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Abstract 

The human body is covered by a protective barrier, the skin. The skin is daily subjected to cuts 

and bruises, wounds that are normally healed without scars. However, sometimes the wound 

healing process of the skin fails, and chronic wounds is formed. In order to develop new and 

non-invasive strategies to improve the healing process in chronic wounds, it is necessary to 

fully understand the mechanisms of wound healing. Collective cell migration is an essential 

process of wound healing. Cell migration requires filament structures in the cytoskeleton, in 

particular, formation of actomyosin networks.   

Lysophosphatidic acid (LPA) is involved in many biological functions. LPA has the ability to 

promote migration of keratinocytes and fibroblasts, and thereby participate in wound repair. 

The mechanisms for LPAs regulatory role in wound healing are not fully established. The aim 

of this master project is therefore to contribute to a better understanding of how LPA activates 

and regulates collective cell migration in human skin. The research is based on an established 

in vitro experimental system including the human keratinocyte cell line HaCaT.  

Cell movements in quiescent epithelial sheets were monitored by live cell imaging to study 

migration patterns formed after different stimuli. The mRNA expression levels of the six LPA 

receptors (LPARs) in HaCaT cells were estimated. Furthermore, visualization of actomyosin 

networks was performed using immunofluorescence (IF) staining and live cell imaging of a 

HaCaT cell line expressing fluorescent labelled actin. The effect of the LPAR1 inhibitor 

Ki16425 was examined based on cell migration patterns and actomyosin expression. Finally, a 

LPAR1 knockdown cell line was established using the shRNA technique. Western blot analysis 

was used to evaluate the knockdown efficiency and changes in cell morphology and migration 

behaviour were examined. 

The results showed that LPA was able to activate and regulate collective cell migration of 

keratinocyte cell sheets and it was observed a correlation between actomyosin networks and 

cell sheet coordination. It was also estimated expression of all six LPARs in HaCaT cells, but 

LPAR4 was expressed in lower amount. LPAR1 was observed to be important for LPAs 

regulatory role of collective cell migration, but it was not alone involved in these responses.  
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Sammendrag 

Menneskekroppen er dekket av en beskyttende barriere, huden. Huden blir daglig utsatt for kutt 

og merker, sår som normalt heler uten å etterlate arr. Likevel kan det forekomme feil i 

sårhelingsprosessen som medfører kroniske sår. For å kunne utvikle nye non-invasive strategier 

for å forbedre helingsprosessen i kroniske sår, er det nødvendig å forstå mekanismene for 

sårhelingsprosessen fullt ut. Kollektiv cellemigrering er en essensiell prosess for sårheling. 

Cellemigrering avhenger av filamentstrukturer i cytoskjelettet, spesielt actomyosin.  

Lysofosfatidsyre (LPA) er involvert i mange biologiske funksjoner. LPA har evnen til å fremme 

migrering av keratinocytter og fibroblaster, og dermed inngå i sårhelingsprosessen. 

Mekanismene for LPAs regulatoriske rolle i sårheling er ikke fullstendig etablert. Målet med 

dette masterprosjektet er derfor å bidra til en bedre forståelse for hvordan LPA aktiverer og 

regulerer kollektiv cellemigrering i menneskehud. Forskningen er basert på et etablert in vitro 

eksperimentelt system som inkluderer den humane keratinocytt-cellelinjen HaCaT.  

Cellemigrering i et hvilende epitelcellelag ble studert ved levende cellemikroskopi for å 

undersøke migreringsmønstre som dannes av ulike stimuli. Uttrykksnivået av mRNA for de 

seks LPA-reseptorene (LPAR) i HaCaT-celler ble estimert. Videre ble actomyosin-nettverk 

visualisert ved bruk av immunofluorescens (IF) og mikroskopi av en HaCaT-cellelinje som 

uttrykker fluorescerende aktin. Effekten av LPAR1 inhibitoren Ki16425 ble undersøkt basert 

på cellemigreringsmønstre og uttrykk av actomyosin. Til slutt ble det laget en cellelinje med 

nedregulert LPAR1 ved bruk av shRNA-teknikk. Analyser med Western blot ble utført for å 

evaluere effekten av nedregulering i cellelinjen, og endringer i cellemorfologi og 

migreringsegenskaper ble undersøkt.  

Resultatene viste at LPA hadde evnen til å aktivere og regulere kollektiv cellemigrering i 

keratinocytt-cellelag, og det ble observert en korrelasjon mellom actomyosin-nettverk og 

koordinering av celler i cellelag. Det ble også estimert uttrykk av alle seks LPAR i HaCaT-

celler, men LPAR4 var uttrykt i mindre mengder. Observasjoner viste at LPAR1 var viktig for 

den regulatoriske rollen til LPA i kollektiv cellemigrering, men LPA var ikke involvert i disse 

responsene alene.  
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1 Introduction 

1.1 The human skin 

The human body is covered by skin protecting underlying cells and tissue from mechanical, 

thermal, and chemical injury, and intrusion of microorganisms. Being the largest sensory organ 

of the body, the skin provides information about the ‘outside world’. In general, the skin has a 

remarkable ability to heal when it is injured and to fight infections in open wounds (Sjaastad et 

al., 2016). However, some wounds fail to heal properly and become chronic. The wound healing 

process of human skin is described below (section 1.2). 

The skin is composed of the epidermis, a multi-layered superficial epithelium, and the dermis, 

an underlying layer of dense, fibrous connective tissue. The basal cell layer is the innermost 

layer of epidermis, and the place where stem cells divide and further differentiate into 

keratinocytes or melanocytes before they migrate to replace lost cells from the upper skin 

layers. Most epidermal cells are keratinocytes. Keratinocytes synthesize fibrous keratin 

proteins, which among other things are an important filamentous part of the cytoskeleton of 

epithelial cells (Sjaastad et al., 2016).  

The basal lamina is a specialized form of extracellular matrix keeping the epidermis attached 

to the dermis by forming a mechanical connection between them. The basal lamina has in 

general a critical role in the body, lying beneath all epithelial cells and surrounding individual 

muscle cells, fat cells and Schwann cells in addition to separate the cells from connective tissue 

and form mechanical connection. The basal lamina serves as highways for cell migration, is 

important in tissue renewal, and it is able to determine cell polarity (Alberts et al., 2015e). 

Collagen is the most abundant protein in the body constituting 25 % of the total protein mass 

(Alberts et al., 2015e). Collagen is an important component of the skin expressed in the 

superficial layers of the dermis and in the basal lamina. The collagen fibres in the dermis are 

arranged as bundles running parallel to the skin surface and connected into a network forming 

structures that support the epidermis and give it its contours (Sjaastad et al., 2016). Type IV 

Collagen is one of the two major components in basal lamina (Alberts et al., 2015e). 
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1.2 The wound healing process 

One of the most complex processes in the human body is wound healing. The process is timely 

regulated and includes a variety of cell types and biological pathways. The wound healing 

process is divided into several stages including haemostasis, inflammation, growth, 

re-epithelialization and remodelling (Rodrigues et al., 2019). An overview of the different 

stages in the wound healing process is given in the following text. 

The first stage is haemostasis that activates cellular responses leading to limit blood loss. These 

responses include constriction of the blood vessels by contraction of the vascular smooth 

muscle cells, activation of platelets and the blood coagulation cascade forming a protective 

blood clot. The last step of haemostasis is fibrinolysis that leads to degradation of the blood 

clot, an important step to disable the clot to completely stop the blood flow (Murphy, 2017; 

Rodrigues et al., 2019). 

Inflammation, or the inflammatory response, is defined as the local accumulation of fluid, 

plasma proteins and white blood cells initiated by physical injury, infection or a local immune 

response. There are five symptoms caused by inflammation; heat, pain, redness and swelling 

(Parham, 2015). A variety of different molecules is involved in this step of wound healing. 

Chemokines, a specific form of cytokines, is secreted by mast cells and have an important role 

of guiding neighbouring cells, often white blood cells to the wounded site (Rodrigues et al., 

2019). Cytokines induce local dilation of blood capillaries, which increases the blood flow and 

causes heat and redness in the skin. The dilation introduces gaps in the blood vessel endothelium 

making it permeable for blood plasma that leak into the connective tissue. The increased local 

fluid volume causes swelling and pain (Parham, 2015). The most abundant white blood cells in 

the wound are neutrophils. Neutrophils secrete microbial agents as proteases, growth factors, 

integrins and cytokine receptors. The proteases are enzymes that both degrade antimicrobial 

activity and the wounded area to prepare formation of new skin layers. Neutrophils produce 

extracellular traps to capture pathogens, and can, as macrophages and dendritic cells, perform 

phagocytosis by response to different growth factors (Rodrigues et al., 2019).  

The next stage of wound healing is growth of new connective tissue, also called granulation 

tissue. This provides stability and prepare the wounded area for regeneration of new skin layers 

(Rodrigues et al., 2019). Cytokines released from inflammatory cells establish gradients 

attracting keratinocytes, fibroblasts, and endothelial cells. Fibroblasts are stimulated by growth 

factors to proliferate and synthesize collagen restoring the extracellular matrix and the 
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mechanical properties of healed skin (Guerra et al., 2018). Angiogenesis, formation of new 

blood vessels from pre-existing ones, is essential for reestablishment of normal blood flow and 

to provide nutrients and maintain the oxygen homeostasis in the new tissue (Guerra et al., 2018). 

Re-epithelialization is the next stage of wound healing, induced by several growth factors 

stimulating keratinocytes to migrate and proliferate in the basal cell layer of epidermis. When 

stimulated, the keratinocytes are responsive to factors from the epidermal and fibroblast growth 

factor family that upregulates keratin and is important for migration. Keratinocytes in the 

wound can integrate with fibroblasts, endothelial cells and immune cells, which is important 

for complete cell closure (Rodrigues et al., 2019).  

The last stage of wound healing is remodelling. Remodelling occurs after the wound closure is 

completed, and includes reorganization and contraction of the extracellular matrix leading to a 

reduced scar. Collagen fibres synthesized in the growth stage are replaced with a stronger type 

increasing the ultimate tensile strength of the skin (Guerra et al., 2018). The healed area of 

epithelial cells shifts from a state of hypoxia to cell quiescence. This is the end point of wound 

healing, in most cases, but some wounds continue to undergo remodelling for several months 

or years (Rodrigues et al., 2019).  

Wounds can be classified as acute or chronic based on the healing time. A wound is classified 

as acute if it heals within three weeks after injury through the processes mentioned above 

(Dreifke et al., 2015). Failures to complete the specific steps in the wound healing process will 

activate pathological processes that lead to formation of hypertrophic scars, fibrosis, or non-

healing wounds (Guerra et al., 2018). If the wound persists for three months or longer, it is 

classified as chronic (Dreifke et al., 2015). Chronic wounds frequently present a delay in the 

inflammatory or proliferative stages of the healing process. Diabetes and obesity are usually 

associated with chronic wounds. Chronic non-healing wounds constitute a very high economic 

and social impact to the society. There is no efficient wound heling therapy available today, 

and as the general population grows older the prevalence of chronic wounds is expected to 

increase. Therefore, it is essential to fully understand the mechanisms of wound healing in order 

to develop new and non-invasive strategies to improve the healing process in chronic wounds 

(Guerra et al., 2018).  
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1.3 HaCaT 

When studying cellular processes in vitro, experiments are commonly designed using 

established and commercial available cell cultures, so-called cell lines. One of these is the 

HaCaT cell line established by Boukamp et al. (1988). HaCaT is an immortalized, but not 

transformed, keratinocyte cell line derived from human epidermis. The criterion to be 

immortalized is to survive more than 140 cell passages. This cell line is not differentiated and 

will always stay as keratinocytes, with a normal cell cycle, like the progenitor epithelial cells 

in the basal cell layer of epidermis. The cell line was named based on its human origin and its 

propagation abilities under growth condition with low calcium (Ca2+) levels and elevated 

temperature (Boukamp et al., 1988). 

HaCaT cells have been shown to be able to differentiate and form specific epithelial cell layers 

in in vitro 3D cultures (Mao et al., 2018). The HaCaT cells can be regarded as a substitute to 

progenitor cells in the basal layer of epidermis, where cells can become activated and participate 

in cell migration and proliferation during the re-epithelialization stage of wound healing. Thus, 

this cell line is a good choice when studying molecular mechanisms of cell migration in relation 

to wound healing in human skin. 

 

1.4 Cell migration  

Cell migration is an important process during development, wound healing and immune 

responses. Cells can migrate either as single cells or as a unit in a collective, known as collective 

cell migration. During embryogenesis, single cells migrate to specific target locations, and 

coordinated cell migration in the form of epithelial cell sheets creates the structures of a body. 

Cell migration requires the three basic filament structures in the cytoskeleton; actin filaments, 

microtubules and intermediate filaments, and a variety of cytoskeletal accessory proteins like 

motor proteins (Alberts et al., 2015f). Cell polarization is essential for single cell migration, 

since it helps the cell determine the direction of its movements (Pandya et al., 2017). This also 

occur during collective cell migration, where connected cells develop a polarized cell sheet 

based on leader and follower cells as described in section 1.4.4.  

Collective cell migration is essential in physiological processes such as formation of tissues and 

organs during development, and later in life for wound healing, tissue renewal and 

angiogenesis. Abnormal collective cell migration is associated with pathological processes such 
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as cancer dissemination, where tumour cells can move using multicellular streaming, tumour 

budding and collective invasion (Pandya et al., 2017). Collective cell migration is established 

by and dependent on multiple factors and signalling pathways leading to collective cell 

polarization, mechanocoupling and cytoskeletal rearrangements (Haeger et al., 2015).  

1.4.1 Mechanisms for cell migration 

Cells migrate in response to changes in the extracellular matrix and specific external signals 

including chemical and mechanical signals that activate motility mechanisms like chemotaxis, 

haptotaxis and durotaxis. Chemotaxis is defined as attracting or repelling cell guidance due to 

the presence of a chemical gradient caused by chemokines, altered pH and growth factors. 

Notably, chemotaxis can be induced by the migrating cells themselves by establishing a self-

generated chemokine gradient along the migrating collective (Haeger et al., 2015).  

Haptotaxis is directing cell movements along a gradient of immobilized ligands caused by 

different levels or distribution of extracellular matrix proteins as collagen, fibronectin, and 

matrix-bound cytokines among others (Haeger et al., 2015). Durotaxis describes migrating cells 

preference of a stiff substrate, where cells are moving in response to a stiffness gradient (Lo et 

al., 2000).  

Collective cell migration can also be guided by electrical signals. The mechanism where 

migration is directed relative to an electric field is called electrotaxis (Haeger et al., 2015). This 

has been shown to be a mechanism of importance for wound healing. An in vivo study of 

wounds in human skin confirmed the presence of an electric current that was gradually 

increasing towards the centre of the wound. The same study monitored monolayers of rat 

corneal epithelium and observed a correlation between increased electric field strength and 

increased migration velocity (Zhao et al., 2006). 

1.4.2 Growth factors  

Blood consists of cellular content, red and white blood cells and platelets, and a liquid carrier, 

plasma. Plasma without clotting proteins is blood serum, which contains several essential 

wound healing factors as growth factors, cytokines and antimicrobial components. Abundant 

proteins and peptides present in plasma and serum are albumins, globulins, and lipoproteins 

(Psychogios et al., 2011).  

Growth factors are defined as extracellular signal proteins that stimulate cell growth, survival 

and proliferation (Alberts et al., 2015c). As described in section 1.2, several growth factors are 
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involved in the process of wound healing. The epidermal growth factor family, including the 

epidermal growth factor (EGF), is one group of growth factors known to activate keratinocytes 

during re-epithelialization (Rodrigues et al., 2019).  

In a paper published by Lång et al. (2018), it was shown that blood serum can activate collective 

cell migration of skin cells in a static quiescent cell state to begin to move. EGF receptors 

(EGFRs) are transmembrane proteins that are important in many biological processes. It is 

shown that activation of EGFRs are essential for activation of cellular movement (Koivisto et 

al., 2006), but that EGF signalling alone is not enough to make the cells move collectively in 

the same direction (Lång et al., 2018). Other growth factors also shown to contribute during the 

wound healing process, are transforming growth factor-β and insulin growth factor (Rodrigues 

et al., 2019). However, other signalling molecules present in human blood can also stimulate 

activation of cell migration such as the phospholipid lysophosphatidic acid (LPA) (Thorlakson 

et al., 2017).  

1.4.3 Lysophosphatidic acid (LPA) 

Lysophosphatidic acid (LPA) is one of the simplest phospholipids found in nature. LPA is most 

abundant in blood serum, but is also present in other body fluids as tears and saliva, and a 

variety of tissues (Lei et al., 2019). LPA appears in different structure species, according to 

variation in its fatty acid chain, which is shown to mediate varied affinity for the LPA receptors 

and thus contribute to different biological effects (Hernández-Araiza et al., 2018). Autotaxin 

(ATX) is shown to be a major metabolic regulator of LPA production and activation, and this 

ATX-LPA axis is considered important for many biological functions and it is involved in 

different cancer types (Riaz et al., 2016). The structure of LPA and common LPA species are 

presented in Figure 1.1. The length of the fatty acid chain and the level of saturation is what 

differs the LPA species.  
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Figure 1.1: Structure of Lysophosphatidic acid (LPA) and common species. The structure 

of LPA consists of a fatty acid chain (1), a glycerol backbone (2) and a phosphate group (3). 

Here, the most abundant species in mammal serum are shown. The illustration is obtained from 

Hernández-Araiza et al. (2018).  
 

LPA activates intracellular signalling pathways through G-protein-coupled receptors in the cell 

membrane. Studies have identified six LPA receptors (LPARs), which are divided into two 

families based on endothelial differentiation. The endothelial differentiation gene (Edg) family 

include the receptors LPAR1, LPAR2 and LPAR3, and the non-Edg family is consisting of 

LPAR4, LPAR5 and LPAR6 (Lei et al., 2019; Riaz et al., 2016). The receptors are able to 

activate cellular responses through multiple heterotrimeric G-proteins divided in four 

subfamilies. All receptors can signal through two or more of these subfamilies, and each 

subfamily is thereby, in most cases, influenced by stimulation of more than one LPAR (Riaz et 

al., 2016). Figure 1.2 is a schematic overview of the six LPARs and signalling pathways they 

are known to activate.  
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Figure 1.2: The six LPA receptors and their signalling pathways. LPA activates 

intracellular signalling pathways through the G-protein-coupled receptors LPAR1-6. Each 

receptor activates cellular responses through two or more G-protein subfamilies, which is part 

of different signalling pathways. The illustration is obtained from Riaz et al. (2016). 
 

LPA has also been shown to regulate biological functions through other signalling pathways 

than G-protein-coupled receptors, as receptor-independent pathways and intracellular nuclear 

hormone receptors. LPA is involved in a broad spectrum of processes from physiological 

processes as promoting smooth muscle contraction, regulation of blood pressure, embryonic 

development and inflammation, and pathological processes as tumour progression. LPA is also 

involved in wound healing processes (Lei et al., 2019). 

The ability of LPA to promote proliferation, differentiation, migration of keratinocytes and 

fibroblasts, and participate in skin repair is shown by in vitro experiments (Lei et al., 2019; 

Mazereeuw-Hautier et al., 2005). A research by Thorlakson et al., 2017 showed that LPA 

activates human oral keratinocytes during wound repair in the mouth. They concluded that LPA 

has a favourable role in wound heling of oral epithelia, due to the fact that LPA is found in 

saliva and is being released from activated cells after wounding (Thorlakson et al., 2017). LPA 

levels in the local skin tissue are also shown to increase after injury (Lei et al., 2019; 

Mazereeuw-Hautier et al., 2005), and evidence exists for LPAs ability to shorten the time 

required for wound healing in animal models of skin wounds (Rhim et al., 2010). 
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The molecular mechanisms for LPA’s regulatory role in wound healing are not fully 

established, but it is proposed to be related to seven different processes that are summarized in 

the review by Lei et al. (2019). One of these suggestions is that LPA has the ability to activate 

signalling pathways or upregulate migration-related proteins to promote activation of cell 

migration of fibroblasts and keratinocytes.   

1.4.4 Actomyosin 

The actomyosin, filament assemblies of actin and myosin II proteins, is a crucial part of the 

cell’s cytoskeleton. The cytoskeleton is located in the cell cortex and it is important for cell 

stability and involved in cell migration. Myosin motor proteins drive contraction by sliding 

actin filaments past one another in an energy consuming process. This process is driving muscle 

contractions during physical exercise, but it is also essential in other cells. In non-muscle cells 

the contractility is regulated by actomyosin in disordered networks, and gradients of actomyosin 

contractility is driving cell shape changes during cell division, migration, and tissue formation 

(Koenderink & Paluch, 2018). 

The extracellular matrix is linked to the cytoskeleton through integrin-based adherence 

complexes. Through the junctions in the complexes, cells are able to sense the environment and 

respond to mechanical forces acting across the junctions (Alberts et al., 2015d). The actomyosin 

filaments, as a part of the cytoskeleton, can thereby be used by the cells to sense changes in 

their environment and thus influence cell shape dynamics, differentiation and cell migration 

(Koenderink & Paluch, 2018). 

Dynamic assembly and disassembly of actin filaments are important for cell migration. This 

dynamic process is regulated by a variety of tightly coordinated proteins like the actin related 

proteins 2/3 complex (Arp2/3 complex) and nucleation promoting factors (Schaks et al., 2019). 

In single cell migration, actin polymerization plays an important role in driving the formation 

of protrusive membranes called lamellipodia. Actomyosin is also thought to have a central role 

in mechanosensing during collective cell migration (Pandya et al., 2017).  

Leader cells are localized in the front of a unit of collectively migrating cells. They receive 

guidance signals and instruct the other distinct cell population in the collective, the follower 

cells, through cell-cell junctions (Haeger et al., 2015). The leader cells determine the direction 

and speed in the collective migrating unit of cells. To generate integrin-based forward traction, 

the leader cells extend actomyosin-mediated protrusions. Differential organization of actin 
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filaments and activity levels of actomyosin contractility are required for polarisation and 

maintenance of leader cells (Pandya et al., 2017).  

The actomyosin machinery can be regulated and organized in different ways, which results in 

different migratory strategies depending on cell type, cell number and tissue structure (Pandya 

et al., 2017). The Rho-associated protein kinase (ROCK) 1 and 2 are activated downstream of 

Rho GTPase, shortened Rho-ROCK, and act through several pathways to regulate the actin 

cytoskeleton and subsequently cell migration (Kümper et al., 2016). 

1.4.5 The experimental system used to study cell migration 

Many studies have been performed to understand mechanisms that regulate cell migration. The 

studies are performed using different experimental systems like scratch or barrier assays to 

examine how cells move collectively into an open area. Experiments performed during the 

course of this project are based on an in vitro experimental system previously published by 

Lång et al. (2018).  

The main hallmarks of this assay are use of confluent keratinocyte cell sheets, and 

synchronization of the cells by serum deprivation resulting in a quiescent cell state in the cell 

sheet. Serum deprivation is maintained for a time period of 48 to 72 hours and subsequently 

serum re-stimulation of the confluent quiescent cell sheet result in activation of a highly 

coordinated collective cell migration response followed by cell division. The collective cell 

migration patterns were tracked using live cell imaging and the acquired data was analysed 

using the technique particle image velocimetry (PIV) described in the following section (Lång 

et al., 2018). The difference between this experimental system and other assays on collective 

cell migration is that it does not include a free space or an open area. Also, there is no apparent 

chemical gradient present, since the stimulating factors in serum are available to the entire cell 

sheet.  

1.4.6 Particle image velocimetry (PIV) analysis 

The method of particle image velocimetry (PIV) was first mentioned in 1984. The more modern 

form of the method is described by Adrian (2005) as ‘an accurate and quantitative measurement 

of fluid velocity vectors at a very large number of points simultaneously’. The method has 

evolved a lot and gone through a digitalisation over the years, starting as a system consisting of 

a pulsed laser with a light sheet illuminating particles at µm size in gases and liquids recorded 

photographically (Adrian, 2005).  
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For use in research and image analysis today, PIV analysis is typically performed on acquired 

data by use of automated tools as Python-based scripts. Live cell imaging provides a time lapse 

of images, one frame for each time point. PIV divides each image into small squares and 

changes in each square are registered between each frame. Used in this project, cell nuclei and 

changes in the position of the cells between the frames are detected and measured using PIV. 

Changes between two sequential frames are illustrated by a vector field that describe the 

observed changes in cell position. The size of the vector indicates the level of difference in 

nuclei position and thus how far the cell nucleus has moved between two time points. The 

direction of the vector indicates the direction of the movement. This vector field is further 

updated with a new image frame generating velocity fields that change over the time of image 

acquisition.  

The final vector field generated as a two-dimensional velocity field will summarize total 

changes in position and the direction of the total changes in position and the direction of the 

positional change over time. This vector field can further be analysed by other Python-based 

scripts and can thereby provide information of cell sheet velocities, the direction of cell 

migration and the level of coordination of cell movements over time.  

 

1.5 Fluorescence in biological research  

When studying cells or tissues, cell components or the cells behaviour, it is useful to be able to 

visualize the interesting parts and outline them from other disturbance, or to track the cells and 

their movements. This can be done using fluorescent molecules, fluorophores, or by staining 

part of the cells with direct or indirect immunofluorescent dyes. Fluorophores are visualized by 

light excitation in a fluorescent microscope. Light energy with a wavelength in a specific 

spectrum is absorbed by the fluorophore, which then reach an excited state of higher energy 

before returning to its ground energy state and emit light energy with a longer wavelength. The 

emitted light is the coloured light that is detected by a detector and subsequently visualized in 

the microscope. Fluorescence has been used in biological research in the last century, and 

technological discoveries and development in chemistry have led to development of different 

kinds of fluorophores (Thermo Fisher Scientific, s.a.-a). 
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1.5.1 Fluorescent protein tags 

One way of visualizing cellular components or proteins is with fluorescence with the use of 

biological fluorophores to tag cells or tissue, or to fuse it with a protein of interest. The first one 

ever used in research was GFP (green fluorescent protein) cloned from a jellyfish (Thermo 

Fisher Scientific, s.a.-a). Some of the other commercial fluorescent proteins available are RFP 

(red fluorescent protein) and mCherry. A fluorescent protein tag can be introduced into the cells 

by lentiviral infection, making the cell line transgenic (Kita-Matsuo et al., 2009; Lång et al., 

2012). The transgenic cells will express the incorporated fluorescent protein and thereby be 

fluorescently tagged. An advantage of this method of fluorescence is that it can be applied in 

living cells, the cells stay alive and can be used in live cell imaging experiments. 

1.5.2 Immunofluorescence (IF) staining 

Fluorescent labelling, or staining, describe the process where a reactive derivative of a 

fluorophore is covalently attached to another molecule. Often, the derivate is attached to amino 

acids or proteins, but it can be directed to most molecules. A wide variety of systems for 

detection and quantitative measurements in biological research are applied with fluorescent 

staining (Thermo Fisher Scientific, s.a.-a). 

Immunofluorescence (IF) staining of cells is commonly performed with the fluorophore 

derivative attached to antibodies. To visualize the part of the cell of interest the IF procedure 

utilizes the specific binding between the antibody and the antigen. A primary antibody binds to 

the specific protein, while the secondary antibody binds to the primary antibody. Detection of 

the protein of interest is then performed by detection of a fluorescent label, the fluorophore 

derivative, attached to the secondary antibody (Im et al., 2019).  

E-cadherin and Aurora B are two proteins that can be detected by antibodies. E-cadherin is an 

adhesion protein important for formation of cell-to-cell interactions (Van Roy & Berx, 2008). 

Aurora B is a kinase that re-localizes from centromeres to midbodies during cell division. A 

midbody is formed between two daughter cells near the end of cytokinesis, and is thus a good 

marker for studies on related cells (Afonso et al., 2017). The use of antibodies in fluorescent 

staining is called indirect IF, however, another method, direct IF, is also available for 

visualizing of cellular proteins (Im et al., 2019). 

Direct IF is based on other fluorescent molecules than antibodies. These dyes bind directly to 

its target in the cell, and additional steps in the staining protocol are therefore not required. 
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Phalloidin binding to actin filaments and DAPI colouring cell nuclei, are examples of direct 

staining of cellular components. Cell fixation is an essential step performed prior to IF staining, 

immobilizing antigens, or other target proteins, by preserving morphology and not disturbing 

cellular architecture (Im et al., 2019).  

 

1.6 Estimating gene expression 

Polymerase chain reaction (PCR) is a widely used method in molecular biological research, 

medical diagnostics, and forensics. The principle of PCR is to amplify specific regions of DNA 

by using sequence-specific primers, heat treatment and multiple cycles of DNA synthesis. 

Either DNA or cDNA can be used as template for PCR (Alberts et al., 2015a). There are mainly 

two types of PCR, qualitative and quantitative. The qualitative PCR can be used to detect 

absence or presence of a specific DNA sequence, while quantitative PCR (qPCR) is detecting 

the amount of a target sequence in a sample relative to the initial amount of the gene of interest. 

Quantitative PCR (qPCR) is thereby a common application used for estimating gene expression 

(Vandesompele, 2019). 

1.6.1 RNA and cDNAs 

RNA is an essential part of the protein synthesis and gene regulation. When estimating gene 

expression, RNA is isolated from the cells. RNA is a quite stable molecule due to 

thermodynamics but can rapidly be digested by ubiquitous RNase enzymes. Therefore, an RNA 

sample can contain large amount of RNA, but have poor quality and integrity with shorter RNA 

fragments present. Gene expression analysis performed based on RNA with poor quality may 

cause incorrect product detection due to reduced sensitivity for detecting transcripts expressed 

in low levels. An automated approach, the Agilent bioanalyzer system, to analyse the quality 

of the RNA has been developed (Schroeder et al., 2006).  

Isolated RNA with good quality is converted to complementary DNA (cDNA) through the 

process of reverse transcription (RT) prior to quantitative PCR analysis. The RT reaction can 

be included as part of the PCR analysis or performed in a separate reaction. cDNA synthesis is 

based on messenger RNA (mRNA) in the sample being transcribed to DNA complementary to 

the RNA. By performing the procedure in two steps, a generated cDNA pool can be stored and 

used for multiple reactions. cDNA is more stable and more resistant to degradation than RNA 

(Vandesompele, 2019). 
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When using cDNA as template for RNA, it is important to avoid contamination and disturbance 

by other molecules, as genomic DNA (gDNA). Including an additional step to remove gDNA 

during RNA isolation is therefore recommended. Primers can also be designed in order to avoid 

amplification of remaining gDNA, since gDNA contains both introns and exons while cDNA 

only contains exons. Intron spanning primers is designed to hybridize the 3’-end of one exon 

and the 5’-end of the other exon and will thereby only amplify cDNA (Vandesompele, 2019). 

1.6.2 Real-time quantitative PCR 

There are two well established qPCR-techniques, real-time qPCR and Droplet Digital PCR 

(ddPCR). The ddPCR is the most recently developed technique of the two, where the PCR 

sample is split into many fractions performing thousands of PCR reaction, and the amount of 

amplified DNA-sequence is measured at the reaction end-point (Taylor et al., 2017). To perform 

real-time qPCR, a fluorescent reagent is used to detect the amount of target sequence in the 

sample after each cycle of DNA synthesis. Then it is possible to follow the amount amplified 

product at any time, in real time. Different fluorescent reagents are designed, and two of the 

most commonly used commercial chemistry techniques available for this purpose are SYBR® 

Green and TaqMan® (Thermo Fisher Scientific, s.a.-b; Vandesompele, 2019). 

TaqMan® is a fluorogenic-labelled oligonucleotide probe designed specifically to the target 

sequence. The probe contains a fluorescent reporter dye, a fluorophore, on the 5’-end and a 

quencher dye on the 3’-end. As long as the probe is intact, the fluorescence from the reporter is 

quenched by transfer of energy to the quencher dye by fluorescence resonance energy transfer 

(FRET). The fluorescence is emitted from the reporter dye and reports fluorescent signals as a 

new DNA amplicon is produced. This occurs when the quencher and the reporter are split by 

cleavage of the probe, which occurs during polymerization when DNA polymerase extends the 

primer. The fluorescence signal is permanently increasing proportionally with product. The 

TaqMan chemistry and other probes has the advantage of specific hybridization between the 

designed probe and the target sequence (Thermo Fisher Scientific, s.a.-b; Vandesompele, 

2019). 

SYBR® Green is a double stranded DNA (dsDNA) binding dye. The DNA synthesis during a 

qPCR reaction is composed of cycles with denaturation and polymerization to amplify the target 

sequence and gradually generate more PCR product. During the denaturation process, 

SYBR® Green is released from the DNA, and during polymerization it binds again to each new 

copy of dsDNA. When bind to dsDNA, SYBR® Green emits fluorescent light. More PCR 
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product, dsDNA complementary to the target sequence, is produced as the PCR reaction 

progress, resulting in an increased fluorescence intensity proportioned to the amount of PCR 

product generated (Thermo Fisher Scientific, s.a.-b; Vandesompele, 2019). 

A disadvantage with the SYBR® Green binding dye is that it binds to all dsDNA present in a 

sample. The fluorescence can thereby be caused by binding to nonspecific dsDNA and create 

false-positive signals. Due to this, qPCR analysis using the SYBR® Green dye requires specific 

and well-designed primers (Thermo Fisher Scientific, s.a.-b). A useful program to design and 

check the quality of primer sequences is BLAST®, the Basic Local Alignment Search Tool 

provided by the National Center for Biotechnology Information, NCBI. BLAST® provides a 

sequence database that can be used to compare and estimate statistical significances for regions 

of similarity in nucleotide or protein sequences. In addition, the database provides a specialized 

Primer-BLAST search tool (NCBI, n.a.; Ye et al., 2012). When designing, performing and 

publishing results based on real-time qPCR experiments, the MIQE guidelines defining 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (Bustin et 

al., 2009) is a useful tool for generating reliable and unequivocal result interpretation.  

 

1.7 Knockdown of a gene 

Protein function can be studied by use of experiments performing loss-of-function mutations in 

individual genes encoding a particular protein. This can be done by specific inhibition or by 

gene expression knockdown of the protein of interest. A widely used method for gene-specific 

degradation or silencing is RNA interference (RNAi) technology. RNAi is also a naturally 

occurring mechanism in animals, plants, and fungi, which is used for protection against viruses 

and transposable elements (Alberts et al., 2015b; Han, 2018; Moore et al., 2010).  

The technique of RNAi introduces a double stranded RNA molecule into a cell or organism. 

This RNA molecule is complementary to the target mRNA or noncoding RNA and hybridized 

with it (Alberts et al., 2015b), leading to degradation of the mRNA transcript. The degradation 

is achieved through an enzymatic pathway involving the endogenous RNA-induced silencing 

complex (RISC). The molecule introduced is often a small interfering RNA (siRNA) or short 

hairpin RNA (shRNA) (Han, 2018; Moore et al., 2010).  

A siRNA is typically 21-23 nucleotides long generated exogenous by chemical synthesis or in 

vitro transcription. Transfection by a lipid carrier to facilitate cellular uptake or by 
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electroporation with electric pulses generating pores in the cell membrane is both methods for 

delivery of siRNA into cells (Han, 2018). A shRNA consists of two complementary RNA 

sequences of 19-22 base pairs linked together with a loop of 4-11 nucleotides. Delivery into 

cells can be done endogenously by use of plasmid vectors or virally produced vectors as adeno-, 

retro-, and lentiviral vectors (Moore et al., 2010).   

The decision to use siRNA or shRNA may depend on factors like the cell type, the need of 

transient or stable integration and available time. Advantages with siRNAs are a variety of 

commercially available transfection reagents, rapidly determined knockdown efficiency and 

low risk of cellular toxicity. However, off-target effects due to high concentrations of 

cytoplasmic siRNA have been reported, and the siRNA concentration is diluted by cell division 

leading to impossible generation of a long-time knockdown cell line. Creation of stable 

knockdown cell lines is possible using shRNA, and shRNAs can infect most cell types. 

However, this technique is very time-consuming including both an extensive preparation of 

vectors cloned with a shRNA and selection of positive knockdown cells (Moore et al., 2010). 

Furthermore, other established approaches for gene knockdown are also available. One 

approach is the use of CRISPR-Cas systems. Clustered regulatory interspaced short 

palindromic repeats, better known as CRISPR, together with the CRISPR-associated proteins, 

Cas, is originally a prokaryotic adaptive antivirus immune system. There is an enormous 

diversity of CRISPR-Cas systems, which has been organized in a classification hierarchy 

(Makarova & Koonin, 2015). These systems have been implemented to biological research and 

gene editing. Orthologs of the system CRISPR-Cas13a is shown to be capable to target RNA 

by high specificity and provide high levels of gene knockdown (Abudayyeh et al., 2017).  

 

1.8 Detection of proteins 

There are different methods to detect and quantify proteins. The methods are either 

spectrometric or antibody dependent. Spectrometry methods commonly used are high 

performance liquid chromatography and liquid chromatography-mass spectrometry (Mann et 

al., 2001). Antibody methods are methods as protein immunoprecipitation (Selbach & Mann, 

2006), enzyme-linked immunosorbent assay (Huang, 2001), protein immunostaining (Im et al., 

2019) and Western blot analysis (Mahmood & Yang, 2012). For this project, the last protein 

detection method mentioned is of relevance.  
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1.8.1 Western blot  

Western blot is a commonly used method to separate and identify proteins extracted from cells 

or tissues, and to investigate if a protein is expressed or not. This technique can be divided into 

three main elements; separation of proteins by size on an agarose gel, transfer of the separated 

proteins to a membrane, and marking target proteins and visualize it by use of antibodies 

labelled with a fluorescent protein (Mahmood & Yang, 2012). During the last decades, new 

methods and features have evolved to improve the technique making it more sensitive and 

automated, and to increase the reproducibility of the results (Mishra et al., 2017).  

Today there are different materials commercially available to optimize the multiple steps in the 

protocol in relation to the sample preparation and specific protein detection. For instance, there 

is two different membranes available, nitrocellulose membrane and polyvinylidene fluoride 

(PVDF) membrane (Mahmood & Yang, 2012; Mishra et al., 2017). The membrane is a part of 

a bigger system, often called a sandwich, with filter papers soaked in buffer to perform a 

electrophoretic transfer of the proteins from the gel to a solid support, the membrane (Mahmood 

& Yang, 2012). These membrane systems is today available as a pre-assembled package 

(Mishra et al., 2017). 

The multistep protocol provides important steps to achieve a good result. One of the steps are 

blocking, which prevents nonspecific binding of the antibodies to the membrane (Mahmood & 

Yang, 2012). The antibody used for specific detection of protein is also of big relevance, and 

so is the signalling protein attached to the secondary antibody facilitating visualization of 

protein bands. There is different digital detection systems available, as colorimetric and 

chemiluminescence, and these systems are frequently evolved facilitating better detection 

methods (Mishra et al., 2017).  
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1.9 Aim of the thesis  

Lysophosphatidic acid (LPA) has been shown to be involved in and regulate many biological 

functions. However, the connection between LPA cell signalling and activation of collective 

cell migration is not yet fully established. The aim of the thesis is therefore to contribute to a 

better understanding of how LPA activates and regulates collective cell migration in human 

skin. This project and additional research in this field will at the same time, in the bigger picture, 

be a step towards answering which molecules and molecular mechanisms that are involved in 

skin wound healing, and why some wounds become chronic and never heal. 

This research is performed mainly by in vitro cell culture work using a keratinocyte cell line, 

HaCaT, derived from human skin. One of the LPA receptors, LPAR1, is selected for a more 

comprehensive study on its functional role in migration activation in this project. Experimental 

approaches as live cell imaging, immunofluorescence staining, real-time qPCR, and gene 

knockdown evaluated by Western blot analysis have been central in this work. The methods are 

used in order to examine the following aspects of LPA and its influence on the HaCaT 

keratinocytes:  

• Study and characterize LPA mediated cell migration responses in quiescent epithelial 

cell sheets. 

• Examine how inhibition of LPA receptor 1 affects cell migration patterns and expression 

of actin networks.  

• Study the expression of actin networks in LPA stimulated keratinocytes, and examine 

the correlation between actomyosin and collective cell migration. 

• Estimate the mRNA expression levels of the six LPA receptors in HaCaT cells, and 

investigate if one of the receptors is directly involved in LPA mediated collective cell 

migration. 

• Establish HaCaT cell lines with knockdown of LPAR1, and study potential changes in 

cell morphology and migration behaviour when expression of this receptor is reduced.  
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2 Materials and methods 

2.1 Cell culture work   

In this project, experiments were performed using the immortalized human keratinocyte cell 

line HaCaT (Boukamp et al., 1988). Both wildtype (wt) cells and cells modified with different 

fluorescently labelled proteins, as specified below, were utilized. In addition, HaCaT cell lines 

stably expressing shRNAs for specific gene knockdown were constructed during the course of 

the study (section 2.6).  

2.1.1 Cell lines and growth conditions  

The wt cell line used in the project was HaCaT provided from Cell line service (300493; CLS). 

Modified HaCaT cell lines expressing fluorescently labelled proteins were also included in 

some experiments. These were the HaCaT mCherry-Histone H2B cell line that stably expresses 

fluorescently labelled Histone H2B protein in the cell nuclei (Lång et al., 2012), and the HaCaT 

LifeAct cell line that stably express actin filaments labelled with a fluorescent dye called RFP 

(red fluorescent protein). These two modified HaCaT cell lines were previously constructed by 

the Bøe research group.  

The optimal growth conditions for these cells are 37 °C with 5 % CO2. The growth medium 

used was Iscove’s Modified Dulbecco’s medium (IMDM; Merck Life Science) with 10 % fetal 

bovine serum (FBS; Gibco™ Fetal Bovine Serum, Premium Plus) as nutrition and 1 % 

Penicillin-Streptomycin (PenStrep; Gibco™ Penicillin-Streptomycin) to inhibit bacterial 

growth.  

2.1.2 Cell cultivation and passaging 

Cultivation of the cells for proliferation was done in Nunc™ EasYFlask™ Cell Culture Flasks 

(Thermo Scentific™) with vented caps, which allows adequate gas exchange and keeps 

contamination out. The HaCaT cells are adherent and attach easily to both plastic and glass 

surfaces, as well as each other. Regular cell culture maintenance to ensure normal cell growth 

and division involved subconfluent culturing and regularly continuous addition of nutrients, 

preventing the cells from becoming too dense and to ensure that the level of nutrition was 

satisfactory for the cells. All cell cultures were monitored daily, by microscopy and by 

examining the colour and transparency of the medium, to ensure no contamination, good growth 

rates and optimal time intervals between each passage. The medium has a pH-gradient that 
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indicates when the nutrition level is low. By maintaining log phase growth, the number of 

healthy cells is maximized for use in the experiments. 

Cells were passaged when the culture reached subconfluence of approximately 70-90 %. 

Washing and removal of dead cells were done with PBS (Phosphate-buffered Saline, Appendix 

A). To detach the cells from the plastic surface, and make a suspension of single cells, Trypsin 

(Gibco™ Trypsin-EDTA (0.05 %), phenol red) was added in an amount just enough to cover 

the cell sheet. Trypsin is a serine protease that cleaves protein bindings between the cells and 

between the cells and the plastic surface. The cell sheet was incubated with trypsin 10-15 

minutes at optimal growth conditions. The detachment of the cells from the surface was 

observed microscopically. The cells started to round up and float around when the flask was 

tilted or taped by hand. Medium with FBS, natural containing trypsin inhibitors, was added to 

neutralize and inactivate the trypsin when the cells were completely loosened. Rigorous 

pipetting up and down separated adherent cell clumps into single cells and made the cell 

suspension homogenous. For dilution, one part of the cell suspension was left in the flask and 

more growth medium was added.  

2.1.3 Cell count estimation 

Prior to an experiment, the number of cells had to be estimated to ensure seeding of an 

appropriate number of cells in each well or dish. Counting of the cells was performed with 

Trypan Blue Stain (0.4 %, Invitrogen) and an automated cell counter (Countess™ 3 Automated 

Cell Counter, Invitrogen). Equal amounts of staining dye and cell suspension were mixed and 

added in both chambers of a disposable slide (Countess™ Cell Counting Chamber Slides, 

Invitrogen). The cell number per mL suspension was automatically estimated with default 

settings. Thereafter, the volume of suspension needed to obtain a certain number of cells was 

calculated based on the average number of living cells. An estimation of >95 % living cells was 

preferable before start of an experiment. 

2.1.4 Cell starvation  

In the live cell imaging experiments, cells were subjected to serum starvation for 48 hours prior 

to serum stimulation or treatment with other reagents. The starvation was performed by 

changing the growth medium to IMDM without serum, serum-free IMDM, after a confluent 

cell sheet was established in the wells. Serum starvation induces a quiescent cell state in the 

confluent keratinocyte monolayer and makes the cells more potent and responsive to further 
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stimulation. Cells used for IF staining and RNA isolation were also subjected to serum 

starvation prior to further treatment or harvest, respectively.  

 

2.2 Live cell imaging of collective migration patterns 

The aim of this part of the project was to study cell migration patterns in confluent HaCaT cell 

sheets that have been subjected to serum starvation initiating a quiescent cell state before 

stimulation with different growth factors. This was performed by live cell imaging using a 

previously published experimental system (Lång et al., 2018) described in section 1.3.4. The 

cell line HaCaT mCherry-Histone H2B was used to study cellular movements by detection of 

the fluorescent cell nuclei over a long period of time.  

2.2.1 Preparation of cells 

Cells were seeded to a confluent cell layer in 96-well glass bottom Sensoplates (Greiner 

Sensoplate™ plates, M4187-16EA, Merck Life Science (#655892, Greiner Bio-One)) coated 

with 0.02 mg/mL collagen IV (C7521, Merck Life Science). Subsequently, the cells were 

starved as indicated above (section 2.1.4). After starvation, the cells were stimulated with 

different reagents of interest. Cells stimulated with serum-free IMDM or IMDM containing 

15 % FBS were used as negative and positive control, respectively. The positive control was 

chosen based on previous work (Lång et al., 2018) describing serum stimulation of starved cell 

sheets leading to activation of collective cell migration with high levels of coordination between 

migrating cells.  

Several migration assays were performed, all including different growth factors like the 

lysophosphatidic acid (LPA; L7260, Merck Life Science) and the epidermal growth factor 

(EGF; 236-EG, R&D Systems), and inhibitors like the LPA receptor (LPAR) inhibitor Ki16425 

(S1315, Selleck Chemicals), the EGF receptor (EGFR) inhibitor Gefitinib (Y0001813, Merck 

Life Science) and the Rho-associated kinase (ROCK) inhibitor Y-27632 (Y0503, Merck Life 

Sciences). Acquired data was used to analyse and compare cell migration velocity and the level 

of cell coordination in cell sheets treated with the specific reagents.  

2.2.2 High-content microscopy of living cells  

The ImageXpress Micro Confocal High-Content Imaging System (Molecular Devices) was 

used for the live cell imaging experiments. The microscope is equipped with an incubation 

chamber in which the temperature, humidity and CO2-level are optimized for living biological 
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samples. Image acquisition begun one hour after the plate was inserted in the microscope, since 

this time is required to ensure optimized focusing during acquisition. A change in temperature 

between the plate material and the instrument will affect the focusing on the samples and 

subsequently the quality of the data and data analysis. The image acquisition is also sensitive 

to vibrations and mechanical disturbance in the system. An example of this is observed in one 

of the experiments, where the results include outliers produced due to irregular movements in 

the xy-stage of the instrument.  

Cellular movements were monitored during a period of 30 hours and images were acquired with 

a time interval of 16 minutes. The microscope was run in widefield mode. Plate acquisition 

settings with a 4x 0.2 NA air objective, camera binning = 2, the TexasRed filter set and a 

2x2 grid covering the whole well was used. The image pixel size was 3.367 µm x 3.367 µm. 

These experiments generated large data sets that was further analysed using in-house 

computation programmes (section 2.2.4).  

2.2.3 Titration experiment of the LPAR inhibitor Ki16425 

Since the LPAR inhibitor Ki16425 had never been used in the experimental system, a titration 

experiment was designed and performed in order to find the optimal concentration of inhibitor 

to be used in live cell migration assays. An optimal concentration will partly or totally inhibit 

the cell migration, and it is important to not use too high concentration as that will lead to 

unspecific inhibition. Concentrations reaching from 0.5 µM to 100 µM were tested together 

with FBS or LPA. The efficiency and specificity of the inhibitor could thereby be taken into 

consideration.  

2.2.4 Processing of data acquired from migration assays 

Images acquired from a single well were combined using the Create Montages and Overlays 

module in the MetaXpress software (Molecular Devices). This module generates a single image 

for each time point in all wells (tiling of images). Subsequently, this data could be further 

processed and analysed using the Fiji ImageJ software (imagej.net, (Schindelin et al., 2012)). 

The software includes different features for image adjustment, it can perform manual tracking 

of cell movements, visualize cell migration coordination and migration patterns, generate 

combined movie files and much more. However, because of the big amount of data generated 

by high-content imaging, it was not practical to perform the analysis manually with Fiji ImageJ.  
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To analyse whole data sets of acquired data, PIV (particle image velocimetry)-based scripts 

written in Python were used. This and further analysis, including illustration of results, were 

performed by in-house Python-based scripts run through the integrated development 

environment (IDE) software PyCharm (JetBrains s.r.o.). First, the datasets of single (not 

combined) images acquired from the MetaXpress software had to be sorted by wells instead of 

acquired time points during imaging, and this was done using a sorting script (Appendix B.1). 

The PIV analysis was performed within a selected rectangular area of each single picture. 

Within this area, velocity fields were generated and visualized by vectors. These analyses 

provided information about the migration speed and direction of migration (Appendix B.2), as 

well as the level of cell-to-cell coordination (Appendix B.3) in the cell layer over time.  

The Plot Order Parameter (Appendix B.4) illustrates how coordinated the migration was over 

time, on a scale from 0 to 1. It is based on equation 1, where phi is defined by the average cosine 

for the angle of each vector produced by PIV with respect to the direction of the vector field. 

Phi describes the amount of coordination parallel to the direction of the field.  

Equation 1:    𝛷|| =
1

𝑛
∑ cos(𝜃𝑖)𝑖     (Cohen et al., 2014) 

Illustration of the migration velocity in the cell sheets is another useful feature provided by PIV 

analysis. The Speed plot (Appendix B.5) was used for this purpose, to visualize cell sheet 

velocity, presenting mean values for cell migration speed over time. The speed is presented as 

µm per hour (µm/h).  

The script Streamline plot (Appendix B.6) visualizes migration patterns by analysing the 

combined images created directly of the acquired data in the MetaXpress software. A PIV-

based vector field is generated and interpreted as a velocity field illustrated by curves. The 

curves have arrowheads showing the direction of the cell movements in a single well after a 

certain time of stimulation. 

 

2.3 Visualization of actin networks by IF staining 

Using immunofluorescence (IF) staining and confocal microscopy on the Leica TCS SP8 

microscope (Leica Microsystems) equipped with a continuous white light laser and a 405 nm 

UV laser, the actin network of HaCaT wt cells, stimulated with different reagents were 

visualized.  
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2.3.1 Preparation of cells for IF staining  

Cells were grown, treated with different reagents, and fixed on 12 mm round glass coverslips 

(VWR). Seeding of cells and serum starvation (see section 2.1.3-4) were performed in 6 cm 

petri dishes (Falcon® Cell Culture Dish) with the coverslips attached to the bottom of the 

dishes. Prior to cell treatment, the glasses were transferred to separate wells in multiwell plates. 

The reagents used for treatment were 12 µM LPA (L7260, Merck Life Science), 10 ng/µL EGF 

(236-EG, R&D Systems), 15 % FBS mixed with 10 or 20 µM Ki16425 (S1315, Selleck 

Chemicals), and 15 % FBS mixed with 5 µM Gefitinib (Y0001813, Merck Life Science), as 

well as positive and negative control of 15 % FBS and serum-free IMDM, respectively. The 

cell treatment was performed for 24 hours at 37 °C and 5 % CO2.  

Fixation of cells to the glass coverslips was done by exposing the cells to 4 % paraformaldehyde 

(PFA; 158127, Merck Life Science) for 10 minutes on ice. After fixation, 0.25 % Triton™ X-

100 (T8787, Merck Life Science) was added to make the cells more permeable to fluorescent 

staining, using either antibodies or other fluorescent reagents, by opening pores in the cell 

membrane. PBS (Appendix A) was the dilution medium for both reagents and was also used in 

the multiple washing steps required.  

2.3.2 Immunofluorescence (IF) staining  

Prior to fluorescent staining, the fixed cells were treated with 0.5 % Bovine serum albumin, 

BSA (BSA Cohn fraction V, B2000, Saveen Werner AB). BSA works as a stabilizer and 

contributes to higher protein concentration without being part of the staining solutions. BSA 

was diluted in PBS and to remove remaining BSA, the cells were washed multiple times with 

PBS before the fixed cells were stained with fluorescent reagents.  

The fluorescent reagent Phalloidin-iFluor 488 (ab176753, Abcam) is a so-called cyto-painter. 

This reagent contains Phalloidin conjugates that bind to actin filaments in the cells. The cells 

were incubated with this agent (1:1000 dilution) at room temperature in the dark for 30 minutes. 

The last step of staining was to attach the glass coverslip to a microscope slide (Thermo 

Scientific). This was done with Vectashield® Antifade mounting medium with DAPI (4’,6-

diamidino-2-phenylindole; H-1200-10, Vector Laboratories) covering the cells on the coverslip 

facing downwards on the microscope slide. DAPI is a fluorescent DNA stain that colours the 

cell nuclei by binding to the AT regions of dsDNA.  
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2.3.3 Image acquisition using confocal microscopy   

The Leica TCS SP8 microscope has three different lasers: a white light excitation laser, an UV 

laser, and a STED (Stimulated Emission Depletion) laser. The STED technology is used to 

achieve super-resolution and is a further development of conventional confocal microscopy.  

The 405 nm UV laser was used to detect the DAPI signal, and Phalloidin was detected with the 

white light laser set to a wavelength of 488 nm. Acquisition of confocal images was performed 

sequentially for each channel using the 40x 1.3 NA oil immersion objective and hybrid 

detectors. Laser intensities were set for the FBS stimulated sample that showed the strongest 

fluorescence intensity in the 488 nm channel (Phalloidin). The instrument settings were kept 

constant throughout the experiment to facilitate comparison of the Phalloidin signal between 

samples. 

Pictures were acquired in xy-direction in order to visualize the cell sheet, and in xz-direction to 

acquire cross sections of the cell sheet. An entire cell was imaged, either from top to bottom or 

side to side, by acquiring a series of images with a fixed step size of 0.75 µm. The acquired 

series of images is referred to as a z-stack that can be used to detect the exact position of proteins 

within the cell or to make projections of the whole content of a cell. The picture format used 

was 1024x1024 µm, which provides sufficient resolution for further image processing in Fiji 

ImageJ (imagej.net) or Adobe Photoshop. Multiple z-stacks were acquired randomly across 

each cell sheet in order to generate a representative data set for all cell treatments. 

2.3.4 Image processing  

The cell nuclei, imaged by DAPI staining, was used as a reference to illustrate if the actin 

network, stained by Phalloidin, was expressed on the basal or apical side of HaCaT cells treated 

with different reagents. The apical side of a cell refers to the top of the cell sheet, while the 

basal side is the side where the cell is attached to a surface. The intensity measurements were 

done using the Analyse – PlotProfile command in Fiji Images J (imagej.net), and a Python-

based script (Appendix B.7) in PyCharm (JetBrains s.r.o.) was used to plot the data. Each z-

stack, imaged in xz-direction, acquired from the treated cell sheet was analysed.  

The fluorescence intensity measurements were performed across a selected region, a region of 

interest (ROI), surrounding the cell nuclei in an xz-oriented image. The ROI was positioned 

based on the DAPI intensity, and the Phalloidin intensity was subsequently measured across 

the same ROI. The intensity of DAPI was normalized giving highest expressed intensity the 
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value 1, which refers to the widest part of the cell nuclei, and decreasing values towards the 

apical and the basal sides. The intensity values measured for Phalloidin was also normalized. 

The same ROI was used in all images and manually positioned relative to the DAPI intensity. 

The plotting script used information about the normalized fluorescence intensity mean and 

standard deviation to compose the final figures. Due to measurement of both intensities with 

the same ROI positioning in each image, the plotted curve for Phalloidin intensity will show 

how the actin expression is positioned relative to the cell nucleus visualized by the DAPI 

intensity curve.  

 

2.4 Live cell imaging monitoring actin networks  

Another approach to investigate the impact of stimulating agents on actin network dynamics in 

HaCaT cells is by monitoring these networks by live cell imaging. The cell line used in this 

experiment was the HaCaT LifeAct cells, which express actin filaments labelled with a red 

fluorescent protein (RFP) tag. Cells were seeded to confluence in a 12 well plate (P12G-

1.514-F, MatTek) coated with 0.02 mg/mL collagen IV (C7521, Merck Life Science). The cells 

were starved (section 2.1.4) prior to stimulation. The stimulation reagents used were 12 µM 

LPA (L7260, Merck Life Science) and 20 µM Ki16425 (S1315, Selleck Chemicals) mixed with 

15 % FBS in addition to a positive and negative control. 

Live cell imaging was performed on the Zeiss AxioObserver.Z1 microscope equipped with an 

Orca Flash 4.0 V3 digital CMOS camera (Hamamatsu), a 10x 0.3 NA EC Plan-Neofluar air 

objective, live cell incubation chamber with CO2 and temperature control, and a Colibri 7 LED 

light source. This microscope is controlled by the ZEN 3.1 pro software. 

Images were acquired over a period of 30 hours from the time of stimulation. The live-cell 

incubation chamber with CO2 and temperature control attached to the microscope was used to 

ensure optimal growth conditions during microscopy. The Colibri 7 LED light source set to 

555 nm was used to detect RFP labelled actin. Transmitted light and the 10x 0.3 NA EC Plan-

Neofluar air objective Ph1 was used for phase contrast imaging in order to outline the cell 

contours. The picture format used was 1.3 µm/pixel that provides sufficient resolution for 

further image processing in Fiji ImageJ (imagej.net). The pictures were acquired from four sites 

in each well to generate a data set representative for each cell layer.  
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2.5 Estimating mRNA expression of LPARs in HaCaT cells 

Quantitative Polymerase Chain Reaction (qPCR) was performed by the Real-Time principle, 

collecting data as it occurred during the amplification process, using the fluorescent dye 

SYBR® Green. The aim of these qPCR experiments was to estimate the expression level of 

messenger RNA (mRNA) for each of the six different LPA receptors (LPARs) in HaCaT wt 

cells.  

To investigate the expression of LPARs in the general cell population, cells were harvested and 

RNA isolation was performed from multiple cell passages. Cell passages were selected for RNA 

isolation with some days interval to give the cell culture a chance to renew between each 

isolation. 

2.5.1 RNA isolation 

RNA is very sensitive for degradation. It is therefore important to keep the working 

environment free of RNase in order to protect the RNA samples from degrading enzymes. 

RNase Away™ Decontamination Reagent (Invitrogen) was used to keep equipment, lab 

benches and gloves clean. The water used in the following steps was Invitrogen™ UltraPure™ 

DNase/RNase-Free Distilled Water (Invitrogen), hereafter referred to as molecular biological 

water. 

The HaCaT wt cells were grown to confluence on collagen IV (0.02 mg/mL) in petri dishes and 

starved 48 hours before harvest (section 2.1.4). Harvesting of the cells was done by 

trypsinization, followed by trypsin neutralization (section 2.1.2). The cell suspension was 

subjected to centrifugation to produce a cell pellet. The cell pellet was subsequently washed 

twice with PBS (Appendix A) prior to a final centrifugation step that produced the final cell 

pellet. The harvest was immediately followed by an RNA isolation protocol.  

RNeasy Plus Mini Kit (Qiagen) was used to perform the RNA isolation. This kit includes gDNA 

eliminator columns that remove the genomic DNA (gDNA) from the cell lysate before the 

process of RNA isolation could proceed. The protocol was followed as described by the 

producer (Quick-Start Protocol, March 2016). After the last step, RNA elution, the RNA 

concentration was quantified spectrophotometrically using a NanoDrop™ One Microvolume 

UV-Vis Spectrophotometer (Thermo Scientific). The absorbance value, A260/A280, indicating 

purity and absence of proteins, should be approximately 2.0 in each sample. The RNA was 

stored at -80 °C.  



 

28 

 

2.5.2 Evaluation of the RNA quality 

It is important to test the quality of the RNA to ensure that the fragments are intact. This was 

done using a 4150 TapeStation System (Agilent Technologies) and the protocol “Agilent RNA 

ScreenTape Guide for TapeStations”. The system is an automated electrophoresis system for 

nucleic acids designed to analyse and evaluate the integrity and how intact the total amount of 

eukaryotic or prokaryotic RNA or DNA is. Each sample, in this case RNA samples, and a 

ladder, were mixed with a sample buffer and denatured 3 minutes at 72° C before loading into 

the instrument.  

The software visualized the result as a digital gel with bands according to different fragment 

sizes compared to the ladder. It also visualized an electropherogram with peaks for the 

correlation between measured fluorescence and RNA amount of a given size. The RINe, RNA 

integrity number equivalent, is a software algorithm describing the RNA quality. It is based on 

the ratio of 28s rRNA to 18s rRNA, in eukaryotic samples, the big and small subunit of the 

eukaryotic ribosome, which theoretically makes up > 80 % of total RNA in a sample. The RINe-

value range is expressed from 1 to 10, where 1 indicates totally degraded RNA and 10 indicates 

intact RNA of highest possible quality. 

2.5.3 cDNA synthesis 

RNA isolated from the HaCaT wt cells was converted to complementary DNA (cDNA) by 

reverse transcription (RT). This was performed with the High-Capacity cDNA Reverse 

Transcription Kit (Thermo Scientific) according to the manufacturer’s instructions.   

A 2x RT master mix was prepared and mixed 1:1 with 1 µgRNA/10 µL. The RNA amount used 

was calculated based on previous quantification on the NanoDrop™. The prepared samples 

were run on a thermal cycler (PTC-100 Programmable Thermal Cycler, MJ Research) with the 

following incubation steps; 25 °C in 10 minutes, 37 °C in 120 minutes, 85 °C in 5 minutes, and 

4 °C on hold. Until further use, the synthesised cDNA was stored at -20 °C.  

2.5.4 qPCR setup  

The qPCR was ready to be set up with synthesized cDNA from RNA of good quality. In this 

case, all samples used had an A260/A280 value of approximately 2.0 and a RINe value of 10. 

To investigate the mRNA expression of all six LPARs, six different primer pairs were used in 

addition to a primer pair for the reference gene, GAPD, encoding GAPDH. GAPD was selected 
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as a reference gene due to its constant expression in samples from the same cell type. Detailed 

information about the primers is given in Table 2.1.  

Table 2.1: Primers used in qPCR analysis. Summary of primers used for detection of each 

of the six target genes coding for LPA receptor 1-6, and the reference gene GAPD. All primers 

are designed by Eurofins. The product sizes are estimated with use of Primer-BLAST.  

Target gene Primer Primer sequences F/R (5’-3’) Prod. size 

EDG2 

(LPAR1) 

LPA1_F 

LPA1_R 

GAATCGGGATACCATGATGAGTC 

GCACACGTCTAGAAGTAACAAAACC 

 

106 bp 

EDG4 

(LPAR2) 

LPA2_F 

LPA2_R 

CTGGTCAAGACTGTTGTCATCATCC 

AGGACTCACAGCCTAAACCATCC 

 

97 bp 

EDG7 

(LPAR3) 

LPA3_F 

LPA3_R 

TAGGGGCGTTTGTGGTATGCT 

ATGGGGTTCACGACGGAGTT 

 

139 bp 

GPR23/P2RY9 

(LPAR4) 

LPA4_F 

LPA4_R 

GCAAGCCTGCTACTCTGTCTCAA 

TTGCAAATCTTTCCAAAAAGCAA 

 

174 bp 

GPR92/GPR93 

(LPAR5) 

LPA5_F 

LPA5_R 

CGTGTCCTGACTACCGACCTACC 

CAGCGAGAGGGTGAAGAGCA 

 

185 bp 

P2RY5 

(LPAR6) 

LPA6_F 

LPA6_R 

TCATCTGCGTCCTCAAAGTCC 

CCAATTCCGTGTTGTGAAGTAAAA 

 

122 bp 

GAPD 

(GAPDH) 

GAPD_F 

GAPD_R 

TCAAGGCTGAGAACGGGAAG 

GGACTCCACGACGTACTCAG 

 

116 bp 

 

Each sample in the qPCR reaction was set up with 2 µL diluted cDNA mixed with a reaction 

mix in a total reaction volume of 10 µL. The reaction mix consisted of 2x PowerUp™ SYBR® 

Green Master Mix (Applied Biosystems), 10 µM of forward and reverse primer, and molecular 

biological water. The cDNA was diluted 1:20 with molecular biological water in advance, and 

there two replicates of each cell passage with each primer pair were analysed. The samples used 

to create a standard curve, was added diluted cDNA concentrations according to section 2.5.6.  

Negative controls were also included for each primer pair, where the cDNA was replaced with 

molecular biological water. These controls are used to check for non-specific signals from 

template contamination or primer dimers. No-RT controls, meaning samples that have not gone 

through reverse transcription (RT), thus samples with the original RNA were also prepared and 

included in the qPCR analysis. The no-RT controls are used to reveal the presence of any 

contaminating gDNA. 
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The qPCR experiment was performed using a StepOnePlus™ Real-Time PCR System (Applied 

Biosystems™) with the experimental setup for quantification based on the Relative Standard 

Curve method in StepOne™ Software v2.3. The program used the following thermal cycle: 10 

minutes at holding stage at 95 °C for initialization, followed by 40 cycles of denaturation and 

polymerization at 95 °C for 15 seconds and 60 °C for 1 minute, respectively. Data was collected 

at hold stage of polymerization, generating CT-values. The thermal cycle ended with a melt 

curve stage, running one cycle with the same temperatures and time points as previously before 

temperature increment of 0.3 °C ending at 95 °C for 1 minute. With data collection at the ramp 

and hold stage at the end, melting curves were generated by the instrument and melting 

temperatures (Tm) of the targets were indicated. The melting curves can be used to identify 

nonspecific PCR amplification.  

2.5.5 Gel electrophoresis 

The qPCR-products, one representative for each primer pair, were run on a 3 % agarose 

(UltraPure™ Invitrogen mixed with TAE) gel in order to visualize the product size and check 

for formation of unspecific products. 1x SYBR® Safe DNA Gel Stain 10.000x in DMSO 

(Invitrogen) was used as the fluorescent agent. The samples were loaded with 2µL 6x DNA 

Loading Dye (Thermo Scientific). Quick-Load® Purple 100 bp DNA Ladder (BioLabs) was 

used as DNA ladder.  TAE (Tris Acetate EDTA) buffer was used to conduct electricity at the 

correct rate. The gel electrophoresis was run at 70 V in 50 minutes. To acquire an image of the 

gel, a BioRad ChemiDoc™ MP System-instrument with the software ImageLab™ (BioRad) 

was used with settings for UV-light.  

2.5.6 The standard curve method  

Standard curves of each primer pair were used to estimate the mRNA expression of the LPARs 

in the cDNA samples. These quantifications were based on the following equation: 

𝐶𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟𝑔𝑒𝑛𝑒(𝑋) = 10
(

𝐶𝑇𝑣𝑎𝑙𝑢𝑒−𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑋)
𝑠𝑙𝑜𝑝𝑒(𝑋)

)
 

CT-values were generated by the StepOnePlus instrument for each product amplificated by the 

primer pairs. The CT, threshold cycle, is the PCR cycle number at which a detectable amount 

of product has been amplified. The standard curves were made based on CT-values and log 

quantities of known concentration of DNA input. The intersect and slope were given by the 

trend line of the standard curve. All standard curves had a R-squared value above 0.99. 
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Multiple qPCR experiments were performed to optimize the standard curves before analyzing 

the cDNA-samples. Standard curves were made of a dilution series of pooled cDNA. The same 

dilution series was used for all primer pairs as all diluted concentrations of cDNA should be 

detected by all primer pairs. The dilution series used was in a range of 50 to 0.005 ng cDNA, 

corresponding to a 1:2 to 1:20000 dilution. Every cDNA-sample value had to be in the linear 

range of the standard curve for the primer specific to the product. The concentration of cDNA 

to be used for studying the mRNA expression of the LPARs was decided based on the standard 

curve experiments. 

An additional dilution series was made with higher cDNA-concentrations in order to detect 

mRNA products of LPAR4. This dilution series ranged from 50 to 3.125 ng cDNA, 

corresponding to a 1:2 to 1:32 dilution.  

2.5.7 Normalisation and statistical analysis of the qPCR results 

The qPCR results were normalised to the reference gene, GAPD. This was done by 

normalisation of the mRNA expression of each LPAR relative to the mRNA expression of 

GAPDH in the same cDNA sample. To compare two independent qPCR experiments, the 

average expression of one receptor, LPAR1, was normalised relative to the average expression 

for each of the other receptors. 

A two-sample paired t-test was performed to determine if differences observed in mRNA 

expression of LPARs in HaCaT wt cells are statistically significant or not. The t-test was 

performed in excel using a 95 % level of significance. 

 

2.6 Knockdown of LPAR1 

To further examine the function of LPAR1 in HaCaT cells, the gene encoding the protein, 

EDG2, was knocked down. This was done by using the shRNA technique, integrating a short 

hairpin RNA (shRNA) construct into the cell line with use of a lentiviral plasmid vector.  

Two knockdown cell lines were prepared with two shRNA constructs that differed in its target 

sequence. The reason for generating two different cell lines was to ensure a higher chance of 

producing a successful knockdown cell line. Based on the nucleotide sequence for EDG2, the 

target sequences were designed manually with use of Standard Nucleotide BLAST (blastn, 

NCBI). The sequences were chosen based on their GC-content of 40-50 %, to ensure high 

specificity and stability of the constructs. The oligos composing the shRNA construct are also 
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designed manually, adding a 5’- and 3’-flank sequence to the forward and complementary 

reverse target sequence and a loop sequence between them. One forward and one reverse oligo 

are designed for each shRNA construct to fit the sticky ends on the chosen vector. 

The knockdown cell lines are to be compared with HaCaT wt cells to study potential differences 

in cell phenotype. A third cell line was also produced, harbouring a shRNA construct with a 

target sequence not complementary to any human gene. This cell line was added to the study in 

order to ensure that potential phenotypic differences observed in knockdown cell lines are due 

to the specific shRNA. Thus, this cell line was used as a negative control and is called 

scrambled (scr).  

Sherif Khodeer, working as a postdoc at Department of Microbiology, has performed the 

knockdown procedure (Khodeer & Era, 2017) (described in section 2.6.1-2.6.4) and handed 

over four stable cell lines as a result. The cell lines are called HaCaT wt/scr/kd1/kd2 ΔLPAR1 

for wildtype, scrambled control, knockdown with shRNA1 and knockdown with shRNA2, 

respectively. 

2.6.1 Cloning shRNA oligos to the pLKO.1 vector 

There are several commercial Lentiviral vectors available. In this experiment, the pLKO.1 puro 

vector (Plasmid #8453, Addgene) was used. A simplified illustration of the vector with 

incorporated shRNA is shown in Figure 2.1.  

        

Figure 2.1: The pLKO.1 puro vector for knockdown using the shRNA technique.  

(A) Illustration of the pLKO.1 puro lentiviral vector with vector elements and shRNA construct. 

Descriptions of the elements are listed in Table 2.2. (B) Illustration of the shRNA construct 

inserted into the pLKO.1 puro vector to perform knockdown of a gene of interest (Addgene, 

2006). 
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The vector has a lentiviral backbone and possesses several advantages as a gene coding for 

puromycin (puro) resistance used to select for positively infected cells. All the different 

components of the vector are presented in Table 2.2. Moreover, the vector can infect and 

integrate into both dividing and non-dividing cells due to the presence of long terminal repeats 

(LTR) and proteins within the pre-integration complex (PIC), which can mediate nuclear uptake 

and thereby allow infection of quiescent cells (Dimmock et al., 2017). 

Table 2.2: Descriptions of the vector elements of the pLKO.1 puro vector incorporated into 

HaCaT cells to perform knockdown of LPAR1 (Addgene, 2006). 

Vector element Description 

U6 

Human U6 promoter drives RNA Polymerase III transcription for 

generation of shRNA transcripts. 

cPPT 

Central polypurine tract, cPPT, improves transduction efficiency by 

facilitating nuclear import of the vector’s pre-integration complex in the 

transduced cells. 

hPGK 

Human phosphoglycerate kinase promoter drives expression of 

puromycin. 

Puro R 

Puromycin resistance gene for selection of pLKO.1 plasmid in 

mammalian cells. 

sin 3’LTR 3’ Self-inactivating long terminal repeat. 

f1 ori f1 bacterial origin of replication. 

Amp R 

Ampicillin resistance gene for selection of pLKO.1 plasmid in bacterial 

cells. 

pUC ori pUC bacterial origin of replication. 

5’LTR 5’ long terminal repeat. 

RRE Rev response element. 

 

The first step of the knockdown procedure was to clone the designed shRNA oligos (Table 2.3) 

into the vector, pLKO.1 puro. By vector digestion with both EcoRI (#R3101S, NEB) and AgeI-

HF (#R3552L, NEB) restriction enzymes, a linearized vector with sticky ends was produced. 

The two designed oligos were annealed together with the use of 10x annealing buffer (Appendix 

A) in a PCR reaction with gradually decreasing temperatures, generating a complementary 

overhang to fit the digested vectors. Then, both the linearized vector and the annealed oligos 

were ligated together using T4 DNA Ligase (#EL0012, Thermo Scientific).  
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Table 2.3: Target sequences for targeting the coding sequence of EDG2. These sequences 

were used to design shRNA oligos for knockdown of EDG2 (LPAR1). Both target sequences 

for EDG2 (LPAR1) and the oligos were designed manually and ordered from Eurofins. The 

sequence for the scrambled control is commonly used and is not complementary to any human 

gene.   

Human (LPAR1) shRNA1 GTTCAACACAGGACCCAATAC 

Human (LPAR1) shRNA2 TTGCAATCGAGAGGCACATTA 

Scrambled shRNA CCTAAGGTTAAGTCGCCCTCG 

 

2.6.2 Plasmid Purification 

The modified pLKO.1 puro vector was transformed into One Shot™ Stbl3™ Chemically 

Competent Escherichia coli (#C737303, Invitrogen) using a heat shock method. The bacterial 

cells were further plated on Ampicillin LB plates (made from BD Difco™ Dehydrated Culture 

Media: LB Broth, Miller (Luria-Bertani), BP Life Science and 100 µg/mL ampicillin, 

#0339-EU-100G, VWR) and incubated overnight at 37 °C.  

The successfully transfected bacterial cells are ampicillin resistant due to a resistance gene 

present on the plasmid. Therefore, colonies produced on the agar plates after incubation is 

considered to harbour the modified vector. Subsequently, several colonies were picked and 

suspended in liquid LB with Ampicillin (100 µg/mL) for 16 hours at 30-37 °C with shaking. 

While in suspension, the E. coli cells were growing, dividing, and producing a lot of plasmids. 

Plasmids were purified using an EndoFree Plasmid Kit (#12362, Qiagen), which provides 

anion-exchange-based endotoxin-free plasmid DNA purification.  

The same colonies selected for plasmid purification were selected for colony PCR analysis to 

confirm that the chosen colonies contain the pLKO.1 puro plasmid. GoTaq® Green Master Mix 

(M712, Promega) and two primers designed based on the plasmid sequence, U6 

(GAGGGCCTATTTCCCATGATT) and PLKOR (GTATGTCTGTTGCTATTATGTC TAT), 

were used in the PCR analysis. The U6 and PLKOR primers were both ordered form Eurofins. 

Gel electrophoresis was performed to check the size of the products.  

2.6.3 Production of Lentivirus 

In order to introduce the shRNA-containing plasmids into HaCaT wt cells, lentiviruses were 

produced. This was done by using a second-generation packaging system, where the 
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components necessary for virus production are split across three plasmids to increase the safety 

of the lentivirus. The three vectors; a transfer plasmid pLKO.1 puro encoding the shRNA, a 

packaging plasmid psPAX2 (#12260, Addgene) and an envelope plasmid pMD2.G (#12259, 

Addgene), were transfected into a Lenti-X 293T cell line (#632180, Takara Bio) using 

FuGENE® 6 Transfection Reagent (#E2691, Promega). The viral supernatant was harvested 

after 48 and 72 hours and used directly for HaCaT wt infection.  

2.6.4 Production of a HaCaT shLPAR1 stable cell line  

The last and decisive step of the knockdown procedure was to make the stable cell lines of 

HaCaT with a functional knockdown of LPAR1. The viral supernatant was used to infect the 

target cells, HaCaT wt, for 7 hours. During infection, cells were cultured in the regular growth 

medium (IMDM with 10 % FBS). Subsequently, selection for the positively infected cells was 

begun by using the puromycin resistant trait. A killing curve for puromycin was adjusted in 

triplicates indicating that 0.5 µg/mL of puromycin was the optimum killing dose, where 95 % 

of the wt cells were killed. The selection was performed by culturing the cells in growth medium 

with 0.5 µg/mL Puromycin Dihydrochloride (#A1113803, Thermo Scientific/Gibco™). The 

selection went on for three days resulting in cell lines of HaCaT cells incorporated with a 

pLKO.1 puro vector expressing a shRNA construct mediating stable knockdown of EDG2, or 

the scrambled negative control.  

 

2.7 Characterization of the LPAR1 knockdown cell lines  

The stable knockdown cell lines were cultivated and passaged as previously described for the 

wt cells (section 2.1.2). All four cell lines included in the knockdown procedure was treated in 

parallel as one experiment. The cell lines were subjected to analyses on protein expression and 

phenotypic properties in order to examine the role of LPAR1 expression in HaCaT cells.  

2.7.1 Western blot  

Western blot analysis was performed in order to check the knockdown efficiency of LPAR1 in 

the new cell lines, HaCaT kd1 ΔLPAR1 and HaCaT kd2 ΔLPAR1. The two other cell lines 

generated during the knockdown process, HaCaT wt ΔLPAR1 and HaCaT scr ΔLPAR1, were 

included as controls.  

A cell lysate of each cell line was made by lysing cells in a 1x Protein Cracking Buffer. The 

buffer was prepared from a 3x Protein Cracking Stock (Appendix A) by addition of β-



 

36 

 

mercaptoethanol (Merck Life Science) and further dilution in Milli-Q-water. QIAshredder 

(QIAgen) columns were used to homogenize the cell lysates. The cell lysates were stored 

at -20 °C until use. 

Step one of the Western blot procedure is protein gel electrophoresis. The cell lysates were 

heated up at 70 °C for 10 minutes before loading on a Bolt™ 10 % Bis-Tris Plus Mini Protein 

Gel (Invitrogen) installed in a Mini Gel Tank (Invitrogen). The Precision Plus Protein™ Dual 

Color Standards (1610374, Bio-Rad Laboratories) was used as protein ladder. Two replicates 

of the same sample setup were run on one gel. The electrophoresis was conducted in 1x MOPS-

buffer (diluted Bolt™ MOPS SDS Running Buffer 20x, Invitrogen) and the gel was run at 

200 V for 50 minutes. 

Protein bands separated on the gel were transferred to a membrane, Trans-Blot® Turbo™ Mini 

PVDF Transfer Packs (Bio-Rad Laboratories), by blotting with the use of Trans-Blot® Turbo™ 

Transfer System (Bio-Rad Laboratories). The membrane was cut in two, giving one replicate 

of the sample setup on each part. The two half membranes were further treated in parallel but 

used for protein detection with different antibodies. Expression of LPAR1 was examined on 

one membrane, and the other part was used as a protein loading control of α-tubulin. In the 

protein loading control, equal protein expression is expected for each sample. It is very 

important not to touch the membrane at any point, since it is very sensitive to protein 

contaminations that result in background noise during membrane development. It is also 

important to keep the membrane soaked at all times. A rocking platform facilitates uniform 

soaking of the membranes during antibody incubation and use of very large volumes are thereby 

avoided. 

To prepare the proteins on the membranes for binding to antibodies, the membranes were 

incubated 1 hour with 5 % skim milk (Skim milk powder, 70166, Merck Life Science, in PBS-

Tween) to block the proteins. Thereafter the membranes were incubated with a primary 

antibody at 4 °C overnight. The primary antibodies were diluted in 5 % skim milk. Two 

different primary antibodies detecting LPAR1 were tested. Information about the antibodies 

used for Western blot analysis is provided in Table 2.4.  

The membranes were washed with PBS-Tween (Appendix A) before incubation with a 

secondary antibody targeting the primary antibody. The secondary antibodies were diluted in 

PBS-Tween. Incubation was performed for 1 hour at room temperature.  
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The secondary antibodies are conjugated with a HRP (Horseradish peroxidase) tag, and the 

SuperSignal™ West Pico Plus Chemiluminescent Substrate (Thermo Scientific) is used to 

detect the presence of antibodies bounded to proteins on the membrane. The substrate, a 

luminol-based chemiluminescent substrate, is composed of a luminol solution and a peroxide 

solution. Antigen is detected by the reaction where luminol is oxidized in the presence of HRP 

and peroxide, producing a prolonged chemiluminescence. The membranes were incubated with 

the chemiluminescent substrate solution just before detection and imaging on a BioRad 

ChemiDoc™ MP System-instrument using the software ImageLab™ (BioRad). 

Table 2.4: Antibodies used for Western blot analysis. Two, a polyclonal and a monoclonal, 

primary antibodies targeting LPAR1 and one antibody targeting the protein loading control, α-

tubulin, were used for detection of proteins by Western blot. One secondary antibody 

conjugated with HRP was used for each protein. Detection size of the protein band and the 

dilution factor are given.  

Target protein Antibody Detection size Dilution 

LPAR1 Primary antibody nr. 1: 

Anti-EDG2 /LPA-1 antibody. 

Rabbit polyclonal.  

ab23698, Abcam. 

Primary antibody nr. 2: 

Recombinant Anti-EDG2 / LPA-1 

antibody [EPR9710]. Rabbit monoclonal.  

ab166903, Abcam. 

Secondary antibody: 

Donkey Anti-Rabbit IgG H&L (HRP). 

ab6802, Abcam. 

43 kDa 

 

 

 

39 kDa 

1:250 

 

 

 

1:2000 

 

 

 

1:5000 

α-tubulin Primary antibody: 

Monoclonal anti-α-tubulin antibody 

produced in mouse.  

T5168, Merck Life Science. 

Secondary antibody: 

Donkey Anti-Mouse IgG H&L (HRP). 

ab6820, Abcam. 

50 kDa 1:5000 

 

 

 

1:5000 
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2.7.2 Studying cell morphology 

By using an Olympus CKX53 Cell Culture Microscope with 4x objective and the CellSens 

imaging software, images of the cell cultures were acquired. Imaging was performed at different 

levels of cell sheet confluence to compare cell morphologies of the four cell lines.  

2.7.3 Live cell imaging of knockdown cell lines 

A live cell migration experiment was set up to investigate cell movements and migration 

patterns in the cell lines with knockdown of LPAR1. All four cell lines were included in the 

same experiment. The experiment was performed on the Zeiss AxioObserver.Z1 microscope 

with settings for phase contrast imaging with transmitted light, as previously described in 

section 2.4.  

Cells were seeded to confluence in a 12-well glass-bottom plate (P12G-1.514-F, MatTek) 

coated with 0.02 mg/mL collagen IV (C7521, Merck Life Science). Three wells were seeded 

with each cell line, and the cells were starved for 48 hours (section 2.1.4). Subsequently, cells 

were treated with either 12 µM of LPA (L7260, Merck Life Science), 15 % FBS (positive 

control) or serum-free IMDM (negative control).  

2.7.4 Analysis of acquired data from live cell imaging 

The data acquired from the Zeiss microscope was analysed in order to investigate the impact of 

LPAR1 expression according to activation and coordination in migrating cell sheets. The 

TrackMate function in Fiji ImageJ (imagej.net/TrackMate; (Tinevez et al., 2017)) was used to 

manually track the migrating cells in the cell sheets, and a Python-based script (Appendix B.8) 

in PyCharm (JetBrains s.r.o) was used to plot the data. Figures showing the velocities generated 

in the migrating cell sheets were produced.  

 

2.8 Data analysis and Image processing 

Image processing and data analysis are performed using the software Fiji ImageJ (imagej.net, 

(Schindelin et al., 2012)), Microsoft® Excel® and PyCharm (JetBrains s.r.o.). Figures and 

illustrations are made in Adobe Photoshop CS6. Detailed information about the procedures used 

for each experiment can be found in the specific method sections described above. 

https://imagej.net/TrackMate
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3 Results 

3.1 Cell migration patterns  

Live cell imaging was used for investigation of cell migration patterns by monitoring the 

fluorescent nuclei expressed in HaCaT mCherry-Histone H2B cells. The cells were stimulated 

after a quiescent cell state was established in the cell sheet, and the cell movements were 

subsequently monitored for 30 hours. The results are shown as figures where cell sheet 

coordination or cell sheet velocities are compared between different cell stimuli. Cell migration 

patterns are also visualized using streamline plots.   

3.1.1 Cell migration patterns of stimulated HaCaT cells 

Different stimulating reagents are used to gather insight on how specific cell receptors regulate 

cell migration. In Figure 3.1 and 3.2, cells stimulated with LPA or EGF are compared with a 

positive control, FBS. A diagram showing data acquired from the positive control together with 

starved cells as negative control is also included (Figure 3.1.A/3.2.A). As a control to EGF 

stimulated cells, the EGF receptor (EGFR) inhibitor Gefitinib was included in the experiments. 

This result is presented in Appendix C including visualization of cell sheet coordination (Figure 

C.1) and speed (Figure C.2). Figure 3.1 is produced using the Plot Order Parameter script that 

provides plots showing the level of coordination between the migrating cells.  

Figure 3.1: Coordination of migrating cells stimulated with different reagents. The factor 

φ describes the amount of coordination parallel to the direction of migration in the cell layer of 

positive, FBS, and negative, starved, control cells (A), FBS and LPA stimulated cells (B) and 

FBS and EGF stimulated cells (C). The plots are showing mean values with standard deviation. 
 

The positive control, in this case FBS stimulated cells, is shown as the red graph in each of the 

three plots in Figure 3.1. FBS stimulated cells show a gradually increasing coordination in the 

cell layer, and the highest level of coordination is achieved about 15 hours after stimulation. 

When comparing FBS with LPA stimulated cell sheets (Figure 3.1.B), the same level of 

coordination is observed by the maximum values of the standard deviation. Interestingly, LPA 
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stimulated cells coordinate their cell movements faster than FBS stimulated cells. However, 

this high degree of coordination is observed during a shorter time period than with FBS 

stimulation.  

The graph with EGF stimulated cells (Figure 3.1.C) shows a low level of coordinated migration. 

The mean values are similar to the graph for the negative control cells (Figure 3.1.A), where 

the cells do not migrate, but the standard deviation is showing larger variations. The reason 

explanation of this observation is further commented when presenting the streamline plot 

(Figure 3.3). Even if the coordination is defined between zero and one, the PIV data generates 

vector fields of vectors with angels of zero to 180 degrees, giving minimum mean φ-factor 

values above 0.5, as seen for the negative control cells.  

In Figure 3.2, three plots of cell sheet velocity are shown for the stimulating agents LPA and 

EGF, together with positive and negative control, FBS and starved cells, respectively.  

Figure 3.2: Cell sheet velocities generated after stimulation with different reagents. The 

speed in the migrating cell sheet is expressed as µm/h. The three plots are comparing positive, 

FBS, and negative, starved, control cells (A), FBS and LPA stimulated cells (B) and FBS and 

EGF stimulated cells (C). Mean values with standard deviation are shown. The outliers are due 

to irregular movements in the xy-stage of the ImageXpress microscope.  
 

The red graph in each plot in Figure 3.2 is showing a maximum migration speed for the FBS 

stimulated cells between 35 and 40 µm/h. The time point for maximum cell sheet velocity 

corresponds to the time point of highest cell sheet coordination (Figure 3.1). For the LPA 

stimulated cells (Figure 3.2.B), maximum speed is reached at an earlier time point after 

stimulation, but the velocities generated are lower than with FBS, and these cells reach a plateau 

speed after approximately 20 hours. The EGF stimulated cells (Figure 3.2.C) have a speed 

curve, which closely follows that of FBS stimulated cells although the mean values are about 

5 µm/h lower at the time point of maximum speed. Together, the results presented in Figure 3.1 

and 3.2 show a clear difference in the ability of these three reagents (FBS, LPA and EGF) to 
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regulate cell sheet coordination, while all three reagents are able to activate similar cell sheet 

velocities. 

Figure 3.3 illustrates the migration patterns in wells of stimulated HaCaT cells by streamline 

plots. Streamline plots were generated over time and the figure shows representative images 

after 16 hours of stimulation. The cells are stimulated with FBS, LPA or EGF. 

Figure 3.3: Streamline plots of migrating cells. Each arrow in the vector fields illustrate the 

direction of the cell movements in a single well of cells stimulated with FBS (A), LPA (B) and 

EGF (C). The x- and y-axis are presenting the size of the well in µm.  
 

The streamline plots (Figure 3.3) show that FBS and LPA stimulated cells move in the same 

direction as one coordinated unit, in this case towards the centre of the well. Cells stimulated 

with EGF, on the other hand, show a different migration pattern with cells migrating in all 

directions. Here, the cell sheet shows local regions of highly coordinated cells, while other 

regions show no coordination. This corresponds to the result presented in Figure 3.1.C. EGF 

stimulated cells showed large variations in cell sheet coordination as shown by the standard 

deviation, at the same time as the mean values was similar to the coordination level of the 

negative control cells. The difference occurs due to the presence of local regions with high 

coordination or no coordination in the cell sheets that gives us a broad range of coordinated 

values (standard deviation), while the mean values add the different coordination values 

together, resulting in a total level of coordination with low φ-values and a graph similar to that 

shown for the starved cells.  

3.1.2 The effect of the LPA receptor inhibitor Ki16425 on cell migration 

In order to examine the role of LPA receptor signalling in HaCaT cells, the inhibitor Ki16425 

was used. According to the producer, Ki16425 inhibits LPAR1 and partly LPAR3. Titration 

experiments were performed to test the effect of the Ki16425 inhibitor on the experimental 

system. The cells were stimulated with different concentrations of the inhibitor mixed with FBS 
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or LPA. This is done to examine differences in inhibition efficiency when different mixes of 

signalling proteins are present in the reactions. In Figure 3.4, coordination of cells stimulated 

with FBS and 10 or 20 µM Ki16425 are shown, in addition to control cells.  

Figure 3.4: Coordination plot for titration of Ki16425 mixed with FBS. The amount of 

coordination in the cell sheet is described by the factor φ in the plots. The plots illustrate the 

positive control, FBS, as the red graph and starved cells, negative control (A), cells stimulated 

with 10 µM Ki16425 (B) and 20 µM Ki16425 (C) as blue graphs. The plots are showing mean 

values with standard deviation. 
 

Figure 3.4 illustrates that treatment of cells with the LPA receptor inhibitor Ki16425 reduces 

the level of cell sheet coordination compared to cells stimulated with FBS alone. The mean 

values indicate lower levels of maximum coordination both with 10 and 20 µM Ki16425, all 

though the large variations shown by the standard deviation does not indicate a significant 

difference. 

To check if the inhibitor has an effect on the migration speed for cells treated with FBS and 

Ki16425, plots showing cell sheet velocity were produced. These are shown in Figure 3.5.  

Figure 3.5: Migration velocity for titration of Ki16425 mixed with FBS. Illustration of cell 

sheet velocities (µm/h) produced after stimulation with 10 µM (B) and 20 µM (C) Ki16425. 

The positive control, FBS, are included as the red graph in each plot, and starved cell sheets, 

the negative control is also included (A). The plots are showing mean values with standard 

deviation. The outliers are caused by irregular movements in the xy-stage of the ImageXpress 

microscope.  
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The plots in Figure 3.5 show a reduction in cell migration velocities produced when the cells 

are treated with Ki16425. However, the curves of Ki16425-treated cells follow the curve of 

FBS stimulated cells until around 7 hours of stimulation when a reduction of approximately 5 

and 10 µm/h for 10 and 20 µM Ki16425 is observed. 

Subsequently, the titration experiment of Ki16425 was performed with LPA in the same way 

as with FBS to examine differences due to signalling proteins present in the reactions. In Figure 

3.6 and 3.7 cells stimulated with three different concentrations of the inhibitor, 5, 10 and 20 

µM, are plotted. Figure 3.6 illustrates the level of coordination in the cell sheets.  

 

Figure 3.6: Cell coordination for titration of Ki16425 mixed with LPA. The factor φ 

describes the amount of coordination in the migrating cell sheets. The red graphs show the level 

of coordination between cells stimulated with LPA. The titration of Ki15425 with LPA is shown 

in blue with 5 (A), 10 (B) and 20 (C) µM Ki16425. The plots are showing mean values with 

standard deviation.  
 

Figure 3.6 shows that Ki16425 affects the migration pattern in the cell sheet, leading to reduced 

levels of coordination compared with LPA stimulated cell sheets. Notably, the level of 

coordination is more reduced in the cell sheets treated with higher concentrations of Ki16425. 

This is observed with both FBS and LPA (Figure 3.4 and 3.6). Compared with Figure 3.4, the 

inhibitor has a more pronounced effect on cell coordination when it is mixed with LPA 

compared to FBS.  

In Figure 3.7 the cell sheet velocity is illustrated for cells stimulated with LPA and different 

concentrations of Ki16425.  
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Figure 3.7: Cell sheet velocity for titration of Ki16425 with LPA. The speed (µm/h) of the 

migrating cells is illustrated for 5 (A), 10 (B) and 20 (C) µM Ki16425 mixed with LPA. 

Migration speed of cells stimulated with only LPA is presented as the red graph in each plot. 

The plots are showing mean values with standard deviation. The outliers at 22 hours are due to 

irregular movements in the xy-stage of the ImageXpress microscope. The missing data points 

in the blue graph in plot B is due to unknown errors during data processing.  
 

Figure 3.7 is showing reduced migration speed for cells stimulated with increasing 

concentrations of inhibitor. Compared to Figure 3.5, the inhibitor has a bigger effect on cell 

sheet velocity when the cells are stimulated with only LPA compared to FBS. With 10 µM 

Ki16425 the average maximum speed is lowered by approximately 10 µm/h and 5 µm/h for 

LPA and FBS stimulated cells, respectively. Based on these four figures, Figure 3.4-3.7, the 

effect of the inhibitor is clearly concentration dependent. 

3.1.3 The effect of the ROCK inhibitor, Y-27632, on cell migration 

Another inhibitor included in the experiments was Y-27632. This inhibitor affects both Rho-

associated kinase 1 and 2, and it thereby regulates many important cell functions like actin 

organization and cell migration (see section 1.4.4). In this experiment, Y-27632 was included 

to examine its effect on activation of cell migration in HaCaT cells, and to investigate the 

importance of actin organization for cell migration. Figure 3.8 and 3.9 are presenting results on 

the coordination and the velocity of migrating cells when they were treated with this inhibitor. 

The inhibitor is mixed with FBS or LPA. In Figure 3.8 the coordination is shown. 
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Figure 3.8: Coordination affected by Y-27632. The factor φ describes how coordinated the 

migration in the cell layer was when cells were stimulated as positive, FBS, or negative, starved, 

control (A), with FBS and FBS mixed with Y-27632 (B), and LPA and LPA mixed with Y-

27632. The plots are showing mean values with standard deviation. 
 

The Figure 3.8 is showing reduced levels of coordination after treatment with the Y-27632 

inhibitor, both in FBS and LPA stimulated cell sheets. With LPA, the effect is more pronounced 

with mean values at its maximum after about 15 hours of stimulation and otherwise 

coordination levels resembling the negative control cells.  

In Figure 3.9 the migration speed of the cells treated with Y-27632 is illustrated in plots showing 

cell sheet velocity.  

 

Figure 3.9: Migration speed generated after Y-27632 treatment. The migration speed 

(µm/h) of the stimulated cell sheets is illustrated for cells stimulated as positive, FBS, and 

negative, starved, controls (A), cells stimulated with FBS and FBS mixed with Y-27632 (B) 

and LPA and LPA mixed with Y-27632 (C). Mean values with standard deviation are shown. 

The outliers are due to irregular movements in the xy-stage of the ImageXpress microscope. 
  

Both cells stimulated with FBS and LPA show reduced migration speed due to inhibition using 

Y-27632, according to Figure 3.9. The effect is, here as well as for the coordination, more 

pronounced in LPA stimulated cells than the cells stimulated with FBS. The maximum speed 

is approximately reduced twofold with LPA compared to stimulation with FBS.  

Due to ROCKs regulatory functions in activation and stabilisation of the actin network, and 

these results presenting changes in cell sheet velocity and coordination upon ROCK inhibition, 
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it is interesting to further investigate the expression of actin in cell sheets treated with different 

reagents. 

 

3.2 Visualization of actin networks 

Experiments were performed in order to examine if actomyosin networks are involved in the 

regulation of cell sheet coordination. This is done by visualization of the actin networks in 

HaCaT cells, and by investigating changes in the expression of actin filaments after stimulation 

with different reagents. These experiments were performed using immunofluorescent (IF) 

staining of HaCaT wt cells and live cell imaging of HaCaT LifeAct cells.  

3.2.1 Immunofluorescently stained actin networks 

IF stained actin networks in HaCaT wt cells were imaged using a confocal microscope. Images 

were acquired in both xz- and xy-orientation (see section 2.3.3). The images were analysed 

based on the location of actin filaments in the cell layer and visible phenotypic variations. The 

results are presented in Figure 3.10 and 3.11. Cross section images, xz-orientation, were used 

to produce the intensity plots shown in Figure 3.10. The figure illustrates actin expression in 

the cells, which is shown by the distribution of the Phalloidin intensity. The intensity of DAPI, 

colouring the cell nuclei, is included as a reference that show the positioning of the cell during 

analysis. The apical side of a cell refers to the top of the cell sheet, while the basal side is the 

side where the cell is attached to a surface. Cells treated with the LPAR inhibitor Ki16425 are 

presented as well as cells stimulated with FBS, LPA, EGF and starved cells for comparison.  
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Figure 3.10: Apical and basal actin expression in HaCaT cells. DAPI has coloured the cell 

nuclei and Phalloidin has coloured the actin filaments. The distribution of the Phallioidin 

intensity is plotted relative to the distribution of the DAPI intensity. The basal and apical 

expression of actin are illustrated for FBS stimulated and starved cells (upper panels), cells 

stimulated with LPA and EGF (middle panels), and cells treated with 10µM and 20µM Ki16425 

mixed with FBS (lower panels). Mean values of normalized data is shown with standard 

deviation. 
 

Figure 3.10 shows that DAPI is expressed more or less evenly in the cell nuclei and is therefore 

a good reference marker. The same reference values of DAPI intensity are shown in all plots, 

and used as a reference to show where the basal and apical side of the cell is situated in the 

diagram, and how actin is expressed relative to this. For most of the cell treatments, actin 

expression is observed mainly towards the apical side of the cell. For FBS and LPA stimulated 

cells, actin is expressed quite similar, but with LPA the curve is a bit lower at the centre with a 

higher maximum intensity apically. For the starved cells and the EGF stimulated cells, the 

figure shows that actin is expressed more evenly across the cell. The plots representing cells 

treated with Ki16425 are showing mainly apical actin expression. 
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To visualize actin networks across a cell sheet after stimulation, representative images for each 

cell treatment are presented in Figure 3.11. 

Figure 3.11: IF stained HaCaT cells. Pictures of cell sheets stained with the 

immunofluorescent dyes DAPI (blue), colouring the cell nuclei, and Phalloidin (green), 

colouring actin filaments. The cell layers constitute of FBS stimulated cells, starved cells, cells 

stimulated with LPA and EGF, and cells treated with 10 and 20 µM Ki16425 mixed with FBS. 
 

The pictures in Figure 3.11 show that cell sheets stimulated with FBS and LPA are expressing 

actin filaments that form a network on top of the cells. Starved cells and EGF stimulated cells 

do not show the same phenotype. Cell sheets treated with the LPAR inhibitor Ki16425 express 

actin networks, and especially the cell sheet stimulated with 20 µM Ki16425 shows the presence 

of large actin networks with long actin filaments crossing apically along the entire cell sheet.  

3.2.2 Expression of actin visualized in HaCaT LifeAct cells 

Live cell imaging was performed on HaCaT LifeAct cells. Cell sheets of starved cells, FBS 

stimulated cells, LPA stimulated cells and cells treated with 20 µM Ki16425 mixed with FBS 

were included in the experiment that aimed to investigate changes in actin expression due to 

the different cell treatments. The cell contours were detected by phase contrast imaging and 

fluorescent actin was imaged by using a LED light source set to 555 nm. Figure 3.12 is 

presenting the cell contours (A), fluorescent actin (B) and a merged image (C) of the same FBS 

stimulated LifeAct cell sheet.  
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Figure 3.12: Cell contours and actin expression of FBS stimulated HaCaT LifeAct cells. 

The same cell sheet image acquired by live cell imaging is presented in three ways by showing 

cell contours (A), fluorescent actin (B) and both channels merged together (C).  
 

Figure 3.12 shows that both cell contours and actin networks are successfully detected by the 

instrument during cell migration. In the middle of the figure, in the image showing the actin 

network (Figure 3.12.B), variations in actin expression are observed. There are regions with 

less expressed actin where the actin filaments appear to be more stretched out, and surrounding 

regions with higher expression of actin that are more densely packed. This corresponds to the 

cell contours (Figure 3.1.A) showing cells that are stretched out compared with cells nearby 

that have a rounder shape. A higher expression of actin is also observed in the areas where 

multiple cells gather during migration. In the merged image, where both cell contours and actin 

filaments are shown (Figure 3.1.C), the same features are observed, however, the observations 

mentioned are more distinct when the cell shape and actin network is shown separately.  

Due to difficulties of showing the cell contours and actin networks clearly at the same time, 

only the actin filaments will be shown in the next figure. Representative images of cell sheets 

with fluorescent actin filaments for each of the treatments are shown in Figure 3.13. 
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Figure 3.13: Expression of actin in treated HaCaT LifeAct cells. Cell sheets of starved cells, 

cells stimulated with FBS, LPA stimulated cells and cells treated with 20 µM Ki16425 are 

presented in the figure. The images are acquired during live cell imaging approximately 

20 hours after stimulation. The direction of migration is illustrated with grey arrows. 
 

Figure 3.13 shows generally high levels of expressed actin in the cell sheets, except for the 

starved cell sheet where the expression is lower and uneven. In the image of LPA stimulated 

cells, the cells are migrating downwards (grey arrow). Here, several lines with high actin 

expression are observed in the upper part of the picture, and these are positioned parallel to the 

direction of migration. These line features of highly expressed actin in the direction of the cell 

movements are also observed in the other cell sheets, both FBS stimulated and after treatment 

with the LPAR inhibitor Ki16425. 

 

3.3 Expression levels of LPARs in HaCaT cells 

To estimate the expression level of mRNA for the six different LPARs in HaCaT wt cells, qPCR 

experiments were performed. The results are based on investigating the expression of LPARs 

in three cell passages (n=3), the qPCR analyses of the same samples were repeated twice. 

Figure 3.14 presents the results as a diagram, where the mRNA expression for the LPARs in 

each experiment are normalized relative to LPAR1 set to 1. In Appendix D, a diagram of 

normalized values to GAPDH, the mRNA expression of the reference gene GAPD, is presented 

for each experiment. The colours in the diagrams (Figure D.1 and D.2) are matching the 

representative values in Figure 3.14. Standard deviation is included to the relative normalized 

values in Figure 3.14. 
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Figure 3.14: mRNA expression of LPAR1-6 in HaCaT wt cells. The diagram shows data 

from two independent qPCR experiments normalized relative to the representative LPAR1 

expression set to 1. Mean expression of three cell passages with standard deviation is shown. 

Expression of LPAR4 was not detectable.  
 

The diagram in Figure 3.14 is showing expression levels for the LPA receptors between 0.9 and 

1.3. The standard deviations show the variance between the three cell passages analysed. 

Expression of LPAR4 was not detectable. The two-sample paired t-test performed with 95 % 

level of significance resulted in a significant difference in expression between LPAR4 and the 

other receptors.  

Additional qPCR experiments were done with dilution series containing higher cDNA 

concentrations in order to detect mRNA expression of LPAR4. Still, the StepOnePlus™ Real-

Time PCR System in combination with SYBR® Green were not able to detect amplified 

product to estimate the mRNA expression of this receptor. Gel electrophoresis with positive 

and negative samples from these experiments is presented in Figure 3.15. Samples for detection 

of GAPDH and LPAR1 were included as controls. 
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Figure 3.15: Gel electrophoresis of qPCR products to detect LPAR4. Results from two 

independent experiments are shown. Four positive samples of LPAR4 are included as well as 

one positive sample for GADH and LPAR1 used as controls, in addition to negative control 

samples. The product sizes correlate with Table 2.1.  
 

The gel electrophoresis presented in Figure 3.15 shows the presence of amplificated product of 

mRNA corresponding to LPAR4 in six of eight samples chosen from these two experiments. 

However, amplification of mRNAs corresponding to GAPDH and LPAR1 is much higher based 

on the stronger bands visible on the gel. The negative controls indicated no contamination of 

cDNA, but amplification of primer dimers was visible in one of the samples for GAPDH. 

In Appendix D an image of gel electrophoresis with qPCR products from the experiments 

presented in Figure 3.14 is included (Figure D.3). Results from an experiment with no-RT 

controls are presented in Table D.1 and indicate that the samples do not contain gDNA that 

potentially could affect the qPCR-results. 

 

3.4 Characterization of LPAR1 knockdown cell lines 

The shRNA technique was used to produce two HaCaT cell lines with a target sequence each 

knocking down expression of the LPAR1 receptor, by knocking down the EDG2 gene. These 
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cell lines are characterized together with the scrambled control and wt cell line following the 

knockdown procedure. Western blot was performed to investigate the protein expression of 

LPAR1 in the cell lines, and thereby evaluate the effect of the knockdown. Changes in 

phenotype were examined microscopically, both by comparing cell morphology and monitoring 

migration patterns by live cell imaging.  

3.4.1 Analysis of the knockdown efficiency 

Western blot analysis was performed to investigate if the knockdown cell lines expressed less 

LPAR1 protein after the knockdown procedure was completed. By comparing the level of 

expressed LPAR1 protein in the knockdown cell lines to the control cell lines, the knockdown 

efficiency can be evaluated. Each experiment was performed with one antibody targeting 

LPAR1 and one antibody targeting alpha-tubulin. Detection of alpha-tubulin was used as a 

control to check that the same amount of protein was loaded onto the gel for each sample of 

cell lysate. Figure 3.16 illustrates the Western blot of the HaCaT ΔLPAR1 cell lines with the 

polyclonal LPAR1 antibody. 

 

 

Figure 3.16: Western blot of HaCaT ΔLPAR1 cell lines with polyclonal LPAR1 antibody. 

The image combines results from two Western blots, detection of LPAR1 expression (left) and 

expression of the loading control alpha-tubulin (right). The blue frame indicates the band 

corresponding to the LPAR1 product size according to the antibody producer.  



 

54 

 

The left Western blot in Figure 3.16 shows a high degree of unspecific antibody binding to 

proteins present in the cell lysate. This background noise makes it difficult to evaluate if LPAR1 

is less expressed, thereby knocked down, in the HaCaT kd1 ΔLPAR1 and HaCaT kd2 ΔLPAR1 

cell lines. The blue frame outlines the protein band with the correct size, according to the 

antibody producer. However, since these bands show some variation in thickness, as is also 

observed for other bands further down on the blot, it is difficult to determine the knockdown 

efficiency.  

After repeating the Western blot experiment using the polyclonal LPAR1 antibody (primary 

antibody nr. 1 in Table 2.4) without better results, a new LPAR1-specific antibody was bought. 

Results from the Western blot experiment with this antibody, a monoclonal antibody (primary 

antibody nr. 2 in Table 2.4), are shown in Figure 3.17. 

 

 

Figure 3.17: Western blot of HaCaT ΔLPAR1 cell lines with monoclonal LPAR1 antibody. 

The image combines results from two Western blots, detection of LPAR1 expression (left) and 

expression of the loading control alpha-tubulin (right). 
 

Figure 3.17 shows Western blot detection of LPAR1 using a monoclonal LPAR1 antibody. This 

antibody shows a much higher specificity than the first one tested, resulting in detection of one 

protein band in each cell line. The size of the band is estimated to be 39 kDa, according to the 

antibody producer. However, the detected band is somewhat smaller than estimated, 

approximately 37 kDa. For the HaCaT kd1 ΔLPAR1 the figure shows a band that is thinner 

than bands visualized for the three other cell lines. This indicates that the EDG2 gene, and thus 
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expression of the LPAR1 receptor, is partly knocked down in the HaCaT kd1 ΔLPAR1 cell 

line. 

3.4.2 Phenotypic changes in knockdown cells 

Changes in phenotype for the knockdown cell lines are examined by studying cell morphology 

and by live cell imaging experiments. The morphology of the cell lines was observed 

microscopically. Representative images are presented in Figure 3.18, where the cells are in a 

subconfluent cell sheet state.  

 

Figure 3.18: Morphology of HaCaT ΔLPAR1 cell lines. Images of subconfluent cell sheets 

of wt, scr, kd1 and kd2 cells acquired with a light microscope. 
 

Figure 3.18 shows that the cell morphology of HaCaT kd1 ΔLPAR1, especially, is different 

from the other three cell lines. It seems like these cells do not stretch out and form colonies with 

a defined border like in particular the wt cells do. It appears like the kd1 cells prefer not to bind 

to each other, as there is space between the cells and the cells has a more rounded shape. Even 

if they are positioned next to each other, it looks more like a group of single cells than a 
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connected cell sheet. The kd2 cells seems more like colony forming cells, but they have less 

defined colony edges compared to the wt and scr cells.   

Using live cell imaging with settings for phase contrast imaging by transmitted light, cell 

movements and migration patterns were investigated. Samples of each cell line were stimulated 

with FBS or LPA. A starved cell control was also included for each cell line. For obvious 

reasons, the results are best visualized by video, however, still images from each video has been 

selected to show the general features of each cell line. Figure 3.19 and Figure 3.20 shows 

representative images of the cell sheets during live cell imaging after 20 hours of stimulation. 

Figure 3.19 is showing FBS stimulated cell sheets. 

 

Figure 3.19: Cell sheet integrity and coordination in FBS stimulated HaCaT ΔLPAR1. 

The images represent cell sheets of the four cell lines (wt, scr, kd1 and kd2) after 20 hours of 

stimulation with FBS. The images are acquired during live cell imaging. 
 

A different migration pattern was observed for the knockdown (kd) cell sheets than the wt and 

scr cell sheets. The most distinct difference was that the kd cells tend to lose contact with each 

other during migration, as opposed to the wt and scr cells. During migration, the kd cell sheets 

were torn apart, while the wt and scr cells were able to keep their integrity and migrate as an 

intact unit. This is shown in Figure 3.19.  

Figure 3.20 is showing representative images of cell sheets during live cell imaging after 20 

hours of stimulation with LPA.  
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Figure 3.20: Cell sheet integrity and coordination in LPA stimulated HaCaT ΔLPAR1. 

The images represent cell sheets of the four cell lines (wt, scr, kd1 and kd2) after 20 hours of 

stimulation with LPA. The images are acquired during live cell imaging. 
 

In Figure 3.20, results acquired from LPA stimulated cell sheets show the same feature as 

Figure 3.19 of FBS stimulated cell sheets. In addition, the confluent cell sheets of knockdown 

cells (kd1 and kd2) are torn apart during LPA stimulated migration.  

Using data acquired from live cell imaging, the migration velocity in the migrating cell sheets 

was analysed. This was performed using the TrackMate function in the Fiji ImageJ software 

(imagej.net/TrackMate; (Tinevez et al., 2017)). Figure 3.21 is showing the results from this 

analysis. One panel of each cell line with the three different treatments are presented. 

https://imagej.net/TrackMate
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Figure 3.21: Cell sheet velocities for HaCaT ΔLPAR1 cell lines. These panels present the 

speed (µm/h) in the cell sheets during the time of live cell imaging. Panel A is the wt cell line, 

B is the scr cell line while the lower panels, C and D, represents the knockdown cell lines of 

kd1 and kd2, respectively. In each panel, the blue lines represent starved cells, the orange line 

is cells stimulated with FBS and the green line is of LPA stimulated cells. 
 

Figure 3.21 shows some differences in migration velocities generated after FBS and LPA 

stimulation between the four cell lines, even if the maximum speed of approximately 30 µm/h 

is the same for them all. With FBS stimulation, the knockdown cells (Figure 3.21.C and D) 

have a longer plateau phase of maximum speed than the two other cell lines, in which the 

migration speed is decreasing after 20-25 hours of stimulation. For LPA stimulated cell sheets, 

the wt cell line (Figure 3.21.A) differs from the three others. The scr cell line, in addition to the 

knockdown cell lines shows a decreasing migration velocity before 20 hours of stimulation and 

reaches the same velocity as the starved cells before imaging is completed. The wt cells is also 

showing decreasing migration velocities at the same time point, but still show an average 

migration speed of 20 µm/h at the end of imaging. Interestingly, a more clear difference in cell 

sheet coordination compared to migration speed was observed (according to Figure 3.19 and 

3.20) between these four cell lines.
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4 Discussion 

4.1 The ability of LPA to regulate cell migration 

Live cell imaging studies on cell migration patterns in confluent keratinocyte cell sheets 

generated useful information of how different growth factors affect cell migration behaviours. 

The results showed a clear difference in the ability of FBS, EGF and LPA to activate and 

regulate cell sheet coordination, while all three reagents had the ability to activate cell 

movements with similar cell sheet velocities.  

Cell sheets stimulated with FBS or LPA showed high levels of cell sheet coordination (Figure 

3.1.B), with cells migrating as a coordinated unit directed towards a common centre (Figure 

3.3.A and 3.3.B). Furthermore, the results indicate that LPA has the ability to coordinate the 

cell movements faster (Figure 3.2), however, FBS stimulation mediates cell coordination over 

a longer time period. Cell sheets stimulated by EGF, on the other hand, resulted in a more 

chaotic cell migration pattern with local regions of high levels of coordination and other regions 

with no cell sheet coordination (Figure 3.3.C). Notably, EGF stimulation activated cell 

movements with high cell sheet velocities similar to FBS stimulated cell sheets (Figure 3.2).  

These results correspond well with a previous published study (Lång et al., 2018) showing that 

EGF alone can active migration but is not sufficient to induce collective migration, as observed 

with stimulation by regular blood serum or FBS. LPA was previously shown to be involved in 

a variety of biological processes, among them the ability to promote migration of keratinocytes 

(Lei et al., 2019; Mazereeuw-Hautier et al., 2005). These results are supporting those previous 

findings.  

Confirming that LPA is involved in activation and regulation of collective cell sheet migration 

leads to the next point of investigation, including studies on LPA receptors and signalling 

pathways. In these experiments, the LPA receptor 1 (LPAR1) was chosen for further 

investigation. One way to start the examination is to use inhibitors with known inhibitory effects 

and observe changes in cellular behaviour after inhibition. The inhibitor Ki16425 is, according 

to the producer, able to specifically inhibit LPAR1 and partly LPAR3.  

The Ki16425 inhibitor had never been used in this experimental system of live cell migration, 

and therefore a titration experiment was performed in order to determine the optimal 

concentration of inhibitor. The results showed that Ki16425 had an inhibitory effect both on the 

level of coordination in cell sheets (Figure 3.4 and 3.6) and the cell sheet velocities (Figure 3.5 
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and 3.7), and that the effect of Ki16425 was concentration dependent. It was also shown that 

the inhibitory effect on cell sheets stimulated with LPA was higher than the effect on cell sheets 

stimulated with FBS. This is an expected result due to the fact that FBS contains more growth 

factors that can activate cell migration responses through other receptors than LPAR1. The 

optimal concentration is regarded as 10-20 µM, producing an inhibitory effect on collective cell 

migration in cell sheets stimulated with LPA and FBS, respectively, without a complete 

impairment of cell motility.  

However, results obtained using the Ki16425 inhibitor indicate that it is not LPAR1 alone that 

is activating and regulating collective cell sheet migration. The difference between the 

inhibitory effects on FBS stimulated cell sheets compared with the LPA stimulated cell sheets, 

is validated by the fact that FBS contains more factors that mediate activation of migration. 

Furthermore, it cannot be confirmed that the function of LPAR1 is totally inhibited. Even if the 

inhibitor is shown to be specific towards the receptors binding LPA, unspecific binding to other 

cell membrane receptors may occur. Due to the results showing that the inhibitory effect is 

concentration dependent, and that a higher concentration resulted in a stronger inhibition of 

collective cell sheet migration, it is not unthinkable that Ki16425 inhibits other receptors as 

well.  

The signalling pathways for LPA (Figure 1.2) are complex, and the six G-coupled receptors are 

all able to signal through several subfamilies. It is an intricate network, and LPA can also 

regulate functions though other pathways. Based on the results obtained from these studies of 

cell migration patterns, and due to a potentially unspecific inhibition by the inhibitor, it is not 

possible to conclude that LPAR1 is alone involved in LPA mediated cell migration responses.  

 

4.2 Actomyosin as a potential influence on collective cell migration 

Actomyosin networks and its structure visualized by actin filaments was examined due to the 

hypothesis that LPA contributes to cell sheet coordination by regulating the formation and 

maintenance of apical actomyosin networks. Formation of such apical actomyosin networks 

couple cells together and thus could be of importance for cell sheet coordination during 

collective cell migration. Live cell imaging performed on HaCaT cell sheets treated with the 

ROCK inhibitor Y-27632 showed an inhibitory effect on both the level of cell sheet 

coordination (Figure 3.8) and the cell sheet velocities (Figure 3.9) produced in FBS and LPA 

stimulated cell sheets. The inhibitory effect was more pronounced in the LPA stimulated cell 
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sheets, which strengthen the hypothesis that there is a potential correlation between LPA 

signalling and regulation of actomyosin by changes in actin dynamics.  

Visualization of apical actomyosin networks by immunofluorescence staining of actin filaments 

with Phalloidin, showed actin expression mainly towards the apical side of cells after FBS and 

LPA stimulation (Figure 3.10). However, formation of apical actin filaments was also observed 

in cell sheets treated with the LPAR inhibitor Ki16425 (Figure 3.10). Starved cell sheets and 

cell sheets stimulated with EGF showed a more even actin expression throughout the cells. To 

summarize, stimulation of confluent quiescent keratinocyte cell sheets with FBS, LPA or the 

LPAR1 inhibitor stimulated formation of apical actin networks across the cell sheet (also shown 

in Figure 3.11).   

These results were somewhat unexpected, since inhibition of LPA resulted in reduced cell sheet 

coordination and migration speed in contrast to FBS and LPA stimulation. Thus, it was assumed 

that inhibition of LPAR1 would lead to less apical actin expression based on the hypothesis that 

LPA stimulation results in formation of apical actin networks that mediate cell sheet 

coordination. The fact that Ki16425 treatment does not lead to a reduced expression of actin 

networks may be due to lack of specificity for the receptor, leading to incomplete binding to 

the LPAR1 causing incomplete inhibition of the LPA signal. Another explanation is that actin 

dynamic regulation and formation of actomyosin networks is regulated by additional signalling 

pathways that exist due to the great importance of actin in the cells. 

Experiments for live cell imaging of HaCaT LifeAct cells that express fluorescently labelled 

actin displayed how the actomyosin networks are expressed during cell sheet migration. 

Regions with high expression and density of actin filaments and regions with less actin 

expression and lower density of actin filaments was shown to correspond to the cells contour 

that is rounder or more stretched out, respectively (Figure 3.12). This indicates that there is a 

connection between the cells’ behaviour in the cell sheet and the formation and maintenance of 

actomyosin networks.  

Cell sheets treated with different reagents previously shown to influence coordination of cell 

sheet migration and cell sheet velocities differently (Figure 3.1-3.7), gave results showing 

generally high expression of actin (Figure 3.13). Most interestingly while monitoring the 

migrating cell sheets, specific lines of particular high density of actin filaments was detected. 

These lines were positioned parallel to the direction of the cell migration in the stimulated 

collectively migrating cell sheets. This was observed in cell sheets stimulated with FBS and 
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LPA, and is strengthening the hypothesis of LPAs ability to contribute to formation and 

maintenance of the actomyosin networks, and that actin filaments and actomyosin is important 

for coupling cells together and thus mediate coordination in the cell layer during collective cell 

migration. 

On the other hand, the correlation between highly expressed actin filaments and parallel cell 

sheet migration was also observed when the cell sheets were treated with the LPAR inhibitor 

Ki16425, in addition to FBS. This result weakens the hypothesis that LPA alone is important 

for formation and maintenance of actomyosin networks. The results obtained with Ki16425 

discussed above are valid in this context.  

 

4.3 LPARs expressed in HaCaT cells 

Studies of mRNA expression of the six LPARs by performing qPCR experiments, indicated 

small differences in the expression level of five of six receptors expressed in HaCaT cells. For 

one of the receptors, LPAR4, the mRNA expression was significantly lower than the others 

(shown in Figure 3.14 and validated by two-sample paired t-test performed with 95 % level of 

significance). At the same time, results from gel electrophoresis (Figure 3.15) indicate that 

LPAR4 is expressed in the cells. The conclusion is that all six LPARs are expressed in HaCaT 

cells, but LPAR4 is expressed in lower amount and that the qPCR method used is not sensitive 

enough to detect this level of expression. Based on these findings, the question of which of the 

six LPA receptors that mediates activation and regulation of collective cell migration still 

remains open. 

Previous studies have investigated the mRNA expression of LPARs in different experimental 

systems, including studies on obesity among others. Brown et al., 2017 studied mRNA 

expression of LPARs in murine and human myocardium and adipose tissue in order to 

investigate regulation of LPA in response to obesity. By use of qPCR and a SYBR Green dye 

for detection, they found that the expression levels of LPARs were different in non-obese 

humans compared to obese individuals, except for expression of LPAR3, which was not 

detected, and LPAR1. Moreover, the results showed that expression levels of LPAR4, 5 and 6 

were downregulated in obese tissue samples. The authors concluded thereby that LPAR4-6 are 

negatively associated with human obesity and suggest that excessive weight gain may alter LPA 

receptor signalling (Brown et al., 2017). This study is interesting due to the coherence of 

obesity, diabetes and chronic wounds. 
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The purpose of estimating the mRNA expression levels of the six LPARs, was to investigate if 

the HaCaT cells express higher levels of one of the LPARs compared to the others. The interest 

was especially directed towards examining if one specific receptor could be directly coupled to 

activation of the collective cell migration observed in the experimental system. If one receptor 

had been estimated with a significantly higher mRNA expression level than the other receptors, 

this may be coupled to the functions they are able to stimulate through signalling pathways in 

keratinocytes. Cells from three separate cell passages were included in these qPCR experiments 

and the cells were harvested in a dormant cell state. In future experiments it would be interesting 

to harvest cells after stimulation with different reagents, and investigate if this leads to a 

difference in the mRNA expression levels of the LPARs as the cells are migrating. 

These qPCR experiments were performed with the real-time technique and SYBR® Green as 

fluorescent agent emitting increased fluorescence signal intensity proportional to the amount of 

PCR product produced. This method was not sensitive enough to detect the low mRNA 

expression levels of LPAR4. Since there are other techniques available that are more specific 

than dsDNA binding dyes, the experiments should be repeated using TaqMan® reagents or the 

ddPCR technique. The TaqMan® probe has the advantage of specific hybridization between 

the designed probe and the target sequence, which thereby is more specific than using a dsDNA 

binding dye when performing real-time qPCR. The experiment can also be performed by using 

ddPCR especially for estimation of very low mRNA expression levels. With performance of 

thousands of amplification reactions in a sample, this technique is proven to be suitable for 

extremely low-target quantification where preparation requirements as sample dilution and 

other treatments for real-time qPCR will lead to undetectable target levels (Taylor et al., 2017). 

 

4.4 Effect and altered behaviour of LPAR1 knockdown in HaCaT cells 

Gene knockdown was performed using the shRNA technique in order to investigate phenotypic 

changes like changes in morphology and altered migration behaviour in HaCaT cells with 

reduced expression of LPAR1. Potential changes could give an indication of the functional role 

of LPAR1 in activation and regulation of collective cell migration. Western blot analysis was 

performed in order to examine the effect of the knockdown procedure. First, a polyclonal 

antibody was used, resulting in high degree of non-specific binding (Figure 3.16) and 

difficulties of determining whether the protein expression was reduced or not. It was therefore 

bought another LPAR1-specific primary antibody, this time a monoclonal antibody. 
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Overall, the result (Figure 3.17) indicates that the knockdown procedure resulted in a successful 

reduction of LPAR1 expression, shown by detection of a thinner protein band on the membrane, 

in one of the knockdown cell lines, HaCaT kd1 ΔLPAR1. The other knockdown cell line, 

HaCaT kd2 ΔLPAR1, expresses the target protein in the same levels as the control cell lines. 

The Western blot methodology used is regarded as adequate for protein detection, however, 

optimization of some steps could potentially give an even more precise result with possibilities 

of protein quantification. 

Even if just one of the knockdown cell lines showed reduced expression of LPAR1, both cell 

lines displayed changes in cell morphology (Figure 3.18). Microscopy images of subconfluent 

cell layers of the HaCaT kd1 ΔLPAR1 cell line show cells with a more rounded shape that 

prefer to spread as individual cells instead of binding together. The other knockdown cell line, 

HaCaT kd2 ΔLPAR1, expresses a cell morphology that differs from wt cells especially in the 

way they do not display a defined cell colony edge. These changes can indicate that the cells 

have been affected by the less expressed LPAR1, but the changes can also occur due to the 

knockdown procedure itself, even though the scr cell line seems to be unaffected based on the 

cell morphology.   

Due to changes in cell morphology, it was interesting to further monitor the cell migration 

patterns using live cell imaging. The results showed cell sheets of the knockdown cell lines that 

were torn apart during cell migration. This happened independently of stimulation with FBS 

(Figure 3.19) or LPA (Figure 3.20). The results indicate that the integrity of the cell sheet was 

altered, and that LPAR1 is important to maintain strong interactions between the cells. The 

results also showed that cell sheet velocities obtained were similar in all four cell lines (Figure 

3.21). A further hypothesis is that this can have something to do with altered actin expression 

in the cells, and that changes in signalling pathways due to less LPA binding is involved.  

The shRNA technique was used to perform the knockdown. This was considered as the best 

choice due to available time to perform the experiment and the need of a cell line with a stable 

knockdown expressed over time. The siRNA technique was not chosen due to impossible 

generation of a long-time knockdown cell line, and the CRISPR-Cas system was considered as 

too time-consuming. In addition to knockdown effects caused by CRISPR-Cas, this system can 

also be used to create cell lines with gene knockouts (Joung et al., 2017). This would had been 

the best choice to ensure absolutely no expression of the LPAR1 receptor and it could thereby 

have given the most accurate observation in a loss-of-function study. 
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5 Conclusion and Further research   

Studies of cell migration patterns in quiescent epithelial cell sheets of  HaCaT mCherry-Histone 

H2B cells showed that LPA has the ability to activate and regulate collective cell migration. 

However, based on the results obtained from these studies, and due to a potentially unspecific 

inhibition by the Ki16425 inhibitor, it is not possible to conclude that LPAR1 is alone involved 

in LPA mediated cell migration responses. 

The role of actomyosin as a potential influence on collective cell migration and the correlation 

between actomyosin networks and cell sheet coordination is strengthened based on the results 

obtained during the project period. Expression of actin filaments that build up actomyosin 

networks were successfully visualized. In which way LPA contributes to this collaboration is 

on the other hand still something that has to be further investigated.  

Based on estimation of mRNA expression levels of LPARs in HaCaT wt cells, the conclusion 

is that all six LPARs are expressed, but LPAR4 is expressed in lower amount that the qPCR 

method used is not sensitive enough to detect. The experiment should be repeated by using 

another fluorescent reagent or a more sensitive technique. A significantly higher expression 

level of one of the LPARs was not detected, thus the question of which of the six LPA receptors 

that mediates collective cell migration still remains open. 

Established LPAR1 knockdown cell lines showed changes in cell morphology and migration 

behaviour. Further examination of the knockdown cell lines will be to incorporate a fluorescent 

reagent as mCherry into the cells, forming stable cell lines that express mCherry-Histone H2B 

proteins in the nuclei. Subsequently, these cell lines can be used in live cell imaging 

experiments in order to monitor cell movements and run the same PIV analyses used to study 

cell migration patterns in HaCaT mCherry-Histone H2B cells. These studies will provide useful 

information of the regulatory role of LPAR1 in activation of cell sheet motility and 

coordination. Combining gene knockdown with the CRISPR-Cas system with fluorescent 

labelling of cell nuclei in order to study LPAR1 regulation in relation to collective cell 

migration could also be an interesting possibility for further research. 

The overall aim of this thesis was to contribute to a better understanding of how LPA activates 

and regulates collective cell migration in human skin. This was successfully examined through 

five aspects of LPA and how it influences the keratinocyte cell line, HaCaT. Further research 
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is needed to obtain more knowledge about how LPA can contribute to improve skin repair in 

chronic wounds. 
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Appendix A: Recipes for buffers and solutions 

Annealing buffer, 10x 

400 mM Tris-HCl, pH 7.9 

500 mM NaCl 

100 mM MgCl2 

PBS/PBS-Tween 

NaCl: 137 mM 

KCl: 2.7 mM 

Na2HPO4: 10 mM 

KH2PO4: 1.8 mM 

To make PBS-Tween, add 0.1% Tween® 20 detergent.  

Protein Cracking Stock, 3x 

6 % SDS (sodium dodecyl sulphate) 

30 % Glycerol 

10 mM Tris, pH 8 

Bromophenol blue 
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Appendix B: Python-based scripts  

B.1: Sorting script  

import os 

import shutil 

import sys 

 

Wells = "D:\\IXMC data\\180121 MigrationAssay-newKi Sofie_Plate_5666\\Wells\\"  

os.makedirs(Wells) 

 

#make new folder names 

folder_name = ["A01", "A02", "A03", "A04", "A05", "A06", "A07", "A08", "A09", "A10", "A11", 

"A12", "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", 

"C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "D01", 

"D02", "D03", "D04", "D05", "D06", "D07", "D08", "D09", "D10", "D11", "D12", "E01", "E02", 

"E03", "E04", "E05", "E06", "E07", "E08", "E09", "E10", "E11", "E12", "F01", "F02", "F03", 

"F04", "F05", "F06", "F07", "F08", "F09", "F10", "F11", "F12", "G01", "G02", "G03", "G04", 

"G05", "G06", "G07", "G08", "G09", "G10", "G11", "G12", "H01", "H02", "H03", "H04", "H05", 

"H06", "H07", "H08", "H09", "H10", "H11", "H12"] 

 

#Iterate through the files in your directory 

for x in range(0,len(folder_name)): 

    if not os.path.exists(Wells+folder_name[x]): 

        os.makedirs(Wells+folder_name[x]) 

 

for Timepoints in range(0, 113): #number of timepoints (must be exact) 

    path = "D:\\IXMC data\\180121 MigrationAssay-newKi 

Sofie_Plate_5666\\TimePoint_"+str(Timepoints+1)+"\\"  

#Dont change \\TimePoint_"+str(Timepoints+1)+"\\ 

    time = "Timepoint_"+"%.3d" % (Timepoints + 1) 

 

#make a list of all the files in a directory and store it in the variable names #Note that the 

command os.listdi does not work since the items will not be iterable 

    names = [] 

    for subdir, dirs, files in os.walk(path): 

        for file in files: 

           names.append(os.path.join(file)) 

 

    for files in names: 

        if "A01" in files and not os.path.exists(Wells+"A01/"+time+"_"+files): 

shutil.move(path+files, Wells+"A01/"+time+"_"+files) 

#repeate this command for A02-A12, B01-B12,…,H01-H12        

 

        print("...done with " + files) 

#to follow the process. All files are sorted when it writes the filename of the last well.  

 

B.2: PIV-analysis for migration speed and direction, 4XPIV_4 

import numpy as np 

from openpiv import tools, validation, process, filters, scaling, pyprocess 

from scipy.ndimage import rotate 

import os 

import openpyxl 

import time 

import matplotlib.pyplot as plt 

 

def Vector_Magnitude(u, v): 

    "Calculates vector magnitude from component vectors u and v" 

    return np.sqrt((u**2) + (v**2)) 

 

#scaling_factor: µm/px 

def scale(u, v, scaling_factor): 

    scaled_u = np.multiply(u, scaling_factor) 

    scaled_u = np.divide(scaled_u, 0.26) 

    scaled_v = np.multiply(v, scaling_factor) 

    scaled_v = np.divide(scaled_v, 0.26) 

    return scaled_u, scaled_v 

 

def frame_rotation(frame_1, rotation): 

    frame_1 = tools.imread(frame_1) 

    rotate_1 = rotate(frame_1, rotation)#rotate image 45° counter clockwise 

    middel_Y = rotate_1.shape[0] / 2 #finds the middle of the image y-axis 

    average_1 = np.average(rotate_1[int(middel_Y)][0:200]) 



 

iv 

 

    low_1 = average_1 / 3 

    high_points_1 = [] 

    low_points_1 = [] 

    for i in rotate_1[int(middel_Y)]: 

        if i > low_1: 

            high_points_1.append(i) 

        else: 

            low_points_1.append(i) 

            if len(low_points_1) > 10: 

                break 

    x_length = len(high_points_1) 

    return middel_Y, x_length 

 

def find_rectangle(frame_1): 

    if "s1" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=225) 

    elif "s2" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=315) 

    elif "s3" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=135) 

    elif "s4" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=45) 

    else: pass 

 

def reject_outliers(data, m): 

    "algorithm for removal of outliers from a list" 

    return data[abs(data - np.mean(data)) < m * np.std(data)] 

 

def remove_outliers(array, k): 

    "takes in an array, flips the array 90 degrees, removes outlier values from each row" 

    # Returns a 1-dimensional list of cleaned averaged values 

 

    array_90 = np.rot90(array, k=3) 

    clean_list = [] 

    for dirt in array_90: 

        clean = reject_outliers(dirt, m=k) 

        clean_nr = np.average(clean) 

        clean_list.append(clean_nr) 

    return clean_list 

 

def pick_angle(tag): 

    if "s1" in tag: 

        return 225 

    elif "s2" in tag: 

        return 315 

    elif "s3" in tag: 

        return 135 

    elif "s4" in tag: 

        return 45 

    else: 

        print("wrong tag") 

 

def PIV(frame_a, frame_b, middel_Y, x_length, tag): 

    angle = pick_angle(tag=tag) 

 

    frame_a = tools.imread(frame_a) 

    rotate_a = rotate(frame_a, angle) #rotate image 45° counter clockwise 

    cropped_a = rotate_a[int(middel_Y - 100):int(middel_Y + 100), x_length - 900:x_length - 5] 

 

    frame_b = tools.imread(frame_b) 

    rotate_b = rotate(frame_b, angle)  # rotate image 45° counter clockwise 

    cropped_b = rotate_b[int(middel_Y - 100):int(middel_Y + 100), x_length - 900:x_length - 5] 

 

    u, v, sig2noise = process.extended_search_area_piv(cropped_a.astype(np.int32), 

cropped_b.astype(np.int32), 

        window_size=24, overlap=12, search_area_size=48, sig2noise_method='peak2peak' ) 

    x, y = process.get_coordinates( image_size=frame_a.shape, window_size=24, overlap=12) 

    u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 2) 

    u, v, mask = validation.global_val( u, v, (-1000, 2000),(-1000, 1000) ) 

    u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) 

    u, v = scale(u, v, scaling_factor = 3.367)  

#scaling factor 1.68 (binning 1); scaling factor 3.367 (binning 2) 

 

    return u, v 

 

def single_well(path, path_out): 



 

v 

 

    list_of_lists = [names_s1, names_s2, names_s3, names_s4]=[[],[],[],[]] 

    for subdir, dirs, files in os.walk(path): 

        for file in files: 

            if "s1" in file: 

                names_s1.append(os.path.join(file)) 

            elif "s2" in file: 

                names_s2.append(os.path.join(file)) 

            elif "s3" in file: 

                names_s3.append(os.path.join(file)) 

            elif "s4" in file: 

                names_s4.append(os.path.join(file)) 

            else: 

                pass 

 

    for list, tag in zip(list_of_lists, ["s1", "s2", "s3", "s4"]): 

        list_u_mean = [] 

        list_V_mean = [] 

        middel_Y, x_length = find_rectangle(path + list[0]) 

        print(x_length) 

        if x_length < 900: 

            print("rectangle smaller than 1000 pixels") 

            pass 

        elif x_length is None: 

            pass 

        else: 

            for frame_a, frame_b in zip(*[iter(list)]*2): 

                u, v = PIV(frame_a=path + frame_a, frame_b=path + frame_b, middel_Y=middel_Y, 

x_length=x_length, tag = tag) 

                V = Vector_Magnitude(u, v) 

                direction = remove_outliers(array=u, k=2) 

                speed = remove_outliers(array=V, k=2) 

                list_u_mean.append(direction) 

                list_V_mean.append(speed) 

 

            book = openpyxl.Workbook() 

            sheet = book.active 

 

            c = 1 

            for list in list_u_mean: 

                sheet.cell(row=1, column=c).value = "u" 

                for i in range(0, len(list)): 

                    sheet.cell(row = i + 2, column = c).value = list[i] 

                c = c + 2 

 

            c2 = 2 

            for list2 in list_V_mean: 

                sheet.cell(row=1, column=c2).value = "V" 

                for i in range(0, len(list2)): 

                    sheet.cell(row = i + 2, column = c2).value = list2[i] 

                c2 = c2 + 2 

 

            book.save(path_out + path[-4:-1] + tag + ".xlsx") 

            print(tag + " done") 

 

all_wells = ["A01", "A02", "A03", "A04", "A05", "A06", "A07", "A08", "A09", "A10", "A11", 

"A12", "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", 

"C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "D01", 

"D02", "D03", "D04", "D05", "D06", "D07", "D08", "D09", "D10", "D11", "D12", "E01", "E02", 

"E03", "E04", "E05", "E06", "E07", "E08", "E09", "E10", "E11", "E12", "F01", "F02", "F03", 

"F04", "F05", "F06", "F07", "F08", "F09", "F10", "F11", "F12", "G01", "G02", "G03", "G04", 

"G05", "G06", "G07", "G08", "G09", "G10", "G11", "G12", "H01", "H02", "H03", "H04", "H05", 

"H06", "H07", "H08", "H09", "H10", "H11", "H12"] 

 

list_of_wells = [#put in the relevant files from “all wells”] 

 

Folder_in = "E:\\IMexp. MigrationAssay newKi 180121\\Wells\\" 

Folder_out = "E:\\IMexp. MigrationAssay newKi 180121\\4xPIV_4_180121-2\\" 

 

start = time.time() 

 

um_per_pixel = 3.367 

hours = 0.53 

scaling_factor = um_per_pixel/hours 

 

for well in list_of_wells: 

    print("working on " + well) 



 

vi 

 

    single_well(path = Folder_in + well + "\\", path_out = Folder_out) 

 

end = time.time() 

print("The entire analysis took " + str(end - start) + " seconds") 

 

B.3: PIV-analysis for cell coordination, 4XPIV_5 

import numpy as np 

from openpiv import tools, validation, process, filters, scaling, pyprocess 

from scipy.ndimage import rotate 

import os 

import openpyxl 

import time 

import math 

import matplotlib.pyplot as plt 

 

def Vector_Magnitude(u, v): 

    "Calculates vector magnitude from component vectors u and v" 

    return np.sqrt((u**2) + (v**2)) 

 

#scaling_factor: µm/px 

 

def scale(u, v, scaling_factor): 

    scaled_u = np.multiply(u, scaling_factor) 

    scaled_u = np.divide(scaled_u, 0.26) 

    scaled_v = np.multiply(v, scaling_factor) 

    scaled_v = np.divide(scaled_v, 0.26) 

    return scaled_u, scaled_v 

 

#for The Plot Order Parameter  

 

def order(u, v): 

    angle = math.atan(v/u) 

    number = math.cos(angle) 

    return number 

 

def frame_rotation(frame_1, rotation): 

    frame_1 = tools.imread(frame_1) 

    rotate_1 = rotate(frame_1, rotation)#rotate image 45° counter clockwise 

    middel_Y = rotate_1.shape[0] / 2  #finds th middle of the image y-axis 

    average_1 = np.average(rotate_1[int(middel_Y)][0:200]) 

    low_1 = average_1 / 3 

    high_points_1 = [] 

    low_points_1 = [] 

    for i in rotate_1[int(middel_Y)]: 

        if i > low_1: 

            high_points_1.append(i) 

        else: 

            low_points_1.append(i) 

            if len(low_points_1) > 10: 

                break 

    x_length = len(high_points_1) 

    return middel_Y, x_length 

 

def find_rectangle(frame_1): 

    if "s1" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=225) 

    elif "s2" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=315) 

    elif "s3" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=135) 

    elif "s4" in frame_1: 

        return frame_rotation(frame_1=frame_1, rotation=45) 

    else: pass 

 

def reject_outliers(data, m): 

    "algorithm for removal of outliers from a list" 

    return data[abs(data - np.mean(data)) < m * np.std(data)] 

 

def remove_outliers(array, k): 

    "takes in an array, flips the array 90 degrees, removes outlier values from each row" 

    # Returns a 1-dimensional list of cleaned averaged values 

 

    array_90 = np.rot90(array, k=3) 

    clean_list = [] 
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    for dirt in array_90: 

        clean = reject_outliers(dirt, m=k) 

        clean_nr = np.average(clean) 

        clean_list.append(clean_nr) 

    return clean_list 

 

def pick_angle(tag): 

    if "s1" in tag: 

        return 225 

    elif "s2" in tag: 

        return 315 

    elif "s3" in tag: 

        return 135 

    elif "s4" in tag: 

        return 45 

    else: 

        print("wrong tag") 

 

def PIV(frame_a, frame_b, middel_Y, x_length, tag): 

    angle = pick_angle(tag=tag) 

 

    frame_a = tools.imread(frame_a) 

    rotate_a = rotate(frame_a, angle)  # rotate image 45° counter clockwise 

    cropped_a = rotate_a[int(middel_Y - 100):int(middel_Y + 100), x_length - 900:x_length - 5] 

 

    frame_b = tools.imread(frame_b) 

    rotate_b = rotate(frame_b, angle)  # rotate image 45° counter clockwise 

    cropped_b = rotate_b[int(middel_Y - 100):int(middel_Y + 100), x_length - 900:x_length - 5] 

 

    u, v, sig2noise = process.extended_search_area_piv(cropped_a.astype(np.int32), 

cropped_b.astype(np.int32), 

        window_size=24, overlap=12, search_area_size=48, sig2noise_method='peak2peak' ) 

    x, y = process.get_coordinates( image_size=cropped_a.shape, window_size=24, overlap=12) 

    u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 2) 

    u, v, mask = validation.global_val( u, v, (-50, 50), (-50, 50) ) 

    u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) 

#u, v = scale(u, v, scaling_factor = 1.68) #scaling factor 1.68(binning 1); scaling factor 

3.367 (binning 2) 

     

    return u, v 

 

def single_well(path, path_out): 

 

    list_of_lists = [names_s1, names_s2, names_s3, names_s4]=[[],[],[],[]] 

 

    for subdir, dirs, files in os.walk(path): 

        for file in files: 

            if "s1" in file: 

                names_s1.append(os.path.join(file)) 

            elif "s2" in file: 

                names_s2.append(os.path.join(file)) 

            elif "s3" in file: 

                names_s3.append(os.path.join(file)) 

            elif "s4" in file: 

                names_s4.append(os.path.join(file)) 

            else: 

                pass 

 

    for list, tag in zip(list_of_lists, ["s1", "s2", "s3", "s4"]): 

        list_u_mean = [] 

        list_V_mean = [] 

        list_order = [] 

        middel_Y, x_length = find_rectangle(path + list[0]) 

        print(x_length) 

        if x_length < 900: 

            print("rectangle smaller than 1000 pixels") 

            pass 

        elif x_length is None: 

            pass 

        else: 

            for frame_a, frame_b in zip(*[iter(list)]*2): 

                u, v = PIV(frame_a=path + frame_a, frame_b=path + frame_b, middel_Y=middel_Y, 

x_length=x_length, tag = tag) 

                flat_u = u.flatten() 

                flat_v = v.flatten() 

                box = [] 
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                for cu, cv in zip(flat_u, flat_v): 

                    number = order(cu, cv) 

                    box.append(number) 

                list_order.append(box) 

 

            book = openpyxl.Workbook() 

            sheet = book.active 

 

            c = 1 

            for list in list_order: 

                sheet.cell(row=1, column=c).value = "order" 

                for i in range(0, len(list)): 

                    sheet.cell(row = i + 2, column = c).value = list[i] 

                c = c + 1 

 

            book.save(path_out + path[-4:-1] + tag + ".xlsx") 

            print(tag + " done") 

 

all_wells = ["A01", "A02", "A03", "A04", "A05", "A06", "A07", "A08", "A09", "A10", "A11", 

"A12", "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", 

"C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "D01", 

"D02", "D03", "D04", "D05", "D06", "D07", "D08", "D09", "D10", "D11", "D12", "E01", "E02", 

"E03", "E04", "E05", "E06", "E07", "E08", "E09", "E10", "E11", "E12", "F01", "F02", "F03", 

"F04", "F05", "F06", "F07", "F08", "F09", "F10", "F11", "F12", "G01", "G02", "G03", "G04", 

"G05", "G06", "G07", "G08", "G09", "G10", "G11", "G12", "H01", "H02", "H03", "H04", "H05", 

"H06", "H07", "H08", "H09", "H10", "H11", "H12"] 

 

list_of_wells = [#put in the relevant/all files from “all wells”] 

 

Folder_in = "D:\\IXMC data\\030920 MigrationAssay Sofie_Plate_4319\\Wells\\" 

Folder_out = "D:\\Sofie\\Pycharm_projects\\project1\\4xPIV_5_030920\\" 

 

for well in list_of_wells: 

    print("working on " + well) 

    single_well(path = Folder_in + well + "\\", path_out = Folder_out) 

 

B.4: The Plot Order Parameter  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

 

def extract_file_names_from_directory(directory): 

    file_names = [] 

    for subdir, dirs, files in os.walk(directory): 

        for file in files: 

            file_names.append(os.path.join(file)) 

    return file_names 

 

def one_sample(file_list): 

    list_of_list = [] 

    for file in file_list: 

        if file[0:5] in file_list: 

            df_data = pd.read_excel(path + file + ".xlsx") 

            data = df_data.to_numpy() 

            data = np.rot90(data) 

            data = np.flipud(data) 

            data[np.isnan(data)] = 0 

            numbers = [] 

            for i in data: 

                average = np.average(i) 

                numbers.append(average) 

            list_of_list.append(numbers) 

        else: 

            print(file) 

    return list_of_list 

 

def plot_one_sample(sample): 

    sample_array = np.array(sample) 

    sample_average = np.average(sample_array, 0) 

    sample_std = np.std(sample_array, 0) 

    return sample_average, sample_std 

 

path = "E:\\Pycharm_projects\\project1\\4xPIV_5_030920\\" 
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#fill in Dataset1 and 2 with data for the graphs wanted in the plot. All sites per well should 

be included if it contains data.  

Dataset1 =    ["A03s1","A03s2","A03s3","A03s4","B03s1","B03s2","B03s3","B03s4", 

"C03s1","C03s2","C03s3","C03s4","D03s1","D03s2","D03s3","D03s4", 

 "E03s1","E03s2","E03s3","E03s4","F03s1","F03s2","F03s3","F03s4", 

 "G03s1","G03s2","G03s3","G03s4","H03s1","H03s2","H03s3","H03s4"] 

Dataset2 = ["A06s1","A06s2","A06s3","A06s4","B06s1","B06s2","B06s3","B06s4", 

 "C06s1","C06s2","C06s3","C06s4","D06s1","D06s2","D06s3","D06s4", 

 "E06s1","E06s2","E06s3","E06s4","F06s1","F06s2","F06s3","F06s4", 

 "G06s1","G06s2","G06s3","G06s4","H06s1","H06s2","H06s3","H06s4"] 

 

file_names = extract_file_names_from_directory(directory = path) 

print(file_names) 

 

sample1 = one_sample(Dataset1) 

sample2 = one_sample(Dataset2) 

 

# Generate average and standard deviation 

sample1_a, sample1_s = plot_one_sample(sample1) 

sample2_a, sample2_s = plot_one_sample(sample2) 

 

# Generate X-axis 

x = np.arange(len(sample1_a)) 

x = np.multiply(x, 32) 

x = np.divide(x, 60) 

 

fig, ax = plt.subplots() 

 

ax.plot(x[1:], sample1_a[1:], linewidth = 1, color="red", marker='o') 

ax.fill_between(x[1:], sample1_a[1:] - sample1_s[1:], sample1_a[1:] + sample1_s[1:], 

alpha=0.2, color="red") 

ax.plot(x[1:], sample2_a[1:], linewidth = 1, color="blue", marker='d') 

ax.fill_between(x[1:], sample2_a[1:] - sample2_s[1:], sample2_a[1:] + sample2_s[1:], 

alpha=0.2, color="blue") 

 

labels = ["EGF", "LPA"] 

plt.legend(labels, fontsize=10) 

 

ax.set_ylim(0.4 ,1) 

ax.set_xlabel("t (hours)") 

ax.set_ylabel("φ") 

plt.savefig("Order_plot_EGFandLPA_0309", dpi = 300) 

 

B.5: The Speed plot  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

def single_site(path, file): 

    df = pd.read_excel (path + file) 

    line = [] 

    for i in range(1, len(df.columns), 2): 

        t = df.iloc[:, i] 

        t = np.average(t) 

        line.append(t) 

    return(line) 

 

def group_average_std(group): 

    list_of_lists = [] 

    for file in group: 

        t = single_site(path, file) 

        list_of_lists.append(t) 

    average = np.average(list_of_lists, axis=0) 

    std = np.std(list_of_lists, axis=0) 

    return average[1:], std[1:] 

 

# Extracting data from  xlsx-files 

path = "E:\\IMexp. MigrationAssay newKi 180121\\4xPIV_4_180121-2\\" 

 

#fill in group1 and 2 with data for the graphs wanted in the plot. All sites per well should 

be included if it contains data. 

group1 = ["A03s1.xlsx", "A03s2.xlsx", "A03s3.xlsx", "A03s4.xlsx", "B03s1.xlsx", "B03s2.xlsx", 

"B03s3.xlsx", "B03s4.xlsx", "C03s1.xlsx", "C03s2.xlsx", "C03s3.xlsx", "C03s4.xlsx", 
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"D03s1.xlsx", "D03s2.xlsx", "D03s3.xlsx", "D03s4.xlsx", "E03s1.xlsx", "E03s2.xlsx", 

"E03s3.xlsx", "E03s4.xlsx", "F03s1.xlsx", "F03s2.xlsx", "F03s3.xlsx", "F03s4.xlsx", 

"G03s1.xlsx", "G03s2.xlsx", "G03s3.xlsx", "G03s4.xlsx", "H03s1.xlsx", "H03s2.xlsx", 

"H03s3.xlsx", "H03s4.xlsx"] 

group2 = ["A07s1.xlsx", "A07s2.xlsx", "A07s3.xlsx", "A07s4.xlsx", "B07s1.xlsx", "B07s2.xlsx", 

"B07s3.xlsx", "B07s4.xlsx", "C07s1.xlsx", "C07s2.xlsx", "C07s3.xlsx", "C07s4.xlsx", 

"D07s1.xlsx", "D07s2.xlsx", "D07s3.xlsx", "D07s4.xlsx", "E07s1.xlsx", "E07s2.xlsx", 

"E07s3.xlsx", "E07s4.xlsx", "F07s1.xlsx", "F07s2.xlsx", "F07s3.xlsx", "F07s4.xlsx", 

"G07s1.xlsx", "G07s2.xlsx", "G07s3.xlsx", "G07s4.xlsx", "H07s1.xlsx", "H07s2.xlsx", 

"H07s3.xlsx", "H07s4.xlsx"] 

 

average1, std1 = group_average_std(group1) 

average2, std2 = group_average_std(group2) 

 

# creating values along the x_axix 

x = range(0, len(average1)) 

x = (np.multiply(x,32))/60 

 

# plotting the data 

fig, ax = plt.subplots(1,1) 

 

ax.plot(x, average1, label="LPA", color="red", marker='o') 

ax.fill_between(x, average1 + std1, average1 - std1, facecolor='red', alpha=0.2) 

 

ax.plot(x, average2, label="LPA + Ki16425 5µM", color="blue", marker='d') 

ax.fill_between(x, average2 + std1, average2 - std2, facecolor='blue', alpha = 0.2) 

 

ax.set_ylabel("Speed (µm/h)", fontsize=12) 

ax.set_xlabel("Time (h)", fontsize=12) 

 

plt.ylim(0,40) 

 

plt.legend(loc= 'upper left') 

plt.show() 

 

fig.savefig("E:\\IMexp. MigrationAssay newKi 180121\\Speed_plot_180121\\Fig_LPAandKi5",  

dpi=300, bbox_inches='tight') 

 

B.6: The Streamline plot 

import numpy as np 

from openpiv import tools, validation, process, filters, scaling, pyprocess 

from scipy.ndimage import rotate 

import os 

import openpyxl 

import time 

import matplotlib.pyplot as plt 

import scipy.ndimage 

 

def extract_file_names_from_directory(directory): 

    file_names = [] 

    for subdir, dirs, files in os.walk(directory): 

        for file in files: 

            file_names.append(os.path.join(file)) 

    return file_names 

 

def scale2(u, v, M, factor): 

    u2 = np.multiply(u, factor) 

    v2 = np.multiply(v, factor) 

    M2 = np.multiply(M, factor) 

    return u2, v2, M2 

 

def PIV(frame_a, frame_b, window_size, overlap, search_area_size): 

    frame_a = tools.imread(frame_a) 

    frame_b = tools.imread(frame_b) 

    u, v, sig2noise = process.extended_search_area_piv(frame_a.astype(np.int32), 

frame_b.astype(np.int32), 

        window_size=window_size, overlap=overlap, search_area_size=search_area_size, 

sig2noise_method='peak2peak' ) 

    x, y = process.get_coordinates( image_size=frame_a.shape, window_size=window_size, 

overlap=overlap) 

    u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 3) 

    u, v, mask = validation.global_val( u, v, (-10, 10), (-10, 10) ) 

    u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=4) 

    M = np.hypot(u, v) 
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    print(M.min(), M.max()) 

    return x, y, u, v, M 

 

path = "E:\\IMexp. MigrationAssay newKi 180121\\180121 MigrationAssay-newKi Sofie_5666\\F08\\" 

path_out = "E:\\IMexp. MigrationAssay newKi 180121\\Streamline_plot_180121\\F08\\" 

 

names = extract_file_names_from_directory(path) 

print(names) 

 

k= 0 

for frame_a, frame_b in zip(names, names[1:]): 

    x, y, u, v, M = PIV(path + frame_a, path + frame_b, 

                        window_size=24, 

                        overlap=12, 

                        search_area_size=48) 

 

    u, v, M =  scale2(u = u, v = v, M = M, factor = 12.63) 

    x = np.multiply(x, 3.367) 

    y = np.multiply(y, 3.367) 

 

# Flipping v-components 180 degrees is required to obtain the correct vector orientation: 

    v = np.flipud(v) 

# These operations reduce the number of arrows in the plot through averaging: 

    resized_x = scipy.ndimage.zoom(x, 24. / 169) 

    resized_y = scipy.ndimage.zoom(y, 24. / 169) 

    resized_u = scipy.ndimage.zoom(u, 24. / 169) 

    resized_v = scipy.ndimage.zoom(v, 24. / 169) 

    resized_M = scipy.ndimage.zoom(M, 24. / 169) 

 

 # Make the plot: 

    fig, ax = plt.subplots(ncols=1, nrows=1) 

    im = ax.streamplot(x, y, u, v, density=2) 

    ax.set_xlabel("X (µm)") 

    ax.set_ylabel("Y (µm)") 

    plt.gca().set_aspect('equal', adjustable='box') 

    plt.savefig(path_out + "image" + str(k), dpi = 300) 

    print("Done with Image " + str(k)) 

    k = k + 1 

 

B.7: Intensity plot for actin  

import matplotlib.pyplot as plt 

import numpy as np 

import openpyxl 

 

wb = openpyxl.load_workbook('Data til plott.xlsx',data_only=True) 

ark1 = wb.get_sheet_by_name('Ark1') 

 

lengde = 175-3 # the length of data 

X_axis = np.zeros(lengde) 

DAPI = np.zeros(lengde) 

stdDAPI = np.zeros(lengde) 

FBS = np.zeros(lengde) 

stdFBS = np.zeros(lengde) 

no_FBS = np.zeros(lengde) 

stdno_FBS = np.zeros(lengde) 

EGF = np.zeros(lengde) 

stdEGF = np.zeros(lengde) 

LPA = np.zeros(lengde) 

stdLPA = np.zeros(lengde) 

FBS_Ki16425_10 = np.zeros(lengde) 

stdFBS_Ki16425_10 = np.zeros(lengde) 

FBS_Ki16425_20 = np.zeros(lengde) 

stdFBS_Ki16425_20 = np.zeros(lengde) 

 

for i in range(0,lengde): 

    X_axis[i] = (ark1.cell(column=2, row=i + 4).value) 

    DAPI[i] = (ark1.cell(column=4, row=i + 4).value) 

    stdDAPI[i] = (ark1.cell(column=5, row=i + 4).value) 

    FBS[i] = (ark1.cell(column=7, row=i + 4).value) 

    stdFBS[i] = (ark1.cell(column=8, row=i + 4).value) 

    no_FBS[i] = (ark1.cell(column=22, row=i + 4).value) 

    stdno_FBS[i] = (ark1.cell(column=23, row=i + 4).value) 

    EGF[i] = (ark1.cell(column=13, row=i + 4).value) 

    stdEGF[i] = (ark1.cell(column=14, row=i + 4).value) 
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    LPA[i] = (ark1.cell(column=10, row=i + 4).value) 

    stdLPA[i] = (ark1.cell(column=11, row=i + 4).value) 

    FBS_Ki16425_10[i] = (ark1.cell(column=16, row=i +4).value) 

    stdFBS_Ki16425_10[i] = (ark1.cell(column=17, row=i +4).value) 

    FBS_Ki16425_20[i] = (ark1.cell(column=25, row=i +4).value) 

    stdFBS_Ki16425_20[i] = (ark1.cell(column=26, row=i +4).value) 

 

#Plotting 

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(8, 5)) 

ax1.plot(X_axis, DAPI, linewidth = 2, label="Nucleus") 

ax1.fill_between(X_axis, DAPI - stdDAPI, DAPI + stdDAPI, color ='blue', alpha  = 0.2) 

ax1.plot(X_axis, FBS, linewidth = 2,label = "Actin") 

ax1.fill_between(X_axis, FBS - stdFBS, FBS + stdFBS, color ='green', alpha = 0.2) 

ax1.grid(color='k', linestyle='--', linewidth=0.5, alpha=0.5) 

ax1.legend(bbox_to_anchor=(0., 1.02, 0., .102), loc=8, frameon=False) 

ax1.set_title('FBS', fontsize=12) 

ax1.text(-9.5, 0.5, 'Basal',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax1.text(7, 0.5, 'Apical',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax1.set_ylabel('Intensity', rotation=90, labelpad=10, fontsize=12) 

ax1.axvline(x=0, linestyle="--", color="r") 

 

ax2.plot(X_axis, DAPI, linewidth = 2, label="Nucleus") 

ax2.fill_between(X_axis, DAPI - stdDAPI, DAPI + stdDAPI, color ='blue', alpha  = 0.2) 

ax2.plot(X_axis, EGF, linewidth = 2, label = "Actin") 

ax2.fill_between(X_axis, EGF - stdEGF, EGF + stdEGF, color ='green', alpha = 0.2) 

ax2.grid(color='k', linestyle='--', linewidth=0.5, alpha=0.5) 

ax2.set_title('EGF', fontsize=12) 

ax2.text(-9.5, 0.5, 'Basal',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax2.text(7, 0.5, 'Apical',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax2.axvline(x=0, linestyle="--", color="r") 

 

ax3.plot(X_axis, DAPI, linewidth = 2, label="Nucleus") 

ax3.fill_between(X_axis, DAPI - stdDAPI, DAPI + stdDAPI, color ='blue', alpha  = 0.2) 

ax3.plot(X_axis, LPA, linewidth = 2, label = "Actin") 

ax3.fill_between(X_axis, LPA - stdLPA, LPA + stdLPA, color ='green', alpha = 0.2) 

ax3.grid(color='k', linestyle='--', linewidth=0.5, alpha=0.5) 

ax3.set_xlabel('LPA', fontsize=12) 

ax3.text(-9.5, 0.5, 'Basal',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax3.text(7, 0.5, 'Apical',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax3.set_ylabel('Intensity', rotation=90, labelpad=10, fontsize=12) 

ax3.axvline(x=0, linestyle="--", color="r") 

 

ax4.plot(X_axis, DAPI, linewidth = 2, label="Nucleus") 

ax4.fill_between(X_axis, DAPI - stdDAPI, DAPI + stdDAPI, color ='blue', alpha  = 0.2) 

ax4.plot(X_axis, FBS_Ki16425_10, linewidth = 2, label = "Actin") 

ax4.fill_between(X_axis, FBS_Ki16425_10 - stdFBS_Ki16425_10, FBS_Ki16425_10 + 

stdFBS_Ki16425_10, color ='green', alpha = 0.2) 

ax4.grid(color='k', linestyle='--', linewidth=0.5, alpha=0.5) 

ax4.set_xlabel('Ki16425 10µM', fontsize=12) 

ax4.text(-9.5, 0.5, 'Basal',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax4.text(7, 0.5, 'Apical',  bbox=['facecolor':'b', 'alpha':0.1]) 

ax4.axvline(x=0, linestyle="--", color="r") 

 

plt.tight_layout(pad=3, w_pad=2, h_pad=1.0) 

fig.savefig('C:\\Users\\huygens\\Desktop\\Sofie\\Fig 1.png', dpi=300) 

plt.show() 

plt.close() 

 

B.8: Plot for TrackMate 

import numpy as np 

import matplotlib.pyplot as plt 

import openpyxl as openpyxl 

 

def get_column_list(list, ark): 

    column_list = [] 

    for name in list: 

        for i in range(0, ark.max_column): 

            if name in str(ark.cell(row = 1, column = i + 1).value): 

                column_list.append(i+1) 

    return(column_list) 

 

def get_colun(column_number, ark): 

    column=np.zeros(ark.max_row) 

    for i in range(0, ark.max_row-2): 
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        column[i] = ark.cell(column = column_number, row = i +2).value 

    return(column) 

 

def get_row_average(column_list, ark, row_number): 

    row_numbers  = [] 

    for i in column_list: 

        row_numbers.append(ark.cell(column = i, row = row_number).value) 

    average = np.average((row_numbers)) 

    return(average) 

 

def get_X(ark): 

    X = np.zeros(ark.max_row) 

    for i in range(0, ark.max_row-2): 

        X[i] = ark.cell(column = 1, row = i +2).value 

    return(X) 

 

# The data to be plotted is in this file 

wb = openpyxl.load_workbook("Average_std_Sofie_100221.xlsx", data_only=True) 

ark = wb.active 

 

# Put names of columns to be plotted, here three graphs per plot 

plot_list =    [["Mean-Speed_A04_s1","Mean-Speed_A04_s2","Mean-Speed_A04_s3","Mean-

Speed_A04_s4"], 

                ["Mean-Speed_B04_s1","Mean-Speed_B04_s2","Mean-Speed_B04_s3","Mean-

Speed_B04_s4"], 

                ["Mean-Speed_C04_s1","Mean-Speed_C04_s2","Mean-Speed_C04_s3","Mean-

Speed_C04_s4"]] 

 

# For each line in the graph put a label here 

label_list = ["Starved", "FBS", "LPA"] 

 

# Create the correct X(time) axis 

X = get_X(ark) 

 

average_list = [] 

std_list = [] 

 

for group in plot_list: 

    column_list=get_column_list(list=group, ark=ark) 

    columns=[] 

    for i in column_list: 

        column=get_colun(column_number=i, ark=ark) 

        columns.append(column) 

    average=np.average(columns, axis=0) 

    std=np.std(columns, axis=0) 

    average_list.append(average) 

    std_list.append(std) 

 

#Plotting the data 

fig, ax = plt.subplots(1,1) 

 

for average, std, label in zip(average_list, std_list, label_list): 

    plt.plot(X[1:-2], average[1:-2], alpha = 1, label=label) 

    plt.fill_between(X[1:-2], average[1:-2]-std[1:-2], average[1:-2]+std[1:-2], alpha=0.2) 

 

plt.legend(loc='upper left') 

plt.ylim(0, 40) 

plt.xlim(0, 30) 

plt.xlabel("Time (h)", fontsize=12) 

plt.ylabel("Speed (µm/h)", fontsize=12) 

plt.savefig("KD2_Knockdexp_2_100221_Sofie", dpi=300) 
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Appendix C: Complementary results of cell migration patterns 

These figures are cited to in section 3.1.1. Gefitinib is an inhibitor of the EGF receptor, EGFR, 

and cells treated with Gefitinib are thereby used as a control to EGF stimulated cells. Gefitinib 

is diluted in medium containing FBS prior to treatment of the cells. The plots are showing mean 

values with standard deviation. 

 

Figure C.1: Control samples to EGF stimulated cells in live cell imaging. The level of 

coordination in the cell sheets is given by the factor φ. The red graph in each plot is a positive 

control of FBS stimulated cells. The blue graphs illustrate coordination in starved cell sheets as 

a negative control (A), EGF stimulated cell sheets (B) and cell sheets treated with the EGFR-

inhibitor Gefitinib (C). The cell sheets treated with Gefitinib shows a lower level of 

coordination than the positive control. Compared to the graph of cells stimulated with EGF, the 

coordination is shown to be higher after treatment with Gefitinib. This is unexpected graphics 

due to the migration behaviour observed in the video of these acquired data, where no particular 

migration is observed. EGF is important for activation of migration and inhibiting the EGFR 

should then lead to inhibited cell migration. The coordination shown in the plot can be explained 

in context to Figure C.2, where the cells treated with Gefitinib show generation of low cell sheet 

velocities, and thereby some migration that could be coordinated even if it is a general low level 

of migration.  

 

 

Figure C.2: Control samples to EGF stimulated cells in live cell imaging, illustrated by cell 

sheet velocities (µm/h). The red graph in each plot is a positive control of FBS stimulated cells. 

The blue graphs show cell sheet velocities in starved cell sheets as a negative control (A), EGF 

stimulated cell sheets (B) and cell sheets treated with the EGFR-inhibitor Gefitinib (C). The 

graph of cell sheets treated with Gefitinib shows lower cell sheet velocities than cells stimulated 

with EGF, indicating successful inhibition of the EGFR in the HaCaT cells. The outliers are 

due to irregular movements in the xy-stage of the ImageXpress microscope. 
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Appendix D: Complementary qPCR results  

This appendix contains complementary results to the qPCR analysis of mRNA expression levels 

of LPARs in HaCaT wt cells, presented in section 3.3. Figure D.1 and D.2 present values for 

mRNA expression of LPAR1-6 normalized to GAPDH, the mRNA expression of the reference 

gene GAPD, for the two independently performed experiments. Figure D.3 presents images of 

a gel electrophoresis performed as a control to the qPCR experiment. One positive and one 

negative sample representative for each LPAR are included from each of the two experiments. 

To reveal the potential presence of contaminating genomic DNA (gDNA), a qPCR experiment 

including no-RT controls was performed. Table D.1 presents the result from this experiment, 

showing the differences between mRNA expression of the LPARs and GAPDH in the no-RT 

control samples compared with cDNA samples.  

 

Figure D.1: The first independent qPCR experiment. The detected values for mRNA 

expression of the LPARs are normalized to the mRNA expression of GAPDH. Values for 

LPAR4 were not detected. 
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Figure D.2: The second independent qPCR experiment. The detected values for mRNA 

expression of the LPARs are normalized to the mRNA expression of GAPDH. Values for 

LPAR4 were not detected. 

 

 

Figure D.3: Gel electrophoresis of one representative sample for each of the six receptors, 

LPAR1-6, and negative controls, from the two qPCR experiments performed. This shows the 

presence, and successfull amplification, of the mRNA product of interest for each LPAR, except 

LPAR4, and no product amplification in the negative control samples. The product sizes match 

the given sizes in Table 2.1.  
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Table D.1: CT-values (A) and Copy numbers (B) for comparison of cDNA and respective no-

RT controls (RNA). Some of the values were non-detectable (ND). The values are indicating 

that the RNA does not include gDNA that could potentially affect the qPCR-results.  

A: CT-values of cDNA and respective no-RT (RNA) controls 

 cDNA2 RNA2 cDNA3 RNA3 cDNA4 RNA4 cDNA5 RNA5 

GAPDH 16,87 37,02 18,17 32,62 17,43 29,65 16,94 36,81 

LPAR1 26,46 ND 27,42 ND 26,52 ND 25,95 ND 

LPAR2 21,94 37,14 22,62 34,35 22,11 30,80 21,77 35,25 

LPAR3 24,90 39,56 25,24 36,92 25,24 36,83 24,27 37,12 

LPAR4 ND ND ND ND ND ND ND ND 

LPAR5 27,49 ND 28,15 ND 27,11 ND 26,95 ND 

LPAR6 27,80 ND 28,67 ND 27,86 36,91 27,80 ND 

B: Copy numbers of cDNA and respective no-RT (RNA) controls 

 cDNA2 RNA2 cDNA3 RNA3 cDNA4 RNA4 cDNA5 RNA5 

GAPDH 6.03*102 2.23*10-7 1.47*102 2.55*10-5 3.30*102 6.29*10-4 5.60*102 2.78*10-7 

LPAR1 2.10*103 ND 7.90*102 ND 1.97*103 ND 3.55*103 ND 

LPAR2 3.93*103 4.59*10-4 1.91*103 8.60*10-3 3.30*103 3.55*10-1 4.71*103 3.32*10-3 

LPAR3 1.23*104 5.80*10-3 8.72*103 8.02*10-2 8.70*103 8.71*10-2 2.29*104 6.55*10-2 

LPAR4 ND ND ND ND ND ND ND ND 

LPAR5 3.45*102 ND 1.76*102 ND 5.02*102 ND 5.93*102 ND 

LPAR6 2.27*103 ND 1.04*103 ND 2.14*103 6.56*10-1 2.26*103 ND 

  

 



 

 

 



 

 

 



 

 

 

 


