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a b s t r a c t

Moritella viscosa is the aetiological agent of winter-ulcer disease in farmed salmonids in the North
Atlantic. Previously, two major (typical and variant) genetic clades have been demonstrated within this
bacterial species, one of which is almost solely related to disease in Atlantic salmon (Salmo salar). In the
present study infection trials demonstrated that ‘typical’ M. viscosa isolated from Norwegian Atlantic
salmon was highly virulent in this fish species but resulted in lower levels of mortality in rainbow trout.
‘Variant’ M. viscosa isolated from rainbow trout resulted in modest mortality levels in both Atlantic
salmon and rainbow trout. To investigate the possible genetic background for inter-strain virulence
differences, 38 M. viscosa isolates of diverse geographical origin and host species and a number of other
Moritella spp. were investigated for the presence/absence of putative virulence related homologs. All
isolates were positive for DNA sequences coding for; the Type VI secretion ATPase (clpV), hemolysin co-
regulated protein (hcp), bacterioferritins (bfrA and bfrB), lectin (hemG), phospholipase D (pld), multi-
functional autoprocessing repeats-in-toxin (martxA), aerolysin (aer), invasin (inv), and cytotoxic necro-
tizing factor (cnf), with the exception of one isolate in which cnf could not be confirmed. The product of
an ABC transporter metal-binding lipoprotein (mat) was consistently detected although 11 isolates, all
phylogenetically related, appear to produce a truncated version. A putative insecticidal toxin complex
(mitABC) was detected almost exclusively in ‘typical’ Atlantic salmon isolates, and our data indicate that
this complex of genes is expressed and co-transcribed. Transmission electron microscopy investigation
revealed pili and flagella surface structures on nine M. viscosa representing both typical and variant
isolates. Our results provide strong support for the existence of host specificity/high virulence in ‘typical’
M. viscosa related to Atlantic salmon. The gene distribution also provides further support for the genetic
division within M. viscosa, and constitutes a basis for further study of the importance of the mitABC
complex in winter-ulcer pathogenesis.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

The aetiological agent of winter-ulcer disease in salmonids,
Moritella viscosa, induces chronic skin ulcers at low temperature
that may be followed by terminal septicemia [1,2]. Despite wide-
spread vaccination, the disease remains a welfare problem in
Norway and results in significant economic losses [3]. Farmed sal-
monids in Iceland [1], the Faroe Islands [4], Scotland [5] and Canada
[6] are also affected. Experimental challenges have further
demonstrated that turbot Scophthalmus maximus, Atlantic cod
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 1
Characteristics of the M. viscosa isolates.

Moritella viscosaa Isolation origin [year] ECP lethalityb Atlantic salmon challenge

Methodc LD50 Ref.

Hosted in S. salar
NCIMB 13584T Norway [1988] Yes ip 6 � 105 [10]
NVI 5433 Norway [2006] No ip >2 � 106 [10]
NVI 4731 Norway [2003] Yes
LFI 5006d Norway [2002] Yes
NVI 5443 Norway [2006] n.d.
NVI 4679 Norway [2003] n.d.
NVI 4397 Norway [2001] n.d.
NVI 4179 Norway [2000] n.d.
NVI 3999 Norway [1999] n.d.
NVI 1527 Norway [1990] n.d.
NVI 3632 Norway [1996] n.d.
06/09/139 Norway [2006] n.d. bath <1 � 106 ml�1 [34]
K58 Iceland [2008] Yes im <1.5 � 101 [1]

ip 2 � 105 [10]
K56 Iceland [2008] Yes im <1.1 � 102 [31]
F153 Iceland [2008] n.d.
K2 Iceland [2008] n.d.
MT 2528 Scotland [2001] Yes ip 2 � 104 [10]
MT 2858 Scotland [2004] Yes
MT 2555 Scotland [2002] n.d.
990129-1/3B Faroe Island [1999] Yes ip 2 � 105 [10]
990217-1/1A Faroe Island [1999] Yes
990217-1/2A Faroe Island [1999] n.d.
Vvi-11 Canada [2005] No ip Avirulent [10]
Vvi-7 Canada [2005] No ip Avirulent [10]

Hosted in O. mykiss
NVI 4917 Norway [2004] Yes ip 7 � 105 [10]
NVI 5450 Norway [2006] Yes
NVI 5168 Norway [2005] Yes
NVI 6185 Norway [2008] n.d.
NVI 6184 Norway [2008] n.d.
NVI 5683 Norway [1999] n.d.
NVI 4958 Norway [2004] n.d.
NVI 4869 Norway [2004] n.d.
NVI 3968 Norway [1999] n.d.
F162/01 Iceland [2008] Yes

Hosted in G. morhua
NVI 5482 Norway [2006] Yes ip 2 � 105 [10]
NVI 5507 Norway [2006] n.d.
NVI 5471 Norway [2006] n.d.

Hosted in C. lumpus
F57 Iceland [2008] Yes im 1.7 � 106 [31]

ip >2 � 106 [10]
Moritella sp. from sea watera

M. marina North Pacific Ocean at 1200
m [1964]

No

M. sp. PE36 North Pacific Ocean at 3600
m [1985]

n.d.

M. dasanensis Arctic Ocean at surface
[2008]

n.d.

a Isolates; M. viscosa [4], M. marina [35], M. sp. PE36 [36], M. dasanensis [37].
b Reference [10].
c ip, Intraperitoneal; im, Intramuscular; n.d., Not determined.
d LFI 5006 is an isolate from dead Atlantic salmon (2002) experimentally challenged with LFI 5000, which originally was isolated from Atlantic salmon suffering from a

natural occurring outbreak in 1997.
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Gadus morhua and Atlantic halibut Hippoglossus hippoglossus [7,8]
are susceptible to M. viscosa infection.

Two major clades have been identified in M. viscosa and it has
been speculated that one clade may represent a clone highly
virulent for farmed Atlantic salmon Salmo salar [4]. Factors involved
in bacterial infections may be complex and multi-factorial. Gene
products expressed and secreted to the bacterial surface or to the
environment may have specific properties related to toxicity,
adhesion, colonization, motility, invasion, iron- and nutrition-
acquisition, evasion or inhibition of host defenses, features that
may be necessary in virulence. Little is known of M. viscosa viru-
lence. Extracellular products (ECPs) destroy host cell membranes
and the cytoskeleton [9]. However, there is no correlation between
Atlantic salmon lethality and the cytotoxic and hemolytic activities
observed from different extracts in vitro [10]. The extracellular
MvP1 peptidase, although non-lethal causes hemorrhage and tis-
sue necrosis in salmon [11]. Increased transcription of putative
virulence genes has been associated with cell rounding [12].

In view of previous speculation regarding host specificity, we
decided to investigate 1) the virulence of two strains of M. viscosa,
representing the two main clades within the species [4], in both
rainbow trout and Atlantic salmon and 2) the presence/absence of
selected putative virulence genes in isolates of both major clades
and related bacterial species. In this way we wanted to develop



Table 2
Oligonucleotide primers used for detection of virulence associated genes.

Primer designation Forward primer, reverse primer (50 / 30)a Product size

bfrA F AACTATGAAAGGCAACAGTAA 1011
bfrB R AAGCACAACAACAGCCACAG
mat F GGCTGGAAACAAGTGGTGTT 1304
mat R TCAATATTCCCAGCGAAAGG
pld F GGCTGGGTTGATTGGAAAT 1968
pld R CCGCAAACCTAAATGGAAAA
inv F AGGATATTTAAATGCCCGATT 1257
inv R TTCGGACGTTGTTGTCACAT
aer F CCTCCAAGGTGATGGAAGAA 1362
aer R AACAACTGCCTAAGGGATACCA
hcp F TTCTTGCCATGTGTTACCGA 616
clpV1 R ATGCTGTTTTTGCGATAGGG
hemG F CATCCTGCCTTCGAATGTTT 484
hemG R ATGGGTTCTAGGTGGTCGTG
cnf F AATGTTAGTTGCCGCCGTAG 1390
cnf R CCGAAACCAACGTCAGAAAT
rtxA F GGCCGGTCAAAATGGTATTA 884
rtxAR ATCAAGCTGAACGACCACACT
mitA F ACACATGAAATCAATGTCAA 1112
mitA R TCCATTTGAAGGTGTTCATCA
mitC F CGGAGCAAACCAATACACCT 1667
mitC R CAATTTACTGTTGTCCATGCTG
Insecticidal toxin complex reverse-transcription primers
qmitA F TCCGCCACCTTTATCCAACC 144
qmitA R AACAGTACGCTGCACCTCAA
qmitB F1 ACAGCAGGGAGGAACCATTG 102
qmitB R1 CGGCCACTGCTGATAGGTAG
qmitB F2 TTGAAGCGCACACAGAAACG 147
qmitB R2 CAGCATATCCTTGTGCACGC
qmitC F1 TGGCATATAGCGCTTGCTGA 175
qmitC R1 CGCCATAGACAAAGCGTTCG
qmitC F2 CTTCCCGTTCAATTCGGTGC 125
qmitC R2 CCCATACGTCCGCCTAAACA

a Oligonucleotide sequences were constructed from the draft genome of
M. viscosa NCIMB 13584T used in this study.
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basic knowledge which may eventually help in reducing the
occurrence of winter-ulcer disease.

2. Materials and methods

2.1. Bacterial isolates

The 38 M. viscosa isolates studied span the known geographical
area of occurring outbreaks and includes representatives from
different fish species suffering from winter-ulcer disease (Table 1).
The strain collection is previously characterized by standard
biochemical and phenotypic methods and identified by sequence
analysis asM. viscosa [4,10,13], except for strains NVI 3632, 990217-
1/2A, and MT 2555, which phylogenetic relationship was deter-
mined in this study.

2.2. Infectious challenge

Unvaccinated Atlantic salmon (ca. 110 g, n ¼ 200) and rainbow
trout Oncorhynchus mykiss (ca. 46 g, n ¼ 200), routinely health
monitored, with no history of infectious disease, and screened by
ELISA [14] for the absence of specific antibodies against M. viscosa,
were adapted to seawater for 13 and 26 days, respectively, prior to
challenge. The fish were maintained in seawater (salinity 31e35‰)
in separate tanks at 7.0e7.4 �C. Prior to exposure, experimental fish
were split into 4 challenge tanks i.e. 2 tanks each containing 80
salmon and 2 tanks each containing 80 rainbow trout. Single con-
trol tanks each containing 40 salmon or troutwere alsomaintained.
Bacterial isolates were cultured in Brain Heart Infusion (BHI) me-
dium containing 2% NaCl for 48 h, following resuscitation
from �80 �C. NVI 3632 had previously been passaged through
Atlantic salmon prior to the experiment and NVI 5450 was low
passage after original isolation in 2006. The water volume in the
challenge tanks was reduced to approximately 100 L and bacteria
were added to a final concentration (retrospectively established by
serial dilution and colony counting) of 1.2 � 106 CFU ml�1 for the
Atlantic salmon isolate NVI 3632 (two tanks, one containing 80
salmon, the other containing 80 rainbow trout), and
5�105 CFUml�1 for the rainbow trout isolate NVI 5450 (two tanks,
one containing 80 salmon, the other containing 80 rainbow trout).
During the bath challenge, the water flow was stopped, aeration
was provided and the oxygen saturation monitored. After 60 min
water flow of ca. 1.7 L per kg fish per min was resumed. Fish were
fed to appetite and mortalities removed twice daily until termi-
nation of the trial 18 days post-infection. Head kidney tissues were
streaked onto blood agar containing 2% NaCl from all dead fish to
confirmM. viscosa infection. The presence and degree of ulceration
was also registered for all surviving fish at termination, and sig-
nificant difference between groups was estimated using contin-
gency tables (Pearson Chi-square) in JMP v10 (SAS Institute Inc.).
Differences were considered significant if p < 0.05. The experiment
was approved by the National Animal Research Authority in
Norway.

2.3. Prediction of putative virulence genes and phylogenetic
analysis

The draft genome [4] of M. viscosa NCIMB 13584T comprising
1206 contigs is predicted to contain 4810 open reading frames
(ORFs). Putative virulence related genes within the genome
sequence were identified utilizing predicted coding DNA sequences
(CDA) and their translated nucleotide query in BLASTx homology
searches. The distribution of putative virulence homologs within
the genus Moritella was analyzed utilizing BLASTn and tBLASTx
homology searches against the shotgun genomes of Moritella sp.
PE36 (accession no.: ABCQ00000000), Moritella dasanensis ArB
0140 (accession no.: AKXQ00000000) and Moritella marina ATCC
15381 (accession no.: ALOE00000000). The phylogenetic relation-
ships between strains used in this study was constructed utilizing
gyrB sequences obtained in this study with accession no.; KJ746474
(strain NVI 3632), KJ746475 (strain 990217-1/2A), and KJ746476
(strain MT 2555) as described in Grove et al. (2010), gyrB sequences
with accession no. GU124771eGU124811 [4], and gyrB sequences
extracted from the shotgun genomes of the Moritella spp. Se-
quences were aligned in BioEdit using ClustalW [15]. The phylo-
genetic relationships between the 41 nucleic sequences were
determined from 926 positions using Maximum Likelihood (ML)
(GTR) and Neighbor-Joining (NJ) (Kimura 2-parameter) each with
1000 bootstrap trials in MEGA5 [16].

Relationships between studied flagellin protein sequences were
obtained from predicted M. viscosa translated gene sequences in
this study or retrieved from UniProt (Moritella sp. PE36: A6FHY1,
A6FHY2, A6FHX8, A6FHX9, A6F9P1; Vibrio parahaemolyticus:
Q03473, Q56702, Q56703, Q56704, Q56712, Q87081, Q9ZBA2;
Aeromonas salmonicida: A4SP60, A4SP61, O30378). The amino acid
sequences were aligned and analyzed (MEGA5) by ML with the
WAG þ G model applying NJ (JTT) for selection, aligned positions
n ¼ 130. The evolutionary distances were also computed using NJ
with the Poisson correction in a 425 position dataset. Bothmethods
were conducted with 1000 bootstrap trials.
2.4. DNA isolation and gene detection

DNA was prepared from M. viscosa plated onto LuriaeBertani
(LB) agar plates containing 2.0% NaCl (LB2) incubated at 8 �C using
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Fig. 1. Cumulative mortality for Atlantic salmon and rainbow trout, registered until 18 days post challenge. The mortality is given as percent. a) Atlantic salmon and rainbow trout
challenged with M. viscosa originally isolated from Atlantic salmon. b) Atlantic salmon and rainbow trout challenged with M. viscosa originally isolated from rainbow trout.

Table 3
Homology to targeted putative virulence factors analyzed in this study.

M. viscosa NCIMB 13584T Homology to characterized sequences of other species

Putative gene Predicted
no. of aa

Accession
no.

% aa
identity/
similarity

Predicted
no. of aa

Species and homolouge locus to
characterized sequence (Ref.)

Reference to function

Bacterioferritin A, bfrA 157 KF822680 60/72 154 Pseudomonas putida (NP_742648)
[38]

Maintain iron homeostasis during environment
adaption and protect against oxidative stress [39]

Bacterioferritin B, bfrB 154 KF822681 56/74 157 Pseudomonas putida (NP_743243)
[38]

Cytotoxic necrotizing factor,
cnf

1019 KF822678 61/78 1014 Escherichia coli (AF483829) [40] Modulate actin fibers by activating regulatory GTPases
in eukaryotic cells [20]

Aerolysin, aer 433 KF822677 30/48 493 Aeromonas hydrophila
(AAA72103) [23]

Channel-forming toxin binding to host cell-surface
structures [24]

Hemagglutinin, hemG 273 KF822683 50/65 267 Myxococcus xanthus (AAA25399)
[41]

Lectin able to agglutinate erythrocytes [42] with anti-
viral potency [43]

Hypotetical protein (invasin),
inv

322 KF822679 34/51 303 Escherichia coli (EFX08374) Homolougus to larger invasin-like proteins involved in
adherence and invasion of eukaryotic cells [44]

ABC transporter metal-
binding lipoprotein, mat

342 KF822686 26/47 309 Streptococcus pneumoniae
(NP_346089) [45]

Transport of Mn2þ, pneumococcal surface adhesion
(psaA) and virulence [25]

Phospholipase D, pld 617 KF822682 52/68 587 Yersinia pestis (NP_857852) [46] Required for Y. pestis survival and a transmissible
infection from the flea vector [47]

Multifunctional
autoprocessing repeats-in-
toxin, martxA

3990 KF822687 71/83a 5206 Vibrio vulnificus (NP_937086)
[21]

Multifunctional toxins likely to be involved in
pathogenesis [21]

T6SS VasG chaperone, clpV 895 KF822684 100/100 895 Moritella viscosa (tMVIS0616)
[17]

T6SS is important for virulence of several bacteria [48]

T6SS Hemolysin co-regulated
protein, hcp

172 KF822685 100/100 172 Moritella viscosa (tMVIS0615)
[17]

Insecticidal toxin component
A, mitA

2576 KF822688 48/64b 2378 Photorhabdus luminescens
(NP_928299) [49]

Toxin complexes with insecticidal activity [50] and
cytotoxic to mammalian cultured cells [27]

Insecticidal toxin component
B, mitB

1410 KF822689 39/43 1476 Photorhabdus luminescens
(NP_928295) [49]

Insecticidal toxin component
C, mitC

987 KF822690 46/62 938 Photorhabdus luminescens
(NP_928298) [49]

Type IV prepilin, tapA 193 KJ746482 33/69 142 Aeromonas hydrophila (P45791)
[51]

Adherence, attachment and invasion [52]

Fimbrial protein, pilA 159 KJ746483 35/54 154 Pseudomonas aeruginosa
(P17836) [53]

Fimbrial protein, fimA 176 KJ746484 32/47 162 Dichelobacter nodosus (P11933)
[54]

Flagellin component A, flaA 274 KJ746477 45/63 284 Vibrio parahaemolyticus (Q03473)
[55]

Motility and virulence [56]

Flagellin component B, flaB 275 KJ746478 45/63 284 Vibrio parahaemolyticus (Q03473)
[55]

Flagellin component C, flaC 273 KJ746479 44/65 284 Vibrio parahaemolyticus (Q03473)
[55]

Flagellin component G, flaG 137 KJ746480 24/55 144 Vibrio parahaemolyticus (Q56704)
[57]

Lateral flagellin, lafA 348 KJ746481 42/55 284 Vibrio parahaemolyticus (Q03473)
[55]

a N- and C-terminal parts.
b Amino acids 1476e2376.
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the DNeasy blood and tissue kit (Qiagen) adapted to bacterial cul-
tures according to the manufacturer's instructions. PCR amplifica-
tion was performed in 50 ml volumes using 40e200 ng template
and a final concentration of 1� Taq buffer, 3 U Taq DNA polymerase
(Invitrogen), 0.2 mM of each primer (Table 2), 0.24 mM dNTP,
2.0 mMMgCl2. The thermal profile was 94 �C for 4 min, 35 cycles of
94 �C for 1 min, 56 �C for 1 min, 72 �C for 2 min and one cycle of
72 �C for 4 min. Aliquots (35 ml) of the final reaction mixture were
visualized in 1.2% agarose gel with 1-kb O'GeneRuler DNA molec-
ular weight ladder (Thermo Scientific) stained with SYBR safe
(Invitrogen). PCR products for sequence determination were puri-
fied using QIAquick® Gel Extraction Kit (Qiagen) according to in-
structions and sequenced at the GATC Biotech, DNA sequencing
Atlan c salmon I + (+) + + -

Atlan c salmon I + (+) + + -

Atlan c salmon I + (+) + + -

Atlan c salmon C + (+) + + -

Atlan c salmon C + (+) + + -

Trout N + (+) + + -

Trout N + (+) + + -

Trout N + (+) + + -

Trout N + (+) + + -

Trout N + (+) + + -

Trout N + (+) + + +

Lump sucker I + + - + -

Atlan c salmon I + + + + -

Trout I + + + + -

Atlan c salmon N + + + + -

Atlan c salmon N + + + + -

Atlan c salmon N + + + + -

Trout N + + + + -

Trout N + + + + -

Trout N + + + + -

Atlan c cod N + + + + -

Atlan c cod N + + + + -

Atlan c cod N + + + + -

Sea water NP - + - - +

Sea water NP - + - - -

Sea water A - + - + -

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon N + + + + +

Atlan c salmon S + + + + +

Atlan c salmon S + + + + +

Atlan c salmon S + + + + +

Atlan c salmon FI + + + + +

Atlan c salmon FI + + + + +

Atlan c salmon FI + + + + +

a)

Fig. 2. The dendrogram in a) from the hierarchical cluster analysis is based on the origin o
M. viscosa isolates including Moritella sp. PE36, M. marina and M. dasanensis. Column 1 sho
Norway; I, Iceland; FI, Faroe Island; C, Canada; S, Scotland; NP, North Pacific; A, Arctic. C
detected; �, unobserved; or (þ), truncated product. Genes bfrA, bfrB, inv, clpV were positive in
PE36,M. marina andM. dasanensiswere obtained from genome BLAST hits. The dendrogram
from Moritella sp. PE36 (accession no.: ABCQ00000000), M. dasanensis ArB 0140 (accessio
M. viscosa isolates [4] and this study. Bootstrap values above 60% based on 1000 replicas
represents the number of substitutions per site. Color-coding of the two main phylogenetic c
between the variant isolates (sub-grouped into V1, V2, V3, and V4) colored blue, and the typica
green. Isolates known to produce lethal ECP or cause mortality are denoted in bold, non-l
altered distribution between sub-clades within the same main clade are shown with thin a
services and bioinformatics (Germany). Detection in M. viscosa 06/
09/139 was identified through BLAST homology searches. The
M. viscosa 06/09/139 genome can be accessed at: https://
stormbringer.cs.uit.no:60060/ [17].

2.5. Reverse transcription PCR

M. viscosa NCIMB 13584T was grown in LB broth containing 3.5%
NaCl at 9 �C to late exponential phase (OD600 ¼ 1.2) before 500 ml
culture was added to 1 ml RNAprotect™ (Qiagen). The suspension
was centrifuged at 5000� g for 5 min. The resulting cell pellet was
subjected to total RNA extraction using the RNeasy® Mini Kit
(Qiagen) including the DNase treatment utilizing the RNase-Free
F153
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K2

Vvi-11
Vvi-7

K58

NVI 6185
NVI 3968

NVI 5683

NVI 5450
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NVI 1527
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MT 2528
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MT 2858

NVI 3999
NCIMB 13584T

990129-1/3B

NVI 5482

M. marina
M. dasanensis
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V4
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NVI 3632

MT 2555
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0.02

83/84

82/81

84/83

84/81

100/100

63/63

100/100

90/92
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b)

f isolation, geographical location and the prevalence of putative virulence genes in 38
ws the origin of isolation species or site. Column 2 shows the geographical origin: N,
olumn 3e7 shows putative virulence genes where PCR products are denoted as: þ,
all bacteria and left out of the analysis. Results fromM. viscosa 06/09/139, Moritella sp.

in a) is compared with phylogeny (b) by Maximum Likelihood analysis of the gyrB genes
n no.: AKXQ00000000), M. marina ATCC 15381 (accession no.: ALOE00000000) and
from Maximum Likelihood and Neighbor-Joining analysis are shown. The scale bar
lades is in accordance with the clustering in the dendrogram shown on the right. Split
l salmon isolate (sub-grouped into T1 and T2) colored red. OtherMoritella species are in
ethal producing ECP isolates are underlined. Avirulent strains are boxed. Strains with
rrows. Thick arrow represents strain that swapped main clade in the two methods.
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DNase Set (Qiagen) according to the manufacturer's instructions.
Purified RNA extract was confirmed inactive for DNase activity by
digestive analysis. RNA concentration was measured using a
NanoDrop ND-1000 with resulting A260/280 ratio of 2.15. Total RNA
(2 mg) was used as template for reverse transcription (RT) PCR re-
action using the QuantiTect® Reverse Transcription Kit utilizing the
RT primer mix (Qiagen). The resulting cDNA was utilized as tem-
plate using the gene-specific primers (Table 2) amplifying the tar-
geted DNA product by a regular PCRmethod. Genomic DNA isolated
from M. viscosa NCIMB 13584T served as positive control. Reverse
transcription mixture without addition of reverse transcriptase
served as negative control. PCR amplification was performed in
50 ml volumes using 100 ng template, 1� Taq buffer, 2 U Taq DNA
polymerase (Invitrogen), 0.2 mMof each primer, 0.24mMdNTPmix,
2.0 mM MgCl2. The thermal profile was 94 �C for 10 min, 35 cycles
of 94 �C for 30 s, 54 �C for 30 s, 72 �C for 2min and one cycle of 72 �C
for 5 min. Aliquots (35 ml) of the final reaction mixture was visu-
alized in a 1.0% agarose gel with a 100-bp O'GeneRuler DNA mo-
lecular weight ladder (Thermo Scientific) stained with SYBR safe
(Invitrogen).
2.6. Transmission electron microscopy

M. viscosa strains were maintained on blood agar containing 2%
NaCl at 8 �C. Sample grids were made by placing Formvar-coated
copper grids for 10 min at room temperature on droplets of
M. viscosa resuspended in LB2. The grids were washed quickly on
PBS and fixed with 0.5% glutaraldehyde in 0.1 M NaCacodylate
buffer for 4 min. Grids were washed three times in drops of 0.1 M
NaCacodylate buffer followed by four washes in drops of dH2O and
subsequently negative stained 1 min with 2% uranyl acetate before
a short rinse in dH2O. After drying, the samples were viewed in a
Phillips 208 S transmission electron microscope (TEM).
2.7. Hierarchical clustering

In a further attempt to discern patterns among the isolates, a
multivariate analysis by hierarchical clustering using the ward
Fig. 3. RT-PCR analysis of transcription from the M. viscosa insecticidal toxin-like operon c
genes, mitA, mitB, and mitC representing class A, B, and C-like proteins. Primers used in the R
(qmitB R2), g (qmitC F1), h (qmitC R1), i (qmitC F2), and j (qmitC R2). Binding sites to primer
PCR products from genomic DNA template. Gel II: PCR products from the reverse transcripted
reverse transcriptase. Primer pairs used for generating amplicon products are symbolized a
linkage method in JMP v10 was done. The analysis of the isolates
was based on the detection of PCR products of putative virulence
factors, their host or environment of isolation, and their
geographical origin.
3. Results

3.1. Strain/host specificity

Total mortality (Fig. 1) associated with infections of ‘typical’
M. viscosa (strain NVI 3632) were 78% and 9% in Atlantic salmon
and rainbow trout, respectively. Infection by ‘variant’ M. viscosa
(strain NVI 5450) resulted in mortality levels of 12% in both Atlantic
salmon and rainbow trout. Ulceration in fish surviving the three
week observation period showed significant (p ¼ 0.0325) differ-
ence between groups; with ulceration on 15/17 (88%) Atlantic
salmon and 55/73 (75%) rainbow trout infected with the ‘typical’
M. viscosa, and in 50/70 (71%) Atlantic salmon and 41/71 (58%)
rainbow trout infected with the ‘variant’ strain. No mortality or
ulcer development was observed in the control groups.
3.2. Detection of putative virulence genes in M. viscosa

Analysis of the putative protein-encoding sequences from the
draft genome of M. viscosa NCIMB 13584T revealed ORFs with sig-
nificant similarity to virulence genes found in other Gram-negative
bacteria (Table 3). Amongst others, ORFs predicting a putative
aerolysin (aer), ABC transporter (mat) protein, two bacterioferritins
(bfrA and bfrB), a lectin (hemG), a phospholipase D (pld), an invasin
gene (inv) and an ORF encoding a cytotoxic necrotizing factor-like
(cnf) gene were identified. Genes homologous to the T6SS were
also predicted, i.e. clpV and hcp, along with a multifunctional
autoprocessing repeats-in-toxin (martxA) gene. An insecticidal
toxin complex homolog was predicted within a ~15 kb region
(described in detail later). Also fimbrial and pilin systems (fimA,
tapA, and pilA) were revealed together with homologs of structural
components of both polar and lateral flagella (fla and laf).
omplex. The arrows represent the transcriptional directions and coding regions of the
T-PCR are labeled as a (qmitA F), b (qmitA R), c (qmitB F1), d (qmitB R1), e (qmitB F2), f
s are shown on the operon and length of the products obtained. Gel I: positive controls,
RNA template. Gel III: negative controls, PCR products from the RNA template without
bove each lane. L ¼ 100-bp molecular marker.
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3.3. Distribution of putative virulence genes within M. viscosa

The putative virulence genes were broadly distributed (Fig. 2).
Evidence of the existence of bfrAB, pld, inv, aer, clpV, hcp, hemG, and
rtxA, was identified by PCR in all M. viscosa isolates studied from
different fish species and geographic origins. The putativemat gene
was also detected in all strains, although 11 isolates, all phyloge-
netically related within variant sub-clade V1 and V2 (Fig. 2) pro-
duced a truncated version of the product. Sequenced loci coding for
complete and truncated products were identical with the exception
of a 357-bp deletion within the C-terminal part of the protein
(Appendix A). The cnf product was detected in all isolates, except
for isolate F57 (isolated from a healthy lump sucker), which is a
low-virulent strain to Atlantic salmon [10]. ThemitA andmitC genes
Fig. 4. Expression of surface organelles by M. viscosa viewed by transmission electron micro
flagella in a) and b) (black arrowhead) and thick flagella in a), b), c) and d) (black arrow) by
flagella with disrupted sheeting are shown as black arrows with white filling in c) and d).
200 nm in bee.
of the insecticidal toxin complex were identified almost exclusively
and in all members of the ‘typical’ Atlantic salmon gyrB clade.

3.4. Analysis of the M. viscosa insecticidal toxin-like operon

BLASTx of the predicted genes within the M. viscosa insecticidal
toxin-like (mit) region revealed a cluster of three genes displaying
considerable identity with insecticidal toxin operons in other bac-
terial taxa, including Photorhabdus luminescens (Table 3), Xen-
orhabdus nematophilus and Yersinia sp. (results not shown). The
predicted genes inM. viscosa are all in the same orientation (Fig. 3).
The 50-30 direction of the genes initiates with a 7728-bp ORF termed
mitA encoding a type A-like protein, which is believed to form a
transmembrane pore in complex with B-type protein that
scopy. Imaging analysis verifies the expression of pili in a), b) and e) (white arrow), thin
most M. viscosa strains as summarized in the lower table. Nv ¼ not verified. The thick
White arrowheads ¼ membrane blebs in a), c), and d). Space bar ¼ 500 nm in a) and



Table 4
Homology analysis of the putative virulence factors identified in other Moritella species.

Homology to ORFs of other Moritella species

M. viscosaT Moritella sp. PE36 M. dasanensis M. marinum

Putative
ORF

Predicted no.
of aa

Predicted no.
of aa

Homologous
locus

% identity/
similarity

Predicted no.
of aa

Homologous
locus

% identity/
similarity

Predicted no.
of aa

Homologous
locus

% identity/
similarity

bfrA 157 97 1099400000761 95/95 155 AKXQ01000032 85/93 156 ALOE01000031 86/95
bfrB 154 153 1099400000761 94/98 156 AKXQ01000032 82/90 153 ALOE01000031 84/90
inv 322 312 1099400000766 83/92 312 AKXQ01000033 76/86 304 ALOE01000020 79/88
mat 342 326 1099400000766 91/97 309 AKXQ01000033 93/96 314 ALOE01000020 94/97
clpVa 895 865 1099400000714 43/62 860 AKXQ01000019 41/61 896 ALOE01000017 38/56

886 1099400000711 43/61 769 AKXQ01000015 41/62 771 ALOE01000006 41/63
898 1099400000738 37/56 nd nd

rtxA 3990 nd 4911 AKXQ01000028 (76/86: 85/
91)a

nd

mitA 2576 2627 1099400000641 41/56b nd nd
mitB 1410 1527 1099400000641 35/52 nd nd
mitC 987 967 1099400000641 51/74 nd nd

a N- and C-terminal regions of the protein.
b aa1618-2626, nd ¼ not detected.

C. Karlsen et al. / Microbial Pathogenesis 77 (2014) 53e6560
translocate the functioning/toxic C-protein into the cell [18].
Downstream of mitA are two coding regions, mitB (4230-bp) and
mitC (2963-bp) encoding type B-like and C-like homologs, respec-
tively. The sequence of MitC encodes a stop codon at aa position
695, but this region has also an apparent frameshift mutation from
frame þ1 to frame þ3.

The transcriptional pattern of the M. viscosa insecticidal toxin-
like genes was analyzed by RT-PCR. Primer pairs were designed
such that polycistronic mRNA could be detected if produced be-
tween the 30 end of one gene and the 50 end of the adjacent
downstream gene. RT-PCR data showed a transcript of all predicted
mitABC genes indicating a functional transcription of these genes in
M. viscosa. Also the amplified regions using primers that crossed
the intergenic space between mitA and mitB, and mitB and mitC
produced amplicons correlating with the predicted 972-bp and
806-bp product size, respectively. This result indicates that the
mitA, mitB and mitC are co-transcribed as a polycistronic mRNA in
M. viscosa.
3.5. Expression of surface organelles in M. viscosa and flagellin
phylogeny

Several loci devoted to the expression of surface organelles were
identified in the genome of M. viscosa NCIMB 13584T. Here nine
M. viscosa isolates from both the typical and variant sub-clades
were selected for TEM analysis. Thin peritrichous flagella and at
least one polar or sub-polar thick flagellum were identified, except
in two isolates (Fig. 4). Lack of visual detection could be caused by
assay sensitivity (cell handling/treatment) or reflect that these
systems are not constitutively expressed [12]. Observed flagella
were sheathed as viewed in Fig. 4(c) and (d). Single pili of 6e8 nm
in diameter were detected in all isolates (Fig. 4(a), (b) and (e)). No
bundle forming pili could be viewed. Also membrane blebs and
vesicles were observed in all isolates. Although no attempts were
made in identifying the nature of the structural subunits of the
flagella, five putative ORFs in the M. viscosa genome were anno-
tated as putative flagellin genes (Table 3). Four were located in
succession of each other (results not shown). Phylogenetically, FlaA
(KJ746477) and FlaB (KJ746478) are highly identical and together
with FlaC (KJ746479) cluster to homolog sequences constituting the
structural subunits of the polar flagella in V. parahaemolyticus and
A. salmonicida (Appendix B). The downstream and shorter
KJ746480 sequence cluster with FlaG homologs of the same system.
The putative flagellin of KJ746481 is part of a different operon and
clusters together with a homolog to the lateral LafA component.

3.6. Homology within the genus Moritella

The distribution of the targeted genes was further investigated
in three related Moritella species with no known disease causing
effect, utilizing the draft genomes of Moritella sp. PE36, M. marina
and M. dasanensis. BLASTn and tBLASTx searches revealed se-
quences homologous with bfrA, bfrB, inv, mat, and clpV in all ge-
nomes (Table 4). An rtxA homolog was detected in M. dasanensis,
and genes homologous (although with low identity) to the insec-
ticidal toxin-like complex (mitABC) were detected in Moritella. sp.
PE36. The analysis did not identify significant homologies with
M. viscosa pld, cnf, aer, hemG or hcp sequences.

3.7. Comparison of hierarchical clustering to phylogeny

Hierarchical clustering based on host species, geographical
origin and genetic polymorphism, grouped the 38 M. viscosa iso-
lates into two main clusters (Fig. 2(a)). The topology of the hierar-
chical dendrogram is similar to that of the phylogenetic analysis of
gyrB gene sequences (Fig. 2(b)). This demonstrates that the
phylogenetic evolutionary distance corresponds to host,
geographical location and genetic polymorphism. The trees are
split between the ‘variant’ isolates colored blue and the ‘typical’
salmon isolates colored red, with sub-clade classification (variant:
V1, V2, V3 and V4; and typical: T1 and T2). Only isolate 5482 changes
clade with a few isolates swapping within sub-clusters.

4. Discussion

The present study provides for the first time experimental
support for host specificity in ‘typical’ M. viscosa and Atlantic
salmon. That a ‘typical’ M. viscosa strain resulted in high acute
mortality in Atlantic salmon and a more chronic ulcerative infec-
tion in rainbow trout (similar to that caused by the ‘variant’
M. viscosa in both species of fish), suggests that some factor highly
toxic for Atlantic salmon exists in this clade. The genome of
M. viscosa NCIMB 13584T was utilized to identify possible
virulence-related genetic differences and host specific variation
between the ‘typical’ and the ‘variant’ group of M. viscosa.

M. viscosa pld, cnf, aer, and hemG sequence homologs were not
predicted in the genomes of other Moritella species not known to
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cause infection. These may constitute virulence or specific niche
related factors associated with the general fish pathogenic abilities
of M. viscosa. The temperature dependent fish cell adhesion [9],
could be mediated by the lectin (hemG) as homologs bind carbo-
hydrates on glycoproteins exposed on host cell surfaces [19]. Ho-
mologs of cnf and rtxA (rtxA is also present inM. dasanensis, Table 4)
are actin degrading toxins [20,21]. Cnf is responsible for tissue
damage and is associated with urinary tract, skin and soft tissue
Escherichia coli infections [20]. Interestingly, up-regulation of cnf in
M. viscosa is associated with tissue degradation during ulcer
development [12]. The cnf gene could not be detected by PCR
screening in the low-virulent F57 strain (lump sucker) in this study,
but injection of F57 ECP results in Atlantic salmon mortality [10].
This could indicate Cnf as a virulence factor forM. viscosa but not as
a central factor for Atlantic salmon mortality. Also M. viscosa rtxA,
whose homolog is a major virulence factor in Vibrio anguillarum
[22], is up-regulated in parallel with cell rounding and actin rear-
rangement of fish cells [12]. The putative M. viscosa aerolysin (aer),
homologous with the Aeromonas hydrophila Aer [an exported
channel-forming toxin that induce membrane destruction and
terminal lysis [23,24]], could be part of the cytolytic pore forming
products proposed secreted by M. viscosa [9].

Identification of homologs to bfrA, bfrB, inv, mat, and clpV
(Table 4) in otherMoritella species may indicate a function for these
genes different or additional to fish pathogenicity. The mat gene
encodes an ABC-type transport protein important for attachment
and virulence in pneumococcal bacteria [25]. The truncated mat
identified in 11 isolates studied (Fig. 2) appears to have occurred
ancestrally in strains isolated from Canadian and Icelandic Atlantic
salmon and Norwegian rainbow trout isolates. Although this study
includes only a limited number of isolates, this mutation may
reflect a reduced virulence potential, particularly for Atlantic
salmon. However, isolates belonging to this group retain their
ability to produce lethal ECP and infect Atlantic salmon experi-
mentally [10]. Table 4 indicates that clpV and T6SS is a general trait
inMoritella species. However,M. viscosa contains two putative T6SS
(loci mts1 and mts2), which most likely have been acquired in
separate events due to low sequence and structure conservation
[17]. Only mts1 is similar to the two T6SS in Moritella sp. PE36 [17].
The clpV identified in this study is located within the mts2 loci,
which may explain the lack of hcp detection and the low clpV
sequence homology to other Moritella species. The second mts2
T6SS could be exclusive to M. viscosa and indicate an adaption of
additional or separate functions i.e. towards infection. Functionality
of mts2 is confirmed in both virulent and non-virulent isolates [17]
which encompass both ‘typical’ and ‘variant’ M. viscosa.

Blast searches (Table 3) together with phylogenetic analysis
(Appendix B) predict that the M. viscosa genome could give rise to
the surface expression of polar and lateral flagella and pili. TEM
investigation of M. viscosa isolates representing different
geographical regions and host species confirmed expression of both
flagella types and pili surface organelles (Fig. 4). Although, motility,
adherence and attachment factors are likely to constitute virulence
factors of M. viscosa, these surface organelles are likely not the
accountable factor for the induced higher mortality in “typical”
M. viscosa towards Atlantic salmon as they are expressed in both
“typical” and “variant” strains. This could indicate that it is the
ability to produce and secrete an additional effector molecule such
as e.g. a toxin that is the responsible factor for the increased Atlantic
salmon mortality in “typical” M. viscosa. However, a variety of gene
products could possibly act cooperatively making it difficult to
pinpoint a single determinant responsible for the lethal outcome.
Differential regulation or expression of the genome may also result
in differences in disease pathogenesis between isolates.
Similarities between the cluster dendrogram and the gyrB phy-
logeny indicate that the evolutionary histories appear to be
congruent with the geographical location, host species and genetic
prevalence. The distribution of the insecticidal toxin-like complex
(mitABC) splitsM. viscosa and supports the phylogenetic division of
M. viscosa as presented byGrove et al. (2010). The presence of clade-
specific genes suggests differences in the selective pressure acting
on the specific subpopulations.M. viscosa NCIMB 13584T expressed
and co-transcribed the mitABC genes under the growth conditions
used in this study. Homologs to this toxin complex exert insecticidal
activity [26], while others of the family are non-toxic until trans-
located from insects into mammalian host cells where they are
postulated to modulate immune responses including actin modifi-
cation [27e30]. M. viscosa is known to exert actin modulating ac-
tivity in fish cells [9] and is postulated to suppress immune
responses in salmon [14]. Whether the insecticidal toxin-like com-
plex mitABC has a role in the ability of M. viscosa to infect fish cells
remains to be elucidated, but the presence and expression of this
complex suggests a functional role in ‘typical’M. viscosa isolates.

Differences in cytotoxin production may reflect host adaptation.
‘Variant’ M. viscosa exhibit an elevated cytotoxic and hemolytic
activity compared to ‘typical’ M. viscosa [4,10]. Correlation to our
‘typical’ and ‘variant’ M. viscosa classification is also apparent in an
amplified length polymorphism (AFLP) study [31]. Furthermore,
M. viscosa is a serological diverse group [32]. The study of Hei-
darsdottir et al. (2008) presents a lower sized antigen and a
different serotype for Norwegian and Scottish Atlantic salmon
isolates, which correlate to ‘typical’ and ‘variant’ M. viscosa. Thus
antigenic diversity may represent a driving force for avoidance of
immune responses in different hosts.

It is intriguing to speculate if the life cycle of M. viscosa could
encompass hitherto unknown secondary or intermediate hosts in
the marine environment. Could the putative insecticidal toxin
complex (mitABC) be connected to interaction with e.g. marine
arthropods? A large armory of virulence genes could be advanta-
geous if infecting multiple hosts or in competition for resources in
low nutritional marine environments; such as exploitation of e.g.
different dead or dying planktonic organisms. Metagenomic data of
marine bacteria indicate a high abundance of virulence-associated
gene homologs, which could suggest that some bacteria infect or
consume eukaryotes for nutrients [33]. The reservoir of putative
virulence genes homologous to known animal, plant and insect
pathogens could allow an opportunistic pathogenic lifestyle in
higher eukaryotic organisms such as fish. The range of fish hosts
susceptible to M. viscosa infection is wide. The number of putative
virulence factors present in M. viscosa could give M. viscosa the
ability to infect multiple fish species. However, pathogens cannot
cause disease indiscriminately, and some fish species appear more
resistant toM. viscosa than others [8]. This may infer thatM. viscosa
as a species has evolved compatibility factors that enable patho-
genesis in a host-specificmanner. None of the genes targeted in this
study are necessarily directly linked to virulence, but only ‘typical’
M. viscosa carries the mitABC toxin complex. It could be speculated
that the very presence and density of large scale Atlantic salmon
farms in the North East Atlantic may have led to the expansion of
what appears to be a highly virulent clone causing winter-ulcer in
this fish species.
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Fig. A. Aligned mat gene sequences for strains with full length gene (MvT and LFI 5006) and truncated gene (LFI 4917 and K58).
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Fig. B. Phylogenetic analysis of the putative flagellins in the M. viscosa genome. The
Neighbor-Joining tree illustrates the maximum likelihood based on amino acid se-
quences of M. viscosa type strain, Moritella sp. PE36, Vibrio parahaemolyticus and
Aeromonas salmonicida. Bootstrap values for >50% of 1000 repetitions (maximum
likelihood/neighbour joining) are shown adjacent to each branch. The scale bar rep-
resents the number of substitutions per site. There were a total of 130 and 425 posi-
tions in the final ML and NJ dataset, respectively.
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