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ABSTRACT: 

In this study, we investigated N-cycling processes and N2O emissions along a hillslope (HS) and 

a hydrologically connected groundwater discharge zone (GDZ) in a subtropical forest ecosystem 

in southwest China, Tieshanping (TSP). The two landscape elements HS and GDZ differ 

fundamentally in eco-hydrological conditions, soil texture, organic carbon supply, pH 

(dominated by acid soils pH 4.0 - 4.5) and NO3
- 
concentration. The area has received high levels 

of long-distance transported nitrogenous compounds for several decades. Earlier studies by our 

research group showed high N2O emissions from the investigated plots, the highest emissions 

were measured from the hilslope (HS), while the groundwater discharge zone (GDZ) had lower 

emissions, possibly due to complete denitrification taking place in this zone where anoxic 

conditions prevailed over longer periods than in the HS. Accumulation of nitrite was also shown, 

and it was speculated that nitrite oxidation was retarded compared to ammonia oxidation.  

For this study Soil samples were collected from Tieshanping (TSP). DNA was extracted from the 

soil samples. Cloning was done to make plasmids, which were used as standards for the primers 

for each corresponding gene. Quantitative PCR was used to quantify the genes; by quantifying 

the genes, abundance of functional members at different sampling sites was revealed. In addition 

to this a microcosm experiment was performed, to analyze the denitrification activity from both 

HS and the GDZ soil samples. 

In the present study, I quantified functional genes that are involved in the nitrogen cycle, 

including genes coding for ammoniam oxidation (amoA of ammonia oxidizing bacteria; AOB 

and archaea, AOA); nitrite oxidation (nxrB),and denitrification (nirK, nirS, nosZ). 16S rRNA 

abundance was assessed as a general marker for bacterial abundance. In addition, sulphate 

reducing bacteria (dsrA) were quantified. Aim of this study was to see if there is correlation 

between abundance of N-cycle genes and N-transformation rates. It was hypothesized that 

nitrous oxide reductase (N2OR) was present at HS but was not expressed due to oxic anoxic 

transitions while the other enzymes (NIR, NOR) are not influenced. Nitrite oxidation was 

retarded in HS samples, for this reason it is assumed that amoA (ammonia oxidizers) abundance 
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will be higher than nxrB (nitrite oxidizers) abundance in samples where nitrite accumulates. 

Archaeal ammonia oxidisers will dominate (higher abundance) while there will be lower 

amounts of bacterial ammonia oxidisers due to low pH in this soil. GDZ has low organic 

material, and may not provide enough electrons for denitrification. It is hypothesized that the 

reductive force can be provided by the sulphate reducers.  

All genes showed highest abundance per gram soil in the heavily disturbed GDZ (formerly 

cultivated terraces), despite lower soil organic carbon content (1-4% w/w as opposed to 10-20% 

w/w in HS topsoil). Archaeal ammonia oxidizers (AOA) were more abundant than bacterial 

ammonia oxidizers (AOB) which  could be due to the low pH of these soils The results of the 

microcosm experiment (semi-automated robotic incubation system) were in accordance with the 

denitrification results observed from the molecular studies i.e. GDZ has high denitrification 

activity than HS (normalized to Carbon content). 

The reason for high abundance of genes in GDZ could be due to the presence stable anoxic 

conditions. N2OR is expressed under the stable anoxic conditions leading to lower N2O emission. 

Additional factors causing lower N2O emissions from the GDZ may be the higher soil pH (4.5 at 

GDZ versus 4.0 at the HS). We can conclude that the GDZ is the sink, where the microbial 

communities are more abundant.  

 

 

The work in this thesis was conducted in the Environmental Microbiology group of the 

Department of Chemistry, Biotechnology, and Food Science (IKBM) of the Norwegian 

university of Life Sciences (NMBU) in Ås, Norway. 
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1. .INTRODUCTION: 

1.1. Nitrogen cycle and N2O emission: 

The earth atmosphere contains layers of gases including 78% nitrogen, 21% oxygen and 1% of 

other trace amount of gases which protects all form of life on earth. The numerous trace amounts 

of gases in the atmosphere also include the green house gases (GHG), CO2, CH4, N2O, CH3Cl, 

which are added by both natural sources and human activities (Kasting and Siefert 2002). The 

natural sources include the wetlands, termites and the oceans.  Microbial processes (nitrification 

and denitrification) produce N2O which is considered to be an important GHG. Of the total 

global N2O emissions, it is estimated that 62% are from natural and agricultural soils (6 and 4.2 

Tg N yr-1, respectively; (Thomson, Giannopoulos et al. 2012) and denitrification is traditionally 

considered as the main source of these emissions (Ostrom et al 2010). Human activities like 

industries, agricultural, transportation are responsible for all increase in GHG emission (IPCC 

2007).  

Human activities influence the biogeochemical cycles, possibly the most seriously affected is the 

nitrogen cycle. Nitrogen is an important component of all living organisms and it composes 

nearly 6.25% of their dry weight. It is an important component of amino acids and nucleic acids 

and is essential for all biochemical process in organisms. Nitrogen is also known to be one of the 

growth limiting factor, even if water and appropriate climate condition are available to support 

life (Martinez-Espinosa, Cole et al. 2011). Nitrogen in the atmosphere (78% N2) is relatively 

stable; and in the atmosphere most organisms cannot use N2 directly because the triple bond 

between the two nitrogen atoms make the dinitrogen (N2) molecule inert, it must be fixed by 

microorganisms before it can be taken up by other organisms (Francis, Beman et al. 2007).  

Many biochemical pathways are involved in the different red-ox transformations of the nitrogen 

cycle, and several of these are unique to prokaryotic organisms. In addition to nitrogen 

compounds being transformed through biochemical reactions exerted by living organisms, also 

purely chemical, redox reaction take place. The biologically mediated transformations are shown 

in Fig. 1 below.  
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N2 is released into the atmosphere by anammox and denitrifying bacteria and the nitrogen is 

returned back to the cycle by nitrogen fixing micro organisms. Through these processes, the N2 

level in the atmosphere is kept constant (ca 78%). Important steps in nitrogen cycle include 

nitrogen fixation, nitrification, denitrification, anaerobic ammonia oxidation (Anammox) 

dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation. In the following 

sections the individual processes that comprise the nitrogen cycle are discussed in more detail.   

 

Figure 1.1 The nitrogen cycle, In the nitrogen cycle the microbial processes cycle nitrogen through the biologically 

available (NH4
+
, NO2

- 
and NO3

-
) and unavailable forms (N2). The oxidation state of each process is shown in 

parentheses (Thomson, Giannopoulos et al. 2012). 

 

1.2. Nitrogen fixation: 

Nitrogen is one of the most abundant elements in the atmosphere but is present as inert diatomic 

nitrogen gas (N2), which cannot be assimilated by any organisms and unless it is at first 

converted into reduced reactive nitrogen. There are only a few groups of prokaryote organisms 
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which are capable of fixing atmospheric N2, thus reducing it to biologically available ammonia 

(Galloway, Dentener et al. 2004). As mentioned in section (1.1) nitrogen fixation is the only 

biological process for returning back the nitrogen to the biosphere which is lost by the process of 

denitrification and anammox. Example of nitrogen fixing bacteria include aquatic organisms, 

such as cyanobacteria, free-living soil bacteria, such as Azotobacter, bacteria that form 

associative relationships with plants, such as Azospirillum, and most importantly, bacteria, such 

as Rhizobium and Bradyrhizobium, that form symbioses with legumes and other plants (Postgate 

1982). Nitrogen fixing microorganisms use the enzyme nitrogenase to catalyze the reduction of 

dinitrogen (Karl, Letelier et al. 1997). 

1.3. Nitrification:  

Nitrification is a two step process, in the first step oxidation of ammonia (NH3) into nitrite (NO2
-
) 

takes place. This step is carried out by ammonia oxidizing bacteria (AOB) and ammonia oxidizing 

archaea (AOA). This step is also known as the rate limiting step of nitrification. In a second step 

nitrite (NO2
-
) is oxidized to nitrate (NO3

-
) which is carried out by nitrite oxidizing bacteria (NOB). 

The first step oxidation of ammonia to nitrite, is again a two step process in which the ammonia is 

first converted to hydroxylamine (NH2OH) by the ammonia oxidizing enzyme ammonia mono-

oxygenase  (AMO) and in second step the hydroxylamine (NH2OH)  is then converted to nitrite 

(NO2
-
) by the hydroxylamine oxidoreductase (Francis, O'Mullan et al. 2003)  (De Boer and 

Kowalchuk 2001). Less is known about NO2
-
 oxidation as compared to NH3 oxidation; in this step 

the key enzyme is the nitrite Oxidoreductase (NXR) which converts NO2
-
 to NO3

-
. NO2

-
 oxidation 

step is fast and prevents the accumulation of toxic NO2
-
 (Zhu, Mulder et al. 2013). This process of 

nitrification occurs in many environments and is carried out by Chemolithoautotrophic microbes 

one such example is of waste water treatment, where the removal of ammonia is essential 

(Leininger, Urich et al. 2006).   

      NH3              NH2OH               NO2
- 
             NO3

- 

 Ammonia monoxygenase (AMO)         Nitrite  Oxidoreductase (NXR)  

Figure 1.2 Shows the process of nitrification with intermediate steps                                                          
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Nitrification in soil is important because it provides the plants with nitrate, but it can also lead to 

groundwater pollution due to leaching (Leininger, Urich et al. 2006). There are many factors 

which control the rate of nitrification. One of the major factors is the presence of oxygen since 

nitrification is an aerobic process. In soil the rate of oxygen diffusion depends on the pore size 

and moisture present in the respective soil (Schurgers, Dörsch et al. 2006). Another nitrification 

rate limiting factor is the availability of ammonia NH3 rather than ammonium NH4
+ 

(De Boer 

and Kowalchuk 2001). Yet another important controller of nitrification is pH. Nitrification is 

absent in highly acidic soils (although recently some nitrification activity has been observed in 

acidic soils) because low pH results in formation of NH4
+
 leading to unavailability of NH3. The 

optimal pH range for nitrification is 4.3 (at this low pH it is the archaeal nitrification that is 

important) to 7.5
 
(Yao, Gao et al. 2011).   

The ammonia oxidizers contain a membrane bound enzyme ammonia mono-oxygenase AMO, 

which catalyzes the oxidation of ammonia. The gene amoA encodes the subunit A of AMO 

enzyme and has been widely used as the molecular marker for studying AOB and AOA (Francis, 

O'Mullan et al. 2003). 

1.3.1. Ammonia oxidizing bacteria (AOB) and Ammonia oxidizing archaea (AOA): 

Chemolithoautotrophic ammonia-oxidizing bacteria (AOB) are important drivers of the nitrogen 

cycle; they aerobically oxidize ammonia to nitrate or nitrite. AOB is considered important as 

AOB are responsible for carrying out the first step of ammonia oxidation. Compared to other 

bacteria AOB are less diverse, show slow growth rate and are sensitive to acid (Jiang and 

Bakken 1999). Ammonia oxidizing archaea (AOA) are found to be more abundant in a wide 

range of soil as compared to AOB (Di, Cameron et al. 2010). Both AOA and AOB can 

contribute to loss of fertilizers, by converting the fertilizers like urea and ammonia to nitrite 

which can easily get washed away leading to pollution of water or can act as electron acceptor in 

denitrification (Purkhold, Pommerening-Roser et al. 2000)  

1.4. Denitrification: 

Denitrification is a dissimilatory process in which nitrate (NO3
-
) or nitrite (NO2

-
) is reduced to 

nitrogen gas (N2) through intermediate steps catalyzed by four different reductase enzymes 
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which are encoded by a respective gene. Denitrification is of special importance in the nitrogen 

cycle as it causes the loss of nitrogen from soil; moreover the intermediate products gaseous 

nitrogen oxides like nitrous oxide (N2O) and nitric oxide (NO) are produced which act as GHGs. 

The process is carried out by facultative anaerobic heterotrophic bacteria. Another importance of 

denitrification is that under oxygen limiting conditions the microbes switch from aerobic 

respiration to anaerobic respiration and start respiring nitrate. These gaseous oxides are the major 

product of denitrification and can act as electron acceptors in the absence of oxygen leading to 

anaerobic respiration (Knowles 1982).  Denitrification takes place through the following 

intermediates: 

              NO3-        
Nar           

NO2
-         Nir

        NO     
Nor

        N2O       
Nos 

       N2  

 

Figure 1.3. Shows the process of dentrification with intermediate products and the four reductase which are 

essential for denitrification  

The release intermediate product of nitrification and denitrification (N2O and NO) to the 

atmosphere can be explained by ״holes in the pipe model״. This model explains that N2O and NO 

are leaked to atmosphere due to overload of enzymatic capacity involved in the process of 

nitrification and denitrification. 

 

Figure 1.4 Holes in the pipe model, showing the process of nitrification and denitrification where N2O and NO 
are leaked to the atmosphere, due to excess of reactive nitrogen present (Philippot and Hallin) 

 

Denitrification enzymes: 
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There are four reductases (NAR, NIR, NOR, N2OR) which are involved in denitrification. If all 

of the four reductase are regulated and expressed, then there will be less toxic denitrification 

intermediate oxides (NO2
-
, NO, and N2O) (Zhu, Mulder et al. 2013).The position (membrane 

bound or in the periplasm) of denitrification enzymes in denitrifiers are shown in figure 1.4. and 

are further explained in the following sections . 

 

Figure 1.5 The position of denitrification enzymes in denitrifiers. Denitrification enzymes are highlighted in red. 

NAR and NOR are membrane-bound, whereas NAP, NIR and N2OR are in the periplasm. NAP: periplasmic nitrate 

reductase; NAR: membrane-bound nitrate reductase; NIR: nitrite reductase; NOR: nitric oxide reductase; N2OR: 

nitrous oxide reductase 

1.4.1. Nitrate reductase (NAR) 

Nitrate reductase is the first enzyme in the process of denitrification and catalyzes the reduction 

of nitrate (NO3
-
) into nitrite (NO2

-
) (Jacques, Burlat et al.). The activity of the nitrate reductases 

is rate limiting step in the process of denitrification.  

There are three forms of NAR, one assimilatory (Nas) and two dissimilatory forms, the 

membrane-bound respiratory form (Nar) which is expressed under anoxic or microoxic 

conditions; and second the periplasmic form (Nap) which can be expressed in aerobic conditions 

i.e. it is oxygen tolerant. NARs ability to be expressed under both aerobic and anaerobic 

conditions makes it of special interest (Bell, Richardson et al. 1990). NAR is a mononuclear 
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molybdenum enzyme; it is a member of the dimethylsulfoxide (DMSO) reductase family. In 

prokaryotic NARs molybdenum (Mo) is bound to a bis-molybdopterin guanine dinucleotide 

(MGD). The NARs are heterotrimeric and are composed of a Mo-MGD cofactor, an iron-sulfur 

(FeS) center, and either a FAD group in the case of Nas; a cytochrome b prosthetic group in the 

case of Nap; a cytochrome c group in case of Nar. A variety of electron donors are used by 

NARs including ferrodoxin, flavodoxin, and NADH for the Nas enzyme, quinones for the Nap 

enzymes, and quinols for the Nar enzymes (Carlisle, Yarnes et al. 2014).  

1.4.2. Nitrite reductase (NIR) 

Nitrite reductase (nir) catalyzes the reduction of nitrite (NO2
-
) into nitric oxide (NO). This step is 

of special importance as it differentiates the denitrifiers  from the nitrate respiring bacteria also 

both substrate the (NO2
-
) and the product (NO) are toxic, moreover the first gaseous product of 

denitrification is produced in this step (Zumft 1997).  

Nitrite reductase exists in two different structural types, the first type contains copper and is 

encoded by the gene nirK while the second type contains hemeC and is encoded by the gene 

nirS. Interestingly no functional difference has been found between the two structurally different 

nitrite reductases but both of them have never been found in the same organism  (Prieme, Braker 

et al. 2002)  

1.4.3. Nitric oxide reductase (NOR)  

Nitric oxide reductase belongs to family oxidoreductase, and catalyzes the reduction of nitric 

oxide (NO) to nitrous oxide (N2O). There are two types of NOR; qNor and cNor.  It is known to 

be the key enzyme involved in the production of nitrous oxide N2O, the GHG (Hino, Matsumoto 

et al. 2010). Bacteria use NOR enzyme to reduce NO which is toxic to them at high 

concentrations, NOR is not active in the presence of oxygen (Zumft 1997).  

NOR is a membrane bound enzyme which has a c-type cytochrome centre, and catalytic site with 

a high spin b-type haem and an adjacent nonhaem iron atom (Ferguson 1998). 

1.4.4. Nitrous oxide reductase (N2OR) 
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Nitrous oxide reductase belongs to the family oxidoredeuctase and catalyzes the reduction of 

nitrous oxide (N2O) to nitrogen (N2), the final step in the process of denitrification. This enzyme 

is of much interest because this is the only so far known biological mechanism that converts N2O 

to inert N2. It is a periplasmic enxyme and is considered to be more sensitive to O2 than the other 

denitrification enzymes. It is a homodimeric enzyme with one domain containing copper and 

protein CuAand the second domain consists of 7-bladed propeller of β-sheets, this makes up the 

catalytic site Cuz (Brown, Tegoni et al. 2000). 

1.5. Dissimilatory nitrate reduction to ammonia (DNRA): 

In the dissimilatory nitrate reduction to ammonia (DNRA) pathway NO3
-
 is reduced to 

ammonium (NH4
+
) under anoxic or microoxic conditions, at NO2

-
 reduction stage NO and N2O 

are emitted as byproduct (Kelso, Smith et al. 1997) (Mania, Heylen et al. 2014). The mechanism 

of DNRA is still not fully understood. 

Thus, DNRA and denitrification take place under the same environmental conditions (low 

oxygen pressure and presence of organic carbon and NO3
-
 or NO2

-
), so both processes are in 

competition for available NO3
-
. DNRA, which retains nitrogen in soils as (NH4

+
)  is considered 

to be the dominant process when the NO3
-
 is limited and organic carbon is present in excess, 

while denitrification is dominant when NO3
-
 is in excess and organic carbon is limited (Kelso, 

Smith et al. 1997). Both of these processes occur at the same time in anoxic environments, so it 

is difficult to distinguish their contribution to N2O emission.  

The difference between DNRA and denitrification is that in DNRA, NO2
-
 is reduced to NH4

+
 in 

just one reaction, in which six electrons are transferred. The reaction is catalyzed by a key 

enzyme respiratory cytochrome c NO2
- 
reductase known as NrfA (Mania, Heylen et al. 2014). 

1.6. Anammox 

Anaerobic Ammonium Oxidation (Anammox) is an important part of the nitrogen cycle in which 

nitrite and ammonia are converted into dinitrogen (N2) gas. Denitrification and anammox are the 

two important processes by which the fixed dinitrogen gas is returned to the atmosphere (Kartal, 

Maalcke et al. 2011).   
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Figure 1.6 Morphology of the anammox cell and proposed model for the anammox process (Ryabenko 2013) 

Anammox bacteria depend on other bacteria which provide ammonia and nitrite. It forms 

synergism with ammonia oxidizing bacteria (AOB) produce nitrite. As mentioned in section 1.2 

nitrification is a two step process. In the first step ammonia is oxidized to nitrite so the AOB 

bacteria provide the anammox with substrate nitrite and in turn anammox removes the toxic 

product nitrite for AOB  (Ding, Zheng et al. 2013). Ammonia and nitrite are limited in natural 

ecosystems, to get the nitrite substrate anammox and denitrifying bacteria compete with each 

other. Anammox are chemoautotrophs, one of the factor on which their survival rate depends is 

chemical oxygen demand (COD) concentrations in wastewater which is used to indirectly 

measure the organic carbon. When COD is low while nitrite is high than activity of anammox is 

not affected as anammox are strict anaerobes, as COD starts increasing than the denitrifiers will 

overtake and the nitrite will be used by them.  

1.7. Sulphate reducing bacteria (SRB) ։ 

Sulphate reducing bacteria (SRB) obtain energy by oxidizing organic compounds or molecular 

hydrogen while reducing sulphate (SO4
2-

) to sulphide (S
2-

) or hydrogen sulphide (H2S). SRB can 

support metal precipitation as sulphide and increase the alkalinity(Zhang and Wang 2014) The 

formation of sulphide causes corrosion and odour problems (van den Brand, Roest et al. 2014). 

Sulphate reducing bacteria (SRB) were of special interest for our study. There is a possibility that 

by quantifying this group, we could understand where the reductive power in the groundwater 

discharge zone at TSP comes from to drive the observed strong NO3
-
 sink. At TSP there is a 

strong observed sink for sulfate, so we speculated whether sulfide could play a role as reducing 

agent, somehow releasing electrons when ground water table moves up and down.  
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1.8. N2O as green house gas: 

Nitrous oxide (N2O), commonly known as the laughing gas is very stable and inert green house 

gas in the troposphere. N2O is known to be one of the three most important green house gases, as 

described in (IPCC, 2007). When this gas reaches the stratosphere it is broken down to NO 

(Conrad 1996). N2O is known to be the most destructive source of stratospheric ozone depletion 

(Ravishankara, Daniel et al. 2009). The atmospheric N2O concentration has increased about 20% 

over the past century and it is increasing by 0.25% each year (Martinez-Espinosa, Cole et al. 

2011). N2O study is of special interest, even though the concentration of N2O (0.3 ppmv) is less 

as compared to CO2 (387 ppmv). This is because it has global warming potential 300 times 

higher than that of carbaon dioxide and has a residence time of 120-150yrs in the atmosphere 

(Fields 2004) (Ravishankara, Daniel et al. 2009). Among the green house gases the contribution 

of N2O to global warming accounts for 10%, of which more than two thirds comes from 

microbial activity taking place in soil (Richardson, Felgate et al. 2009). 

 

Figure 1.7 Comparison of the ozone-depleting potential of different gases (Richardson, Felgate et al. 2009) 

 

 The N2O has become abundant in the atmosphere due to anthropogenic activities, rapid changes 

in agricultural practices, combustion of fossil fuels, and the human impact on the nitrogen cycle 

(Gruber and Galloway 2008). To save the ozone layer, it is important to control future emission 
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by anthropogenic activities of different ozone depleting gases. Especially N2O, because of its 

destructive potential (300 times more as compared to CO2) and its stable nature  (120-150yrs) 

(Ravishankara, Daniel et al. 2009).  

 

1.8 Proportions of total global nitrous oxide emitted by various sources and human activities. Adapted from 

data in the Contribution of Working Group III to the fourth assessment report of the intergovernmental panel on 

climate change, 2007. Eds B. Metz, O. R. Davidson, P .R. Bosch, R. Dave and L. A. Meyer. Cambridge, UK; New 

York, NY: Cambridge University Press. 

1.9.  Factors affecting N2O emission: 

It is possible to mitigate N2O emission factors. The emission of N2O from soil to the atmosphere 

by microbes is directly or indirectly affected by the factors which influence the rate of 

nitrification or denitrification.   

Two of the important factors which control the emission of N2O are the availability oxygen and 

water. In soil availability of oxygen to microbes depend on the structure of soil and on its pore 

size. If water is present in the soil it leads to water filled pores, leading to anoxic conditions 

because oxygen can’t diffuse from environment to soil and denitrification becomes dominant 

process. While if less water is present and soil is relatively dry, then it becomes oxic and 

nitrification dominates there (Schurgers, Dörsch et al. 2006).  Another master factor controlling 

the emission of N2O is the pH; the pH influences the rate of nitrification and denitrification in 

different ways. The rate of nitrification is found to be optimum at pH 6.5-8, some activity of 

nitrification has been observed in acidic soils as well. And denitrification is often found to be 

most favorable at neutral pH, and the rate increases with decrease in pH.  (ŠImek and Cooper 

2002).  one more factor controlling the N2O emission from soil is the use of nitrogen fertilizers, 
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which provide NH4
+
 and N to microbes leading to increase in rates of nitrification and 

denitrifcations which result in high N2O emissions (Beauchamp 1997).   

In addition to availability of nitrogen the emission of N2O is also influenced by the presence of 

carbon. In heterotrophic nitrification and denitrification, organic carbon C acts as the electron 

donor (Huang, Zou et al. 2004). In our study we considered alternative source for electron 

donation which will decrease the importance of C. We study the quantification of sulphate 

reducing bacteria, as their presence could indicate production of reduced forms of sulphur which 

may act as electron donors. 

1.10. Site description and previous studies :   

The catchment tieshanping (TSP), located about 25 km northeast of chonqing city, SW China 

(29°38'N 104°41'E) is of special interest as it is under increasing pressure of high nitrogen (N) 

deposition in recent decades The catchment is surrounded by lots of agricultural fields, therefore 

receiving N deposition from there. TSP site receives about 5 g N m
-2

 yr
-1

 through atmogenic 

deposition ((2/3 as ammonium), most of which is removed before discharge).  

The tieshanping (TSP) catchment is 16.2 ha headwater catchment, and for the current study 4.6 

ha sub-catchment was selected. This catchment consists of two landscape elements: one hillslope 

(HS) and one groundwater discharge zone (GDZ). In each of these landscape element, we set up 

a transect, T0 ,T1, T3, T5 donate the four spots top to the bottom of the HS and B2, B3, B5, B6 are 

four spots from the inlet to the outlet of the GDZ as shown in figure 1.6, from these spots the soil 

samples were taken (Zhu, Mulder et al. 2013). Both landscapes, HS and GDZ differ from each 

other in eco hydrological condition e.g. soil texture, moisture, organic carbon supply, pH and 

NO3
- 
concentration. The GDZ is covered with shrubs and grasses while trees taller than 2 m are 

absent. GDZ had a short history of vegetable production in 1960 but abandoned shortly after, 

Zhu and colleagues (2013).The mean annual temperature of TSP is 18.2 ˚C, higher rain fall about 

75% occurs in summer (average rainfall 2001-2003). 
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Figure 1.9 Location of Tieshanping (TSP) and sampling points in TSP. location of TSP sub-catchment in china 

shown in panel (a), and panel (b) shows the plots selected to collect the samples in TSP catchment, transect T (T1-

T5) is the hillslope (HS) and transect B (B1-B6) is the groundwater discharge zone (GDZ) (Zhu, Mulder et al. 

2013). 

TSP is considered to be a hotspot for N2O emission. Earlier field work has been done on TSP 

catchment to study emission of N2O. In previous studies anoxic incubations were made to study 

the process of denitrification. In situ 
15

NO3
-
 labeling experiment was conducted to compare the 

process of nitrification and denitrification. My goal was to focus on the molecular part and find 

correlation between abundance of N-cycle genes and N-transformation rates.  

 

 

 



Abundance of functional groups of nitrogen transforming microorganisms potentially involved in N2O emissions from a 

subtropical forested watershed in China 

  

14 
 

 

 

 

Aim of this study: 

As mentioned in earlier sections N2O is green house gas and its emission is a threat to our 

environment, and is known to be most effective in destroying the stratospheric ozone layer. Soils 

samples for my study were collected from subtropical forest ecosystem in southwest China, 

Tieshanping (TSP) which is known to be a hotspot for N2O emission. The current study 

continues from a study conducted previously by our group member Jing Zhu. In the previous 

study mainly field work and robot measurements plus the gas kinetics experiment were done. 

This study aimed to answer the following hypthesis։ 

i.  To see if there is correlation between abundance of N-cycle genes and N-transformation 

rates.  

ii. To study complete denitrification genes (gene nosZ, gene nirS, and gene nirK) 

abundance and to compare the denitrification genes abundance in HS and GDZ.  

iii. It is hypothesized that nitrous oxide reductase (N2OR) was present at HS but was not 

expressed due to oxic anoxic transitions while the other enzymes (NIR NOR) are not 

influenced. 

iv.  It is assumed that ratio of nos/nir would be higher in GDZ.  

v. Nitrite oxidation was retarded in HS samples, for this reason it is assumed that amoA 

(ammonia oxidizers) abundance will be higher than nxrB (nitrite oxidizers) abundance in 

samples where nitrite accumulates. 

vi. Archaeal ammonia oxidisers will dominate (higher abundance) while there will be lower 

amounts of  bacterial ammonia oxidisers due to low pH in this soil. 

vii. Low organic material is present at the GDZ, and may not provide enough electrons for 

denitrification. It is hypothesized that the reductive force can be provided by the sulphate 

reducers. 
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 The work was done in the following six steps: 

i. Extraction and purification of DNA 

ii. Optimizing the primers 

iii. Making of the plasmids 

iv. Quantifying the genes 

v. Measuring dry weight, carbon content, nitrate and nitrite concentrations.  

vi. Measuring gas kinetics of denitrification using the robotized incubation system. 
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2. MATERIAL AND METHODS: 

                  INSTRUMENTS            SUPPLIERS 

2720 Thermal Cycler (PCR machine) Applied Biosystems, CA, USA 

Delta 320 pH meter  Mettler Toledo AG, Greifensee, Switzerland 

Drying oven Termaks AS, Bergen, Norway 

  

Gel Doc XR system (with Quantity One 1-D 

 Analysis Software, ver. 4.6.7) 

 

 

Bio-Rad Laboratories, CA, USA 

 

Gel Doc XR system (with Quantity One 1-D 

Analysis Software, ver. 4.6.7) 

Bio-Rad Laboratories, CA, USA 

 

Electrophresis electricty supplier 

 

Bio-Rad Laboratories, CA, USA 

MiniSpin microcentrifuge  Eppendorf AG, Hamburg, Germany 

 

NanoDrop Spectrophotometer ND-1000  

 

 

Nanodrop Technologies, Thermo Fisher 

Scientific, MA, USA 

Plate Spin II centrifuge (cooling centrifuges) kubota 

SpeedVac Concentrator (vacuum centrifuge) speedvac Savant Instruments Inc., NY, USA 

 

Qubit Fluorometer  

 

Invitrogen, Life Technologies, CA, USA 

 

StepOnePlus Real-Time PCR System (with 

StepOne Software v2.0) QPCR 

 

Applied Biosystems, Life Technologies, CA,USA 

Bead beating machine 

 

AB applied biosystems 
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Incubator with and without shaker provocell 

 

Water bath 

 

thermo scientific 

 

 

LABORATORY EQUIPMENTS SUPPLIERS 

Pipette tips 

 

Thermo Scientific 

 

Eppendorf tubes 

 

Axygen 

 

Glass beads 

 

Sigma 

 

Syringes 10ml-50ml 

 

Plasti Pak 

Various glass equipments 

 

Labsystems 

 

Petri dish 

 

 

Spatula 

 

 

Beakers 

 

 

Measuring cylinde 

 

 

Funnels  

 

 

                       KITS                   SUPPLIERS 

DNA purification kit 

 

zymo research 

Gel extraction kit 

 

Promega 

 

Plasmid extraction kit 

 

Qiagen 

 

TA cloning kit Invitrogen 
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CHEMICALS SUPPLIERS 

10 mg/mL ethidium bromide VWR International, PA, USA 

96% ethanol Kemetyl Norge AS, Vestby, Norway 

Acetic acid Merck KgaA, Darmstadt, Germany 

Agar merck 

 

Amphicillin sigma 

 

Calcium chloride, dihydrate (CaCl2 · 2H2O) Merck KgaA, Darmstadt, Germany 

Chloroform Merck KgaA, Darmstadt, Germany 

Ethylenediaminetetraacetic acid (EDTA Sigma, Sigma-Aldrich, MO, USA 

Gel red  Sigma  

Isoamyl alcohol Merck KgaA, Darmstadt, Germany 

Potassium nitrate (KNO3) Merck KgaA, Darmstadt, Germany 

Sodium chloride (NaCl) VWR International, PA, USA 

Sodium hydroxide (NaOH) Merck KgaA, Darmstadt, Germany 

Sodium iodide (NaI) J.T.Baker, Avantor, PA, USA 

Sodium nitrite (NaNO2) Merck KgaA, Darmstadt, Germany 

Trizma base Sigma, Sigma-Aldrich, MO, USA 

xgal  

 

 

2.1. PRIMERS: 

The primers were amplified by running PCR at different temperatures. The following primers 

were used in this study.  
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Table 2.1showing the primers used in this study 

Gene  primer  Primer sequence  Reference  

 16S  27F         AGAGTTTGATCMTGGCTCAG   (Weisburg, Barns 

et al. 1991),and 

(Muyzer, de Waal 

et al. 1993) 
518R  ATTACCGCGGCTGCTGG  

 nosZ  nosZ F   CGY TGT TCM TCG ACA GCC AG   (Henry, Bru et al. 

2006) 

nosZ1622R     CGSACCTTSTTGCCSTYGCG  (Henry, Bru et al. 

2006) 

 nirS  cd3aF  GTSAACGTSAAGGARACSGG  (Throback, Enwall 

et al. 2004) 

R3cd  GASTTCGGRTGSGTCTTGA   

nirK   nirK1F   GGMATGGTKCCSTGGCA  (Braker, Fesefeldt 

et al. 1998) 

 nirK5R   GCCTCGATCAGRTTRTGG  

amoA for Bacteria   amoA-1F   GGGGTTTCTACTGGTGGT     

(Rotthauwe, 

Witzel et al. 1997) 
amoA-2R  CCCCTCKGSAAAGCCTTCTTC [K= G 

or T; S = G or C]  

 dsr (dissimilatory 

sulfite reductase )  

DSR1F1
+
  ACSCACTGGAAGCACGGCGG     

Kondo 2004  
 DSR1-R   GTGGMRCCGTGCAKRTTGG  

 amoA for Archea  

   

cren amo_F 

(I)a  

 ATGGTCTGGCTAAGACGMTGTA  Hallam et al. 2006  

  Francis et al. 

2005  Arch-amoAR   GCGGCCATCCATCTGTATGT  

Nspira (16S Gene)  

   

 518F   CCAGCAGCCGCGGTAAT  (Webster, Embley 

et al. 2005) 

Nspira-705r   GGCCTTCYTCCCGAT  

Nspira (nitrite 

oxidoreductase 

gene) 

nxrB169F  TAC ATG TGG TGGAAC A  Pester et al. 2010  

   nxrB638R  CGG TTC TGG TCRATC A  
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BUFFERS: 

TAE, 50X                                      242g tris base 57.1ml acetic acid 100ml 0.5MEDTA pH8 final  

                                                      volume  

 

AGAR AND MEDIA: 

 S.O. C MEDIUM  

2g Bacto 
TM 

 tryptone 

0.5g Bacto
TM

 yeast extract 

0.075g Nacl (1M) 

0.019g Kcl  (1M) 

0.247 MgSO4 

60 ml dH2O 

Sterilized in an autoclave machine for 15mins at 115°C . 2ml glucose (1M after 

autoclaving), Add sterilized dH2O to 100ml. 

 

 LB medium and LB agar plates: 

10% tryptone- 10g 

0.5% yeast extract – 5g 

1.0% Nacl – 10g  

pH 7.0 

dissolve everything in 950ml water and adjust the pH to 7. Autoclave on liquid cycle for 

20mins for LB medium and for LB agar plates add 15g/L agar before autoclaving. 

 

 

 

 

 

3. METHODS: 
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3.1. Soil sampling: 

Soil samples were collected on sixth July 2013 by Peter Dörsch from a subtropical forest 

ecosystem in southwest China, Tieshanping (TSP). The upper 15 cm were sampled. Soil was 

collected from eight different spots, four from the hillslope (HS) labeled as T0, T1, T3 and T5 

and four from the ground water discharge zone (GDZ) labeled as B2, B3, B5, and B6. The soil 

was transported from China to Norway in cylinders, which were kept cold during the transport. 

In the lab soils were sieved (4 mm mesh size) and stored in closed plastic bags at 4 °C until use. 

Dry weight and carbon content of the samples were measured. The pH of soil from HS was and 

4.5 in GDZ. 

3.2.  Extraction of DNA from soil microbes:  

DNA can be extracted from soil bacteria either by direct soil extraction in which cells are lysed 

within the soil or by separating the cells from the soil before lysis (so-called “indirect 

extraction”). The advantage of the the direct extraction method is that the DNA is, at least 

theoretically obtained from the entire microbial community; the disadvantage is that the DNA is 

not only extracted from living microbes but also from dead microbes. Furthermore the DNA 

obtained will contain more impurities like humic acids, compared to when DNA is obtained from 

cells previously separated from the soil. Although the “indirect extraction” method provides 

purer DNA; it has a large disadvantage in that extracted DNA represents only 20% of the 

microbial community. The common important step in both methods is the lysis (Frostegard, 

Courtois et al. 1999). In the present thesis work I used the first method of direct DNA extraction, 

after extraction the impure DNA was purified. DNA was extracted and purified from the 

provided soil samples by following the procedure:  

Materials: 

 0.25g small glass beads, 0.25g middle glass beads and 1 big glass bead in a 2ml tube. 

 Phenol-chloroform-isoamyl alcohol (25:24:1) PH 8 

 Extraction buffer CTAB 

 Chloroform isoamyl alcohol 

 PEG 30% 
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 -18°C 70% alcohol  

 Dnase frees water 

Procedure: 

i. 0.25g of soil was transferred to 2ml tubes containing the beads 

ii. 0.25ml of phenol and 0.25ml of chloroform isoamyl alcohol was added to the tubes 

followed by o.5ml of CTAB buffer. 

iii. Samples were lysed at speed 6.0 in BIO101 fast prep FP120 for 2X45 (with 60 sec on 

ice in between) 

iv. Samples were centrifuged at 16 000g (14.600 rpm) for 5 min at 4 °C  

v. 400 µl of the supernatant (aqueous phase) was carefully transferred to new tubes on 

ice 

vi. To remove the phenol, 400 µl (equal volume) of chloroform-isoamyl alcohol (24:1) 

was added and the samples were centrifuged at 16000g (14.600 rpm) for 5mins at   4 

°C  

vii. The aqueous phase was carefully transferred to new tubes on ice (avoiding the 

interphase ). 

viii. 800 µl of 30% PEG solution was added to the aqueous phase in order to ppt. the 

nucleic acid. The tubes were placed on ice for 2hours. 

ix. The tubes were centrifuged for 20mins at 16000g (14.600PM) at 4 °C 

x. The supernatant was discarded and the pellets were washed with 0.5ml of 70% ice 

cold (-18 °C) ethanol. 

xi. The tubes were centrifuged for 5mins, 16000g (14,600rpm) at 4 °C. 

xii.   The supernatant was discarded (this step was done carefully to avoid losing the 

pellets, as they were lose) and the tubes were dried in the vacuum drier. 

xiii. The pellets were re suspended in 100 µl dH2O. 

xiv. The concentration of DNA was measured by nanodrop method. 

xv. The DNA was stored at -20 °C. 

DNA purification kit: 

Following two DNA purification kits from two different suppliers were tried 
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 Promega 

 Zymo research 

The DNA purification kit from zymo research gave the best results.  

Procedure: 

a) In a 1.5ml micro centrifuge tube 2Volumes of ChiP DNA Binding Buffer to each volume 

of DNA sample was added 

b) The mixture was transferred to a provided Zymo-Spin
TM 

IC-XL column in a collection 

tube. 

c) The Zymo-spin with collection tube was centrifuged and the flow through was discarded. 

d) 200 µl of wash buffer was added to the column and was centrifuged for 1 minute. The 

step was repeated. 

e) 50µl of water was added directly to the column matrix and left on bench for 1 minute, 

and then the column was centrifuged in clean 1.5ml micro centrifuge tube for 30 seconds 

to elude the DNA. The DNA was stored at -20 °C. 

The optimizing annealing temperature of the primers was found by using the extracted 

DNA and by running PCR reactions.  

 

3.3. PLASMID PREPARATION: 

3.3.1. Polymerase chain reaction: 

PCR is a technique that exponentially amplifies targeted sequences of DNA in vitro through 

using the enzymatic replications. It is the most commonly used technique due to its speed (fast), 

simplicity, specificity and sensitivity. There are three major steps in a PCR, (i) Denaturation 

(94°C) in which the double stranded dsDNA melts resulting in single stranded ssDNA. (ii) 

Annealing (~54°C) in which the primers anneasl to the complimentary template strand. And (iii) 

The extension (~72°C) in which the polymerase initiate the replication of DNA fragmented 

located between the primers by adding deoxyribonucleoside complementary to the corresponding 

template base in a 5’ to 3’ direction. These three steps complete one PCR cycle and in most cases 
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the cycles are repeated until sufficient amount of DNA concentration is reached (35-40cycles).  

In this study we used the PCR for amplifying the primers to find the annealing temperature and 

amplified the DNA to make the plasmids for cloning purposes.                                                                                         

Procedure: 

 The PCR was performed using the protocol provided by the supplier, in a 25 µl tube 

containing the following reagents: 

 Master mix for Omega: 

Reagent volume 

DNA template 2 µl 

5X PCR buffer 5 µl 

dNTPs 2µl 

Primer forward reverse 1µl 

 

Primerreverse 

 

1µl 

Taq polymerase 0.2 µl 

Mgcl2 2 µl 

Sterile water 11.8 µl 

Total volume 25 µl 

 The reagents were mixed and the reaction mixture was placed in a thermal cycler. The 

typical setting for the cycler were as follow: 

PCR settings: 

    Temperature       steps       time       cycles 
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95°C 

 

Intial denaturation 

 

5 mins 

 

      

 

 

 

35 cycles 

 

94°C 

 

Denaturation 

 

30 sec 

 

55*°C 

 

Annealing 

 

40sec 

 

72°C 

 

Extension 

 

40sec 

 

72°C 

 

Final extension 

 

40sec 

 

4°C Storage ∞ 

*this temperature of annealing was varied and adjusted according to the primers used. 

 

3.3.2. Agarose gel electrophoresis: 

Agarose gel electrophoresis is a technique in which DNA fragments are separated according to 

its size in an electric field. The phosphate backbone of the DNA or RNA is negatively charged so 

when placed in an electric field the DNA will migrate towards positively charged anode. The 

separated DNA fragment can be visualized under the UV light either by staining with appropriate 

dye or by adding a dye into the gel while making it (Lee, Costumbrado et al. 2012). 

Preparation of 1% agarose gel: 

Materials: 
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Ultra pure 
TM

 agarose 

1 x TAE buffer 

Gel red 0.4 µl 

Procedure: 

 1% agarose solution was prepared by dissolving 0.4 g of agarose in 40 ml of TAE buffer. 

This was then heated in the microwave to dissolve the agarose in TAE buffer. 

 Prior to casting 0.4 µl of gel red was added to the agarose solution and mixed well. The 

solution was then poured into a gel rack where combs were inserted to make the wells. 

 The gel was left for 30 minutes to solidify. The combs were removed and the gel was 

placed in electrophoresis chamber which was filled with 1 X TAE buffer 

 6 µl of the ladder and 5 µl of the PCR product was added into the wells. This was run for 

40 minutes at 80 volts. The band was cut under the UV light in Gel doc machine.  

3.3.3. Purification of DNA  

Gel extraction kit was used to extract the DNA by following procedure: 

 The gel slice with the band cut was weighed and equal volume of binding buffer (XP2) 

was added. This mixture was incubated at 60° C until the gel completely melted. 

 The Hibind DNA mini column was placed in a collection tube. The DNA/agarose 

solution from first step is added to the HiBind DNA mini column and centrifuged at 

10,000x g for 1 min at room temperature. The flow through liquid was discarded and the 

HiBind DNA mini column was placed back into the same collection tube.   

 300 µlof binding buffer XP2 was added into the HiBind DNA mini column, and 

centrifuged at 13,000X g for 1 minute at room temperature. The flow through liquid was 

discarded and the HiBind DNA mini column was placed back into the same collection 

tube 

 700 µl of SPW wash buffer was added (diluted with absolute ethanol) to the HiBind 

DNA mini column  and centrifuged at 13,000 X g for 1 minute at room temperature, this 

was done in order to wash the HiBind mini column. The flow through liquid was 

discarded and the HiBind DNA mini column was placed back into the same collection 

tube 
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 In order to remove the ethanol centrifuged the empty HiBind DNA mini column for 2 

minutes at maximal speed ≥13,000 x g to dry the column matrix. 

 The HiBind DNA mini column was placed into a clean 1.5ml microcentrifuge tube. 50 µl 

of elution buffer was added to the matrix column and incubated at room temperature for 2 

minutes, this was centrifuged for 1 minute at maximal speed ≥13, 000 x g to elute the 

DNA. 

3.3.4. DNA Ligation: 

An important step in making of recombinant plasmid is to connect the insert DNA to the vector. 

This is done by the formation of a phosphodiester bond between 5' phosphate and 3' hydroxyl 

termini in double stranded DNA. This process is called ligation and is carried out by T4 DNA 

ligase enzyme. This enzyme repairs the “nicks” in the DNA at the expense of ATP which is 

usually provided in the buffer. 

 

 10 µl of ligation mix was set up as follow: 

 

Fresh PCR product   

 

Xµl 

10X Ligation Buffer                                                           1µl 

PCR®2.1 vector (25ng/µl)                                                 2µl 

T4 DNA ligase (4.0 Weiss units)                                       1µl 

Sterile water                                  to make up the total volume of 9µl 

Final volume                                                                         10µl 

 The formula below was used to estimate the amount of PCR product needed to ligate 

with 50 ng of PCR
 ®

2.1 vector: 
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X ng PCR product   =        (Y bp PCR product)(50ng PCR
®
2.1 vector)  

                                          (size in bp of the PCR 
®
2.1 vector:~3900) 

 

Where ,   

                X ng  =  the amount of PCR product and  

                Y bp =  base pairs to be ligated for a 1:1 (vector:insert) molar ratio. 

 The ligation mix was incubated at 14 °C for overnight. 

3.3.5. Transforming competent cells: 

The following protocol was followed to transform one shot® competent cells: 

 The vials containing the ligation reactions were centrifuged and placed on ice. The 

competent cells were thaw on ice, 50 µl vial of frozen one shot® competent cells were 

used for each transformation. 

 2µl of each ligation reaction was directly transferred by a pipette into the vials of 

competent cells; this was mixed gently by pipette tip. 

 The vials were incubated on ice for 30 minutes and the remaining ligation mix was stored 

at -20 °C. 

 The cells were heat shocked at 42 °C without shacking, and immediately were transferred 

back to ice. 

 250µl of room temperature S.O.C medium was added to each vial. 

 The vials were kept on a horizontal shaker at 37°C for one hour at 225rpm. 

 The vials were spread on LB agar plates containing X-gal and 50 µg / ml of ampicillin. 

Three different volumes of each vial were used 10µl, 50µl and 240µl on three different 

agar plates. The plates were incubated at 37°C overnight, and kept at +4 for 2-3 hours to 

allow proper color development. 

 

Analyzing Transformants: 
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 Ten white colonies were picked and transferred to 5 ml of LB broth containing 50 µg / ml 

ampicillin, this colonies were grown overnight on a shaker incubater at 37° C for plasmid 

isolation and restriction analysis. 

 Plasmid was isolated by following the provided procedure  

 

3.3.6. Real time-PCR (qPCR): 

Real time PCR as indicated by name is based on polymerase chain reaction where the DNA is 

amplified exponentially. The benefit of real time PCR over standard PCR is that it can detect 

DNA concentration after each cycle by using either fluorescent dyes or fluorescently tagged 

oligonucleotide probes. In our study we used the fluorescent dye syber green, which emints light 

signals when it bind to the dsDNA.  The fluorophore, fluorescent agents is added to the reaction 

mix, when it interacts with the PCR product fluorescent signals are emitted. Stronger signals are 

detected when there is more PCR product. Based on this signals amplification curve is generated. 

In this study we used qPCR to quantify the functional genes. 
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Figure 2.1 the basics of quantitave PCR (qPCR) by fluorescent dye syber green. The syber green molecules are 

free in the reaction mix, DNA denatures, primers aneal and syber green binds to dsDNA and emits light signals 

when intercalates between DNA base pairs.  

 

Procedure: 

 

 The qPCR was performed by following the protocol provided by the supplier. A typical 

reaction setup is shown in the table below: 

 

 

reagents 

 

volume 

 

Conc. 

Master mix 

 

10 µl 

 

 

Primer (forward) 

 

1 µl 

 

0.4µM *1 

 

Primer (reverse) 

 

1 µl 

 

0.4µM *1 

 

ROX 

 

0.4 µl 

 

1 X 
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H2O 

 

5.6 µl 

 

 

Final concentration 18 µl  

 The reagents were mixed, and placed in real-time pcr system step one plus 
TM 

 to get the 

standard, melting and amplification curves.
 

 

3.4. Robot measurements (semi-automated robotic incubation system) and the gas 

kinetics experiment: 

A robotized incubation system is used for phenotypic characterization of bacteria. We used this 

system for denitrifying bacteria. In this system gaseous metabolites and end products are 

measured at the end of transitions from oxic to anoxic conditions.  

This system consists of an automated sampler connected to a peristaltic pump for measurement 

of gas products by microbes. In addition, awater bath with temperature 0-40˚C. This incubation 

system at a time can accommodate fifteen 120 ml sealed serum bottles. This system consists of a 

program called python, which controls the incubation system as the GC, integrating the NO 

peaks and also organizes the data (Molstad, Dorsch et al. 2007). 

Measurement of nitrite NO2
-
 and nitrate NO3

- 
concentrations: 

For this purpose 0.5g of soil was weighed from each sampling point, 700µl of water was 

added, vortexed and this mixture was centrifuged. The supernatant was transferred into 

new eppendorf tubes. For nitrite measurement the reducing agent NaI (10mg NaI /ml 

acetic acid) was used and for nitrate measurement the reducing agent VCL3 (.8g of VCL3 

in 100ml of 1 M HCL) was used.  

Measurement of gas flux by using the robot (semi-automated robotic incubation 

system): 

The experiment was designed to test the denitrification activity of the TSP soil from both 

HS and the GDZ, a pre experiment was run on the robot to test the respiration rates and 

parallel flasks with volume 40ml were incubated for nitrite measurement. We used 10 g 
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fresh weight soil in 120ml vials to measure the gas kinetics over a period of 48h, 90h, 

170h and 210 h. Parallel sets of 12 ml vials with 3.3 g wet soil were prepared to measure 

the nitrite concentration at different time points 48h, 90h, 170h and 210 h. Moisture 

contents of all the vials were adujed to the same level by adding 1.5 ml of water in the 

120 ml vials and 0.5 ml of water in 12 ml vials. Soil nitrate contents were adjusted to the 

same level by using 1 ml of 0.1 M KNO3 in 120ml vials and 0.3 ml in 12 ml vials.  All 

incubations were done at temperature 20 ˚C. 
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4. Results: 

The main purpose of my thesis was to quantify the microbial community involved in emission of 

N2O in the atmosphere from a subtropical forest ecosystem in southwest China, Tieshanping 

(TSP). The abundance of the nitrifiers, Ammonia oxidizing bacteria (AOB) and Ammonia 

oxidizing archaea (AOA), for both the amoA gene was quantified and compared. The denitrifiers 

were quantified along the hillslope and in the ground water discharge zone. Denitrification was 

also studied by using gas kinetics measurements on a robotized incubation system.  

I had 24 real samples from eight different sampling points from TSP, China. Nine different 

primers were selected based on existing literature as mentioned in section 2.1. I made a plasmid 

for each of the primer and used these plasmids as my standards in qPCR. The following genes 

were quantified by qPCR. For total microbial estimate gene 16S, for denitrification the genes 

nosZ, nirS, nirK, for nitrification gene amoA (both from bacteria and archea), for nitrite oxidation 

gene nxrB and for sulphate reducing bacteria gene dsrA were quantified. 

4.1. DNA quality and quantity: 

Soils are difficult to extract the DNA due to the presence of inhibitors. Effort was put in DNA 

extraction and purification (by trying different extraction and purification methods), then the 

quality and quantity of DNA was measured by using the Nanodrop and Qubit method. DNA 

quality and quantity varied between the different samples. DNA with 260/280 ratio 1.7 or higher 

was preferred and samples with a ratio lower than1.7 were used only for a few cases (appendix 

table 1-3).   

 

4.2. Amplification of the primers and making of plasmids: 

Changes in PCR conditions were made like annealing temperature and template concentration 

for different primers.  After PCR, the primers were observed on the agarose gel for a specific 
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band for each primer (see index). Plasmids were made for each gene; the band was purified and 

again the agarose gel was run to check the specific band. Ligation was done and the ligation mix 

was spread on the agar plates and incubated at 37 °C as described in section (3.3.4). Successful 

ligation of the PCR product into the plasmid resulted in white colonies, which comprised 

approx.10%-15% of the total number of colonies. Blue colonies, which theoretically should not 

contain any insert, were discarded. For each insert, 10 white colonies were picked randomly and 

further incubated. The plasmids were extracted and analyzed on agarose gel. If a band of the 

expected size was present, the extracted plasmid was sent for sequencing. A plasmid containing 

the correct sequence was used to construct the standard curve. 

4.3. Abundance of the 16S rRNA gene:  

To estimate the size of the total prokaryote community in the soil samples, the 16S rRNA gene 

was quantified using qPCR. As seen from Fig. 4.1 the abundance of this gene per g dry soil 

increased along the HS with gene copies around 1.5*10
8
 in T0 T1 and T3, abundance of gene per 

g dry soil was highest in GDZ with 1.0*10
9
 in T5 as well as in all GDZ samples.  The efficiency 

of the qPCR was 91.1% and the R
2
 was 0.994 

 

Figure4.1 Number of prokaryote organisms estimated by by qPCR of the 16S rRNA gene T0 T1 T3 and T5 

symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different sampling 

point along the GDZ. 

 

4.4. Quantification of nitrifying organisms: 
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4.4.1. AOB and AOA : 

Oxidation of ammonia can be carried out by two different groups of prokaryotes;  ammonia 

oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA), The gene amoA, encoding the 

enzyme ammonia monooxygenase was quantified for both groups of organisms. It was found 

that amoA genes from AOA were more abundant with gene copies around 5.0*10
7
 in GDZ as 

compared to AOB with gene copies around 400 in GDZ (Figure 4.2a and b). Three replicate 

samples, taken from different squares, were analysed for each of the sampling points in the HS 

and GDZ. In addition the repeatability and reliability of the QPCR was investigated by analyzing 

the technical replicates (taken from the same soil sample) for the amoA gene in Archaea, which 

showed that the real time PCR technique was repeatable and reliable. The efficiency of the 

QPCR was 87.907% and R
2 

0.998 for bacteria, the efficiency of the QPCR was 82.3% and R
2 

0.992 for archaea 

 

a.                                                       b.  

  

Figure4. 2 Quantification of amoA gene for bacteria (graph a) and archaea (graph b) from hill slope (HS) and 

ground water discharge zone (GDZ) samples.  There is an increase in nitrification gene copy number amoA gene 

for bacteria and archaea from hillslope to groundwater discharge zone. amoA gene for archaea (AOA) are more 

abundant as compared to amoA gene for bacteria (AOB). T0 T1 T3 and T5 symbolize the different sampling point 

along the HS while B2, B3, B5 and B6 symbolize the different sampling point along the GDZ 

4.4.2. Nitrite Oxidation: 
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The abundance of the gene nxrB, which encodes the enzyme nitrite oxidoreductase responsible 

for the oxidation of nitrite to nitrate in nitrite oxidizing bacteria, was studied. The nxrB gene was 

quantified and its abundance was compared in HS and GDZ. The abundance of  nxrB gene 

increased from HS (at sampling point T0 the gene copies around 5 1.0*10
5
) towards the GDZ (at 

sampling point B6 the gene copies observed were around 1.0*10
7
 )  as shown in Fig.4.3.  

 

Figure 4.3 The number of nxrB  gene copies from Hill Slope (HS) and Groundwater Discharge Zone (GDZ) 

samples. There is an increase in nxrB gene copy number from HS to GDZ. T0 T1 T3 and T5 symbolize the different 

sampling point along the HS while B2, B3, B5 and B6 symbolize the different sampling point along the GDZ 

 

The ratio between gene amoA and gene nxrB for the different samples showed that gene amoA 

(archaea ammonia oxidizers) is highr as compared to nxrB (nitrite oxidizers) at HS as compared 

to GDZ as shown in graph 4.3.1. 
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Figure 4.3.1 Ratio between gene amoA and gene nxrB, different samples showed that gene amoA (archaea 

ammonia oxidizers) is highr as compared to nxrB (nitrite oxidizers) at HS as compared to GDZ. T0 T1 T3 and T5 

symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different sampling 

point along the GDZ. 

 

Ratio of functional genes amoA (bacteria and archaea)and nxrB  to 16S rRNA was analyzed. 

This was done to see the abundance of functional community to the total microbial community. 

The results showed that the abundance of functional genes were higher in ground discharge zone 

(GDZ) as compared to the hillslope (HS) (appendix).  

 

4.5. Denitrification: 

The abundance of the genes nosZ, nirS and nirK genes involved in denitrification, increased from 

the HS towards the GDZ. This trend was similar for the three genes, but the gene copy numbers 

were much lower for the gene nirK with gene copies around 5.00*10
5
 in HS and 5.00*10

6
 in 

GDZ compared to gene nosZ with gene copies around 5.0*10
6
 in HS, 2.05*10

8
 in GDZ and nirS 

with gene copies around 1.0*10
6
 in HS, 1.0*10

8
 in GDZ. Among all the genes of denitrification, 

the gene nosZ, encoding the  N2OR, is of special interest since this enzyme is the only known 

enzyme that reduces N2O.  nosZ the efficiency of the QPCR was 97.45% and R
2 

 0.998, nirK the 

efficiency of the QPCR was 80.01% and R
2 

0.999. nirS the efficiency of the QPCR was 81.1% 

and R
2 

0.995 
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a.                                                                b.                                                                                                                

 
               c. 

 
Figure 4.4  The number of denitrification gene copies from Hill Slope (HS) and Groundwater Discharge Zone 

(GDZ) samples. There is an increase in denitrification gene copy number (part a nosz, part b nirs, part c nirk) from 

HS to GDZ. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 

symbolize the different sampling point along the GDZ 

Ratio of denitrification genes (nosz, nirs, nirk) to 16S rRNA was analyzed. This was done to see 

the abundance of functional community to the total microbial community. The results showed 

that the abundance of denitrification genes were higher in ground discharge zone (GDZ) as 

compared to the hillslope (HS) (result shown in appendix).  

 

4.5.1. Ratio of nos and nir: 

 The ratio of nos/nir was declining from HS towards the GDZ. As it has been seen in graph 4a 
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opposite case. Higher ratio of nos/nir at HS indicate that, at HS more bacteria harbor gene nosZ 

as compared to gene nirK. 

 

Figure4. 5 Ratio of nosZ/(nirK+ nirS). Graph showing the ratio of nosZ/(nirK+nirS) ratio, from this ratio we can 

predict high copies of gene nosZ at hillslope (HS) as compared to ground discharge zone (GDZ). T0 T1 T3 and T5 

symbolize the different sampling point at HS while B2, B3, B5 and B6 symbolize the different sampling point at 

GDZ. 

4.6. Sulphate reduction: 

The reason to quantify gene dsrA was to understand where the reductive power in the 

groundwater discharge zone at TSP comes from to drive the observed strong NO3
- 
sink. 

Sulphate reducing bacteria are increasing along the hillslope to the ground water discharge 

zone. High numbers of sulphate reducing bacteria are found in the GDZ (at sampling point 

B6 the gene copies observed were around 1.0*10
8
) as seen in graph 6. The efficiency of the 

qPCR was 104.40% and R
2 

was0.98. 
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Figure4. 6 The number of gene dsrA copies from Hill Slope (HS) and Groundwater Discharge Zone (GDZ) 

samples. There is an increase in gene dsrA copy number from HS to GDZ. T0 T1 T3 and T5 symbolize the different 

sampling point along the HS while B2, B3, B5 and B6 symbolize the different sampling point along the GDZ 

Ratio of genes dsrA to 16S rRNA was analyzed. This was done to see the abundance of sulphate 

reducing bacteria (SRB) to the total microbial community. The results showed that the 

abundance of SRB genes were higher in ground discharge zone (GDZ) as compared to the 

hillslope (HS) (result shown in appendix).  

 

4.7. Carbon and nitrogen content measurement: 

Carbon and nitrogen content measurement showed the same fluctuating trend. Although 

concentrations of carbon was higher as compared to nitrogen. Higher concentrations were 

observed in HS as compared to GDZ. Graph 7 shows the varying concentration of carbon and 

nitrogen in all 8 sampling points (3 replicates from each sampling point in total 24 samples) 
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Figure 4.7 Carbon and nitrogen content measurement at the sampling site, the figure shows the varying 

concentration of carbon and nitrogen in all 24 samples. Carbon concentration is higher as compared to nitrogen at 

first sampling points in hillslope (HS) but the concentration of carbon and nitrogen is not much different in ground 

discharge zone (GDZ)  

 

Higher carbon to nitrogen ratio indicates lower nitrogen as compared to carbon, figure 12 shows 

that C/N is high in GDZ as compared to HS.  
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Figure4. 8 carbon to nitrogen ratio, increase in carbon to nitrogen ratio was observed from hillslope (HS) to the 

ground discharge zone (GDZ) exception seen at first sampling point in HS where the ratio is observed to be very 

high. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 

 

4.8.  Nitrate (NO
-
3) measurements:  

Nitrate is produced by nitrification in a two step reaction, ammonium oxidation to nitrite by 

ammonia oxidizing bacteria and archaea, followed by oxidation of nitrite to nitarte. Nitrate is 

consumed anaerobically during denitrification and dissimilatory nitrate reduction to ammonium 

(DNRA). Nitrate concentrations were measured at the start of the incubations of the flasks. No 

significance difference in nitrate measurement was seen between the HS and GDZ (on average 

70mgN/L both in HS and GDZ); high concentration of nitrate was seen at Riparian zone (T5 

90mgN/L and B2 100mgN/L) points between the HS and GDZ as shown in graph 9. 
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Figure4. 9 nitrate measurement, no significance difference in nitrate measurement was observed between the 

hillslope (HS) and ground discharge zone (GDZ), high concentration of nitrate was seen at Riparian zone (T5 and 

B2) points between the HS and GDZ.  T0 T1 T3 and T5 symbolize the different sampling point along the HS while 

B2, B3, B5 and B6 symbolize the different sampling point along the GDZ 

Nitrite (N2O
-
) measurement:  

Nitrite measurements were done in parallel with the robotized incubation system. Samples from 

eight sampling points were measured (three replicates of each in total 24 samples). Measurements 

were taken after 48h, 90h, 170h and 210 h, with time there was seen a decrease in nitrite 

concentrations (figure 14). ). The conditions maintained in the small flasks used for nitrite 

measurement were one third of the big flasks used in the robotized incubation system (section 

3.4).  Overall the nitrite concentrations were very low, and there was no significance difference 

between HS and GDZ, there was observed a slightly higher nitrite concentration in GDZ as 

compared to the HS, this could be because nitrate reduction rate is higher in GDZ as compared to 

HS. Higher nitrite at GDZ is also in accordance with the dentrification results (higher 

denitrification at GDZ) from both molecular and functional part.  
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Figure 4.10 Nitrite (NO2
-
) measurement, nitrite measurements decreased with time. (along the x-axis the sampling 

point are in replicates as follow T0=1,2,3  T1=4,5,6  T3=7,8,9   T5= 10, 11, 12  B2=13,14,15  B3=16,17,18  

B5=19,20,21  B6=22,23,24) T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, 

B5 and B6 symbolize the different sampling point along the GDZ 

 

4.9. Robot measurements and the gas kinetics experiment: 

The rate of denitrification was studied in robotized incubation system; the flasks were made 

anaerobic by removing the oxygen and helium washed to maintain the pressure (section 3.4). 

Higher rate of denitrification was observed in the GDZ (at sampling point B5 0.4 micromol N h-

1-g-1 carbon was observed) as compared to the HS (at sampling point T0 0.15 micromol N h-1-

g-1 carbon was observed), this result is in accordance with the denitrification results observed 

from the molecular studies.  
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Figure4. 11 Rate of denitrification measured using an automated incubation system T0 T1 T3 and T5 

symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different sampling 

point along the GDZ. 

 

Gas kinetics Graphs։ 

In the previous kinetics studies slurries were used while in the current study we used soil. Gas 

kinetics Graphs for NO, N2O and N2 during incubation of soil under anoxic conditions showed as 

expected that N2O and NO reduction was less on the hillslope (HS) as compared to ground 

discharge zone (GDZ). Emission of N2 was observed to be higher in GDZ as compared to HS as 

seen in figure 4.12. 
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Figure 4.11 Gas kinetics Graphs for NO, N2O and N2 during incubation of soil under anoxic conditions. NO and 

N2O reduction was minimum on the hillslope (HS) as compared to ground discharge zone (GDZ).Emission of N2 

was observed to be higher in GDZ as compared to HS. T0 T1 T3 and T5 symbolize the different sampling point 

along the HS while B2, B3, B5 and B6 symbolize the different sampling point along the GDZ. 
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5. Discussion: 

 We investigated the abundance of functional genes involved in ammonium oxidation (amoA of 

AOB and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) in top soils from 

8 locations along the flow path spanning from hilltop to the outlet in the GDZ. 16S rRNA 

abundance was studied to estimate the total bacterial community present.  16S rRNA abundance 

was found to be higher in GDZ which was against the expectations. As on GDZ organic carbon 

concentration was low, and regular stream of water present.  But a slightly higher pH  was 

observed in GDZ in previous studies by Zhu  (Zhu, Mulder et al. 2013). All functional genes 

were normalized to 16S rRNA (appendix). 

As mentioned earlier that the emission of N2O from soil to the atmosphere by microbes is 

directly or indirectly affected by the factors which influence the rate of nitrification or 

denitrification. From previous studies it has been found that in the emission of N2O 

denitrifiaction plays a significant role as compared to nitrification. More than 71% of N2O 

emissions are from the process of denitrification (Zhu, Mulder et al. 2013). The exchange of 

gases between soils and atmosphere is due to the microbial activities and chemical process. It is 

not well understood that how the gas flux interact. The emission of N2O from soil is influenced 

by many environmental factors, soil conditions, pH, presence or absence of oxygen.  

5.1. Nitrification: 

Previous functional studies indicate that nitrite (NO2
-
)
 
oxidation was retarded at HS samples. 

This was the reason that we quantified the abundance of ammonia oxidizers (microbes that 

produce nitrite) and nitrite oxidizer (microbes that consume nitrite) by quantification of the 

relevant functional genes, gene amoA coding for for bacterial and archaeal ammonia 

monooxygenase and gene nxrB coding for the beta-subunit of nitrite oxidoreductase. The ratio 

between gene amoA and gene nxrB for the different samples showed that gene amoA (archaea 

ammonia oxidizers) is highr as compared to nxrB (nitrite oxidizers) at HS than at GDZ result 

shown in graph 4.3.1. Higher gene amoA abundance as compared to gene nxrB could be a reason 

for NO2
-
 accumulation at the HS.  
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For ammonia oxidizers, we studied the gene amoA both in archaea and in bacteria. We found out 

that AOA is more abundant as compared to AOB (figure 4.2) this could be because our soil was 

acidic and there is evidence that AOA play more important role in oxidizing ammonia in acidic 

soils as compared to AOB (Prosser and Nicol 2008).  

Rate of nitrification is controlled by several environmental factors, as explained in section 1.3. 

Nitrification is an aerobic process and is affected by the presence of oxygen (Schurgers, Dörsch 

et al. 2006). In previous studies higher N2O emissions were observed in lower O2 levels (Zhu, 

Mulder et al. 2013), this is because in lower O2 levels, nitrification genes are not fully expressed 

and intermediate products (NO,N2O) are emitted. Nitrification rate is also affected by the 

availability of substrate ammonia (NH3) rather than ammonium (NH4
+
)
 
(De Boer and Kowalchuk 

2001). Yet another important controller of nitrification is pH. Nitrification is absent in highly 

acidic soils (although recently nitrification activity by AOA group has been observed in acidic 

soils) because low pH results in formation of NH4
+
 leading to unavailability of NH3. The optimal 

pH range for nitrification is 4.3 (at this low pH it is the archaeal nitrification that is important) to 

7.5
 
(Yao, Gao et al. 2011).  

 NO and N2O emission by the process of nitrification are suggested to be due to incomplete 

oxidation of NH2OH or NO2
-
 or there accumulations. As explained earlier that higher ammonia 

oxidizers (gene amoA) abundance as compared nitrite oxidizer to (gene nxrB) could be a reason 

for NO2
-
 accumulation at the HS. 

5.2. Denitrification: 

In nitrogen rich soils when there is deficiency of oxygen the bacteria can switch to nitrate 

respiration. This happens in intermediate steps of nitrogen cycle. The disadvantage of this is that 

during this process the bacteria can produce environmentally hazardous gases like NO and 

N2O.Researchers are interested in N2O gas because N2O is known to be a potent green house 

gas; it is known to account for 0.03% of green house gas emission. Due to its radiative capacity 

its global warming potential is 300 times more as compared to carbon gas (Richardson, Felgate 

et al. 2009). 
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As mentioned in section (1.4) denitrification is the step wise reduction of nitrate or nitrite to N2 

several enzymes are involved and the intermediate steps are an important source of N2O 

emission. The nosZ gene encodes N2OR which is the most important enzyme that converts N2O 

to N2 (Bergaust, Bakken et al. 2011). nosZ abundance was observed to be higher at the GDZ as 

compared to the HS. One possible explanation for this could be that the N2OR is sensitive to the 

presence of oxygen (Bergaust, et al., 2011). On HS there is a frequent transition between oxic 

and anoxic states. incoming rain makes the HS slope anoxic and the water floats from the HS to 

the GDZ leading to oxic condiotions again. while the GDZ has stable anoxic conditions.  

Another important factor which can affect the process of denitrification is the pH, the soil pH in 

GDZ was found to be 0.5-0.6 units higher as compared to the HS. pH has a direct affect on 

denitrification (Liu, Morkved et al. 2010). Diffusion limitation in the denser GDZ soil can result 

in high dissolved N2O concentrations and promot nosZ expression.This was in accordance with 

our results i.e. higher denitrification activity at the GDZ as compared to the HS(Zhu, Mulder et 

al. 2013). 

N2O emissions in previous study were found to be higher from the hillslope than from the GDZ, 

which at first thought seems counterintuitive as HS is rich in organic material. Our results are in 

accordance with the previous study. We assumed that the nos/nir ratio was higher in the GDZ, 

but our result showed the opposite case. So this hypothesis was rejected.  

The ratio of nos/nir was declining from HS towards the GDZ. Thus, we can say that more 

bacteria harbor the gene nosZ then the gene nirK as seen in graph 5. The gene nosZ is higher in 

GDZ as compared to the HS (graph 4.5), but the nos/nir ratio indicates opposite case this ratio 

does not relate to the functional activity of the gene as seen in graph 4 a, c. One possible reason 

for this is that there is frequent transition between oxic and anoxic conditions at the HS, meaning 

that genes are not fully expressed. For genes to be completely expressed stable conditions are 

required. These unstable transitions between oxic and anoxic conditions influence the regulation 

of the genes at either the transcription level or at the post-trasncriptional levels, as discovered in 

early studies (Bergaust 2009). As mentioned earlier, N2OR is sensitive to the presence of 

oxygen. On HS there is frequent transition between oxic and anoxic states while the GDZ have 

stable anoxic conditions due to which the N2OR activity is higher at GDZ.  
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Toxic intermediate products (NO2
-
, NO, and N2O) of denitrification are emitted less at GDZ as 

compared to HS, because favorable conditions (stable anoxic conditions) for denitrification are 

present in the GDZ. Due to which all denitrification enzymes (NAR, NIR, NOR, N2OR) are fully 

expressed and reduction nitrate (NO3
-
) or nitrite (NO2

-
) to nitrogen gas (N2) is favored.  

Denitrification and nitrification rate was expected to be higher in HS as compared to GDZ but 

opposite case happened. This could be explained that stable anoxic conditions are present at 

GDZ. GDZ serves like a funnel where all the rain water from the HS is collected. In addition to 

water different microbes and nutrients (upper layer of soil) from the HS gather in GDZ, due to 

which the activity is higher in GDZ.  

 

As mentioned in Section 1.5 DNRA and denitrification are in competition for available NO3
-
. 

Both this process takes place under the same environmental conditions (anoxic environmet), so it 

is difficult to decide which process is responsible for N2O emissions. DNRA could be dominant 

at the HS, the where organic carbon is present in excess, while denitrification is dominant at 

GDZ where organic carbon is limited. For future studies, it will be interesting to see the genes 

which encode the key enzyme for DNRA (respiratory cytochrome c NO2
- 
reductase known as 

NrfA) and compare its abundance with the denitrification genes.  

5.3. Anammox:   

The reason to quantify anammox, was to predict if anammox are responsible for the 

disappearance of NH
3
. We tried to study the abundance of anamox in the soil, but did not get any 

success. This could be due to the reason that the soils samples were not collected from anoxic 

area; we collected the soil samples approximately 15cm deep. Anammox are strict anaerobes, to 

study the anammox we should have collected the soil samples from further deep layers.  

Ammonia is disappearing along the HS; anammox study can possibly explain the disappearance 

of ammonia along the HS. It will be very interesting for future studies to collect the soil sample 

from deep soil layers to study the anammox.  

5.4. Sulphate reducing bacteria: 
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The main reason to study the sulphate reducing bacteria (SRB) was to understand where the 

reductive power in the groundwater discharge zone at TSP comes from to drive the observed 

strong NO3
-
 sink. At the site there was a strong smell of H2S at the GDZ, indicating the presence 

of a strong reducing force. There was a strong observed sink for sulfate, so we speculated 

whether sulfide could play a role as reducing agent, somehow releasing electrons when ground 

water table moves up and down.  

As seen from our results that all the activities are higher at the GDZ as compared to the HS 

slope. It is being thought that the reducing force present in GDZ could be responsible for higher 

activities. Opposite was expected, as HS is rich in carbon or nutrient content so higher activity 

was expected at HS. This is something different from the typical thinking that every microbial 

activity is controlled by carbon, as we have seen that there is a high reducing force at the GDZ 

and low carbon content (DOC) but higher activity.  Furthermore there is lots of iron present at 

the site, predicted from the soil color. The sulfur reacts with the iron and forms pyrites, Iron is 

also a source of electron donor at the site. 

5.5. Robotized experiment (semi-automated robotic incubation system) 

We studied the process of denitrification also by robotized incubation, from robot study we can 

predict that rate of denitrification is higher in GDZ as compared to HS. This result is in 

accordance with the molecular part studied in the current study.  

With time there was seen a decrease in nitrite (N2O
-
) concentrations. Overall the nitrite 

concentrations were very low, and there was no significance difference in HS and GDZ, there 

was observed a slightly higher nitrite concentration in GDZ as compared to the HS, this could be 

because nitrate reduction rate is higher in GDZ as compared to HS. Higher nitrite at GDZ is also 

in accordance with the dentrification results (higher denitrification at GDZ) from both molecular 

and functional part.  

Slight increase in nitrate NO3 concentration was observed over time, this can be due to several 

reasons including that soil was vortexed (probably accessing NO3 not in equilibrium with the soil 

solution in situ) also soil dries out during storage leading to increase in concentration 

furthermore soil accumulates NO3 by mineralisation even at 4
o
C and soil was sieved quite a 

while ago, inducing extra mineralization. 
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There was observed a slightly higher nitrite concentration in GDZ as compared to the HS, this 

could be because nitrate reduction rate is higher in GDZ as compared to HS. Higher nitrite at 

GDZ is also in accordance with the dentrification results (higher denitrification at GDZ) from 

both molecular and functional part. To get more accurate results more replicates are needed to be 

measured after regular intervals.  

In the previous kinetics studies slurries were used while in the current study we used soil. Gas 

kinetics Graphs for NO, N2O and N2 during incubation of soil under anoxic conditions showed as 

expected. N2O and NO reduction was less on the hillslope (HS) as compared to ground discharge 

zone (GDZ). The reason for this as explained earlier could be that N2OR is sensitive to the 

presence of oxygen. On HS there is frequent transition between oxic and anoxic states while the 

GDZ have stable anoxic conditions due to which the N2OR activity is higher at GDZ.  Emission 

of N2 was observed to be higher in GDZ as compared to HS as seen in figure 4.12. This could be 

due to that at GDZ as mentioned earlier balanced denitrification is taking place i.e. all enzymes 

(NAR, NIR, NOR, N2OR) are regulated and expressed leading to reduction nitrate (NO3
-
) or 

nitrite (NO2
-
) to nitrogen gas (N2) emission.  

The fluctuations seen in kinetics of NO, N2O and N2 could be due to that water content was 

forgotten to be adjusted while measuring the respiration, due which the rate of respiration was 

low, the water content was adjusted after about 36 hours and increase in rate of respiration was 

observed. Another reason could be that the conditions were made anoxic by removing oxygen 

and helium washing. There was seen slight oxygen leakage, as shown in gas kinetic graphs in 

appendix. Presence of small amount of oxygen might have affected the rate of denitrification. 

5.6. Methodological  effort 

Soil is a complex matrix, containing diverse microbial community, it is the environmental factors 

e.g. oxic or anoxic conditions or presence of nutrients, pollutants or toxic chemicals which 

decide the survival strategy of microbes in a specific environment (Almås, Mulder et al. 

2005).This study was conducted to quantify the microbial community involved in emission of 

N2O in the atmosphere from a subtropical forest ecosystem in southwest China.  We do realize 

that the sampling, shipment and storage of the soil affect the microbial community or their 
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activity, but we assume that this influence is same for all the samples, and the comparison of the 

abundance of the functional groups is still valid 

The extraction and purification of DNA from soil was not an easy task because of the impurities 

like humic acid, phenol, protein and low pH. Purification step was difficult due to the similarities 

between the nucleic acid and humic acid.To get good quality DNA several attempts were made 

and different purification kits were tried, DNA was lost in the purification step. We used direct 

DNA extraction method in which cells were lysed in soil by using glass beads in a bead beater. 

The purity of the extracted and purified DNA was measured by using a nano drop 

spectrophotometer and Qubit fluorometer as results can be seen in appendix, only good quality 

of DNA was considered, quality of DNA was judged by ratio of absorbance at 260 nm and 

280nm. 

qPCR : 

We aimed to get the efficiencies between 90-100%, in some cases 80% or above were also 

considered. For some of the primers like those primers targeting the nosZ gene we had to repeat 

the experiment several times to get good efficiencies. Emphasis on higher efficiency was given 

because efficiency represents the amount of the increase in PCR product after every cycle. Low 

efficiencies indicate that the sample might contain inhibitor, poor primer design or pipetting 

errors.  Another important factor which was considered during a qPCR was the R
2 

which 

represents the linearity, only 0.9 or greater values for R
2 

was considered. If the efficiency or R
2 

were low then the experiment was repeated.  

In this study we had three biological replicates, from eight different spots. To test the 

repeatability and reliability of the qPCR, we made technical replicates from two spots for the 

primer amoA result showed that the technique was repeatable and reliable. 

Agarose gel: 

The agarose gel was used for separating different size of DNA fragments, the DNA in the gel is 

only visible under UV if appropriate dye is added or if the gel is stained with dye. The dye being 

used in our lab was ethidium bromide (Etbr) but it was banned in the lab because it is toxic and is 
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known to be carcinogen and mutagen. Due to its toxicity, the dye was replaced by gel red a less 

toxic dye. The problem with the gel red was separation. We had to struggle a lot get appropriate 

conditions i.e. voltage, time, % of gel and conc. of the gel red. 
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Conclusion: 

It was observed that abundance of all functional genes (ammonium oxidation (amoA of AOB 

and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) sulphate reducing 

bacteria (dsrA)16S rRNA) were higher in GDZ as compared to HS, one of the reason could be 

due to the presence of stable anoxic condition at the GDZ and another reason could be that it is 

being thought that the reducing force present in GDZ could be responsible for higher activities. 

The emission of N2O by denitrification is observed to be higher as compared to nitrification 

process. In denitrification the study abundance of gene nosZ play important role in determining 

the emission of N2O.  

The N cycling gene copy numbers do not explain the whole story, to understand the complete 

story we need the functional studies along with the molecular studies. We can hypothesize that in 

the GDZ, the communities are more abundant as compared to the HS.  

Future work : 

Study of anammox of can probably provide the answer to the disappearance of ammonia along 

the HS. In addition the whole community can be studied by using more advanced technologies 

like finger printing (DGGE of functional genes) or sequencing (amplicons sequencing or 

metagenome) by this advanced techniques we will know about fungus, archea, and all other 

genes involved in nitrification and denitrification. 
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Appendix: 

1. Gel pics: 

 

 

For anammox primers (A6842, A438f), it was difficult to get a band from the soil samples 

collected from Tieshanping (TSP). I used other soil available in our laboratory (Binbin soil 

samples and Nateleiz soil sample), but did not get any successful result. 

 

 

The above figure shows the band for nitrite oxidizers. 
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Above figure showing band for primer nitrite oxidisers 

 

 



Abundance of functional groups of nitrogen transforming microorganisms potentially involved in N2O emissions from a 

subtropical forested watershed in China 

  

64 
 

 

 

 

 

2. DNA quality and quantity  
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Table (1)DNA yield obtained after extraction and quantification by Nanodrop and 

Qubit method for replicate 1 

 

Sampling site 
DNA by 

Nanodrop 

      ng/μl 

 

Ratio 260/280 

 

Ratio 260/230 
DNA by Qubit 

ng/μ 

T0 35.2 1.71 1.58 19.2 

T1 30.4 1.68 1.48 18.0 

T3 21.0 1.69 1.56 12.6 

T5 27.3 1.94 1.98 21.8 

B2 37.0 1.85 1.32 24.8 

B3 32.6 1.96 2.21 33.8 

B5 27.7 1.96 2.31 22.8 

B6 86.8 1.90 2.08 47.5 

 

Table (2)DNA yield obtained after extraction and quantification by Nanodrop and Qubit 

method for replicate 2 

 

 

Sampling site 
DNA by 

Nanodrop 

ng/μl 

 

Ratio 260/280 

 

Ratio 260/230 
DNA by Qubit 

ng/μ 

T0 123.2 1.49 1.06 38.5 

T1 66.8 1.54 0.98 19.8 

T3 72.1 1.64 1.28 32.5 

T5 50.9 1.64 1.37 29.5 

B2 61.3 1.79 1.64 42.1 

B3 62.1 1.82 1.87 48.6 

B5 68.1 1.90 1.91 48.2 

B6 84.6 1.87 1.94 52.0 



Abundance of functional groups of nitrogen transforming microorganisms potentially involved in N2O emissions from a 

subtropical forested watershed in China 

  

66 
 

 

Table (3)DNA yield obtained after extraction and quantification by Nanodrop and Qubit 

method for replicate 3 

 

Sampling site 
DNA by 

Nanodrop 

ng/μl 

 

Ratio 260/280 

 

Ratio 260/230 
DNA by Qubit 

ng/μ 

T0 47.5 1.59 1.25 17.6 

T1 32.0 1.46 1.06 9.3 

T3 58.6 1.66 1.32 23.2 

T5 99.4 1.66 1.26 42.4 

B2 67.2 1.83 1.66 46.4 

B3 47.4 1.67 1.49 33.9 

B5 59.7 1.88 2.11 52.0 

B6 64.3 1.89 2.02 47.3 

 

 

 

3. Ration of specific gene/16s gene: 

16s rRNA abundance was assessed as a general marker for bacterial abundance. Ratio of 

functional genes to 16S rRNA was analyzed. This was done to see the abundance of 

functional community to the total microbial community. The results showed that the 

abundance of functional genes were higher in ground discharge zone (GDZ) as compared to 

the hillslope (HS).  
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Figure 1 Ratio between gene nosZ and gene 16S. There is an increase in ratio of nosZ/16S from HS to GDZ. T0 T1 

T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different 

sampling point along the GDZ 

 

 

 

Figure 2 Ratio between gene nirS and gene 16S. There is an increase in ratio of nirS/16S from HS to GDZ. T0 T1 

T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different 

sampling point along the GDZ 
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Figure 2 Ratio between gene nirK and gene 16S. There is an increase in ratio of nirK/16S from HS to GDZ. T0 T1 

T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different 

sampling point along the GDZ 

 

 

Figure 3 Ratio between gene amoA for archaea and gene 16S. There is an increase in ratio of amoA/16S from HS 

to GDZ. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize 

the different sampling point along the GDZ 
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Figure 4 Ratio between gene amoA for bacteria and gene 16S. There is an increase in ratio of amoA/16S from HS 

to GDZ. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize 

the different sampling point along the GDZ 

 

 

 

 

Figure 5 Ratio between gene nxrB and gene 16S. There is an increase in ratio of nxrB/16S from HS to GDZ. T0 T1 

T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different 

sampling point along the GDZ 
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Figure 6 Ratio between gene dsrA and gene 16S. There is an increase in ratio of dsrA/16S from HS to GDZ. T0 T1 

T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the different 

sampling point along the GDZ 
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Figure 7 Ratio between gene nosZ and ng
-1

 DNA. There is an increase in ratio of nosZ/ng DNA from HS to GDZ. 

T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 
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Figure 8 Ratio between gene nirS and ng
-1

 DNA. There is an increase in ratio of nirS/ng DNA from HS to GDZ. 

T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 

 

    

  

Figure 9 Ratio between gene nirK and ng
-1

 DNA. There is an increase in ratio of nirK/ng DNA from HS to GDZ. 

T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 
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Figure 10 Ratio between gene amoA and ng
-1

 DNA. There is an increase in ratio of amoA/ng DNA from HS to 

GDZ. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize 

the different sampling point along the GDZ 

 

 

 

Figure 11Ratio between gene amoA and ng
-1

 DNA. There is an increase in ratio of amoA/ng DNA from HS to 

GDZ. T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize 

the different sampling point along the GDZ 
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Figur 12 Ratio between gene nxrB and ng
-1

 DNA. There is an increase in ratio of nxrB/ng DNA from HS to GDZ. 

T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 

 

 

 

Figure 13 Ratio between gene dsrA and ng
-1

 DNA. There is an increase in ratio of dsrA/ng DNA from HS to GDZ. 

T0 T1 T3 and T5 symbolize the different sampling point along the HS while B2, B3, B5 and B6 symbolize the 

different sampling point along the GDZ 

 

 

 

 

 

Gas kinetics Graphs։ 

0 

2000 

4000 

6000 

8000 

T0 T1 T3 T5 B2 B3 B5 B6 N
sp

ir
a 

fu
n

ct
io

n
al

 g
e

n
e

 c
o

p
ie

s 
/ 

n
g 

D
N

A
 

sampling site 

nxrB/ ng DNA 

0,0E+00 

1,0E+03 

2,0E+03 

3,0E+03 

4,0E+03 

5,0E+03 

6,0E+03 

T0 T1 T3 T5 B2 B3 B5 B6 

SR
B

 c
o

p
ie

s/
n

gD
N

A
 

sampling site 

 dsrA copies / ng DNA 



Abundance of functional groups of nitrogen transforming microorganisms potentially involved in N2O emissions from a 

subtropical forested watershed in China 

  

74 
 

Gas kinetics Graphs for NO, N2O and N2 during incubation of soil under anoxic conditions 

showed as expected that N2O and NO reduction was less on the hillslope (HS) as compared to 

ground discharge zone (GDZ). Emission of N2 was observed to be higher in GDZ as compared to 

HS  

 

 

 

Figur 14 Gas kinetics Graphs for NO, N2O and N2 during incubation of soil under anoxic conditions. NO and N2O 

reduction was minimum on the hillslope (HS) as compared to ground discharge zone (GDZ).Emission of N2 was 

observed to be higher in GDZ as compared to HS. T0 T1 T3 and T5 symbolize the different sampling point along 

the HS while B2, B3, B5 and B6 symbolize the different sampling point along the GDZ. 
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