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Abstract 

Background:  One objective of this study was to identify putative quantitative trait loci (QTL) that affect indicator 
phenotypes for growth, nitrogen, and carbon metabolism in muscle, liver, and adipose tissue, and for feed efficiency. 
Another objective was to perform an RNAseq analysis (184 fish from all families), to identify genes that are associated 
with carbon and nitrogen metabolism in the liver. The material consisted of a family experiment that was performed 
in freshwater and included 2281 individuals from 23 full-sib families. During the 12-day feed conversion test, families 
were randomly allocated to family tanks (50 fish per tank and 2 tanks per family) and fed a fishmeal-based diet labeled 
with the stable isotopes 15N and 13C at inclusion levels of 2 and 1%, respectively.

Results:  Using a linear mixed-model algorithm, a QTL for pre-smolt growth was identified on chromosome 9 and a 
QTL for carbon metabolism in the liver was identified on chromosome 12 that was closely related to feed conversion 
ratio on a tank level. For the indicators of feed efficiency traits that were derived from the stable isotope ratios (15N 
and 13C) of muscle tissue and growth, no convincing QTL was detected, which suggests that these traits are poly-
genic. The transcriptomic analysis showed that high carbon and nitrogen metabolism was associated with individuals 
that convert protein from the feed more efficiently, primarily due to higher expression of the proteasome, lipid, and 
carbon metabolic pathways in liver. In addition, we identified seven transcription factors that were associated with 
carbon and nitrogen metabolism and located in the identified QTL regions.

Conclusions:  Analyses revealed one QTL associated with pre-smolt growth and one QTL for carbon metabolism in 
the liver. Both of these traits are associated with feed efficiency. However, more accurate mapping of the putative QTL 
will require a more diverse family material. In this experiment, fish that have a high carbon and nitrogen metabolism 
in the liver converted protein from the feed more efficiently, potentially because of a higher expression of the protea-
some, lipid, and carbon metabolic pathways in liver. Within the QTL regions, we detected seven transcription factors 
that were associated with carbon and nitrogen metabolism.
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Background
Sustainable aquaculture production depends on the 
efficient conversion of feed resources into high-quality 
products [1]. In Norway, the feed costs of salmonid pro-
duction represented ~ 50% of the total production costs 
in 2017, totaling ~ 2.2 billion euros [2]. This means that 
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an improvement in feed efficiency has considerable 
value. Feed efficiency can be defined as the ratio of out-
put to input (feed efficiency ratio, FER), i.e. as the ratio 
of growth to the unit of feed consumed, whereas feed 
conversion ratio (FCR) is the inverse of this ratio. In fish, 
genetic variance exists for fecal losses, due to individual 
variation in digestibility [3]. Genetic variance exists also 
for maintenance (degradation and replacement of previ-
ously deposited protein), and for growth, if the composi-
tion of growth is ignored, i.e. for protein metabolism [4]. 
The relative contribution of nutrients to protein metabo-
lism can be assessed by using feed that is enriched with 
certain isotopes (i.e., with altered ratios of 13C/12C and/or 
15N/14N) and monitoring the subsequent rate of change 
in the isotope profile of different tissues [5–7]. Nitrogen 
and carbon isotopes are the most relevant when assess-
ing feed efficiency because all organic compounds con-
tain carbon, while nitrogen is common to all amino acids. 
Molecules that contain 14N versus 15N differ in mass, and 
the ratio of these isotopes can be detected with an ele-
ment analysis isotope ratio mass spectrometry system 
[8]. The genetic components of nitrogen and carbon 
metabolism in salmon were elucidated in an earlier study 
by Dvergedal et al. [4] by measuring the rate of change in 
the isotope profiles in different tissues. The isotope pro-
files were used to calculate indicators of FER/FCR (iso-
tope-based FER (IFER)/ FCR (IFCR)). In addition, they 
(rg) of tank-FCR with indicator traits based on nitrogen 
and carbon metabolism in muscle tissue measured by 
using stable isotopes (15N and 13C) (rg  ~  1.0), and with 
carbon metabolism in liver (ALC) (rg ~ 0.9). These results 
are in accordance with those reported by Hawkins et al. 
[9], who proposed that differences in protein metabo-
lism between individuals are genotype-dependent. Effi-
cient fish are characterized by high protein growth and 
reduced protein degradation in muscle at the same rela-
tive growth rates [10]. In addition, Dvergedal et  al. [4] 
showed that growth, isotope-based indicator traits, 
and sampling day jointly explained 73% of the observed 
variance in tank-FCR records, compared to 53–63% by 
growth and sampling day alone [4]. Hence, including 
nitrogen and carbon metabolism traits for relevant tis-
sues substantially improved the prediction of FCR. Estab-
lishing the genetic basis of individual differences in feed 
utilization may have major implications for selection 
in aquaculture breeding programs. Moreover, genetic 
improvement of feed efficiency, by selection for growth 
or by other means, will decrease production costs and 
the environmental footprint per unit produced [11, 12].

To date, no genome-wide association study (GWAS) 
has reported quantitative trait loci (QTL) related to FER/
FCR in Atlantic salmon [13, 14]. However, in beef cattle 
[15, 16], chicken [17–19], pigs [20, 21], and some other 

fish species [22, 23], QTL have been detected primar-
ily for feed conversion efficiency or residual feed intake. 
Because individual phenotypic records are difficult to 
obtain, it is not easy to assess FER/FCR in aquatic spe-
cies. With indicator phenotypes for nitrogen and carbon 
metabolism, feed efficiency can now be evaluated at the 
individual level and used in GWAS [24] and for marker-
assisted selection [24, 25].

This study is based on a large-scale family experiment 
in Atlantic salmon, where families were kept separately in 
replicate tanks, with individual recording of growth and 
isotope profiles after feeding on 15N and 13C-enriched 
feed. The objective was to identify QTL that affect rel-
evant indicator phenotypes for FER/FCR: weight gain 
(WG), relative weight gain (RG), atom % 13C in muscle 
(AMC), atom % 15N in muscle (AMN), atom % 13C in 
liver (ALC), atom % 15N in liver (ALN), atom % 13C in 
adipose tissue (AAC), the indicator trait of FCR for AMC 
(IFCR_AMC), the indicator trait of FCR for AMN (IFCR_
AMN), the indicator trait of FER for AMC (IFER_AMC), 
and the indicator trait of FER for AMN (IFER_AMN) [4]. 
Another objective was to use RNAseq analysis to identify 
genes the expression of which is associated with carbon 
and nitrogen metabolism in the liver.

Methods
Phenotypic data
Phenotypic data on Atlantic salmon were collected from 
a family experiment that was carried out at the fish lab-
oratory of the Norwegian University of Life Sciences 
(NMBU) in Aas, Norway. Details on this experiment 
are in Dvergedal et  al. [4]. Broodstock from AquaGen’s 
breeding population (22 males and 23 females) were 
used to generate 23 families. To ensure clearly contrasted 
family groups with respect to growth potential and feed 
efficiency, divergent parents were selected based on high 
and low estimated breeding values (EBV) for growth in 
seawater.

Prior to the start of feeding, multiple families were kept 
in separate compartments within the same tank, with five 
tanks required to house all the families. Based on parent-
age assignment, 100 family members were identified for 
each of the 23 families and reared together in a single 
tank from the start of feeding until the start of the feed 
conversion test. Prior to the 12-day test, families were 
allocated to tanks, 50 fish per tank and two tanks per 
family (except for nine tanks in which the number of fish 
varied from 42 to 54 due to mortality prior to the start 
of the experiment and a counting mistake), for a total of 
2281 fish. Families were fed a fishmeal-based diet labeled 
with the stable isotopes 15N and 13C at inclusion levels of 
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2 and 1%, respectively, as described by Dvergedal et  al. 
[4]. Feed conversion rate was recorded at the family level.

Phenotypic data were recorded individually for WG, 
RG, AMC, AMN, ALC, ALN, and AAC, as described 
by Dvergedal et al. [4], resulting in phenotypes for 2249 
to 2280 fish per trait. Muscle, liver, and adipose samples 
from each individual were collected in cryotubes and 
snap-frozen in liquid nitrogen for stable isotope analy-
sis. The sampling procedure and determination of atom 
% 15N and 13C in the samples are explained in detail in 
Dvergedal et al. [4]. The stable isotope analysis was car-
ried out at the Institute for Energy Technology (Kjeller, 
Norway).

From the individual ( i ) phenotypes of AMC and AMN, 
individual isotope-based indicator traits for FCR and 
FER (IFCR and IFER, respectively), i.e. IFCR_AMCi , 
IFCR_AMNi , IFER_AMCi , and IFER_AMNi , were 
derived as follows (taking 15N as an example):

where IW i and FW i is the initial and final weight of fish 
i , APENi = (AMNi − IA%) , with IA % equal to 0.370% 
for 15N and 1.087% for 13C. After a diet switch, the atom 
percentage in excess (APE) of a stable isotope in mus-
cle tissue is expected to be proportional to the fraction 
of newly synthesized nutrients in the muscle, and the 
product of APE and final weight is expected to be pro-
portional to the mass of new nutrients in the body tis-
sue. Because IFCR is expected to be proportional to the 
amount of newly deposited body nutrients per g increase 
in body weight, fish that exchange a larger fraction of the 
body mass per unit of growth will be less feed-efficient. 
Exchange of body tissue is traceable with stable-isotope 
profiling and is related to the feed intake of the indi-
vidual, the denominator of the ratio is weight gain, and 
the ratio between these two variables equals IFCR or the 
inverse equals IFER.

Genotypic data
When the fish reached 5 to 10 g, they were pit-tagged 
with a 2 × 12  mm unique glass tag (RFID Solutions, 
Hafrsfjord, Norway), and a fin-clip was collected from 
2300 fish for DNA-extraction and genotyping. Fin clips 
(20 mg) were incubated in lysis buffer and treated with 
proteinase K (20 µg/ml) at 56 ℃ overnight. The follow-
ing day, DNA was isolated from the lysate at Biobank 
AS (Hamar, Norway) using the Sbeadex livestock kit 
(LGC Genomics) according to the manufacturer’s pro-
tocol (Thermo Fisher Scientific). DNA concentration 
was measured using a Nanodrop 8000 (Thermo Fisher 

IFCR_AMNi =
FW i ∗ APENi

FW i − IW i
and IFER_AMNi =

FW i − IW i

FW i ∗ APENi
,

Scientific). All fish were genotyped using AquaGen’s 
custom Axiom®SNP (single-nucleotide polymorphism) 
genotyping array from Thermo Fisher Scientific (former 
Affymetrix) (San Diego, CA, USA). This SNP-chip con-
tains 56,177 SNPs that were originally identified based 
on Illumina HiSeq reads (10–15 × coverage) from 29 
individuals from AquaGen’s breeding population. Gen-
otyping was done at CIGENE (Aas, Norway). Geno-
types were called from the raw data using the Axiom 
Power Tools software from Affymetrix. Individuals 
with a Dish-QC score lower than 0.82, and/or a call-
rate lower than 0.97, and/or more than 10% missing 
genotypes were removed from further analyses. Also, 
SNPs with a minor allele frequency (MAF) lower than 
1%, and with a missing call rate greater than 10% were 
removed. After filtering, 54,200 SNPs were included in 
the analysis.

Association analysis
Associations between each SNP and the phenotypes 
related to nitrogen and carbon metabolism (AMC, AMN, 
ALC, ALN, and AAC), growth (WG, RG), and indica-
tor traits of feed efficiency (IFCR_AMC, IFCR_AMN, 
IFER_AMC, and IFER_AMN) were tested by using a lin-
ear mixed-model algorithm implemented in the GCTA 
software [26]. The leave-one-chromosome-out option 
(–mlm-loco) was used, in which the chromosome that 
contains the tested SNP was left out when building the 
genetic relationship matrix (GRM). The linear mixed 
model used can be written:

 where Yi is the phenotypes of individual i for one of the 
evaluated traits, a is the intercept, b is the fixed regres-
sion for the SNP to be tested for association, x is the 
SNP genotype indicator variable, coded as 0, 1 or 2, g−i  
is the random polygenic effect for individual i , assumed 
to be distributed as ~ N (0,Gσ 2

g ), where G is the genomic 
relationship matrix, computed using the genotyped 
SNPs on all chromosomes except on the chromosome 
on which the tested SNP is located, σ 2

g  is the variance of 
the polygenic effect, and εi is a random residual. In this 
algorithm, σ 2

g  is re-estimated each time a chromosome 
is left out from the calculation of the GRM. The level of 
significance was evaluated using a built-in likelihood-
ratio test. The threshold value for 5% genome-wide sig-
nificance was derived using the Bonferroni correction 
as 0.05/54,200 = 9.23 × 10–7, corresponding to a −log10 

Yi = a+ bx + g−i + εi,
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p-value (p) of 6.03. The number of SNPs on each chromo-
some was used to calculate 5% chromosome-wide signifi-
cance levels. The Bonferroni correction is known to be 
overly conservative especially when applied to correlated 
SNP data, i.e., to SNPs that are in linkage disequilibrium, 
which can produce an excess of false-negative results 
[27]. Manhattan plots were used to visualize the −log10 
(p) of SNPs across the chromosomes (n = 29) (Figs. 1 and 
2) and QQ-plots were used to visualize the distribution 
of observed versus expected genome-wide −log10 (p) 
(Figs. 3 and 4).

RNA extraction and sequencing
RNA was extracted from the liver of 184 fish, 
at ~ 10  months of age (four fish per tank), using the 
RNeasy Plus Universal Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s protocol. The RNA 
concentration was determined using a Nanodrop 8000 
(Thermo Fisher Scientific, Waltham, USA), and RNA 
quality was determined using a 2100 Bioanalyzer with 
the RNA 6000 Nano Kit (Agilent Technologies, Santa 
Clara, USA). All samples had an RNA integrity number 
greater than 8. Sequencing libraries were constructed 
using the TruSeq Stranded mRNA Library Prep Kit (Illu-
mina, San Diego, USA) according to the manufacturer’s 
instructions. Sequencing was performed on an Illumina 
Hiseq 2500 at the Norwegian Sequencing Center (Oslo, 
Norway), using 100  bp single-end sequencing. All 
raw fastq-files have been deposited on ArrayExpress 
under accession number E-MTAB-8305. Reads were 
trimmed, aligned to the salmon genome (ICSASG_v2), 
and counted using the bcbio-nextgen pipeline (https​://
githu​b.com/bcbio​/bcbio​-nextg​en) and the NCBI salmon 
genome annotation (https​://salmo​base.org/Downl​oads/
Salmo​_salar​-annot​ation​.gff3).

RNAseq analysis
The EdgeR software [28] was used to identify genes that 
had an expression in the liver associated with the nitro-
gen and carbon metabolism liver traits (ALN and ALC), 
using the following linear regression model:

 where YFij is the expression of gene i for fish j in family F  , 
µF is the intercept for each family, b1 is the fixed regres-
sion coefficient of the phenotype for the trait ( xj = ALC 
or ALN of fish j ), and b2 is the fixed regression coefficient 
of the ratio of weight gain (final weight ( FW )—initial 
weight ( IW  )) to FW  , to account for the effect of growth 
on gene expression, and εFij is a random residual. The 
trait phenotypes were scaled and centered (mean = 0 and 
SD = 1), such that the resulting regression slopes could 

YFij = µF + b1xj + b2

(

(FWi − IWi)

FWi

)

+ εFij ,

be compared between traits. Genes with an expression 
that had significant regression coefficients on the trait at 
a false discovery rate (FDR) corrected p-value (q) < 0.05 
were classified as trait-associated genes (TAG). TAG 
were analyzed for over-representation in KEGG path-
ways using the “kegga” function in the limma R-package 
[29]. Genes that encoded transcription factor proteins 
were identified by using the R-package SalMotifDB (https​
://salmo​base.org/apps/SalMo​tifDB​) [30], which interacts 
with a database of transcription factors for salmonids.

Results and discussion
Efficient fish minimize the loss of deposited nutrients 
per unit growth, which is expected to affect the rate of 
change in the observed isotope profile. Using isotope 
data, individual phenotyping of feed efficiency is possible 
in Atlantic salmon even without obtaining registrations 
of individual feed intake. Estimates of heritability, genetic 
and phenotypic correlations among the studied traits and 
FCR were previously reported by Dvergedal et al. [4] and 
showed that the indicator feed efficiency traits IFCR/
IFER in muscle had estimates of the genetic correlation 
with FCR on a tank level that were at the boundary of the 
parameter space (rg ~ 1.0). However, ALC also showed a 
high genetic correlation with FCR on a tank level (rg = − 
0.90) but was less genetically correlated with growth-
related traits than with IFCR/IFER on an individual level. 
Consequently, ALC may explain individual variation in 
feed efficiency that is not related to growth.

Association analysis
To test whether phenotypes for feed efficiency such as 
ALC and IFCR/IFER variables are associated with SNPs, 
we performed a GWAS with a linear mixed-model algo-
rithm, using indicator traits related to nitrogen and car-
bon metabolism, growth, and indicator traits for feed 
efficiency as phenotypes. To our knowledge, this is the 
first GWAS applied to indicator traits of feed efficiency 
and metabolism in muscle, liver, and adipose tissues of 
Atlantic salmon. Figure  1 illustrates significant associa-
tions between SNPs and traits of interest and significant 
associations with a −log10 (p) > 8 are in Table  1. The 
Manhattan plots for WG, RG, AMC, AMN, and ALN 
(Fig.  1a–f), showed two genomic regions that displayed 
a significant association on salmon chromosome (Ssa) 
9, one between 13 and 31  Mb and one between 45 and 
106 Mb.

Many of the significant SNPs were shared between 
traits (Table  1). On Ssa9, four to 10 significant SNPs 
were in common between the traits WG, RG, AMC, 
AMN, and ALN, which may be because all these traits 
are closely associated with growth. Also, two SNPs on 
Ssa3, four on Ssa5, and 12 on Ssa20 were associated 

https://github.com/bcbio/bcbio-nextgen
https://github.com/bcbio/bcbio-nextgen
https://salmobase.org/Downloads/Salmo_salar-annotation.gff3
https://salmobase.org/Downloads/Salmo_salar-annotation.gff3
https://salmobase.org/apps/SalMotifDB
https://salmobase.org/apps/SalMotifDB
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Fig. 1  Genome-wide Manhattan plot for a weight gain (WG), b relative weight gain (RG), c atom % 13C muscle (AMC), d atom % 15N muscle 
(AMN), e atom % 13C liver (ALC), f atom % 15N liver (ALN), and g atom % 13C adipose tissue (AAC). The horizontal line represents the genome-wide 
Bonferroni −log10 (p) = 6.03 threshold
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with WG, all with a −log10 (p) > 6.03 (Fig.  1a), while 
one SNP on Ssa11, one Ssa12, and one Ssa15 associated 
with AMN (Fig. 1d), and one SNP on Ssa20 with ALN 
(Fig.  1f ). No significant SNP associations with AAC 
were found at the evaluated age (~ 10  months), which 
might be because lipid deposition is at its maximum 
beyond this age, during the grow-out phase in the sea 
(~ 1.5–4  kg). Therefore, we cannot rule out significant 
SNP associations with lipid deposition at a later life-
stage in salmonids [31–33].

Genome-wide significant SNPs that were associ-
ated with growth-related traits, such as WG, RG, AMC, 
AMN, and ALN, were mainly located on Ssa09. Gutierrez 

et  al. [34], who mapped QTL for body weight in Atlan-
tic salmon at different stages of life, reported genome-
wide significant SNPs (QTL) on Ssa09 for individuals of 
the same age as in this study (~ 10  months). They also 
detected chromosome-wide significant SNPs on Ssa20, 
but did not find any common significant SNPs at differ-
ent stages of life. Baranski et al. [35] argued that the large 
number of QTL for growth-related traits that act at dif-
ferent stages of life implies that bodyweight is a polygenic 
trait in Atlantic salmon. However, as growth of salmons 
occurs mostly during the saltwater phase, the commer-
cial interest of a QTL for body weight in the freshwater-
phase is most likely limited.
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Nineteen genome-wide SNPs (−log10 (p) > 8) were 
also found on a Ssa12 region that affects ALC (Fig.  1e). 
Dvergedal et  al. [4] showed that ALC had low genetic 
correlations with growth (WG and RG) (rg  = 0.16 and 
0.12, respectively, with standard errors of 0.12 and 0.14), 
which suggest that ALC might be genetically independ-
ent of growth (WG and RG). From an economic point of 
view, a QTL that is involved in improving feed efficiency 
without being associated with growth would be highly 
relevant and would add valuable information that cannot 

be captured by recording the growth of the individuals 
only. However, the SNPs of interest were spread over a 
40-Mb region (between 34 and 73 Mb) that contains 770 
genes (NCBI search).

Only three genome-wide significant SNP associa-
tions were found for the indicator trait IFER_AMN, 
on Ssa06, Ssa23, and Ssa27 (Fig.  2d), and none for 
IFCR_AMC, IFCR_AMN, and IFER_AMC (Fig. 2a–c), 
which suggests that all IFCR and IFER variables are 
polygenic traits. In fact, Dvergedal et  al. [4] reported 

a b

c d

Fig. 4  Q–Q plots for association analyses of the a indicator trait of feed conversion ratio for atom % 13C muscle (IFCR_AMC), b indicator trait of feed 
conversion ratio for atom % 15N muscle (IFCR_AMN), c indicator trait of feed efficiency ratio for atom % 13C muscle (IFER_AMC), and d indicator trait 
of feed efficiency ratio for atom % 15N muscle (IFER_AMN)
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Table 1  Single-nucleotide polymorphisms (SNP) with  genome-wide significant (p < 10–7) associations with  weight gain 
(WG), relative weight gain (RG), atom % 13C muscle (AMC), atom % 15N muscle (AMN), atom % 13C liver (ALC), and atom % 
15N liver (ALN)

Trait Chr SNP Base pair A1 A2 Freq b se p

WG 5 ctg7180001180119_4244_SCT 33597277 C T 0.141 1.063 0.190 2.28E−08

5 ctg7180001923117_1435_SAG 31819838 A G 0.097 1.153 0.215 7.63E−08

9 ctg7180001197157_4756_SAG 89517134 G A 0.356 − 1.016 0.166 9.54E−10

9 ctg7180001818540_14626_SGT 96172057 G T 0.233 0.991 0.163 1.23E−09

9 ctg7180001818540_11784_SCT 96174899 C T 0.234 0.976 0.163 1.98E−09

9 ctg7180001664612_2468_SCT 91842480 C T 0.234 0.967 0.163 3.00E−09

9 ctg7180001664612_1619_SAG 91841631 G A 0.234 0.958 0.163 4.19E−09

9 ctg7180001545661_2981_SGT 16416138 G T 0.402 0.819 0.140 4.53E−09

9 ctg7180001832507_11515_SCG 75470675 G C 0.448 − 0.847 0.145 5.35E−09

9 ctg7180001868348_9058_SAG 15945100 G A 0.492 − 0.781 0.137 1.18E−08

9 ctg7180001628780_1051_SAG 17214390 G A 0.414 − 0.871 0.153 1.20E−08

9 ctg7180001197157_4700_SAC 89517078 A C 0.311 0.859 0.151 1.40E−08

9 ctg7180001894494_11001_SAG 89556217 G A 0.310 0.851 0.152 2.08E−08

9 ctg7180001911598_32299_SCT 17106888 C T 0.436 − 0.808 0.146 2.88E−08

9 ctg7180001802227_6890_SAC 78211162 A C 0.216 0.972 0.176 3.34E−08

9 ctg7180001806806_477_SAC 78242149 A C 0.216 0.969 0.176 3.67E−08

9 ctg7180001588841_1060_SGT 86047894 G T 0.234 0.855 0.155 3.77E−08

9 ctg7180001926947_6570_SGT 81306559 T G 0.247 0.885 0.161 3.86E−08

9 ctg7180001380355_4100_SGT 96979010 G T 0.422 0.721 0.133 5.50E−08

9 ctg7180001921692_473_SGT 95413530 G T 0.212 0.946 0.175 6.46E−08

9 ctg7180001898405_11116 82286805 A C 0.312 0.818 0.152 7.65E−08

9 ctg7180001678561_512_SGT 90982168 T G 0.335 0.769 0.143 7.99E−08

9 GCR_cBin45958_Ctg1_101 19444985 G A 0.386 0.825 0.154 8.16E−08

9 ctg7180001859612_1950_SCT 106163425 T C 0.426 0.837 0.157 9.45E−08

20 ctg7180001900661_2996_SAG 29391087 A G 0.472 0.651 0.116 1.97E−08

20 ctg7180001900661_8312_SAC 29385772 A C 0.472 0.632 0.116 4.75E−08

20 ctg7180001403181_749_SGT 32398670 T G 0.413 0.701 0.131 7.97E−08

RG 9 ctg7180001820745_5080_SAG 23240272 G A 0.202 2.191 0.337 7.98E−11

9 ctg7180001604256_10823_SAG 23113694 G A 0.156 2.406 0.380 2.39E−10

9 GCR_cBin45958_Ctg1_101 19444985 G A 0.386 2.035 0.339 1.99E−09

9 ctg7180001789610_1630_SCT 25039628 C T 0.349 − 1.669 0.288 7.03E−09

9 ctg7180001841302_7054_SGT 21739717 G T 0.184 2.112 0.367 8.33E−09

9 ctg7180001841302_7076_SGT 21739695 T G 0.191 2.046 0.365 2.02E−08

9 ctg7180001809374_3372_SCT 19466507 C T 0.373 1.900 0.343 3.03E−08

9 ctg7180001847789_6042_SAG 16428841 A G 0.263 2.034 0.367 3.07E−08

9 ctg7180001857693_2711_SAG 85086045 G A 0.278 1.814 0.329 3.60E−08

9 ctg7180001545661_2981_SGT 16416138 G T 0.402 1.704 0.310 3.68E−08

9 ctg7180001468960_5703_SCT 14756989 C T 0.226 2.035 0.370 3.83E−08

9 ctg7180001931759_8478_SAG 16329499 G A 0.217 2.046 0.376 5.14E−08

9 ctg7180001898949_10269_SAG 22638682 A G 0.482 − 1.584 0.292 5.86E−08
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Table 1  (continued)

Trait Chr SNP Base pair A1 A2 Freq b se p

AMC 9 ctg7180001628780_1051_SAG 17214390 G A 0.415 − 0.013 0.002 1.04E−09

9 ctg7180001820745_5080_SAG 23240272 G A 0.202 0.013 0.002 2.45E−09

9 ctg7180001789610_1630_SCT 25039628 C T 0.349 − 0.011 0.002 5.22E−09

9 ctg7180001763729_3905_SAG 15474718 A G 0.283 0.013 0.002 8.27E−09

9 ctg7180001763729_4055_SGT 15474568 T G 0.283 0.013 0.002 1.14E−08

9 ctg7180001872184_4046_SAC 59521565 A C 0.267 − 0.012 0.002 1.69E−08

9 ctg7180001847789_6042_SAG 16428841 A G 0.261 0.013 0.002 1.91E−08

9 ctg7180001903467_551_SGT 30327474 T G 0.175 − 0.013 0.002 2.06E−08

9 ctg7180001700380_482_SGT 15707203 G T 0.282 0.013 0.002 2.08E−08

9 GCR_cBin45958_Ctg1_101 19444985 G A 0.385 0.012 0.002 3.47E−08

9 ctg7180001911598_32299_SCT 17106888 C T 0.436 − 0.011 0.002 3.78E−08

9 ctg7180001903534_19011_SGT 13431163 T G 0.283 − 0.013 0.002 3.98E−08

9 ctg7180001872184_453_SCT 59517972 T C 0.265 − 0.012 0.002 4.40E−08

9 ctg7180001604256_10823_SAG 23113694 G A 0.157 0.013 0.002 4.58E−08

9 ctg7180001343223_1775_SCT 67759885 T C 0.411 0.011 0.002 5.85E−08

9 ctg7180001545661_2981_SGT 16416138 G T 0.401 0.011 0.002 6.44E−08

9 ctg7180001833924_2266_SCT 24557694 T C 0.429 0.011 0.002 6.65E−08

9 ctg7180001794986_4059_SAC 20044519 C A 0.262 − 0.012 0.002 6.93E−08

9 ctg7180001898949_10269_SAG 22638682 A G 0.481 − 0.010 0.002 7.33E−08

AMN 9 ctg7180001820745_5080_SAG 23240272 G A 0.202 0.034 0.005 3.24E−11

9 ctg7180001841302_7054_SGT 21739717 G T 0.184 0.036 0.006 1.47E−10

9 ctg7180001604256_10823_SAG 23113694 G A 0.157 0.037 0.006 1.87E−10

9 ctg7180001841302_7076_SGT 21739695 T G 0.192 0.033 0.006 1.33E−09

9 ctg7180001898949_10269_SAG 22638682 A G 0.481 − 0.027 0.004 1.51E−09

9 ctg7180001909530_3368_SAC 30671958 A C 0.289 0.032 0.006 1.69E−08

9 ctg7180001857693_2711_SAG 85086045 G A 0.278 0.028 0.005 2.38E−08

9 ctg7180001628780_1051_SAG 17214390 G A 0.415 − 0.028 0.005 2.78E−08

9 ctg7180001912930_10973_SAC 59822403 C A 0.446 − 0.026 0.005 4.30E−08

9 ctg7180001343223_1775_SCT 67759885 T C 0.411 0.026 0.005 4.62E−08

9 ctg7180001911598_32299_SCT 17106888 C T 0.436 − 0.026 0.005 8.19E−08

9 ctg7180001254975_135_SCT 30005989 T C 0.328 0.017 0.003 9.72E−08

ALC 12 ctg7180001233434_1518_SCT 45935004 C T 0.418 − 0.009 0.001 1.79E−10

12 ctg7180001878331_16006_SAG 67415693 A G 0.411 − 0.008 0.001 3.95E−10

12 ctg7180001589944_2780_SAC 67420787 C A 0.410 − 0.008 0.001 5.82E−10

12 ctg7180001917752_6118_SAG 68229784 A G 0.342 − 0.008 0.001 6.01E−09

12 ctg7180001926810_6994_SGT 59975663 T G 0.445 − 0.008 0.001 8.58E−09

12 ctg7180001924417_6623_SAC 66355729 A C 0.178 − 0.010 0.002 1.38E−08

12 ctg7180001863800_134_SAC 54013376 C A 0.495 − 0.008 0.001 1.71E−08

12 ctg7180001930970_12364_SCT 34715679 C T 0.460 0.007 0.001 1.86E−08

12 ctg7180001787629_3714_SGT 63703424 G T 0.441 − 0.008 0.001 1.92E−08

12 ctg7180001926810_5584_SCT 59974253 C T 0.435 − 0.008 0.001 2.17E−08

12 ctg7180001759831_1827_SCT 45916216 C T 0.364 − 0.007 0.001 2.33E−08

12 ctg7180001481690_187_SAG 73548289 G A 0.438 − 0.008 0.001 3.22E−08

12 ctg7180001912956_2486_SGT 36748230 T G 0.416 − 0.007 0.001 3.25E−08

12 ctg7180001926810_6801_SAG 59975470 A G 0.444 − 0.007 0.001 3.28E−08

12 ctg7180001899463_4736_SCT 45925520 C T 0.365 − 0.007 0.001 3.78E−08

12 ctg7180001874153_6984_SAC 59968424 C A 0.444 − 0.007 0.001 3.82E−08

12 ctg7180001903261_15275_SCT 36741726 T C 0.419 − 0.007 0.001 4.80E−08

12 ctg7180001802518_8127_SAG 38630722 G A 0.264 − 0.008 0.002 5.60E−08

12 ctg7180001895532_9980_SAC 52536172 C A 0.150 − 0.010 0.002 8.47E−08
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low heritability estimates for these indicator traits of 
feed efficiency, but this study included few families, 
and thus if a putative QTL does exist in the population 
it might not be represented in the 23 families analyzed. 
This means that a larger number of families should 
be studied, which might increase the number of hap-
lotypes represented in the data and increase the pos-
sibility to accurately pinpoint the position of a QTL. 
Moreover, with strong family structures, long stretches 
of the same haplotype that are identical-by-descent 
[21] are likely to occur, which can result in the wide 
peaks, and in reducing the probability of finding signif-
icant SNPs for the indicator traits IFCR/IFER in these 
data.

With few but large families, our dataset is appropri-
ate to detect QTL but not to fine map them, since longer 
DNA segments surrounding the QTL may be significant. 
For the traits for which significant QTL were detected, 
the shape of the QQ-plots (Fig. 3a–f) can be explained by 
the substantial linkage disequilibrium (LD) in the popu-
lation as a result of the limited effective population size. 
For AAC (Fig.  3g) and the IFCR/IFER traits (Fig.  4a–d) 
for which no significant QTL were found, the shape of 
the QQ plots was as expected.

RNAseq analysis
To assess the effects of ALC and ALN on gene expres-
sion, we sequenced RNA from the liver of 184 fish, which 
represented a subset of all the families included in this 
experiment. Regression analysis using ALC as a covari-
ate identified 799 TAG with positive associations of gene 
expression and ALC and 741 TAG with negative asso-
ciations (FDR corrected p-value (q) < 0.05). For ALN, we 
identified 900 TAG with positive associations and 978 
TAG with negative associations (q < 0.05). Three hundred 
and seventeen genes were shared among the TAG with 
positive associations between ALC and ALN and 281 
TAG were shared among the TAG with negative associa-
tions (Fig. 5a).

KEGG enrichment analysis of the positive and nega-
tively associated TAG revealed more enriched KEGG 
pathways (p < 0.05) among the positively associated 
TAG (59 for ALC and 88 for ALN) than among the neg-
atively associated TAG (24 for ALC and 35 for ALN). 
All TAG and enriched KEGG pathways are in Addi-
tional file  1: Table  S1 and Additional file  2: Table  S2 
respectively. “Proteasome” was the most enriched path-
way for both ALC and ALN. Since the stable nitrogen 
and carbon isotopes ingested by the fish were mainly 
in the form of protein, higher proteasome levels likely 

Table 1  (continued)

Trait Chr SNP Base pair A1 A2 Freq b se p

ALN 9 ctg7180001820745_5080_SAG 23240272 G A 0.202 0.034 0.005 1.71E−10

9 ctg7180001604256_10823_SAG 23113694 G A 0.157 0.037 0.006 3.95E−10

9 ctg7180001902776_3165 44544043 A G 0.030 − 0.082 0.013 1.00E−09

9 ctg7180001297112_1053_SAC 44743511 C A 0.029 − 0.079 0.013 3.51E−09

9 ctg7180001846444_1581_SAG 27624708 G A 0.050 − 0.060 0.010 3.64E−09

9 ctg7180001898949_10269_SAG 22638682 A G 0.481 − 0.027 0.005 6.84E−09

9 ctg7180001841823_6182_SGT 27830435 G T 0.050 − 0.059 0.010 8.19E−09

9 ctg7180001841823_8622_SAG 27832875 A G 0.051 − 0.058 0.010 9.34E−09

9 ctg7180001897675_6237_SCG 26358698 C G 0.050 − 0.058 0.010 1.04E−08

9 ctg7180001841302_7076_SGT 21739695 T G 0.192 0.033 0.006 1.28E−08

9 ctg7180001841302_7054_SGT 21739717 G T 0.184 0.033 0.006 1.39E−08

9 ctg7180001516979_6848_SCT 26634813 T C 0.050 − 0.058 0.010 1.54E−08

9 ctg7180001905112_13597_SAC 25462494 C A 0.061 − 0.052 0.009 1.57E−08

9 ctg7180001516979_7200_SCT 26635165 C T 0.050 − 0.057 0.010 2.04E−08

9 GCR_cBin3500_Ctg1_117 27426856 C G 0.081 − 0.044 0.008 3.60E−08

9 ctg7180001927229_6536 84462126 A G 0.448 0.027 0.005 4.58E−08

9 ctg7180001905111_1804_SAC 25477875 C A 0.062 − 0.050 0.009 4.77E−08

9 ctg7180001322796_3617_SGT 50798901 G T 0.113 − 0.037 0.007 6.77E−08

9 ctg7180001796082_675_SAC 19872408 C A 0.148 − 0.035 0.006 7.31E−08

SNPs are ranked within trait and chromosome. Significant associations that are common between traits are indicated in italic characters

A1: reference allele; A2: alternative allele; Freq: frequency of A1; b: SNP effect (the effect of increasing the genotype with one extra reference allele) with associated 
standard error (se) and p-value (p)
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accelerate the breakdown and incorporation of stable 
isotopes in tissues of the fish. Another highly enriched 
pathway for both traits was the “TCA cycle”, which is 
central to carbon metabolism and converts carbon 
from proteins, lipids, and carbohydrates into acetyl-
CoA for fatty acid and cholesterol biosynthesis and 
NADPH for a variety of cellular processes (Fig.  5b). 
Two amino acid metabolism pathways “Glutathione 
metabolism” and “Selenocompound metabolism” were 
positively associated with high ALC and ALN. Both 

glutathione and selenocysteine are key components 
of glutathione peroxidases, which represent a family 
of antioxidant enzymes involved in counteracting the 
negative effects of reactive oxygen species produced 
during oxidative phosphorylation [36]. In addition, 
we observed that the cholesterol biosynthesis path-
ways “Terpenoid backbone synthesis”, “Steroid biosyn-
thesis” and the fatty acid metabolism pathways “Fatty 
acid degradation” and “Fatty acid biosynthesis” were 
positively associated with ALC and ALN (Fig.  5b). 

a

b

Fig. 5  a Number of genes the expression of which was associated with atom % 13C liver (ALC) and atom % 15N liver (ALN) and b KEGG pathways 
enriched among positively (right) and negatively (left) associated genes for ALC (x-axis) and ALN (y-axis). Size indicates the number of genes in the 
KEGG pathway. The p-value cutoffs of 0.05 are indicated as red dashed lines
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Cholesterol and fatty acids are key components of cell 
membranes, and a higher activity of these pathways 
could contribute to a higher level of 13C incorporation 
in tissues. The pathways that were negatively associ-
ated with ALC and ALN, included several signaling 
pathways and also the “Autophagy” and “Mitophagy” 
pathways (Fig.  5b). Taken together, our results sug-
gest that individuals with high rates of liver carbon and 
nitrogen metabolism (ALC and ALN) convert protein 
from the feed into body tissue more efficiently, primar-
ily because of higher proteasome gene expression, but 
also because of elevated oxidative phosphorylation and 
lipid metabolism.

To identify potential genes that drive differences in 
gene expression that are associated with ALC and ALN, 
we cross-referenced our list of TAG within the quite large 
regions that were identified on Ssa9 and 12 and that har-
bored 2532 genes. Among these genes, 177 were in our 
list of TAG, of which seven are known transcription fac-
tors (TF) (Table 2). Four and three of these TF had sig-
nificantly (p < 0.05) negative associations with ALC and 
ALN, respectively, which agrees with our KEGG analysis 
that showed that negatively associated pathways were 
the most enriched in signaling pathways (Fig. 5b). Two of 
the TF belong to the FoxO family, which is involved in a 
range of physiological processes, including insulin signal-
ing, autophagy, and proteasome regulation [37].

Conclusions
In this study, we identified two important QTL for per-
formance of Atlantic salmon in freshwater, one for 
growth on Ssa9, and one for carbon metabolism in the 
liver on Ssa12. Carbon metabolism in the liver was 
closely related to FCR at the tank level. However, we were 
not able to accurately map the putative QTL. For the 
IFCR/IFER phenotypes that were derived from the ratios 

between the fraction of stable isotopes (15N and 13C) in 
muscle and growth, no convincing QTL were detected. 
Transcriptomic analysis revealed a positive associa-
tion of ALC and ALN with the ability to convert protein 
from the feed into body tissue more efficiently, primar-
ily through the increased expression of proteasome, lipid, 
and carbon metabolic pathways in the liver. In addition, 
we identified seven transcription factors that were asso-
ciated with ALC or ALN and that were located in the 
QTL identified.
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Transcription factor Gene ID Chr Start End ALCa ALNb

b1 q b1 q
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Gastrula zinc finger protein XlCGF26.1-like LOC106612579 9 106204316 106211994 − 0.13 0.02 − 0.09 0.29

Transcription factor SOX-4-like LOC106565395 12 52077963 52084651 − 0.26 0.04 − 0.33 0.06

Interferon regulatory factor 6-like LOC106565674 12 59247924 59255854 − 0.17 0.00 − 0.14 0.06
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