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Abstract

This thesis aims to assist Arkivverket, The National Archival Services of Norway,
in automating the redaction of national identity numbers in historical documents.
As historical documents are released to the public at request, it is necessary to
prevent personal data misallocation. Today this is handled by manual redaction of
national identity numbers performed by employees at Arkivverket. Implementing
a workflow where a machine learning model suggests possible national identity
numbers (NIDs) to the employee for redaction may save time and increase the
overall amount of NIDs identified. Arkivverket has developed a machine learning
prototype for automatic document redaction using Optical Character Recognition
and other tools. However, the current solution is not sufficiently accurate to be
put into production in a suggestion workflow as approximately 11% of the identity
numbers are left unredacted (based on the recall score). With a recall score of
89.0%, a precision score of 88.3%, and an F1 score of 88.6%, this model is used as
a baseline for the performance of machine learning models developed and trained
in this thesis.

The thesis had two main goals. The first was to test whether object detection is
a viable choice for automatically identifying NIDs. The documents contain many
similar words and numbers, and many documents comprising a combination of
hand- and machine-written text. The second goal, assuming that object detection
is indeed a viable choice, was to check whether our detection models can reach a
performance level that meets the demands of a suggestion workflow where each
document is checked for NIDs by the model before being quality-assured by an
employee and submitted. This would save time for the employees while prevent-
ing the unnecessary release of NIDs due to human error. In the long term, fully
automated document redaction is the goal.

Results show that using object detection models based on the Detectron2 frame-
work is a highly viable approach for this problem, perhaps in large part due to the
models’ ability to recognize difficult, handwritten national identity numbers. The
fine-tuned models are capable of reaching scores beyond those of the current pro-
totype developed at Arkivverket. The most accurate model achieved a recall score
of 97.9%, a precision score of 94.9%, and an F1 score of 96.4%. Based on our
estimations, this model correctly identified more NIDs in the dataset than its hu-
man counterparts at Arkivverket. A proposal for a deployment architecture is pre-
sented to illustrate the potential for combining our model and the existing redaction
software to have a lasting economic- and ethical impact on the daily practices of
Arkivverket. It is estimated that Arkivverket can initially save 65,417 NOK yearly
after maintenance costs by implementing the proposed algorithm. With time and
further research, however, the process of redacting national identity numbers may
become fully autonomous and the savings potential greater.
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1. Introduction

1.1 Background
Misallocation of personal data can arguably be described as a societal problem as it
is often a factor in identity theft [1]. Not only is the sale and abuse of this data a hot
topic in today’s society, but recent cases imply that large amounts of personal data,
such as national identity numbers, are published as a result of lacking identification
of these [2, 3, 4]. In Norway, a national identity number is not confidential in and
of itself but the mass publication of these on the internet may conflict with privacy
laws [5].

In 2016, Aftenposten published a news article pointing out that Arkivverket, The
National Archival Services of Norway, had been making historical documents
available online which contained unredacted national identification numbers, amongst
other person-specific data [6]. A spokesperson from Datatilsynet, The Norwegian
Data Protection Authority, commented that since each of these documents was cre-
ated and made available per request, Arkivverket did not break any laws. However,
he commented that the solution was not ideal and that every sensitive data point
should ideally be redacted.

Arkivverket wishes to comply with personal protection guidelines and is exper-
imenting with applying Machine Learning (ML) to aid in redacting documents.
Implementing a workflow where an algorithm suggests possible national identity
numbers to redact and an employee quality-assures the suggestions, may have both
economic and ethical/judicial benefits:

1. Significantly decreasing the amount of time spent by employees in the process
of redacting national identification numbers, thus lowering costs and increasing
employee productivity.

2. Increase the number of correctly redacted national identification numbers by
allowing employees to perform quality assurance instead of the tedious and error-
prone task of identifying every target in the document manually.

In the long term, an ideal goal would be for the models to be sufficiently accurate
to autonomously redact and release historical documents per request.

1.2 Problem Statement
Arkivverket wants to automate document redaction, but the current prototype is
not sufficiently accurate at identifying the target national identification numbers.
As the current prototype model is based on Optical Character Recognition (OCR),
the stagnation in performance may largely be due to difficult-to-read text of various

1



forms in the documents.

Two sequential goals were set for this project thesis:

1. To test whether or not machine learning models based on object detection can
separate relevant national identification numbers from similar words and numbers
in historical documents.

2. If the first goal is reached, to test if these models are sufficiently accurate to
aid manual redaction by suggesting potential national identification numbers in
historical documents.

Arkivverket has not formulated a specific accuracy-threshold for the model to be
regarded as sufficiently accurate. The accuracy that would be sufficient for imple-
menting a model into the workflow of employees would have to be decided through
pilot projects where employees actually test the real-world performance of a pro-
totype. An informal goal of 95 percent recall (i.e. that the model misses no more
than 5 percent of the actual national identity numbers) has been set through talks
with the project owners at Arkivverket.

In accordance with these goals, the report may have three distinct outcomes: The
first potential outcome is that object detection models are not at all able to identify
national identity numbers in the documents, failing both goals. The second poten-
tial outcome is that a model based on object detection is able to identify national
identity numbers, but does not perform better than the current solution. The third
potential outcome is that object detection models are sufficiently accurate to be
deployed in a suggestion prototype through a trial project.

1.3 Structure of thesis
Chapter 2 will cover the theoretical background for this thesis. Chapter 3 will give
an overview of the materials and data used, and Chapter 4 describes the method-
ology applied. In Chapter 5, the results are presented and discussed. Chapter 6
presents how this project may be implemented at Arkivverket and the possible risks
and benefits, both economic and ethical, of implementing such a model. Results
are summarized in Chapter 7, in addition to concluding remarks.
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2. Theory

This chapter will give a theoretical foundation for this thesis. It covers the basics
of data selection and processing and gives an overview of machine learning ad-
vancements over the years, with an emphasis on deep learning. An introduction
to the inner workings of object detectors is provided and how they are used in the
context of this project. Additionally, this chapter will give a brief background on
the potential economic consequences of implementing such a model into the daily
workflow.

2.1 On the topic of machine learning
Machine learning is a subset of artificial intelligence where a self-learning algo-
rithm uses structured and/or unstructured data to derive knowledge. This technol-
ogy is used in all spheres of society, affecting people’s daily lives in more ways
than many are aware of. Machine learning can be used for many purposes, ranging
from email spam filters and voice recognition to autonomous cars and the detection
of cancer cells [7].

2.1.1 Different types of learning
Machine learning can be broken down into three types of learning: supervised
learning, unsupervised learning, and reinforcement learning.

With supervised learning, the main goal is to learn based on already labeled data.
The model will look for similarities among the observations with the same label
and utilize these to predict labels of unseen or future data. As the algorithm learns,
it is given the task of predicting the label of observations where the label is known.
If the predicted label is identical to the ground-truth label, the model is rewarded.
If the predicted label is wrong, the model is updated.

When dealing with unstructured or unlabeled data, one can use unsupervised learn-
ing. The algorithm will explore the data to find systematic information without the
guidance of labels.

The goal of reinforcement learning is to develop a system that interacts with its
environment and improves its performance through rewards and penalties. A chess
engine is an example of this, as the algorithm decides its moves based on its envi-
ronment, i.e. where the chess pieces are placed. The end goal is to win, and the
algorithm is given a positive or negative signal based on whether it achieves victory
or not [7].

2.1.2 Machine Learning Project Life Cycle
The objective of a machine learning project is to solve a problem. Typically, the
first step is to understand the problem and why it needs to be solved. From this
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understanding, the project may be formed, and a defined goal should be set. This
goal should include what the model will receive as input, the desired output, and
what rate of error is considered to be acceptable.

Based on the goal of the project, relevant data should be collected, selected, and
prepared. When the data is ready, a model can be trained and evaluated. This
process is repeated until the predictive performance of the model converges. When
the model is ready, it can be deployed and begin to serve its purpose. Changes
in input data or in the statistical relationship between the features and the label
might cause model performance degradation [8]. Therefore, the model should be
monitored and maintained to ensure that the performance does not deteriorate over
time. Figure 2.1 shows a typical life cycle of a machine learning project.

Figure 2.1: The life cycle of a machine learning project

The methods proposed for monitoring and maintaining deployed models in this
thesis are described in Section 6.1.3.

2.2 Dataset
Data is the basis for all machine learning and the quality of the dataset has great
consequences for the output quality of any algorithm. The algorithm is exposed to
a set of data that is used for training and then exposed to another set of data used
to test how the algorithm performs. To enable this process, the original dataset
is divided into a training dataset and a test dataset. To get the data ready for a
machine learning algorithm, it is often necessary to go through the preparatory
step of pre-processing.

The dataset used for this thesis is described in Chapter 3, and the methods applied
in processing the dataset are described in Chapter 4.
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2.2.1 Bounding boxes
Before an image is used for training a model, bounding boxes are widely used to
describe the target location of objects, such as a personal identity number, within
the image [9]. These objects are outlined and classified so that the machine can
learn their shape and form, with the end goal of a model to recognize, localize
and classify similar objects in other images. The bounding box typically has the
shape of a rectangle where the location within an image is determined by x- and
y-axis coordinates in both the upper left corner and the lower right corner of the
box.

The bounding boxes that were provided by Arkivverket are discussed in Section
3.1.2.

2.2.2 Training-, validation-, and test-sets
To ensure that a machine learning algorithm performs well, not only in a train-
ing environment but also when introduced to new data, the dataset is divided into
separate "sets". The divided parts are referred to as training data and test data. Of-
tentimes it is appropriate to add a third division, the validation dataset, [10]. The
sizes of these parts may vary, but a typical distribution is 70/15/15. The training
dataset consists of 70% of the data and test and validation sets of 15% each. In the
process of selecting data for the training-, test and validation-sets, it is important to
ensure similar characteristics and features across all sets to avoid non-representable
results when testing the algorithm. In the case of this thesis, data similarity may
translate to similar styles of text in the documents, image dimensions and other at-
tributes. For this thesis, the dataset splits are stratified by a custom value (Φ), that
gives each sample a value based on the size of its bounding boxes relative to the
size of the image. Stratification of dataset splits means choosing an attribute in the
dataset and making sure each of the splits have a similar distribution of values for
this attribute. More information on the Φ-attribute and dataset-splits is provided in
Section 4.2.1.

The training dataset is the data used to train the model. During this process, the
model learns the structure of the data and the similarities of the observations with
the same labels. Based on this, the parameters of the model are adjusted to solve
the problem in question.

After the algorithm is fit on the training set, one can use a validation set to see
how it performs, with the option of making adjustments intact. The resulting error
rate provides an estimate of the future error rate. If the error rate is too large,
one can adjust the model’s parameters to improve prediction performance without
compromising the test split.

When a model is fit on the training data, with satisfying results when applied to
the validation set, it is introduced to the data it has not seen before, the test dataset.
This is done to review its performance and to estimate its ability to generalize,
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meaning the model’s ability to react to unseen data. As the test dataset is new
to the algorithm, it can indicate how the model will perform when introduced to
future data outside the dataset.

2.2.3 Preprocessing

Data preprocessing is a preliminary step often executed before further training to
improve and ensure the input data quality [11]. This step may include removing
outliers, compensate for missing values, and scale observations to make samples
more similar and increase the quality of the input data to the model. In the specific
case of image analysis, preprocessing may also include adjustment of exposure,
sharpening, and resizing to make images more similar.

Preprocessing, data selection and descriptive statistics are discussed in Chapter
4.

2.2.4 National identity numbers

National identity numbers were introduced in Norway in 1964 to simplify the iden-
tification of individuals [12]. All Norwegian citizens and those who settle in Nor-
way long term are given a national identity number of 11 digits. The first 6 numbers
are defined by the date of birth (dd.mm.yy). The subsequent 5 digits are defined
as their personal number [13]. The first three digits of the personal number are
individual numbers. This number is allocated depending on the date of birth. The
individual number for people born between 1854 and 1899 are allocated from se-
ries 500 to 749. From the year 1900 to 1999 are allocated from series 000 to 499.
Additionally, the individual number for people born between 1940 to 1999 can be
allocated from series 900 to 999. From 2000 to 2039 are allocated from series
500 to 999. The following digit of the individual number indicates gender where
odd numbers indicate male and even female. The last two digits are control digits.
Figure 2.2 shows how the national identity numbers are structured.

Figure 2.2: Illustration of how national identity numbers in Norway are

structured
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Neither the national identity number nor the personal number is regarded as sen-
sitive national information. However, the use and storage of these numbers are
regulated by Norwegian law. The national identity number is only to be used to
identify an individual when the cause is justified. Examples of this include tax
reporting and credit checks.

Historically an individual’s national identity number would grant a person access
to confidential information. However, in recent years other means of identification
is often required in addition to providing the national identity number.

In accordance with wishes from Arkivverket, this thesis will focus on redacting
the last 5 digits of national identity numbers (the personal number) from historic
documents. By doing so, the date of birth will remain visible, whilst keeping the
individual’s privacy protected.

Examples of national identify numbers in the historical documents explored in this
thesis are shown in Figure 3.3.

2.3 Deep learning

A machine-learning algorithm uses a set of rules to make predictions from the data
[14]. These rules are called the machine learning model. By utilizing these rules,
the model processes points of data and returns a prediction. As the model gets
feedback on right and wrong predictions, it learns by adjusting the rules. Deep
learning is a subset of machine learning used to train networks of artificial neurons
and is well suited for analyzing images [7].

2.3.1 Artificial neurons

In 1943, Warren McCulloch and Walter Pitts published the first concept of a sim-
plified brain cell [15]. In their research, they were trying to understand how the
human brain works with the purpose of designing artificial intelligence. The sim-
plification is referred to as the McCulloch-Pitts Neuron. They described the neuron
as a simple logical gate with binary outputs. Multiple inputs arrive at the neuron
and each input is weighted according to individual weights (w1, w2...wn) that are
set for each node. If the accumulated weighted input reaches the threshold of the
neuron, an output signal is generated.
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Figure 2.3: Illustration of the McCulloch-Pitts Neuron

Perceptron

Based on the McCulloch-Pitts Neuron, Frank Rosenblatt published the first concept
of the Perceptron, an algorithm to classify the input received [16]. The model finds
the optimal weight of the coefficients and multiplies them with the input features.
By doing so, the model can determine if a neuron transmits a signal or not and if
they should be included.

z = w1x1 + w2x2 + · · ·+ wmxm (2.1)

The net input, z, is the aggregate sum of each weighted input node from the previ-
ous layer.

x =

x1...
xm

, w =

w1
...
wm

 (2.2)

x is a vector of all input values to the layer, and w is a vector of all input weights
to a layer.

Adaline

ADAptive LInear NEuron (Adaline) [17] is similar to the Perceptron, a single-
layer neural network with a single neuron. The main difference is that the Adaline
model uses a linear activation function to measure loss before applying the thresh-
old function. This allows the Adaline neuron to update its weights based on the
degree of error, as opposed to the true-or-false approach implemented by the Per-
ceptron.
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Figure 2.4: Illustration of a Perceptron

Figure 2.5: Illustration of the Adaptive Linear Neuron

2.3.2 Artificial neural networks

As single neurons have limited capacity for learning all relevant patterns in the
data, they can be grouped and organized as units in an artificial neural network.
The network may consist of multiple layers of parallel units. These units, or neu-
rons, are activated by the same type of activation function (see Section 2.3.2 on
activation functions) but each neuron has unique weights associated with the out-
puts of neurons in the previous layer which are adjusted during training. In the first
layer, each input feature is typically distributed to an individual input node before
being passed on to a given number of nodes in the next layers.
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Figure 2.6: Illustration of layers in an artificial neural network

Hidden layers and output layer

The layers between the input and output layers in an artificial neural network are
referred to as hidden layers. A network can consist of any number of hidden layers,
and those containing more than one are referred to as a Deep Artificial Neural Net-
work. Each of these layers consists of a bias unit in addition to an arbitrary number
of units, or neurons. The hidden layers’ neurons receive input from the preced-
ing layers and multiply the inputs by their respective weights before an activation
function is applied and the outputs are passed on to the next layer.

The output layer multiplies the weights and inputs from the last hidden layer and
may use an activation function on the net input. The number of nodes in the out-
put layer depends on the machine learning problem, with each node representing a
class or regression value. If the network’s objective is regression with a single out-
put value, the output layer consists of a single neuron representing the regression
value, and no activation function is applied. On the other hand, a multi-class prob-
lem with n classes requires an output layer with neurons for each class, resulting
in n neurons. The output values for each of these neurons represent the probabil-
ity that a given sample belongs to each of the possible classes after an activation
function is applied to each node’s net input.

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks, a neural network architecture, is widely
used as a foundation for Machine Learning models to analyze and classify objects
in images [18]. The method was first developed by Yann LeCun and his colleagues
in 1989, as they proposed a method for classifying handwritten digits from images
[19]. In 2012, Deep Convolutional Neural Networks attained much attention after
outperforming all its competitors in the image classification contest ILSVRC [20].
Since then, it has become a popular field of research leading to major improve-
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ments to the method.

For a machine-learning algorithm to perform well, the network must extract rele-
vant features from the data. If done manually, this would require a high degree of
domain knowledge. However, Deep Convolutional Neural Networks can automati-
cally learn the features directly from the raw data. The layers of the network can be
regarded as feature extractors, as they can recognize and categorize the information
in the data to predict a target value or class label.

After the model is fed a numerical representation of an image, it will construct
a feature hierarchy. By synthesizing the low-level features, such as textures and
edges, it forms high-level features which are more complex shapes, such as the
outline of a building or an animal [7].

Activation functions

Activation functions are used to determine the output of each neuron after mul-
tiplying the input values by the corresponding weights. Examples of activation
functions are the Sigmoid function, which takes any real number as an input and
outputs a value between 0 and 1, and the ReLU activation function which returns
zero for negative numbers but does not affect positive input values. In order to pre-
vent common neural network challenges such as vanishing or exploding gradients
(see Section 2.3.4), activation functions are applied to the output values of hidden
layers. Activation functions introduce non-linearity to the outputs, traditionally in
order to simulate whether a neuron is "firing" or not based on the input, but research
has since found ways of using different activation functions to increase backprop-
agation speed and allow scaling of models (see section 2.3.3).

The logistic sigmoid function, often referred to as the sigmoid function due to its
shape, takes any input value and returns values close to 1 for large positive num-
bers, and values close to 0 for large negative numbers. It is mainly used in the final
layer of binary classifiers (where the model predicts either 0 or 1) to determine
the probability that a certain sample belongs to a certain class. Historically, the
sigmoid function has been used as an activation function between hidden layers as
well, but research has proven that models using the sigmoid function as an activa-
tion function do not scale well beyond a few network layers, mainly because of the
problem of vanishing gradients (see 2.3.4).

Equation 2.3 shows the sigmoid function [7].

σ(z) =
1

1 + e−z
(2.3)

Rectified Linear Unit (ReLU) is a non-linear activation function that is well suited
for learning complex functions with neural networks [7]. One reason for this is
that the derivative of the ReLU function, with respect to its input, is always 1 for
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positive values, and 0 for negative values. This is what makes it a good choice when
trying to prevent the problem of vanishing or explodng gradients (see Section 2.3.4
on scaling neural networks).

Equation 2.4 shows the ReLU function [7].

σ(z) = max(0, z) =

{
z if z > 0
0 if z ≤ 0

(2.4)

2.3.3 Optimization
The optimizer determines how the model will learn [21]. By changing the model’s
attributes such as weights and learning rate, the optimizer may reduce loss and
optimize performance by determining the way a model updates weights through
backpropagation, as well as introducing regularization of models.

Gradient descent and backpropagation

Gradient descent is one of the most common optimization algorithms used to op-
timize neural networks. In simple terms, gradient descent is one of the ways a
machine learning algorithm "learns" from its mistakes and is able to correctly pre-
dict unseen data samples. As illustrated in Figure 2.7, the weights of the model
are adjusted taking repeated steps in the opposite direction of the gradient, i.e. the
derivative of the cost function, until the cost function is at, or close to, zero. The
slope of the cost function is based on how much the predictions made by a model
differ from the ground truth, and at each iteration, the set of weights in a model
is "nudged" in the direction that minimizes this slope. How much the weights are
changed at each iteration is determined by the learning rate.

Figure 2.7: Illustration of how the weight is adjusted to find the minimum

cost using Gradient descent

Backpropagation is an algorithm that computes the partial derivatives of each pa-
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rameter using the chain rule for derivatives of complex functions [8]. At each
iteration over the sample data, or epoch, gradient descent updates all parameters
using partial derivatives. In feed-forward neural networks, this means that after the
network has made a prediction based on the input values, the predictions are com-
pared to the wanted output and each set of weights are changed iteratively from
hidden layer to hidden layer, from the output layer towards the input layer.

Learning rate and weight decay

The learning rate is a hyperparameter determining the magnitude of change in
weights at each iteration as backpropagation attempts to reach the minimum of
the loss function. As a model is being trained, one can adjust the learning rate
according to a predefined learning rate schedule.

To improve the generalization of the learning algorithm, weight decay can be im-
plemented. Weight decay means gradually reducing the value of the learning rate
as the epochs progress. As a result, the parameter updates become finer, reducing
the chances of overshooting the cost function minimum [8]. In this thesis, weight
decay is implemented through a learning rate scheduler which reduces the learning
rate as epochs progresses (see Section 4.5.4).

Regularisation

Overfitting a model to the training data is a common challenge in both linear- and
non-linear machine learning models, and is usually correlated with the degree of
complexity in the model. Overfitting means a model might perform well on training
data, but due to the high variance in the predictions for similar samples, the model
does not generalize well to the test data. A large number of parameters, i.e. the
total number of weights for all neurons across all network layers may be a cause
of this problem. The increasing complexity of the model increases as the total
number of parameters increases. As more parameters increase the model capacity
for learning patterns, the model may eventually start adapting to "noisy" patterns
in the data, i.e. patterns that are not relevant for future predictions. At this point the
model is too well adapted to the training data, hence the term over-fitting.

Regularization of the model parameters is a method used to prevent overfitting
by maintaining the model’s ability to generalize well to the data and not adapt to
noise in the dataset. Common techniques for regularizing a neural network include
adjusting network width and depth, L1- and L2-regularization, dropout, and others
[22].

Perhaps the most straightforward method for regularizing a model is to decrease
model complexity by reducing the number of total parameters in the network, either
by reducing the number of layers or the number of neurons in each layer and thus
force the model to learn the more essential patterns in the training data. L1- and L2-
regularization are methods for penalizing large weights in the network by adding
additional terms to the cost function used in backpropagation.
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In the architectures implemented in this thesis, dropout is used frequently as a
regularization tool. By dropping random units and their connectors from the neural
network during its training, the network can not rely on the activation of a set of
hidden units and must therefore learn redundant representations in the network. For
every iteration, a different set of units are dropped. The user determines the dropout
rate, or the dropout probability, ranging from 0 to 1. When a fraction of units
are left out, the weights of the remaining units are re-scaled accordingly. One of
the reasons for choosing dropout as a regularization method in these architectures
is its simplicity, making it well suited for architectures of as many as 50 or 101
layers.

Batch-normalization

Batch-normalization (or batch-norm) is a method for normalizing the input val-
ues of each layer [23]. This is done by calculating the mean and variance of the
layer’s input in a batch of a given size and utilizing these values to normalize the
layer inputs. It then scales and shifts in order to obtain the output of the layer, us-
ing parameters that are learned along with the original parameters of the network.
During inference, the learned parameters for normalizing batches from training are
applied.

2.3.4 Scaling models
Though artificial neural networks tend to perform well on a variety of problems,
it is common to run into challenges when scaling these networks by increasing
model depth and thus model complexity. "Plain" networks tend to scale well to
16-30 layers and thus benefit from a higher amount of features. However, as plain
networks are scaled above 30 layers, they often perform worse than the shallower
networks [24]. This is largely due to the problem of vanishing gradients and can
be solved by implementing skip-connections, introduced in ResNet models [24],
and increasing model cardinality, introduced in ResNeXt models [25].

Vanishing and exploding gradients

As more layers with certain activation functions (such as the sigmoid function) are
added to neural networks, the gradients used to update weights by way of back-
propagation get gradually smaller for each layer [26]. Using the sigmoid function
as an example, the derivative of very large negative or positive input values is out-
put as very close to 0. As the gradient is multiplied by the gradient of earlier layers,
a very small derivative value in the earlier layer will cause the multiplication of two
very small numbers, and weights in early layers of large networks are updated little
to nothing. This results in reduced learning. There are various ways to reduce the
vanishing gradients problem. A common way to do it is to change the neural net-
work’s activation functions from sigmoid or tanh to Rectified Linear Unit. Using
ReLU as the main activation function prevents the squashing of output values in a
value range of [0, 1]. Thus, it helps keep derivatives of values in backpropagation
at a non-diminishing level [7].
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Using ReLU only partly solves the problem of vanishing gradients when scal-
ing neural networks. Another popular way of preventing the issue is to use skip
connections when designing the architecture. A more recent method is to intro-
duce the concept of model cardinality as an alternative to only increasing model
depth.

Skip-connections

Skip-connections, or layer shortcuts, were introduced by He, Zhang, Ren, and Sun
in 2015 [24]. In a model architecture they named Residual Neural Networks or
ResNets, they reused activations from earlier layers (often skipping 2-3 layers) as
inputs to layers. This helped reduce the issue of vanishing gradients and made for
more robust, and simpler, neural networks [24].

Cardinality versus layer depth

Model cardinality was introduced in 2017 by Xie et al [25]. In the paper, they
further developed the ResNet architecture by implementing a multi-branch archi-
tecture that repeated ResNet building blocks "horizontally" for each level of the
network, allowing for more complex networks without increasing layer depth. For
any given building block (e.g., a set of layers in a network that takes an input
of N channels and returns an output of N channels) in a ResNet architecture, the
cardinality term implies repeating the building blocks in a homogeneous manner
"alongside" the very same building block M times, where M is the cardinality-
factor or the size of the set of transformation. The improved model architecture
was named ResNeXt and proved to outperform previous ResNet models (at the
expense of larger, and thus slower, models).

2.3.5 Transfer Learning
Transfer learning utilizes what a machine-learned to solve one problem and applies
that knowledge to solve another problem [27]. In practice, transfer learning means
using a model which is previously trained on other, often large, datasets, and then
adapting the model to a specific problem. By freezing the weights of the first layers
of the model and then nudging the weights in the remaining layers, the pretrained
model will keep its former knowledge of low-level features and adapt its ability to
combine these features to recognize objects in the new medium - document images
in this case.

Machine learning models are traditionally designed to address single tasks, how-
ever, the development of algorithms enabling transfer learning is a topic of interest
among researchers in the field of machine learning. As the training of deep learning
models often requires substantial resources, transfer learning is a technique used
to minimize the required sample size and enhance the training of the model, both
in terms of speed and performance. Figure 2.8 illustrates the possible benefits of
transfer learning. Because the model has the knowledge to draw on before it is
trained further, the initial performance surpasses that of a model not using transfer
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learning. The learning rate in the training phase is illustrated with the steepness of
the curve. As illustrated, the final level of performance achieved when using trans-
fer learning has the potential of exceeding the performance of a model without
transfer learning.

Figure 2.8: How the use of transfer learning affects performance and

training time

Many research institutions have released models trained on vast and comprehen-
sive datasets, open and free to use. Because of the resources required to train such
models, this approach is widely used, especially when working with images or lan-
guage data. The University of Oxford, Google, Microsoft, and Stanford University
are examples of institutions that have released pretrained models for reuse. These
can be used in full or parts, depending on the fit between the pretrained model and
the problem at hand. For optimal performance, the model will oftentimes need to
be fine-tuned according to the given task. A reason fine-tuning pretrained network
work so well is that the model already knows how to recognize low-level features
such as shapes, edges, and blobs.

2.3.6 Object Detection
Object Detection is a technique that seeks to identify and locate different objects
in images and label them with specific class names, such as number plates on cars
or a parrot [28]. Utilizing convolutional neural networks, the model analyzes the
image, searching for patterns or structures to identify objects. Traditionally, an im-
age classifier would find class labels characterizing the entire or the most dominant
contents of its given image. However, an object detector’s goal is to find multi-
ple objects within an image and provide the object’s location via a bounding box
(see Section 2.2.1). An object detection algorithm’s output values would typically
include a list of bounding boxes in the form of x- and y-coordinates for each ob-
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ject. Secondly, it will provide the class labels associated with each bounding box.
Finally, the algorithm will rate its predictions, giving a score indicating the match
between the object and the label. Oftentimes the probability of a correct match is
used as the prediction score.

Regional Convolution Neural Networks (R-CNN)

To overcome the limitations of normal convolutional neural networks for object
detection tasks, Ross Girshick et al. proposed a method where a selective search
is used to extract 2000 regions from an image [29]. In this way, the convolutional
neural network can determine an object’s presence in each of the 2000 regions, a
significantly smaller number of regions than what would be needed if no selective
search were applied.

Each of the 2000 regions is warped into a square and fed into a convolutional neural
network, yielding a feature vector as an output. To determine whether an object is
indeed present in each of the 2000 regions, a support vector machine is used to
classify the image based on its feature vector.

Fast R-CNN, Faster R-CNN, and Mask R-CNN

The regional convolution neural network solved a lot of the problems related to
object detection using neural networks [30]. However, it suffers from a few glaring
drawbacks:

• It is slow, as the convolutional neural net that functions as a feature extractor
have to analyze 2000 regions, or images, per image to be predicted.

• The selective search algorithm is fixed, e.g., it does not implement learning
to improve its ability to identify the 2000 most relevant regions in the image.

To deal with these drawbacks, the Fast Regional Convolution Neural Network was
proposed by the same author [31]. This version removes the need to feed every
proposed region to the convolutional neural network. Instead, the full input image
is fed to the convolutional neural network, which creates a feature map used to
identify proposed regions. Again, the proposed regions are warped into squares
but are then processed by a pooling layer to enable them to be fed into a fully
connected layer.

With the implementation of the Fast R-CNN architecture, the convolutional neural
network no longer needs to process 2000 regions per input image but only pro-
cesses each input image once. However, there is still a large bottleneck in the ar-
chitecture, the Region Proposal Networks that tries to identify interesting regions
from the feature maps that are generated for each input image.

To deal with this bottleneck, the Faster Regional Convolution Neural Network was
proposed by Shaoqing Ren et al. in 2016 [32]. Contrary to the two algorithms men-
tioned above, this version does not perform a selective search for potential regions
of interest but allows the network to learn the region proposals by itself.
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Faster Regional Convolution Neural Networks start processing an image in the
same way as the Fast-version by extracting a feature map from the input image.
Then, instead of using a selective search algorithm to analyze the feature map,
the region proposals are predicted by a separate model. The rest of the process is
similar to that of the Fast Regional Neural Network. The Faster Regional Convo-
lution Neural Network is many times faster than the Fast-version, and orders of
magnitude faster than the original Regional Convolution Neural Network.

The Mask Regional Convolution Neural Network, proposed by Kaiming He et al.
in 2017 [33], represents yet another evolution in the line of R-CNNs. All in all, this
version is very similar to the Faster R-CNN. It does, however, add another layer
of complexity. Instead of only outputting predicted bounding boxes for objects in
the image, it also outputs a binary mask for each region of interest. The mask is
predicted using a fully connected network, as a mask is predicted on a pixel-to-
pixel basis. This fully connected network takes a single region of interest as an
input and outputs the region’s mask representation.

Backbones and heads

Both Faster R-CNN and Mask R-CNN are two-staged predictors made up of:

• A Region Proposal Network that extracts feature maps from the input image
and predicts regions of interest.

• A second stage (in essence Fast R-CNN) that extracts features from each
region and performs classification and bounding box-regression.

Common terms for these two stages are the network backbone architecture and the
network head. The object detection algorithms in this thesis use one of two main
backbones. 1. A ResNet Feature Pyramid Network of 50 or 101 layers, or 2. A
NesNext Feature Pyramid Network of 101 layers.

ResNet, ResNeXt and Feature Pyramid Networks

Deep Residual Networks (ResNets), proposed by He Kaiming et al. in 2015, [24],
described a way of dealing with a common problem where deeper networks were
becoming increasingly difficult to train due to the vanishing gradient problem. The
residual learning framework presented in the ResNet paper used connection short-
cuts or residual connections between the layers of the network. In short, the resid-
ual connection is connecting the output of previous layers to the output of new lay-
ers. ResNets are still viable candidates for image recognition and object detection
tasks and are used in combination with Feature Pyramid Networks (as explained
below) for four of the six architectures tested in this thesis.

The ResNeXt architecture, proposed by Xie et al. [25], is quite similar to the Deep
Residual Network architecture. The main difference is the introduction of a new
dimension called cardinality. This dimension results from "homogenous, multi-
branch architecture" [24], The network is constructed by repeating a building block
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that aggregates a set of transformations with the same topology. In short, these
building blocks allow the model to have an increased capacity when compared to
its ResNet counterpart, without going deeper or wider. The ResNeXt architecture
is used as a backbone for two of the six models tested in this thesis.

Pyramid representations of images are used in recognition systems for detecting
objects at different scales. As Figure 2.9 illustrates, the same image can be re-
scaled and analyzed on multiple levels to make predictions. Processing multiple-
scale images are both memory and computationally intensive. By creating pyra-
mids based on features, one can minimize the memory and computational costs,
but this technique generally has a lower accuracy for object detection.

Figure 2.9: Illustration of the difference between Pyramids of images and

Pyramids of feature maps

The Feature Pyramid Network [34] is a feature extractor designed to be both cost-
efficient and accurate. As Figure 2.10 illustrates, the architecture uses a multi-
scale pyramidal hierarchy of deep convolutional networks to construct feature pyra-
mids.

Figure 2.10: Illustration of how a Feature Pyramid Network constructs

pyramids

In this thesis, all six architectures that are tested use Feature Pyramid Networks in
combination with either a ResNet network or a ResNeXt network.
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Object Detection Frameworks

As detecting objects in images requires a vast amount of training data to provide
accurate predictions, this thesis will focus on utilizing pre-trained models’ ben-
efits through transfer learning (see Section 2.3.5). In this thesis, the main focus
will be on the well-developed Detectron2 framework for transfer learning in object
detection.

Detectron2

Detectron2 is a modular object detection library built on Pytorch [35]. With the
popular Detectron open-source project as a foundation, the Detectron2 library of-
fers an array of pretrained models with functionality including:

• Object detection with bounding boxes (used in this thesis)

• Semantic segmentation, where one assigns a class to each pixel in an image
to predict its contents [36]

• Panoptic segmentation, as with semantic segmentation, each pixel is classi-
fied. However, one also seeks to identify the number of instances of each
object

• DensePose, used for mapping of pixels in an image containing humans to
make a 3D-model representation of them [37]

This thesis implements bounding box-based models from the Detectron2 Model
Zoo [35] that are pretrained on the COCO (Common Objects in Context) dataset.

Table 4.6 provides an overview of the models tested in the thesis.

2.4 Economic background
Artificial intelligence and its subsets, including machine learning, have an increas-
ing impact on workplaces worldwide, and the trend is expected to increase in mag-
nitude. Surveys have found a high level of anxiety regarding job security as au-
tomation and new technologies are being introduced. In the popular press and
academic circles, warnings have been raised about the loss of jobs as machines do
work previously carried out by people [38].

2.4.1 History of automating tasks
Technological advancements have always had an impact on how labor is executed.
The invention of the steam engine, electricity, and communication and information
technologies are typical examples of advancements that have caused a paradigm
shift in the workplace. In recent years, many have pointed to the introduction of
artificial intelligence as such an advancement [39].

Artificial intelligence is already an important part of many workplaces [40]. Intelli-
gent chatbots assist in customer support, algorithms calculate scenarios and provide
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decision support, and machines can perform medical diagnostics based on images.
Artificial Intelligence is not limited to office buildings but has become a part of
millions of people’s daily lives. Digital assistants implemented in smartphones,
robot vacuums, and camera systems with automatic number plate recognition are
relevant examples.

The automation of tasks correlates with the development and implementation of
new technologies that, in turn, allows for further automation of work [41]. The
reinstatement effect describes how labor is introduced to a broader range of tasks
due to automation. As the capital, such as machines, overtake tasks previously
performed by labor, new tasks arise. Where there is an increase in tasks performed
due to the combination of labor and capital, there is a rise in productivity.

2.4.2 Task automation and its impact on employment
Historically, when capital has replaced labor in one place, new jobs have been
introduced. How recent development in advanced technologies, such as machine
learning, will implicate human labor’s future is subject to great debate. More tasks
will be subject to automation, but there is no empirical evidence implying major
scale effects on the general employment rate.

2.4.3 Estimating profit of a machine learning project
In order to estimate the economic profitability of a machine learning project, the
savings potential and project costs are important factors.

Currently, the employees at Arkivverket redact each document manually. The sav-
ings potential of implementing a model that assists in this process can be calculated
from estimations made on how much time the employees will save. In turn, the
savings can be quantified by estimating labor costs saved.

The project costs can be calculated by estimating the time spent on deploying and
maintaining such a model. As with the savings potential, the labor costs can be
used to quantify the project costs. The project profitability can be calculated by
subtracting the expenses from the savings potential.

All comments made about the profitability of implementing the proposed model
in this thesis are based on approximations and estimations. If the proposed model
were to be implemented, there will always be a level of uncertainty affiliated with
the potential profitability of such a project.

2.5 Model deployment
Assuming that a machine learning model performs sufficiently well for a given
problem, such as identifying national identity numbers on document pages, a criti-
cal next step is making the model accessible for the project’s beneficiaries. Chapter
6 describes how each of the concepts in this section may be implemented in the case
of this project.
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2.5.1 Static versus dynamic deployment

There are several ways of deploying a machine learning model. The four most
common patterns [8] are:

• Static deployment, as part of an installable software package

• Dynamic deployment on a user’s device

• Dynamic deployment on a server

• Model streaming (disregarded in this report)

As the first three items show, the two main methods for deploying models are static
deployment and dynamic deployment. The difference between the two methods is
apparent from the names. Dynamic models (more so than static models) are meant
to be improved or maintained continuously after the model’s initial release, without
active involvement from the end-user. Static deployment methods, however, resem-
ble classical software development where the machine learning code is packaged
once and distributed as a resource available at runtime. Static deployment methods
have a few advantages over dynamic methods, as they are inherently fully available
to the end-user, even offline. The data sent to the developed model does not have
to be uploaded to a server, making this method faster for the end-user.

On the other hand, dynamic deployment methods have distinct advantages as op-
posed to static methods. As mentioned, dynamic deployment methods allow up-
dating the machine learning model or prediction pipeline with little or no effort on
the part of the end-user. This is an advantage in applications where the model is
used by third-party software such as redaction software by suggesting predictions
that may or may not be part of the final redaction product. Another advantage
of dynamic deployment methods, especially those that are server-deployed, is the
ability to separate hardware-specific requirements from the device or machine of
the end-user. In object detection, a high-performing GPU is a requirement (or
highly preferred) for performing predictions on high-resolution images.

For a project such as identifying and redaction of document images, dynamic de-
ployment methods seem to be the ideal choice. Furthermore, deploying the model
on a web-based server will allow the end-user to passively take redaction sugges-
tions as input to a self-developed or third-party redaction software. One can imag-
ine on-device deployment being useful as well, for instance, by allowing a user
to take an image of a physical document, apply redaction suggestions, and then
pass it directly on to a recipient. Due to the nature of this thesis, only server-based
dynamic deployment is described in detail.
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2.5.2 Dynamic deployment on a server

REST API

When a model is deployed on a web-based server, it is most often made available
through a Representational State Transfer application programming interface or
REST-API [42]. Representational State Transfer is, in short, an architectural style
for using HTTP coding to receive information from online servers based on JSON-
or XML-encoded requests.

Figure 2.11: Process overview of a Representational State Transfer appli-

cation

In the example of an automatic redaction model made accessible to third-party
redaction software, the redaction software may send a request to the web-based
server containing the model. The request may be as simple as a JSON dictionary
with only a specific ID representing the image in an online database. The REST-
API then passes the ID onto the machine learning framework on the server, which
uses the ID to extract the image data from the online database. A prediction is
performed on the image data and returned to the redaction software as a separate
JSON response.

Container-based deployment

For a machine learning model to be available through a REST-API, the model must
be hosted on a web-based server. However, different models and frameworks re-
quire unique software and hardware combinations to function properly, which can
be achieved through container-based deployment. A container is similar to a virtual
machine, which in turn is a computer file that behaves like a stand-alone computer
in an isolated runtime environment, with its own file system, CPU, memory, and
process space.

Deploying a machine learning model using a container is achieved by the following
steps: The machine learning system and web service (REST-API) are installed in-
side a container, which has specific characteristics that match the machine learning
system’s criteria. Then a container-orchestration system is used to run the contain-
ers on a cluster of physical or virtual servers. The container-orchestration system
allows the server to activate several copies of the container image when the service
demand increases, each with its own GPU and other resources. This makes the
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system flexible and efficient for production purposes.

Figure 2.12: Process overview of how a model can be deployed using

containers

Docker

Docker is an open-source platform used to automate the deployment of applications
in containers [43]. As described above, containers reduce the potential friction be-
tween the development environment and the environment to which the application
is being deployed to. When an application is virtualized using Docker, it can easily
be accessed anywhere without making alterations to the software. This process can
be described as dockerizing an application.

Canary deployment

Canary deployment is the practice of releasing a new version/update of software to
a small group of users for initial testing [44]. In the case that one has a functioning
machine learning model that is making predictions for users through your API,
and you want to release a newly trained version of the model, canary deployment
means releasing the new model only to a subgroup of users and comparing results
for both models.

This helps identify bugs or errors in the model and eliminates downtime connected
with updates. If the newly trained model does not perform better (by the selected
performance metrics) in practice than the previous models, it would not be de-
ployed at this stage at all. Comparison of all deployed models is done through a
feedback system where the "correct" data is returned to the server via the API (see
Section 6.1.3 on real-time performance monitoring).

Load- and performance-testing with Locust.io

Locust is an open-source Python-based tool for evaluating the loading of an appli-
cation in use [45]. By generating artificial traffic, Locust simulates the usage in the
environment that the application is being deployed to. This enables the developer
to test how the application performs with many users before it is launched. As
a result, the developer can fix errors that might occur with user traffic before the
application is deployed.
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3. Materials

This chapter describes the materials provided by Arkivverket for the project. There
are two main materials, the provided dataset (document images) and the existing
solution for identifying national identity numbers (codebase).

3.1 About the data
The corpus of documents, used for testing an approach for redaction using object
detection in this thesis, consists of 20 000 compressed images. The images show
scanned, historical documents from Arkivverket.

Figure 3.1: Examples of the historical documents making up the dataset

of this thesis.

The documents are made up of handwritten and machine-written text. The two
types of text are often interchanged in the same document, and text is frequently
unstructured, i.e. not tabular. The images are, in general, of high perceived qual-
ity with a resolution of 72 pixels per inch. Most of the images are computer-
scanned documents, with a few exceptions for documents imaged using a camera
device.
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3.1.1 Size and formatting
Figure 3.2 shows the distribution of image shapes in the dataset. As illustrated,
width values are highly continuous between 900 and 2200 pixels, while the height
values are grouped in four main values.

Figure 3.2: Distribution of image dimensions by width and height in pix-

els. Width values are continuous, whereas height values are represented

by four main values.

3.1.2 Target data and quality

Table 3.1: Descriptive statistics of the 35 418 bounding boxes in the

dataset.

Attribute Min 25% 75% Max Mean
Count of bounding boxes 1 1 2 29 1.77

Area covered by bounding boxes 0.000035 0.00059 0.001386 0.0217 0.00116

Bounding box width (px) 13 52.5 67 305 60.24

Bounding box height (px) 1 22 31 397 28.235

Bounding box W/H-ratio 0.159 1.931 2.609 28 2.29

The bounding boxes are rectangles containing one or more national identity num-
ber(s). In total, the 20 000 images contain 35 418 ground truth bounding boxes.
The mean count per image is 1.77, with a standard deviation of 1.45. The minimum
count of bounding boxes per image is 1 and the maximum 29. Table 3.1 shows in-
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dications of errors in the dataset, such as a minimum bounding box height of 1
pixel. These outliers, based on human error, are dealt with in Section 4.2.2.

Table 3.2: The distribution of bounding box orientation

Orientation Count
Landscape 34 944

Portrait 474

Total 35 418

Table 3.2 gives an overview of the orientation of the bounding boxes. Out of the to-
tal 35 418 bounding boxes, only 1.35% are taller than they are wide. As illustrated
in Figure 3.3a and 3.3b, the bounding boxes vary vastly in size, orientation and
content. Bounding boxes containing more than one personal identification num-
ber may also impact model training and evaluation metrics. This phenomenon is
described in Section 3.1.3.

(a) (b)

Figure 3.3: (a) is an example of a tall (portrait-style) bounding box. (b)

displays several wide (landscape-style) bounding boxes. These examples

show how bounding boxes vary in size, orientation, and content.

3.1.3 Ground truth bounding boxes and omitted national identity num-
bers

Each bounding box in the dataset is hand-labeled. Differences in the shapes and
forms of bounding boxes in the ground truth present a couple of challenges for the
object detection model as they frequently span over several national identity num-
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bers at once. In some cases, they are also drawn very widely around the national
identity number. Other pages contain national identity numbers that are not labeled
as ground truth.

Figure 3.4: Example of multiple national identity numbers in one bound-

ing box

Multiple national identity numbers labeled in the same bounding box may interfere
with the metrics at test time. If the model predicts a box for each number in the lot,
these may appear as false positives in the model evaluation.

Documents, where the bounding boxes are drawn widely around the national iden-
tity number, might harm the model as the algorithm uses them to reference a na-
tional identity number’s structure and shape.

Pages containing unlabeled national identity numbers will impact the evaluation
metrics as each positive prediction of an unlabeled national identity number in the
ground truth will be counted as a wrong prediction.

Bounding boxes provided by Arkivverket are hand-labeled by employees manually
inspecting the document images through labeling software. As a consequence, the
ground truth is prone to a few weaknesses and quirks:

• Employees performing manual redaction frequently encapsulate multiple na-
tional identity numbers in a single bounding box.

• A fraction of the national identity numbers remain unmarked due to over-
sight.

The provided dataset shows multiple examples of documents where national iden-
tity numbers are missing in the ground truth, likely due to human error labeling the
dataset. The fraction of missing bounding boxes is estimated to be approximately
2.5%, see Section 5.5. Based on this assumption, the count of missing bounding
boxes for this dataset (35 418 bounding boxes) is estimated at 885 *.

*Taking into account that many of the bounding boxes cover more than one national identity

number, the actual number of missed national identity numbers is probably higher.

28



Missing bounding boxes in the ground truth causes a few challenges. The first
is the ethical issue of missing national identity numbers, defeating the purpose of
redacting documents in the first place. Another challenge is the effect missing
national identity numbers have on the performance metrics of models, namely the
precision score. Assuming a model is quite proficient at identifying the correct
targets in documents, missing national identity numbers will erroneously return a
lower precision score to the model. This is a result of correctly predicted samples
being classified as false positives.

Even though artificially low precision scores are confined to model training and
comparison and do not matter when the model is in production, missing national
identity numbers still affect the model’s ability to learn the dataset’s optimal fea-
tures. This is discussed further in Section 5.6.1.

3.1.4 A note on relabelling the dataset as part of this thesis project

Although relabeling the dataset would probably lead to better model results, both
in terms of metrics and real-world performance, this task is outside the scope of
this thesis due to time constraints. The least consequential of the flaws in the
results are to some degree due to missing identity numbers in the ground truth,
meaning that the model might make correct predictions that are counted as a false
positive in the metrics and thus return an overly pessimistic precision score. As
the identification and redaction of identity numbers in real-world cases are more
important than the metrics presented here, time is rather spent on the development
of the recommendations in Chapter 6. Following these, the dataset may be updated
continuously as the application is used.

3.2 Current solution

3.2.1 Overview

Arkivverket has already developed a prototype machine learning model for au-
tomating redaction of national identification numbers from documents. Their ap-
proach involves basic preprocessing of the images, Optical Character Recognition
to extract the text, and a prediction pipeline† applied to the extracted text. How-
ever, the model is not deployed to production due to not reaching satisfactory per-
formance.

†A prediction pipeline in this context refers to a series of separate steps that include manipulating

the data and results in predicting whether a word is national identity number or not.
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Figure 3.5: Process overview of the prediction method for the existing

solution.

The following chapters will describe each part of the current solution in detail.

3.2.2 Preprocessing
Arkivverket has implemented 7 main pre-processing steps, inserted into the pre-
processing pipeline at training time:

• Align: Correcting skew in the image

• Line removal: Identifying and removing vertical and horizontal lines in the
image

• Resize: Increasing or decreasing the proportional dimensions of the image

• Equalize histogram: Enhance contrast and the distribution of black and
white

• Denoise: Remove particles and other noise in the image

• Sharpen: Increase contrast between objects in the image and the background

• Threshold: Increasing contrast in the image by setting pixel values to 0 or
255 (white or black) based on a given threshold

3.2.3 Extracting text (Optical Character Recognition)
Tesseract is an open source Optical Character Recognition engine sponsored by
Google since 2006 [46]. The Python wrapper for Tesseract, Pytesseract, is the
package used in the current pipeline for text extraction in historical documents. The
Pytesseract package will iterate over any identified text lines in the given document
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and output a dataframe containing each identified word and its location, amongst
other details.

3.2.4 Feature engineering
Once Pytesseract has created a dataframe containing the identified tokens (words)
in the document, the process starts to engineer relevant features. The current im-
plementation offers the following options:

• Analyse the formatting of each word (Boolean): Whether or not the for-
mat matches the common format for national identification numbers, e.g.,
XXXXXX.XXXXX or XXXXX (where X is an arbitrary numerical digit)

• Analyse the prefixes to each word (Boolean): Whether or not the n words
preceding the current contains known prefixes to national identification num-
bers, e.g. ’pnr’, ’personnr’, ’fnr’, ’fødselsnummer’ etc.

• Check if a word is a valid birth date (Boolean): Whether or not the formatting
of a word matches the valid number format of a birth date, e.g. [dd.mm.yy]

• Check if a word matches common first or last names (Boolean): Match word
against a registry of common Norwegian names.

Once the selected Boolean features are generated from the OCR results, the data
frame containing the features is binarized to contain 0 or 1.

3.2.5 Prediction pipeline
Bounding boxes for suggested (predicted) national identification numbers in a doc-
ument are generated by creating an ensemble of classification models and training
the ensemble on a portion of the data generated through feature engineering in the
previous step. The model’s tokens identified as national identification numbers
are then checked against the original OCR results to extract the word’s location
(bounding box).

Classification algorithms that have been tested in the current pipeline include:

• Stochastic Gradient Descent Classifiers

• Logistic Regression Classier

• Gaussian Process Classifier

• K-Neighbours Classifier

• Multilayer Perceptron Classifier

• Support Vector Classifier

• Decision Tree Classifier

• Random Forest Classifier
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• AdaBoost Classifier

• Gradient Boosting Classifier

• XGBoost

Documentation for each classifier is available on the Scikit-learn website, except
for XGBoost (found at xgboost.ai).

The best results to date are achieved using a combination of three XGBoost models
and a shallow meta-prediction model. A shallow meta-prediction model is a simple
machine learning model that takes the output from each predictive model in the
model ensemble and learns to combine these into a single prediction by weighting
the inputs [47].

3.2.6 Baseline performance
The current solution is performing quite well on the constructed dataset of binary
features, achieving a recall-score of 89.0 %, the fraction of relevant instances re-
trieved), and a precision of 88.3%, the fraction of relevant instances among re-
trieved instances. Also, it achieved an F1-score of 88.6%, a combination of re-
call and precision describing the extent to which false positives are preferred over
false negatives (see Section 4.5.5 on metrics explanation). However, the model’s
apparent limitation is that the model depends on the OCR engine’s ability to cor-
rectly extract tokens from the corpus, limiting its ability to increase the total recall
score.

32

https://scikit-learn.org/stable/index.html
https://xgboost.ai/


4. Methods

The methodology used in this study is made up of four phases: Data selection,
data preparation, model training and selection, and evaluation. The data selection
phase involves splitting the dataset into training- and test sets used for measuring
performance and comparing models. The data preparation (or preprocessing) phase
includes identifying and removing outlier values and formatting the target data to
the format required by the individual object detection frameworks. Other parts of
data preparation are image augmentations and other methods that are applied to
images before training. Finally, the training process involves model comparison,
selection, and optimization. A few test-time prediction techniques were tested in
the model selection phase, namely model-stacking and test-time-augmentation of
images, see Section 4.6.

Figure 4.1: The model training and selection phase of a machine learning

project life cycle (highlighted).

4.1 Software & hardware

4.1.1 Main Python packages
The software used in this study is Python 3.8.5, with the following main pack-
ages:

• Detectron2 (v0.3): An object detection framework containing pretrained
object detection and segmentation models implemented in Pytorch [35]. The
Detectron2 package provides the architectures and pretrained models used
for all object-detection tasks in this thesis.

• Pytorch (v1.7): An open-source machine learning framework based on the
Torch library, used for applications such as computer vision and natural lan-
guage processing [48]. Pytorch is not used directly in this thesis but is the
framework on which Detectron2 is built.

• Torchvision (v0.8.1): Library built on PyTorch, containing popular datasets,
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model architectures, and common image transformations for computer vi-
sion [49]. The architectures used in this thesis through the Detectron2 frame-
work are built on the Torchvision extension of PyTorch.

• scikit-learn (v0.24.0): Open source machine learning library that contains
various popular (non-neural network) features and algorithms for Python
[50]. This thesis implements several tools from the scikit-learn library, such
as performance metrics and train-test-split functions.

• OpenCV (v4.4.0.46): Library of programming functions mainly aimed at
computer vision and image processing [51]. In this thesis, OpenCV is used to
manipulate and process the document images that are fed to the Detectron2
models.

• Streamlit (v0.72.0): Open source app framework, aimed at simplifying
prototyping and demonstration of machine learning apps and models [52].
Streamlit has been used in this project to create a minimalistic prototype of
a redaction software where one can load images, see predicted suggestions
for national identity numbers and correct suggestions by adding or removing
bounding boxes.

4.1.2 Hardware specifications
Computations are performed on hardware provided by Arkivverket. Any training
times or absolute performance measures provided in the project are based on this
hardware with the following specifications:

• Operating System: Ubuntu 20.04.1 LTS

• OS Type: 64-bit

• Memory: 64 GiB

• Processor: Intel Xeon (R) W-2123 CPU @ 3.60GHz x 8

• GPU: NVIDIA Quadro RTX 4000 (8GiB RAM) with the following soft-
ware:

NVIDIA driver v455.45.01

CUDA Toolkit v11.1

4.2 Data selection and validation
As described in Section 2.2.2 on processing datasets, creating training- and test-
sets is essential for evaluating a model and ensuring it is well suited to tackle new
and unseen problems. In this thesis, a slightly different approach is used as an
alternative to the standard train-validation-test split.

For the training and comparison of potential best-model candidates, a single training-
and test-split is performed. The images in each split are siloed in separate train-,
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and test-folders to prevent data leakage.

4.2.1 Training- and test-splits based on custom Phi Φ Value
The dataset is split into train- and test-splits by stratifying images by a custom
Phi (Φ) value. The stratification of the splits ensures that the images in both the
training- and test sets have similar characteristics regarding the target objects, i.e.
bounding boxes drawn around national identity numbers.

Custom Phi Value (Φ)

By identifying the fraction of each image’s area covered by ground-truth bounding
boxes, it is possible to stratify the train/test split and thus maintain a similar distri-
bution of bounding box size and count for both training- and test images. This, in
turn, improves the quality of model comparisons and returns more realistic mea-
surements of model performance. It is also possible to use the Φ-values to identify
outliers in the dataset with regards to bounding-box sizes, and thus remove some of
the samples where employees have covered multiple targets in a single box, simpli-
fying the training data for the model and potentially improving model performance
for real-world samples (see Section 4.2.2).

The dataset’s distribution is measured in two ways: Counting the number of bound-
ing boxes in the image, and finding the area covered by bounding boxes in each
image as a ratio. The latter is necessary because several ground-truth bounding
boxes cover several (sometimes more than ten) individual national identification
numbers. By implementing knowledge about these traits during the splitting of the
datasets, it is possible to do the splits as similar as possible - both regarding the
number of bounding boxes and size of the boxes.

Stratification is performed using a custom ratio value for each document, i.e., the
ratio between the area covered by bounding boxes and the number of bounding
boxes. This value is referred to as the Φ-value of the document. Mathematical
notation for the Φ-value of a document i is as follows:

Φi = 1000× Ai

Ni
(4.1)

where

Ai = Fraction of document i area covered in bounding boxes

and
Ni = Number of bounding boxes in document i

The value is multiplied by 1000 to move the Φ-values closer to a more readable
range of approximately 0.1 - 10. Figures 4.3 and 4.4 shows examples of documents
with the corresponding Φ-values.
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Calculating the custom Φ-value seems to be having the desired effect on the dataset
by identifying documents containing bounding boxes with unnaturally large or
small bounding boxes. Drawing random samples from documents below the lower
outlier threshold and above the upper threshold (see Figure 4.7) shows that these
samples do indeed contain undesirable targets when training a model to perform
the main objective of the thesis. Naturally, even after outlier-removal, there still ex-
ists bounding boxes in the dataset tjat are too small for the target national identity
number, as well as bounding boxes covering several targets in a single box. How-
ever, by eliminating extremes on either side of the normal distribution of values,
at least a portion of the "tainted" targets are removed, allowing for more realistic
results and a better model. The method for choosing thresholds and the threshold
values are described Section 4.2.2.

4.2.2 Outlier Removal

Once the Φ-value of each image is calculated, images with abnormally high or low
values should be removed from the dataset.

For many machine-learning projects, outlier-removal is applied only to the training-
split of the dataset to ensure generalization of the trained model (see Section 2.2.2).
However, the test-split is not subject to the method because outliers are a natural
part of real data samples, and removing them would result in an unrealistic perfor-
mance measure. For this particular project, however, outliers are removed from all
images in the dataset - even the test split. The reason is that the custom Φ-value
is, in essence, a measure of the size and shape of target bounding boxes in images.
Thus, extreme Φ-values are indicators of human error in the labeling of the dataset.
Therefore, removing outliers from the entire dataset is a way of presenting more re-
alistic measures of models’ performance. 800 samples were removed, representing
4% of the full dataset (see Figure 4.7).

The Φ-value is calculated for every sample in the total dataset. Table 4.1 and Figure
4.2 show the descriptive statistics of Φ-values for all samples in the dataset.

Table 4.1: Descriptive statistics of Φ-values for all samples in the dataset

Attribute Min 25% 75% Max Mean Std
Count of bounding boxes 1 1 2 29 1.771 1.455

Area covered by bounding boxes 0.000035 0.00060 0.001386 0.02168 0.0012 0.0010

Φ-value 0.035 0.504 0.770 15.091 0.684 0.344
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Figure 4.2: Original distribution of Φ-values. The X-axis is clipped to the

[0, 10] range, but the highest Φ-value is 15.091.

Note that the baseline model results, as described in Section 3.2, are not subject to
the outlier-removal performed in this thesis. This may lead to slightly pessimistic
results for the baseline, but this is preferred over less realistic performance mea-
sures for the models developed in this thesis.

Figures 4.3a and 4.3b illustrate examples of documents with extreme Φ-values
that were removed from the dataset. For reference, Figure 4.4 shows an example
document with a Φ-value close to the mean of the dataset. Each figure is presented
with the corresponding z-score, reflecting how by how many standard deviations
the Φ-value of each document deviates from the mean of the dataset.
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(a) Φ-value = 0.035, z-score = -1.879. (b) Φ-value = 6.821, z-score = 17.760.

Figure 4.3: Examples of documents with extreme Φ-values that were re-

moved from the dataset, with their corresponding z-scores.

Figure 4.4: Example of Φ-value close to the mean of the corpus, contain-

ing ideal bounding box shapes (Φ = 0.682) with a z-score of -0.00637.

As illustrated in Figure 4.7, samples with extremely low or high Φ-values are re-
moved from the dataset as they are indicators of human error and, therefore, may
negatively impact the real-world performance of the model.

To define what samples are counted as outliers, samples with various Φ-values
have been explored manually. As the Φ-value is a custom attribute made for this
task specifically, a manual look at the documents helps identify what Φ-values are
likely to affect the training and inference on the dataset without removing too many
samples.

Document samples from the 1-, 2-, and 3-percent highest and lowest Φ-values
were explored. For the lower limit, samples below the 1%-threshold showed sev-
eral samples with bounding boxes that may have a negative impact on the model.
Figure 4.5 shows an example document with a Φ-value of 0.276. This document
image, which is just below the lower 1-percent boundary, represents many of the
documents below this boundary in that the bounding boxes are cutting into several
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of the numbers. This may give the model an incomplete representation of the shape
and format of the personal identity numbers. Images between the lower 1-percent
and lower 3-percent boundary have quite concise bounding boxes, and thus the
1-percent lower threshold is chosen as an outlier boundary.

Figure 4.5: Example document where the Φ-value is just below the 1-

percent threshold (Φ = 0.276), and bounding boxes are cutting into per-

sonal identity numbers.

Figure 4.6 shows an example document with a Φ-value of 1.40, just above the upper
outlier threshold. Several of the documents at this Φ-threshold and above contain
bounding boxes that span more than one personal identity number, or worse (as
seen in this example). They cover skewed personal identity numbers and thus
include symbols and numbers that are not representative of the target. Thus, the
upper outlier threshold is set to 3%. This limit is quite restrictive, and some of the
removed images probably contain information that could be valuable to the model.
However, due to a large number of images in the dataset compared to the number
of images removed, a more restrictive approach is chosen.

Figure 4.6: Example document where the Φ-value is just above the 3-

percent upper threshold (Φ = 0.276) and the upper right bounding box

includes symbols and numbers that do not appear below in the ground

truth.
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As a result of this exploration, the outlier-thresholds are set to exclude the 1%
lowest Φ-values and the 3% highest values. The number of samples outside the
thresholds is 800, leaving a total sample size of 19 200 images before performing
the stratified train- and test split.

Figure 4.7: Quantile-thresholds for outlier-removal. The left threshold

represents the 1% lowest Φ-values, and the right threshold represents the

3% highest.

Table 4.2 shows the descriptive statistics of target characteristics after removing
outliers by Φ-values.

Table 4.2: Descriptive statistics of parameters based on bounding boxes

across all images in the dataset, after removing outliers based on Φ-values.

Attribute Min 75% Max Mean Std
Count of bounding boxes 1 2 29 1.785 1.466

Area covered by bounding boxes 0.000282 0.001386 0.021683 0.001126 0.000946

Φ-value 0.282 0.753 1.399 0.648 12.087

Note: In Appendix A, all samples that are considered outliers and removed are
predicted by a fully trained model. Results show that these samples do indeed
have ground truths that are sufficiently dissimilar to most of the data to reduce the
model’s accuracy.
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4.2.3 Quantile binning of samples by Φ-value
To stratify dataset splits, binning is performed on images based on the Φ-values.
Binning, in this case, quantile binning, is a method for splitting up a continuous
range of values (in this case, Φ-values) into discrete bins. Using quantile binning
specifically, the dataset is split into n bins with an equal number of samples in each
bin.

The number of bins chosen in this case is 4. This number of bins was chosen by
incrementally increasing the bin count until an even distribution of Φ-values across
the train- and test-sets were achieved, as illustrated by mean and standard deviation
values in Table 4.4. With a bin-count of 4, the dataset is split into quantiles of 25%
each based on Φ-values.

To divide the data into training- and test-sets that are stratified by Φ-values, the
dataset is split into quantiles based on these values. Table 4.3 shows the four quan-
tiles’ limits with a bin count of four, each containing 25% of the data samples (4800
samples for each bin).

Table 4.3: Quantile limits for the 4-bin quantile binning of the dataset.

Quantile Lower limit Upper limit
Q1 0.281 0.504

Q2 0.504 0.616

Q3 0.616 0.753

Q4 0.753 1.398

Figure 4.8: Quantile limits used for binning document-samples by Φ-

values, to ensure an equal distribution Φ-values across training- and test-

sets.
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4.2.4 Train/test-split
The dataset is split into a training set and a test set to compare competing models
on the same samples. Table 4.4 shows the characteristics of the splits.

Table 4.4: Characteristics of main data-splits, showing the results of strat-

ification based on 4-bin quantile binning of samples based on Φ-values.

Split Full dataset Train split Test split
Image count 19 200 17 280 1 920

Image fraction 100% 90% 10%

Φ-value mean 0.648 0.648 0.645
Mean number of bounding-boxes per image 1.784 1.778 1.844

Std.dev. number of bounding-boxes per image 1.466 1.458 1.532

The practice of binning samples by Φ-values and performing the stratification (as
described in Section 4.2.3) seems to be a sufficiently effective way of maintain-
ing similar characteristics across data splits, allowing for more realistic bench-
marking of models. Table 4.4 shows distributions after performing the stratified
splits.

4.3 Data preparation
As the dataset in this study consists of mainly machine-scanned documents, they
are already of high quality and quite uniform in shape and color. This study’s pre-
processing steps mainly involved attempting to perform image cropping/warping
on documents to remove tilting and unnecessary black edges around documents.
However, early results showed that the model proved to perform equally well on the
original images, even if the document is tilted a few degrees. In some cases, the per-
formance was actually worse due to the added complexity of warping images using
transformation matrices, resulting in errors in bounding-box coordinates. Due to
time constraints, it was therefore decided to use the raw document-images without
any preprocessing steps.

The content of the images are generally made up of 3 components:

• Text

• Lines and shapes

• Background

Text in the given documents varies from hand-written to machine-written. The text
size is generally small to medium, with few documents containing large titles or
bits of text.
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The number of lines and shapes in the corpus vary from image to image, with some
documents containing only text on a clear background, while other documents are
made up of a tabular grid of lines and boxes.

The backgrounds of the document images are usually fairly bright in color, and the
color varies from yellowish to white.

4.3.1 Data generation and augmentation
To improve the versatility of trained models presented in this report, several random
augmentation techniques are applied to images during training. Generating more
data that is slightly different from the original dataset may improve the models’
ability to generalize features. Models are also trained using no augmentation to
compare performance, and results are compared in Section 5.2.

Table 4.5: Train-time augmentation steps and parameter-values used for

improving generalization of trained models.

Random Brightness Intensity range: [0.8, 1.8]

Random Contrast Intensity range: [0.6, 1.3]

Random Saturation Intensity range: [0.8, 1.4]

Random Lighting Intensity range: [0.7, 1.3]

Random Crop Crop size: [0.9, 0.9] relative range

Resize Shortest Edge Sample style: Choice, Max size: 1 333 px

As no general image enhancement is performed in the preprocessing phase, there
are also slight variations inherent in the dataset that can affect the model perfor-
mance:

• Variations in document size and format.

• Variations in document layout, e.g., presence of lines and grids.

• Variations in document hue and saturation, e.g., white documents vs. yellow-
ish documents et cetera

• Variations in text type and size, e.g., Hand-written vs. machine-written text,
and large vs. small letters and numbers

• Variations in text opacity and contrast

4.4 Calculation of cost related to redaction time
In order to recommend a model to Arkivverket based on cost-savings-potential, it
is necessary to be able to calculate an estimate of redaction time for a batch of

43



documents based on a given recall and precision score. Equation 4.2 shows how
this can be done:

Ttotal =
Tbase + TFN + TFP

3600
(4.2)

where

Tbase = Ndoc × tdoc
TFN = Ndoc ×Nbb × (1− recall)× tFN

TFP = Ndoc ×Nbb × (1− precision)× tFP

Ttotal = Total redaction time in hours
Tbase = Base redaction time for document without errors (seconds)
TFN = Time spent correcting missed targets (seconds)
TFP = Time spent deleting incorrectly predicted targets (seconds)
Ndoc = Total document count (for calculation period)
Nbb = Average number of bounding boxes (targets) per document
tdoc = Base processing time per document (seconds)
tFN = Average correction time per False Negative (seconds)
tFP = Average correction time per False Positive (seconds)

Based on rough estimates from Akrivverket and through testing, assumptions for
the calculation of time-cost have been made. For each false positive prediction,
the employee must remove the suggested bounding box. This can be done with
the click of a button. Rough estimates suggest that the process of evaluating and
correcting these takes on average 2 seconds per false positive prediction.

False-negative predictions will not be apparent to the employee redacting. The
employee must, therefore, actively search for omitted national identity numbers
and mark them. A new bounding box can be placed with two clicks of a button,
marking its x- and y-coordinates. The search for potential false negative predictions
is time-consuming. Therefore it can be roughly estimated that a false negative has
a time cost of 6 seconds per false negative prediction.

In addition, rough estimates suggest that all document pages will require a base
time of approximately 12 seconds of processing time from the document is opened,
even without the need for adjustments. This time is added to the time required for
correcting false negatives and false positives.

These estimations are used for the calculations in Section 6.2.1 and Appendix B.
In Section 5.1.5, these values are used to select a beta-value for the Custom Value
Metric, a metric for measuring model performance.
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4.5 Model training and selection
The Detectron2 framework offers a wide variety of pre-trained models built on
different architectures.

4.5.1 Architectures - Capacity versus speed
The architectures used for training and comparing models in the project are de-
scribed in Table 4.6. Benchmark results presented are from the official Detec-
tron2 Model Zoo [35], and are based on results on the COCO-dataset (see Section
4.5.2).

Table 4.6: Overview of available object detection architectures from the

Detectron2 library. Benchmarks are based on the COCO-dataset. Train-

ing speed and inference speed are measured in seconds per iteration.

Model Backbone + Head Layers Size (MB) Train. speed (s/it) Infer. speed (s/it) COCO Precision Benchmark
Faster R-CNN ResNet + FPN 50 333 0.209 0.038 40.2

Faster R-CNN ResNet + FPN 101 485 0.286 0.051 42.0

Faster R-CNN ResNeXt + FPN 101 838 0.638 0.098 43.0

Mask R-CNN ResNet + FPN 50 354 0.261 0.043 41.0

Mask R-CNN ResNet + FPN 101 506 0.340 0.056 42.9

Mask R-CNN ResNeXt + FPN 101 859 0.690 0.103 44.3

These six models are divided into two main architectures, Mask- and Faster R-
CNN, each with two different layer depths (50 and 101 layers) and two different
backbone architectures (ResNet and ResNeXt). Although the two main architec-
tures are quite similar (see Section 2.3.6 for information on Mask R-CNN and
Faster R-CNN), they perform object detection in slightly different ways. They are
therefore compared in the general model selection (see Section 5.2).

The strengths and weaknesses within each main architecture are a matter of bal-
ance between model capacity and inference speed (not to mention training speed,
but this is less important in a production environment). The "Inference speed" and
"Training speed" columns in Table 4.6, measured in seconds per iteration (s/it),
can be compared with the "Model size" and "COCO Benchmark [precision]" to
measure this balance. Models with a ResNet backbone and 50 layers have the ad-
vantage of being more agile, with inference and training speeds at approximately
one-third that of the models with ResNeXt backbones and 101 layers. The weak-
ness of this smaller model is its limited capacity for learning more complex patterns
in the document images.

The two models with a ResNet backbone (like that of the smaller models), but a
capacity of 101 layers (like that of the largest models), serve as the more balanced
models. The increased layer count increases the model capacity while maintaining
an inference- and training speed at approximately half that of the largest mod-
els. This is due to the complexity in the ResNeXt backbones, which substantially
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slower than the ResNet backbones.

The largest models, made up of 101 layers and ResNeXt backbones, sacrifice speed
for capacity. These models can recognize complex patterns in the dataset but need
significantly more epochs to converge on the dataset, combined with a slower train-
ing time per epoch.

4.5.2 Transfer learning

Common Objects in Context (COCO) Dataset

All models tested are pre-trained on the Common Objects in Context (COCO)
dataset. The COCO dataset represents both a large database of everyday objects
and a specific way of formatting the dataset.

Figure 4.9: Sample images from the COCO-dataset, with overlaying ob-

ject masks. The dataset also contains rectangular bounding boxes. [53]

Even though images in the COCO dataset are all objects depicted in a real-world
setting that may seem to differ significantly from the documents predicted in this
project, pre-training models on this dataset "teach" the model to recognize use-
ful low-level features in document images. Examples of these features are edges,
shapes, areas of interest in the image, and more.

COCO-format

When fine-tuning models pre-trained on the COCO dataset, it is required to format
the dataset used for fine-tuning to a specific standard. The format is JSON-based
and provides the framework with an overview of training- and test files, their IDs
and locations, and coordinates of ground-truth bounding boxes. The COCO-format
JSON file is built by creating a list of dictionaries, as illustrated in Figure 4.10.
Each dictionary corresponds to a single image in the dataset.
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Figure 4.10: Overview of the COCO-format JSON file.

4.5.3 Mini-batch learning and epochs
The resolution of the files provided - and the fact that all training has to be per-
formed on a single GPU - sets limitations on the batch sizes used in training models.
Batch size is a parameter in the training-dataset generator class of the Detectron2
framework and is passed the following values in this project:

Table 4.7: Model layers by batch size

Number of layers in model Maximum batch size

50 layers 4

101 layers (ResNet) 2

101 layers (ResNeXt) 1

In the Detectron2 framework, iterations are used instead of setting a number of
epochs. Completing an iteration means iterating over a batch of images, in this
case, 1, 2, and 4. To understand how iterations translate to the standard epochs,
meaning a full iteration of the training set of images, the following formula can be
used:

Epochs (E) =
Iterations (I)× Batch size (B)
Number of training images (N)

(4.3)

In the case of comparing models with the same numbers of epochs (as in model
selection), it is needed to calculate the correct number of iterations based on batch
size (which is a result of model size). Say you want to train a model for 15 epochs,
have 17 280 training samples and a batch size of 2. The number of iterations, i.e.
129 600, can be found by altering the formula:

I =
E× N

B
⇒ I =

15× 17 280

2
⇒ I = 129 600 (4.4)
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4.5.4 Learning rate scheduler
Two main learning rate schedulers are implemented in the Detectron2 framework,
the Cosine LR Scheduler, and the Multi-Step LR Scheduler. The former sets the
learning rate automatically, incrementally decreasing the learning rate in a shape
that resembles a cosine curve, as illustrated in Figure 4.11. The latter scheduler
reduces the learning rate by a given fraction (a gamma-value) at specified inter-
vals.

The Cosine Scheduler has the advantage that it maintains a high learning rate for
a large part of the training period, making it ideal for the rough training of pre-
trained models. The Multi-Step Scheduler form resembles a negative exponential
curve, depending on how many times the gamma-value reduces the learning rate.
This scheduler is ideal for fine-tuning or retraining models, as the learning rate
decreases quickly in the training period.

Figure 4.11: Cosine LR curve from Section 5.1.2

4.5.5 Metrics

IoU-threshold & Confidence threshold

Intersection over Union (IoU) describes the overlap between the ground truth bound-
ing box and a predicted bounding box with values between 0 and 1 where a high
value equals a high percentage of overlap [54]. The IoU-threshold decides to what
degree a predicted bounding box and a ground-truth box must overlap to be con-
sidered a true positive.

The confidence score [55] indicates how confident the predicting model is that a
predicted bounding box contains the targeted object. The confidence score of a
given model is not directly comparable to that of other models but is a tool for
deciding how confident the user wishes the model to be before making predictions
in production.
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Evaluation metrics

The performance of a machine learning model can be evaluated in several ways.
However, this thesis will focus on four main metrics for the comparison of mod-
els:

• True Positive (TP): The model correctly identifies a target.

• False Positive (FP): The model predicts a target that is not in the ground
truth.

• False Negative (FN): The model does not predict a target that is in the
ground truth.

• Recall: The main metric for the project as avoiding false-negative classifi-
cations is the main objective. Measures the positives that are correctly iden-
tified.

Recall =
TP

TP + FN
(4.5)

• Precision: Measures the proportion of positive identification that is actually
correct

Precision =
TP

TP + FP
(4.6)

• F1-score: Calculated from recall and precision. It is a secondary metric to
represent the trade-off between them or to what extent false positives are
preferred over false negatives.

F1-score =
2 ∗ p ∗ r
p+ r

=
2 ∗ TP

2 ∗ TP + FP + FN
(4.7)

• Custom Value Metric / F-beta-score: The F-beta score takes an input pa-
rameter β that changes the relative impact that recall or precision has on the
metric score.

Custom Value Metric (CVM) =
((1 + β2)× r)× p

(β2 × r) + p
(4.8)

TP = True positives
FN = False negatives
FP = False positives
r = Recall
p = Precision
β = Recall/precision cost-multiplier
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The F1-score is an F-beta metric that has a β of 1, meaning it weighs recall and
precision equally. When a Custom Value Metric is referred to, it is an F-beta score
with a custom β-value that reflects the impact that recall has on the real cost com-
pared to precision, hence custom value. The F-beta score is used to measure model
performance in a way that is as relevant as possible for cost-saving at Arkivver-
ket.

The chosen β-value for the Custom Value Metric in this project is based on the
estimates for the cost related to perform two main actions when redacting docu-
ments:

1. Removing a falsely predicted bounding box suggestion, or

2. Searching for and drawing a new bounding box around missed national iden-
tity numbers.

A cost-specific metric can be calculated based on the ratios of false positives and
false negatives produced by a model by setting a numeric cost for each of these
scenarios. It is estimated that identifying and labeling a missed national identity
number (false negative) takes an employee N times longer than removing a falsely
predicted national identity number (false positive). Based on this assumption, the
F-beta score is then set to reflect the relative cost of the two actions, N.

By recalculating a model’s performance on a set of images in this way, the model
with the highest Custom Value Metric should be a more cost-efficient model based
on cost-estimations.

As described in Section 4.4 on calculating redaction time, it is assumed correct-
ing a false negative takes approximately three times longer than correcting a false
positive. These assumptions are used to calculate the ideal choice of beta-value
once an object detection model is fully trained. See Section 5.1.5 for our choice of
beta-value, and Section 4.5.6 for the steps used to make the choice.

4.5.6 Selecting a beta-value for the CVM
After training an object detection model, different β-values for the CVM can be
compared to find the best one based on cost assumptions from Section 4.4. This
can be done in the following steps:

1. Train an object detection model (see Section 5.1.2) and calculate recall- and
precision-scores for a range of confidence thresholds (see Table 5.4),

2. Select a range of β-values for which to calculate total redaction time,

3. For each selected β-value, calculate the Custom Value Metric with the se-
lected β for each combination of recall and precision (e.g., each confidence
threshold) in step 1 and find the confidence that leads to the maximal Custom
Value Metric score for the selected β-value,
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4. Collect the optimal confidence thresholds for each β-value and run the redaction-
time function (see Equation 4.2) for the recall/precision-combination corre-
sponding to the confidence thresholds by looking up the recall- and confi-
dence scores in step 1,

5. Finally, find the β that minimizes the redaction-time result from step 4.

Figure 5.2 illustrates this process for the fully trained model.

4.5.7 Choice of IoU-threshold

As described in Section 4.5.5, the IoU-threshold decides to what degree a predicted
bounding box and a ground-truth box must overlap to be considered a true positive.
It is common practice to use an IoU threshold of 0.5 as a baseline. However, as
described in Section 3.1.2, the ground truth bounding boxes vary greatly in size
and shape. As a result, a threshold of 0.5 will result in unrealistically pessimistic
metric scores.

Figure 4.12: Illustration of how different IoU thresholds impact metric

scores.

As Figure 4.12 illustrates, an IoU-threshold of 0.5 would cause two false positives,
while a threshold of 0.25 would result in two true positives. An IoU-threshold
of 0.25 was selected to measure performance of all architectures in this thesis,
after examining prediction results for 5%-intervals between 0.05 and 0.45. Results
showed that thresholds between 5% and 25% yielded similar results, with a rapid
deterioration in results with thresholds above 0.25.

Section 6.1.3 about model deployment describes a feedback loop where documents
that are processed by the automatic redaction model and quality-assured by an em-
ployee are automatically registered as ground truth in a new and improved dataset.
As this dataset is formed, and hopefully contains more uniform bounding boxes
covering single national identity numbers, it would be natural to raise the IoU-
threshold towards 0.5. This would take performance measures closer to industry
standards, and yield more robust measures by demanding a higher degree of over-
lap between the ground truth and predictions.
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4.5.8 Choice of training parameters for general and extensive model
training

To compare the different architectures and models in Table 4.6, each is trained for
an equal number of epochs (4 epochs*) and with the same learning rate scheduler
and similar hyperparameters. Models are compared on performance with regard to
both prediction accuracy and inference speed. Two of the models are trained using
no image augmentations to display the effect that train-time augmentations have
on prediction results.

As a result of the initial comparison of models, the fastest and most accurate models
are chosen for more extensive training. This phase consists of training both models
for 15 epochs and then comparing prediction accuracy and inference speed.

Tables 5.1 and 5.3 list the parameters used for both the initial (general) training and
the extensive training of the two best-performing models.

4.6 Ensembling / Stacking models
Ensemble learning aims to combine several object detection models and use the
models’ combined output to find a single document prediction.

Model stacking is a technique for removing bias in models and achieving better
results. Model stacking is performed by combining (stacking) fully trained mod-
els from unique architectures into a single predictor. Even though the models are
trained on the same data, there is a chance that the different anatomies of the ar-
chitectures result in them learning to look for slightly different high- and low-level
features to identify the targets.

After training the models, each model’s predictions are combined and compared
against the ground truth.

In this thesis, model stacking is used in two main ways: 1. Where multiple models
make independent predictions on the same input image (model ensemble), and 2.
Where a single model makes multiple predictions on multiple variations of an input
image (test-time augmentation). For both methods, affirmative voting (hard voting)
is used (see Section 4.6.2). Mathematically, the two methods can be described in
the following ways:

Model ensembles:

models = f1, f2 . . . fn

*4 epochs was chosen for the initial testing, rather arbitrarily, as a balance between giving the

models enough time to converge enough for comparison, while leaving training time low enough to

perform many training-cycles without using a large amount of the project time, leaving more time

for full training of the most promising models and fine-tuning.
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voting function = σ
input = xi
outputs = (f1(xi), f2(xi) . . . fn(xi))

Test-time augmentation (TTA):

model = f
voting function = σ
inputs = xi1 , xi2 . . . xin
outputs = (f(xi1), f(xi2) . . . f(xin))

For both techniques, the prediction method is the same:

ŷ(xi) = σ(outputs) (4.9)

4.6.1 Test-time augmentation
Test-time augmentation (TTA) is a technique that can improve a model’s ability to
identify national identity numbers. In the case of this thesis, test-time augmentation
means showing that a fully trained model 3-4 variations of a single input image at
test-time, allowing the model to return unique predictions for each image variation.
The multiple sets of suggestions for each input image are then processed through a
voting mechanism and compressed into a single prediction (see Section 4.6.2 and
4.6.3).

4.6.2 Voting function
The voting function applied in this thesis is affirmative voting [56]. For affirma-
tive voting, all suggestion made on any of the image variations is included in the
prediction. This is beneficial for the recall score, as more predictions are assumed
to be made on each input image. However, it may significantly affect the preci-
sion, as the model as a whole is less critical towards the required confidence for
predictions.

4.6.3 Non-maximum suppression
Non-maximum suppression (NMS) is a technique used in most object detection
models but can also be applied to combining models or model predictions into a
single prediction. NMS iterates through the proposed bounding boxes for a single
image and calculates the IoU-score for each bounding box. The purpose of this is to
prevent keeping several predicted bounding boxes for a single target object.

In the case of model ensembling, the probability of predicting almost identical
bounding boxes for a single target is substantial. As an example, in the case of
using two separate models to make predictions on the same input image, many
of the target objects will be identified by both models. NMS is then applied to

53



combine the most similar predictions by keeping the bounding box with the highest
confidence score.

Since the threshold for combining predicted bounding boxes (IoU-threshold) is a
pre-defined parameter, it needs to be optimized in a model ensemble. Setting a high
IoU threshold generally leads to a higher recall score (at the expense of precision),
as more predictions are kept - even if they are quite similar. However, setting
a low threshold will increase the precision score by decreasing the frequency of
superfluous bounding boxes.
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5. Results and discussion

5.1 Model comparison and selection
The purpose of the general selection of models (as listed in Table 4.6) is to compare
the most relevant models from the Detectron2 Model Zoo against each other on the
dataset to decide which models are to be more extensively trained. Results are
shown in Table 5.2.

The parameters chosen for this general comparison of models (listed in Table 5.1)
are meant to clarify which models perform better while maintaining a relatively
low training time for each training. Thus, more project time is spent on the final
training of models.

The two most promising models are Mask R-CNN and Faster R-CNN with 101
layers each. Each is now trained for 4 epochs on the full dataset, both with and
without random augmentation at train-time.

5.1.1 Choice of parameters

The model selection parameters for the initial comparison were chosen to allow the
model to learn features from a wider range of document samples while still keeping
the training time at a manageable level. See Section 4.5.8 for the reasoning behind
the choice of 4 parameters for the initial testing.

Table 5.1: Training parameters for extensive training of the selected small

and large models.

Parameter Value
Train-images 17 280

Batch size 2 (1 for ResNeXt models)

Iterations 34 560

Epochs 4

Confidence Threshold 0.25

IoU Threshold 0.25

Learning Rate Scheduler Warmup Cosine LR

Base Learning Rate 0.01

Warmup Iterations 500
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Table 5.2: General model selection across different architectures, network

depths, and whether or not train-time augmentation is applied.

Model Backbone + Head Layer depth Augmentation F1-score Recall Precision
Baseline – – – 0.880 0.890 0.883

Faster R-CNN ResNet + FPN 101 No 0.863 0.978 0.772

Mask R-CNN ResNet + FPN 101 No 0.875 0.978 0.791

Faster R-CNN ResNet + FPN 50 Yes 0.885 0.979 0.807

Faster R-CNN ResNet + FPN 101 Yes 0.889 0.983 0.811

Faster R-CNN ResNeXt + FPN 101 Yes 0.907 0.989 0.837

Mask R-CNN ResNet + FPN 50 Yes 0.888 0.980 0.811

Mask R-CNN ResNet + FPN 101 Yes 0.895 0.982 0.822

Mask R-CNN ResNeXt + FPN 101 Yes 0.913 0.986 0.850

In the initial model comparison, the Mask R-CNN with ResNeXt backbone model
came out on top with a recall-score of 0.986 and an F1-score score of 0.913. The
results were calculated using a prediction confidence threshold of 0.25 and the
same value for the IoU-threshold. The best-performing small model (with 50 lay-
ers) was the Mask R-CNN model, with a recall score of 0.979 and an F1-score of
0.885.

Note that it can be argued that choosing a number of epochs as low as 4 may lead
to an unfair comparison of models due to the fact that some models may be closer
to converging than others. However, due to the large size of the dataset and the
relative uniformity of the sample images, an epoch count of 4 would mean each
model iterates over 80 000 images. Thus, each model should be able to reach a
level of convergence that allows for comparison. Results also back this decision,
as model performance seems to be highly correlated to model complexity and ca-
pacity.

Results in Table 5.2 show that using random image augmentation at training time,
as described in Section 4.3.1, yields better results for both Faster R-CNN models
and Mask R-CNN models.

The top-performing 101-layer-model ("large" model) and 50-layer-model ("small"
model) will be trained for longer in order to reach results that are closer to the full
potential of the models for the given dataset.

5.1.2 Full training of selected models
For the full training of the best model from Table 5.2, the purpose is to move closer
to the full potential of the Detectron2 framework for this problem by increasing the
number of epochs, allowing the model to converge.

The parameters for the full single-model training are very similar to those listed
in Table 5.1. However, the epoch count is set to 15, as this allows the model to
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converge to a much larger degree while keeping training time between 24 hours
and 36 hours.

Table 5.3: Training parameters for full training of the two selected Mask

R-RCNN models.

Parameter Value
Large model Mask R-CNN X101-FPN

Batch size (large model) 1

Small model Mask R-CNN R50-FPN

Batch size (small model) 4

Train-images 17 280

Epochs 15

Learning Rate Scheduler Warmup Multistep LR

Base Learning Rate 0.01

Warmup Iterations 500

Training augmentations Yes

In previous model comparisons, model performance has only been measured for
a confidence score of 0.25 and an IoU-threshold of 0.25. In this section, the pur-
pose is to explore the potential of a fully trained model more thoroughly. This is
achieved by calculating the model’s performance over several confidence thresh-
olds (exploring the trade-off between recall- and precision) and illustrating the drop
in performance for IoU-thresholds of 0.25 and 0.50.

5.1.3 Recall/precision-tradeoff

By calculating the fully trained model’s performance for each 5-percent interval,
from 5% up to 95%, one can analyze how the model performs concerning the F1-,
recall and precision scores over the different thresholds. This provides insight to
what degree accuracy for one metric is sacrificed when tuning another.
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Table 5.4: Recall- and precision results for both fully trained models with

IoU = 0.25 for various confidence threshold values.

(a) Large model results

Conf. thr. Recall Precision
5 % 0.993 0.806

... %
20 % 0.987 0.881

25 % 0.986 0.891

... %
60 % 0.979 0.934

65 % 0.978 0.943

70 % 0.974 0.950

75 % 0.972 0.954

80 % 0.969 0.959

... %
95 % 0.897 0.970

(b) Small model results

Conf. thr. Recall Precision
5 % 0.992 0.760

... %
20 % 0.984 0.853

25 % 0.982 0.867

... %
60 % 0.967 0.932

65 % 0.964 0.937

70 % 0.960 0.944

75 % 0.955 0.949

80 % 0.950 0.956

... %
95 % 0.877 0.970

Figure 5.1: Precision/recall-tradeoff for small and large models for IoU-

threshold ∈ (0.25, 0.50). Created by incrementally adjusting inference

confidence threshold for test-set. Each dot marks a 5% confidence interval,

with 5% on the far left and 95% on the far right.
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Tables 5.4a and 5.4b shows how the metrics develop over these confidence inter-
vals. One can see that setting a very low confidence threshold, meaning almost all
predictions made by the model will be regarded, a maximum recall score of 0.992
is achieved when considering an Intersection over Union-threshold of 0.25. This
maximum recall score comes at a price, as precision is at 0.74 due to many false
positives in the predictions.

By setting the confidence score very high, e.g., to 0.95, the precision metrics are
optimized to 0.970, with a recall of 0.875. This indicates that the model can iden-
tify 87.5% of the national identity numbers in the dataset with more than 95%
confidence.

It is also likely that the precision score for this latter confidence threshold is reach-
ing a hard limit due to the number of missing national identification numbers in the
ground-truth (Section 3.1.3), marking several predictions above 95% confidence as
false positives though they are actually true.

Figure 5.1 shows the performance for both metrics for each confidence interval to
get a visual impression of the trade-off between recall and precision. The figure
shows that even though recall is the main metric, it is possible to gain a large in-
crease in precision by sacrificing only a small part of the recall performance.

5.1.4 Different IoU-thresholds
As Figure 5.1 shows, the model’s performance drops 1-2 percent overall as the IoU-
threshold for calculating metrics doubles from 0.25 to 0.50. This result indicates
that the model is well adapted to the ground truth, even if some predictions fall
outside the threshold at 0.50.

5.1.5 Choice of beta-value for the Custom Value Metric
The purpose of using a Custom Value Metric instead of a standard F1-score is to
compare model performance at different confidence intervals with actual redaction-
time in mind.

Based on the assumptions presented in 4.4 on calculating redaction cost, it is pos-
sible to use the recall/precision tradeoff scores for the large model in Table 5.4 to
find a beta-value for the CVM that best represents the time-cost savings for each
confidence interval. Figure 5.2 illustrates the total redaction time of 10 000 docu-
ments for each beta-value in the range [0.1, 4]. For beta-values below 1 precision
is weighted more than recall, and for beta-values above 1 recall is preferred. Al-
though optimizing the beta-value leads to a reduction in redaction time, this reduc-
tion is limited to a span of approximately 2 hours. The estimated time for redact-
ing 10 000 images without the assistance of machine learning is approximately
63 hours, meaning the optimal beta-value is a 45.1% decrease in redaction time
compared to the manual option (See Section 6.2.1 on calculating manual redaction
times and economic benefits).
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Figure 5.2: Total estimated redaction time (hrs) for 10 000 documents by

CVM-beta-value. Minimum value on the y-axis: 34.56 hrs. For compari-

son, the estimated time for fully redacting the same number of documents

is 63 hours.

The plot is calculated by following the steps described in Section 4.5.6 on choos-
ing CVM-beta-values and shows that beta-values in the range [1.5, 2] return an
optimal confidence threshold for the model that results in a minimum of time spent
redacting documents for employees at Arkivverket.

Based on these results, the beta-values for the Custom Value Metric are set to
1.5. Figure 5.3 illustrates the difference in scoring between the normal F1-score
(equivalent to the CVM-value with a beta of 1) and the CVM-value with a beta of
1.5.
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(a) Metric scores in range [0, 1] for F1- score and CVM.

(b) Difference between F1- and CVM-scores in range

[-0.08, 0.12].

Figure 5.3: Illustration of how increasing the beta-value in F-beta score

increases the impact recall has on the metric score.

As Figure 5.3a illustrates, the Custom Value Metric slightly shifts the heatmap so
that in areas where the recall score is higher than the precision score, the metric
score is increased compared to the normal F1-score. As the shift is quite subtle, it
can be hard to tell from only the heatmaps. The third heatmap portrayed in 5.3b
shows the difference in scores between the F1- and CVM scores. In the brightest
area of the heatmap, the CVM-score is 12 percent higher than the F1-score. In the
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darkest spot, however, the CVM score is 8 percent lower.

5.1.6 F1- and CVM-scores of fully trained models

Tables 5.5a and 5.5b shows the CVM-values for each confidence threshold.

Table 5.5: CVM-values for each confidence threshold

(a) Large model results

Conf. thr. F1 CVM
5 % 0.889 0.923

... %
20 % 0.931 0.952

25 % 0.936 0.955

... %
55 % 0.955 0.965

60 % 0.958 0.966

65 % 0.960 0.967
70 % 0.961 0.966

75 % 0.963 0.966

80 % 0.964 0.965

... %
95 % 0.932 0.912

(b) Small model results

Conf. thr. F1 CVM
5 % 0.860 0.907

... %
20 % 0.914 0.940

25 % 0.921 0.943

... %
55 % 0.947 0.955

60 % 0.949 0.956
65 % 0.950 0.955

70 % 0.952 0.955

75 % 0.952 0.953

80 % 0.953 0.952

... %
95 % 0.923 0.904

As mentioned in Section 5.1.5, the optimal F1-score is found at the confidence
threshold where both a relatively high recall- and precision-score is reached. Table
5.5 and Figure 5.4 (which shows the F1-performance by confidence thresholds),
the optimal F1-score is found at a confidence threshold of 0.75. At this threshold,
an F1-score of 0.953 is reached by combining recall- and precision-scores of 0.957
and 0.949, respectively.
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(a) Large model (Mask R-CNN ResNeXt 101 layers)

(b) Small model (Mask R-CNN ResNet 50 layers)

Figure 5.4: F1- and CVM-scores for small and large models for IoU-

threshold ∈ (0.25, 0.50).

As Figure 5.4 shows, the custom value metric (CVM) is also calculated for each of
the confidence thresholds, giving insight into what threshold may achieve the best
cost-specific results for Arkivverket.

5.1.7 Training- and inference-speed comparison
As Section 5.1.6 shows, the larger model achieved higher recall- and precision
scores at any confidence level. However, performance metrics are not the only
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Table 5.6: Comparison of training- and inference speed for the two exten-

sively trained models. The large model spends approximately 50% more

time per image in training, and approximately twice as long per image at

inference.

Model Train time Train time / img (relative) Inference time Inference time (relative)
Small model 2.784 imgs/s 1.000 4.2 it/s 1.000

Large model 1.860 imgs/s 1.497 8.2 it/s 1.952

relevant factors. Table 5.6 compares inference and training speeds for the two fully
trained models.

A larger model causes an increase in training- and inference-time. This may have
a negative impact on the user experience and will require more computational re-
sources from the server.

5.1.8 A note on retraining the model on difficult samples
In an attempt to increase the model’s accuracy when processing difficult samples,
a model was retrained on images on which it made mistakes, whether it be false
positives or false negatives. However, due to missing bounding boxes in the ground
truth, the model adjusted its weights based on flawed data causing a decline in
overall performance. As a result of this, retraining only on recall-error images was
tried. As a rule, this resulted in a slightly increased recall score, but always at the
expense of a large decrease in precision. Due to the sub-par results, retraining was
not presented in this report as a viable option.

5.2 Ensembling / Stacking models
In an attempt to beat the best-performing single models trained in Section 5.1.2,
two similar models are stacked, and the results are merged into a single predic-
tion using affirmative voting. Test-time augmentation is also attempted, where the
single best-performing "large" model makes a prediction on several variations of
an image before every prediction is merged in the same way. Presented results
for both techniques show results for NMS IoU-thresholds of 0.2 and 0.8. This is
done to see whether the results are better when similar predictions are kept apart,
or when only the most confident of the overlapping boxes are kept.

5.2.1 Stacking architectures
Two similar models are trained on the same training split to make a more gener-
alized model for national identification numbers. Each prediction of the stacked
model performs a vote function and non-maximum suppression on the same input
image.

The two stacked models are:
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1. Mask R-CNN ResNeXt 101-layers (previously trained "large" model)

2. Faster R-CNN ResNext 101-layers (Trained with same parameters as the
above model)

Both models have a confidence threshold of 0.60, as the goal is to maximize Cus-
tom Value Metric.

5.2.2 Test-Time Augmentation

The predictor in the test-time augmentation ensembles is also the best single model,
the Mask R-CNN ResNeXt 101-layers. Three predictions are made for each im-
age, based on sharpening the image, thresholding color-values, and performing a
"remove-lines" method.

5.2.3 Ensembling Results

Table 5.7 compares the performance of stacked- and TTA-ensemble models for two
different NMS-thresholds, 0.2 and 0.8, against the single-model baseline.

Table 5.7: Performance comparison of stacked- and TTA-ensemble models

with different NMS-thresholds

NMS-threshold F1-Score Recall Precision Custom Value Metric
Best single model @ 0.65 conf. – 0.960 0.978 0.943 0.967

Stacked model 1 0.2 0.964 0.979 0.949 0.969
Stacked model 2 0.8 0.941 0.983 0.902 0.957

Test-time augmentation 1 0.2 0.962 0.978 0.946 0.968

Test-time augmentation 2 0.8 0.937 0.981 0.896 0.953

5.2.4 Inference time

The inference time for models and ensembles is based on the number of predic-
tions, and corresponding calculations, to be made for each inference on a docu-
ment. For the stacked ensembles in this thesis, two models make predictions, and
the inference time is thus approximately twice that of a single model.

For test-time augmentation ensembles, a prediction has to be made for each varia-
tion of the input image. Also, the manipulation of the input image at each augmen-
tation involves further calculations. This makes the TTA-approach slightly slower
than the multiplicative imposed by the number of predictions.
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5.3 Summary of model performance

Table 5.8: Summary of model performance. Results for the first (small)

model is calculated using a confidence threshold of 60%, while the remain-

ing results are calculated using a confidence threshold of 65%. Choice of

confidence thresholds are based on results in Table 5.5.

Top model Recall Precision F1 CVM Inf.Speed

Best single, small model (Mask R-CNN) 0.967 0.932 0.949 0.956 8.2 it/s
Best single, large model (Mask R-CNN) 0.978 0.943 0.960 0.967 4.2 it/s

Stacked architectures (2) 0.979 0.949 0.964 0.969 2.1 it/s

Test-time augmentation (3) 0.978 0.946 0.962 0.968 1.2 it/s

Based on these results, we recommend that Arkivverket consider deploying one of
two models:

1. For accuracy: The most accurate model is the model ensemble containing
two fully trained 101-layer-models with ResNeXt backbones. This model
has the highest CVM-score, i.e. the best combination of precision and recall.
This will help Arkivverket redact as many national identification numbers as
possible.

2. For speed: The fastest model, both with regards to model training, required
training resources, and inference speed, is the 50-layer Mast R-CNN model
with a ResNet backbone. Faster inference time may make the redaction pro-
cess more pleasant for the employee, as suggestions will load faster as a
document is loaded into the redaction software.

The most accurate (stacked) model achieves significantly better scores for all met-
rics but at the expense of being almost four times slower than the most agile (sin-
gle) model. Our recommendation is that Arkivverket begins by deploying the
most accurate model, even if it is slower, and use it in the initial pilot projects
to check whether the decrease in speed is experienced as a hindrance for the end-
user. If users report that they prefer a model that gives out suggestions faster in the
redaction process over the more accurate model, they should implement the fastest
model.

5.4 Visualizing model predictions
The purpose of this section is to demonstrate correct and incorrect predictions from
a few documents from the test split. The presented examples are based on the best-
performing single, large model from Table 5.8. Ground-truth bounding boxes and
predicted bounding boxes are marked in red and blue, respectively.
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Figure 5.5 shows a predicted document with a standard, tabular layout with all
correct predictions. Figures 5.6 and 5.7 show examples where the object detection
model performed better than the ground truth by identifying numbers that were
omitted by employees, as well as examples where the model predicted difficult-to-
read national identity numbers. Figures 5.8 and 5.9 Show errors in the predicted
documents, either recall errors where the model missed national identity numbers
or precision errors where the model incorrectly predicted a number.

Figure 5.5: Document containing multiple national identity numbers,

where the ground truth (red boxes) and predictions (blue boxes) match.
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Figure 5.6: Left: The object detection model detects a hard-to-read na-

tional identity number (bottom blue box) that is not in the ground-truth

(red boxes). Right: The model detects a national identity number (blue

box) that is not in the ground truth. The number is partially distorted by

horizontal lines.

Figure 5.7: The model detects unstructured, handwritten national identity

numbers (blue boxes) in two documents. Some of the predicted numbers

are not in the ground truth (red boxes).

Figure 5.8: Two example documents where the model made false-positive

predictions, i.e. incorrectly predicted a national identity number. Blue

boxes illustrate predictions and red boxes illustrate ground truth.
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Figure 5.9: Example documents where the model missed national identity

numbers in the ground truth (red boxes). Left: The document is scanned

upside-down, and the model is unable to identify any of the three national

identity numbers. Right: The model is unable to identify the far-right

national identity number.

5.5 Estimating count of omitted national identity num-
bers

There are a couple of ways to determine how many national identification numbers
are missed by manual redactors in the dataset provided by Arkivverket. The first
and most obvious method is to manually examine each document in the dataset
and the ground truth redactions provided, and search for missed national identity
numbers. However, with a image count of 20 000 images, this is outside the time
constraints of this thesis project.

A second option is to use the best-performing model from Chapter 5 to find an
approximation of the count of missed national identification numbers. This can be
done by setting the confidence score parameter of the model to a very high value,
i.e. 90-95%, in order to make it suggest only the bounding boxes in which the
model is confident there is one or more national identity numbers. By matching
the suggested bounding boxes against the ground truth provided by Arkivverket,
and then using the precision score (see Section 4.5.5), it is possible to make an
estimation of how many national identity numbers are omitted.

In order to make a sound estimation of the count of omitted national identity num-
bers, the best single, large model from Section 5.8 is used. Our approach for finding
the percentage of omitted numbers consists of the following steps:

1. Select a random sample of 1 000 images from the dataset. In this case, it is
arbitrary whether the training- or test-split is chosen, since the purpose is to
identify national identity numbers that are not in the ground truth.
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2. Predict bounding boxes in each of the 1 000 images and compare boxes to
the ground truth.

3. Manually inspect every image containing one or more false-positive hits,
e.g. images where the model predicted (with high confidence) the presence
of national identity numbers that were not in the ground truth. Check the pre-
dicted bounding boxes and count the number of cases where the prediction
was correct and the number of cases where the predictions were wrong.

4. Calculate the fraction of correctly predicted bounding boxes that were not in
the ground truth but were predicted by the model.

The results of the analysis were the following:

• 1 000 random images were chosen from the training split and the confidence
threshold of the model was set to 90%.

• The 1 000 images contained a total of 1 763 bounding boxes in the ground
truth, close to the mean of the dataset.

• The model predicted 48 bounding boxes across 44 images that were not in
the ground truth. After manual inspection of the 44 images, 4 bounding
boxes were found to be actually false positives, leaving 44 omitted bounding
boxes.

• The fraction of omitted bounding boxes for the 1 000 sample images were
thus 44

1 763 = 0.0249 = 2.49%

The confidence threshold of 90% was set to push the model just across the threshold
where it starts making mistakes, as seen in the 4 false positives. The estimation of
approximately 2.5% omitted bounding boxes in the dataset is further strengthened
by checking the precision score of the model when pushing the confidence thresh-
old all the way up to 95% and making predictions across the full dataset. In this
case, the model reaches a precision score of 0.9753, or a precision error of 2.47%.
Although no manual inspection is performed when checking precision across all
20 000 documents, a confidence threshold as high as 95% should not return many
false positives, especially considering the fact that a confidence threshold of 90%
revealed only 4 actual false positives for 1 763 bounding in the inspected sample-
set.

Thus, an estimation of 2.5% omitted bounding boxes in the dataset is used in
economic calculations when estimating the real-world performance of the model,
or in other words and experienced precision when the model is implemented in
production.
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Figure 5.10: Examples of bounding boxes that were omitted from the

ground truth, but correctly predicted by the model (where red and blue

rectangles do not overlap). Red rectangles indicate ground truth (manual

redaction), and the blue rectangles indicate the model’s predictions.

5.6 Further work

5.6.1 Relabelling the dataset
As described in Section 3.1.3, quirks and errors in the underlying dataset provided
by Arkivverket directly affect neural networks’ ability to identify national identity
numbers in the corpus accurately. Arkivverket could correct two main weaknesses
in the dataset by relabelling the dataset:

First, the method for labeling numbers should be uniform across all identified num-
bers in all documents. The issue of sometimes labeling numbers individually and
sometimes in batches disrupt the shapes and sizes a neural network needs to rec-
ognize as a target, as numbers are no longer single five-digit words but potentially
multiple rows of them. One can assume that this negatively affects the overall per-
formance of the model. Still, it may also increase the neural network’s required
capacity to learn representations of the targets. This will, in turn, decrease the
speed and increase the size of the model.

The second way to improve the dataset is to take greater care to identify all (or at
least more) of the dataset’s national identity numbers. The consequence on model
performance is likely reduced somewhat when the model is shown examples of
actual national identity numbers but is mistakenly instructed not to label these as
such.

A suggestion is to use the models developed in this project as the basis for re-
labelling the dataset. Arkivverket may do this by first using the model to suggest
each document image and then manually removing false positives or adding missed
numbers to the ground truth (see Section 6.1.3).
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5.6.2 Creating a custom loss function
It may be possible to increase the model’s ability to adapt to the weaknesses in
the dataset by creating a custom loss function that takes the shape of the target
bounding boxes into account. It could do this by taking the relationship between
height and width of each bounding box into account when measuring loss, and
then score predictions based on this relationship. A possible solution could be to
let the IoU-cutoff between prediction and ground-truth be adaptive based on the
width-height relationship, making the scoring more lenient in cases where target
bounding boxes are tall.

5.6.3 Analysis of Layer Activation
Analyzing layer activation in the layers of an object detection model is a visual and
intuitive way of understanding the high- and low-level features recognized by the
model. Though this analysis is outside the scope of this thesis, it could provide
insight into how one may improve future models.

5.6.4 Further model development and testing

Preprocessing steps

Although experiments conducted in this project returned better results when us-
ing the raw images in the training pipeline, other image manipulation techniques
may increase the readability of documents which in turn might yield better re-
sults.

Implementing YOLO v4- or v5-models in ensembles

The scope of this project is limited to use models from the Detectron2 framework.
However, the family of architectures called YOLO (You Only Look Once) is very
popularly used for the same object detection tasks performed in these experiments.
The most likely candidates to give Detectron2 real competition are the YOLO v4-
and v5-models.

The implementation of YOLO may also perform well when stacked together with
Detectron2-models, as the frameworks are vastly different. The architectures used
for model stacking in this report have the weakness of being quite similarly built.
Implementing a YOLO v4-model may introduce new ways of identifying high- or
low-level features in documents.

Alternative Pretraining

All models used in this project were pretrained on the COCO-dataset as described
in Section 4.5.2. The purpose of pretraining models on images that at first glance
may look nothing like documents is to teach a model to recognize low-level fea-
tures such as shapes and blobs.

Although pretraining models on the COCO-dataset seem to have worked very well,
other pretraining datasets may have more similarities with the documents on which
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the models are better suited to identify the specific high-level features in the doc-
ument images of this specific project. At the time of writing, such a dataset is
unknown to the authors.
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6. Model deployment and maintenance

Based on the results discussed in Chapter 5, this chapter will describe our sugges-
tions as to how the models developed in this thesis may be deployed to production
at Arkivverket.

Figure 6.1: The model deployment and maintenance phase of a machine

learning project life cycle (highlighted).

6.1 Project packaging and architecture
This section describes the Python package that is a product of this thesis (De-
tectlib), and one of the possible architectures of the model deployment.

6.1.1 Detectlib package
The Detectlib Python package is the code base for experiments performed in this
thesis and the tools needed to deploy Detectron2 models through an API. It is
handed over to Arkivverket as part of the prototype for model deployment, along
with extensive documentation.

The Detectlib package is made up of 7 main modules:

• model training module: Containing tools and script for training Detectron2
models, such as custom train-loaders with augmentation.

• model evaluation module: Containing tools needed for evaluation models
at scale, with custom metrics, plotting tools, and test-set evaluation func-
tions.

• model library module: Containing fully trained Detectron2 models to be
deployed on their own or part of a model ensemble.

• prediction module: Containing tools for performing non-standard predic-
tions, such as stacked predictions or test-time-augmentation.
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• data handling module: Containing tools for manipulating data, preprocess-
ing images, formatting data to COCO-format, and more.

• avmllib mod module: A miniature version of the avmllib package devel-
oped and provided by data scientists at Arkivverket, containing tools for in-
teracting with Digitalarkivet API, as well as preprocessing and manipulating
images.

• api tools module: Containing classes and functions used to validate API
requests and responses, as well as instantiating models and performing pre-
dictions per request on a server.

6.1.2 API architecture
To deploy the models developed in this thesis, a network of APIs, containers, and
databases needs to work together and with external administrative tools to make
the model available to the end-user.

Figure 6.2 gives a birds-eye-view of an example of such an architecture, and the
following sub-chapters will describe each element in the diagram.
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Client

The client is the end-user, in this case the employees overseeing and performing
redaction of documents. The client software is assumed to be third-party redaction
software or redaction software developed and maintained in-house.

The client interacts with the deployed machine learning model through an API-
layer, which is part of a "dockerized container" (see Section 2.5.2) on a local server.
This is done by sending a request to the server with one of two intentions:

1. Requesting the proposed redactions for a document image in the Digita-
larkivet database, or

2. Submitting redactions from manually redacted document images.

Both of these actions are done implicitly or by the click of a button. Suggestions
for document redaction areas may be requested automatically by the redaction soft-
ware as a document is loaded in the interface, and submitting ground-truth redac-
tion areas can be submitted as the document, and final redactions are saved by the
user.

Redaction server

The redaction server contains the "brain" of the workflow and the methods for
communicating with the machine learning model. The redaction server is made up
of three "layers":

• The API layer, which allows communication between the user/client and the
application layer.

• The application layer, which houses the scripts used for image prediction,
the code base of the API, communication with databases, and other utilities.

• The database layer, which symbolizes the databases that the application lay-
ers interact with.

In practice, these layers are part of the same codebases, where:

• The API layer and application layers are part of a Docker container which is
hosted on the redaction server, and

• The databases in the database layer may either be hosted on the same server
as the other layers (the redaction server) or hosted on another server alto-
gether. In that case, the application layer would contain the necessary code
for communication with the databases.

Administration tools

Another part of deploying the model is the suite of administration tools that are
part of the project but not a direct part of the application.

The administration tool suite is made up of four parts:
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• API documentation used to understand and further develop the code on the
server.

• Performance monitoring app (Grafana), used to monitor (in real-time) the
model performance against the manually adjusted ground truths.

• Model retraining procedure, for retraining models on the updated and im-
proved ground-truth data collected in the ground-truth database over time.

• Model deployment procedure, for deploying the retrained models safely and
productively.

6.1.3 API-flows
The architecture described in Figure 6.2 is divided into three main flows; redaction,
ground-truth feedback, and performance monitoring and model maintenance.

Redaction flow

The core of the project is the redaction flow. This flow is triggered every time
a client requests redaction suggestions using the trained object detection mod-
els.

Figure 6.3: Cut-out from 6.2 with overview of the redaction flow.

The redaction flow consists of five main steps:

1. The end-user loads a document image, identified by a UUID, into the redac-
tion software, and the software automatically sends a request to the project
API.

2. The UUID is transmitted to the "redaction engine" on the Redaction Serer
through the API layer.

3. The redaction engine sends a request to the Digitarkivet API, Akriverkets
database, using the same UUID, and receives a pixel-array representing the
document image.
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4. A prediction is made on the image array, returning a series of redaction areas
and corresponding confidence scores.

5. The predicted redaction areas are sent to two locations:

• To a database dedicated to predictions made by the model, and

• Back to the user (or the redaction software) to be corrected, if neces-
sary, and saved.

Ground-truth feedback flow

To improve the model’s predictions by retraining and monitoring the model’s per-
formance in real-time, it is necessary to save the ground truth for each image run
through the redaction software. This is handled by "capturing" the bounding boxes
that the employee saves after reviewing and correcting the redaction software’s
suggested redactions.

Figure 6.4: Cut-out from 6.2 with overview of the register-ground-truth

flow.

The feedback flow consists of three main steps:

1. The end-user reviews and saves the redaction areas for an image identified
by a UUID.

2. The UUID and corresponding redaction areas are packaged as a JSON and
transmitted to the project API-layer and forwarded to the "registering script".

3. This dockerized python script unpacks the JSON and adds the contents as
entries to the database, keeping track of ground-truth redactions.

Performance monitoring and model maintenance flow

As the two preceding flows regularly update the two databases containing image
predictions and ground-truths, it is possible to monitor the predictions’ perfor-
mance in real-time and maintain and retrain the object detection model at frequent
intervals.
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Figure 6.5: Cut-out from 6.2 with overview of monitoring- and mainte-

nance flow.

The performance monitoring- and maintenance flow is made up of two separate but
tightly linked flows. The first is the monitoring flow:

1. At regular intervals (hourly or daily), a dockerized script is run, which per-
forms the following tasks:

(a) Loads database entries from both the predicted and ground-truth databases
*,

(b) Calculates key performance metrics for document UUIDS that are present
in both databases, and

(c) Commits the metrics, combined with the predicted database entries’
timestamps, to the performance database.

2. A monitoring dashboard continuously queries the performance database for
updated logs of timestamped metrics and displays performance over time.

The second flow is the model maintenance and retraining flow:

1. At frequent intervals (weekly or monthly, depending on usage observed per-
formance), entries in the ground-truth database are used to retrain in an at-
tempt to improve the object detection model †.

2. The retrained model is deployed on the Redaction Server, using a deploy-
ment method such as canary deployment or similar. If the retrained model

*To enable scalability, metrics are only calculated for database entries that are not already present

in the performance database.
†The model may improve in multiple ways. First, the registered ground-truths may be of higher

quality than the dataset on which the model was originally trained (see Section 3.1.3). It may also

improve by being trained on document variations or layout style that has recently been introduced

and were not part of the original training data.
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performs better than the previous model(s) over time, it fully replaces other
models.

6.1.4 Performance monitoring
As mentioned above, there are many benefits to monitoring the performance of
machine learning models in real-time.

By continuously receiving feedback on key metrics such as recall and precision,
it is easy to identify cases where the model starts under-performing. This may be
due to bugs in the prediction software, bugs in the client’s redaction software, or
changes in the document data input by the end-user.

Figure 6.6: Illustration of performance monitoring of the machine learn-

ing models in real-time using Grafana Dashboard. See Appendix C for

higher resolution.

Figure 6.6 shows an example of how such an interface may look. It is developed for
this project using the open-source Grafana software and shows potential features,
such as:

• Displaying key metrics such as average recall, F1-score, and precision for
different time intervals, making it easy to spot when the model falls below
expected performance, and

• Histograms displaying the solution’s usage by counting requests made to the
API over time, making it possible to strike the alarm if employees stop using
the solution and work on identifying the cause.
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6.1.5 Choice of databases

An important part of making a project scalable is to use databases with optimized
infrastructures for the purpose of which they are utilized in the first place. The
deployment method suggested in this thesis uses three different database entities,
where two or more may be separate tables in the same database. However, as
the performance monitoring database serves a different purpose than that of the
other two entities, the database architecture should be specialized towards this pur-
pose.

The first two database entities described in Figure 6.5 are meant to serve the logs of
predictions and ground-truths only occasionally and also need to filter new entries
to the database to prevent duplicate entries. Thus, using a traditional relational
database such as MySQL should be adequate. In that case, only a single database
is needed, with a separate table of each of the entities.

However, the third database entity will be queried frequently by the monitoring
software and should be able to quickly serve high-resolution time-series data for
different periods, despite a considerable amount of metrics-entries.

To ensure scalability as the number of entries in the performance monitoring database
grows continuously, a time-series database such as Prometheus (prometheus.io) or
InfluxDB (influxdata.com) should work sufficiently.

6.1.6 Load-testing before launch

To test how the redaction-API functions under load, we recommend performing
load-testing using Locust.io (see Section 2.5.2) before exposing the API to test-
users.

By using Locust.io to simulate users requesting redactions on various document
images, Arkivverket can analyze how many predictions the model can serve at any
given time frame and how it performs under increasingly high loads. Locust.io
gives Arkivverket the ability to test the new system with many mock-users that far
surpasses the load they would be able to stage using real users before the applica-
tion is deployed, exposing the robustness of the system.

6.2 Economic implications

6.2.1 Savings potential

Figure 6.7 gives an overview of the current workflow of the redaction process be-
fore the implementation of the automatic algorithm.
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Figure 6.7: Overview of the redaction process using the current solution

at Arkivverket

The process starts as the requester submits an application for the document, fol-
lowed by an employee opening and accepting the application. Afterward, the em-
ployee will find the document in the file system before it is opened. The em-
ployee will then read through the document to find national identity numbers and
mark each occurrence with a two-anchored redaction box. When the document is
redacted, the employee sends the document to the requester.

The assumptions made in 4.4 suggests that an employee will spend, on average, 12
seconds reviewing and processing any document. Additionally, the employee will
use 6 seconds to add a redaction box for each national identity number where there
are no suggestions made by a model, and 2 seconds correcting a wrong suggestion.
The documents used in this thesis contain, on average, 1.786 bounding boxes per
page.

Before the implementation of the proposed model, estimations based on the listed
assumptions suggests each document will require 22.7 seconds of processing time
from the document is opened to the redaction boxes are in place. For every 10,000
pages, these calculations suggest that Akrivverket spends 63.1 hours marking iden-
tity numbers and redacting.

Metrics from the most accurate model, as described in Section 5.3 and adjusted for
omitted bounding boxes in Section 5.5, suggest that the model will miss 2.1% of
the actual national identity numbers (i.e. not make a suggestion), and incorrectly
suggest national identity numbers in 2.6% of the cases. A precision-error of 2.6%
is found by adjusting the precision-error of the best-performing model in Table
5.8 (5.1%) by subtracting the estimated 2.5% of national identity numbers that are
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missed by human redactors and thus not in the ground truth.

Using the metrics of the most accurate model, for every 10,000 pages, 0.26 hours
are spent correcting false positives and 0.62 hours for false negatives. This is added
to each document page’s base processing time, 33.33 hours per 10,000 pages, to-
taling at 34.20 hours (see Appendix B).

These calculations suggest that 28.88 hours will be saved per 10,000 pages by
implementing the redaction suggestion algorithm. Operating with a yearly wage
of 679,120 NOK, including expenses such as employer’s tax and benefits, the
hourly cost of labor is estimated at 394 NOK. The implementation will, in this
case, save Arkivverket 11,370 NOK per 10,000 pages. Based on records provided
by Arkivverket, they have the last 12 months redacted and released approximately
70,000 pages. Using the calculations above, Arkivverket can save 79,554 NOK
by implementing the algorithm (see Appendix B). Alternatively, keeping the hours
worked constant, 59 000 more pages could be redacted per year. If the algorithm
reaches the satisfactory performance needed for working autonomously, the sav-
ings potential could be far greater.

Implementation cost

As the algorithm is already developed at no additional cost for Arkivverket, the esti-
mated profitability of implementation can be calculated from the estimated savings
and the cost of implementation. Even though the algorithm is ready to use, new
software for the employees needs to be developed. There is uncertainty connected
with whether or not this can be done by Arkivverket’s own employees, both in
terms of available time and capabilities. However, there will be a cost associated
with developing such software, whether it be the cost of labor of own employees
or developers from outside the organization.

Project profitability

Rough estimates suggest that software development for implementing the algo-
rithm will require 115 hours of work, provided they can develop it using their own
employees. Also, the algorithm will need monthly maintenance, estimated at three
working hours per month, totaling 151 hours the year of implementation. Using
the same labor cost as above, the implementation cost is calculated at 59,448 NOK
in the first year. Based on these estimates, the implementation profitability will
total 20,107 NOK in the year of implementation. For the following years, with-
out the cost of implementation, the yearly profitability can be estimated at 65,381
NOK.

6.2.2 Ethical implications

More national identity numbers get censored

Whilst reviewing the bounding boxes set by the employees of Arkivverket, it is
evident that many national identity numbers are left unmarked. By implementing
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the models described in this thesis, a potential benefit might be an increase in
national identity numbers redacted, and fewer released unnoticed.

Automation bias

Automation bias [57] occurs when one depends excessively on automated sys-
tems, causing errors as humans tend to disregard or fails to search for contradic-
tory information in light of a computer-generated solution. If the employees re-
sponsible for reviewing and correcting the software’s suggestions rely excessively
on the generated suggestions for redaction, unredacted national identity numbers
might be released, and areas without national identity numbers could be wrongfully
redacted.

As described in Chapter 5, the algorithm is far from perfect. However, it is success-
ful in finding 97.9% of all national identity numbers. It is plausible that the high
rate of success by the algorithm and the automation bias may cause the employees
to rely excessively on its suggestions, causing them to ignore errors. In such an
occurrence, it will harm the efficiency of this project.

6.2.3 Other consequences
As described in Chapter 2, automation of tasks may have an impact on the labor
market. However, it seems unlikely that machine learning-driven task automation
will have a major impact on the number of jobs in most workplaces, at least in
the near future. A more feasible scenario is that task automation will cause a shift
in focus. As repetitive tasks are being automated, employees have more time for
activities that are less suited for automation, such as tasks requiring a high level
of strategic or creative thinking. In turn, this might cause an increase in work
satisfaction [38].
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7. Conclusions

Two main goals were defined for this thesis project:

1. To test whether or not object detection models can separate specific se-
quences of numbers and text, e.g., national identity numbers, from similar
tokens in the document. And,

2. To test if this approach is sufficiently accurate at identifying national iden-
tity numbers to be implemented as an automated suggestion feature in the
redaction workflow.

The results in this report show that object detection models are indeed able to iden-
tify national identity numbers in a historical document. Results show that using an
abstract objection detection-based approach to finding national identity numbers in
historical documents delivers more accurate results than the prototype currently de-
veloped at Arkivverket. A likely reason for this is that the current solution is depen-
dent on successfully extracting and interpreting words before making a prediction,
making it vulnerable to missing out on handwritten ID numbers. The most accurate
model proposed in Table 5.8 achieved metric scores of 97.9% recall, 94.9% preci-
sion, an F1-score of 96.4% on the test split containing 1 920 images. Compared
to the baseline results achieved by the prototype at Arkivverket of 89.0% recall,
88.3% precision, and an F1-score of 88.6%, our model measures an 8.9% and
6.6% positive difference in recall and precision, respectively, and an improved
F1-score of 7.8%*. This increase in performance may largely be due to the object
detection models’ ability to recognize handwritten national identity numbers in the
documents.

Our assessment of the project is that the object detection models listed in Table
5.8 are sufficiently accurate at identifying national identity numbers to be imple-
mented in a trial project at Arkivverket as part of a suggestion feature in the existing
redaction software. This would involve employees being presented suggestions for
national identification numbers in a given document and manually correct the sug-
gestions. By deploying the selected model as described in Chapter 6, Arkivverket
will be able to continuously monitor performance, make adjustments to the mod-
els when needed, and improve the quality of the datasets by creating new training
data from the quality-assured redactions. At regular intervals, they can then retrain
the models on the improved dataset, and compare performance of the new model
against the model already in production.

Estimates from Section 6.2.1 show that implementing a machine learning algo-
rithm to suggest bounding boxes may save Arkivverket 65,381 NOK yearly as the

*Note that the baseline results reported by Arkivverket were not measured on the same samples

as the models in this report, meaning comparisons should be regarded as indicative.
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redaction process becomes more efficient. Implementation may also increase work
satisfaction by simplifying repetitive and non-rewarding tasks.

With time and further research, the process of redacting national identity numbers
may become fully autonomous. In fact, considering our estimation that approxi-
mately 2.5% of all national identity numbers are overlooked by employees in the
process of manual redaction (see Section 5.5), the developed model, with a recall-
error of 2.1%, should be able to autonomously match (or exceed) the number of
national identity numbers that are identified by its human counterparts. These re-
sults have to be tested through pilot projects at Arkivverket on new and unseen data
to be confirmed, but they indicate the possibility that a fully autonomous redaction
workflow could be successfully implemented in the near future.
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Appendices
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A. Predicting outliers with final model

In order to test characteristics of "outlier" samples that were removed from the
dataset, and how they impact model performance, the best performing large model
from Chapter 5 is used to predict only the outliers and measure the results.

Figure A.1: Precision- and recall-scores for the predicted outliers

show performance is indeed worse at all confidence intervals for IoU-

threshold=0.25, as compared to results in Table 5.4.

Figure A.2: Both F1-scores and CVM-scores are significantly decreased

for outliers as compared to Figure 5.4.
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B. Economic calculations
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