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Abstract 

 

In recent years, the use of machine learning within healthcare has increased as a result of a 

growing amount of data being produced. This data needs analyzing, and there exists many 

standard machine learning methods to do so. Many of these methods do however have 

problems when it comes to interpreting the models. Therefore, it is essential to find methods 

that provide good predictive performance and are interpretable in high-stake decision 

domains.   

The Tsetlin Machine has shown up as a new and promising candidate regarding performance 

and interpretability. The Tsetlin Machine can be seen as a new branch within machine 

learning with propositional algebra-based logic to create models. The main aim of this thesis 

is to consider whether the Tsetlin Machine is applicable within the field of healthcare data 

science where the data considered as wide. It is also of interest to determine if the Tsetlin 

Machine can compete with standard algorithms to predict the survival of patients with 

colorectal cancer. Also, the interpretability of the Tsetlin Machine was explored, and the 

usefulness of this concept was evaluated. 

This thesis used data from the OxyTarget study, a Norwegian study where MR images and 

blood sample markers were collected to analyze rectal cancer survival. There have also been 

other efforts, such as extracting radiomic features from the MRI. The analysis will try to 

predict a response variable called Progression Free Survival (PFS). The data used for 

predicting are radiomic features extracted from MRI images from the OxyTarget study. 

RENT was used to remove the features without information and thus increase predicative 

performance. 

Dataset 1 combined version had F1-scores over 0.6 for all the models and had the highest 

MCCs.  The best F1-score was 0.65 with SVM. The best MCC was from the Tsetlin Machine 

on the same version, achieving 0.33. Dataset 2 combined had the best overall score, with the 

Tsetlin Machine scoring 0.68 for F1-score and 0.42 for MCC.  The Tsetlin Machine provided 

clauses in the form of propositional formulas.  

The results indicate that the Tsetlin Machine can compete with the other models. For practical 

use in healthcare, the results are however not quite good enough. The Tsetlin Machine can 

also produce clauses for interpretability. These still need an automated process to display 

them in the original continuous values from the dataset.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Acknowledgment 

 

 

 

 

This thesis was written at the Faculty of Science and Technology at the Norwegian University 

of Life Sciences (NMBU) in 2021, and marks the end of my five-year master's degree. I 

would like to thank my supervisors Oliver Tomic and Kristian Liland for being both positive 

and motivating through this process. Also, thank you to Ole-Christoffer Granmo for taking the 

time, giving me great input on the Tsetlin Machine. Finally, thank you to my friends and 

family for the support. Navigating the process of writing a master thesis in a pandemic has 

been both puzzling and intense.  

 

 

 

Petter Sunde Nymark 

 

Oslo, 01.06.21 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

List of Figures 

 

 

Figure 2.1: The types of ML and their characteristics ............................................................... 5 

Figure 2.2:: A Learning Automaton with input from the environment and actions in the 

environment. Adapted from Narendra, K. S., & Thathachar, M. A. (1974). ............................. 8 

Figure 2.3:Confusion matrix of binary classification ............................................................... 10 

Figure 2.4: Black Box model visualization .............................................................................. 12 

Figure 2.5: Splitting data into a training set and a test set ....................................................... 13 

Figure 2.6: Splitting data into four folds .................................................................................. 13 

Figure 2.7: "A Tsetlin Automaton for two-action environments." From O.C Granmo (2018) 15 

Figure 2.8:: “Two Tsetlin Automata teams, each producing a conjunctive clause. The overall 

output is based on majority voting.” From O.C. Granmo (2018) ............................................ 18 

Figure 2.9: SVM maximizing the margin between the hyperplanes and decision boundary. 

Adapded from  Raschka, S., & Mirjalili, V. (2017). ................................................................ 26 

Figure 4.1: “The scheme depicts the feature selection pipeline suggested by RENT, 

represented by the blue frame.” From Jenul, A. (2020) ........................................................... 32 

Figure 5.1: The workflow for producing the results. The same workflow was used for all the 

datasets. .................................................................................................................................... 36 

Figure 5.2: Four of the Class 0 Positive clauses generated from the set 1 combined dataset .. 41 

Figure 6.1: RENT Analysis validation study for split 2 of set 1 Combined. ........................... 44 

Figure 6.2: RENT Analysis validation study for split 3 of set 1 Combined. ........................... 44 

Figure 6.3: Grid showing TM results Set1 combined. ............................................................. 46 

Figure 0.1:Full object summary from RENT on split 1. .......................................................... 54 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

List of Tables 

 

Table 2.1: Type 1 Feedback ..................................................................................................... 21 

Table 2.2: Type II Feedback .................................................................................................... 22 

Table 2.3: Thersholding continous features ............................................................................. 23 

Table 5.1: RENT parameter settings ........................................................................................ 37 

Table 5.2: Number of selected features on the 81 patients ...................................................... 37 

Table 5.3: F1-score and MCC for set 1 T2 .............................................................................. 38 

Table 5.4: F1-score and MCC for set 1 T2b2 .......................................................................... 39 

Table 5.5: F1-score and MCC for set 1 combined ................................................................... 39 

Table 5.6: Number of selected features on the 81 patients ...................................................... 40 

Table 5.7: F1-score and MCC for set 2 T2 .............................................................................. 40 

Table 5.8: F1-score and MCC for set 2 T2b5 .......................................................................... 40 

Table 5.9: F1-score and MCC for set 2 combined ................................................................... 41 

Table 5.10: Excerpt of some of the samples and how often the models in RENT incorrectly 

predicted the samples. .............................................................................................................. 42 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



1 
 

Chapter 1 Introduction 

 

1.1 Background  

 

1.1.1 Healthcare Background 

 

In 2020 it was estimated to occur 19.3 million new cancer cases globally [1]. The same year, 

there were approximately 10 million deaths by cancer, and the global cancer burden is 

assumed to increase to 28.4 million cases by 2040. Out of all newly diagnosed cancers, nearly 

10% were colorectal cancer, making it one of the most common forms and thus an important 

form to explore and research. Further on, colorectal cancer has the second-highest mortality 

rate of cancers with both men and women in Europe [2]. It is the second most common type 

of cancer for women after breast cancer, and for men, it is the third after prostate and lung 

cancer.  

Because of the high number of cases and the complexity of the therapy, colorectal cancer 

significantly impacts health services in Norway and worldwide [2]. In Norway alone, more 

than 4300 new cases of colorectal cancer were diagnosed in 2016, and 24 000 people were 

living with it. This makes it one of the most widespread cancers in Norway. The number of 

colorectal cancer cases is also projected to grow in the future due to the average lifespan 

increasing and its growing proportion. 

This thesis used data from the OxyTarget study [23], a Norwegian study where MR images 

and blood sample markers were collected to be analyzed. There have also been other efforts, 

such as extracting statistical features from the MRI to improve the effectiveness of the 

treatments given the data need analyzing. There are many standard machine learning methods 

to do this, but there are often problems when interpreting the models. The Tsetlin Machine 

has shown up as a new and promising candidate regarding performance and interpretability.  
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1.1.2 Tsetlin Machine 

 

Rudin (2019) stated that high-stake decisions in domains such as healthcare should be made 

by models that are interpretable to avoid biased and dangerous outcomes [3]. The Tsetlin 

Machine performs on the same level as other models for classic benchmark problems such as 

the Binary Iris Dataset classification. It also has the potential added benefit of being 

interpretable. The Tsetlin Machine further has the advantage of being more interpretable than 

other machine learning algorithms. Keeping this in mind, it seems plausible to investigate 

how useful the Tsetlin Machine could be in the field of medicine, as well as considering if the 

model can compete or even outperform the more common machine learning models. This 

thesis is therefore, to a certain degree, an exploration of whether the Tsetlin machine could be 

a valuable tool in machine learning and AI. 

 

1.2 Structure of Thesis 

 

The structure of this thesis is as follows. Chapter 2 explores the theory around the Tsetlin 

Machine, starting with machine learning, then working towards the essential parts of the 

algorithm and how it is constructed to work as a classifier. The chapter also has a short 

description of the algorithms for training models for comparison to models based on the 

Tsetlin Machine. In chapter 3, the materials used in the analysis are listed and explained. 

Further, chapter 4 contains the method, explaining how the theory and materials were set up 

to produce the results. The results are listed and explained in chapter 5. Chapter 6 contains the 

discussion of the results in relation to the project's aim and other important implications. 

Chapter 7 contains the conclusion of the thesis, as well as proposing potential further work. 
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1.3 Project Aim 

 

The Tsetlin Machine can be seen as a new branch within machine learning with propositional 

algebra-based logic to create models. The main aim of this thesis is to consider whether an 

algorithm within machine learning, namely the Tsetlin Machine, is applicable within the field 

of healthcare data science where the data considered as wide, that is, relatively few rows 

relative to the number of features. More specifically, it is of interest to determine if the Tsetlin 

Machine can compete with standard algorithms within machine learning to predict the 

survival of patients with colorectal cancer. Also, the interpretability of the Tsetlin Machine 

was explored, and the usefulness of this concept was evaluated. Though there might be 

medical advances resulting from the thesis, the main concern is to explore the use of 

algorithms to improve data-driven predictions.  

The analysis will try to predict a response variable called Progression Free Survival (PFS). 

This is a binary classification problem where the positive value 1 represents cancer 

recurrence, metastases, or death within three years, and the negative value 0 is when the 

patients survive cancer-free. The data used for predicting are radiomic features extracted from 

MRI images from the OxyTarget study [23]. 

There was potential to cover more on the Tsetlin Machine, but due to the scope of this thesis 

with the timeframe, limitations must be set as the project aim states. 
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Chapter 2 Theory 

 

The following chapter contains the theoretical background, where the goal is to put a 

theoretical context to the issue at hand. First, machine learning as a general concept is 

introduced. Later classification and reinforcement learning is explained as these are both 

crucial concepts to understand the theory behind the Tsetlin Machine and answer the central 

questions of this thesis. Further on, the Tsetlin Machine is described as this is the main focus. 

Finally, as the thesis compares the results of the Tsetlin Machine with other models’, the other 

models are briefly explained. This part is not as comprehensive because the focus is to 

explore the potential of the Tsetlin Machine.  

 

2.1 Machine Learning 

 

Raschka (2017) explained that Machine Learning is a subfield of artificial intelligence that 

concerns self-learning algorithms that extract knowledge from a set of data to make 

predictions [4]. The basic premise of machine learning is capturing knowledge in data without 

requiring humans to explicitly program rules and building models from analyzing large 

quantities of data. Thus, the models can gradually improve the performance of the predictive 

capabilities and make data-driven decisions [4].  

When referring to training data and targets, it can be helpful to use a matrix representation of 

the data. For the data, as seen in formula (1), 𝑿𝒋
(𝒊)

 is used. Here the subscript 𝑖 is the number 

of training samples: for example, the number of patients. The second subscript 𝑗 is the number 

of features, making it a feature space in the j-th dimension. These features can hold describing 

values such as age, height, gender, and other informational characteristics. The values can be, 

but are not limited to, continuous, discrete, categorical, and so on. 
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𝑿𝒋
(𝒊)

=

[
 
 
 
 𝑥1

(1)
𝑥2

(1)
⋯ 𝑥𝑗

(1)

𝑥1
(2)

𝑥2
(2)

⋯ 𝑥𝑗
(2)

⋮     ⋮   ⋱   ⋮

𝑥1
(𝑖)

𝑥2
(𝑖)

⋯ 𝑥𝑗
(𝑖)

]
 
 
 
 

                 (1) 

Like the data, the target variables can be represented as seen in formula (2), with the 𝑖-

subscript corresponding with ones in the 𝑿 matrix. In this example, the variable can be 1 for a 

positive class and 0 for a negative class. This is similar to the targets used later in the analysis. 

𝒚(𝒊) =

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑖) ]

 
 
 

, 𝑦 ∈ {1,0}                     (2) 

 

There are three types of machine learning: unsupervised learning, supervised learning, and 

reinforcement learning. Each has its different learning methods [4], and each subfield has its 

characteristics as seen in figure 2.1. 

 

 

Figure 2.1: The types of ML and their characteristics 

 

Supervised learning is machine learning where the label of the training data is known [4]. 

Here, the algorithms will use the data 𝑿𝒋
(𝒊)

 to map it to the target variables in 𝒚(𝒊). This allows 

algorithms to predict unseen or future data that do not have labels. An example of supervised 

learning is if one trains a model on a dataset of cancer patients, where the label is whether the 

patient has cancer or not. The model will learn the patterns in the data 𝑿𝒋
(𝒊)

, that is 
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characteristic for each of the labels. Supervised learning is further subdivided into regression 

problems and classification problems. Regression is when the algorithm is trying to predict a 

continuous variable. On the other hand, classification is when one tries to predict distinct 

classes, meaning trying to predict a discrete value. 

Unsupervised learning handles unlabelled data and data of unknown structure [4]. This type 

of machine learning is about using algorithms to explore and extract information from the 

data without having the correct answers to guide the learning process. Typically, this 

information is used to group data points into subgroup clusters. Another use is to reduce the 

dimensionality of the data to remove noise and decrease the computational cost of the ML 

algorithm. 

As reinforcement learning will be the main focus, the concept will be explored in the next 

section. 

 

2.1.1 Reinforcement Learning and Game Theory 

 

In order to properly understand the Tsetlin Machine and how it can be used to predict classes, 

it is important to understand how the field of reinforcement learning and game theory 

intersect and thus can be used in machine learning.  Reinforcement learning is the third 

subfield of machine learning alongside supervised and unsupervised learning. This part of 

machine learning focuses on learning models with agents operating in some given 

environment and learns through trial and error. The agent typically has an end goal and will 

perform actions in the environment to try to reach the goal. If the action is favourable, the 

agent will get rewarded, and if it is not, it will be ignored or given a penalty. Trying to 

optimize the actions taken to maximize the rewards and minimize the penalties can be 

considered the learning process. How the model solves the optimization problem to find the 

best actions will differ from algorithm to algorithm. Some algorithms will learn to ignore 

immediate small rewards to get.  

An example of this could be a simulation of a mouse in a maze. The mouse is the agent, the 

maze the environment, and what turn to take is the action. The goal is to reach a piece of food 

placed in the maze. At first, it will take actions at random, but the mouse will remember the 

best actions to get it to the goal based on rewards and penalties over many iterations.  
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Game theory is a field of mathematics studying the theory behind the phenomena observed 

when decision-maker interact (Osborne & Rubinstein, 1994, p. 1) [5]. It is applied in many 

research fields, such as economics, biology, social sciences, and computer science. It has its 

roots in the zero-sum games and its proofs in the book “Theory of games and Economic 

Behaviour” by John Von Neuman and Oskar Morgenstern [6]. Game theory looks at games 

and how to take the best decision toward a given goal. It is crucial to understand what the 

Nash equilibrium is to understand the fundamentals of the Tsetlin Machine. The Nash 

equilibrium is a solution or set of solutions in a non-cooperative game [5]. When the 

equilibrium is reached, there is nothing to gain for any of the agents or players by changing 

their strategy. In machine learning, reinforcement learning can be used to find the Nash 

equilibrium, as will be discussed later in this thesis. Section 2.2.5 will show how the Tsetlin 

Machine sets up a game so that the Nash equilibrium coincides with the patterns in the data to 

get optimal patterns recognition [7]. 

Al, within game theory, an essential concept for understanding the Tsetlin Machine is the 

multi-armed bandit problem [8]. In this problem, one has N-arms on classical bandit machines 

giving N actions to take. Each arm has a certain probability of giving a reward, with the 

probabilities being unknown. The gambler or agent is trying to maximize the gain from the 

machines. The problem is then to find the balance between exploration and exploitation. This 

means that the gambler is trying to maximize the sum of rewards by finding a trade-off 

between trying new arms or continue pulling an arm that has a seemingly good probability of 

giving a reward. Section 2.2 will explore how the Tsetlin Automata solves a two-armed 

version of the bandit problem to find the explore-exploit trade-off. 

 

2.1.2 Learning Automata  

 

The Tsetlin Automaton belongs to the subfield of reinforcement called Learning Automata 

[7]. Narendra, K. S., & Thathachar, M. A. (1974) coins Learning Automata as automata 

operating in an unknown random environment. For each action of the Automata, the 

environment it operates in will have a probability distribution of rewarding or penalizing. An 

unknown random environment has unknown probability distributions for the responses to the 

actions of the Learning Automata, where the distributions may change as a result of the 

actions. The automata update their action probabilities as they interact with the environment 
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and learn to improve their performance during its operation [11].  For example, take an 

automaton with a finite number of actions to take in a random environment. Doing an action 

will result in the random environment responding with either a favourable or non-favourable 

response. The random response will follow a probabilistic distribution, and these probabilities 

are unknown. The goal of the Automaton is then to try to learn the probabilities associated 

with a given action based on earlier actions and interactions with the environment.  

 

 

Figure 2.2:: A Learning Automaton with input from the environment and actions in the environment. Adapted from 

Narendra, K. S., & Thathachar, M. A. (1974). 

 

Figure 2 shows an example Learning Automaton, with a binary input set 𝑥 ∈ {0,1} from the 

environment and output (action) set 𝛼 ∈ {𝛼1, … , 𝛼𝑟}  [11]. Narendra, K. S., & Thathachar, M. 

A. (1974) describe the Stochastic Automaton by the sextuple {𝑥, 𝜙, 𝛼, 𝑝, 𝐴, 𝐺}. In this 

sextuple, 𝜙 = {𝜙1, 𝜙2, … , 𝜙𝑠} is the set of internal states of the Automaton with 𝑟 ≤ 𝑠 so that 

each action has at least one state. p is the probability vector that by each step n decides the 

choice of state 𝑝(𝑛), meaning that each state has a corresponding probability. A is an 

algorithm that generates the probabilities at the next step 𝑝(𝑛 + 1) from 𝑝(𝑛). G is the output 

vector that outputs an action 𝛼 from 𝜙. These steps create a feedback loop between the 

environment and the Automaton, where the action is the input for the environment, and it in 

turn outputs the binary response that is the input of the Automaton. The response then 

influences the updating of the action probabilities. It should be noted that the environment that 

the Automaton operates in can vary greatly and can have many different types of outputs. 

Binary is used in this example for simplicity.  

Two or more Learning Automata can be set up to play games similar to the games described 

in game theory [11]. For simplicity, consider two Automata, both operating in a random 
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stochastic environment without any knowledge about each other or the environment. Both 

automata will perform an action, and the environment will respond randomly. The automata 

will then update their action probability according to their reinforcement scheme. This is a 

round of the game and is repeated over a number of iterations. The game's goal is to figure out 

a set of actions (also called a strategy) that maximize pay-off. The automata can play against 

each other, which is called a competitive game, or they can play together called a cooperative 

game [6]. Because the environment is unknown with the pay-off function having a random 

distribution, the automates must learn as they play to find the optimal strategy. 

 

2.1.3 Classification 

 

Classification methods are used within machine learning when the goal is to determine what 

category a sample belongs to. It is advantageous to use when the goal is a discrete class. The 

number of categories depends on the problem one is trying to solve. The cancer example 

mentioned in supervised learning is a typical binary classification problem with only two 

classes; the patient either has cancer or not. However, if the problem is what type of cancer, 

multiclass classification is necessary. The algorithm will use pattern recognition to separate 

the data into the different classes of cancer.  

For the classifiers to make sense, one needs methods to evaluate their performance. There are 

many different metrics for evaluating the classifier, and selecting the right one is essential to 

getting the most reliable results. Which one is the best will depend on the question and the 

data. The most basic one is accuracy, where only the number of correct predictions is 

considered. However, this can be misleading, for instance, in a dataset with an unbalanced 

number of classes. If the target value is 0 and 1, but only 5 percent of the total number of 

values is 1, the classifier can guess every output to be 0. An accuracy metric would give a 95 

percent accuracy, which seems like a good result, but it got none of the critical values correct. 

For cases like these, other evaluation methods need to be used to get better insight.  
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2.1.4 Model Evaluation 

 

When evaluating the model in the analysis pipeline, using evaluation metrics suited for the 

task at hand is essential. If one only uses accuracy, one can get a wrong accuracy for an 

imbalanced classification problem impression of the score if it is unbalanced. It does not 

necessarily provide a realistic picture of the situation, leading to incorrect conclusions and 

poorly performing models. Therefore, several different metrics were used for the analysis. 

 

F1-score 

One of the evaluation metrics used was the F1-score. It is widely used in machine learning 

applications for imbalanced class distribution [15]. It is a metric based on precision and recall. 

As seen in figure 2.3, the prediction of a sample in a binary classification problem may be 

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). From 

this 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
  [16]. 

 

Figure 2.3:Confusion matrix of binary classification 

 

F1 has a value between 0 and 1, where F1 = 1 is perfect prediction, and F1 = 0 is equivalent to 

random guessing and is defined: 

 



11 
 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝑇𝑃)

 

The F1 score has an advantage over just accuracy, as it can deal with unbalanced classes. It 

was used because it has become an industry standard and makes for a good general 

comparison method [15]. As Chicco, D., & Jurman, G. (2020) states, the F1 measure has 

flaws, so other metrics were introduced as well. 

 

Matthews correlation coefficient   

Matthews correlation coefficient is a measure also unaffected by dataset imbalance. It is a 

method of calculating the Pearson product-moment correlation coefficient [15] between the 

predicted and actual values. Using the terms from figure 2.3, Matthews correlation coefficient 

is defined as: 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

 

It has the ability of only giving a high score if the positive classification instances, as well as 

the negative instances, were correctly predicted [15]. The score has a range of [−1,1], where 

MCC = 0 is the same as random guessing, MCC = 1 is perfect prediction, and -1 is perfect 

misclassification. 

 

2.1.5 The Curse of Dimensionality and Interpretable models 

 

For datasets with high-dimensional feature space, it can be difficult for machine learning 

models to find patterns if the number of training samples is few. When the feature space is 

high, there may be many possible combinations of the various ranges of the values. In order to 

capture this, it is desirable to have many training samples. Typically, there will be a peak of 

performance, then a drop as the number of features in the space increase due to overfitting 

when not using some form of regularisation. This is called the peaking phenomenon [9]. 
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Depending on the situation, gathering new samples to prevent this might not be possible. In 

these situations, one must use methods to reduce dimensionality to get better results.  

One type of dimension reduction is feature selection. The focus of this field is to remove the 

redundant features that contribute unwanted noise to the data. By finding the best features, 

one can avoid the Curse of Dimensionality and produce smaller and simpler models that are 

more interpretable, which in turn gives shorter runtimes.  

As a result of increasing demands for machine learning, the need for developing better 

methods has pushed the field to new heights, with algorithms reaching astonishing results in 

terms of performance [11]. However, this has come at a price. The best methods have many 

parameters, making it difficult to understand how they reached a given decision. This is often 

referred to as the model being a “black box”; the data is fed to the model, and a prediction is 

made, but one often has difficulty understanding what happens in the process of learning and 

making predictions like visualized in figure 2.4. Opening this “black box” could be very 

useful for many fields, such as medicine. Understanding why the algorithm predicts a 

prognosis is essential information and could lead to discovering new biomarkers of the 

disease. 

 

Figure 2.4: Black Box model visualization 

 

2.1.6 Validation 

 

When training a model, it often good practice to set aside a portion of the available data for 

testing in the later stages of training. This is done to validate the model’s performance on 

unseen data, to see how well it generalizes. It is important to do a step like this to avoid 

overfitting the model. How much data one sets a side depends on how much data is available; 

the bigger the dataset, the more can be used as test data. Usually, this is done by splitting a 

given percentage of the data, as seen in figure 2.5. However, in cases like this thesis, where 
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few samples are available, it is not very informative to do a standard split. Because there is 

little data left to train on and the test data is even more limited, it can be susceptible to how 

the samples are split. This means that the performance can vary greatly depending on what 

samples are in the training split and what samples are in the test split. In cases like these, one 

can use other methods to validate the data. 

 

 

Figure 2.5: Splitting data into a training set and a test set 

 

One way to validate the performance is through cross-validation, where one trains 𝑘 model 

using 𝑘 folds of the training data. One of the folds is held as validation each iteration meaning 

the models are trained on 𝑘 − 1 folds as seen in figure 2.6. Each iteration, a different fold is 

used. This way, it can be worked around being sensitive to how it is partitioned. When using 

stratified K-fold, the distribution of classes are preserved in each fold. 

 

 

Figure 2.6: Splitting data into four folds 
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2.2 Tsetlin Machine 

 

The Tsetlin Machine is a pattern recognition algorithm introduced by Ole-Christoffer Granmo 

in his 2018 paper [7]. The paper explains how the Tsetlin Machine can perform complex 

pattern recognition using a collective of Tsetlin Automata. The Tsetlin Automaton is a 

method of solving the multi-armed bandit problem [8] from game theory. It identifies these 

patterns using propositional logic [7], which can also be used for interpretation. Section 2.2 

will explain how the Tsetlin Machine works. It is structured in sub-sections to make each part 

of the Tsetlin Machine more understandable, stating with the necessary basics and progressing 

to the more complicated components.  

 

2.2.1 Propositional logic 

 

The Tsetlin Machine is based on propositional logic and thus is central to understanding it. 

Propositional logic, also called propositional algebra, is a branch of logic dealing with true 

and false propositions. Due to the binary nature, it is an influential subject in the logics of 

computer science. It has a role as its formal language and theoretical basis [10]. The syntax of 

propositional logic follows a set of rules to create statements (propositional formulas) that are 

either true or false. The statements are built up by propositional variables that are combined 

using logical operators. In this way, complex formulas can be created. The standard notation 

for the logical operators is conjunctive denoted ⋀ (logical and), disjunctive denoted ⋁ (logical 

or), and the logical not is denoted ¬. Further, this thesis will denote the propositional variables 

with 𝑥𝑖, as done in Büning & Lettmann (1999), where 𝑖 = 1, 2, … , 𝑛. Büning & Lettmann 

(1999) describe in their book the following set of rules: 

1. Every propositional variable is a formula. 

2. If 𝑥1is a formula, then ¬𝑥1 is also a formula. 

3. If 𝑥1 and 𝑥2 are formulas, then 𝑥1⋀𝑥2 and 𝑥1⋁𝑥2 are formulas. 

4. Only the expression forms given by 1. - 3. are formulas. 
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These rules can create highly complex formulas and are the language used by the Tsetlin 

Machine to describe complex patterns. A more detailed explanation of how the Tsetlin 

Machine does this will be shown in section 2.2.2. This gives the Tsetlin Machine its 

interpretability as its patterns can be explained through propositional statements [7], which are 

readable by humans.  

Suppose one uses this logic on natural language and wants to make a statement if an object is, 

for example, a tree or not. Then one can create a statement such as: IF an object is OVER 3 

meter AND has left. If both conditions of the statements are true, then the whole statement is 

true. This is, of course, not a very detailed description of a tree. Adding more conditions could 

help make the statement more refined, and thus the description more detailed. 

 

2.2.2 The Tsetlin Automaton 

 

The basic building block of the Tsetlin Machine is the Tsetlin Automaton. The Automaton is 

a solution to a two-armed bandit problem explained in section 2.1.2, where it is trying to learn 

the best action. Functionally, it belongs to reinforcement learning, where it is trying to 

reinforce the best action in an environment.  

 

 

Figure 2.7: "A Tsetlin Automaton for two-action environments." From O.C Granmo (2018) 

 

There are two possible actions for the Tsetlin Automaton, and performing an action will result 

in either reward or penalty [7]. The agent of the Automaton will have a state in range 1 to 2N. 

If the agent is in state range 1 to N, it will perform action 1. Consequently, it will perform 

action 2 when in range N + 1 to 2N, as seen in figure 2.7. It will then check if the action 
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performed was correct in relation to the ground truth. If it was, it gets a reward, and the agent 

will update its state such that it moves further towards state 1 if the state is in the range 1 to N 

or towards 2N if the state is in the range N + 1 to 2N. This reward and penalty system will 

show how strongly the automata prefer one action. The further towards one side the agent is, 

the more secure it is that the given action will give the overall best yield. When transitioning 

from action 1 to action 2 or reverse, it is always the result of a penalty. This is the way the 

Tsetlin Automata tries to solve the explore and exploit problem. 

 

2.2.3 From Input Data to Literals and Clauses 

 

As input data, the Tsetlin Machine will use some given binary data 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑥𝑝 ∈

{0,1}. The data will be used to create propositional patterns and thus must be binary so that it 

is equivalent to a vector of propositional variables. We then also must consider the counterpart 

to each of the propositional variables [7], ¬𝑥𝑘 = 1 − 𝑥𝑘 With 𝑘 ∈ [1,… ,2𝑛].Together these 

make up the literal set 𝐿 = [𝑙1, 𝑙2, … , 𝑙2𝑛] = [𝑥1, 𝑥2, … , 𝑥𝑛, ¬𝑥1, ¬𝑥2, … , ¬𝑥𝑛], meaning 𝐿 is 

double the length of 𝑋. The Tsetlin Machine learns by creating patterns through ANDing (⋀-

notation) a subset of the literals 𝐿𝑗 ⊆ 𝐿 into conjunctive clauses denoted as 𝐶𝑗, with j as the 

index of the clause. This results in [7]:  

 

𝐶𝑗(𝑋) = ⋀ 𝐿𝑗

𝑙𝑘∈𝐿𝑗

= ∏ 𝐿𝑗

𝑙𝑘∈𝐿𝑗

 

As an example, if one have the input data 𝑋 = [𝑥1, 𝑥2, 𝑥3] and the full literal set 𝐿 =

[𝑥1 , 𝑥2, 𝑥3, ¬𝑥1, ¬𝑥2, ¬𝑥3], one possible clause could be 𝐶𝑗(𝑋) = 𝑥1  ∧ 𝑥3 ∧ ¬𝑥2 =

𝑥1 × 𝑥3 × ¬𝑥2. This clause is created from the subset 𝐿𝑗 = [𝑥1 , 𝑥3, ¬𝑥2] . If the values then 

are 𝑋 = [1,0,1] and 𝐿 = [1,0,1,0,1,0], the clause would output 𝐶𝑗(𝑋) = 1 ∧ 1 ∧ 1 = 1. 

As stated in Granmo (2018), the conjunctive clauses can express no less than 22𝑛
 unique 

propositional patterns when n is the number of input variables. Because of this, the 

conjunctive clauses are great for expressing non-linear patterns pattern recognition [7].   

 



17 
 

2.2.4 Tsetlin Automata Teams for Creating Clauses 

 

The next step to understanding the Tsetlin Machine is using the Tsetlin Automaton with the 

literals and propositional logic to give it the ability to learn patterns. When the Tsetlin 

Machine initializes, there is one Tsetlin Automaton per literal, which oversees deciding 

whether the literal is included in the resulting conjunctive clause or excluded. Figure 2.8 

shows a visualization of a Tsetlin Machine with two clauses, one positive and one negative. It 

depicts input data with two binary features. This leads to a literal set of 4 features, and thus 4 

Tsetlin Automata per clause, giving a total of 8. Each TA has six action states, and the black 

dots in figure 2.8 is the current state. If the dot is over the dotted line, the TA is included 

(action 1) and conversely excluded (action 2) when under the line. If a TA and its literal are 

included, the figure depicts them brighter than the excluded. The figure also shows the 

outputs 𝑊+and 𝑊− from each of the clauses that are used in the majority voting. The majority 

voting will be further explained in the next section. Lastly, figure 2.8 shows the feedback, 

which updates the states in each of the TA. The mechanic behind the feedback will be 

explained in section 2.2.5. As explained in section 2.2.1, the TAs have two actions, which is 

to decide whether the literal is included in the conjunctive clause. The TM will use the 

mechanics of the TA to learn what action they will take. If we look at the two clauses in 

figure 2.8, the positive and the negative has learned different patterns. These patterns will 

determine the clause output based on the input 𝑋 and what it will vote towards as the final 

prediction. 
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Figure 2.8:: “Two Tsetlin Automata teams, each producing a conjunctive clause. The overall output is based on majority 

voting.” From O.C. Granmo (2018) 

 

 

2.2.5 Majority Voting 

 

The Tsetlin Machine has a parameter 𝑚 that decides the number of clauses. The input 𝑋 will 

be fed to each of these clauses. Half of the clauses will be assigned positive polarity, and the 

other half will be assigned negative polarity. The positive clauses are in Granmo (2018) 

denoted with upper index 1: 𝐶𝑗
1, with 𝑗 ∈ {1,2, … ,𝑚/2}. The negative clauses with the upper 

index 0: 𝐶𝑗
0, with 𝑗 ∈ {1,2, … ,𝑚/2}. The role of the clauses is to learn different sub-pattern, 

and during classification, each of the clauses will individually try to predict the class of the 

input sample.   

 

When deciding on the prediction output 𝑦̂ the Tsetlin Machine uses majority voting. Using a 

step unit 𝑢(𝑣) = 1 𝑖𝑓 𝑣 ≥ 0 𝑒𝑙𝑠𝑒 0, the outputs of both positive and negative clauses are 

summed and checked on which side of the threshold they fall. When voting, the positive 
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clauses votes for 𝑦 = 1 and the negative clauses votes for 𝑦 = 0. The resulting formula for 

majority voting is: 

𝑦̂ =  𝑢 (∑𝐶𝑗
1(𝑋)

𝑛/2

𝑗=1

− ∑𝐶𝑗
0(𝑋)

𝑛/2

𝑗=1

) 

 

As Granmo (2018) stated, the purpose of the clauses in the majority voting is to get a 

balanced decision, weighting negative and positive evidence found in the input. An example 

used in the paper are clauses that capture the classic XOR-relation [?]: 𝑦̂ =  𝑢(𝑥1¬𝑥2 +

¬𝑥1𝑥2 − 𝑥1𝑥2 − ¬𝑥1¬𝑥2). 

 

2.2.6 Tsetlin Automata Game as Learning Process 

 

As described earlier, each clause 𝐶𝑗(𝑋) consists of a team of Tsetlin Automata, with each 

Tsetlin Automaton representing a literal 𝑙𝑘. The Tsetlin Automaton is deciding to include or 

exclude the literal clause, as seen in figure 5. They learn if a literal should be included or not 

through a game of automata to reinforce them. Because of this game, the Tsetlin Machine 

reaches a global optimum when learning [7].  

Granmo (2018) explains the game-theoretic logic behind the learning mechanism and how it 

solves the pattern recognition problem. The game is set up between the Tsetlin Automata and 

is played over multiple rounds. Each Tsetlin Automaton decides separately to perform either 

the include or action exclude depending on the current state. Since the number of actions 

available to each Automaton is two, the number of available action configuration is 2𝑁 (N is 

the number Tsetlin Automata). This gives the game a high potential for complexity. After 

each round, every Automaton is either penalized or rewarded, thus changing the state of every 

Tsetlin Automaton according to the internal rules, as mentioned in section 2.2.1. For the game 

to be fully specified, each of the Tsetlin Automata must be assigned a reward probability for 

each unique configuration of actions. In the paper, those probabilities are stated as the pay-off 

matrix of the game [7]. Since the Tsetlin Machine uses N two-action Tsetlin Automata, this 

gives us 𝑁2𝑁 probabilities in the pay-off matrix. 
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Because of how the Tsetlin Automaton together decides the output of the Tsetlin Machine, the 

game can potentially become very complex. Because of this, Granmo (2018) has carefully 

designed the pay-off matrix so that the Tsetlin Automata jointly is guided towards solving a 

given pattern recognition problem. Because of the potential size of the problem, the matrix 

cannot be specifically stated [7]. To solve the problem, the pay-off matrix is decomposed to 

tackle true positive, false positive and false negative outputs of the clauses, therefore treating 

each clause as individual classifiers. To increase the freedom of the automata, true negatives 

are ignored. To lead the Tsetlin Automata towards increased pattern recognition accuracy, the 

false positive and false negative clause outputs are progressively suppressed. The Granmo 

(2018) paper refers to the guiding as Type I and Type II feedback [7]. 

Type I feedback is responsible for increasing true positive outputs and preventing false 

negative outputs [7]. It is given when a clause is of positive polarity 𝐶𝑗
1(𝑋) when 𝑦 = 1 and to 

clauses of negative polarity when 𝐶𝑗
0(𝑋) when 𝑦 = 0. In addition, as seen in table 2.1, the 

action 𝛼 (include or exclude) and the value of the literal 𝑙𝑘 decides the probability. So, for 

example, if a clause evaluates 𝐶𝑗
1(𝑋) = 1, and the literal value is 𝑙𝑗 = 1 and the action state  

has decided include, then the probability of rewarding the Tsetlin Automaton is 
𝑠−1

𝑠
, the 

probability of inaction is 
1

𝑠
 and the probability of penalty is 0. The inaction is an extension of 

the Tsetlin Automatons two actions and leaves its state unchanged [7].  
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𝐼𝑛𝑝𝑢𝑡 
𝐶𝑙𝑎𝑢𝑠𝑒 1 0 

𝐿𝑖𝑡𝑒𝑟𝑎𝑙 1 0 1 0 

𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 

𝑃(𝑅𝑒𝑤𝑎𝑟𝑑) 
𝑠 − 1

𝑠
 𝑁𝐴 0 0 

𝑃(𝐼𝑛𝑎𝑐𝑡𝑖𝑜𝑛) 
1

𝑠
 𝑁𝐴 

𝑠 − 1

𝑠
 

𝑠 − 1

𝑠
 

𝑃(𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 0 𝑁𝐴 
1

𝑠
 

1

𝑠
 

𝐸𝑥𝑐𝑙𝑢𝑑𝑒 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 

𝑃(𝑅𝑒𝑤𝑎𝑟𝑑) 0 
1

𝑠
 

1

𝑠
 

1

𝑠
 

𝑃(𝐼𝑛𝑎𝑐𝑡𝑖𝑜𝑛) 
1

𝑠
 

𝑠 − 1

𝑠
 

𝑠 − 1

𝑠
 

𝑠 − 1

𝑠
 

𝑷(𝑷𝒆𝒏𝒂𝒍𝒕𝒚) 
𝒔 − 𝟏

𝒔
 𝟎 𝟎 𝟎 

Table 2.1: Type 1 Feedback 

 

Type II feedback is responsible for preventing false positive outputs [7]. Similar to type I, it 

follows a set of rules to create its “pay-off matrix”. It is given when the class polarity of the 

clause does not match the y. The feedback is produced when 𝐶𝑗
0(𝑋) and 𝑦 = 1 or 𝐶𝑗

1(𝑋) and 

𝑦 = 0. The purpose is to increase the discriminant power of the Tsetlin Machine. Table 2.2 

shows that if a clause is supposed to output 0 when 𝐶𝑗
0(𝑋) and 𝑦 = 1 or 𝐶𝑗

1(𝑋) and 𝑦 = 0 to 

achieve this [7]. However, if the clause evaluates as 1 by error, then a zero-valued literal will 

be given a penalty to include it in the clause. Because of the conjunctive logic of the Tsetlin 

Automata teams, the clause will change its evaluation to 0. In the situations besides this, as 

one can see in table 2.2, type II feedback will only cause inaction. Because the include 

reinforcement is left to the type I feedback, the Tsetlin Machine avoids local minima and 

work together to minimize the expected output error and go towards the global optimum. In 

the paper Granmo (2018), it is shown analytically that the optimal configuration of sub-

patterns is the Nash equilibrium of the Tsetlin Machine game. 
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𝐼𝑛𝑝𝑢𝑡 
𝐶𝑙𝑎𝑢𝑠𝑒 1 0 

𝐿𝑖𝑡𝑒𝑟𝑎𝑙 1 0 1 0 

𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 

𝑃(𝑅𝑒𝑤𝑎𝑟𝑑) 0 𝑁𝐴 0 0 

𝑃(𝐼𝑛𝑎𝑐𝑡𝑖𝑜𝑛) 1 𝑁𝐴 1 1 

𝑃(𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 0 𝑁𝐴 0 0 

𝐸𝑥𝑐𝑙𝑢𝑑𝑒 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 

𝑃(𝑅𝑒𝑤𝑎𝑟𝑑) 0 0 0 0 

𝑃(𝐼𝑛𝑎𝑐𝑡𝑖𝑜𝑛) 1 0 1 1 

𝑃(𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 𝟎 𝟏 𝟎 𝟎 

Table 2.2: Type II Feedback 

 

2.2.7 Parameters: s, T, and Number of Clauses 

 

The hyperparameter 𝑠 from the type I feedback probabilities is set by the user [7]. As can be 

deduced from table 2.1 𝑠 ≥ 1 and decides how much to favour the inclusion of literals by the 

Tsetlin Automata. Another way to word it is, the s decides how finely detailed the clauses will 

be and how frequent they are going to be produced. This means that the bigger the s is the 

more the Tsetlin Machine will favour the inclusion of the literals. Consequently, the opposite 

is true for s closer to 1. Finding the correct 𝑠 for a given pattern recognition problem is a part 

of hyperparameter-tuning.  

Another hyperparameter is T, which is a target for the summation of clauses.  It is enough for 

the Tsetlin Machine output to have the correct sign when summing the output the clauses 

∑ 𝐶𝑗
1(𝑋)𝑛/2

𝑗=1 − ∑ 𝐶𝑗
0(𝑋)𝑛/2

𝑗=1 , as this will be put through a step unit function. T is introduced to 

help with noisy data [7]. Granmo (2018) states that the intention of this hyperparameter is to 

make the available clauses distribute themselves between sub-patterns in the data [7]. It also 

potentially makes for interplay between the clauses, including rectification of special cases 

[7]. T also comes into play with the resource allocation mechanism [7] that the Tsetlin 

Machine uses. This mechanism ensures that not too many resources are used on each of the 

specific sub-patterns. It does this by randomly selecting clauses to receive feedback so that the 

intensity is reduced when getting closer to the summation target T. 
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The last hyperparameter to be set by the user is the number of clauses to be created. As 

mentioned in section 2.2.4, half of the clauses are given positive polarity, and the other half is 

given negative. This gives the user control over how many potential sub-patterns the Tsetlin 

Machine can potentially find in the data.  

 

2.2.8 Binarizing of Continuous Data 

 

The Tsetlin Machine only takes binary variables as input. Therefore continuous data needs to 

be binarized before being fed to the Tsetlin Machine. In the Darshana (2019) paper, a pre-

processing method for converting continuous variables into binary ones is described. First, the 

method selects a feature to work on, and the procedure can be replicated on all the features. 

The unique values of the continuous feature are found {𝑣1, 𝑣2, … , 𝑣𝑢} [12], These unique 

values are then potential thresholds for the transformation. If one takes some threshold value 

𝑣𝑤 from the set, then the condition for all the other values in the complete continuous feature 

set is ≤ 𝑣𝑤. Because of this, the continuous values will then either pass or fail the condition 

and output 1 or 0, respectively. 

Table 2.3 shows an example of a continuous feature being transformed into three binary 

features using the thresholds. The unique values in the continuous feature are {4.21,

7.48, 22.92}. The first value, (7.48), is greater than the first threshold (4.21), but the same as 

the second threshold (7.48) and smaller than the third (22.92). This results in the binary 

feature 011. When applying the same procedure, the second continuous feature becomes 001 

and the fourth 111. 

 

Continous Data 
Thershold 

≤ 4.21 ≤ 7.48 ≤ 22.92 

7.48 0 1 1 

22.92 0 0 1 

7.48 0 1 1 

4.21 1 1 1 

Table 2.3: Thersholding continous features 
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2.3 Models for Comparison 

 

For comparing the results of the Tsetlin Machine as a classifier for this thesis, a handful of 

other standard classifier algorithms were selected. They are some of the most common 

algorithms used in data science and machine learning. The following sections are some short 

summaries of the logic behind each of them. 

 

2.3.1 Logistic Regression 

 

Here we look at the basic form of logistic regression, a linear model that performs binary 

classification. It is a probabilistic model that outputs the probability of a sample being a 

positive event. A positive event, in this case, means desired output, not necessarily a good 

event. Raschka & Mirjaili (2017) describe the odds, which is “the odds in favour of a 

particular event” (p. 59). They use the form 
𝑝

(1−𝑝)
 where 𝑝 is the probability of the event being 

positive and has the label 𝑦 = 1 [4]. The logit function is then defined as the logarithm of the 

odds: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log
𝑝

(1 − 𝑝)
 

 

If we then have a training set {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)}, we can establish the relationship 

between the feature values and log-odds. Because the logit function can transform a value in 

the range 0 to 1 into a real-number value, we can write [4][13]:  

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑦 = 1|𝑥)) = 𝑤0𝑥0 + 𝑤1𝑥1 + ⋯+ 𝑤𝑚𝑥𝑚 = ∑𝑤𝑖𝑥𝑖

𝑚

𝑖=0

= 𝒘𝑇𝒙 

Here 𝑤 is the weights of each features 𝑥. Since we are interested in the conditional probability 

𝑝(𝑦𝑖 = 1|𝑥𝑖), we want the inverse form called logistic sigmoid function. It is this outputs the 

probabilities of the class of a sample given its features: 
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𝑝(𝑦𝑖 = 1|𝑥𝑖) = Φ(𝑧) =
1

1 + 𝑒−𝒛
 

 

𝑧 is the linear combination of the weights and sample features, 𝒛 = 𝒘𝑇𝒙. During training, it is 

these weights that are updated. 

 

2.3.2 Naïve Bayes Classifier  

 

Naïve Bayes belongs to the class of Bayesian classifiers, meaning it is a probabilistic 

classifier [14]. Although perhaps unrealistic, it assumes independence between the classes it is 

trying to predict. This simplifies the classifier greatly, and we get:  

 

𝑃(𝑿|𝑦) = ∏𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

 

 

Where 𝑿 = [𝑥1, 𝑥2, … 𝑥𝑛] is the feature vector, and 𝑦 is the class of the problem. To arrive at 

the classifier, we take Bayes theorem with the previous assumption:  

 

𝑃(𝑦|𝑿) =
𝑃(𝑦)∑ 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑦)𝑛

𝑖=1

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)
 

 

Because 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is identical for all the classes, it can be ignored and gives the Bayes 

discriminant function:  

𝑃(𝑦|𝑿) ∝ 𝑃(𝑦)∑𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑦)

𝑛

𝑖=1

 

Then an argmax function can be applied: 
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𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦)∑𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑦)

𝑛

𝑖=1

 

 

To estimate 𝑃(𝑦) and 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑦) a maximum a posterior probability is found. One of 

the main differences between the Naïve Bayes Classifiers is the assumptions of 𝑃(𝑿|𝑦). In 

the Gaussian Naïve Bayes it follows a Gaussian distribution: 

𝑃(𝑿|𝑦) =
1

√2𝜋𝜎2
𝑒

−
(𝑥1−𝜇)2

2𝜎2  

 

2.3.3 Support Vector Machine   

 

The support vector machine is an algorithm that seeks to maximize the margin between 

classes [4]. The margin is a hyperplane defined as the distance between the decision boundary 

and the training samples closest to the hyperplane. These samples are called support vectors. 

Figure 2.9 shows an example of this. This logic can be extended to many-dimensional data, 

and the SVM is often used for that.  

 

 

Figure 2.9: SVM maximizing the margin between the hyperplanes and decision boundary. Adapded from  Raschka, S., & 

Mirjalili, V. (2017). 
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The idea of maximizing the distance from decision boundary is to increase the generalization 

capabilities of the model, thus decreasing overfitting. To find the best hyperplane the positive 

and negative parallel to the decision boundary can be written as:  

 

𝑤0 + 𝒘𝑻𝒙+ = 𝟏 

𝑤0 + 𝒘𝑻𝒙− = −𝟏 

 

Subtracted from each other, they are:  

 

𝒘𝑻(𝒙+ − 𝒙−) = 𝟐 

 

To find the length of 𝒘, the equation is normalized:  

 

‖𝒘‖ = √∑ 𝒘𝒋

𝒎

𝒋=𝟏
 

 

We then arrive at the equation:  

 

𝒘𝑻(𝒙+ − 𝒙−)

‖𝒘‖
=

𝟐

‖𝒘‖
 

 

The left side of the equation can be seen as the distance between the positive and negative 

hyperplane. It is this distance we are trying to maximize. The task of the SVM is then to use 

the training samples under the restraint that they are correctly classified to maximize the 

margin to create the optimal decision boundary for the data. 
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Chapter 3 Materials 

 

The structure of this section may seem somewhat counterintuitive. Because the analysis is at 

the core of the thesis, collecting new data is secondary to assessing the Tsetlin Machine. The 

data is rather a benchmark for the algorithm to compare with other machine learning methods. 

Thus, in this context, the data is a tool for comparing the different machine learning 

algorithms. This makes the role of the data different but not less important. 

The need for substantial materials is somewhat obsolete in this set of circumstances. The 

dataset has a limited sample size and does not require comprehensive resources to process. 

Because of this, the hardware needed is somewhat standard. Also, the Tsetlin Machine has 

open-source code and is readily available. 

This chapter describes the tools used for the thesis. Section 3.1 is a description of where the 

dataset was accumulated and a short description of the features created from MRI images 

using radiomics. After that, in section 3.2, the hardware is listed. Lastly, section 3.3 is about 

the software used for the thesis from API to Python libraries. It also contains a short overview 

of what they are used for. 

 

3.1 Dataset 

 

The data used in this analysis was originally part of The OxyTarget study – Functional MRI of 

Hypoxia-Mediated Rectal Cancer Aggressiveness [ClinicalTrials NCT01816607] for 

Akershus University hospital in 2013 [23] and was collected before this thesis. It has a limited 

number of patients, making the set relatively small in terms of sample size. Because of this, 

no high computational performance hardware should be required for the analysis, and it can 

be performed on most modern personal computers and laptops. 

The raw MRI image data from the study were not used, but rather a set created for Langan 

(2020) master thesis [24] by extracting radiomic features from the MRI images. In the thesis, 

Langan uses the PyRadiomics [25] Python package to create these features. The data comes in 

two unique sets (set1 and set2). Set1 has the features extracted without any changes to the 
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voxels of the original images, while set2 has its voxels resampled to give a resolution of  

1𝑥1𝑥1 𝑚𝑚2. Both sets have three versions, T2 containing only T2-weigthet images, T2b5  

containing both T2-weigted and diffusion-weighted images (b5) and one combined of the two 

with all the diffusion-weighted images (b0-b6). All the files have radiomic features of three 

different classes: shape features, First-order statistical features and texture features.  The 

pyRadiomic can extract many features, and for some perspective, the combined set has 772. 

For a more in-depth description of the features, see Langan (2020) [24].  

The thesis explores several datasets. In addition to the feature sets, one additional dataset 

contains the target variable for the analysis. This variable is called progression-free survival 

(PFS) and can be true or false (Boolean 1 or 0). If the variable is true, the given patient has 

cancer recurrence, metastases, or death within 3 years after being included in the OxyTarget 

study. If it is false, the patient has survived cancer-free. Thus, the thesis seeks to use the 

features from the above paragraph to predict the PFS. While the original study has 110 

patients, the total number of patients used was 81. This is because some of the patients 

withdrew their consent, and some of the PFS values are missing. 

 

3.2 Hardware  

 

As mentioned previously, the analysis in this thesis can be done on most modern personal 

computers. The experiments were run on a laptop with Intel Core i5-6300HQ processor at 

2.30 GHz. The RAM of the laptop was 8.00 GB and running Windows 10 as the operating 

system.   

 

3.3 Software 

 

As the Tsetlin Machine python package requires a Linux operating system, installing a sub-

system on the laptop mentioned in the previous section was necessary. Specifically, Ubuntu 

release 20.04.1 was used. This enabled it to run all the necessary programs for the analysis. 

The thesis used Python version 3.8.2, with Jupyter Notebook version 6.1.4. As for libraries 
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used, they were Numpy [17] version 1.19.2, Pandas [18] version 1.1.3, Matplotlib [19] version 

3.3.2, Scikit-learn [20] version 0.23.2 and pyTsetlinMachine [21]. All these packages are, as 

mentioned previously, open-source and can be accessed by anyone using pip3 or installing a 

distribution package such as Anaconda [22]. The packages were installed separately using 

pip3 inside the Ubuntu terminal to create a separate environment to work within.    

These packages combined are used to perform the different operation needed to do the 

analysis. They handle things such as holding the data in arrays and doing mathematical 

computation. It enables Python to do the calculations with greater efficiency. Matplotlib 

handles the plots so that the data and the results can be visualized. Scikit-learn and 

pyTsetlinMachine are packages explicitly used for data analysis and machine learning. The 

packages will be described in more detail in chapter 4: methods. There it will be explained 

how they are used for the analysis. 
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Chapter 4 Methods 

 

This chapter will describe the methodology of the analysis. Section 4.1 describes the pre-

processing. It includes data handling and RENT used for feature selection. Section 4.1 covers 

the training of models and finding the optimal hyperparameters.  

 

4.1 Pre-processing 

 

The Tsetlin Machine is the basis for how the pre-processing is done. In the case of the other 

models requiring additional pre-processing, this is specified.  

 

4.1.1 Data Handling 

 

To contain and handle the data, the Python package Pandas [26] was used. Pandas is a library 

for handling and creating data structures for statistical computing for scientific use. When 

having structured data such as CSV-file, Pandas is advantageous for manipulating and 

working with data in Python. It can open the file directly from the directory and convert it into 

a DataFrame, a type of array that has additional functionality. One example is allowing the 

naming of the columns, which is practical when working with named features. 

Because the data is, as mentioned in section 3.1, separated into different files, the target 

values and features had to be merged. The total number of samples in the features and target 

sets did not match up because some of the patients did not have PFS value assigned, so this 

had to be matched to proceed. This was done by matching the patient’s ID in the different 

files, which was done using Pandas. The new datasets now consist of only the samples with 

both the radiomic features and progression-free survival values.  For example, one of the 

DataFrames with the combined data contained 81 rows of patients and 773 columns of 

radiomic features.  
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4.1.2 RENT for Feature Selection 

 

Jenul, A. (2020) explains that for reducing the complexity of models when training on 

datasets with many features, it is essential to perform feature selection [27]. Repeated elastic 

net technique (RENT) is the feature selection method used in this thesis as part of the 

analysis. RENT can be used for both regression and binary classification problems. It is not 

only focused on improving the predictive performance but also gives information about the 

stability of the process of selecting features. The feature selection is an assemble of elastic net 

regularized models trained on unique subsets of the original data. The regularization is done 

using a combination of L1 and L2 regularization. Because of this, two of the parameters that 

must be set prior to the feature selection is the ratio between L1 and L2 (called L1 ratio in the 

package) and the regularization strength (called C in the package). If given multiple values, 

RENT will perform a cross-validated grid search with these parameters. As seen in figure 4.1, 

RENT trains K models on unique subsets of the training data, where K is an input parameter 

that the user can set. 

 

 

Figure 4.1: “The scheme depicts the feature selection pipeline suggested by RENT, represented by the blue frame.” From 

Jenul, A. (2020) 

 

For the feature selection, the relevant information of the importance of the features are gained 

across all the models and saved as a matrix [27]. There are then three criteria that can be set, 

which all must be met for a feature to be selected, 𝜏1, 𝜏2, 𝜏3.   For each feature 𝑓𝑛 (𝑛 =

1, … , 𝑁) from the training set, there are weights 𝛽𝑘,𝑛 that are trained per model 𝑀𝑘 (𝑘 =

1, … , K). Every feature 𝑓𝑛 thus has a feature importance vector 𝛽𝑛 = (𝛽1,𝑛, … , 𝛽𝐾,𝑛).The 𝜏1is 
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then a measure of relevancy of the feature taking the average frequency 𝑐(𝛽𝑛) across the 

models by finding the percentage of non-zero parameters for 𝑓𝑛: 

 

𝑐(𝛽𝑛) =
1

𝐾
∑ 𝟙[𝛽𝑘,𝑛≠0] 

𝐾

𝑘=1

 

 

Two other summary statistics are calculated, which are the feature-specific mean and variance 

of the feature weights: 

 

𝜇(𝛽𝑛) =
1

𝐾
∑ 𝛽𝑘,𝑛

𝐾

𝑘=1

 

𝜎2(𝛽𝑛) =
1

𝐾
∑(𝛽𝑘,𝑛 −

𝐾

𝑘=1

𝜇(𝛽𝑛))2 

 

Jenul, A. (2020) describes that a feature 𝑓𝑛 is selected if:   

1. It has a high score 𝑐(𝛽𝑛) that beats a set threshold.  

2. The feature does not alternate between positive and negative sign more than a set 

threshold. 

3. It has high non-zero model parameter estimates consistently over the 𝐾 models and 

that they have low variance. 

Mathematically the criteria are defined as: 

 

𝜏1(𝛽𝑛) = 𝑐(𝛽𝑛) 

 

𝜏2(𝛽𝑛) =
1

𝐾
|∑ 𝑠𝑖𝑔𝑛(𝛽𝑘,𝑛 ≠ 0)

𝐾

𝑘=1

| 
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𝜏3(𝛽𝑛) = 𝑡𝐾−1

(

 
𝜇(𝛽𝑛)

√𝜎2(𝛽𝑛)
𝐾 )

  

 

Where the function 𝑡𝐾−1 is the cumulative density of the Student’s t-distribution with K − 1 

degrees of freedom. These criteria can be thresholded on a scale of [0,1] so that the user 

decides how strict the demands are for a feature to be selected. The Python package also has 

other functions, such as the function called object summary that gives information about how 

many times the samples has been part of the test set, as well as the number of times it was 

incorrectly classified by RENT while part of the test set and percentage incorrectly predicted.  

 

4.2 Training Models 

 

For the Tsetlin Machine, the pyTsetlinMachine [21] was used. Logistic Regression, SVM and 

Naïve Bayes were used as models for comparison. They were from the Python library scikit-

learn. However, since the Tsetlin Machine was not implemented in scikit-learn, the 

methodology usually used when training could not be used, such as automated grid search and 

other similar tools. To get the most comparable results, all the models were trained using the 

same framework.  

 

4.2.1 Scikit-learn Stratified 4-fold 

 

The stratified K-fold method from Scikit-learn is a type of K-fold data splitting used to 

validate the performance of both the RENT analysis and the models used for comparison. 

Each fold is created such that they contain approximately the same percentage of each class in 

the complete dataset. When running it, four folds was selected, and the method provides the 

indices for each fold. 
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4.2.2 Hyperparameter Searching  

 

The hyperparameter searching was done using a grid search by looping hyperparameters for 

each algorithm to find the best performance. For the Tsetlin Machine T, s and number of 

clauses were explored, the logistic regression searched solver and C hyperparameter, SVM 

searched kernel and gamma and lastly, Naïve Bayes did not have hyperparameters to search. 

The searches were organized in a grid where the intervals for the values of the 

hyperparameters could be set. For each setting of hyperparameters per algorithm, a 4-fold 

validation taking an average of the scores was used. This was done so that the performance 

would be more robust. Because of the small number of samples, these best results were used 

to compare the models. 
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Chapter 5 Results 

 

Figure 5.1 shows a visualization of the workflow for producing the results. This flow was 

used for both set1 and set2, as well as their respective versions. The workflow was set up as 

shown in figure 5.1 to work around the low number of samples and get validated results from 

RENT and the models. In the step to produce the F1 and MCC, each algorithm was trained 

four times using stratified 4-fold to validate the metrics.  

 

 

Figure 5.1: The workflow for producing the results. The same workflow was used for all the datasets. 

 

This chapter is structured by first looking at set1 and following the workflow. Results from 

RENT first and then the results from the training and hyperparameter search of the models. 

This set is described more in-depth as it was the focus of the analysis, while set2 was mainly 

used for additional information to potentially get more information about PFS from RENT 

and the models. Set2 follows the same structure but not as detailed. The chapter also has a 

section about the clauses and literals that the Tsetlin Machine learns. 
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5.1 Dataset 1: T2, T2b5 and combined 

 

5.1.1 RENT feature selection 

 

For set 1, all three versions were run through the same pipeline to identify what MCC and F1-

score they could achieve. The first step was feature selection using RENT, described in 4.2.2. 

When selecting features, RENT was run on 3 out of 4 stratified folds and tested on the 

remaining fold to get more robust predictive performance. In practice, that meant running 

RENT four times on each set to get variations in training and test splits and get a more robust 

selection. The C parameter, l1-ratio and cut-off was set to the same for every time RENT was 

run. Table 5.1 shows what they were set to. 

 

C parameter 0.9 

L1 ratio 0.5 

Cut-off: 𝜏1, 𝜏2, 𝜏3 0.5, 0.5, 0.5 

Table 5.1: RENT parameter settings 

 

When using splits, there is a choice between using the intersection of features where the 

features selected over all the splits are used or the union of features, where using the features 

that have been selected at least once. Due to the timeframe of the thesis, union was used, but 

the intersection of features can be explored in future work. Table 5.2 shows the original 

number of features as well as the selected number with the setting mentioned above. 

 

 

Set 1 version Original feature number Selected feature number 

T2 107 46 

T2b5 214 57 

Combined 772 103 

Table 5.2: Number of selected features on the 81 patients 
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5.1.2 Scores from Hyperparameter tuning 

 

The models were all trained and tested on every version of set1. A hyperparameter search per 

version of the set with the selected features for each version was also performed. The best 

score of each model was used to compare. All the models were run through a grid search, 

except for Naïve Bayes, which do not have hyperparameters to tune. For more robust results, 

each combination was also tested on a 4-fold stratified split taking the average of the folds. 

This was done to try to get a more robust estimate of the performance across 4 splits.   

 

Model F1-score MCC 

Tsetlin Machine 0.49 0.08 

Logistic Regression 0.56 0.23 

SVM 0.55 0.20 

Naïve Bayes 0.38 -0.09 

Table 5.3: F1-score and MCC for set 1 T2 

 

Table 5.3 shows the results of all the classifiers on the T2 set. Something important to note is 

that some of the models, in this case, did not get the best F1-score and MCC with the same 

hyperparameter settings. For example, the results from the Tsetlin Machine got the F1 = 0.49 

with 850 clauses, T = 20 and s = 10, but got MCC = 0.08 with 100 clauses T = 140 and s  = 

1.1. What this could mean will be discussed in chapter 6. 
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Model F1-score MCC 

Tsetlin Machine 0.59 0.29 

Logistic Regression 0.58 0.22 

SVM 0.63 0.33 

Naïve Bayes 0.53 0.07 

Table 5.4: F1-score and MCC for set 1 T2b2 

 

For the T2b5 version, table 5.4 contains the results. It has the same issue as the results of T2. 

Some of the models do not have the same parameters for both metrics. For the Tsetlin 

Machine, it is only the s that varies, with F1 scoring best with s = 3.3 and MCC best at s = 

7.8. For this set version, the logistic regression also does this, with C = 10 for the best MCC 

and C = 4.3 for the best F1. 

Table 5.5 shows the results for the combined version of set 1. For this set version, the MCC 

and F1-scores had the same hyperparameters. One interesting detail to note is that for the 

logistic regression, C could range from 0.8 to 9.7 and still get the same results as displayed in 

table 5.5. 

 

Model F1-score MCC 

Tsetlin Machine 0.62 0.39 

Logistic Regression 0.64 0.32 

SVM 0.65 0.38 

Naïve Bayes 0.63 0.25 

Table 5.5: F1-score and MCC for set 1 combined 

 

5.2 Dataset 2: T2, T2b5 and combined 

 

5.2.1 RENT feature selection 
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The same workflow for set1 was used for set2 because they had the same features with only 

different resolutions. The second set was used to find out if there were additional information 

to be gathered to predict the response variable. For the RENT feature selection, the 

parameters as in table 5.1 were used, resulting in the dimension reduction as in table 5.6. As 

one can see, the number of selected features is similar to the feature selection on dataset 1.  

 

Set 2 version Original feature number Selected feature number 

T2 107 49 

T2b5 214 53 

Combined 772 107 

Table 5.6: Number of selected features on the 81 patients 

 

5.2.2 Scores from Hyperparameter tuning 

 

Using the number of features from table 5.6 feature selection and using the same grid search 

method as set1 provided the results shown in table 5.7-5.9. 

 

Model F1-score MCC 

Tsetlin Machine 0.48 0.12 

Logistic Regression 0.42 0.01 

SVM 0.47 0.06 

Naïve Bayes 0.42 -0.06 

Table 5.7: F1-score and MCC for set 2 T2 

 

Model F1-score MCC 

Tsetlin Machine 0.55 0.20 

Logistic Regression 0.53 0.18 

SVM 0.52 0.17 

Naïve Bayes 0.54 0.05 

Table 5.8: F1-score and MCC for set 2 T2b5 
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Model F1-score MCC 

Tsetlin Machine 0.68 0.42 

Logistic Regression 0.66 0.34 

SVM 0.63 0.37 

Naïve Bayes 0.63 0.25 

Table 5.9: F1-score and MCC for set 2 combined 

 

5.3 Printing Clauses for Interpretability 

 

With some additional code, it was possible to print the clauses of the Tsetlin Machine model. 

These are the sub-patterns it has learned during training. Figure 5.1 shows some of these 

clauses. They are literal form from the binarized input data, being displayed as conjunctive 

literal statements. They still need work to be able to interpret them regarding the continuous 

features from the datasets. Since the literals are based on binary features, it is necessary to 

identify distinct values which the literals represent in the continuous features to return them to 

the original features. 

 

 

Figure 5.2: Four of the Class 0 Positive clauses generated from the set 1 combined dataset 
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5.4 RENT object summary 

 

Figure 5.2 displays RENT object summary of 7 of the 81 samples from one of the RENT 

analyses. The patient is in numbered order, and the missing patients are in the fold used for 

testing. It shows how many times a sample has been in the test split when running RENT for 

100 repeated models. Looking at patient 3 in table 5.10, the first column shows that it has 

been part of the test set during the training of the models in RENT. The second show that the 

actual class of the patient is 0. The two last columns show that the number of times the class 

has been incorrectly predicted is 40 and that it was mispredicted 97.6% of the time. Patient 10 

has done considerably better, with only five times being incorrect out of the 39 times it has 

been part of the test set. What this might imply for the results will be discussed in chapter 6. 

 

 

Table 5.10: Excerpt of some of the samples and how often the models in RENT incorrectly predicted the samples. 
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Chapter 6 Discussion  

 

6.1 Datasets 

The quality of the data was a slight drawback of the project. As were reflected in the results in 

chapter 5, neither RENT nor the models provided stable high scores. It can seem like the 

information in the feature are not sufficient to give good predictions of the class. What this 

meant for the analysis was simply to lower the expectations for the scores and instead look at 

comparisons of the models. Even though set 2 was not the focus point of the analysis, it was 

valuable in giving more F1 scores and MCC for making the model comparisons more robust. 

The differences in the scores from the sets and the version in the sets might come from the 

differences in features precent from the radiomic features extractions and difference in 

resolutions. 

Perhaps the most significant factor in making pattern recognition difficult with the set is the 

sample size versus the feature space. As described in chapter 3: materials, even the smallest 

datasets have more features than samples. The number of usable patients being 81 is also not 

particularly favourable. When working with datasets like these, the classification results might 

be statistically questionable even with feature selection [28]. These caveats must be 

considered when working with the data, especially since they are healthcare data. 

 

6.2 RENT feature Selection  

 

To work around the limited sample size, 4-fold stratified splitting was from Scikit-learn used. 

Using a normal test and training split, both RENT and the models were sensitive to how the 

data was split. This could lead to quite varying results, indicating that they could be 

misleading. For this reason, the average performance of the 4-fold splits was used to get a 

more robust estimate of the performance. The split sensitivity can also be seen in the 

validation studies generated by RENT. Figure 6.1 and 6.2 show a validation study from two 

different folds on set 1 Combined. The validation is done on the testing fold from the 4-fold 
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splits left out when training. It uses the selected features from the training and tests the 

predicative performance, comparing it to VS1 and VS2. VS1 selects randomly from all the 

features and represents an inefficient feature selection that does not take any predive 

information into account. This is done a default of 100 times, and the blue curve shows the 

distribution of scores.VS2 trains a logistic regression model on the test data based on the 

features selected by RENT and randomly permutes the class label. It does this a default of 100 

times, and the green curve shows the distribution of the scores. Lastly, the red line is the score 

of a logistic regression model trained with all the data using the selected features from RENT. 

As seen in the two figures, the different splits have different performances. This was the 

reasoning behind using four folds to do four analysis because it gave a more varied look at the 

feature selection on the data. The potential drawback of using this method is that the 

generalization of the whole process is unknown.  

 

 

Figure 6.1: RENT Analysis validation study for split 2 of set 1 Combined. 

 

 

Figure 6.2: RENT Analysis validation study for split 3 of set 1 Combined. 

 

Even though the data has some drawback, it still responded somewhat well to feature 

selection. When trying the models without RENT feature selection with the complete set of 
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772 features, the performance from all the models was around the same as guessing (around 

MCC = 0). This meant that RENT feature selection was able to improve the performance of 

the models to what they are listed as in the results section. Perhaps this indicates that the 

RENT could remove some of the noise in the data, revealing patterns. It would seem feature 

selection was an essential part of the workflow, maybe even the most vital. Trying different 

methods for feature selection could be interesting to see if it would select the same features as 

RENT and if there are differences in performance. Maybe another set of features could reveal 

more. However, this is something for further work. 

Something note about RENT is that it is based on logistic regression. One can think that this 

makes the selected features more tuned to logistic regression as a classifier and maybe do not 

improve performance for other algorithms. This is speculative though, and more evidence is 

needed to state something conclusive about it. 

 

6.3 Set1: Comparing Tsetlin Machine to Other Models 

 

From how predictive models are used in healthcare, the overall performances of the models of 

this analysis must become higher than they are currently. As seen in the results, the best 

performances for set1 were achieved with the combined version. This version had F1-scores 

over 0.6 for all the models and had the highest MCCs.  The best F1-score was 0.65 from the 

SVM. The best MCC was from the Tsetlin Machine on the same version, achieving 0.33. It 

would be fair to say that these are modest numbers at best, however not directly poor. In 

general, the models scored roughly the same T2, T2b2 and combined. Naïve Bayes was a bit 

behind on T2 and T2b2. The Tsetlin Machine also had poor performance on the T2 for the 

MCC. However, perhaps the most interesting result is that the Tsetlin Machine scores around 

the same as the other models for F1 and MCC (apart from T2). This might indicate that no 

one algorithm performs overall better or worse. In these cases, other advantages such as lower 

runtime or better interpretability might be the deciding factor in selecting what algorithm to 

use ultimately. The interpretability of the results will be discussed in section 6.5. 
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Figure 6.3: Grid showing TM results Set1 combined. 

  

  

The results come with a caveat, and that is the Tsetlin Machine got its best F1-score and best 

MCC with different hyperparameters with T2 and T2b5. Figure 6.3 shows a grid of one of the 

hyperparameters MCC with scores. As one can see, there is not one apparent pattern for when 

the scores improve or get worse. It can seem that a T = 20 gives somewhat better scores. 

Since there are so few samples, this can affect the model to make it less robust towards 

generalization and make it harder to find patterns.  

 

6.4 Set2: Comparing Tsetlin Machine to Other Models 

 

The results for set 2 seem to overall be similar to the results for set 1. The most significant 

difference is perhaps that the F1 scores for all the models lie close to each other, with no one 

sticking out. One interesting note is that the Tsetlin Machine outperforms the other models for 

all the versions of set 2 in both F1-score and MCC. The combined set 2 had the best overall 

score, with the Tsetlin Machine scoring 0.68 for F1-score and 0.42 for MCC. This adds to the 

notion that it can compete with the other models.  
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6.5 Interpretability of the Tsetlin Machine 

 

An important factor of what makes the TM promising is the interpretability it provides with 

clauses in the form of propositional formulas. Potentially this gives an insight into which 

patterns are important for predicting the PFS variable. For healthcare data such as those in this 

analysis, these patterns could give important insight into the disease. As seen in Figure 5.1, it 

is possible to print the clauses for the trained Tsetlin Machine model with some additional 

code. This is a good starting point for interpreting the decision-making in the model, but the 

problem is that it is not quite human-readable. In terms of the original features of the dataset, 

it can be challenging to understand what the clauses indicate without calculating the literals 

back to a continuous scale. This is because the clauses are binary, and the data is continuous. 

What this means for this analysis is that there is a step missing in the automation of this 

process to take full advantage of the information provided by the Tsetlin Machine. To make 

the results more human-readable, a step should be included to convert the binary clauses back 

into continuous values and features. This could give individuals, such as doctors, without the 

knowledge of the Tsetlin Machine a better understanding of the outputs of potential new 

patients. One would only have to know the data one is working with, and the Tsetlin Machine 

would provide the patterns in the data that makes it a given class. 

 

6.6 Other Notions  

 

One thing to note about the data quality is the results of the object summary from RENT seen 

in figure 5.2, is the number of samples it got wrong a high percentage of the time. During its 

analysis of the RENT ensemble of models predicted many of the samples wrong, and this 

might indicate that the amount of relevant systematic information of the data might affect the 

results of the models. The effect is most likely that the wrongly predicted samples add noise 

to the data and makes it harder for the models to recognize patterns. Removing these samples 

would most likely yield improved performance for the models but at the cost of 

generalization. Because if they are removed, a similar process must be done for potential new 

samples. Deciding if a sample is relevant for the model when collecting it might be difficult.  
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Chapter 7 Conclusion  

 

Based on the results from the four algorithms applied in this thesis, it seems that in this 

project, the Tsetlin Machine can at least compete with the other models when working with 

the wide dataset of radiomic features from MRI images. However, this is with the note that all 

the models do not score very high. However, the scores are at least relatively consistent. It 

must also be added that in order to get better performance from the models on the data, they 

were dependent on using RENT feature selection to reduce the feature dimension space to 

remove non-informative features. The low number of samples compared to the high number 

of features gave rise to results that were difficult to validate with high certainty, so the 4-fold 

cross-validation used tried to increase the robustness of the validation. Considering these 

factors, the fact that the Tsetlin Machine generally was able to compete is confirmation of its 

usefulness.  

For the explainable part of the Tsetlin Machine, in terms of continuous data, it still needs a bit 

of work to be used in a practical way. The literals and clauses produced are still a not 

straightforward for human interpretability since the propositional formula may be relatively 

complex. However, it should also be stated that the fact that the Tsetlin Machine can even 

produce these clauses, which are the sub-patterns it uses for decision making, is promising. 

This could be reasoning for use in medicine in the near future if the translation of the 

propositional formula from literals back to values on a continuous scale would be automated. 
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7.1 Further Work 

 

Most likely, this thesis has not utilized the full potential of the Tsetlin Machine. To increase 

the performance, one could explore hyperparameter tuning more to see if this can lead to 

better performance. When exploring this, one can look at the features from the analysis and 

the number of bits per feature when binarizing the data. There might be a possibility of 

finding better performance through an extensive search. Additionally, there is an option for 

weighted clauses. This version of the Tsetlin Machine weighs clauses so that it needs fewer 

clauses to reinforce patterns [29], which require different settings of hyperparameters s, T and 

number of clauses. One can also look at different methods for feature selection to see how 

much impact finding the right features have on the scores. Another option to explore to work 

around the limited number of samples is trying techniques to synthetically increase the 

number of samples. This might help the Tsetlin Machine, and the other models enforce the 

patterns found in the data. The training scores should perhaps have been included to see if the 

models were overfitting or the information in the data was difficult to predict.  

It would also be interesting to look at the running time and memory usage of the Tsetlin 

Machine and compare it to the other algorithms used in this thesis.  
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Appendix  
 

 

Figure 0.1:Full object summary from RENT on split 1. 
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