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Abstract 
Including feed efficiency into breeding goals could be a key in ensuring sustainable dairy cattle 

production as selection could be based on how efficient a cow is in terms of what it consumes 

and produces all through the lactation period. Hence, prioritizing feed efficiency could aid 

profitability and reduced methane emission in dairy cow sector. 

The objective of this study was to explore random regression models of varying order of 

Legendre polynomials to fit feed intake and feed efficiency records in Norwegian Red dairy 

cows. Data included 2632 daily dry matter intake and average daily milk yield records from 45 

cows in 1 to 5 parities for 56 days of lactation. A random regression model with both random 

and fixed regressions fitted by Legendre polynomials of order 1 to 5 for fixed effects curve and 

1 to 2 for random animal effect curve were compared while accounting for homogeneous and 

four heterogeneous classes of residual variance across the lactation. Models were evaluated by 

goodness of fit (LogL  and -½ AIC values), graphical inspection of variance functions for the 

random animal effect, while difference between the standard error and regression solution for 

the fixed effect curves.   

The results showed improvement in goodness of fit moving from order 1 to order 2 but order 

3 showed no convergence for the animal random effect in both feed intake and feed efficiency 

models. For feed intake analyses, order 1,2,4 and 5 was significant while for feed efficiency 

analysis only order 3 was significant for fixed effect curves. In general, the result showed that  

random regression models using fifth order Legendre polynomials (Mleg5) for fixed effect 

curve and first order Legendre polynomials (Aleg1) with heterogeneous residual variance was 

sufficient to fit feed intake records. While random regression models using third order 

Legendre polynomials (Mleg3) for fixed effect curve and second order Legendre polynomials 

(Aleg2) with homogeneous residual variance was sufficient to fit feed efficiency data. 

In conclusion, random regression model with Legendre polynomial of order 3 for fixed effect 

curve and order 2 with homogeneous classes of residual variances  is a good model for fitting 

feed efficiency records, Legendre polynomial  of order 5 for fixed effect curve and order 1 with 

heterogeneous residual variances could be an appropriate model to consider while fitting feed 

intake records to avoid complexity of the models.  
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INTRODUCTION 
Dairy cattle play an essential role in the world food production system because it provides milk 

and other products such as cheese, which serve as an efficient source of protein to man. As the 

global human population increases, so is the need for animal protein expected to increase. To 

meet up with dairy product’s demand, the need to prioritize some of the factors that affect the 

continuous productivity and cost-efficiency of the dairy herd arises. Feed intake as an essential 

component of feed efficiency is crucial for livestock performance of which dairy cattle is no 

exception. Feed intake is an important factor of dairy breeding as it entails the largest share of 

the total production cost, however it is not so often considered since it is hard to record. Also, 

feed intake has a significant influence on dairy cattle health and milk production (Harder et al., 

2019).  It has a considerable effect on the cow’s susceptibility to diseases especially during the 

first phase of the lactation (Httmann et al., 2009; Kramer et al., 2009).  

The rapid increase in feed costs and concern for the reduction of methane emissions as well as 

nutrient losses to the environment makes feed efficiency an important factor in the dairy 

production system, thereby making it a benchmark for profitability and thus inclusion in the 

breeding goal (Guinguina et al., 2019). In dairy production systems, feed efficiency has been 

defined as the amount of milk produced per unit of feed intake (Olijhoek et al., 2020), but there 

are still some challenges to the acceptance of the definition especially during selection since 

there is no perfect term to define feed efficiency. It is good to have in mind that calculating 

feed efficiency involves comparing what an animal eats to what it produces. Traditionally, an 

efficient cow can be viewed in two ways:  a cow that increases milk yield with the same dry 

matter intake, or a cow with decreased dry matter intake while it maintains the same milk 

yield (Pino et al., 2018). Therefore, identifying more efficient animals requires recording the 

feed consumed and the amount of milk produced. The most efficient animals produce the most 

milk per kg of feed.  

Several measures can be used in expressing feed efficiency in the dairy production system. 

Feed efficiency can be expressed in terms of net feed efficiency or residual feed intake, which 

focuses on the difference between actual feed intake and predicted feed intake based on an 

animal’s performance. Another way of expressing feed efficiency is in terms of feed conversion 

efficiency (FCE) or gross feed efficiency, defined as the amount of milk produced per unit of 

feed intake. But the limitation of FCE is that it does not account for mobilization of body 

condition, and consequently, animals losing body condition to support milk production may 

appear more efficient, particularly if the evaluation is done in early lactation (Coleman et al., 

2010). These feed efficiency parameters are subject to change over time because the feed 
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efficiency of dairy cattle is influenced by factors such as age, diet type, environmental 

temperature, breeds, and other management and environmental variables (Lamb & Maddock, 

2009). 

Another reason why interest in feed intake and feed efficiency is justified is that the feed 

ingested by a cow influences several functions like maintenance, growth, reproduction other 

than milk production. There is a wide margin between the ingested food and the energy 

channeled into production in cows when compared to other livestock (Hurley et al., 2018). 

However, a decrease in feed intake during certain stages of lactations may be detrimental to 

the health of the cow. A negative energy balance is observed when the energy needed for milk 

production is above the energy ingested, thereby, resulting in the cow mobilizing its body 

reserves to balance the deficit/gap between food energy intake and milk energy production. A 

long period of negative energy balance exhibited by the cow can lead to body energy loss and 

other health-related problems and increased production cost (Banos et al., 2005).  It has also 

been reported that carryover effects from the previous lactation period could contribute to a 

negative energy balance and also reducing feed efficiency (Banos et al., 2005; Coffey et al., 

2001).  

Studying the lactation curves aids in the evaluation of milk production by showing peak 

production and time of production. The lactation curve helps with the appropriate management 

of dairy cattle herd by maintaining the nutritional condition for each stage of lactation as well 

as the herd health. With the lactation curve, prediction of the total milk yield can be made and 

a good understanding of the curve helps dairy farms in deciding on selecting cows for breeding 

purposes as well as paying attention to the dietary need of the cows at each lactation stage  

(Cankaya et al., 2011; Gipson & Grossman, 1989). For the estimation of breeding values, the 

lactation curves need to be modeled at the genetic and the environmental level, in order to 

disentangle genetic from environmental effects. 

Milk yield is phenotypically and genetically correlated with feed intake. Previous research has 

reported that the genetic correlation of milk yield and feed intake is in the range from 0.46 to 

0.65 (Veerkamp, 1998). Cankaya et al. (2011) observed that  “increasing portion of the curve 

depicts that the cows should be place on a high plane of nutrition, while a declining portion of 

the curve indicates a lower plane of nutrition”. The lactation curve will give the farmer an idea 

of what to expect from the herd during their lactation phase and the necessary dietary plan. 

According to Harder et al. (2019), high feed intake at the beginning of the lactation can solve 

the problem of a postpartum energy deficit by reducing susceptibility to metabolic diseases 
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since energy deficit is reported to depend on milk yield and feed intake diseases in the dairy 

cow during early lactation stages. 

Aim 

This study aims to model the feed intake, and feed efficiency curves along the lactation using 

longitudinal data modelling. 
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LITERATURE REVIEW 

Overview of feed intake and feed efficiency in cattle 
Feed intake being the most significant component of dairy production is still not found on the 

lists of breeding goals because of the cost associated with measuring this trait. The limited 

information makes it difficult for selection. The available information from several countries 

is based on a small amount of data used in research (Donagh P Berry et al., 2014). 

The feed efficiency traits are still not found in the Nordic total merit (NTM) index (a document 

with attached economic weights to dairy breeds production and functional traits of Nordic 

countries) or any national dairy cow breeding index because of the limited access to phenotypic 

data of feed intake (McParland et al., 2015; Pedersen et al., 2008). For decades, longevity and 

udder health were the most important two traits being selected for in dairy cattle production. 

However, some studies have shown that feed efficiency has similar to equal economic weight 

as this two traits (Hardie., 2016; Hietala et al., 2014). Improving feed efficiency could play a 

significant role in reducing cost of production and reducing greenhouse gas emission, which is  

a result of high methane and manure from milk production (Hietala et al., 2014; Thoma et al., 

2013).  

  

Genetics of feed intake 
Previous studies have shown that feed intake in dairy cattle is a moderately heritable trait. 

Animals with high genetic merit for milk yield tend to have greater feed intakes when compared 

with those with low genetic merit. They also tend to use their body reserves during the early 

lactation thereby reducing negative energy balance. As described by Korver (1988), feed intake 

in dairy cows is influenced by several factors ranging from genetic to environmental. The 

author further stated that there is variation between breeds and within breeds for appetite, 

digestion and nutrient absorption, maintenance requirement, utilization of metabolizable 

energy for production, nutrient partitioning and output composition making it difficult to 

ascertain some reports. Despite the variation in feed intake, a mature cow requires 57% of 

energy intake for milk production (Coffey et al., 2001). 

Accounting for the relationship between Dry matter intake (DMI) and milk yield and body 

weight could help in measuring feed efficiency especially if the goal is reduced DMI and 

increase in milk production (Hardie, 2016; Werf, 2004). Hardie (2016), described the danger 

of selecting for less feed intake while the animal maintain the same level of production, as this 

could lead to the cow’s susceptibility to diseases which the author termed “unintentional 

correlated response to selection”. 
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Genetic variation and Dry matter intake (DMI) heritability was recorded at various stages of 

lactation (Coffey et al., 2001). Generally, DMI heritability was reported to be between 0.02 

and 0.52. High DMI heritability was reported to be a result of a high genetic correlation 

between DMI and milk yield (D P Berry & Crowley, 2013; Gonzalez-Recio et al., 2014). 

Heritability for feed intake between the 31 and 60 days of lactation was recorded to be 0.24 

(Veerkamp, 1998). While some reported heritability estimates of 0.13 to 0.54 (Koenen & 

Veerkamp, 1998; Veerkamp, 1998; Veerkamp & Thompson, 1999). Berry et al. (2014) 

reported an average DMI heritability of 0.34. Also, the ability to estimate genetic component 

of the DMI was attributed to the large size of the dataset (7000 cows) used for the experiment.  

 

Genetics of feed efficiency 
Selection for feed efficiency(FE) was reported to be feasible (Gonzalez-Recio et al., 2014). 

However, over the years the heritability estimate of feed efficiency in dairy lactating cows 

seems to vary based on the DIM or lactation stage, parity, numbers and ages of the cows under 

consideration. Several research papers have reported FE heritability in dairy cattle, but the 

estimates vary.   

Van Arendonk et al. (1991) reported 0.37, 0.26 (Nieuwhof et al., 1992), and 0.14 to 0.21 

(Vallimont et al., 2011). Van Arendonk et al. (1991) estimated a heritability of FE for 360 cows 

for the first lactation and first 105days of 0.19, while Ngwerume & Mao (1992) reported a 

heritability of 0.02 for the whole lactation of 247 mixed-aged cows.  Also,  Svendsen et al. 

(1993) reported 0.00 for 353 mixed-age cows in weeks 2 to 12 of lactation while Svendsen et 

al. (1993) reported 0.02 for weeks 13 to 24 of lactation for the same cows. Veerkamp et al. 

(1995)  estimated a heritability of 0.32 for 204 mixed aged cows for 26 weeks of lactation while 

Vallimont et al. (2011)  reported 0.01 for  970 mixed age cows for a period of 6 months.  

 

Modeling of feed intake and feed efficiency 
Modelling feed intake could help in evaluating differences in the feed efficiency and lactation 

curves in dairy cows. There are several models which could be used in modelling longitudinal 

traits like feed intake and, average daily milk data which are measured repeatedly in an 

individual. Random regression models (RRM) have been used in several countries to analyze 

some traits because of their high accuracy of predicting breeding values of dairy cows and 

accurately estimate environmental effects on the animals lactation at different stages (Brito 

et al., 2017; Englishby et al., 2016; Naserkheil et al., 2016; Strabel et al., 2004; Thepparat et 
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al., 2015). RMM is also known for its ease of estimating covariances directly from the 

datasets (Jakobsen et al., 2002; Kheirabadi et al., 2014). 

Random regression model consists of several functions that could be used in modelling. 

These functions could be classified into parametric and non-parametric functions. Examples 

of the parametric function are the Ali and Schaeffer function, Wood function and Wilmink 

function. While an example of the non-parametric functions is the Legendre orthogonal 

polynomials. Legendre polynomial function is considered to be very flexible in addition to 

its ability to fit curves independently from the traits under consideration, and ability to 

properly model the peak of lactation curve (Bohmanova et al., 2008; Naserkheil et al., 2016; 

Schaeffer, 2004).  These functions are used in modelling fixed and random curves. In random 

regression models, a fixed curve for the entire population under consideration is calculated 

and individual animal curves are fitted as deviation from the curve of the population (Brito 

et al., 2017).  

The parametric functions fit data based on the components of curves and are recorded to be 

non-flexible especially when the data follow a path different from that of a typical curve.  

Despite the advantages of Legendre polynomials, some studies have used functions like B-

splines in modelling the lactation curve because they give a similar fit or maybe better than 

the Legendre function. However, the report of Bouallegue et al. (2015) only agreed with the 

fact that a spline function should be considered when working on a dataset that involves 

various components of milk (fat, protein). But most studies still model milk yield and its 

various components using Legendre functions. 

 

The use of Legendre Polynomials in modelling longitudinal traits 
The ease of modelling Legendre polynomial functions makes it a widely used option in 

modelling covariance structures (Bignardi et al., 2009; Pereira et al., 2013). Several studies 

(Costa et al., 2008; Schaeffer, 2004) described it as the most appropriate function to model 

covariates in RRM. But the choice of order or degree to use in modelling fixed and random 

curves needs to be carefully chosen since there are no set rules on the highest or lowest order 

of fit (Li et al., 2020). Hence choices are based on the size and structure of the dataset. which 

is one of the constraints or difficulty of using this function while using RRM  (Costa et al., 

2008; Olori et al., 1999). Model selections are based on the goodness of fit measured by 

Logarithm of the Maximum Likelihood function  (LogL), Akaike's information criterion (AIC), 

and Bayesian information criterion (BIC) output. As reported by previous studies (Li et al., 

2020; Pereira et al., 2013), increasing the order of fit should give higher LogL values. However, 
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increasing the order of fit increases the complexity of the model, parameters and computational 

demands which are the factors to consider while selecting between orders of fit. 

Li et al. (2020) suggested that the choice of order to fit random and fixed effects need to 

consider a balance between selection criterion (Goodness of fit) and model complexity. Pereira 

et al. (2013), reported that cubic Legendre polynomials for fixed and random effects were 

sufficient to fit lactation curves because the report assumed using a higher order does not 

significantly improve the order of fit. Based on the BIC values, López-Romero & Carabaño 

(2003) concluded that Legendre polynomial function of order 3 was sufficient to fit lactation 

but higher values could be considered for permanent environmental effects. Some studies (Li 

et al., 2020; Meyer, 2005) reported that higher order was not required in RRM using Legendre 

polynomial function as it can lead to estimating higher genetic variances at the beginning and 

end of lactation  or oscillatory patterns along the lactation curve which is not biological or 

unrealistic. 

 

Residual Variance(s)   
The choice of residual variance classes also plays a significant role in the model. Residual 

variance is said to be influenced by stages of lactation (López-Romero et al., 2003). Therefore, 

understanding the residual variance structure along the days in milk or lactation stage is needed 

in order to avoid incorrect estimations. Some authors (López-Romero et al., 2003; Olori et al., 

1999) found maintaining homogeneous residual variance in a random regression model could 

cause overestimation/underestimation of other components of variance in the analysis and 

create bias while estimating the residual variances. Pereira et al. (2013) found that 5 

heterogeneous residual variance classes is sufficient for the analysis while comparing different 

number of residual variance classes. Li et al. (2020) and López-Romero & Carabaño (2003) 

reported that little or no improvement was found when increasing the order of fits of the 

polynomial (e.g order 3 to order 4 to order 5) under homogeneous class of residual variance in 

Chinese dairy cattle and Spanish Holstein population. While working on Chinese Holsteins Li 

et al. (2020), reported that residual variances vary according to the number of classes. Also, 

the estimated residual variances showed a higher value at the beginning of the lactation period. 

The author further recorded that orders Leg3 and Leg4 is sufficient to model and estimate 

variance components of milk yield especially when one considers factors such as balance 

between computational demand and goodness of fit. 
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MATERIAL AND METHODS 

Animal Management 
The experiment was carried out at the Animal Production Experimental Centre at the 

Norwegian University of Life Sciences following the laws and regulations controlling 

experiments on live animals in Norway under the Norwegian Animal Research Authority's 

surveillance. The cows were housed in a free-stall accommodation with concrete slatted floors 

and rubber mat beds with regularly applied sawdust in the resting areas. All cows had free 

access to drinking water and mineral blocks. 

Forty-eight early to mid-lactation Norwegian Red Dairy cows were used in the experiment that 

lasted for 56 days. The cows were fed ad libitum during the 56days of the investigation. These 

diets were in 2 forms (grass/clover) silages: the first, low in crude protein (112 g CP per kg dry 

matter (DM)) while the second one was a mixture of four different silages (142 g per kg DM). 

However, these basal diets were augmented with a fixed level of concentrate feed (160 g CP 

per kg DM).  

At the start of the experiment, information such as the cows’ mean days in milk (DIM ± SD) 

of 126 ± 60 and milk yield (mean ± SD) of 27.8 ± 5.4 kg/day, and average dry matter intake for 

the three days of pretreatment/acclimatization (PretDMI) were recorded. The herd was 

composed of cows from 1st to 4th lactation in 21%, 46%, 21%, and 13%, respectively. 

Blocking was based on parity, pre-experimental milk yield and milk composition, and body 

weight at the start of the experiment. After that, cows within a block were assigned to one of 

the two groups of feed randomly. The cows in each group received ad libitum access to their 

respective grass/clover silages. The silages were fed from individual automatic feeders 

(BioControl AS, Rakkestad, Norway) equipped with vertically moving gates where electronic 

cow identification ensured each cow's access to the correct silage source. 

Feed intake   

For daily dry matter intake (DMI), the automatic feed troughs registered summed daily intakes 

from multiple feeding episodes during a day. Feed troughs were filled with fresh silages twice 

a day (during morning and afternoon milking) after moving the cows to a resting and milking 

area. A manually controlled gate separated the milking and silage feeding zones. Feed refusal 

was cleared every Monday and Friday each week.  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/laws-and-regulations
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/free-stalls
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sawdust
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/lactation
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Daily feed intakes of concentrate and silage were retrieved from the automated feeding system 

each morning starting from the second day of the experiment. Mean daily feed intake was 

reported as the sum of DMI from both concentrate and silages.  

Milk Yield 

Cows were milked twice a day (between 06:15 and 08:15  a.m. and between 15:00 and 

17:00  p.m.) using milking machines. During each milking, individual milk yield was 

registered for the a.m. and p.m. milking.  

 

Data 

A total of 2632 daily milk yield (MY) records from 56days of 48 Norwegian Red Dairy cows 

from a single herd owned by the Norwegian university of life sciences (NMBU) were used for 

this study. The data comprises: Cow identification number, Dry matter intake (DMI), Days in 

Milk (DIM), Parity. The data editing was performed using Microsoft Excel.  45 cows were kept 

for further studies. Feed efficiency was calculated as; 

Feed efficiency = Milk yield (kg)/Dry matter intake (kg)     (de Oliveira et al., 2014) 

In order to strengthen the link between the feed eaten and milk produced, the above was 

calculated on a weekly basis, instead of on a daily basis. Next the log of the above feed 

efficiency was used for the statistical analysis described below. 

Statistical analysis 

Single-trait Random Regression analyses were performed. Curves along the lactation (along 

DIM), i.e. lactation curves, were fitted by Legendre polynomials of varying degrees. The model 

included a fixed lactation curve for Days in Milk (DIM) reflecting the mean for all cows and a 

random deviation for each animal, i.e. an individual animal effect. The random individual 

animal effect was either constant across the entire lactation, or was also presented by a 

Legendre polynomial curve, whose degree of fit was generally smaller than that of the fixed 

lactation curve. The latter assumes that the curve of individual deviations from the fixed mean 

lactation curve are not as complex as the fixed mean curve itself. 

In matrix notation, the RRM can be written as: 

     y=Xb +Za +e 

where y is the vector containing average daily feed intake records, b is the vector of fixed 

effects (Legendre polynomial coefficients for DIM and an environmental effect for week of the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/milking-machines
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experiment and parity); a is the vector of random animal Legendre polynomial coefficients, 

e is the vector of the residuals, X, Z are the corresponding incidence matrices (containing the 

Legendre covariates) for fixed and animal random effects, respectively. 

A Legendre polynomials regression on DIM was used to model the mean curve. The alternative 

models had a varying combinations of orders of fit for the polynomials for fixed and individual 

animal curves. In addition, the residual variance was assumed either homozygous or 

heterogeneous across the lactation and grouped into four classes based on days in milk (49 to 

100, 101 to 150, 151 to 200, 201 to 233 DIM).  

The first model evaluated order 3 for fixed and 1 for animal effect while considering 

homogeneity of variances. While in the subsequent steps, ten different models were assessed 

considering the heterogeneity of residual variance.  

 

Table 1a: Models evaluated for feed intake with corresponding order of fixed and animal effect 

and classes of residual variances 

Feed intake 

Model(s)         

Fixed effect 

(Mleg) 

Animal effect 

(Aleg) 

Residual variance 

classes (H) 

Mleg3Aleg1H1 3 1 1 

Mleg1Aleg1H4 1 1 4 

Mleg1Aleg2H4 1 2 4 

Mleg2Aleg1H4 2 1 4 

Mleg2Aleg2H4 2 2 4 

Mleg3Aleg1H4 3 1 4 

Mleg3Aleg2H4 3 2 4 

Mleg4Aleg1H4 4 1 4 

Mleg4Aleg2H4 4 2 4 

Mleg5Aleg1H4 5 1 4 

Mleg5Aleg2H4 5 2 4 
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Note: MlegxAlegxHx for feed intake models where Mlegx is the polynomial order for fixed 

curve and Alegx is the degree for animal effects. And Hx is the number of residual variance 

classes. 

 

Table 1b: Models evaluated for feed efficiency with corresponding order of fixed and animal 

effect and classes of residual variances 

Feed efficiency 

Model(s)         

Fixed effect 

(Mleg) 

Animal effect 

(Aleg) 

Residual variance 

classes (H) 

Mleg3Aleg1H4 3 1 4 

Mleg1Aleg1H1 1 1 1 

Mleg1Aleg2H1 1 2 1 

Mleg2Aleg1H1 2 1 1 

Mleg2Aleg2H1 2 2 1 

Mleg3Aleg1H1 3 1 1 

Mleg3Aleg2H1 3 2 1 

Mleg4Aleg1H1 4 1 1 

Mleg4Aleg2H1 4 2 1 

Mleg5Aleg1H1 5 1 1 

Mleg5Aleg2H1 5 2 1 

MlegxAlegxHx for feed efficiency models, where Mlegx is the polynomial order for fixed 

curve and Alegx is the degree for animal effects. And Hx is the number of residual variance 

classes. 

The variance and covariance components between random regression coefficients were 

estimated through the restricted maximum likelihood (REML) method using the WOMBAT 

software (Meyer, 2007). 

The outputs obtained will be compared by change in the logarithm of the Maximum REML 

likelihood function  (log L) and Akaike's information criterion (AIC). The information criterion 

AIC was calculated as follows: 
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AIC = -2logL + 2p  

Where p is number of variance components, N is total number of observations, r is rank of the 

fixed effect incidence matrix. In order to make a more direct comparison to logL, we also 

compare – ½ AIC = logL – p. 
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RESULTS 

Feed Intake 

Comparison of models with Homogeneous and Heterogeneous variance(s)  

The estimated variances for model Mleg3Aleg1H1 (homogeneous variance) and model 

Mleg3Aleg1H4 with heterogeneous residual variances (Table 2) showed similar variation. The 

animal variances were similar, with the heterogeneous variances slightly lower than the value 

of the homogeneous residual variance. The residual and phenotypic variances were also similar 

for a heterogeneous and homogeneous group of residual variance except for the first group 

close to the beginning of lactation (DIM 49-100), which is slightly lower than other values. 

Generally, the models with heterogeneous variances shows similar residual variances. The first 

group (DIM 49-100) has the lowest value, which increased in the second group and shows a 

slight decrease again at DIM 151- 200 and DIM 201- 233.  

Table 2: Comparison between Homogeneous and Heterogeneous animal, residual and 

phenotypic variances and standard error (Mleg3Aleg1H1 & Mleg3Aleg1H4) for feed intake. 

Group 

(DIM) 

Animal 

 variance 

 

±se 

Residual 

variance 

 

±se 

Phenotypic 

Variance 

 

±se 

 

Homogenous 

 

4.0 

 

0.99 

 

3.32 

 

0.09 

 

7.21 

 

0.99 

 

Heterogenous 

 

49 – 100 3.94 

 

 

 

0.98 2.44 

 

 

 

0.19 

 

 

 

6.38 

 

 

 

1.00 

101-150 3.94 0.98 3.41 0.15 7.35 0.99 

151-200 3.94 0.98 3.26 0.15 7.20 0.98 

201-233 3.94 0.98 3.40 0.37 7.35 1.04 

 

 

Figure 1 shows that the homogeneous Mleg3Aleg1H1 and heterogeneous Mleg3Aleg1H4 

displayed similar deviation from the mean. Both models showed a descending curve for the 

points fitted along the DIM. The points fitted on the fixed curve is higher than the raw mean. 

This could be a result of parity and week effect which are not accounted for in the displayed 

fitted curve. 
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Figure 1: Estimates of raw mean and point fitted on the curve of Mleg3Aleg1H1 and 

Mleg3Aleg1H4 for feed intake. 

 

*pt– point fitted on the curve 

Random regression analysis of feed intake 

Tables 3a to 3k shows the results of the regression analysis of the feed intake data. To select 

the best data to fit the fixed effects the difference between the standard error and regression 

solution are being considered.  A model is considered being significant if the estimate of the 

coefficient of the highest degree (e.g. coefficient of degree 3 in Mleg3) is greater than twice 

the standard error value (estimate > 2*SE). 

Based on this criterion for selecting the models, the models in Tables 3a, 3f and 3g were not 

significant. While the Table 3b, 3c, 3d, 3e, 3h, 3i, 3j and 3k shows significance of the 

coefficient of the highest degree. Hence, models with Mleg3 (both homogenous and 

heterogenous variances) were not significant as their solution was less than twice the standard 

error. While Model  Mleg1, Mleg2, Mleg4 and Mleg5 were all significant as their solution was 
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greater than twice the standard error. Our overall conclusion is that we need at least 5th order 

of fit to fit the fixed mean curve of feed intake along the DIM.  

Table 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k:  Estimates of the regression coefficients of the 

Legendre polynomials for the fixed mean feed intake curve and their standard errors  

a) Model: Mleg3Aleg1H1 

Covariable Reg. coeff. Solution Std Error                 Signif. 

dim(-3,leg) 0 4.41 2.85  

dim(-3,leg) 1 -2.89 0.67  

dim(-3,leg) 2 -0.45 0.12  

dim(-3,leg) 3 0.116 0.09 No 

 

 

b) Model: Mleg1Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-1,leg) 0 4.772 2.79  

dim(-1,leg) 1 -2.94 0.66 ** 

** - significant 

 

c) Model: Mleg1Aleg2H4FI 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-1,leg) 1 -3.08 0.69 ** 

** - significant 

 

d) Model : Mleg2Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-2,leg) 0 4.35 2.81  

dim(-2,leg) 1 -2.95 0.66  

dim(-2,leg) 2 -0.45 0.11 ** 

** - significant 
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e) Model : Mleg2Aleg2H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-2,leg) 0 4.94 2.87  

dim(-2,leg) 1 -3.18 0.68  

dim(-2,leg) 2 -0.56 0.15 ** 

** - significant 

 

f) Model: Mleg3Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-3,leg) 0 4.42 2.84  

dim(-3,leg) 1 -2.84 0.67  

dim(-3,leg) 2 -0.46 0.11  

dim(-3,leg) 3 0.18 0.097 No 

 

 

g) Model: Mleg3Aleg2H4 

Covariable Reg. coeff Solution Std Error  Signif. 

dim(-3,leg) 0 4.88 2.88  

dim(-3,leg) 1 -3.06 0.70  

dim(-3,leg) 2 -0.56 0.15  

dim(-3,leg) 3 0.095 0.12 No 

 

h) Model: Mleg4Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-4,leg) 0 4.42 2.81  

dim(-4,leg) 1 -2.83 0.66  

dim(-4,leg) 2 -0.71 0.13  

dim(-4,leg) 3 0.17 0.096  

dim(-4,leg) 4 -0.32 0.090 ** 

** - significant 
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i) Model: Mleg4Aleg2H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-4,leg) 0 5.01 2.87  

dim(-4,leg) 1 -2.97 0.68  

dim(-4,leg) 2 -0.75 0.16  

dim(-4,leg) 3 0.13 0.11  

dim(-4,leg) 4 -0.28 0.10 ** 

** - significant 

 

j) Model: Mleg5Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-5,leg) 0 4.46 2.82  

dim(-5,leg) 1 -2.95 0.67  

dim(-5,leg) 2 -0.72 0.13  

dim(-5,leg) 3 0.015 0.12  

dim(-5,leg) 4 -0.31 0.09  

dim(-5,leg) 5 -0.22 0.08 ** 

** - significant 

 

k) Model: Mleg5Aleg2H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-5,leg) 0 4.87 2.87  

dim(-5,leg) 1 -3.04 0.68  

dim(-5,leg) 2 -0.75 0.15  

dim(-5,leg) 3 -0.021 0.12  

dim(-5,leg) 4 -0.28 0.09  

dim(-5,leg) 5 -0.19 0.08 ** 

** - significant 
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Feed Intake Models Comparison 

Eleven analyses with different models using the Legendre polynomial function were performed 

to find the best model of fit for the feed intake data. Akaike information criterion (AIC),  and 

LogL are reported in Table 4. These criteria were used to compare the models and to choose 

the best one to fit the data for the animal effect. Higher values obtained for -½ AIC signify 

better goodness of fit of the model. This rule is also the same when high values are obtained 

for LogL.   

Firstly, consider Model Mleg3Aleg1H1, in which all the animal effects only fitted the intercept, 

and contained a homogeneous residual variance. The model included the fixed effects of parity 

and week and an animal random effect. The REML Log L was significantly lower compared 

to all other models. But the -½ AIC was lower when compared to the same model with 

heterogeneous residual variances. Since the AIC compares the quality of fit of the two models, 

and prefers Mleg3Aleg1H4, we will henceforth use the heterogeneous variance model.  

In the models with heterogeneous variances, the goodness of fit (LogL and -½ AIC) generally 

improved as the degree of fit of the animal effect changed from 1 to 2. Also -½AIC showed 

variability as the polynomial degree of the animal effect varied from 1 to 2. Looking at Table 

4 model Mleg5Aleg1 gives a better -½ AIC value than the other models.  Hence, recommending  

order 5 (Mleg5) for fixed effect and order 1 (Aleg1) for animal effect. 

Table 4. Model (with the effect of parity and week), number of parameters estimated (p), the 

logarithm of the Residual Maximum likelihood function  (log L), and Akaike's information 

criterion (AIC) 
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Model  p LogL -½ AIC  Ani-Var Res-Var    

 

Mleg3Aleg1H1 

 

2 -2844.66 -2846.66  4.00 3.20 

   

 

Mleg1Aleg1H4 5 -2843.02 -2848.02  3.82 2.54 3.43 3.27 3.40 

 

Mleg1Aleg2H4 7 -2835.56 -2842.56  3.90 2.42 3.40 3.22 3.26 

 

Mleg2Aleg1H4 5 -2837.26 -2842.26  3.89 2.46 3.42 3.28 3.35 

 

Mleg2Aleg2H4 7 -2831.49 -2838.49  4.10 2.40 3.40 3.22 3.23 

 

Mleg3Aleg1H4 5 -2837.90 -2842.90  3.94 2.44 3.42 3.27 3.41 

 

Mleg3Aleg2H4 7 -2833.33 -2840.33  4.10 2.40 3.40 3.20 3.30 

 

Mleg4Aleg1H4 5 -2834.28 -2839.28  3.89 2.40 3.42 3.26 3.25 

 

Mleg4Aleg2H4 7 -2832.22 -2839.22  4.00 2.41 3.40 3.23 3.20 

 

Mleg5Aleg1H4 5 -2833.11 -2838.11  3.89 2.45 3.41 3.25 3.19 

 

Mleg5Aleg2H4 7 -2832.22 -2839.22  4.00 2.42 3.40 3.23 3.17 

 

Note: MlegxAlegxHx, where Mlegx is the polynomial order for fixed curve and Alegx is the 

degree for animal effects. And Hx is the number of residual variance classes. 

 

The animal, phenotypic and residual variances (Figure 2a,b & c) were lower in early lactation 

and increased at the end of lactation. For the animal effect this may be a result of the smaller 

number of records at the end of the lactation. The animal variance estimates (Figure 2a) from 

models Mleg5Aleg1 and Mleg5Aleg2 differed. The animal variance for model Mleg5Aleg1 
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maintained a constant value all through the lactation period. While model Mleg5Aleg2 yielded 

a relatively, constant value until DIM ~ 100 and from this point on, it showed an increase. 

The phenotypic variance estimate for both models (Figure 2b) showed a similar trend; it was 

very small until the second phase of DIM group (101-150) and showed an increase from this 

point to the end of the test period. The phenotypic variances for Mleg5Aleg1 were of low 

magnitude at DIM 49-100 and increase until 150 days in milk, slightly decreased at 151 DIM 

and maintained this value to 233 DIM. In the model Mleg5Aleg2; the smallest phenotypic 

variances were observed initially and then showed an increase with the largest value at the end 

of the test period. 

Residual variances estimated by both models were similar and showed, just like animal 

variance, the smallest values at the beginning of the lactation. When moving from 100 to 150 

DIM the residual variance increased, and then slightly decreased from 151 DIM to the end of 

the test period. 

 

Figure 2: Animal (a),  Phenotypic (b) and Residual (c) Variance of model Mleg5Aleg1H4 and 

Mleg5Aleg2H4 for feed intake 

a) Animal variances 
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b) Phenotypic variances 

 

 

c) Residual variances  
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Also the result of raw mean and point fitted on the curve estimate (Figure 3) of both models 

shows that Mleg5Aleg1H4 and Mleg5Aleg2H4 displayed similar deviation from the mean. 

Both models showed a curve similar to the lactation curve. From the figures, the raw mean was 

lower than the points fitted on the fixed effect curve. The predicted value is higher than the raw 

mean because of the fixed effect of parity and week.  WOMBAT sets one of the fixed (week) 

to zero for the analysis. This could be a good week with high feed intake implying that the 

other weeks have negative estimates, i.e. a correction for the week effect is generally negative. 

The same holds for the parity effect: again a parity with relatively high feed intake may be set 

to 0, implying generally negative parity effects. Correcting for these generally negative parity 

and/or week effects will bring the fitted values closer to the raw means in Figure 3, which 

implies thus a generally negative correction.  

Figure 3: Estimates of raw mean and point fitted on the curve of Homogenous and 

heterogeneous residuals with fixed effect of parity and week (Mleg5Aleg1H4 and 

Mleg5Aleg2H4) for feed intake 
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The histogram of the estimated residuals (figure 4) of Mleg5Aleg1H4 shows that it is 

normally distributed. It shows a bell shape, therefore indicating normality of the estimated 

residuals. 

Figure 4: Histogram of residual distribution for Mleg5Aleg1H4 for feed intake. 

 

 

 

Figure 5 shows the variation between the observed and predicted feed intake values of some 

selected animals. This animals were not randomly chosen. Animal 5840 and  6302 records 

stretched over the same lactation per period. This was also applicable with animals 6379 and 

6507 which were in the same DIM at the beginning of the experiment. The values show that 

there are differences between the observed feed intake values and predicted values. Though the 

predicted didn’t assume a straight line. Figure 5 also showed a declining feed intake over DIM. 
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Figure 5: Observed and predicted feed intake of model Mleg5Aleg1H4- animal 5840, 6302, 

6379 and 6507 
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Feed Efficiency 

Comparison of models with Homogeneous and Heterogeneous variance(s)  

The estimated variances for model Mleg3Aleg1H1 (homogeneous variance) and model 

Mleg3Aleg1H4 with heterogeneous residual variances (Table 5) showed similar variation. The 

animal variances for both models were the same. The residual and phenotypic variances were 

marginally different for the heterogeneous and homogeneous group of residual variance. 

Generally, the models with heterogeneous variances shows similar residual variances. The third 

group (DIM 151-200) has the lowest value, which increased in the fourth group. 

Table 5: Comparison between Homogeneous and Heterogeneous animal, residual and 

phenotypic variances and standard error (Mleg3Aleg1H1 & Mleg3Aleg1H4) for feed 

efficiency 

Group 

(DIM) 

Animal 

 variance 

 

±se 

Residual 

variance 

 

±se 

Phenotypic 

Variance 

 

±se 

 

Homogenous 

 

1.37 

 

0.32 

 

 

0.23 

 

0.02 

 

1.61 

 

0.32 

 

Heterogenous 

 

52 – 100 1.37 

 

 

 

0.32 

 

 

 

0.24 

 

 

 

0.06 

 

 

 

1.62 

 

 

 

0.32 

101 - 150 1.37 0.32 0.24 0.03 1.61 0.32 

151 – 200 1.37 0.32 0.22 0.03 1.60 0.32 

201 – 230 1.37 0.32 0.27 0.08 1.65 0.33 

 

Random regression analysis of feed efficiency 

Based on this criterion for selecting the models, the models in Tables 6b, 6c, 6d, 6e, 6h, 6i, 6j 

and 6k were not significant. While the Table 6a, 6f, and 6g shows significance of the coefficient 

of the highest degree. Hence, models with Mleg3 (both homogenous and heterogenous 

variances) were significant as their solution was greater than twice the standard error. While 

Model  Mleg1, Mleg2, Mleg4 and Mleg5 were all not significant as their solution was lesser 

than twice the standard error. Our overall conclusion is that 3rd order is sufficient to fit the fixed 

mean curve of feed efficiency along the DIM.  

Table 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 6j, 6k:  Estimates of the regression coefficients of the 

Legendre polynomials for the fixed mean feed efficiency curve and their standard errors  
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a) Model: Mleg3Aleg1H4 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-3,leg) 0 -0.32 1.68  

dim(-3,leg) 1 -0.66 0.44  

dim(-3,leg) 2 0.10 0.08  

dim(-3,leg) 3 -0.18 0.07 ** 

**-significant 

 

b) Model: Mleg1Aleg1H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-1,leg) 0 -0.34       1.69   

dim(-1,leg) 1 -0.51       0.44 NO 

 

c) Model: Mleg1Aleg2H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-1,leg) 

dim(-1,leg) 

0 

1 

-0.52 

-0.35 

1.65 

0.46 

 

NO 

 

d) Model : Mleg2Aleg1H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-2,leg) 0 -0.27 1.68  

dim(-2,leg) 1 - 0.51 0.44  

dim(-2,leg) 2 -0.08 0.08 NO 

 

e) Model : Mleg2Aleg2H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-2,leg) 0 -0.47 1.65  

dim(-2,leg) 1 -0.34 0.45  

dim(-2,leg) 2 0.06 0.11 NO 
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f) Model: Mleg3Aleg1H1 

Covariable Reg. coeff. Solution Std Error                 Signif. 

dim(-3,leg) 0 -0.34  1.68  

dim(-3,leg) 1 -0.66  0.44  

dim(-3,leg) 2 0.10   0.08  

dim(-3,leg) 3 -0.18   0.06 ** 

**-significant 

g) Model: Mleg3Aleg2H1 

Covariable Reg. coeff Solution Std Error  Signif. 

dim(-3,leg) 0 -0.55 1.65  

dim(-3,leg) 1 -0.64 0.47  

dim(-3,leg) 2 0.08 0.11  

dim(-3,leg) 3 -0.17 0.08   ** 

**-significant 

 

h) Model: Mleg4Aleg1H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-4,leg) 0 -0.33 1.68  

dim(-4,leg) 1 -0.66 0.44  

dim(-4,leg) 2  0.07 0.09  

dim(-4,leg) 3  -0.18 0.07  

dim(-4,leg) 4 -0.04 0.06 NO 

 

i) Model: Mleg4Aleg2H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-4,leg) 0 -0.48 1.43  

dim(-4,leg) 1 -0.64 0.42  

dim(-4,leg) 2 0.04 0.12  

dim(-4,leg) 3 -0.16 0.08  

dim(-4,leg) 4 -0.07 0.07 NO 
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j) Model: Mleg5Aleg1H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-5,leg) 0 -0.33 1.68  

dim(-5,leg) 1 -0.68 0.44  

dim(-5,leg) 2 0.07 0.09  

dim(-5,leg) 3 -0.21 0.08  

dim(-5,leg) 4 -0.04 0.06  

dim(-5,leg) 5 -0.04 0.05 NO 

 

 

k) Model: Mleg5Aleg2H1 

Covariable Reg. coeff Solution Std Error Signif. 

dim(-5,leg) 0 -0.52 1.64  

dim(-5,leg) 1 -0.63 0.47  

dim(-5,leg) 2 0.04 0.12  

dim(-5,leg) 3 -0.19 0.09  

dim(-5,leg) 4 -0.05 0.07  

dim(-5,leg) 5 -0.05 0.06 NO 

 

 

Feed Efficiency Models Comparison 

Eleven analyses with different models using the Legendre polynomial function were performed 

to find the best model of fit for the feed efficiency data. Akaike information criterion (AIC),  

and LogL are reported in Table 7. These criteria were used to compare the models and to choose 

the best one to fit the data for the animal effect (higher values obtained for -½ AIC signify 

better goodness of fit of the model. This rule is also the same when high values are obtained 

for LogL).   

Firstly, considering Model Mleg3Aleg1H1 (in which all the animal effects only fitted the 

intercept, and contained a homogeneous residual variance). The REML Log L was marginally 
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lower than Model Mleg3Aleg1H4 (with heterogeneous residual variances). But the -½ AIC 

was higher than  the Model with heterogeneous classes of residual variances (Mleg3Aleg1H4).  

In the models with homogeneous variances, the goodness of fit (LogL and -½ AIC) generally 

improved as the degree of fit of the animal effect changed from 1 to 2. Also -½AIC showed an 

increase trend as the polynomial degree of the animal effect varied from 1 to 2. Furthermore, 

including 3rd degree of fit for the animal effect; Aleg3 (result unpublished), the analysis showed 

no convergence. 

Hence, recommending  order 3 (Mleg3) for fixed effect and order 2 (Aleg2) for animal effect. 

Since the AIC compares the quality of fit of the two models, and prefers Mleg3Aleg2H1, we 

will henceforth use the homogeneous variance models. 

 

Table 7. Model (with the effect of parity and week), number of parameters estimated (p), the 

logarithm of the Residual Maximum likelihood function  (log L), and Akaike's information 

criterion (AIC) 

Model  p LogL -½ AIC Ani-Var Res-Var  

 

Mleg3Aleg1H4 5 -24.38 -29.38 1.38 0.24 
0.24 

 

0.22    0.27 0,27 

 

Mleg1Aleg1H1 2 -23.66 -25.66 1.39 0.24 

 

 

Mleg1Aleg2H1 4 -14.14 -18.14 1.30 0.20 

 

 

Mleg2Aleg1H1 2 -25.70 -27.70 1.38 0.24 

 

 

Mleg2Aleg2H1 4 -16.21 -20.21 1.31 0.20 

 

 

Mleg3Aleg1H1 2 -24.65 -26.65 1.37 0.23 

 

 

Mleg3Aleg2H1 4 -16.70 -20.70 1.32 0.23 

 

 

Mleg4Aleg1H1 2 -27.19 -29.19 1.36 0.23 
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Mleg4Aleg2H1 4 -19.77 -23.77 0.97 0.20 

 

 

Mleg5Aleg1H1 2 -29.84 -31.84 1.37 0.23 

 

 

Mleg5Aleg2H1 4 -21.51 -25.51 1.29 0.20 

 

 

 

 

 

 

 

 

The animal variance estimates (Figure 6a) from models Mleg3Aleg1H1 and Mleg3Aleg2H1 

differed in their trend. The animal variance for model Mleg3Aleg1H1 maintained a constant 

value all through the lactation period under study. While model Mleg3Aleg2H1 yielded a high 

value at the beginning of the lactation period, declined gradually  until DIM ~ 150 and from 

this point on, it showed an increase. 

The phenotypic variance estimate for both models (Figure 6b) showed a similar trend just like 

animal variance; the animal variance for model Mleg3Aleg1H1 maintained a constant value all 

through the lactation period. While model Mleg3Aleg2H1 yielded a high value at the beginning 

of the lactation period, declined gradually  until DIM ~ 150 and from this point on, it showed 

an increase. 

Residual variances estimated by both models were similar. Both models  maintained a constant 

value all through the lactation period studied. 

 

Figure 6: Animal (a),  Phenotypic (b) and Residual (c) Variance of model Mleg3Aleg1H1 and 

Mleg3Aleg2H1 for feed efficiency 
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6a) Animal variances 

 

         

 
        

 
        

6b) Phenotypic variances  
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6c) Residual variances 
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DISCUSSION  
The feed intake results of comparison between Mleg3Aleg1H1 Homogeneous and 

Mleg3Aleg1H4 heterogeneous residual variances models shown in table1 indicated that the 

model with the homogeneous residual variance showed worst fit, irrespective of the degree 

used in modelling the random effect. This is in agreement with the studies of  Bignardi et al. 

(2011), in Brazilian Holstein cows. Similar results were obtained from studies carried out on 

dairy goats (Assis et al., 2006; Breda et al., 2006; Brito et al., 2017; Menezes et al., 2011; Silva 

et al., 2013). The current finding indicates the need for heterogeneous residual variances, where 

residual variances differ at different stages of the lactation (Bignardi et al., 2011). Also, 

Aspilcueta-Borquis et al. (2012) reported that assuming homogenous residual variances in a 

random regression test day model may not be adequate in the study for Brazilian dairy buffalo. 

Therefore, heterogeneous residual variances are generally found to be the preferred option in 

random regression test-day models.   

Amongst the polynomials fitted to model the fixed feed intake curve in this study, the Mleg5 

was found to be most suitable. However, higher order polynomials than Mleg5 were not studied 

here This result agrees with the studies of Sesana et al. (2010) and Costa et al. (2008) who 

concluded that Legendre polynomial of order five was suitable to model dairy data. Although 

these authors recorded no difference between homogeneous and heterogeneous residual 

variances across the lactation because they considered animal genetic and permanent 

environmental effects in their RRM. The current findings differs from Kramer et al. (2009) and 

Flores & van der Werf, (2015) who analyzed dairy data on buffaloes, suggesting lower orders 

of fit for the mean lactation curve. The analysis of Kramer et al. (2009), considered both feed 

intake and water intake along the lactation period.  

Aleg1 was found here sufficient for the degree of fit for the animal effect on feed intake data 

along the lactation. Increasing the order of fit from 1 to 2 showed improvement in the goodness 

of fit, which is similar to results achieved in other findings (Li et al., 2020). However, 

increasing the order of fit increased the number of parameters (p), which makes the model more 

complex, which decreases the AIC information criterion. In addition, a more complex model 

may be more computationally demanding. The result clearly showed that with a more 

sophisticated fixed effect model, Aleg2 (degree of animal effect) might not be needed to fit the 

animal effect (Table 4). Selecting a suitable test-day model requires a balance between 

goodness of fit and model complexity, and our data suggested a polynomial of degree 1 for the 

animal effect in our data. However, our data stretched only over 50 days in milk for individual 
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cows, and higher orders of fit may be needed for feed intake data that stretch over longer 

periods of the lactation. 

The differences between Aleg1 and Aleg2 are shown in Fig2a, 2b and 2c, which shows a 

summary of the variance components. Generally, the animal, phenotypic and residual variances 

(were lower in early lactation and increased towards the end of lactation) This general trend 

was similar in the studies of Brito et al. (2017), who studied variance components of lactation 

models in dairy goats. It may be due to the limited size of our data set and thus limited 

information that our results suggest a Aleg1 fit for the animal effect, which suggests a constant 

animal variance throughout the lactation period. Though a lower variance at the beginning and 

a higher variance at the end of the lactation was suggested by the Aleg2  fit of the animal effect.  

The residual variances for both Aleg1 and Aleg2 assumed the same trend along the lactation 

period. Fig 2c, shows that the residual variance was low at the beginning of the lactation stage 

then increased at DIM 101-150, which could be immediately after peak lactation stage, then 

gradually decreased till the end of the lactation stage. This finding differs from Li et al. (2020), 

who reported small differences in residual variances when fitting higher order of fit and that 

residual variances were larger in the early stage of lactation. It is important to note that residual 

variances are affected by the lactation stage and scale effects of the production level.  

Comparing the phenotypic variances estimated by Aleg1 and Aleg2, large differences were 

found in their variances (Figure 2b). This pattern may be due to the complexity of the model. 

Also, genetic and non-genetic factors may have significant impact on feed intake during the 

lactation period. The non-genetic factors could be a result of weather and other environmental 

conditions which may have large effects on the level of feed intake. The high value of the 

phenotypic variance towards the end of the lactation period could also be explained by the fact 

that the cows compensate for the negative energy balance after the peak lactation period 

(Bignardi et al., 2009).  

The studies of Pereira et al. (2013) showed that random regression model can be used in 

estimating genetic parameters such as heritabilities along the lactation, but large datasets are 

required in estimating these  genetic parameters (Druet et al., 2003). Given the size of our 

dataset, it was not possible to seperate genetic from environmental effects. Though RRM may 

accept incomplete data for the analysis, but the period of feed intake for the cows studied was 

short (56days). So it may not be sufficient to depict the trend of feed intake along the whole 

lactation curve of the cows. The effect of parity might have a significant impact on the shape 
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of the curves, which was not accounted for. Due to the small size of our data, we did not 

estimate a different curve for the different parities (1,2,3,4,5). 

The results of comparison between feed efficiency Mleg3Aleg1H1 Homogeneous and 

Mleg3Aleg1H4 heterogeneous residual variances models shown in table5 indicated that the 

model with the homogeneous residual variance showed similar range of fit with the model with 

heterogeneous variances. This result agrees with the findings of Sesana et al. (2010) and Costa 

et al. (2008) who recorded no difference between homogeneous and heterogeneous residual 

variances across the lactation in their model. This disagreed with other studies which found 

models with heterogeneous variances best fit for milk yield data (Assis et al., 2006; Breda et 

al., 2006; Brito et al., 2017; Menezes et al., 2011; Silva et al., 2013).  In this research, 

comparison of feed efficiency models were made in terms of random effect using homogeneous 

classes of residual variances. However, according to this findings homogeneous residual 

variances and heterogeneous residual in a RRM are sufficient to fit feed efficiency data. 

Amongst the polynomials fitted to model the fixed feed intake curve in this study, the Mleg3 

was found to be most suitable. However, higher order polynomials such as Mleg4 and Mleg5 

were also studied. This current finding is similar to the studies of  Li et al. (2019) who found 

that Legendre polynomial of order 3 sufficient to fit milk yield data in Chinese Holstein 

population. 

Aleg2 was found sufficient for the degree of fit for the animal effect on feed efficiency data 

along the lactation in this current finding. Increasing the order of fit from 1 to 2 showed 

improvement in the goodness of fit, which is similar to results achieved in other findings (Li et 

al., 2020). However, increasing the order of fit from 2 to 3 (Aleg3 result which is unpublished) 

showed no convergence. This differs from the results Bohmanova et al.(2008) where the 

authors found better and high convergence rate in higher order of fit for random effect (for 

example: 4) while comparing Legendre polynomial model with linear spline models.  

The differences between Aleg1 and Aleg2 are shown in Fig6a, 6b and 6c, which shows a 

summary of the variance components. Generally, the animal and phenotypic variances 

estimated followed a similar trend during mid-lactation, with higher estimates obtained at the 

beginning and at the end of lactation period of this study. This trend was similar in the studies 

of Bignardi et al. (2009). Aleg1 fit for the animal variance assumed a constant value throughout 

the lactation period. However, a higher variance at the beginning and at the end of the lactation 

was suggested by the Aleg2  fit of the animal effect.  
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The residual variances for both Aleg1 and Aleg2 assumed the same trend along the lactation 

period. Fig 6c, shows that the residual variance assumed a constant value all through the 

lactation stages. This finding differs from Li et al. (2020), who reported small differences in 

residual variances when fitting higher order of fit and that residual variances were larger in the 

early stage of lactation.  

Comparing the phenotypic variances estimated by Aleg1 and Aleg2, large differences were 

found in their variances (Figure 6b). This pattern may be due to the complexity of the model. 

Also, factors such as animal’s health condition, energy balance, environmental temperature, 

(Lamb & Maddock, 2009) could have significant effect on feed efficiency. At peak lactation, 

feed intake may be very low resulting into low phenotypic variance estimate at mid lactation, 

but an animal might compensate for this using stored fat in its adipose tissue (Hardie, 2016). 

The high value of the phenotypic variance towards the end of the lactation period could also 

be explained by the fact that the cows compensate for the negative energy balance after the 

peak lactation period (Bignardi et al., 2009).  

In conclusion, random regression models using Legendre polynomials functions of varying 

order for the fixed mean curve and for the random animal effects were able to model the 

average feed intake, feed efficiency and individual deviations during the lactation period. For 

the mean lactation curve seemed well modelled by 5th order Legendre polynomials, whereas 

individual deviations were well modelled by a 1st order Legendre polynomial in the current 

data set for feed intake data. Whereas, mean lactation curve seemed well modelled by 3rd order 

Legendre polynomials, whereas individual deviations were well modelled by a 2nd order 

Legendre polynomial in the current data set for feed efficiency data. Although, it remains 

important to obtain larger data sets in order to get a more precise estimates over the entire 305-

day lactation period, on individual differences and to distinguish genetic from environmental 

effects. 
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