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10 Abstract

11 Expectations of satiation and satiety have been increasingly investigated because of 

12 the interest in how they, along with liking, can modulate portion-size selection. 

13 Consumer characteristics can also be important when consumers select their portion 

14 size. However, the contribution and interaction of consumers and product aspects to 

15 portion size selection has not been unveiled. This study aims to better understanding 

16 these complex relations by simultaneously assessing the relative influence of 

17 consumer characteristics and product related properties on portion size selection 

18 utilizing PLS-Path Modelling (PLS-PM) approach. 

19 In this study, consumers (n=101) answered questions regarding attitudes to health and 

20 hedonic characteristics of foods, and completed hunger and fullness questions. In an 

21 evaluation step, they tasted eight samples of yogurt with different textures and rated 

22 liking, expected satiation, expected satiety and portion size. The consumers were also 

23 classified on their mouth behaviour by using the JBMB™ tool. 

24 Results showed that liking, satiation, satiety and portion size depended firstly on the 

25 thickness, and then on the particle size of samples. PLS-PM was used to generate a 

26 model, indicating that liking was a direct predictor of portion size, with a stronger effect 

27 than satiation or satiety. The relationship between liking and satiety was observed both 

28 in direct direction (liking-satiety) and also indirect direction throughout satiation (liking-

29 satiation-satiety). The former was negative effect and the latter was positive effect 

30 depending on the criteria which consumers used. 

31 These findings implied that liking is a main factor in the prediction of portion size 

32 however the relations are complex.
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36 1. Introduction

37 Satiation, satiety and consumers’ expectations

38 Until now, many studies of meal size have indicated that when deciding on a 

39 particular portion size, our strategy may be guided by a concern to ensure that a portion 

40 of food will deliver adequate satiety (Brunstrom & Shakeshaft, 2009). Satiety 

41 comprises two processes: satiation (intra-meal satiety) and satiety (post-ingestive 

42 satiety or inter-meal satiety). The former is defined as the process that leads to the 

43 termination of eating; therefore, controls meal size. The latter is the process that leads 

44 to inhibition of further eating, decline in hunger, increase in fullness after a meal is 

45 finished (Blundell et al., 2010). 

46 Satiation is measured through the measurement of ad libitum food consumption of 

47 particular experimental foods (weight in grams or energy in kcal or kJ) under 

48 standardized conditions. Satiety is usually measured using a preload-test meal 

49 paradigm  (Blundell et al., 2010). Expectations of satiation and satiety without 

50 consuming a whole portion, but relying on a prospective portion size (de Graaf, Stafleu, 

51 Staal, & Wijne, 1992; Fiszman & Tarrega, 2017), have been used to measure satiation 

52 and satiety in many studies.

53 Brunstrom and colleagues have showed that people have very precise expectations 

54 about satiety and satiation that foods are likely to confer (Brunstrom & Rogers, 2009; 

55 Brunstrom & Shakeshaft, 2009; Brunstrom, Shakeshaft, & Scott-Samuel, 2008). In 

56 general, expected satiety can be quantified by asking the participant to select the 

57 amount that would be needed to stave off their hunger for a specific period of time, 

58 whereas expected satiation can be quantified by selecting the amount that would be 

59 required to feel full. Ideal portion-size can be assessed by asking the participant to 
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60 select the amount that they would typically consume or the amount that they would like 

61 to consume at that moment (Wilkinson et al., 2012).

62 Satiety-related perceptions and portion size selection

63 Two foods of equal nutrient content may have different effects on appetite. This is 

64 because aspects of food consumption, other than the metabolic effects of nutrients in 

65 the gastrointestinal tract, contribute to processes involved in appetite control 

66 (Chambers, 2016). The ‘Satiety Cascade’ (Blundell et al., 2010) describes that both 

67 expected satiation and satiety of foods rely on sensory attributes of foods. Among 

68 sensory dimensions, texture imparts expectations of satiation and satiety clearer than 

69 flavour does (Chambers, 2016; Hogenkamp, Stafleu, Mars, Brunstrom, & de Graaf, 

70 2011). Food texture can influence at several levels. First, texture plays a critical role in 

71 satiation or satiety through its effect on oro-sensory exposure. Due to their fluid nature, 

72 liquid foods require less oral processing time than semi-solid and solid foods, leading 

73 to reduction in oro-sensory exposure, which is important for the development of satiety 

74 related perceptions (McCrickerd, Chambers, Brunstrom, & Yeomans, 2012; Tang, 

75 Larsen, Ferguson, & James, 2017). More specifically, longer mastication duration and 

76 higher intensity of sensory signals are also linked to higher satiation (Blundell et al., 

77 2010; Bolhuis, Lakemond, de Wijk, Luning, & Graaf, 2011). Second, from a cognitive 

78 perspective, people may think solid foods are more satiating than liquid foods, i.e. solid 

79 foods will contain more energy than liquid foods, without necessarily reflecting their 

80 actual calories (de Graaf, 2012).

81 Palatability and portion size selection

82 In addition to the expectations of satiation and satiety, palatability of food is seen as 

83 an important determinant of portion size selection. The role of palatability in prediction 

84 of portion size, however, has been debated over different studies. Some studies 
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85 indicated that reducing the palatability of our diet should result in reduced food 

86 consumption (Yeomans, Blundell, & Leshem, 2004). Likewise, incremental increases 

87 in palatability lead to short-term overconsumption; that is, we consume more of foods 

88 that we like (Cooke & Wardle, 2005; Yeomans, 2007). Nevertheless, other studies 

89 found that palatability was not associated with the selection of portions and then 

90 rejected the hypothesis of these palatable foods tend to be selected in relatively larger 

91 portions (Brunstrom & Rogers, 2009). Recently, the question whether “quality can 

92 replace quantity” has been raised in some studies. It has been found that palatability 

93 is unable by itself to predict people’s food behavior. Instead food reward, an immediate 

94 sensation of wanting and liking a food when it is eaten and as a longer lasting feeling 

95 of well-being after a meal, could be used to predict the behavior. Under the assumption 

96 that well-tasting/high sensory quality foods provide more reward per energy unit than 

97 bland foods, the hypothesis that ‘quality can replace quantity’ has been supported 

98 (Møller, 2015a, 2015b).

99 It is important to note that expected satiation, satiety and hedonic quality influence 

100 each other and together they influence portion size. Nevertheless, the ways in how 

101 these expectations are related are still unclear; while some studies showed that if 

102 people eat a food they greatly enjoy, they will experience more pleasure, satiation and 

103 satiety (Bobroff & Kissileff, 1986; Mattes & Vickers, 2018; Rogers & Schutz, 1992), 

104 others observed that increased liking decreased feelings of satiety or satiation (Hill, 

105 Magson, & Blundell, 1984; Holt, Delargy, Lawton, & Blundell, 1999).

106 Individual differences in consumer expectations

107 Individual differences should be considered when evaluating the relations between 

108 these expectations. Individuals use different mechanisms for the oral breakdown of 

109 food so that at any point, different groups of individuals would experience the samples 
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110 differently (Brown & Braxton, 2000). The differences might have different impacts on 

111 sensory perception, which in turn, would drive consumer expectations (i.e. liking, 

112 expected satiation and satiety) (Jeltema, Beckley, & Vahalik, 2015, 2016). Individuals 

113 have subjective experiences of satiety which are influenced more by what the person 

114 saw and remembered, and less by what they actually ate (Brunstrom, 2014; 

115 McCrickerd & Forde, 2016; Wilkinson & Brunstrom, 2009). These experiences should 

116 be considered when determining the relations between consumer expectations. 

117 The objective of this paper is to investigate and model from a holistic perspective 

118 different aspects of consumer expectations (liking, satiation, satiety) using a PLS path 

119 modelling approach. Our study differs from preceding studies in that we consider all 

120 consumer expectations simultaneously in the prediction model. In addition, consumer 

121 attitudes towards health and taste, experiences relevant for satiety and individual 

122 differences were measured. Main attention will, however, here be given to the product 

123 related measurements.

124 2. Materials and methods

125 2.1. Samples

126 Eight yoghurt samples were prepared from a design of experiment (DOE) based on 

127 the same ingredients, only modifying the product texture by using different processing 

128 strategies, so as the samples would have the same calories and composition and these 

129 parameters would not influence satiety or satiation. The parameters of the DOE were: 

130 viscosity (thin/thick), particle size (flake/flour) and flavour intensity (low/optimal); see 

131 (Nguyen, Næs, & Varela, 2018) for details. Table 1 shows the samples with different 

132 levels of viscosity, particle size and flavour intensity.

133 2.2. Consumer test
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134 One hundred and one consumers were recruited for the test in the southeast area 

135 of Oslo from Nofima’s consumer database (73 females and 28 males, aged ranging 

136 between 18 and 77). Participants were regular yoghurt consumers (at least once a 

137 week). A recruitment questionnaire was used to collect general information (age, 

138 gender, BMI, consumption and usage) and to select consumers based on consumption 

139 frequency. Additionally, consumer attitudes were collected through the health and taste 

140 questionnaire proposed by Roininen et al. (1999).

141 The formal assessment was performed in individual booths and had two parts. The 

142 first part was about consumers characteristics: they answered items about hunger and 

143 fullness question (Karalus & Vickers, 2016), and attitudes toward healthfulness of food 

144 and toward taste (Roininen, Lahteenmaki, & Tuorila, 1999). The second part was about 

145 product characteristics, consumers were asked to taste each sample and rate liking, 

146 expected satiation, expected satiety, ideal portion-size, and to describe the samples 

147 using Check All That Apply (CATA) questions (Adams, Williams, Lancaster, & Foley, 

148 2007). During the CATA task, they were presented with the predefined list of attributes 

149 and asked to indicate which words or phrases appropriately describe their experience 

150 with the product being evaluated. The CATA question consisted of 22 sensory 

151 attributes (Vanilla, Sour, Oat flavour, Sweet, Cloying, Bitter; Fresh, Unfresh, Thick, 

152 Gritty, Sandy, Dry, Creamy, Mouth coating, Chewy, Sticky, Dense, Smooth, 

153 Heterogeneous, Homogeneous, Liquid, Pieces) and 13 usage and attitude terms (Easy 

154 to swallow, Difficult to swallow, High calorie, Low calorie, Satiating, Not satiating, 

155 Appealing, Not appealing, Suitable for breakfast, Suitable for snack, Suitable for 

156 supper, Fibrous, Healthy). The order of terms was randomized within the two groups 

157 (sensory and usage), between products, and across assessors.
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158 Regarding the scales used for the consumer test, the consumers rated liking on a 

159 Labelled Affective Magnitude (LAM) scale (Schutz & Cardello, 2001), expected 

160 satiation on a Satiety Labeled Intensity Magnitude (SLIM) scale (Cardello, Schutz, 

161 Lesher, & Merrill, 2005) and expected satiety on a 6-point scale from 1 = “hungry again 

162 at once” to 6 = “full for five hours or longer”. For ideal portion-size, they chose the 

163 extent to which they would consume as compared to the normal amount of commercial 

164 yoghurt product. The portion-size scale, therefore, was one-third to 3-times compared 

165 to normal amount. These variables from the first part will be called “consumer related 

166 variables” throughout the paper, and those from second part as “product related 

167 variables”.

168 Consumers were classified based on their mouth behaviour (MB) using the JBMB™ 

169 typing tool, which sorts people in four groups (Cruncher, Chewer, Sucker and 

170 Smoosher). The tool had consumers classify themselves, by picking the group of 

171 pictures and that was “most like them”. The descriptions, for example, ‘‘I like foods that 

172 I can crunch” were followed by foods with textures that were easy to ‘‘crunch”. It is 

173 similar to three remaining groups of Chewer, Sucker and Smoosher. The classification 

174 on mouth actions of consumers is based on the fact that individuals have a preferred 

175 way to manipulate food in their mouths: some consumers (Crunchers and Chewers) 

176 like to use their teeth to break down foods; while Suckers and Smooshers, prefer to 

177 manipulate food between the tongue and roof of the mouth. The difference within each 

178 of the two groups lies in the hardness of preferred foods (Jeltema et al., 2015, 2016). 

179 The classification of consumers in MB groups was used to investigate the effect of 

180 different mouth behaviours on consumer expectations and prediction models in the 

181 rest of this paper.
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182 All the sensory evaluations were conducted in standardized individual booths 

183 according to (ISO 8589:2007). Samples were served in plastic containers coded with 

184 3-digit random numbers and in a sequential monadic manner following a balanced 

185 presentation order. Thirty grams of each yoghurt was served to each assessor for all 

186 the evaluations. 

187 2.3. Data analysis

188 2.3.1. Analysis of variance (ANOVA) on consumer expectations (liking, satiation, 

189 satiety, portion)

190 Because each consumer would be assigned to only one MB group, consumer and 

191 MB group were not crossed. Rather, consumer was nested within MB group. The 

192 design was unbalanced as MB groups had different numbers of consumers. The 

193 unbalanced nested ANOVA was carried out on the ratings, considering sample (fixed 

194 effect), MB group (fixed effect), consumer nested within MB group (random effect) and 

195 interactions of sample and MB group (fixed effect) as sources of variation.

196 2.3.2. PLS path modelling (PLS-PM)

197 Considering the framework of consumer expectations where liking, satiation and 

198 satiety influence each other and together they influence portion size, we will in this 

199 paper focus on a path modelling (PM) approach. In particular we chose to use PLS 

200 path modelling due to its many good properties (see for instance (Tenenhaus, Vinzi, 

201 Chatelin, & Lauro, 2005)) 

202 Providing details of the PLS-PM algorithm is beyond the scope of this paper, but 

203 they are available from (Tenenhaus et al., 2005; Vinzi, Chin, Henseler, & Wang, 2010).
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204 As indicated in the introduction, main emphasis in the PLS-PM will be given to the 

205 product variables, the main reasons being that the consumer variables generally had 

206 a weak relation to product related measurements and that the relations were unstable 

207 and therefore difficult to interpret when using a model reduction (see below). A brief 

208 summary of the results will be given in the results section. 

209 Because these blocks were rated on different scales, standardization between 

210 blocks was applied by dividing each block according to the square root of the sum of 

211 squares (Frobenius norm).

212 The procedure for handling data and obtaining model was illustrated in Fig. 1. 

213 Organization of data

214 Since both consumer attitudes and demographics, as measured by a questionnaire, 

215 as well as product related aspects such as liking and satiety were measured, a proper 

216 organization of the data blocks was needed before submitting the data to analysis. This 

217 challenge was discussed in depth by (Menichelli, Hersleth, Almøy, & Næs, 2014). In 

218 that paper, it was proposed to let the consumers represent the rows and the different 

219 questionnaire questions and liking of the different products represent the columns, i.e. 

220 each product has a separate column of liking values. In cases with very many products 

221 it was proposed to represent the liking values for all products by a few principal 

222 components only. We will here use this strategy for all product related blocks, i.e. liking, 

223 satiation, satiety and portion. Fig. 2 displays how the data set was organized for 

224 analyses.

225 Solving the one-dimensionality issue
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226 It is generally most appropriate to model sensory variables and also possibly 

227 habits/attitudes variables as reflective blocks (Bollen & Lennox, 1991; Diamantopoulos 

228 & Siguaw, 2006; Menichelli et al., 2014). As a reflective block, the manifest variables 

229 (MVs) in the block are assumed to measure the same unique underlying concept 

230 (Vinzi, Trinchera, & Amato, 2010). The full PLS-PM model requires in this case that all 

231 blocks are uni-dimensional. Checking for uni-dimensionality with Cronbach’s alpha 

232 requires the MVs to be positively correlated (Tenenhaus et al., 2005). For these 

233 reasons, some MVs should be replaced by its opposite form. In the mental hunger 

234 block, for example, the item “Rate your current feeling of fullness” indicated the 

235 negative correlation with its own block. The solution to fix this problem was to change 

236 the sign of this item so that instead of “feeling of fullness” it reflected “feeling of hunger”. 

237 Similarly, for each block, the correlations of MVs and responding block were 

238 considered, then the signs of MVs were changed if necessary before calculating 

239 Cronbach’s alpha.

240 Data comprised different blocks; consumer characteristics: hunger and fullness, 

241 attitudes toward healthfulness, attitudes toward taste; and product characteristics: 

242 liking, expected satiation, expected satiety and portion-size selection. These blocks 

243 should be divided into separate blocks with the goal of controlling the uni-

244 dimensionality issues (as required by PLS-PM).

245 For the hunger and fullness question, each factor (i.e. mental Hunger, mental 

246 Fullness, physical Hunger, physical Fullness) measured only one aspect of hunger and 

247 fullness feelings (Karalus & Vickers, 2016). Similarly, each factor in attitudes toward 

248 healthfulness of foods, attitudes toward taste measured one aspect of consumer 

249 attitudes (Roininen et al., 1999).
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250 PCA (Mardia, Kent, & Bibby, 1979) was applied to each product related block (i.e.  

251 liking, satiation, satiety and portion) using double centered data, the scores and 

252 loadings were computed. The rows now represent the consumers as described above. 

253 For standard PCA of consumer data (i.e. in preference mapping studies), mean 

254 centering for each consumer will usually be done, meaning that the additive differences 

255 between consumers (i.e. different use of the scale) have been eliminated (T. Næs, P. 

256 Brockhoff, & O. Tomic, 2010). Since each column is mean centered the standard way 

257 in PLS-PM, this leads to double centered data (Menichelli et al., 2014), i.e. data is 

258 mean centered across products and across consumers for each combination of sample 

259 i and consumer j. By doing so, both the difference in level between the consumers and 

260 the average differences between the products were eliminated. This means that the 

261 PCA will focus on how the different consumer relate to the average consumer for each 

262 product (Endrizzi, Gasperi, Rødbotten, & Næs, 2014; Endrizzi, Menichelli, Johansen, 

263 Olsen, & Næs, 2011). This approach is supported by the fact that for the PCA done 

264 without double centering, the first component represented only different use of the 

265 scale with all consumers lying on one side of the first component.

266 The PCA revealed that all product blocks were multi-dimensional. An approach 

267 based on interpreting the principal components scores and using them as separate 

268 blocks was then applied (see also Menichelli et al., 2014). Two components described 

269 most of the interesting information for each data block. By doing so, instead of the eight 

270 values responding to the eight samples for each consumer rating (i.e. liking, satiation, 

271 satiety, portion size), the scores from two PCA components were used as input (in 

272 separate blocks) to the prediction model for each block.

273 In order to examine the meanings of PCA dimensions, sensory attributes from CATA 

274 questionnaire were treated as supplementary observations. This was achieved by 
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275 projecting the frequencies of sensory attributes on the PCA space; that is, the factor 

276 scores of the supplementary observations were not used to compute the principal 

277 components (Abdi & Williams, 2010; T. Næs, P. B. Brockhoff, & O. Tomic, 2010).

278 The original blocks and separate blocks used in PLS path modelling are described 

279 in Table 2.

280 The path model used

281 The path model given main attention in this paper is given in Fig. 3. The blocks were 

282 introduced according to the theorized relation between them. The relationship between 

283 liking and satiation, satiety as well as portion was established with respect to the 

284 sequence of cognitive and physiological processes when people consume a food 

285 product (Blundell et al., 2010). Based on that, liking was incorporated before satiation 

286 (mostly influenced by sensory attributes) and satiety (imparted by sensory attributes, 

287 cognitive, post-ingestive and post-absorptive). These expectations will be incorporated 

288 into the framework to determine portion selection.

289 In the secondary path model comprising all blocks, all questionnaire variables were 

290 used as input to the product related variables and the product related variables were 

291 introduced according to the theorized relation between them as discussed above. The 

292 consumer related variables (questionnaire) were assumed to influence consumer 

293 expectations. 

294 Simplifying the model

295 In order to simplify the path model, a reduction was tried by testing each of the links 

296 by bootstrap based t-tests. Different sizes of p-values (0.1, 0.05 and 0.01) were tested 

297 to validate the stability of the reduction. 
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298 The models should be compared on criteria such as the strength of the relations 

299 between variables as well as direct and indirect effects. By definition, the direct effect 

300 was that influence of one variable on another that was unmediated by any other 

301 variables in a path model; the indirect effects of a variable were mediated by at least 

302 one intervening variable (Bollen, 1989; Kaplan, 2009). For the models, main emphasis 

303 was given to two components in this case, but the third component was also given 

304 some attention.

305 All data were collected with EyeQuestion (Logic8 BV, The Netherlands) and 

306 analyses were carried out using R software (R Core Team, 2018). The packages plspm 

307 (Sanchez, Trinchera, & Russolillo, 2017) and semPLS (Monecke & Leisch, 2012) were 

308 used for performing PLS path modelling.

309 3. Results

310 First of all, the results from the unbalanced nested ANOVA (Table 3) revealed that 

311 while sample was significant for liking, satiation, satiety and portion, the MB group was 

312 not significant at test level of 0.05.

313 However, it is important to see that the interaction product:MB was statistically 

314 significant for satiation, while it was not for the rest of consumer expectations, 

315 suggesting that mouth behavior plays a role in the expectations of satiation. The 

316 interaction indicates that consumers rated the expected satiation of a product 

317 depending on the MB group they belonged (Fig. 4). It is reasonable as chewers and 

318 crunchers on one side and smooshers on the other, fall into two major modes of mouth 

319 actions which seem to have separated people by their primary mouth behavior, 

320 preferring to use their teeth to break down foods vs manipulating it between the tongue 

321 and roof of the mouth respectively (Jeltema et al., 2015, 2016). In particular, chewers 
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322 and crunchers differentiated between two groups of products: P2, P4, P6, P8 (thick 

323 samples) in high satiation and P1, P3, P5, P7 (thin samples) expected as lower in 

324 satiation. Smooshers however, tended to classify products into three groups in 

325 descending order of satiation from P2, P4, P6, P8 (thick samples) and then 

326 discriminating into two groups of these samples, depending on the particle size and 

327 flavour level (P5, P7 and then P1, P3). This may suggest that the managing of the 

328 samples between the tongue and the upper palate could make them more aware of 

329 the flavour and particle size as drivers of satiation in thinner samples. The implication 

330 of MB in the model will be further commented in the discussion section. 

331 3.1. PCA for individual product blocks

332 Fig. 5 points out that the samples were separated on the first PC space for liking (a) 

333 and expected satiety (b). On the first dimension, samples were split into two groups 

334 regarding to liking, with P1, P5, P7 in one group and P2, P4, P6, P8 in the other. Then 

335 the second dimension separated samples into two groups, P3, P4, P7, P8 on the top 

336 and P1, P2, P5, P6 at the bottom of the dimension. It can be noted that the same 

337 structure was relevant for liking, satiation and portion (data not shown for these last 

338 two), but not for satiety. In that case, the importance of the first two dimensions was 

339 interchanged. The first dimension separated samples into two groups of P4, P7, P8 

340 and P1, P2, P3, P5, P6 (Fig. 5b). To understand this, one could look at these results 

341 together with the sensory attributes as described by consumer in the CATA question.

342 For liking (Fig. 6a), the first dimension was explained by viscosity with Thick and 

343 Liquid attributes located in the opposite sides, whereas the second dimension was 

344 characterized by the particle-size (Sandy and Pieces). Similarly, these 

345 characterizations were observed for satiation and portion size. As described above, for 
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346 satiety, the position of the two dimensions was switched, the first dimension became 

347 the particle-size dimension and the second was the viscosity dimension (Fig. 6b). 

348 These results are reasonable with regard to the design of experiment (viscosity, 

349 particle-size and flavour intensity variables). More specifically, the samples P1, P3, P5, 

350 P7 were designed as thin viscosity, the samples P2, P4, P6, P8 were thick in viscosity; 

351 oat flour was added to the samples P3, P4, P7, P8 and oat flakes to the samples P1, 

352 P2, P5, P6.

353 The third dimension was also taken into consideration. For liking and portion size, it 

354 was described as the Sweet-Sour dimension, whereas for satiation and satiety, it was 

355 the Sandy-Pieces dimension. The separation of sensory attributes was however not 

356 relevant enough to have a clear interpretation or naming of the third dimension. From 

357 these results, instead of eight ratings in response to eight samples, the three 

358 dimensions, the so-called viscosity (V), particle-size (P) and the third dimension, will 

359 be used for the analyses throughout the paper.

360 3.2. The prediction model

361 The model of product related variables only (prod model, 2 first PCA components)

362 To simplify the graphical interpretation task, and due to the excessive number of 

363 variables in the data set, the focus will be on the block of product related variables. At 

364 first, the full prod model was considered, and then the stability of model was 

365 investigated by comparing some reduced models responding to different p-values (0.1, 

366 0.05 and 0.01). Afterwards, the specific model should be chosen to explain the main 

367 relations between variables.
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368 The relations between product variables in the full model were displayed in Fig. 7; 

369 some relations were well defined, however, other relations with the path coefficients, 

370 i.e. direct effects, were equal to zero and almost zero (LikingV-SatietyP, LikingV-

371 PortionP, SatiationP-PortionP and SatietyV-PortionV). These relations should be 

372 eliminated from the model for obtaining the more stable models.

373 The validation of the model simplification pointed out that the main relations between 

374 product related variables were stable with different p-values (0.1, 0.05, 0.01). In other 

375 words, the reduced models had some slight changes, but the main trend was not 

376 changed. The significant relations decreased in the reduced models with respect to p-

377 values. Comparing to the reduced models of p-value 0.1, in the reduced model of p-

378 value 0.05, the relations LikingV-SatiationP, LikingP-SatietyP, SatiationP-PortionV 

379 were eliminated. In the light of this trend, in the reduced model of p-value 0.01, the 

380 relations SatiationV-PortionP, LikingP-SatiationV, SatiationP-SatietyV continued to be 

381 removed. Apart from LikingP-SatietyP, all eliminated relations did not display the 

382 relations of consumer expectations on the specific dimension (viscosity or particle-

383 size). That is possible explanation why these relations were not stable with different p-

384 values.

385 In addition to the path coefficients, the explained variances of endogenous blocks 

386 were considered (Table 4). It was not surprising that these blocks were explained 

387 similarly for models with different p-values. Among those, PortionP was the most 

388 explained block (R2: 0.48 - 0.50), whereas SatiationP was the least explained one (R2: 

389 0.09 – 0.11). These results supported the above findings in which the product models 

390 were stable with different p-values.
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391 Without loss of generality, the reduced model of p-value 0.1 was selected to account 

392 for the relations between product variables. The path diagram was depicted in Fig. 8 

393 and the direct/indirect effects were summarized in Table 5. In the model, liking had 

394 positive and strong effects on portion with the path coefficients of 0.46 and 0.71 for 

395 viscosity and particle-size dimensions, respectively. Accordingly, liking was a good 

396 predictor for satiation and satiety. It is noteworthy that while liking directly influenced 

397 satiation (LikingV-SatiationV: 0.30, LikingP-SatiationP: 0.37), it did not contribute 

398 directly to satiety for each dimension. The effect liking-satiety was indirect through 

399 satiation, that is, liking influenced satiation, which in turn, imparted satiety (LikingV-

400 SatiationV-SatietyV: 0.13, LikingP-SatiationP-SatietyP: 0.15). On this relation, it is 

401 interesting to find that LikingV had indirect and positive effect on SatietyV, and on the 

402 opposite side, LikingP had direct and negative effect on SatietyV (-0.29). To sum up, 

403 the strongest indirect relation was the relation between liking and satiety; the direct 

404 effects confirmed the strong relations of liking-portion, liking-satiation, satiation-satiety 

405 and especially LikingP-SatietyV.

406 The model with three components

407 In this part, models were built taking into account three dimensions of viscosity, 

408 particle-size and the third dimension. Then, the comparisons between the models with 

409 different p-values. The results showed that the reduced model with p-value 0.05 

410 seemed to be the optimal model because it kept enough information for interpretation 

411 with less complexity. For viscosity and particle-size dimension, the relations were still 

412 liking-portion and liking-satiation-satiety, for the third dimension, however, there were 

413 some interactions. The third dimension seemed to be the mixture of viscosity and 

414 particle-size dimensions; that is, it played the role of viscosity dimension in some 

415 relations, and particle-size in other relations. Thus, including the third dimension in the 
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416 model was not relevant for interpretation and more difficult to understand. These 

417 results supported for the decision for which only two dimensions (i.e. viscosity and 

418 particle-size) should be used in the model.

419 The model of consumer and product variables (con-prod model)

420 The relations in the con-prod model often followed the specific dimensions, i.e. 

421 particle-size (P) and viscosity (V) dimension. In other words, the direct relations of 

422 liking-portion and indirect relation of liking-satiation-satiety were relevant for each 

423 dimension. The stability of this model was also investigated with different p-values. The 

424 results (data not shown here) revealed that the relations between product variables 

425 were stable and similar to the common pattern of the prod model described previously, 

426 whereas those of consumer variables were quite sensitive with different p-values. In 

427 order to eliminate some non-significant relationships and keep enough information for 

428 interpretation, the p-value of 0.05 was chosen for the reduced model. In general lines, 

429 hunger and fullness feelings as measured by the questionnaires influenced both liking 

430 and satiation/satiety as measured for the products. Physical hunger had a negative 

431 effect on liking; mental fullness negatively imparted satiation and positively imparted 

432 satiety. For variables related to consumer attitudes towards healthfulness and taste of 

433 food, they only influenced liking.

434 3.3. The influence of individual differences on the predicted model

435 The results of this part of the study looked into the effects of the variable eating-style 

436 on the prediction model. Based on consumers’ mouth behaviors as classified with the 

437 JBMB™ typing tool, consumers can be classified into four major groups, however, in 

438 the present work consumers fell into three groups only: Chewer, Cruncher and 

439 Smoosher, no Sucker was identified by the data. The path diagrams of these three 
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440 groups are depicted in Fig. 9. Basically, a similar model was obtained in general lines 

441 to predict portion for the three groups of consumers. Nevertheless, there was 

442 noteworthy difference in LikingV-PortionV. While the relation was positive and strong 

443 for Chewers (0.44) and Crunchers (0.65), it seemed to be weak, and if any, negative 

444 (-0.11) for Smooshers. Particularly, Smooshers might use only particle-size for 

445 predicting portion; as a strong relation LikingP-PortionP (0.68) was observed in Fig. 

446 9c. The results are in agreement with previous studies (Jeltema et al., 2015, 2016),  

447 stating that consumers used different strategies to manipulate foods and this 

448 influenced their expectations. In this study, Chewers and Crunchers seemed to use 

449 both two sensory dimensions (viscosity and particle-size) for estimating the Portion, 

450 meanwhile Smooshers used particle-size only.

451 4. Discussion

452 4.1. The relation between liking and satiety 

453 The prod model (Fig. 7) displays the general framework which describes the 

454 relationships between consumer expectations. This model pointed out that an increase 

455 in liking leads to an increase in prospective portion size (both when driven by particle 

456 size or by viscosity). In addition, a higher liking could produce greater satiety as a 

457 consequence of a greater satiation. It is compatible with the results of the previous 

458 studies (De Graaf, De Jong, & Lambers, 1999; Johnson & Vickers, 1992; Yeomans, 

459 1996). These authors studied the effect of liking on satiation, highlighting that the 

460 absence of the effect of liking on subsequent satiety was clear. Note that the results 

461 from the previous studies have been achieved in terms of direct relations only. In the 

462 present study, both direct and indirect effects are interpreted. When the interactions 

463 are included in the model, the interpretation becomes more complicated. Different 
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464 dimensions of liking resulted in different effects on satiety; LikingP-SatietyV with 

465 negative effect and LikingV-SaietyV with positive effect. Note that the latter is indirect 

466 effect through SatiationV, which is obtained by multiplying the path coefficient of 

467 LikingV on SatiationV with the path coefficient of SatiationV on SatietyV. 

468 From the sensory perspective, sensory perception is not a single event but a 

469 dynamic process with a series of events (Labbe, Schlich, Pineau, Gilbert, & Martin, 

470 2009). The relation between these sensations and sensory-specific satiation/satiety 

471 are not static during consumption (Karen, 2004; Morell, Fiszman, Varela, & Hernando, 

472 2014). In a previous study done on the same yoghurt samples of the present study, 

473 the product trajectories, highlighted by dynamic profiling via TCATA, pointed out the 

474 common pattern in temporal profiles in which the samples were first separated by 

475 viscosity and then by particle-size (Nguyen et al., 2018). This would support the 

476 hypothesis of a sequential assessment of liking linked to the sequential perception from 

477 viscosity (LikingV) to particle-size (LikingP). In other words, this would highlight the 

478 temporal dimension of liking assessment, linked to the different stages of the dynamic 

479 sensory perception of texture.

480 In the results, viscosity and particle-size have been interpreted as two orthogonal 

481 dimensions on the PCA space (Fig. 6); however, from a perceptual point of view, these 

482 properties can interact during the oral processing. Considering the rheology of a 

483 suspension (as the yogurt model here), if the total mass of particles in a suspension is 

484 kept constant but the particle size of the is reduced, then viscosity in the system would 

485 increase (Hardacre, Lentle, Yap, & Monro, 2018; Mueller, Llewellin, & Mader, 2010; 

486 Tarancón, Hernández, Salvador, & Sanz, 2015). In the present study, a decrease in 

487 particle size of the oat flakes would contribute to an increase in viscosity in the yoghurt 

488 samples. For that reason, LikingP might play a role of “-LikingV”. In the prediction 
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489 model, the relation of LikingV-SatietyV has a positive effect, meaning that, if consumers 

490 like a sample with thick viscosity, they will perceive it as more satiating as well. 

491 Consequently, LikingP has negative influence on SatietyV, as a yogurt with bigger 

492 particles could be less viscous, and consequently perceived as less satiating.

493 In present years, many studies have investigated the role of viscosity and food 

494 particles on expectations of satiation and satiety. These studies stated that both 

495 viscosity and solid food particles have been reported as modulators of expectations 

496 about satiety in which an increase in the perceived thickness was positively correlated 

497 with the expected satiation, and more solid foods may evoke increased satiety 

498 (Hogenkamp & Schiöth, 2013; Hogenkamp et al., 2011; Marcano, Morales, Vélez-Ruiz, 

499 & Fiszman, 2015). The explanations based on the oro-sensory exposure; in particular, 

500 higher viscosity in a food leads to longer oro-sensory stimulation (Mars, Hogenkamp, 

501 Gosses, Stafleu, & De Graaf, 2009) and more solid products require more labor and 

502 time in the mouth, causing longer oro-sensory exposure (Hogenkamp & Schiöth, 

503 2013). As a consequence, an increase in oral processing may result in higher satiety 

504 (Forde, van Kuijk, Thaler, de Graaf, & Martin, 2013; Hogenkamp & Schiöth, 2013). On 

505 the contrary, Tarrega and colleagues have shown that a more viscous product base 

506 increased the mean expected satiation regardless of the food particle added (Tarrega, 

507 Marcano, & Fiszman, 2016). Unlike to those studies, the present study indicated that 

508 while viscosity positively imparted satiety, food particle negatively influenced satiety; 

509 that is, bigger particles lead to less satiating perception.

510 This result is not observed for SatietyP. The possible reason is that the “particle size 

511 – viscosity” relation is only one direction from particle-size to viscosity, not in the 

512 opposite direction. Apart from the viscosity effect of the reduced particle size, other 

513 sensory perceptions related to the oral process might be affecting satiety perception in 
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514 different directions. For example, the effect of the small particles might have in the 

515 eating rate; having very small particles in the mouth can require longer work with the 

516 tongue to being able to swallow the product. This sandy perception can in turn affect 

517 liking in different ways, depending on the preferences and mouth behaviour.

518 4.2. The relation between consumer characteristics and consumer expectations

519 Focusing on expected satiety, higher mental fullness (mFull) scores predicted larger 

520 decreases in viscosity related satiation (SatiationV). The finding is in accordance with 

521 Mattes and colleagues, pointing out that a higher expected satiety led to decrease in 

522 hunger and increase in fullness immediately after consuming the food (Mattes & 

523 Vickers, 2018). As opposed to satiety, mental fullness (mFull) had negative effect on 

524 satiation (mFull scores predicted larger increases in viscosity related satiety - 

525 SatietyV), meaning that the feeling of mental fullness might reduce consumers’ 

526 satiation.

527 While mental fullness significantly influenced satiation and satiety expectation, 

528 physical hunger (pHunger) influenced liking; in particular, liking related to viscosity 

529 (LikingV). When consumers rated a higher physical hunger, they tended to dislike 

530 yogurts that were thicker. However, pHunger was not the only predictor, craving and 

531 reward also contributed to the changes of LikingV. The strengths of these relations 

532 (craving-LikingV, reward-LikingV) are similar and positive. That suggests that liking 

533 should be considered as complex concept which is imparted by several factors, at least 

534 in the present study, such as hunger and fullness feelings and attitudes to healthiness, 

535 and taste of foods.

536 4.3. Determining number of components
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537 In order to maintain the uni-dimentionality of data blocks in the PLS-PM approach, 

538 PCA was applied on each data block and then only the first two components are 

539 selected for subsequent analyses. In the present study, the selection was not very 

540 difficult due to the fact that the samples have been formulated from a design of 

541 experiment of viscosity, particle-size and flavour intensity variables. However, when 

542 more complex samples with a wide range of sensory perceptions were used, the 

543 selection of the number of dimensions in the model could be indeed a difficult task in 

544 itself. This problem could be solved with some other approaches such as SO-PLS path 

545 modelling (Næs, Tomic, Mevik, & Martens, 2011) or Path-ComDim (Cariou, Qannari, 

546 Rutledge, & Vigneau, 2018). These approaches can be used for any dimensionality of 

547 the blocks of variables. Research work is needed to further compare these approaches 

548 to deeper understand advantages and limitations.

549 5. Conclusions

550 This paper has shed some light on the question of whether “quality can replace 

551 quantity” although the answer is not straightforward. With the model obtained by PLS-

552 PM, liking played an important role in predicting portion selection. More specifically, a 

553 higher liking meant a bigger portion selection for the semisolid system under study. 

554 Besides that, satiation and satiety could be predicted from liking directly and indirectly, 

555 the understanding of the implications, however, needs to be considered carefully due 

556 to the dynamic and multiparametric nature of these expectations.

557 The present study suggests that PLS-PM could be an appropriate tool to explain the 

558 relationships between consumer attitudes, product assessment and expectations. In 

559 this case study, consumer expectations of liking, satiation, satiety, and prospective 

560 portion were clearly two dimensional and it has been shown how it can be interpreted. 
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561 But when the sensory dimensions underlying those expectations become more 

562 complex, resulting in more dimensions, the interpretation of consumer expectations 

563 within such a complex model might not be obtained easily and explicitly.
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751 Table 1. Formulation of the yoghurt samples.

Sample Viscosity Particle size Flavour intensity
P1 (t-F-l) Thin Flakes Low
P2 (T-F-l) Thick Flakes Low
P3 (t-f-l) Thin Flour Low
P4 (T-f-l) Thick Flour Low
P5 (t-F-o) Thin Flakes Optimal
P6 (T-F-o) Thick Flakes Optimal
P7 (t-f-o) Thin Flour Optimal
P8 (T-f-o) Thick Flour Optimal
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754 Table 2. The blocks used in the prediction model.

Original block Block in PLS-PM model Abbreviation of block
Hunger and fullness Mental hunger mHunger

Mental fullness mFull
Physical hunger pHunger
Physical fullness pFull

Attitudes toward healthfulness General health interest general
Light product interest light
Natural product interest natural

Attitudes toward taste Craving for sweet food craving
Using food as a reward reward
Pleasure pleasure

Liking Liking for dimension V LikingV
Liking for dimension P LikingP

Expected satiation Satiation for dimension V SatiationV
Satiation for dimension P SatiationP

Expected satiety Satiety for dimension V SatietyV
Satiety for dimension P SatietyP

Ideal portion-size Portion for dimension V PortionV
Portion for dimension P PortionP
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757 Table 3. ANOVA results (p-values) for each consumer expectation.

Liking Satiation Satiety Portion
product < 0.001 < 0.001 < 0.001 < 0.001
MB 0.604 0.969 0.269 0.184
product:MB 0.412 0.008 0.996 0.882
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760 Table 4. R2 of product models with different p-values.

Model full Model pval-0.1 Model pval-0.05 Model pval-0.01
SatiationV 0.11 0.11 0.11 0.09
SatiationP 0.15 0.15 0.14 0.14
SatietyV 0.26 0.25 0.25 0.23
SatietyP 0.32 0.32 0.30 0.30
PortionV 0.23 0.22 0.22 0.22
PortionP 0.50 0.50 0.50 0.48
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763 Table 5. Direct and indirect effects of reduced model of p-value 0.1.

Relationships Direct effect Indirect effect
LikingP - SatietyV -0.29 0.01
LikingP - SatiationV -0.14 0.00
LikingV - SatietyP 0.00 0.11
LikingV - SatietyV 0.00 0.13
LikingV - PortionP 0.00 0.04
LikingP - PortionV 0.00 0.03
SatiationP - PortionV 0.07 0.00
LikingV - SatiationP 0.12 0.00
SatiationV - PortionP 0.12 0.00
LikingP - SatietyP 0.13 0.15
SatiationP - SatietyV 0.16 0.00
SatiationV - SatietyP 0.18 0.00
LikingV - SatiationV 0.30 0.00
LikingP - SatiationP 0.37 0.00
SatiationV - SatietyV 0.38 0.00
LikingV - PortionV 0.46 0.01
SatiationP - SatietyP 0.48 0.00
LikingP - PortionP 0.71 -0.02
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765 Figure Captions

766 Fig. 1. Schematic diagram of data handling and model selection.

767 Fig. 2. Different types of data sets and their relations.

768 The first data set consists of consumer characteristics for each consumer, related to 
769 hunger and fullness feelings, attitudes toward healthfulness, taste of foods;

770 The second data set comprises eight ratings (responding to eight products) for each 
771 expectation (liking, satiation, satiety, portion) for each consumer. Specifically, there are 
772 four data blocks and each of the block includes eight columns with the ratings of the 
773 eight products.

774 Fig. 3. Path model of product related variables (prod model).

775 V and P were the notation of viscosity and particle-size dimension, respectively.

776 Fig. 4. Interaction plot (product:MB) for expected satiation. 

777 Fig. 5. PCA on double-centered data for Liking (a); Expected satiety (b).

778 Fig. 6. CATA attributes profiled in the PCA space for Liking (a); Expected satiety (b).

779 Fig. 7. Path diagram for the full prod model.

780 The ‘blue’ lines stood for the positive relations, the ‘red’ lines dedicated for negative 
781 relations, the thickness of the lines indicated the strengths of the relations and the 
782 numeric values together lines as the path coefficients (direct effects) between 
783 variables.

784 V and P were the notation of viscosity and particle-size dimension, respectively.

785 Fig. 8. Path diagram for the reduced prod model with p-values of 0.1.

786 Fig. 9. The path diagram for consumer-product model with p-value of 0.05 for Chewers 
787 (a), Crunchers (b) and Smooshers (c).
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