
F(f), which is defined as

F(f) =
∫ ∞
−∞

v(t)e−i2πftdt, (2.21)

where v(t) is the time-dependent signal we want to transform. As seen from
the equation, the Fourier transform is frequency-dependent, and the original
signal v(t) is transformed from the time domain to the frequency domain.
F(f) can be said to be the frequency spectrum of the signal v(t) [19].

An assumption of the Fourier transform is that v(t) is an continuous
function [19]. To extend the Fourier transform, to cases where v(t) is given as
values at finitely many points, one can apply the Discrete Fourier Transform
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(DFT). To make the number of computations manageable for large data sets,
the DFT can be computed by a method called the Fast Fourier transform
(FFT) [19].

The values returned by the FFT is on complex form, they have both a real
and an imaginary part [20]. The next step is therefore to find the magnitude
(the absolute value) of the FFT to be able to do further analysis (in complex
analysis also known as (z∗z)1/2 where z is a complex number and z∗ is the
complex conjugate of z). After finding the magnitude of the FFT, we must
normalize it by dividing it by its own length N (which in certain cases is
equal to the sampling frequency fs).

The sampling frequency (also called sampling rate) is the number of sam-
ples obtained per unit of time. For example, a sampling frequency of 1250
Hz means that it is sampled 1250 samples per second.

From the FFT we get a two-sided spectrum containing both positive and
negative frequencies [20]. Normally we only look at the positive frequencies,
because the spectrum of a real-world signal is symmetric around 0 Hz (often
called DC). To do so we discard the negative frequencies, which are the second
half of the two-sided spectrum. To obtain the total energy in the spectrum,
we must multiply all points in the positive frequencies, except 0 Hz (DC), by
two [20]. The resulting spectrum is called a single-sided spectrum and has
the frequency range of [0, fs(0.5 − 1/N)] (fs is the sampling frequency and
N is the number of points returned by FFT/number of points in the original
signal) [20].

If we stop here, we have calculated the amplitude spectrum:

Amplitude spectrum = 2 |F(f)|
N

, f ∈ (0, fs(0.5− 1/N)] (2.22)

Note that at 0 Hz (DC) the amplitude spectrum is calculated by dropping
the 2 in the above equation: |F(f)|

fs
, f = 0 Hz.

To calculate the power spectrum (PS), the only difference is that we
must square the normalized magnitude of the FFT. The equation for power
spectrum (PS) is

PS = 2
(
|F(f)|
N

)2

, f ∈ (0, fs(0.5− 1/N)]. (2.23)

Here F(f) is the Fast Fourier transform and fs is the sampling frequency. As
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with the amplitude spectrum, the PS at f = 0 Hz is calculated by removing
2 from the formula.

Here comes a quick refresh of the steps to calculate the power spectrum
(PS): find the absolute value/the magnitude of the FFT, normalize it by
dividing on its length, square it and multiply by two. Then, discard the
second half of the frequencies [20], which is specified by the frequency range.

The power spectrum density (PSD) is now easily calculated by dividing
PS by the frequency bin df = fs/N = 1/(N · dt):

PSD = PS

df
= PS ·N

fs
= 2N

fs

(
|F(f)|
N

)2

, f ∈ (0, fs(0.5−1/N)]. (2.24)

If the original signal is in volt (V) the unit of the amplitude spectrum is
volt. The units of PS become V2 and the unis of PSD become V2/Hz. (The
formulas in this section are found by combining information from a tutorial
[20] and a forum1.)

2.5.1 Simple PSD example

To illustrate the power spectrum density, I calculated it for a superposition
of four sine waves. The superposition is composed of four sine waves with
different frequencies and amplitudes:

v(t) = sin(1 · 2πt) + 0.5sin(5 · 2πt) + 0.1sin(10 · 2πt) + 0.2sin(30 · 2πt)

The four sine waves are shown individually in the upper left of Figure 2.3.
Here they have the same amplitude but different frequencies: 1, 5, 10, and
30 (from top to bottom). The superposition v(t) of the sine waves are shown
in the upper right of Figure 2.3, and the amplitudes for each sine wave are
1, 0.5, 0.1, and 0.2 respectively.

The amplitude spectrum and power spectrum density are shown in the
lower panel of Figure 2.3. The amplitude spectrum (lower left of Figure
2.3) shows the amplitude for each frequency component, and the peak values
correspond with the amplitudes in the superposition. The power spectrum
density (lower right of Figure 2.3) has peak values at the same frequencies,
but the power amplitudes are smaller than in the amplitude spectrum. The

1The forum is avaiable at: https://stackoverflow.com/questions/22338415/
scipy-periodogram-terminology-confusion (Accessed: 21 April 2021)
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peak value of the power amplitude can be found with the following equation:

Power Amplitude =
(
A√
2

)2

= A2

2 ,

where A is the amplitude of a sine wave in the superposition. For the ampli-
tudes 1, 0.5, 0.1 and 0.2 the power amplitude become 0.5, 0.125, 0.005 and
0.02 respectively. This can be seen in the lower right panel of Figure 2.3.
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Figure 2.3: Upper left: Four sine waves with different frequencies: 1, 5, 10 and 30.
Upper right: The superposition of the four sine waves with different amplitudes:
1, 0.5, 0.1 and 0.2. Lower left: The amplitude spectrum of the superposition, with
peaks at the four frequencies. Lower right: The power spectrum density of the
superposition, with peaks at the four frequencies and power amplitudes of 0.5,
0.125, 0.005 and 0.02. The units of the superposition and the amplitude spectrum
is volt, while the PSD has units V2/Hz.

The PSD of the signal shows how the peaks in the PSD appear at the
four frequencies in the superposition. We can also see that the largest power
is at the frequency component with the largest amplitude.
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2.5.2 PSDs in previously published articles
In previously published articles, the LFP measurements are often presented
as power spectrum densities. The units of the PSDs are in many articles
unclear. The PSDs are often shown with arbitrary units or units entirely
omitted. Therefore, it is difficult to say something about the magnitude of
the original LFP signal. In addition, comparing two PSDs with arbitrary or
different units is inadequate.

Luckily there exist data sharing tools such as the Collaborative Research
in Computational Neuroscience (CRCNS)2. CRCNS is a site for data shar-
ing across the world in the field of neuroscience. This site gives researchers
and experimentalists the ability to share their data. Non-experimentalists
can also get a hold of data sets without executing the experiments them-
selves. The only requirement for downloading data sets is to have a CRCNS-
account. CRCNS contains numerous data set from many brain regions, to
mention some of them: visual cortex, auditory cortex, prefrontal cortex, mo-
tor cortex, somatosensory cortex, hippocampus, thalamus, basal forebrain,
and cerebellum.

In this project, I have used the CRCNS data sharing site to download
LFP recordings, and then calculated PSDs directly from those.

2Available at: https://crcns.org/ (Accessed: 27 April 2021)
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Chapter 3

Methods
In this project, I investigated diffusion potentials’ undetermined impact on
local field potentials (LFPs). My approach to the project is illustrated in
Figure 3.1.

Figure 3.1: Project approach.

For concentration data: I collected data from published articles and se-
lected two concentration points, A and B, for further use (Section 3.1 and
3.2). Based on certain assumptions, I calculated concentrations for unmea-
sured ion species I wanted to include (Section 3.3). I estimated the diffusion
potential φ0 and its exponential decay (with τ from temporal concentration
data) (Section 3.4 and 3.5). Finally, I calculated the power spectrum densi-
ties (PSDs) of the potentials (Section 3.6). (black boxes in Figure 3.1).

For LFP data: I collected LFP data presented as PSDs in figures from
published articles (blue box in Figure 3.1). In addition, I found LFP record-
ings from data sets and calculated PSDs directly from those (green boxes in
Figure 3.1, Section 3.7).

The comparison of the PSDs are presented in Chapter 4 (red box in Figure
3.1). The method chapter is structured as indicated in Figure 3.1.
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3.1 Concentration data
Ion concentration data in ECS can be presented as spatial or temporal data.
In spatial data, the ion concentrations are measured in different depths at one
point in time, for example, in the different layers of the cortex. For temporal
data, the ion concentrations are measured at a fixed point over time, often
before, during, and after a given stimulus. I found temporal data to be the
most common representation of ion concentrations in the ECS in articles.

I found and divided concentration data into two categories: “normal”
(non-pathological) and “pathological” (spreading depression and seizures).
For most of the concentration data, I zoomed in and read the figures by
visual inspection. To read some of the more detailed figures, which I wanted
to reconstruct, I used a web-based tool called WebPlotDigitizer1 to extract
the data points. Here I uploaded the figure as an image and defined and
calibrated the axis. I created data sets by marking the data points in the
figure and downloaded the data sets as csv-files.

Figure 3.2 show K+ concentration data (both spatial and temporal) dur-
ing repetitive stimulation (left) and during spreading depression (right).

Figure 3.2: Spatial and temporal K+ concentration data in the ECS. Left: during
repetitive stimulation, taken from Nicholson et al. (Fig.2B) [21]. Right: during
spreading depression (red lines), taken from Herreras and Makarova (Fig.1b) [13].

1WebPlotDigitizer: https://apps.automeris.io/wpd/ (Accessed: 28 April 2021)
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3.2 Choosing two points: A and B

The main simplification of this project is that I chose to work with only two
points, A and B, from the concentration data. Point A stand for the baseline
concentration, cbase, or the minimum concentration difference from baseline,
∆cmin. I chose to look only at the extreme cases, such that Point B denotes
the maximum concentration difference from baseline, ∆cmax.

For spatial data, I chose point A as the minimum difference from baseline
and point B as the maximum difference from baseline (see left panel of Figure
3.3). For the previous Figure 3.2 (left panel) point A would be at 700 µm
depth and point B at depth 0. For the right panel of Figure 3.2 I would
choose point A at 300 µm depth and point B as the fifth depth-line from the
top.

Figure 3.3: The figure show how I chose point A and B for spatial (left) and
temporal (right) data.

For temporal data, I chose point A as the baseline concentration (the ‘be-
fore’ concentration) and point B as the peak concentration (see right panel
of Figure 3.3). I assumed that these two points exist simultaneously and
spatially separated in the ECS. The previous Figure 3.2 have temporal con-
centration data for each depth line, and I would choose points A and B as
shown by the right panel of Figure 3.3.
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3.3 Determining concentrations for unmea-
sured ion species

In articles, a large amount of concentration data often only include one ion
species, sometimes two ion species. For my calculations, I chose to include
the ion species K+, Na+, and Cl−. Using these three ions, I based the
concentration change of two of them on only one ion species. For “normal”
concentration data I used scenario 1 from Videm[10] (presented in Section
2.3.1):

∆[K+]0 = −∆[Na+]0 ∧ ∆[Cl−]0 = 0, (3.1)

where change in K+ concentration is balanced out by Na+ and Cl− concen-
tration change is assumed to be zero. For “pathological” concentration data,
I used scenario 4 from Videm [10] (presented in Section 2.3.1):

2∆[K+]0 = −∆[Na+]0 ∧ ∆[K+]0 = −∆[Cl−]0, (3.2)

where change in concentration of Cl− is equally large as K+ and change in
Na+ is double but opposite of the change in K+.

Regarding baseline ionic concentrations in ECS, I used the baseline values
specified with the concentration data. For the cases where I found no spec-
ified baseline concentration, I assumed and used the baseline concentration
showed in Table 3.1 (K+ and Na+ is taken from Table 2.1 on page 11 [6]).

Table 3.1: Baseline concentration values for ion species in ECS used in calcu-
lations. Cl−base is calculated from K+

base+Na+
base to maintain the electroneutrality

criterion.
Ion ECS baseline
K+

base 3 mM
Na+

base 147 mM
Cl−base 150 mM

3.4 Calculating the diffusion potential

I calculated the diffusion potentials in three alternative ways, based on (1)
the Goldman equation, (2) the Henderson equation, and (3) an approximated
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equation for ∆Φ using the conductivity σ. In this section, I present the
equations, and a comparison of their predictions is presented in Chapter 4.

3.4.1 The Goldman equation

To use the Goldman equation for estimating the diffusion potential, I re-
placed the permeability parameter with the diffusion coefficient. I assumed
that the membrane permeability of an ion species is the ion’s diffusion coef-
ficient through the membrane. The Goldman equation used to calculate the
diffusion potential in the ECS is:

ΦG = RT

F
ln
(∑

i+ D
∗
i+ [ci+ ]A +∑

i− D
∗
i− [ci− ]B∑

i+ D
∗
i+ [ci+ ]B +∑

i− D
∗
i− [ci− ]A

)
, (3.3)

where D∗i is the diffusion coefficient for ion species i in ECS. [ci]A and [ci]B
are the extracellular concentration of ion species i in point A and point B. I
termed the diffusion potential calculated with the Goldman equation as ΦG.

3.4.2 The Henderson equation

To use the Henderson equation for estimating the diffusion potential, I re-
placed the mobility parameter with the diffusion coefficient. According to
the Einstein Relation (µ = DiziF/RT ), the relative difference between the
mobilities is equivalent to the relative difference between diffusion coefficients
for the same ion species. Therefore, I substituted the diffusion coefficient into
the Henderson equation as follows:

ΦH = RT

F

∑iD
∗
i
|zi|
zi

(ci,B − ci,A)∑
iD
∗
i |zi|(ci,B − ci,A)

 ln
(∑

iD
∗
i |zi| ci,A∑

iD
∗
i |zi| ci,B

)
, (3.4)

where D∗i is the diffusion coefficient of ion species i in ECS. ci,A and ci,B are
the concentration of ion species i in point A and B. I termed the diffusion
potential calculated with the Henderson equation as ΦH .

Table 3.2 shows mobility values (estimated by Strutwolf et al. [8]) and dif-
fusion coefficients to K+ and Na+. I checked the ratios between the mobilities
and the diffusion coefficients for these ion species. The diffusion coefficients
ratio, DNa/DK , is 0.67857, and the mobilities ratio, µNa/µK , is 0.68101. The
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ratios are close to each other. The small difference is most likely due to some
variation in the decimals of the constants.

Table 3.2: The diffusion coefficient of Na+ and K+ [1, 10] and the mobility of
the same ions calculated by Strutwolf et al. (in Table 1) [8]. The last row shows
the ratio between the diffusion coefficients (DNa/DK) and the ratio between the
mobilities (µNa/µK).

Ion Diffusion coefficient, Dion Mobility, µion
Na+ 1.33× 10−9 m2 s−1 4.59× 10−4 cm2 s−1 V−1

K+ 1.96× 10−9 m2 s−1 6.74× 10−4 cm2 s−1 V−1

Na+ / K+ 0.67857 0.68101

3.4.3 Approximated equation
I also computed the diffusion potential using a third equation, based on an
approximation of the potential gradient ∇Φ and the concentration gradient
∇ck used in Equation 2.13 (see page 8). First, I assumed that the gradients
were in only one direction, and then I approximated the derivatives as follows:

∇Φ −→ dΦ
dx
≈ ∆Φ

∆x ≈
ΦB − ΦA

∆x , (3.5)

∇ck −→
dck
dx
≈ ∆ck

∆x ≈
ck,B − ck,A

∆x . (3.6)

Next, I substituted these approximations into Equation 2.13 and rearranged
the equation to get an expression for ∆Φ:

∆Φ = F

σ

∑
k

zkD
∗
k∆ck. (3.7)

where ∆Φ = ΦB −ΦA and ∆ck = ck,B − ck,A. The summation is over all ion
species k and σ is the conductivity (see Equation 2.10 on page 7).

For my two-point system, I also approximated the conductivity, σ. I
used an average conductivity, σ̄, and replaced the concentration ck with the
average concentration of the two points, (ck,A + ck,B)/2. The equation for
average conductivity became:

σ̄ = F

Ψ
∑
k

D∗kz
2
k

(ck,A + ck,B)
2 , (3.8)
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where ck,A and ck,A is the concentration of ion species k in point A and B
respectively. The average conductivity approximation is most valid when
the conductivities of the two points are similar. I included Equation 3.7 as a
two-point version of Videm’s [10] numerically solution of the time dependent
Nernst-Planck equation (Equation 2.6 on page 6). The reason for this was so I
could compare the way one normally discrete and solve differential equations
for spatial diffusion systems.

3.5 Exponential decaying potential
The equations in the last section are my options for estimating the initial
diffusion potential, Φ0, directly from concentration data together with as-
sumptions for the unmeasured ion species. To estimate how the diffusion
potential change with time, I chose to look at the decay of the potential.

The diffusion potential depends solely on the concentration differences
between two points. It does not depend on how the difference occurred or
changes over time. The potential is an instant function of the ion concen-
trations in point A and point B. There is no requirement that a diffusion
process must have happened to get a diffusion potential.

I simulated the diffusion potential over time with an exponentially decay-
ing function. I estimated the initial potential, Φ0, and used a time constant,
τ , for its exponential decay, as follows:

Φ(t) = Φ0 · e−t/τ . (3.9)

Here Φ(t) is the time series of the potential during time t. With this ex-
ponentially decaying potential, I did not assume that diffusion is the only
process contributing to the changing potential. Other things contribute to
concentration change in the ECS, such as uptake by neurons and glial cells
through ion channels and pumps [2].

From temporal concentration data, I found time constants for the con-
centration decay back to baseline. I chose to use such time constants for the
estimated initial potential to ensure a somewhat realistic potential reduction
over time.

For most of the concentration data, I found the time constant by visual
inspection of the figures. I used the time scales and concentration scales
on the figure and found the point where the concentration had decayed to
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1/e ≈ 0.368 of its peak value. I chose to focus on the decay time constant,
but the same could be done for the rise to the peak value. Then one finds
the point where the concentration reached 1− 1/e ≈ 0.632 of the rise to the
peak value.

In Figure 3.4 I recreated the temporal K+ concentration data found in
Haj-Yasein et al. [22], during and after synaptic stimulation. The blue dots
are the K+ concentration in ECS and the lines are exponentially decaying
functions, c(t) = c0e

−t/τ , with different time constants τ . The exponentially
decaying functions seem to fit the concentration data well in the left panel of
Figure 3.4. The concentration decay in the right panel of Figure 3.4 does not
fit the exponential functions that well, but it still seems to be an acceptable
approximation for the decay. Therefore, I assumed that I could use the
time constants found from concentration data to estimate how the diffusion
potentials decay with time.
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Figure 3.4: Time recordings of K+ during synaptic stimulation in mouse hip-
pocampus [22]. The blue points are recorded in a wild mouse from Haj-Yasein
et al. [22] (Fig.2a (left) and Fig.2b (right)). The lines starting at the point of
decaying is exponential curves with different time constants.

3.6 Calculating Power Spectrum Density
For calculating the power spectrum density (PSD) of a time series (here the
exponentially decaying diffusion potential), I used the periodogram2 function
from SciPy’s signal package. I inserted the time series and the sampling

2Link to the documentation: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.periodogram.html (Accessed: 7 April 2021)
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frequency into the periodogram function. The periodogram returns an array
of sample frequencies with the corresponding power spectrum density of the
time series. For viewing and comparing PSDs, I plot them on a log-log scale.

Looking into the source code3 for the periodogram, I discovered that the
function uses Welch’s method4 when estimating the PSD. This method di-
vides the data into overlapping segments and calculates the PSD individually
for each segment [23]. Then, all the segment periodograms are averaged [23],
which minimizes edge effects.

The periodogram function can calculate both power spectrum (PS) and
power spectrum density (PSD). The scaling parameter of the function reg-
ulates the output. scaling=‘spectrum’ computes PS with units V2, and
scaling=‘density’ computes the PSD with units V2/Hz (assuming the
units of the time series are volts, V, and that the sampling frequency is in
Hz). A forum5 discussed this scaling parameter, and the default value is
scaling=‘density’, which is what I used to calculate PSDs.

3.7 PSD data

Finding power spectrum density data is a bit more challenging than concen-
tration data. Most figures showing PSDs of LFP data have arbitrary units,
or they are represented with normalized power. Both cases make it difficult
to compare PSDs across articles, and therefore I can not use such figures. I
looked for PSDs with the unit V2/Hz, so I could compare PSD data from fig-
ures to the calculated PSDs of the diffusion potentials. As with some of the
concentration data, I used the WebPlotDigitizer6 to extract the PSD data
from figures.

I also looked for data sets with LFP recordings from the Collaborative
Research in Computational Neuroscience (CRCNS). After some preprocess-
ing of the data in MATLAB, I saved LFP data to files and calculated the

3Source code available at: https://github.com/scipy/scipy/blob/v1.6.2/scipy/
signal/spectral.py#L158-L288 (Accessed: 8 April 2021)

4SciPy’s signal.welch function: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.welch.html (Accessed: 8 April 2021)

5The forum is avaiable at: https://stackoverflow.com/questions/22338415/
scipy-periodogram-terminology-confusion (Accessed: 21 April 2021)

6Link to WebPlotDigitizer: https://apps.automeris.io/wpd/ (Accessed: 28 April
2021)
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mean PSD with the peridogram function in Python. An overview of the
data sets I used is presented in Chapter 4.

In some of the data sets, the LFP recordings were stored in binary files.
To read these data files, I used a MATLAB script called LoadBinary.m,
which I obtained from MATLAB script files belonging to the data set called
hc-2 (the data sets and their names are presented in more detail in Section
4.5.2). For LFP data stored in binary files, I needed to convert the data into
units of volts7. To do so, I used a conversion factor X found by

X = VoltageRange /(nBits ∗ gain), (3.10)

where VoltageRange, nBits, and gain are parameters following the data set.
nBits depend on the binary file storage (if stored with 16 bits, nBits = 216),
and gain is the same as amplification of the signal. I multiplied the data with
the conversion factor to get units of volts: Data ∗ X. (If there is an offset in
the data set, I subtracted it before multiplying: (Data-Offset) ∗ X)

The data sets from CRCNS have LFP data recorded over multiple chan-
nels. I wanted to calculate the mean PSD. Therefore, I computed the PSD
for each channel and then found the mean PSD by taking the average over
all the PSDs.

3.8 Table of constants

Table 3.3 contain all the constants used in this project.

Table 3.3: List of constants [1, 10].
Symbol Value Explanation
DNa 1.33 · 10−9 m2/s Na+ diffusion coefficient
DK 1.96 · 10−9 m2/s K+ diffusion coefficient
DCl 2.03 · 10−9 m2/s Cl− diffusion coefficient
F 96485.333 C/mol Faraday’s constant
R 8.3144598 J/mol K Gas constant
T 310 K temperature (considered constant)
λn 1.6 tortuosity

7How to convert to volt is discussed in this forum: http://crcns.org/forum/
using-datasets/708216874 (Accessed: 19 March 2021)
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3.9 Code available on GitHub
The Python code used in this project is available on my GitHub repository:
https://github.com/christinebr/Master-Project-2021. The original
data sets of the LFP recordings are not uploaded because of the file sizes.
However, I uploaded files containing the calculated PSD that I used to plot
the figures in Chapter 4.
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Chapter 4

Results

4.1 “Normal” concentration data
The concentration data collected are shown in Table 4.1 on page 36. In the
table, the concentration data is labeled with the article’s first author and
the figure I used. For each data set, the concentration data is presented
with corresponding decay time constant, and some additional information. I
divided the concentration column into three to specify the ion species, the
baseline concentration, and the maximum concentration difference, ∆c. The
baseline concentration is found from the article, otherwise I used the values
specified in Table 3.1 (on page 26).

If I managed to find the time constant for the decay back to base con-
centration, it is in the table. Otherwise, for example, if the concentrations
were a depth profile, no time constant is shown. In these cases, I used a time
constant of 6 s if not otherwise indicated in the ‘Note’ column.
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Table 4.1: “Normal” concentration data. The table shows where data is taken
from, the extracellular concentration of an ion (with baseline and maximum differ-
ence ∆c), and the corresponding time constant for the ionic concentration decay.
Some additional information about the data is provided under the ‘Note’ column.
Taken from Concentrations Time Note

(ion, base, ∆c ) constant,
[mM] τdecay [s]

Dietzel Fig 3 [11] Na+, 146, -5.9 - depth profile
Dietzel Fig 4A [11] K+, 3, +6 ∼ 4s stimulation of cortical

surface, adult catsDietzel Fig 4B [11] K+, 3, +7 ∼ 6s
Hay-Yasein Fig 2a K+, 3.25, +4.75 ∼3.0s recordings from
[22] stratum radiatum, mice
Hay-Yasein Fig 2b K+, 3.25, +9.25 ∼2.5s recordings from
[22] stratum pyramidale, mice
Cordingley Fig 5 [16] K+, 2.6, +1.89 - depth profile, cortical
(Gratiy Fig 2B [24]) layers in cat, half-decay

time of 0.52s (τ ≈ 0.75s)
Sykova Fig 3A [25] K+, 3, +6 ∼12s tetanic stimulation of

posterior tibial nerve
recorded in spinal cord
of cat

Sykova Fig 14A [25] K+, 3, +5 ∼4s cerebellar stimulation
at 20 Hz, measured in
rat cerebellum

McCreery Fig 2B K+, 3, +4 ∼25s recorded in postcruciate
[26] gyros of cat
Halnes2016 [1] K+, 3, +5.99 - depth profile,
(Videm Fig 2.4 [10]) simulated using

10 pyramidal neurons
Nicholson Fig 3 [21] K+, 3, +5 ∼20s repetitive stimulation,

cat cerebellar cortex
Octeau Fig 1G [27] K+, 4.5, +0.9 ∼6s response to light flash,

mice
Amzica Fig 3A [28] K+, 3.4, +0.6 - slow oscillation (∼2s),

wave-triggered averages,
cerebral cortex of cats

Frölich2008 Fig 1B K+, 3, +1.6 - slow oscillation (∼2s),
[29] suprasylvian gyrus of cat
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4.2 Comparing the equations and the scenar-
ios

Here, I present a comparison of the predictions from the three equations
discussed in Chapter 3 (see Section 3.4 on page 26) for scenario 1 and scenario
4 (see Section 3.3). I assumed different K+ concentration differences from
baseline (∆c is +2, +4, +6, and +9). I used the scenarios to find ∆c for Na+

and Cl−. The estimated diffusion potentials are calculated between point
A (baseline) and point B (maximum difference ∆c). Table 4.2 show the
estimated values from the Goldman equation (Equation 3.3), the Henderson
equation (Equation 3.4), and the approximated equation (Equation 3.7).

Table 4.2: Calculating the potential with the Goldman equation, the Henderson
equation and the approximated equation (with average conductivity, σ). All cal-
culations are based on a K+ concentration difference from baseline, and the Na+

and Cl− concentrations are found from scenario 1 and scenario 4. Concentration
values are given in millimolar (mM) and potential values are given in millivolts
(mV).
Scenario 1

∆[K+] [mM] +2 +4 +6 +9
Goldman, ΦG [mV] -0.06558200 -0.13100340 -0.19626497 -0.29385936
Henderson, ΦH [mV] -0.06558200 -0.13100340 -0.19626497 -0.29385936
Approx, ∆Φ [mV] 0.06558197 0.13100314 0.19626409 0.29385640

Scenario 4
∆[K+] [mM] +2 +4 +6 +9

Goldman, ΦG [mV] -0.13936351 -0.28022935 -0.42262393 -0.63914161
Henderson, ΦH [mV] -0.13936453 -0.28023761 -0.42265226 -0.63923961
Approx, ∆Φ [mV] -0.28606129 -0.57520233 -0.86747313 -1.31185968

For scenario 1, all the equations gave very similar estimates for the po-
tential. The Goldman equation and the Henderson equation gave identical
estimates for the potential with scenario 1. The approximated equation,
which uses average conductivity, differs just a tiny bit in the last decimals.
When the concentration difference, ∆c, increases, the difference between the
predictions of the approximated equation and the two other equations in-
creases.

For scenario 4, the Goldman equation and Henderson equation gave sim-
ilar estimates, while the approximated equation gave about two times larger
estimates. Comparing scenario 4 to scenario 1, the calculated values with
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scenario 4 is around double. An extended version of Table 4.2 can be found
in Appendix A (on page 65), where I also included scenario 2 and scenario
3.

The Henderson and Goldman equations give almost identical estimates.
Looking at the formulas, I see that the first fraction in the Henderson equa-
tion equals 1 when only K+, Na+, and Cl− are used (the nominator will
always be equal the denominator: |zi|/zi = ±1 when all have |zi| = 1). This
fraction can vary from 1 when we include other ion species with, for example,
|zi| = 2 (the denominator will then have a term with |zi| = 2 and the nomina-
tor will have |zi|/zi = ±1). How much the fraction will vary from 1 depends
on the concentration difference (ci,2− ci,1). If this concentration difference is
small, the fraction will approximately equal 1. The two equations give same
values for scenario 1 since the ln()-term become identical when ∆[Cl−] = 0.
For scenario 4, the estimates from the two equations differ some, but overall
both equations gave similar values.

I chose to use the Henderson equation when estimating the diffusion po-
tential because it is better over distance (thick membranes [9]). I decided
to only look at the absolute values when calculating the diffusion potential.
This choice does not affect the calculation of PSDs.

4.3 Diffusion potentials for “normal” concen-
tration data

The initial value of the diffusion potentials (Φ0) is calculated using the con-
centration data in Table 4.1 (on page 36) and scenario 1 (see Section 3.3). I
let the potential decay (Φ(t) = Φ0 · e−t/τ ) for 100 s with the specified time
constant from Table 4.1. For data without a specified time constant, I chose
to use τ = 6 s because it was the median of the other time constant.

Figure 4.1 (on page 39) shows how the estimated diffusion potentials
decay exponentially over time. The largest initial diffusion potential is Hay-
Yasein Fig 2b starting at ∼0.30 mV. Most of the data get initial potentials be-
tween 0.1 and 0.25 mV, while four of the data (Cordingley Fig 5, Frölich2008
Fig 1B, Octeau Fig 1G, and Amzica Fig 3A) start at < 0.07 mV. All curves in
Figure 4.1 seem to decay to a potential of 0.0 mV within the time interval of
100 s. As expected, the curves with the highest time constant decay slowest.
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Figure 4.1: Exponentially decaying diffusion potentials for “normal” concen-
tration data. The initial value of the diffusion potentials is estimated with the
Henderson equation. The time constant for each curve is shown in the legend of
the figure. The decay of the potentials is estimated for 100 s.

4.4 PSDs of “normal” diffusion potentials

For the exponentially decaying diffusion potentials in Figure 4.1, I calculated
the PSDs as specified in Chapter 3 (see Section 3.6). The PSDs are shown
in Figure 4.2 (on page 40) on a log-log plot.

The PSD lines in Figure 4.2 with time constants < 10 s have deflection
for lower frequencies (a smaller slope between -2.0 to -1.0). At -1.0 the Haj-
Yasein Fig 2b (purple) has the highest power, and Dietzel Fig 4B (green) has
the next highest power. Most of the lines are located in this upper group.
The same four lines (Cordingley Fig 5, Octeau Fig 1G, Amzica Fig 3A,
Frölich2008 Fig 1B) with the lowest initial potential have the lowest powers,
and they form the lower group.

All lines seem to follow a 1/f2 power law between between -0.5 and 1.5
(∼0.3 and 32 Hz)
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Figure 4.2: Power spectrum densities (PSDs) of the exponentially decaying dif-
fusion potentials on a log-log plot. Smaller time constants give a deflection for the
lowest frequencies.

4.5 PSDs of LFP data

4.5.1 PSDs of LFP data from articles

In this section, I present the PSD of LFPs found from three figures and
two LFP data files. They are listed in Table 4.3 (on page 41) with some
information, along with a short description and the assumptions made. The
data are from different experiment in different animals and brain regions.
The PSDs are shown in Figure 4.3 (on page 42).

Baranauskas et al. [30] recorded LFP in the somatosensory cortex of rats
within the frequency range of 0.025 and 250 Hz. The data is spectral power
density of an LFP signal with a frequency range of 0.1-100 Hz. Above ∼1
Hz, the PSD follows a 1/f 2.06 power law [30].

Jankowski et al. [31] recorded LFP from the anterior claustrum of rats.
The data are mean PSD of LFP recordings from sessions in an environment
in darkness, with a frequency range of 0-40 Hz [31].

Miller et al. [32] recorded electrocorticographic (ECoG) potentials with
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Table 4.3: Overview of PSD of LFP data from three figures and two LFP data
files. The paper and original figure is stated, along with a short description and
assumptions made.
Taken from Figure/Data Description/Assumptions
Baranauskas et al. [30] Figure 1C somatosensory cortex of rats,

assumed log-log axes with max
y value equal 105 µV2/Hz (not
the originally 104)

Jankowski et al. [31] Figure 2F anterior claustrum of rats,
mean PSD of LFP recordings,
not log-log axis.

Miller et al. [32] Figure 2A averaged PSD over all channels
in subject 1 for ECoG recordings,
frequency range from ∼10 Hz
to ∼1000 Hz, log-log axes

Torbjørn V. Nessa data file calculated averaged PSD
of LFP recordings in mice
Cut-off frequency was 0.1 Hz.

Gratiy et al. [24] data file [33] calculated mean PSD
of LFP recording in mice

aunpublished data from Torbjørn V. Ness, obtained during the project [34]

electrodes placed on the subdural part of the human cortex. The human
subjects had epilepsy and were implanted with electrodes to locate seizure
focus. The data were recorded at the bedside during a fixation task, and the
PSDs were averaged [32]. They fitted a power law, 1/fχ, where they found
that χ = −4 for a frequency range of 80 to 200 Hz. They also applied a
power law for frequencies between 15 and 80 Hz and got χ = −2.5.

Torbjørn V. Ness provided me with a data file containing LFP recordings
over 13 channels. The data is unpublished, but was obtained during a project
by Thunemann et al. [34]. The recordings were done in a mouse with current
stimuli applied to its whiskers. I calculated a mean PSD, which can be seen
in Figure 4.3 (on page 42).

Gratiy et al. [24] used in vivo recordings of the extracellular potential
(LFP) from the primary visual cortex of mice. The mice were exposed to
visual stimuli, different light intensities, from a light source switching on and
off [24]. I calculated the mean PSD from the LFP recordings, and it is shown
in Figure 4.3.
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Figure 4.3: PSD of LFP recordings found from three figures (Baranauskas,
Jankowski, and Miller) and PSD calculated from two LFP data files (Torbjørn
and Gratiy). Baranauskas and Jankowski are from LFP recorded in rats, and
Miller is ECoG from human cortex. The data from Torbjørn V. Ness and Gratiy
et al. are LFP recorded in mice. For LFP-Torbjørn, I omitted the PSD for fre-
quencies lower than 0.1 Hz and higher than 100 Hz. For LFP-Gratiy, I omitted
the PSD for frequencies over 100 Hz. See Table 4.3 for more information.

4.5.2 PSDs of LFP recordings from CRCNS data sets
The data sets containing LFP recordings from the CRCNS data sharing site
are summarized in Table 4.41. Additional information, such as the specific
data files and the sampling rates, can be found in Appendix B (on page 67).

The PSDs of the LFP recordings from the CRCNS data files are shown
in Figure 4.4. The PSDs are averaged over all the recording channels and
calculated as described in Section 3.6 and Section 3.7. In each data sets,
there exist recordings from different sessions, conditions, and subjects. The
abbreviations A, B, C, and D distinguish between the data files used and are
specified in Table B.1 (see Appendix B).

1More information about the data sets can be found on the ‘about’ page for each data
set and/or in the corresponding articles cited.
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Table 4.4: Overview over the CRCNS data sets with LFP recordings I used.
Dataset Brain region Description
hc-2 hippocampus Multichannel recordings from three Long-Evans
[35, 36] (layer CA1) rats, under open field tasks. LFPs was extracted

from the processed raw (broadband) data.
ac-2 auditory cortex Recordings in response to pure tones with
[37] different amplitude and frequency, and nearby

LFP recordings in rats.
pfc-2 prefrontal cortex Recording of multi single neuron in three rats
[38, 39] (and CA1 of during memory task. Simultaneously monitored

hippocampus) in pfc and CA1 of hippocampus.
bf-1 basal forebrain LFP recordings from rats (wild type rattus
[40, 41] norvegicus) obtained under (i) resting condition

(in home cage) and (ii) exploration of an arena
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Figure 4.4: PSDs of LFP recordings from CRCNS data sets (see Table 4.4)
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The PSDs from hc-2 (hippocampus) and pfc-2 (prefrontal cortex) overlap
each other. The deflection of these between -1.0 and 0.0 (0.1 and 1.0Hz) is
most likely because of a cut-off frequency on the recording electrode. There-
fore, we can not fully trust these data sets in this frequency range. All the
curves from the bf-1 (basal forebrain) data set are close together. The bf-1
curves also appear within the powers of both the hc-2 and pfc-2 data sets.
The three lowest ac-2 (auditory cortex) curves lie on top of each other, and
the fourth line (ac-2-D) has slightly higher powers. It seems that these ac-2
curves still increase for lower frequencies, unlike the hc-2 and pfc-2.

4.5.3 Selecting the PSDs to use in comparison
In Figure 4.5 I included the PSDs of LFP data from Figure 4.3 and Figure
4.4. The PSDs I used to compare with the PSDs of diffusion potentials are
LFP-torbjørn, LFP-Gratiy, LFP-Baranauskas, bf-1-A, ac-2-A, and ac-2-D.
These are shown with color in Figure 4.5. I chose these as a representative
selection of all the PSDs of LFP data collected.

I chose the bf-1-A curve because it overlaps the PSDs of hc-2 and pfc-2
data for most of the frequency range. The ac-2 curves have a good fre-
quency range, and I chose the highest and lowest PSDs. I selected the LFP-
Baranauskas because it has the highest power for the low frequencies. I
kept LFP-Torbjørn and LFP-Gratiy because of their low and medium PSD
powers.
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Figure 4.5: All PSDs from LFP data. The colored curves will be used further.
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4.6 PSDs of LFPs versus PSDs of “normal”
diffusion potentials

Figure 4.6 shows the PSDs of the “normal” diffusion potentials from Figure
4.2 together with the chosen PSDs of LFP recordings (the colored curves
in Figure 4.5). For more readability of Figure 4.6, I included a zoomed-in
verison (see Figure 4.7). A complete figure with all PSDs shown earlier is
included in Appendix C (see Figure C.1 on page 71).
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Figure 4.6: PSDs of the “normal” diffusion potentials and the chosen LFP record-
ings.
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Figure 4.7: Zoomed-in version of Figure 4.6.
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As seen from Figure 4.7 most of the PSDs of the “normal” diffusion
potentials (in the following referred to as the PSD diffusion lines) have lower
powers than the PSDs of LFP measurements. The LFP-Baranauskas, LFP-
Gratiy, and bf1-A do not cross the PSD diffusion lines at any frequency. All
the PSDs of LFP recordings have a cut-off frequency. Saying something about
what happens below such a cut-off frequency is just speculation because we
are outside the original frequency range. Even so, both LFP-Baranauskas
and LFP-Gratiy seem to increase to higher powers for frequencies below
their cut-off frequency. If so, they would also have higher power than the
PSD diffusion lines for the lower frequencies. Looking at the bf1-A curve,
there does not seem to be a similar increase for frequencies below its cut-off
frequency. This curve could, therefore, possibly intersect some of the PSD
diffusion lines at lower frequencies. However, this is just speculation, and
I observed no intersection points within the frequency range of the bf-1-A
curve.

The upper group of PSD diffusion lines consists of (listed in order from
highest to lowest power): (1) Haj-YaseinFig2b, (2) DietzelFig4B, (3) Syko-
vaFig3A, DietzelFig3, Halnes2016, and DietzelFig4A (overlapping lines), (4)
SykovaFig14A, (5) Haj-YaseinFig2a, (6) NicholsonFig4, and (7) Mccreery-
Fig2B. All these lines have ∆c between +4 mM and +9.25 mM for extracel-
lular K+ (see Table 4.1), which can be considered rather large. In these cases,
∆c amounts to about a doubling or tripling of the baseline K+ concentration
in the ECS.

All the lines in the upper group overlap with the PSD labeled LFP-
Torbjørn between -1.0 and -0.3. (0.1 and ∼0.5 Hz). The PSD diffusion line
with the highest power, Haj-YaseinFig2b, is the only one to intersect with
the ac-2-A at a log-frequency around -0.4 (∼0.4 Hz).

Most interesting is the point of intersection with the ac-2-D curve. All
the PSD diffusion lines in the upper group have higher power than the ac-
2-D curve for log-frequencies lower than 0.25 (<1.8 Hz). Some of the PSD
diffusion lines (those with the highest power: (1), (2), and (3)) in Figure
4.7 have higher power than the ac-2-D curve, also between log-frequencies of
0.25 and ∼1.0 (1.8 and 10 Hz).

The lower group of PSD diffusion lines consist of: (8) CordingleyFig5,
(9) FrolichFig1B, (10) OcteayFig1G, and (11) AmzicaFig3 (in order from
highest to lowest power). All these lines have ∆c between +0.5 and +1.89
for extracellular K+ (see Table 4.1). Therefore, the lower group might be
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more likely to represent PSDs for diffusion potentials for the most normal
concentration differences. The two upper PSD diffusion lines in the lower
group, (8) and (9), intersect with the ac-2-D curve between log-frequencies
of -0.5 and -0.25 (0.3 and 0.6 Hz).

Both ac-2 curves in Figure 4.6 seem to follow a similar trend as the PSD
diffusion lines for the lowest frequencies. There seem to be a lot going on
in the auditory cortex at log-frequencies of 1.0 and 2.0 (10 and 100 Hz).
Following the ac-2 curves toward the left, it appears to decline at around 0.5
(∼3 Hz) before it again increases, approaching even lower frequencies. The
shape of the ac-2 curves at these low frequencies seems to have similar shape
as the PSD diffusion lines, which may indicate that a diffusion potential could
have dominated the LFP recordings here.

In Figure 4.6 and Figure 4.7, it seems that only the highest PSD diffu-
sion lines intersect and/or overlap with the lowest of the PSDs from LFP
recordings. This means that for cases with relatively large concentration dif-
ferences in ECS (but not pathological), the PSDs of diffusion potentials have
the same magnitude as PSD of measured LFP for low frequencies. If it exits
such concentration gradients in the LFP data with low power, these could
possibly have great impact on the measured data. Thus, diffusion potential
may influence LFP recordings.

4.7 PSDs for LFPs versus PSDs of “patho-
logical” diffusion potentials

The concentration data collected for “pathological” cases are shown in Table
4.5 (on page 48). The table structure is similar to Table 4.1. Most of the
data is for the case of spreading depression (SD), but I have also included
some seizure data in the table. The type of data is specified in the ‘Note’
column of Table 4.5.

4.7.1 Diffusion potentials for “pathological” concen-
tration data

The initial value of the “pathological” diffusion potentials, Φ0, is calculated
with the Henderson equation. The concentration data from Table 4.5 and
scenario 4 are used to find the concentrations of the unmeasured ion species.
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Table 4.5: “Pathological” concentration data (spreading depression and seizures).
The table shows where data is taken from, the extracellular concentration of an ion
(with baseline and maximum difference ∆c), and the corresponding time constant
for the ionic concentration decay. Some additional information about the data is
provided under the ‘Note’ column.
Taken from Concentrations Time Note

(ion, base, ∆c) constant,
[mM] τdecay [s]

Enger Fig 4F [42] K+, 3, +19 trise ≈ 22s cortical SD in
visual cortex of
adult living mice

Enger Fig 4G [42] K+, 3, +23 trise ≈ 15s
Enger Fig 4H [42] K+, 3, +28 trise ≈ 14s
Herreras Fig 1 [13] K+, 3, +51 ∼30s SD, CA1 strata, in rats
Sykova Fig 14B [25] K+, 4, +28 ∼18s evoked SD by

strong simulation,
rat cerebellum

Sykova Fig 24 [25] K+, 2, +38 ∼130s SD, catfish
cerebellum

Hansen Fig 1 [15] K+, 3, +50 ∼16s cortical SD,
recorded in
parietal cortex, rats

Hansen Fig 2 [15] K+, 3, +47 trise ≈ 12s initial cortical SD,
rat cortex

Kraig Fig 4 [14] K+, 2.3, +36 ∼125s SD, catfish
Nicholson Fig 3 [43] K+, 3, +33 ∼20s SD, rat cerebellar

cortex
Amzica Fig 6B [28] K+, 3, +8 - spike-wave seizures,

cerebral cortex of cats,
max to baseline: ∼13s

Amzica Fig 7 [28] K+, 3, +3.5 - (no time spike-wave seizures,
axis) suprasylvian gyrus, cats

Fröhlich Fig 1C [29] K+, 3, +7 - Tonic-Clonic Seizure,
after clonic phase
∼ 2.5s decay, in cat
pericruciate cortex

Dufour Fig 5 [44] K+, 3, +4 ∼14s during epileptic
seizures, in cortex of
adult cats

Raimondo Fig 1[45] K+, 4, +7 - (no time during seizure, only
axis) representative changes

48



As earlier, I let the initial diffusion potentials decay for 100 s with time
constants from Table 4.5. For the cases with no time constant in Table 4.5,
I assumed a time constant of 20 s because it was around the median for the
other time constants.

Figure 4.8 shows the exponentially decaying diffusion potentials for the
“pathological” concentration data. The largest initial diffusion potential is
Herreras Fig 1, with a value of ∼4.0 mV. Hansen Fig 1 and Hansen Fig 2
also have initial values around 4.0 mV. The middle group has initial values
between 1.0 and 3.0 mV. The smallest initial values are for the seizure cases,
which have values below 1.0 mV. Most of the diffusion potentials in Figure
4.8 decay to a potential of 0.0 mV within the 100 s. Three of the curves
(Herreras Fig 1, Kraig Fig 4, and Sykova Fig 24) do not reach 0.0 mV within
the time interval of 100 s.
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Figure 4.8: Exponentially decaying diffusion potentials for the “pathological”
concentration data. The initial value of the diffusion potentials is estimated with
the Henderson equation. The time constant for each curve is shown in the legend
of the figure. The decay of the potentials is estimated for 100 s.
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4.7.2 PSDs of “pathological” diffusion potentials

The PSDs of the exponentially decaying diffusion potentials in Figure 4.8 are
shown in Figure 4.9.
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Figure 4.9: Power spectrum densities (PSDs) of the exponentially decaying dif-
fusion potentials for the “pathological” concentration data. The axis is log-log.
The five lowest PSDs are the seizure cases, while the others are the spreading
depression (SD) cases.

As seen in Table 4.5 the time constants for K+ decay in ECS during
spreading depression range from 16s to 130s. I consider this as a wide range
for time constants, and many scenarios of SD are therefore covered in the
estimated PSDs. For most of the seizure cases, I did not find corresponding
time constants and used an assumed value of 20 s (around the median of the
other time constants). The same range in time constants are therefore not
apparent for the seizure data.
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4.7.3 PSDs of LFPs versus PSDs of “pathological” dif-
fusion potentials

To compare PSDs of “pathological” diffusion potentials, I present similar
figures as those in Section 4.6. Figure 4.10 shows the PSDs of “pathological”
diffusion potentials from Figure 4.9 together with the chosen PSDs of LFP
recordings (the colored curves in Figure 4.5). For more readability of Figure
4.10, I included a zoomed in verison (see Figure 4.11). A complete figure
including all PSDs from LFP data are shown in Appendix C (see Figure C.2
on page 72).
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Figure 4.10: PSDs of the “pathological” diffusion potentials and the chosen LFP
recordings.

As seen in Figure 4.11 (on page 52), all the PSDs of the “pathological”
diffusion potentials (except the lowest one, DufourFig5) have higher power
than the PSD diffusion lines in Figure 4.7. The concentration change of
extracellular K+ is substantial under SD, which leads to larger diffusion po-
tentials and larger powers of their PSDs (the upper ten PSD lines). In the
following, I will refer to the PSDs of the “pathological” diffusion potentials
as the PSD pat-lines.

The five lowest PSD pat-lines are the seizure data (see the five lowest
rows in the Table 4.5). Worth mentioning here is that the concentration
differences in K+ are within the same range as the concentration differences
for the upper group in Figure 4.7. The only difference when calculating the
diffusion potential is the scenario used for finding the unmeasured species
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Figure 4.11: Zoomed-in version of Figure 4.10

(scenario 1 vs. scenario 4). Scenario 4 gave a higher absolute value for the
diffusion potential and therefore also slightly higher powers for the PSD.
With that said, four of these lines intersect LFP-Gratiy, LFP-Torbjørn, ac-
2-A at log-frequency around 0.0 (1.0 Hz). The same four lines have higher
powers than ac-2-D for all frequencies. This resembles what we saw earlier
for the upper group of PSD diffusion lines in Figure 4.7 (on page 45).

All PSDs for spreading depression cases (ten upper PSD pat-lines) have
higher powers than LFP-Torbjørn and ac-2-D. The three upper lines intersect
the LFP-Baranauskas curve at around -0.2 (∼0.6 Hz). The bf-1-A curve has
crossing points with the PSD pat-lines between log-frequencies of 0.0 and 0.6
(1 and 4 Hz).

The intersection points of Figure 4.11 indicated that diffusion potentials
calculated for “pathological” cases (with large concentration differences, ∆c)
possibly could dominate LFP recordings for most frequencies, especially for
the low frequencies.
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Chapter 5

Discussion and Conclusion

The comparison of PSDs in Figure 4.6 shows that the PSDs of diffusion
potentials for “normal” concentration data, for the most part, have lower
powers than the PSDs of LFP recordings. However, Figure 4.6 also indicates
that diffusion potentials, in some cases, possibly can contribute to the LFP
recordings for low frequencies.

My results indicate that people measuring LFP can not exclude diffusion
effects entirely because they may impact the measurements. Thus, it is not
100 % certain that LFP only reflects what the neurons are doing at the time
of recording.

For the “pathological” cases, Figure 4.11 shows that almost every PSD
for diffusion potentials has higher power than most of the LFP recordings.
The diffusion potential can therefore dominate LFP measurements for most
frequencies.

5.1 Project assumptions

To estimate the time-varying diffusion potentials, I made several assump-
tions. I believe these to be the most reasonable regarding my project. In the
subsections below, I discuss my assumptions.

5.1.1 The two-point system and temporal data

My simplification to use a two-point system is the primary assumption for the
project. Reducing spatial concentration profiles to two points was easy and
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practical when the purpose was to only look at the maximum concentration
differences.

I assumed that I also could use this two-point system for temporal data.
Then, I assumed that point A (“before”/baseline) exists in another point in
the ECS simultaneously as point B (peak/maximum concentration difference)
exists. That is, when the concentrations change locally to a peak value (point
B), there are still baseline concentrations (point A) in another area of the
brain. I estimated the diffusion potential between point A and point B.

Both examples in Figure 3.2 (on page 24) show that the maximum con-
centration difference (point B) and the baseline (point A) exist spatially
separated at the same point in time, and thereby provides some support for
this assumption. The two-point system also allowed for the collection of a
wide range of concentration data.

5.1.2 Small errors in collection of concentration data

Most of the concentration data is collected by visual inspection of the figures
in articles. Zooming in and measuring concentration bars and time bars
might give some errors. The diffusion potential depends linearly on ∆c. A
small reading error of ∆c will result in small errors for the estimated diffusion
potential. Such errors will have relatively little impact on the PSD lines,
which are rather insensitive to small reading errors. Therefore, these errors
are assumed to be so small that they do not impact the overall conclusion.

5.1.3 The scenarios used for unmeasured ion species

For the calculations of the diffusion potential, I wanted to include K+, Na+,
and Cl−. Recording of ECS concentration often involves only one or two ion
species. To utilize most concentration data, assumptions for the concentra-
tion of unmeasured ion species were necessary. The scenarios were proposed
and compared by Videm [10]. When only one ion species is known, Videm
found scenario 1 to be the best scenario. The comparison performed by
Videm [10] was the reason I chose scenario 1.

Both scenario 2 and scenario 3 gave smaller absolute values for the diffu-
sion potential calculated with the Goldman and Henderson equations, while
scenario 4 (used for “pathological” cases) gave twice as large values (see Table
A.1 on page 65).

54



Regarding the three equations, the approximated equation gave only sim-
ilar values to the Goldman and Henderson equation for scenario 1. For the
other scenarios, this equation gave much larger estimates for the diffusion
potential than the Goldman and Henderson equations (see Appendix A).

Choosing scenario 2 or 3 for the “normal” cases, would give smaller powers
for the PSD diffusion lines relative to what scenario 1 gave (see Appendix
A). Regardless, I believe that choosing scenario 1 is best because of the
comparison done by Videm [10]

5.1.4 Change of extracellular concentrations and cor-
responding time constants

For temporal data the time-varying K+ concentration appears to have a
rather exponential form between the peak value and the baseline (see Fig-
ure 3.2 and Figure 3.4). The rise of extracellular K+ concentration can also
resemble exponential growth. This makes it possible to find two time con-
stants for most temporal concentration data: τrise and τdecay. For most of the
concentration data collected, I used the decay time constant. In some cases,
it was not possible to find τdecay, so I used the rise time constant instead.

Finding and using the time constant from concentration data is indeed
an approximation. The concentration data would certainly not fit a perfect
exponential. In regards to other mathematical functions, the concentration
decay could maybe be estimated with, for example, the sigmoid function
1/(1 + e−t), a parabola, or just 1/ct. In the early stage of the project, I
tested such functions and found that the exponential function, e−t/τ , was the
best fit.

Regarding the time constant, I also assumed that the estimated diffusion
potential decay with the same time constant as the extracellular K+ concen-
tration. Considering that the diffusion potential is a direct and seemingly
instant response to concentrations of ion species, I believe this assumption to
make sense. Using the K+ time constant, we indirectly assume that the un-
measured ion species approach baseline with the same time constant. This is
not necessarily correct, but possibly the best assumption regarding the lack
of simultaneously measured ion species.

Assuming scenario 1, where ∆[K+] = −∆[Na+] and ∆[Cl−] = 0 this has
to be the case. Na+ must change accordingly to K+ such that the electroneu-
trality criterion is fulfilled. With all three ion species present, a reduction of
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K+ can be compensated by an increase in Na+, a decrease in Cl− or a mix
of both. With a mix of both, the ion species do not necessarily change with
similar amounts and/or with similar time constants.

5.2 “Comparing apples and oranges”
The comparison between the PSDs of diffusion potentials and PSDs of LFP
recordings in Chapter 4 can be associated with the saying “comparing apples
and oranges”. The expression claims that there is no means in comparing
the two since they are two different things. Why not? Apples and oranges
have many similarities. They are both considered to be fruits, they grow on
trees, and they have similar size and shape. In addition, apples and oranges
are edible and can be used to make delicious juice.

In this project, PSDs are compared even though they originally are ob-
tained from separate experiments conducted in different animal species. I
have not come across cases where both extracellular ionic concentrations
and LFP were measured simultaneously. Comparing PSDs from various cir-
cumstances may therefore be the only option.

The “apples” of the project are the PSDs of the diffusion potentials,
which are calculated from concentration data of some experiments. The
“oranges” are the PSDs of LFP recordings from other experiments. So, can
the concentration differences observed in the “apples“ also be present in the
“oranges”?

Most of the concentration data and LFP data in this project are collected
from cats, rats, and mice. The data was recorded in different locations,
such as the cortex, hippocampus, and spinal cord, to mention some. The
LFP recordings used from the CRNCS data sets were all recorded in rats.
Figure 4.4 (on page 43) shows that LFP recordings from the same animal can
give somewhat different PSDs due to the brain regions and the conducted
experiments.

LFP is measured relative to a reference electrode, which is placed “far
away” from the recording site. The placement of this reference electrode can
differ from experiment to experiment. For the estimated diffusion potentials,
the reference point is the baseline concentrations in the ECS (point A). The
reference electrode for LFP recordings and point A for the diffusion potentials
should ideally be the same. I assumed this to be the case, so the PSD
comparison makes sense, and I believe this assumption to be reasonable.
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Another point concerning the PSD comparison, is that I can not validate
how the PSDs obtained from figures were calculated. I have come across a few
different formulas used for estimating PSDs. For this project, I investigated
and validated the formula (see Section 2.5) used in SciPy’s periodogram
function for both the power spectrum (PS) and the power spectrum density
(PSDs) (with the help of a forum1). Regarding the figures, I only used PSDs
from figures with the same units as my calculated PSDs.

The diffusion potentials are calculated with the two-point system, be-
tween the baseline and the maximum concentration difference. Therefore,
the estimated diffusion potentials can be seen as the maximal potential. For
the “normal” cases, the PSDs of the maximal diffusion potentials only in-
tersect or overlap with the lowest PSDs of LFP recordings. The question
is then: could such concentration differences in the ECS exist during LFP
recordings? Answering this question calls for a more thorough investigation.

5.3 Can diffusion potentials affect the extra-
cellular potentials?

If LFP was measured during pathological cases, such as spreading depression,
it is reasonable to think that the large concentration differences could affect
the recordings. During more normal brain activity, similar concentration
effects are uncertain. However, they should not be automatically excluded
or neglected, as people normally do. Even though concentration gradients are
slow-changing, they could have existed for a while before LFP measurements
are taken and therefore also during the recording time.

For high frequencies, neglecting diffusion potentials is ok because they
are slowly varying, and they will therefore not influence the ECS potential
at these frequencies. For low frequencies, my results show that diffusion
potentials possibly can be large enough to affect ECS potentials.

For non-pathological cases, the diffusion potentials have higher power
than one of the LFP recordings for frequencies < 1 Hz. Most of the PSD
of the “normal” diffusion potentials overlap another PSD of LFP recordings
for frequencies between 0.1 and 0.5 Hz. For pathological cases involving
large concentration gradients, the diffusion potentials have, not surprisingly,

1The forum is avaiable at: https://stackoverflow.com/questions/22338415/
scipy-periodogram-terminology-confusion (Accessed: 21 April 2021)
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higher powers than most of the LFP recordings for most frequencies. Such
concentration differences can therefore affect LFP recordings.

The intersection points found in Chapter 4 can motivate further research
of diffusion potentials and their effects on the extracellular potential. More-
over, it may also inspire to record both the diffusion potential and LFP or
record LFPs with lower cut-off frequencies.
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Appendix A

Extended scenario-comparison
Table A.1 shows the estimated values for the three equations (Goldman,
Henderson, and Approximated) for the different scenarios (1-4).

Table A.1: Comparing the equations and the scenarios (1-4)
Scenario 1

∆[K+] [mM] +2 +4 +6 +9
Goldman, ΦG [mV] -0.06558200 -0.13100340 -0.19626497 -0.29385936
Henderson, ΦH [mV] -0.06558200 -0.13100340 -0.19626497 -0.29385936
Approx, ∆Φ [mV] 0.06558197 0.13100314 0.19626409 0.29385640

Scenario 2
∆[K+] [mM] +2 +4 +6 +9

Goldman, ΦG [mV] –0.02905245 -0.05784541 -0.08638237 -0.12871524
Henderson, ΦH [mV] -0.02905264 -0.05784693 -0.08638742 -0.12873194
Approx, ∆Φ [mV] 0.23968268 0.47722446 0.71265391 1.06189868

Scenario 3
∆[K+] [mM] +2 +4 +6 +9

Goldman, ΦG [mV] 0.00723949 0.01436801 0.02138809 0.03172023
Henderson, ΦH [mV] 0.00723963 0.01436801 0.02138809 0.03172023
Approx, ∆Φ [mV] 0.412651018 0.818976607 1.21912110 1.80805334

Scenario 4
∆[K+] [mM] +2 +4 +6 +9

Goldman, ΦG [mV] -0.13936351 -0.28022935 -0.42262393 -0.63914161
Henderson, ΦH [mV] -0.13936453 -0.28023761 -0.42265226 -0.63923961
Approx, ∆Φ [mV] -0.28606129 -0.57520233 -0.86747313 -1.31185968

∆[K+] [mM] +20 +30 +40 +50
Goldman, ΦG [mV] -1.46455467 -2.26119219 -3.10641952 -4.00528695
Henderson, ΦH [mV] -1.4657353 -2.26554703 -3.11774928 -4.02968968
Approx, ∆Φ [mV] -3.00543842 -4.63862524 -6.36915928 -8.20601157
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Looking at the estimated values from the Goldman and Henderson equa-
tions in Table A.1, I see that estimates with scenario 2 were around 40% of
the estimates calculated with scenario 1. For scenario 3, the estimates were
about 10% of the scenario 1 estimates, and for scenario 4, the estimates were
around two times larger than scenario 1.

For all scenarios, the estimates from the Goldman and Henderson equa-
tions are very similar. The approximated equation gave only similar es-
timates for scenario 1. For the other scenarios, this equation gave quite
different values for the potential. rather

For scenario 4, I also included estimates when ∆c was +20, +30, +40,
and +50 for K+ (since I used this scenario for spreading depression). For
these cases, the Goldman and Henderson estimates differ in the second and
third decimal. The approximated equation gave about twice as large values.

For the scenarios, I also compared how their PSD estimates would differ.
I estimated PSDs for ∆[K+] = +4 and used a time constant τ = 5 s for the
exponential decay. Figure A.1 shows the calculated PSD for each scenario.
Scenario 4 had the highest PSD line, then comes scenario 1 and scenario 2.
Scenario 3 had the lowest PSD line.
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Figure A.1: PSDs for diffusion potential estimated with the Henderson equation
and the different scenarios (1-4). The concentration difference for extracellular K+

was ∆c = +4 and the time constant of the the exponentially decay was τ = 5 s.
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Appendix B

LFP recordings

B.1 CRCNS data sets
Some more technical information for each CRCNS data set are given in Table
B.1. The abbreviations used for each data file are also provided in the table.

Table B.1: Overview of the data files I used from the CRCNS data sets and some
additional information such as file type and sampling rate.
Dataset Data File Note
hc-2 ec013.527 (A) .eeg files (binary) contain LFP data (<625 Hz)
[35, 36] ec013.529 (B) sampling frequency = 1250 Hz

data required a conversion factor to volt
ac-2 111500md01 (A) data stored in .mat files, data in mV
[37] 030301md03b (B) sample rate = 4000 Hz

020901md01 (C) some recordings required a correction factor
020701md01b (D) unit of data is mV

pfc-2 EE.042 .eeg file (binary) contain LFP data
[38, 39] sample rate = 1250 Hz

64 channels in PFC (A), 32 channels in CA1 (B)
data required a conversion factor to volt

bf-1 Rat1Hcage1 (A) data stored in .mat files
[40, 41] Rat1Arena1 (B) sample rate = 400 Hz

Rat3Hcage2 (C) assumed unit of LFP data to be in µV
Rat3Arena2 (D)

The hc-2 data set [35] is used in Mizuseki et al. [36] where they studied
theta bands (5-11 Hz). I found nothing about a possibly cut-off frequency for
the data set. Though, in the supplementary information, they compare theta
band frequencies to nearby bands (1-4Hz, 12-14Hz). With this information, I
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decided to trust the data for frequencies > 1.0 Hz. The peak seen for the hc-2
lines in Figure 4.4 seems to appear at the theta band frequency (5-11 Hz is
0.70-1.04 in log10 scale). Since they studied the theta band, the stimuli used
were probably meant to get responses in the theta band. I chose to cut the
PSD data at 0.1 and 300 Hz when plotting (see Figure 4.4). The deflection
between 0.1 and 1.0 Hz is most likely because of a cut-off frequency for the
electrodes, so I do not fully trust the hc-2 data in this frequency range.

The LFP data in the pfc-2 data set [38] was not discussed in Fujisawa
et al. [39] (the corresponding article). Anyhow, this data set had the same
format as hc-2, and I could use MATLAB scripts provided with the hc-2 data
set. In addition, the calculated PSDs from pfc-2 data had a similar shape
as the PSDs from hc-2. Therefore, I used the same cutting of the PSDs
calculated from pfc-2 data as used for hc-2 (plotted PSDs between 0.1 and
300 Hz). As with the hc-2 data set, I do not think the pfc-2 data in the
frequency range between 0.1 and 1.0 Hz is fully trustworthy.

The ac-2 data set [37] is recorded in vivo with a whole-cell patch-clamp.
It gave recordings of the membrane potential from neurons in the auditory
cortex of rats. Each voltage trace in the data set has units of millivolts (mV)
and is a response to a tone [37]. In addition, most recordings also contain
simultaneously recorded local field potential (LFP). LFP was recorded with a
second patch electrode about 1/2 mm from the whole-cell recording electrode
[37]. I assume that the vertical lines appearing at higher frequencies are noise
(see Figure 4.4). The PSDs from the ac-2 data set do not appear to deflect
for lower frequencies, and I believe the PSDs to be reliable.

The bf-1 data set is used by Nair et al. [41]. They focused on gamma
oscillations (>30 Hz), and one can see peaks in Figure 4.4 appearing for
frequencies > 30 Hz. In the supporting information, they look into other
low-frequency bands, in particular delta (1–5 Hz), theta (6–10 Hz), and beta
(12–30 Hz). Peaks in the PSDs of bf-1 data also appear in the theta bands. I
found no specification of the unit of the LFP data from bf-1. By comparing
the PSDs I calculated, with the figures in Nair et al. [41], I assumed the
units of LFP data to be in µV. In Nair et al. [41] they have figures showing
spectral power for frequencies between 20-30Hz and 80 Hz. The supporting
information shows spectral power for frequencies from ∼0-1 Hz to 80 Hz.
Therefore, I do not cut the data but keep it as is.
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B.2 Other data sets
Technical information for the data sets from Torbjørn V. Ness and Gratiy et
al. [24] is given in Table B.2.

Table B.2: Technical information of data files with the LFP recordings from
Torbjørn V. Ness and Gratiy et al. [24].

From Information
Torbjørna lfp_run26.npy

Sampling rate = 2000 Hz
Cut-off frequency = 0.1 Hz.

Gratiy et al. [24, 33] mouse_1_lfp_trial_avg_3sec.h5
Sampling rate = 2500 Hz
used “flash_off” LFP recodings

aunpublished data from Torbjørn V. Ness, obtained during the project [34]
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Appendix C

Extended figures
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Figure C.1: PSD of “normal” diffusion potentials, CRCNS data sets and other
LFP data
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Figure C.2: PSD of “pathological” diffusion potentials, CRCNS data sets and
other LFP data

72





  


