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Perfluoroalkyl substances (PFAS) are contaminants that are applied in a wide range of consumer products, in-
cluding ski products. The present study investigated the neuro-dopamine (DA) and cellular steroid hormone ho-
meostasis of wild Bank voles (Myodes glareolus) from a skiing area in Norway (Trondheim), in relation to tissue
concentrations of PFAS.We found a positive association between brain DA concentrations and the concentration
of several PFAS, while therewas a negative association between PFAS and dopamine receptor 1 (dr1) mRNA. The
ratio between DA and its metabolites (3,4-dihydroxyphenylacetic acid: DOPAC and homovanillic acid: HVA)
showed a negative association between DOPAC/DA and several PFAS, suggesting that PFAS altered the metabo-
lism of DA via monoamine oxidase (Mao). This assumption is supported by an observed negative association be-
tween mao mRNA and PFAS. Previous studies have shown that DA homeostasis can indirectly regulate cellular
estrogen (E2) and testosterone (T) biosynthesis. We found no association between DA and steroid hormone
levels, while there was a negative association between some PFAS and T concentrations, suggesting that PFAS
might affect T through other mechanisms. The results from the current study indicate that PFAS may alter
neuro-DA and steroid hormone homeostasis in Bank voles, with potential consequences on reproduction and
general health.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, per-
sistent chemicals that are widespread in the environment (Houde
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et al., 2006; Glüge et al., 2020). They are a group of surface-active com-
pounds that are applied in a wide range of consumer products, such as
textiles, carpets, impregnating agents and in some types of ski products,
such as ski waxes, gliders and powders (Kissa, 2001). Among the men-
tioned consumer products, ski products show the highest PFAS concen-
trations (Kotthoff et al., 2015). Abrasion of waxes from the ski sole
results in the deposition of PFAS to nearby environments (Plassmann
and Berger, 2013). Since PFAS are very persistent, they can remain in
the environment for decades, thus creating PFAS-hotspots at skiing
areas (Kissa, 2001; Grønnestad et al., 2019).

Previous studies have shown that some PFAS can cross the blood-
brain barrier and accumulate in the brain (Maestri et al., 2006). Studies
of largemammals suggest that PFAS can potentially be neurotoxic to ex-
posed individuals. In polar bears (Ursus maritimus), brain PFAS levels
were found to correlate with neurotransmitter alterations (Pedersen
et al., 2015). Further, PFAS in North Atlantic pilot whales (Globicephala
melas) were found to accumulate in brain, with higher levels only de-
tected in the liver (Dassuncao et al., 2019). Neurotoxicity studies in ro-
dents have shown that PFAS produced neurobehavioral alterations
(Johansson et al., 2009; Lee and Viberg, 2013), and developmental and
motor deficits (Onishchenko et al., 2011). Due to its important role in
both motoric and cognitive functions, the central cholinergic system
has received most attention in neurotoxicity studies (Eriksson and
Viberg, 2005; Johansson et al., 2009). However, thedopamine (DA)neu-
rotransmitter system plays an equally important role in behavior and
cognitive functions, but has received less attention in these types of tox-
icity studies.

DA is derived from tyrosine, an amino acid which is converted to
L-3,4-dihydroxyphenylalanine (L-DOPA) by tyrosine hydroxylase (Th).
L-DOPA is further metabolized to DA by DOPA decarboxylase (DDC).
Dopamine catabolism occurs through the breakdown of 3,4-
dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase (Mao),
and then to homovanillic acid (HVA) by catechol-O methyltransferase
(Comt) (Ashcroft, 1969). DA controls several brain conditions such as
cognition, mood, fear, anxiety, as well as vascular and reproductive
functions (Nakajima et al., 2013; Goschke and Bolte, 2014).

Studies have shown that alterations of the DA system can affect a
number of signaling cascades in the body (Zohar et al., 2010). The DA
neurons can, among others, indirectly regulate estrogen (E2) and tes-
tosterone (T) biosynthesis. Biosynthesis of E2 andT is regulated through
the hypothalamus–pituitary–gonadal (HPG) axis (Zohar et al., 2010).
The hypothalamus produces gonadotropin-releasing hormone
(GnRH), and hypothalamic secretion of GnRH stimulates the release of
gonadotropins (GtHs): luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) into the blood. Both LH and FSH controls
egg and sperm development, maturation and release, and they induce
gonadal hormone synthesis, including E2 and T. DA can block the syn-
thesis and release of GnRH (Yu et al., 1991), modulate gonadotropin
levels by increasing and decreasing these hormones based on receptor
subtype (Chang et al., 1990), and subsequently lead to decreased levels
of E2 and T. Furthermore, DA can also control E2 levels by regulating
brain aromatase, the enzyme that converts androgens to estrogens in
the brain (Xing et al., 2016).

Neurobehavioral alterations in vertebrates have been examined in
several developmental and adult exposure studies, with some behav-
ioral endpoints suggesting that the DA-system is a potential target for
environmental contaminants (Hallgren and Viberg, 2016). Northern
leopard frogs (Lithobates pipiens) exposed to perfluorooctane sulfo-
nate (PFOS) and perfuorooctanoic acid (PFOA) during developmental
life-stages showed decreased and increased DA levels and turnover,
respectively (Foguth et al., 2019), while the opposite effect was seen
in adult rats (Rattus norvegicus), where PFOS exposure increased the
DA levels (Salgado et al., 2015). These data from experimental studies
raise the question of whether the exposure of small mammals to PFAS
in the field, such as skiing areas, could lead to neurochemical alter-
ations. In general, there is a paucity of data on PFAS neurotoxicity
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and especially in relation to environmentally relevant exposure sce-
narios in nature.

In a previous study, we showed that Bank voles (Myodes glareolus)
from a Nordic skiing area had significantly higher liver PFAS concentra-
tions, compared to those from a reference area, and that these PFAS
were, most likely, derived from skiing products (Grønnestad et al.,
2019). However, the reported concentrations were below toxicity
threshold levels for laboratory studies on individual PFAS in mice
(Mus musculus) and rats (Canadian Environmental Protection Act,
1999; Hoff et al., 2004). These results suggest that individual PFAS in
ski products may not pose significant risks to biota or the environment.
However, we emphasized that the small mammals were exposed to a
mixture of PFAS, rather than to individual compounds, thus the issue
of mixture toxicity should be considered and addressed in any environ-
mental risk assessment program from skiing areas. Therefore, the aim of
the current studywas to evaluate theneuro-DA and steroid homeostatic
pathways of wild Bank voles, in relation to tissue levels of various PFAS
at a Nordic skiing area. Our hypothesis is that PFAS concentrations in
Bank voles will affect biological variables in the neuro-DA and steroid
hormone metabolic pathways.

2. Materials and methods

2.1. Sampling

Bank voles were sampled in June 2017 in “Granåsen skisenter”, lo-
cated approximately 10 km from the Trondheim city Centre
(Norway). Granåsen is the main arena for winter sports in Trondheim
and was used as a model contamination site in a skiing area. As a refer-
ence site, a natural forest area, not used for ski-sports, was chosen in the
vicinity of an ecological farmnext to Lake Jonsvatnet. This site is approx-
imately 15 km away from Trondheim city center and 17 km from
Granåsen. The sample size (n) was 21 at Granåsen (females (F): n =
5, males (M): n = 16) and 22 at Jonsvatnet (F: n = 6, M: n = 16).

The catching, handling, anesthesia, sampling and euthanizing of the
Bank voles were approved by the Norwegian Food Safety Authority
(Mattilsynet; references no. 2017/76552) and by the Norwegian Envi-
ronmental Agency (Miljødirektoratet; reference no. 2017/4061). Per-
missions for the collection of Bank voles were also given by the
landowners. The sampling and handling were performed in accordance
with the regulations of the Norwegian Animal Welfare Act and EU leg-
islation; 3Rs (Russell and Burch, 1959). All traps were live traps of
type “Ugglan” baitedwith rye bread dipped in sunflower oil and peanut
butter (all food products were sold as “ecological food material”). The
Bank voles were sacrificed by cervical dislocation. The animals were
weighed, lengthmeasured and sexed. The brains (used for DA and tran-
script analysis), livers (used for PFAS concentrations and steroidmetab-
olism assay) and muscle tissues (used for steroid concentrations) were
dissected and snap-frozen in liquid nitrogen and stored at−80 °C. In the
current study, muscle tissue was used as a proxy for the free fraction of
steroids in blood, since we did not have enough blood sample for this
purpose. It has been shown that whole-body homogenate or muscle
are suitable tissues for measuring the cellular and circulatory levels of
steroid hormones (Arukwe et al., 2008; Preus-Olsen et al., 2014). De-
spite the limited blood sample size, the interest in measuring steroid
hormone levels in muscle or tissue homogenates, rather than in blood
plasma is based on the concept that the pattern of steroids release par-
allels its pattern of secretion into the bloodstream (Sebire et al., 2007;
Sebire et al., 2009).

2.2. PFAS analysis

PFAS concentrations were analyzed at the Environmental Toxicology
Laboratory, Norwegian University of Life Sciences (NMBU), Oslo,
Norway. The analytical procedures were described in (Grønnestad et al.,
2016). The samples were analyzed for the following PFAS: 10
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perfluoroalkyl carboxylic acids (PFCA): perfluorobutanoic acid (PFBA),
perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA),
PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA),
perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoDA),
perfluorotridecanoic acid (PFTrDA) and perfluorotetradecanoic acid
(PFTeDA), three perfluoroalkyl sulfonic acids (PFSA): perfluorobutane
sulfonate (PFBS), perfluorohexane sulfonate (PFHxS) and PFOS, and five
perfluoroalkane sulfonamide derivatives (FASA): perfluoro-1-octane sul-
fonamide (FOSA), N-Methyl perfluoro-1-octane sulfonamide (N-
MeFOSA), N-Ethyl perfluoro-1-octane sulfonamide (N-EtFOSA), 2-(N-
Methyl perfluoro-1-octane sulfonamido) ethanol (N-MeFOSE) and 2-
(N-Ethyl perfluoro-1-octane sulfonamido) ethanol (N-EtFOSE). For re-
sults on PFAS levels, patterns and biomagnification potential of PFAS in
Bank voles from the two areas, see Grønnestad et al. (2019). Formore an-
alytical details, see supporting information (SI).

The limits of detection (LODs) were calculated as 3*SD of the proce-
dural blanks and the limits of quantification (LOQs) were calculated as
10 * LOD. Where no PFAS were detected in blank samples, LOQs were
determined as 10 * signal-to-noise ratio (S/N).

Contaminants with concentrations above LOD in more than 50% of
samples were included in the statistical analyses, and missing values
(i.e. < LOD) were assigned a random value between the LOD and zero.

2.3. Quality assurance

The Environmental Toxicology Laboratory is accredited by the Nor-
wegian Accreditation as a testing laboratory according to the require-
ments of the NS-EN ISO/IEC 17025 (TEST 137).

For each series of maximum 30 samples, 3 blank samples, one blind
and 4 recovery sampleswere run.Mean of procedural blanks, consisting
of internal standards and solvents, were subtracted from each series
separately, because of variation between series. The relative recovery
in Bank voles ranged from 84 to 128% for PFCA, 78–129% for PFSA and
86–115% for FASA.

2.4. Dopamine analysis

For the measurement of brain concentrations of DA and its metabo-
lites (DOPAC and HVA), samples were prepared using methods based
on Tareke et al. (2007) and Bertotto et al. (2018) with slight modifica-
tions. Samples were kept on ice during handling and extraction. The
samples were homogenized prior to extraction. Approximately 200
mg of homogenized brain tissue (right brain half) was placed into a 2
mL centrifuge tube, and internal standards (deuterated dopamine:
DA-d4 and deuterated HVA: HVA-d5) were added to yield 1 ng DA-d4
and 2 ng of HVA-d5 per 1 mg of tissue. The samples were extracted
twice using ice-cold 0.1% formic acid in water. The extraction was
then, performed using a pestle tissue homogenizer. The tubeswere cen-
trifuged for 5 min at 4000 rpm and 4 °C. The extracts were then sub-
jected to solid-phase extraction (SPE) with Strata X polymeric
reverse-phase cartridges (33 mm, 60 mg, 3 mL; Phenomenex), as de-
scribed in Tareke et al. (2007). The SPE cartridges were conditioned
with 1 mL of 0.1% formic acid in acetonitrile (CH3CN), followed by 1
mL of 0.1% formic acid in methanol, and 1 mL of 0.1% formic acid in
water. The extracts were then added to the column, and the analytes
were eluted with 3 mL of 0.1% formic acid in acetonitrile/methanol
(1:1, v/v). The resulting extractswere evaporated to drynesswith nitro-
gen gas and reconstituted in 0.4 mL of 0.1% formic acid in water. After
vortexing, the extracts were filtered and transferred to autosampler
vial inserts for liquid chromatography–tandem mass spectrometry
(LC–MS/ MS) analysis. See SI for more details.

Deuterated dopamine (DA-d4) was used as an internal standard for
dopamine while deuterated HVA (HVA-d5) was used as internal stan-
dard for HVA and DOPAC. Relative recoveries varied from 18 to 94%
for Da-d4 and 21–66% for HVA-d5 (SI, Table S1). The samples were
therefore adjusted for recoveries for each individual sample.
3

2.5. Steroid hormone analysis

Approximately 200 mg muscle tissue was added to 3× volume of
lysis buffer (50 mM Tris base, 0.5% sodium deoxychalate, 1 mM EDTA,
1% triton, 150mMNaCl, 0.1% SDS)with 10% phenylmethylsulfonyl fluo-
ride (PMSF, to inhibit AChE). This was incubated on ice for 30 min
followed by homogenization and centrifuged for 20 min at 15,000g
and 4 °C. The supernatant was used for steroid extraction.

Steroid hormones were extracted twice using dichloromethane
(DCM). DCMwas added to a volume of 4× sample volume. The extracts
were evaporated to dryness under nitrogen in a water bath at 30 °C and
reconstitutedwith 210 μL of enzyme immunoassay (EIA) buffer. The ex-
tracts ofmuscle tissuewere used for themeasurement of E2 and T, using
EIA kit fromCaymanChemicals (AnnArbor,MI, USA). All assay solutions
were prepared according to kit instructions with deionized water. Ab-
sorbance readings were performed on a spectrophotometer (Spectra
Max Plus 384, Molecular Devices) at 412 nm. Steroid hormone concen-
trationswere calculated by extrapolating sample absorbance on a linear
standard curve, using the analysis tool provided by the kit's
manufacturer.

2.6. Microsome extraction

Approximately 100 mg liver tissue was homogenized in 500 μL ho-
mogenization buffer (ice-cold 10 mM Tris-HCl buffer with 10% glycerol
at pH 7.4). The homogenatewas centrifuged for 20min at 12,000g and 4
°C. The supernatant was transferred to new tubes and 1 mL homogeni-
zation buffer was added, then centrifuged for 60min at 38,000 rpm in a
vacuum centrifuge at 4 °C. The pellet was then re-suspended in 50 μL
microsomal buffer (50 mM Tris-HCl with 0.1 mM EDTA and 20% glyc-
erol, pH 7.4). Total microsomal protein content was determined using
the Bradford method (Bradford, 1976), with bovine serum albumin
(BSA) as standard.

2.7. Steroid hydroxylation assay

For the steroid hydroxylation assay, 0.4 mg of microsomal protein
was incubated with 4 μM testosterone and assay buffer (50 mM Tris–
HCl, 10 mM MgCl2, pH 7.4) to a final volume of 240 μL. Duplicates
weremade for each sample in parallel analysiswith andwithout the ad-
dition of NADPH (300 μM). These were vortexed and incubated for 60
min at 30 °C. The reactions were stopped by adding 250 μL acetonitrile
(ACN) and centrifuged for 10min at 10,000g. The ACN extracts were fil-
tered and transferred to glass vials and run on an LC-2030 (Shimadzu,
Kyoto, Japan) with a UV detector. See more detailed information in SI.

Steroid hydroxylase (OHase) activitywasmeasured as the change in
testosterone concentration, after addition of NADPH, compared towhen
no NADPH was added.

2.8. RNA extraction and quantitative (real-time) polymerase chain reaction
(qPCR)

Total brain RNA was isolated from frozen tissues using Direct-zol™
RNA extraction kit. Thereafter, RNAquantity and qualityweremeasured
usingNanoDropND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA). The NanoDrop showed that all samples had high
quantity of RNA and good purity (260/280 ratio ranged between 1.97
and 2.0 and 260/230 ratio ranged between 2.0 and 2.1).

Transcripts expression analysis related to the dopaminergic and
HPG pathways were performed using qPCR. Briefly, cDNAwas synthe-
sized from 1 μg total RNA according to instructions provided with the
iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). PCR reaction
mix (20 μL) containing 5 μL of 1:5 diluted cDNA, 0.5 μMeach of the for-
ward and reverse primer pair sequences (SI Table S2) were amplified
using Mx3000P real-time PCR machine (Stratagene, La Jolla, CA). See
Khan et al. (2019) for detailed protocol for qPCR analysis of gene
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expression patterns. Transcripts tested include - dopamine receptor 1
and 2 (dr1 and dr2), monoamine oxidase (mao), vesicular monoamine
transporter (vmat), dopamine active transporter (dat), catechol-O-
methyltransferase (comt), tyrosine hydroxylase (th), aromatase
(cyp19a) and gonadotropin releasing hormone (gnrh). However, no
positive amplifications were observed for vmat, cyp19a and gnrh.

2.9. Statistical analysis

The programR (version 3.6.3, the R project for statistical computing)
was used for the statistical analysis. Normal distributionwas testedwith
Shapiro Wilk's test, and homogeneity of variance was tested with
Levene's test. Data were log-transformed prior to data analyses to re-
duce deviation from normality and homogeneity of variance. Two sam-
ple Student's t-tests were used to test for significant differences
between the skiing and reference areas. The significance level was set
at 0.05, and all tests were two tailed.

Multivariate analyses (principal component analyses; PCA) were
carried out to investigate for possible relationships between the re-
sponse variables (DA-related variables or steroid-related variables)
and the explanatory variables (individual PFAS) in the skiing area
(Granåsen). Explanatory variables were entered as passive variables in
dr2

Fig. 1. Boxplots of variables related to the dopamine system in male and female Bank voles fr
(females: n = 6, males: n = 16). Variables are dopamine (DA), 3,4-dihydroxyphenylacetic
receptor 1 (dr1), dopamine receptor 2 (dr2) and monoamine oxidase (moa). Asterisks indicate
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the PCA plots. Passive variables do not affect the ordination but are
projected onto the unconstrained axes, allowing for visualization of cor-
relations among response and explanatory variables. Variables were
standardized to unit variance due to different units. Based on the visual-
ization of possible relationships from the PCAs, general linear models
(GLM) were used to quantify the amount of variance explained (R2)
by the respective single explanatory variables. Since there were no ef-
fects of gender on the PFAS concentrations, or response variables in
the skiing area (t-test, p > 0.05), the dataset was not divided by sex in
the multivariate analysis, to increase the sample size (n).
3. Results and discussion

3.1. Dopamine and dopamine metabolite levels

DA concentrations were significantly higher in brain samples in
Bank voles from the skiing area with higher PFAS body burden
(Granåsen), compared to the reference area (Jonsvatnet) (t-test, M: p
= 0.05, F: p = 0.03, Fig. 1). The DA metabolite concentrations (DOPAC
and HVA), were lower in the skiing area, compared to the reference
area. The differences were significant in both sexes for DOPAC (t-test,
om Granåsen skiing area (females: n = 5, males: n = 16) and Jonsvatnet reference area
acid (DOPAC), homovanillic acid (HVA), DOPAC/DA ratio, HVA/DOPAC ratio, dopamine
the significance level: *p < 0.05, **p < 0.01.
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M: p= 0.004, F: p= 0.04), but not for HVA (t-test, M: p=0.09, F: p=
0.1).

Multivariate analysis (PCA, Fig. 2) was performed to investigate the
possible relationship between the different DA variables and PFAS bur-
den in Bank voles from the skiing area. Most of the PFAS showed posi-
tive associations with the DA concentrations, and GLM showed that
there was a significant positive relationship between all the long-
chain PFAS and DA (GLM, p < 0.05). This is in accordance with a previ-
ous study in adult male rats exposed to PFOS (Salgado et al., 2015).
However, in developing Northern leopard frogs, there were lower DA
levels in frogs exposed to PFOS and PFOA (Foguth et al., 2019).

It should be noted that we measured PFAS concentrations in Bank
vole livers, and not the brain. Previous studies have shown that PFAS
concentrations are usually higher in the liver compared to brain tissues
of mammals, and that the accumulation of PFAS is tissue specific
(Greaves et al., 2012; Greaves et al., 2013). However, in Polar bears
PFAS accumulation in the brain was mostly comprised of long-chained
PFAS (Greaves et al., 2013) and this finding is in accordance with the
present study showing that the long chained PFAS are those associated
with changes in dopaminergic endpoints. Long-chained PFAS were the
dominant PFAS found in ski waxes, earth worms and soil samples
from the skiing area where the Bank voles were sampled (Grønnestad
et al., 2019).

Once released in the synaptic cleft, DA can bind to one of its 2 recep-
tor families: dopamine receptor 1-like (Dr1) or dopamine receptor 2-
like (Dr2) (Beaulieu and Gainetdinov, 2011). Dr2 plays an important
role in regulating DA neuronal activity through synthesis, release and
uptake. In addition, activation of Dr2 decreases the excitability of DA
neurons and release of DA. Dr1, on the other hand, activates cyclic
AMP-dependent protein kinase, stimulating the DA neuron (Jaber
et al., 1996). Because of the higher DA concentrations in the Bank vole
brains, lower concentrations of DA receptors were expected, in order
to counteract the high DA levels and to maintain homeostatic balance.
In the current study there were significantly higher dr2 transcript levels
in males from the skiing area, compared to the reference area (t-test, p
= 0.005, Fig. 1). However, there was no significant difference in dr2 in
females, or for dr1 in either sex (t-test, p> 0.05). The multivariate anal-
ysis showed a negative relationship between most PFAS and dr1
Fig. 2. Biplot of PFAS concentrations and dopamine variables (DA, DOPAC, HVA, DOPAC/
DA, HVA/DOPAC, dr1, dr2, moa) in Bank voles from Granåsen skiing area (n = 21).
Explanatory variables are projected as passive arrows (blue). The % of the total variance
explained by each principal component (PCs) is given on each axis. Concentrations of all
variables are log transformed and standardized to unit variance. Direction and length of
arrows indicate respective strength and increasing variance of loading. Asterisks indicate
response variables with significant associations to one or more PFAS.
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expression in Bank voles from the skiing area (GLM, ƩPFCA: p < 0.001,
R2 = 0.44, ƩPFSA: p = 0.01, R2 = 0.24, Fig. 2), while no association
was observed between dr2 and PFAS (GLM, p > 0.5, Fig. 2). This indi-
cates that the higher dr2 transcript level observed inmales from the ski-
ing area, are most likely not caused by the PFAS. The negative
relationship between PFAS and dr1, without a corresponding difference
between the two study areas, could be explained by other factors not
evaluated in our field study, such as other pollutants, human distur-
bance, predators etc. These un-evaluated factors may be affecting the
transcript expression patterns at the reference area. Our results are in
accordance with previous findings showing that dr1 expression was re-
duced in brain regions of rats exposed to PFOS (Salgado et al., 2016).

A previous study in mice showed that PFAS could modulate the DA
system by altering different variables such as synthesis, reuptake, metab-
olism of DA, transcript and/or protein expression of different receptors
(Hallgren and Viberg, 2016). DA is derived from the amino acid tyrosine,
which is converted to L-DOPA by the enzyme tyrosine hydroxylase (Th)
and further metabolized to DA. Th is considered the rate-limiting step of
DA synthesis (Daubner et al., 2011). The plasma membrane DA trans-
porter (Dat) is essential for normal dopamine neurotransmission. Dat ter-
minates the actions of dopamine by rapidly removing DA from the
synapse. Inhibition of DA reuptake via Dat thus increases the extracellular
and synaptic concentrations and DA lifespan, leading to prolonged stimu-
lation of DA receptors (Shimada et al., 1991). In the current study, th and
dat transcripts did not show consistent positive amplification in the Bank
vole brain samples. Overall, only three of 21 samples from Granåsen and
two of 22 samples from the reference area showed th positive amplifica-
tion, while only four samples from Granåsen and two samples from the
reference area showed dat positive amplification (see results in SI
Table S3). Other studies have reported that PFOS exposure can disrupt
th expression in mice, with respective increases and decreases of the ne-
onate and adult mice (Hallgren and Viberg, 2016). However, the authors
did not observe any effects on dat expression (ibid).

The increased concentrations of DA reported in Bank voles at the
Granåsen ski area could lead to alterations in thermoregulation pro-
cesses (Hasegawa et al., 2000), defense (Sweidan et al., 1991) and ag-
gressive behavior (Ricci et al., 2009), as well as in reproductive
pathways (Henderson et al., 2008). DA also plays significant roles in
the modulation of fear and anxiety (de la Mora et al., 2010). Conse-
quently, PFAS exposure could alter neurological functions related to
these emotional states. In addition, DA is involved in cognitive function,
behavioral activation against appetite or aversive events and attention,
as well as flexibility responses to stimuli (Seamans and Robbins,
2010). For this reason, the possible PFAS-related changes on the dr1
and associated signaling pathwaysmight potentially produce neurolog-
ical disfunctions that may affect individual fitness. Additional studies
are needed to confirm these potential linkages.

3.2. Dopamine turnover

The ratios between DA and its metabolites are generally used as a
measure of DA turnover (Salgado et al., 2015). TheDOPAC/DA ratio is in-
dicative of intra-neuronal metabolism, while HVA/DA provides infor-
mation on inter-neuronal metabolism of DA in the brain. The DOPAC/
DA ratios were significantly lower in Bank voles from the skiing area,
compared to the reference area (t-test, M: p = 0.003, F: p = 0.05,
Fig. 1). These results are in accordance with previous rodent studies,
showing reduced ratios in PFOS exposed rats (Salgado et al., 2015).
Thus, PFAS exposure could possibly lead to lower DA turnover. This pos-
sibility was supported by the multivariate analysis, showing that there
was a negative relationship between DOPAC/DA and several of the
long-chained PFAS (Fig. 2), and where GLM confirmed a significant or
borderline significant negative relationship (GLM, PFDoDA: p = 0.05,
R2 = 0.15, PFTrDA: p = 0.06, R2 = 0.13). The lower brain metabolism
of DA could be caused by a reduction in Mao activity, and thus a
build-up of DA in the presynaptic neuron. Mao is responsible for the
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metabolism of DA and other amine-containing neurotransmitters
(Rutledge and Jonason, 1967).We found a negative association between
several PFAS andmaomRNA expression (GLM, PFTrDA: p= 0.04, R2 =
0.17, PFOS: p=0.02, R2 = 0.20, Fig. 2). There are not many studies that
have reported effects of PFAS onMao activity. However, a study on Polar
bears fromGreenland reported a positive relationship betweenMao ac-
tivity and PFAS across brain regions (Pedersen et al., 2015). While this
findingmay contradict our data, it should be noted, that the ƩPFAS con-
centrations in the Polar bears were almost 100-fold higher than the
measured concentration in the Bank voles from the skiing area. Conse-
quently, effects may not only be species-specific, but also dose-
dependent. Nevertheless, and regardless of themeasured concentration
differences, it is possible that Bank voles and Polar bears display possible
differences in their sensitivity and mechanisms of action of PFAS on
Mao. This uncertainty and possible species-specific differences should
be further investigated in rodents and other mammals.

The HVA/DOPAC ratio is a measure of inter-neuronal metabolism in
the DA-system. We observed that HVA/DOPAC ratios were lower in the
skiing area, compared to the reference area, albeit not significant (t-test,
M: p = 0.6, F: p = 0.3, Fig. 1), suggesting that PFAS do not affect the
inter-neuronal metabolism of DA from DOPAC to HVA, through the en-
zymatic actions of Comt.We did notfind any correlation between any of
the PFAS concentrations in the Bank voles and HVA/DOPAC ratio
(Fig. 2). The only exception was PFHxS – although, this relationship
was not significant (GLM, p = 0.08). These results are in accordance
with Salgado et al. (2016), that reported the absence of effects on the
inter-neuronal metabolism of DA in PFOS-treated rats.

3.3. Steroid hormone homeostasis

Estrogens and androgens are involved in growth and function of re-
productive organs, development of secondary sexual characteristics,
and behavioral patterns in vertebrate species. Thus, the balance in vari-
ous steroid metabolic pathways has been shown to be associated with
Fig. 3. Boxplots of variables related to the steroid hormone system inmale and female Bank vole
(females: n = 6, males: n = 16).
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reproductive health. Consequently, measurement of steroid hormones
may help determining the physiological health status of organisms
(Gaikwad, 2013). PFAS have been shown to affect several physiological
systems, including the endocrine system (López-Doval et al., 2014;
Salgado et al., 2015). In the present study, we detected a trend towards
lower T concentrations inmuscle tissue frommale Bank voles in the ski-
ing area, compared to the reference area (t-test p = 0.06, Fig. 3), while
there were no differences in females (t-test, p = 0.5). Specific PFAS as-
sociations were observed with a weak negative relationship between T
concentrations in muscle tissue and several PFCA (GLM, ƩPFCA = 0.04,
R2 = 0.17, Fig. 4). Negative associations between PFAS and T has also
been reported in other studies where they found a reduction in T con-
centrations after PFAS exposure in rats (López-Doval et al., 2014; Zhao
et al., 2014). Although some studies have shown that adultmale rats ex-
posed to PFOS showed decreased serum E2 levels (Salgado et al., 2015),
there was no significant difference in E2 concentrations between the
two study areas in either sex in the present study (t-test, M: p = 0.2,
F: p=0.6), nor significant correlation between the PFAS and E2 concen-
trations (GLM, p > 0.05). Our results indicate that PFAS could be affect-
ing T synthesis, clearance or cellular distribution (such as to themuscle).

The synthesis of T may be regulated by DA through the HPG-axis
(Henderson et al., 2008; Bertotto et al., 2018). DA can affect the HPG-
axis by decreasing the release of GnRH from the hypothalamus, leading
to reduced secretion of FSH and LH from the pituitary, and consequently
to decreases in the production and release of T and E2 from the gonads
(Henderson et al., 2008; Zohar et al., 2010). Thus, it is possible that PFAS
altered the release of T in the Bank voles by increasing DA levels in the
brain. However, we did not observe any associations between DA and
T or E2 (GLM, T: p = 0.9, E2: p = 0.8) in the Bank voles, suggesting
that the increase in DA levels in voles from Granåsen may not affect
the synthesis and release of T and E2. Other neuromodulators of GnRH
synthesis, such as noradrenaline, glutamate and γ-aminobutyric acid
(Skorupskaite et al., 2014),which are potentially susceptible to PFAS ex-
posure, but not evaluated in the present study, might alternatively be
s fromGranåsen skiing area (females: n=5,males: n=16) and Jonsvatnet reference area



Fig. 4. Biplot of PFAS concentrations and steroid hormone variables (estrogen: E2,
testosterone: T and liver steroid hydroxylase activity: OHase) in Bank voles from
Granåsen skiing area (n = 21). Explanatory variables are projected as passive arrows
(blue). The % of the total variance explained by each principal component (PCs) is given
on each axis. Concentrations of all variables are log transformed and standardized to
unit variance. Direction and length of arrows indicate respective strength and increasing
variance of loading. Asterisks indicate response variables with significant associations to
one or more PFAS.
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involved in steroid hormone homeostasis through the GnRH signaling
pathways (León et al., 2014).

The fact that we found a significant negative association between
PFCAs and T (Fig. 4), but not between T and DA, suggests that PFAS
could be affecting the synthesis and release of T through other mecha-
nisms. Previously, it has been reported that exposure of male rats to
PFOS disrupted the reproductive axis activity through a reduction of T
production (Zhao et al., 2014). A study on healthy men also reported a
negative association between the concentration of PFOS and T
(Joensen et al., 2013). Furthermore, a study by López-Doval et al.
(2014) found that oral exposure of male rats to PFOS produced a reduc-
tion in gnrh mRNA expression and in LH and T secretion. The authors
concluded that PFOS exposure disrupted the male reproductive axis at
different levels, including the hypothalamus, by decreasing gnrh expres-
sion and bymodifyingGnRH release, in the pituitary gland, by inhibiting
LH secretion and stimulating FSH release, and, in the testis, by inhibiting
T release. A reduction in T concentrations in male Bank voles could
eventually affect the reproduction, and thus individual fitness of the
Bank voles.

Kang et al. (2016) reported that in vitro exposure to PFOA and PFOS
induced and reduced E2 and T levels, respectively, through hepatic CYP-
enzyme mediated pathways. They suggested that PFOA and PFOS in-
duced endocrine disruption by affecting the process of steroidogenesis.
In the present study, we did not observe significant differences in tes-
tosterone OHase activity in Bank vole livers from the skiing area, com-
pared to the reference area (t-test, M: p = 0.9, F: p = 0.09). We did
not find any significant association between liver PFAS concentrations
and OHase activity (Fig. 4). In addition, no correlation between muscle
steroid hormone levels and OHase activity was observed. Steroid hor-
mones serve as endogenous substrates for cytochrome P450 enzymes
belonging to the CYP3A subfamily in vertebrate liver microsomes
where the major site of hydroxylation is at the 6β-, 16α- and 17α posi-
tions and the capacity to hydroxylate steroids is often sex specific
(Waxman et al., 1988; Zimniak and Waxman, 1993). In this study, the
particular position of testosterone hydroxylation was not determined
and as a consequence, our analytical protocol might have omitted the
direct effects of PFASs on steroid hydroxylation. Further, it is also possi-
ble that PFASs did not directly affect hepatic metabolism of steroids, but
rather the synthesis and release of T from the gonads.
7

4. Conclusion

In the current study, we have addressed the potential effects of PFAS
exposure from ski products on the DA and steroid hormone homeosta-
sis in Bank voles inhabiting the environments around a skiing area. We
have shown that exposure within the concentration range documented
at aNordic skiing area contaminated by PFAS from ski products showed:
a) increased total brain DA level and reduced DA turnover, b) a negative
association with dr1 and mao expression, and c) a negative association
with cellular T levels in wild male Bank voles. Thus, DA and cellular ste-
roid hormone homeostasis could potentially be altered by environmen-
tal PFAS exposure, which could lead to potential consequences on
reproduction, general health and fitness of Bank voles from the
skiing area.
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