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The truth may be puzzling. It may take some work to grapple with.  
It may be counterintuitive. It may contradict deeply held prejudices.  
It may not be consonant with what we desperately want to be true.  

But our preferences do not determine what's true. 
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Abstract 

The electrical power system is becoming increasingly dynamic and complex. Through the 
Green Deal, the European Union (EU) aims at decarbonizing the energy sector, shifting from 
fossil fuels to renewable energy sources. This trend gives rise to unreliable power 
generation and unpredictable consumer patterns with larger loads. Combined with more 
frequent extreme weather conditions due to global warming more faults, disturbances, and 
stability issues in the power grid are predicted to happen. To prepare for this future, the 
Nordic Transmission System Operators (TSOs) have initiated the Nordic Early Warning Early 
Prevention System (NEWEPS) project. The project aims at creating a system that acts as a 
decision support tool for grid operators. The goal is to create a system that can give 
warnings about coming faults and disturbances, and stability issues in the grid before they 
appear. As this system will use data from Phasor Measurement Units (PMUs) as an 
information source, large amounts of data need to be analyzed in real-time. A data analysis 
method that could handle such large amounts of data is Machine Learning (ML).  
 
This master’s thesis is a contribution to this project, as it will explore the possibility of using 
state-of-the-art ML models to predict faults and stability in the power grid. A literature 
review and a case study were performed. The literature search resulted in 16 articles that 
met the set limitations. These articles were categorized as either predicting power system 
stability in the post-fault timeframe or predicting faults and disturbances in the pre-fault 
timeframe. This produced a valuable overview of the most promising predictive ML models 
currently researched. The discussion resulted in a recommendation of the most relevant 
models for each category. For the post-fault timeframe, a Recurrent Neural Network (RNN) 
with Long Short-Term Memory (LSTM) and a Feed-Forward Neural Network (FFNN) were 
recommended and for the pre-fault timeframe, a hybrid model using RNN with LSTM and a 
Support Vector Machine (SVM) classifier was recommended. The case study illustrates 
which patterns ML models can learn and detect to give accurate predictions. It is also found 
that some minor faults produce subtle anomalies in the waveforms before they evolve into 
major faults. These anomalies, oftentimes unnoticed by human grid operators, could be 
detected using trained ML models.  
 
Based on the results from the literature review, a Technology Readiness Level (TRL) 
evaluation of each category is carried out. Both categories have been evaluated to be 
between a TRL 3 and 4. A TRL evaluation of the current usage of such models by the Nordic 
TSOs is also performed. These TRLs are compared, and it is found that the research done on 
this topic by the Nordic TSOs is very limited. The results from this master’s thesis could 
therefore prove to be a great starting point for this research. Based on the literature study 
and the case study done in this thesis it has been shown that predictive ML models can 
increase awareness in the power grid and assist grid operators in power grid management, 
by providing early warnings about faults and stability.   
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Sammendrag 

Det elektriske kraftsystemet blir stadig mer dynamisk og komplekst. Gjennom Green Deal 
har EU som mål å avkarbonisere energisektoren, og skifte fra fossile brensler til fornybare 
energikilder. Denne trenden gir opphav til upålitelig kraftproduksjon og uforutsigbare 
forbrukermønstre med større belastning. Kombinert med hyppigere ekstreme værforhold 
på grunn av global oppvarming, forventes det at det i fremtiden vil oppstå flere feil, 
forstyrrelser og stabilitetsutfordringer i strømnettet. For å forberede seg på denne 
fremtiden har de nordiske transmisjonsnettoperatørene (TSOene) startet prosjektet Nordic 
Early Warning Early Prevention System (NEWEPS). Prosjektet har som mål å skape et system 
som fungerer som et beslutningsstøtteverktøy for nettoperatører. Målet er å lage et system 
som kan gi advarsler om kommende feil og forstyrrelser, og stabilitetsproblemer i nettet før 
de inntreffer. Ettersom dette systemet vil bruke data fra Phasor Measurement Units (PMUs) 
som informasjonskilde, må store datamengder analyseres i sanntid. En dataanalysemetode 
som kan håndtere så store datamengder er Maskinlæring (ML). 
 
Denne masteroppgaven er et bidrag til dette prosjektet, da det vil utforske muligheten for å 
bruke state-of-the-art ML-modeller for å forutsi feil og stabilitet i strømnettet. Det ble utført 
en litteraturstudie og en casestudie. Litteratursøket resulterte i 16 artikler som oppfylte de 
angitte begrensningene. Disse artiklene er kategorisert til å enten forutsi nettstabilitet i 
tidsrammen rett etter at en feil har inntruffet eller forutsi feil og forstyrrelser i tidsrammen 
før feilen har inntruffet. En oversikt over de mets lovende prediktive ML-modellene har blitt 
presentert i form av tabeller. Diskusjonen resulterte i en anbefaling av de mest relevante 
modellene for hver kategori. I den første kategorien ble en RNN med LSTM og en FFNN 
anbefalt, og for den andre kategorien ble en hybridmodell basert på en RNN med LSTM og 
en SVM anbefalt. Casestudien illustrerer hvilke mønstre ML-modeller kan lære seg og 
oppdage for å gi nøyaktige prediksjoner. Det har også blitt funnet at noen feil produserer 
subtile uregelmessigheter i bølgeformene før de utvikler seg til større feil. Disse avvikene, 
ofte ubemerket av menneskelige nettoperatører, kan oppdages ved hjelp av trente ML-
modeller. 
 
Basert på resultatene fra litteraturstudien, utføres en TRL-evaluering (Teknologimodenhet) 
av hver kategori. Begge kategoriene er evaluert til å være mellom TRL 3 og 4. En TRL-
evaluering av dagens bruk av slike modeller av de nordiske TSO-ene blir også utført. Disse 
TRL-ene blir sammenlignet, og det er funnet at forskningen som er gjort på dette emnet av 
de nordiske TSO-ene er svært begrenset. Resultatene fra denne masteroppgaven kan derfor 
vise seg å være et godt utgangspunkt for denne forskningen. Basert på litteraturstudien og 
casestudien gjennomført i denne masteroppgaven har det blitt vist at prediktive ML-
modeller har evnen til å øke oversikten og kontrollen i kraftnettet, og dermed hjelpe 
nettoperatører med kraftnettadministrasjon ved å gi tidlige varsler om feil og stabilitet.  
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Chapter 1: Introduction 

1.1 Background and motivation 

Modern society is becoming more and more dependent on energy. On a global level, energy 
consumption has been steadily increasing since the industrial revolution [1]. At that time, 
the use of fossil fuels such as coal and oil sparked innovation and new technologies. Starting 
with the steam turbine in the late 1800s, many new technologies have been invented, 
increasing the standards of living. In recent years, the negative effects of the industrial 
revolution and the use of fossil fuels have become apparent. The emissions of greenhouse 
gases in the atmosphere have led to a greenhouse effect, which in turn has given rise to 
more extreme weather and changing weather patterns, increased sea levels, and global 
temperatures [2].  
 
In an attempt to reduce the adverse impacts of the greenhouse effect, many projects and 
incentives have been proposed to reduce the emission of greenhouse gases. The European 
Green Deal is such a project. Initiated by the European Union (EU) at the end of 2019, the 
project’s goal is to make Europa the first climate-neutral continent within the year 2050. 
The EU is planning to achieve this by investing in environmentally friendly technologies and 
by decarbonizing the energy sector, both in power generation, transmission, and end-user 
power consumption [3]. To achieve this, electrification will have to play a major role. 
Electrification is here meant by replacing direct use of energy from fossil fuels with 
renewable energy.  
 
This progression towards electrification and decarbonizing in the EU challenges the 
Transmission System Operators (TSOs) to maintain a reliable power grid, as this shift will 
lead to changes in both the production and consumer end of the grid, which in turn 
introduces low inertia and frequency instabilities and makes the grid more complex. This 
will make grid operation more difficult and increases the chances of faults and disturbances. 
For this reason, a lot of research on smart grids has been done in recent years [4].  
 
In smart grids, communication technology and sensors play a central role. One such sensor 
is the Phasor Measurement Unit (PMU). These sensors measure the magnitude and the 
phase angle of voltage and current at a high sampling rate [5]. This results in huge amounts 
of data, reaching 310 GB of raw data per day for a PMU system consisting of 1100 units [6]. 
This has encouraged TSOs to turn to Machine Learning (ML) methods for evaluating these 
vast amounts of data. ML is especially suited for such tasks, as it can analyze, find patterns, 
and learn from large datasets. This makes them able to predict future events based on past 
examples [7]. These models can help grid operators to keep the system secure, by giving 
early warnings about stability and upcoming faults in the grid and assisting in decision 
making [8]. For that reason, a lot of articles have been written about the usage of ML in 
power grid operation in the last two decades. A distinction between predictive and non-
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predictive models should be made. Non-predictive models are associated with identifying 
and locating faults as they happen. Predictive models forecast upcoming faults and 
disturbances before they take place. Such models can also be used for predicting power 
system stability right after a fault or disturbance in the grid has happened [8].   
 

1.2 Scope and limitations 

In this master’s thesis, the goal is to assess predictive, state-of-the-art ML algorithms that 
are being used for fault applications in electrical power systems. A literature review is 
performed, where the articles containing these predictive ML models are categorized based 
on the type of fault that the article is concerned with. As this master’s thesis is a 
contribution to the Nordic TSOs project, Nordic Early Warning Early Prevention System 
(NEWEPS) [9], the project is in focus when assessing the ML models. Research on the most 
recent ML models is emphasized in this thesis as this is most relevant for this project. 
Because the upcoming system will use PMU data, ML models using data from PMUs have 
been in focus, and articles associated with PMU based ML models have, to the degree it was 
possible, been chosen. More information on the project and PMU will be presented later in 
the thesis.  
 
A Technology Readiness Level (TRL) assessment of each category of predictive ML models is 
performed. The relevance of each category for the NEWEPS project is determined. Based on 
the literature review, a recommendation for the NEWEPS project on which areas to focus on 
will be given. Further limitations for the literature review are specified in Chapter 5.   
 
As this master’s thesis will be a contribution to the NEWEPS project, the focus will be on the 
Nordic synchronous power system. This consist of the following four TSOs: Statnett SF 
(Norway), Svenska Kräftnet (Sweden), Energinet (Denmark) and Fingrid (Finland).  
 
This master’s thesis was completed in four months. The literature review study and the case 
study were chosen as the most appropriate methods. The literature study gives a 
comprehensive overview of the state-of-the-art ML models. This overview can be used as a 
reference point for further research on this topic. The case study displays how these models 
can be used in real-time power grid operation. In this thesis, coding and testing of the ML 
models presented in the literature study were not prioritized. This thesis rather lays the 
foundation for future participants of the NEWEPS project to implement the recommended 
models.  
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1.3 Research question 

In this thesis, the following research question will be answered: 
 

How can predictive, PMU based, state-of-the-art Machine Learning models be used 
as real-time decision support for grid operators in both pre- and post-fault events? 

 
This will be determined based on some criteria. Speed and performance are two important 
criteria for an ML model that is going to be used in real-time grid operation. The methods 
each author has used to train and test each algorithm will also be discussed. The research 
question gives rise to the following sub-questions: 
 

- To what extend is it possible to use Machine Learning models to predict the stability 
of the grid immediately after a fault happens?  

- To what extend is it possible to use Machine Learning models to predict upcoming 
faults in the grid before the fault happens? 

- How relevant are the predictive Machine Learning models for Statnett and the 
NEWEPS project?  

 
Answering these sub-questions will give a more comprehensive answer to the research 
question. 
 

1.4 Structure of this master’s thesis 

In the first chapter, some fundamental knowledge about the power system will be 
presented. Chapter 2 explains the current trends in the Nordic power system considering 
the shift towards green technology in the EU. These trends introduce challenges for the 
Nordic TSOs which will be presented. The NEWEPS project is introduced as a response to 
these upcoming challenges. PMUs and PMU technology will be explained in the succeeding 
chapter, followed by a description of the research methods used in this thesis in Chapter 5. 
In Chapter 6, a thorough presentation of ML theory will be given, including examples of 
relevant ML algorithms that are used in the literature. In Chapter 7, the pre-fault and post-
fault categories are explained and defined. In the following chapter, the results from the 
literature search are presented and the methods used in each article are discussed. Chapter 
9 contains information about the case study along with the results from the case study. In 
Chapter 10, the results from the literature review are discussed in consideration of the 
NEWEPS project and TRL evaluations are performed. Recommendations for the project will 
also be given here. A conclusion on the thesis will be given in Chapter 11. 
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Chapter 2: Fundamentals about the power system 

2.1 The electrical power system  

An electrical power system has mainly three functions [10]: 
- Production: Either through power plants, producing electricity by using energy 

sources, such as coal, gas, and wind, to convert mechanical energy to electrical 
energy, or through import from other countries.  

- Transmission: Through power lines, cables, and transformers. Power lines and cables 
are used to distribute the electric power from the production facilities to the 
consumers, while transformers are used to transform the voltage of the electric 
power either up or down. 

- Consumption: Either through end-user consumption such as industries or 
households, using the electric power, or through export to other countries.  

 
2.1.1 The Norwegian grid 

The electrical grid in Norway consists of three grid levels: the transmission grid, the regional 
grid, and the distribution grid. The transmission grid, delivering electricity at a voltage level 
of either 132 kV, 300 kV, or 420 kV, is operated by Statnett. This grid transports the power 
over long distances, not only to the regional grids in Norway but also to other countries. 
Between the distribution and the regional grid, there is a step-down transformer that 
transforms the voltage down to a voltage level of 33-132 kV. The regional grid mainly works 
as a link between the high voltage transmission grid and the low-voltage distribution grid. 
Large, power-intensive industries, however, connect directly to this grid. The distribution 
grid, at voltage level ≤ 22 kV, is the grid to which small-end consumers are connected to. 
Both the regional grid and the distribution grid are operated by approximately 130 
distribution system operators in Norway [10].  
 

2.2 Frequency 

Besides maintaining the transmission grid, the biggest responsibility for a TSO is to ensure 
that the instantaneous balance between production and consumption is preserved, 
visualized by the following equation: 
 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑖𝑚𝑝𝑜𝑟𝑡 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝑒𝑥𝑝𝑜𝑟𝑡 + 𝑙𝑜𝑠𝑠𝑒𝑠 (1) 
 
As can be seen from the equation, import and export of electrical energy with other 
countries is also an important part of this balance. Eq. 1 says that a change in consumption 
must immediately be followed by a change in production. To give a simple illustration: when 
a light bulb is turned on, the power needed to light this bulb has to simultaneously be 
produced at a power plant.  
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The system’s frequency is a measure of this equation. If there is more production than 
consumption in the system, the frequency will increase. Conversely, if there is more 
consumption than production, the frequency will decrease. In the Nordic power system, the 
frequency should be as close to 50 Hz as possible, not deviating more than 0,1 Hz [11]. If the 
frequency deviates too much, counteractions must be taken by the TSO to establish a 
balance. Counteractions could be decreasing or increasing energy production, reducing 
consumption, importing or exporting, and, as a last resort, load and production shedding. 
When load shedding, the TSO deprives a chosen set of electrical consumers of power 
supply. If counteractions are not done in time, power plants may start to switch off. In the 
worst-case scenario, this might end in a blackout. Keeping a stable 50 Hz grid requires 
careful monitoring of the grid and reliable predictions of system stability and upcoming fault 
events.  

 
2.3 The Nordic power system 

The Nordic power system is part of the European Network of Transmission System 
Operators for Electricity (ENTSO-E). A map of the five synchronous areas that are members 
of the ENTSOE-E is given in Figure 1. The power systems in each synchronous area are 
connected and are operating at the same frequency [12]. This means that a change in 
production or consumption in one country of the area will affect all the other countries in 
the same area. The task of keeping the frequency at 50 Hz, therefore, requires constant 
communication and cooperation between the countries in the same synchronous area. 
 
Although not synchronously connected, the Nordic synchronous area is connected to the 
other synchronous areas through High-Voltage Direct Current (HVDC) interconnectors. 
These interconnections are of high interest for the Nordic power system, as they can help 
balance Eq. 1 by exporting and importing power.  
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Figure 1: Map of European Transmission System Operators Organizations. From [13]. Usage authorized by Sonja Berlijn.  

 

  



  The future of the Nordic synchronous area 
 

 7 
 

Chapter 3: The future of the Nordic synchronous area 

3.1 The European Green Deal and electrification 

In the report “An EU energy outlook for 2050” it has been estimated that the incentives, 
funded through the European Green Deal, will contribute to cut the CO2 emissions by 53% 
within 2050 relative to the emissions in 1990 [14]. To achieve this reduction, the energy 
sector needs to switch over to electrical energy, both in power generation and end-user 
power consumption. Electricity is the preferred energy carrier because it is flexible, has high 
efficiency, and zero emissions at end-use. These are some of the reasons why the ENTSO-E, 
in their Ten-Year Network Development Plan, state that electricity will become the leading 
energy carrier in the future [15].  
 
It has been estimated that the EUs power generation sector will undergo a major 
transformation towards decarbonization, with electricity playing a major role. 83% of the 
net electricity generated in 2050 will be CO2-free, compared to 55% in 2015. 72% will be 
coming from renewable energy sources [14]. At the same time, the use of conventional 
thermal power plants will decline rapidly, acting as backup power by 2050. These numbers 
are supported by WindEurope’s estimation of the power mix in Europe in 2050, given in 
Figure 2 [16]. The increased share of renewable power generation will continue to rise, with 
wind and solar contributing with 36% and 15% of all the power generation in Europe 
respectively, by 2050. 
 
Major electrification of the end-user is also predicted to happen, leading to a 27.5% increase 
in electricity demand by 2050, compared to 2015. 60% of this increased demand comes 
from the transport sector. Electrification of the industry sector will also be a contributor to 
the increase in electricity demand [14].  
 
Electrification will be an important part of Europe’s goal towards decarbonization. A reliable 
and stable European transmission grid is therefore vital to achieve total decarbonization of 
all energy sectors. 
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Figure 2: Bar plot showing the energy mix in Europe’s electricity generation from 2017 to 2050. Research and estimates 

were done by DNV GL and WindEurope. From [16]. Usage authorized by Ivan Komusanac.  

 

3.2 Challenges for the Nordic synchronous area 

EU’s plans to become carbon-neutral have a big impact on the future of the Nordic power 
system. These changes introduce challenges for the Nordic TSOs.  
 
In the Nordic – as in the rest of Europe – the share of renewable energy is expected to 
increase, with installed wind power expected to triple in the 2010 to 2025 period [17]. 
Concurrently, thermal power plants in the Nordic, such as coal and gas, are expected to be 
decommissioned [18]. Replacing controllable thermal power plants with uncontrollable, 
intermittent renewable energy results in unreliable power production, which is a major 
challenge for the TSOs. 
 
Challenges at the consumer end of the power grid will also become apparent. Incentives to 
decarbonize the transport sector have increased the share of electric vehicles sold in 
Norway. In 2020, 54.3% of the vehicles sold in Norway were electric [19]. Electrification of 
the industrial sector has also been pointed out as a possibility to cut CO2 emissions in 
Norway. Implementing the measures presented in a report from the Norwegian Water 
Resources and Energy Directorate (NVE) would reduce the emissions from the industry 
sector by 18%. This implementation would, however, also increase the current power 
consumption by 10% [20]. These new and bigger loads in the electrical system could result 
in high consumption in a short period of time putting strain on the grid. Some of these loads 
inhabit a varied consumption pattern, increasing the difficulty of maintaining a stable 
frequency.  
 
Another challenge is the increased number of HVDC interconnectors between the Nordic 
synchronous area and other countries. The number of interconnectors is expected to 
increase by 50% within 2025 [17]. More interconnectors increase the complexity of the 
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power system and may introduce larger and more frequent intra-hour imbalances through 
HVDC ramping. This will result in more forecasting errors [17].  
 
Weather conditions have been found to cause problems for grid operators [21]. As more 
extreme weather and more varied weather patterns are expected to occur due to climate 
change [2], this will further increase weather-related problems. High wind during storms, 
lightning strikes, cold waves, and heat waves are all conditions that can cause accidents on 
the grid, increasing the chances of faults and disturbances and resulting in more unforeseen 
outages.  
 

3.2.1 Challenges for the Nordic Power System 

One of the main challenges, leading up to 2025, outlined in “Challenges and Opportunities 
for the Nordic Power System”, is frequency quality [17]. Frequency quality is an indicator of 
system security. If the frequency quality is high, the system will be able to maintain a stable 
operation during imbalances and disturbances. Repeatedly, large deviations in frequency, 
however, indicate low system security. This increases the risk of triggering the system’s 
automated load and production shedding, which is undesired.  
 
Figure 3 displays how the frequency deviation in the Nordic synchronous area has evolved 
since 2001. It shows that the number of minutes where the frequency of the system is 
outside the normal operating band has increased over the years. This trend of low-
frequency quality is expected to increase leading up to 2025 [17]. The reason for this is the 
increased proportion of intermittent renewable production in the generation portfolio, 
more varied consumption patterns, and HVDC ramping. 
 

 
Figure 3: A graph of the grid frequency in the Nordic synchronous area, in the period from 2001 to 2016. It displays the 

number of minutes per week where the frequency is outside the normal frequency band (49.9–50.1 Hz). The y-axis displays 
the number of minutes, and the x-axis displays the year. From [17]. 
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Problems will arise both in the generation, transmission, and consumption of electrical 
energy. More irregular and less dependable electricity generation, higher rate of faults on 
the grid due to extreme weather, more interconnected power system with increased power 
exchange with other countries, and new and larger loads with varied consumption patterns 
are all elements that introduce challenges for the TSOs and result in a more complex power 
system. These challenges will have to be addressed to ensure a reliable electrical grid in the 
future.  
 
3.2.2 Solutions for the Nordic Power System  

In ENTSOE-E’s report, “Research, Development & Innovation Roadmap 2020 – 2030”, these 
challenges are being addressed [22]. The challenges are divided into six flagships, where 
each flagship outlines milestones for TSO’s and stakeholders spread over a ten-year period. 
Flagship 6 focuses on how to enhance control center operation and integrating information 
and communications technology infrastructure, to cope with a more complex and 
interconnected energy system. Figure 4 displays the flagship with its associated milestones. 
This master’s thesis will concentrate on the milestones indicated with black circles.  

 
Figure 4: The milestones in ENTSO-E’s Flagship 6 are presented. All the milestones are placed on a time axis, indicating 

when these are expected to be addressed. The milestones in focus for this master’s thesis are the ones encircled by a black 
circle. From [22].  

 

3.3 The N-1 criterion 

Currently, the power system reliability in the Nordic synchronous grid is based on the N-1 
criterion. This means that if one power line in the grid falls out, the grid will continue to 
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deliver power. The N-1 criterion is a deterministic way of operating the grid. Since the 
power system is becoming more and more dynamic, the Nordic TSOs need to adopt a 
probability and risk-based approach towards power system reliability. Continuing to operate 
the grid in a deterministic way may lead to bad investment decisions, either overinvesting or 
investing in the wrong areas. By supplementing the current reliability measures with a 
probability-based approach, investing decisions can be made based on probabilities. This 
allows TSOs to assess the consequences of grid failures, in terms of the cost of the power 
interruptions to customers. Implementing such an approach could also help grid operators 
maintain a secure supply of electricity through probability-based decision support tools. This 
tendency – moving from a deterministic to a stochastic way of operating the grid – forms 
the basis for the Nordic TSOs next project.  
 

3.4 The NEWEPS project 

As a response to the current and upcoming challenges, the Nordic TSOs will initiate a project 
termed “Nordic Early Warning Early Prevention System” (NEWEPS). This will be initiated at 
the beginning of 2021 and will build on flagship 6 in ENTSO-E’s roadmap. With this project, 
the Nordic TSOs are aiming at developing a system that will improve stability monitoring, 
control, and visualization of the power grid. The final goal of the project is to create a 
prototype system that can assist grid operators with keeping the power grid at balance by 
providing decision support through real-time information about the grid. Certain tasks, such 
as voltage instability detection, power oscillation monitoring, and preventive controls, could 
also be automated. It is not necessarily expected that this prototype will be reliable enough 
to be implemented into the grid. Rather, it will serve as a system from which the TSOs will 
be able to learn, helping them outline the requirements for a future early warning system. 
Figure 5 shows a conceptual overview of the project.  
 

 
Figure 5: Conceptual overview of the NEWEPS project. From [9]. 
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The system will use data from PMUs and Supervisory Control and Data Acquisition (SCADA) 
platforms as input. This data is the system state information for the assessment modules. In 
this project, the focus is on voltage and frequency stability, and damping of 
electromechanical oscillations. However, the system will be built to have a modular 
structure, meaning that new assessment modules coming in the future will be possible to 
integrate. This thesis will be a contribution to the part marked as “Early warning methods” 
in Figure 5.  
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Chapter 4: PMU theory 

4.1 Phasors 

Current and voltage generated from commercial alternators (or generators) can be 
expressed as nearly perfect sine waves:  
 

𝑥(𝑡) = 𝑋𝑚 𝑐𝑜𝑠(𝜔𝑡 + 𝛿) (2) 
 
Here, Xm is the peak value of the sinusoidal signal, also known as the amplitude, ω (= 2πf) is 
the frequency of the signal in radians per second (angular frequency), δ is the phase angle 
when referenced to cos(ωt) and t is the time. When calculating active and reactive power in 
Alternating Current (AC) circuits, it is conventional to refer to the Root Mean Square (RMS) 
value, also called the effective value [23]. The RMS value is defined by 
 

 𝑋𝑟𝑚𝑠 =
𝑋𝑚

√2
(3) 

 
Eq. 2 can be rewritten and represented by a complex number, X, known as its phasor 
representation.  
 

𝑿 = (
𝑋𝑚

√2
) 𝑒𝑗𝛿 = (

𝑋𝑚

√2
) ∠𝛿 = (

𝑋𝑚

√2
) [𝑐𝑜𝑠 𝛿 + 𝑗 𝑠𝑖𝑛 𝛿] (4) 

 
A phasor represents the magnitude and the phase angle of a sinusoidal waveform [24]. The 
phase angle is the distance from the peak of the sinusoidal signal and a specified reference. 
The reference is a phasor at a fixed point in time. For example, in Figure 6 the reference is at 
t = 0. In Figure 7 the phasor representation of the waveform in Figure 6 is displayed. The 
magnitude of the phasor is related to the amplitude of the sinusoidal waveform. Although 
Eq. 4 uses the RMS values of the waveform, usage of the amplitude has also been observed 
in the literature.  
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Figure 6: A graph displaying a sinusoidal waveform, x(t), with a phase angle, δ, an amplitude Xm and an RMS value, Xrms. The 
reference point in this graph is t = 0. The y-axis represents the magnitude of the waveform. This can for example be voltage 

or current. Adapted from [25]. 

 
Figure 7: A graph displaying the phasor representation of the waveform. The y-axis is the imaginary axis (Im) and the x-axis 

is the real axis (Re). Adapted from [25]. 

 
The phase angles of the other measurements are then compared to the reference and the 
difference is computed, giving the relative phase angles with respect to the chosen 
reference. This is displayed in Figure 8 [26] [24].   
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Figure 8: The figure displays a snapshot of a grid line having four PMU's. The second PMU from the left is set as the 

reference. From [24]. Usage authorized by Ken Martin.  

 
To determine the relative phase angles of the different measurements, all phasors are time-
stamped to an accuracy of a microsecond and synchronized through signals from global 
positioning system (GPS) satellites or other equivalent time sources. Time-synchronized 
phasors are called synchrophasors. Because synchrophasors are synchronized with each 
other, measurements taken at different locations in the grid can be time-aligned, making it 
possible to find the relative phase angles between many different points in the system. The 
sensors measuring the synchrophasors are called PMUs. 
 

4.2 Phasor Measurement Unit - PMU  

The prototype system of the NEWEPS project will, as mentioned, be using data from PMUs 
as input. The PMU technology has been chosen because it has been shown that it enables 
the use of advanced applications which can contribute to benefits in monitoring, protection, 
and even control of electrical power systems. This is possible because each PMU samples 30 
to 60 synchronized measurements per second [5]. With the information stored in every 
phasor measurement, the PMUs can calculate parameters such as frequency, active power, 
and reactive power. Because of the low latency associated with the synchrophasors and the 
high frequency at which the measurements are taken, grid operators get a comprehensive 
near real-time view of wide areas of the grid. Abnormal system conditions, such as 
oscillations and voltage instabilities can therefore be identified nearly instantaneously.  
 
4.2.1 Old SCADA system vs new SCADA system  

The system used by the Nordic TSOs is a SCADA system that uses data from remote terminal 
units (RTU). An RTU is a monitoring device such as a PMU. The RTU, however, samples data 
at a much lower rate compared to a PMU. This sampling speed might occasionally be so low 
that transient disturbances are not detected in the power grid. Moreover, the data is 
asynchronous making it difficult to retrieve phase angle differences from the buses in the 
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network [27]. The differences between the old and the new SCADA system is summarized in 
Table 1. Figure 9 visualizes the difference in sampling rate between these two systems. 
 

Table 1: Comparison between RTU based SCADA and PMU based SCADA systems. From [5]. 

Attribute RTU based SCADA PMU based SCADA 
Measurement Analog Digital 

Resolution 2-4 samples per second Up to 60 samples per 
second 

Observability Steady state Dynamic/Transient 
Monitoring Local Wide area 

Phasor Angle Measurement No Yes 
 
 

 
Figure 9: The figure displays the difference between a RTU based SCADA system (blue) and a PMU based SCADA system 

(red). From [28]. 

 
Currently, there are 265 PMUs installed in the Nordic power system. 120 of those are 
installed in the Norwegian grid, and an additional 60 are planned to be installed in the 
coming years. This shows that Statnett and the other Nordic TSOs are confident that a PMU 
based SCADA system will be part of the future power system [29].   
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Chapter 5: Research method 

5.1 Literature review 

The main research method used in this master’s thesis is the literature review method. The 
literature review is divided into three parts. Firstly, it was used to gain knowledge about the 
theory behind ML. The books “Python Machine Learning” [30] and “Deep Learning With 
Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras” [31] are 
primarily used as references for this section. To help fill in the gaps, acknowledged web 
resources are used.  
 
In the second part, the same method was used to find relevant articles about the 
classification of faults and disturbances and system stability. The results from this literature 
search lay the foundation for the different categories defined later in this thesis, namely 
pre- and post-fault. The author was motivated to do such a categorization after performing 
a preliminary literature search in the databases IEEE Explore and Google Scholar about 
state-of-the-art ML algorithms used for predicting system stability and fault events in the 
power systems. This type of categorization has not been observed in the literature. Because 
the NEWEPS project focuses on the use of PMU data, the keyword “pmu” was used in every 
search alongside a combination of the following keywords: “machine learning”, “predict”, 
and “power system”. This part is accompanied by information from discussions with experts 
in the fields of ML and power grid operation. To get an understanding of Statnett’s current 
usage of ML technology, conversations with both a senior advisor at Statnett, who is the 
main contributor for the IMPALA project and a research manager at SINTEF Energy 
Research, who works with their Early Warn project, were carried out. A conversation with 
an experienced grid operator at Statnett was also performed to get information on what 
kind of decision support grid operators in the future would need to maintain a reliable grid.  
 
In the third part, articles about ML models mainly using PMU data for predicting fault events 
and system stability in the power systems are reviewed. Through the preliminary search, it 
was established that there is a vast amount of literature and research done on ML models 
for power systems. To perform a manageable research some limitations were set: 
 

- Articles about the detection of bad PMU data were omitted. 
- Articles about cybersecurity were omitted. 
- Articles about power imbalances and load and generation forecasts were omitted 

because the IMPALA project is concerned with these challenges.  
- Articles about voltage stability were omitted. Fellow student, Krishna Solberg, has 

written a master’s thesis about this topic in relation to the NEWEPS project [32]. 
- Articles about non-predictive models used for fault identification (detection and 

localization) were omitted. There has been written a lot about this topic, as this is a 
very useful decision support tool for grid operators. They are omitted from this 
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thesis because of time considerations. Some articles, however, present models 
capable of both fault localization and fault prediction. These will be included.  

- A chapter about optimal PMU placement in the grid is oftentimes included in the 
articles. This will, however, not be discussed in this thesis.  

- Articles published before 2014 are not included because the goal of this thesis is to 
find state-of-the-art models. 

 
The preliminary search alongside the specification of the pre- and post-faults categories 
made it possible to perform a more specific literature review search. This literature search 
was done in Google Scholar. A combination of the following keywords was used: “pmu”, 
“predict”, “forecast”, “power system”, “machine learning”, “fault”, “disturbance”, and 
“contingency”. The following is an example of a search string used for the post-fault 
category:  
 

pmu AND (predict OR forecast) AND "power system" AND "machine learning" AND 
“power system stability” 

 
And for the pre-fault category:  
 

pmu AND (predict OR forecast) AND "power system" AND "machine learning" AND 
(fault OR disturbance OR contingency) 

 
To narrow the literature research even further, it was decided that only a handful of ML 
algorithms would be considered. The selection of these algorithms was based on the 
preliminary literature search and the research done in [33], an article written by researchers 
from Statnett, SINTEF, and NTNU. The chosen ML algorithms are: 
 

- Linear Regression (LR) 
o Ordinary Least Squares (OLS) 

- Support Vector Machine (SVM) 
- Feedforward Neural Network (FFNN) 

o Multilayer Perceptron (MLP) 
o Radial Basis Function Neural Network (RBFNN) 

- Decision Tree (DT) and Random Forest (RF) 
- Recurrent Neural Network (RNN) 

o Long Short-Time Memory (LSTM) 
 
Each ML model will be assessed based on its performance and response time, the methods 
used by the authors, and how relevant the model is for the NEWEPS project. This will be 
considered in a discussion section following each presented article in Chapter 8. In a 
summarizing discussion chapter following the literature review, each category of models will 
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receive a Technology Readiness Level (TRL) evaluation. The TRL of the Nordic TSOs current 
implementation of ML models in each category will also be determined. Here the relevancy 
of each category for the NEWEPS project will be assessed by answering the sub-research 
questions. 
 

5.2 Technology Readiness Level 

TRL is a method used to decide how far a certain technology is from being implemented in 
real-world operations. There are several different TRL scales, but in this thesis, the TRL scale 
from Statnett will be used. Figure 10 and Table 9 (in the Appendix) visualize and explain the 
different phases in Statnett’s TRL scale.  
 

 
Figure 10: The figure displays the different TRLs going from 1 to 9. From Statnett. 

 

5.3 Case study  

A case study is included to exemplify some of the methods reviewed in the literature study. 
Because of time constraints and lack of data, implementation and testing of ML algorithms 
were not prioritized in this thesis. A significant amount of time was rather used to perform a 
simulation of a typical power grid fault. This simulation was performed in the power system 
software tool PSS/E from Siemens. The necessary skills to perform this simulation was found 
in the PSS/E Program Operation Manual [34]. The program includes a vast number of 
features including power flow simulation, dynamic simulation, and contingency analysis. A 
case from Texas A&M is also included [35]. More details on the case study are given in 
Chapter 9.  
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Chapter 6: Machine Learning theory  

ML algorithms are algorithms that can automatically learn from data. By giving such an 
algorithm sample data, it can find patterns in the given data, producing a predictive model. 
This sample data is called training data. When the trained model is introduced to new data 
it will use pattern recognition to produce a prediction. Instead of letting humans analyze 
large amounts of data and manually derive rules and build a model, which can be very time-
consuming and at times unachievable, one can rather help the machine develop its own 
model. This is especially true when the amount of data needed to analyze becomes large. 
Large amounts of data is not a prerequisite for an ML algorithm to perform well, but it can 
help uncover more patterns making the model more robust [30].  
 
Consider the following equation, 
 

𝑦 = 𝑓(𝑥) (5) 
  

where y is an output variable (also called response variable), x is an input variable (also 
called an explanatory variable), and f is a function. The goal of an ML algorithm is to find the 
function, f, that outputs the best predictions for the future, y, given new examples of inputs, 
x. When learning, the algorithm tries to estimate the function that best maps the input 
variables to an output variable. This estimation will oftentimes have errors. The task in ML is 
to reduce these errors as much as possible. Different ML algorithms work better for 
different problems, and it is not always apparent which algorithm will perform best without 
trying. It is therefore normal to try a suite of different algorithms.  
 

6.1 ML terminology 

The following terms are commonly used in the field of ML and will also be used in this 
master’s thesis: 

- Samples (observations) are the rows in the dataset. One sample could be one flower 
from a specific area.  

- Features (attributes) are the columns in the dataset. One feature could contain the 
lengths of the flower’s leaves (sepal length).  

- Class label (target) is the column that contains the ground truth (response variable). 
A response variable could be the type of flower. This is oftentimes the last column in 
the dataset. 

 
Figure 11 displays these terms.  
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Figure 11: The figure displays the different terms used in the field of ML. The example dataset is a section from a 

commonly used flower dataset. Adapted from [30]. Usage authorized by Dr. Sebastian Raschka.  

 

6.2 Types of ML algorithms 

ML algorithms are usually categorized as either supervised learning, unsupervised learning, 
or reinforcement learning. In this thesis, only supervised learning will be considered. 
 
In supervised learning, the model is trained on data which includes both the training 
examples (data inputs) and the desired output signals (class labels). This training data 
normally consists of 70% of the whole dataset. The remaining 30% is called the test set. 
When training the model, the test set is set aside. The training stage is usually done over 
multiple iterations. Once the model is trained, it receives the unseen data from the test set 
as input without the class labels and makes predictions based on this input data. These 
predictions can then be compared to the class labels of the test set, making it possible to 
assess the performance of the model. If the model performs well, it can be tested in real-
time grid operation, where it will receive a stream of new data. Based on these new data, 
the trained model will use pattern recognition to make predictions. This process is visualized 
in Figure 12 [30].  
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Figure 12: The figure visualizes the workflow when making a supervised ML model. From [30]. Usage authorized by Dr. 

Sebastian Raschka. 

 
An example of supervised learning is email spam filtering. By training a model on a 
collection of emails already labeled as either spam or non-spam, it will be able to classify 
new emails as either one of these two categories.  
 
In this example, the labels are discrete class labels, meaning that data inputs can be 
classified into two or more classes. This is called a classification task. If there are two 
classes, it is called a binary classification problem. If there are more than two, it is called a 
multi-class classification problem. When dealing with continuous output variables, such as 
an integer or a floating-point value, it is called a regression task. In a regression problem, 
the prediction from the model will be a quantity. The input data can either be real-valued 
variables or discrete variables. An example of a regression problem is predicting the math 
test scores of students, based on the amount of time spent studying [36].  
 

6.3 Performance metrics 

Performance metrics are used to evaluate how well an ML model predicts outcomes for 
certain problems. These metrics can be divided into metrics for classification tasks and 
regression tasks.  
 

6.3.1 Classification metrics  

The confusion matrix is an intuitive way of visualizing the performance of an ML model. A 
typical confusion matrix is displayed in Figure 13. 
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Figure 13: An example of a confusion matrix. Adapted from [37]. 

 
TP, TN, FN, and FP are short for: 

- True Positive (TP): the model predicted Positive and the class label is Positive. 
- True Negative (TN): the model predicted Negative and the class label is Negative. 
- False Negative (FN): the model predicted Positive and the class label is Negative. 
- False Positive (FP): the model predicted Negative and the class label is Positive. 

 
The terms TP, TN, FN, and FP can be used to express performance metrics. A metric that is 
often used in classification problems is accuracy. Accuracy is given by 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 (6) 

 
Accuracy describes the number of correct predictions made over every prediction produced 
by the model. This metric can be used when the number of samples in each class is 
balanced. If this is not the case, the use of accuracy as a metric should be avoided. To 
exemplify this, consider the following example: given a dataset consisting of 100 samples, 
where 95 samples belong to class 0 and the remaining 5 to class 1, the model would get an 
accuracy score of 0,95 by just classifying every sample as belonging to class 0. Even though 
this is considered a bad predictive model, because it does not classify any sample as 
belonging to class 1, it achieves a high score.  
 
A way to avoid this problem is by using the F1-score metric, which is given by: 
 

F1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (7) 

 
Here, precision and recall are given by:  
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (8) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  (9) 

 
Precision is the percentage of classified Positive cases actually being Positive cases. While 
recall can be understood as the percentage of actual Positive cases being classified as 
Positive by the model. The F1-score is a value between 0 and 1, describing how precise the 
model is, as well as how robust it is. A high F1-score indicates a well-performing model [38].  
 

6.3.2 Regression metrics 

For regression problems, the Mean Squared Error (MSE) or the Root Mean Squared Error 
(RMSE) are usually used to determine the performance of the model. MSE and RMSE are 
defined as: 
 

MSE =
1
𝑁 ∑(𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2
𝑁

𝑖=1

 (10) 

 

RMSE = √
1
𝑁 ∑(𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2
𝑁

𝑖=1

 (11) 

 
Here N is the number of samples in the dataset, yi is the ground truth of sample i, and ypre, i 
is the predicted class label for sample i from the ML model. MSE and RMSE describe how far 
off the predictions from the model are from the ground truth. A low MSE or RMSE score 
indicates a well-performing model [38].  
 

6.4 Overfitting and underfitting  

The goal, when training an ML algorithm, is to get a model that generalizes well. This means 
that the model produces sensible output when introduced to unseen input data. 
Understanding the terms overfitting and underfitting and how this affects the model is 
crucial for achieving this goal. Overfitting happens when the model learns the patterns of 
training data too well. Random fluctuations and outliers are picked up and are learned as 
concepts by the model. These concepts do, however, often not apply to new data, resulting 
in poor predictions. Underfitting, on the other hand, happens when the model is not able to 
learn any patterns in the training data. This can happen if the training data contains too few 
samples or that the chosen algorithm does not fit the certain problem. This would also 
result in predictions of poor quality. Figure 14 visualizes this.  
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Figure 14: Three graphs visualizing the concept of overfitting and underfitting. Adapted from [30]. 

 
A common technique used to produce a more representative score for ML models is to use 
k-fold cross-validation. It is done by dividing the training data into k number of parts, 
training the model on k-1 parts, and testing the trained model on the last part. This is 
performed k number of times, computing the score for every test. The average score of the 
k number of test scores is then finally computed. This technique is especially beneficial for 
problems with small datasets [30].   
 

6.5 Supervised ML algorithms 

In the following two subchapters, examples of regression and classification algorithms will 
be given.  
 

6.5.1 Supervised regression algorithm: Ordinary Least Squares  

Ordinary Least Squares (OLS) is a supervised Linear Regression (LR) algorithm. Because OLS 
is known as a linear model, it performs very well on data that is linearly separatable. The 
goal of the OLS algorithm is to predict the response variable, ypred, based on the explanatory 
variable x.  
 

𝑦𝑝𝑟𝑒𝑑 = 𝑤0 + 𝑤1𝑥 (12) 
 
w0 and w1 are called the weights. These are numbers that indicate how important the 
accompanying feature is. If the feature has a low influence on predicting the class label its 
weight will become small. If, on the other hand, the feature is important for predicting the 
outcome correctly it will get a larger weight. These weights are getting updated for each 
iteration. This is how the algorithm learns. The objective of a ML algorithm is to tune these 
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weights through a learning process such that the trained model at end can accurately 
describe the relationship between x and y. The model achieves this by finding the best 
fitting line which minimizes the residuals. In the OLS algorithm, these residuals are the MSEs 
between the predicted best fitting line (ypred) and the data samples ((xi, yi)). This is displayed 
in Figure 15. 

 
Figure 15: The figure displays how a LR algorithm works. Adapted from [30]. 

 
Eq. 13 displays a dataset with m number of features. 
 

𝑦𝑝𝑟𝑒𝑑 = 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑚𝑥𝑚 = ∑ 𝑤𝑖𝑥𝑖 = 𝒘𝑻𝒙
𝑚

𝑖=0

 (13) 

 
The superscript, T, stands for transpose. A row vector that gets transposed will become a 
column vector and vice versa. Thus, wTx will produce a number. The term wTx is called the 
net input for the model.  
 

6.5.2 Supervised classification model: Support Vector Machine 

The objective of a Support Vector Machine (SVM) is to find a hyperplane that separates the 
samples belonging to different classes. This is achieved by maximizing the distance from the 
hyperplane to the samples from each class that are closest to the hyperplane. These 
particular samples are called support vectors. The number of features in the dataset decides 
the dimension of the hyperplane. If there are two features, the hyperplane is a line, as 
displayed in Figure 16. Having three features produces a plane. SVMs can also be used for 
regression problems. These models are called Support Vector Regression (SVR) models [30].  
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Figure 16: The figure visualizes the idea behind an SVM. Adapted from [30]. 

To solve problems that involve linearly inseparable data, kernel methods need to be used. 
These kernel methods create nonlinear combinations of the original features and projects 
these combinations on a higher dimension via a mapping function. Thus, the original 
linearly inseparable data becomes linearly separable. Figure 17 displays this. Transforming 
the original features onto a higher-dimensional feature space using mapping functions is 
however computationally very expensive. To speed up this process, different kernel 
functions are used. The most common one is the Radial Basis Function (RBF) [30]. The RBF 
computes the Euclidean distance between two points to determine the similarity between 
them. The shorter the distance, the more similar the points are to each other. This increases 
the likelihood of these two points belonging to the same class [39].  
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Figure 17: The idea behind using kernels to separate linearly inseparable data. From [30]. Usage authorized by Dr. 

Sebastian Raschka. 

 

6.6 Decision Tree 

Decision Tree (DT) is an algorithm that can be used for both regression and classification 
tasks. Figure 18 gives an interpretation of the idea behind how a DT works. The algorithm 
tries to categorize the samples in a dataset by asking a series of questions. The questions 
that are asked to classify each sample, are based upon the features of the dataset. Each 
question in the model is called an internal node. From each internal node, the tree splits 
into branches. When an internal node does not split anymore, it is called a leaf node. This 
happens when a certain predefined criterion is met. An example of such a criterion is the 
maximum depth of the model, which refers to the length of the longest path from a root 
node to a leaf node. An internal node will also not split anymore if all the samples in the 
internal node are classified as belonging to one certain class. This is called a pure leaf [30]. 
 
The algorithm’s goal is to only have pure leaves. It reaches this goal by minimizing the 
impurity at each split. There are multiple impurity measures, but in this thesis, the Gini 
impurity, abbreviated as IG in the following equation, will be explained 
 

𝐼𝐺(𝑡) = 1 − ∑ 𝑝(𝑖|𝑡)2
𝑐

𝑖=1

(14) 
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In this equation, p(i|t) is the proportion of samples belonging to class i for a particular node 
t. c is equal to the number of classes. Thus, in a binary class setting c is equal to 2. If all the 
samples in one node belong to the same class, i.e., p(i = 0|t)2 = 0 or p(i = 1|t)2 = 1, the Gini 
impurity equals 0. A node having samples distributed 50:50 between the classes will have 
p(i|t) = 0.5, and thus IG = 0.5. The Gini impurity tells how mixed the class labels are in each 
node. The algorithm starts by finding the split that is associated with the lowest Gini score. 
A Gini impurity of 0 results in a pure leaf [30] [40].  
 

 
Figure 18: Figure showing the concept of a DT. Adapted from [30]. 

When using DTs for regression tasks the impurity measure must be changed. A common 
impurity measure for DT regression algorithms is the MSE. 
 
Having too many pure leaves is an indication of an overfitted model. A common solution to 
this problem is to prune the tree. This means setting a maximum depth limit for the tree. 
Another solution is to use a Random Forest (RF) algorithm. 
 

6.6.1 Random Forest 

The RF algorithm can be thought of as an ensemble of multiple DTs. The algorithm solves 
the problem of overfitting, which is oftentimes associated with individual DTs, by taking the 
average of multiple deep DTs. This results in a model that generalizes well and is less 
susceptible to overfitting. A common way of taking the average of multiple DTs in a 
classification problem is through majority voting. For every new sample, each trained DT 
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predicts the class that the sample belongs to. The class that gets the most predictions, or in 
this case, “votes”, will be chosen as the final class [30].  
 

6.7 Deep learning 

Deep learning is a subfield of ML which encompasses algorithms that are inspired by the 
structure of the neural networks in the human brain. These algorithms are called Artificial 
Neural Networks (ANN). If the connections in an ANN-based model do not form a cycle, it is 
called a Feedforward Neural Network (FFNN).  
 
6.7.1 Feedforward Neural Networks 

6.7.1.1 Multilayer Perceptron 

The most basic form of an FFNN is the Multilayer Perceptron (MLP). A representation of 
such a model is given on the left side in Figure 19Error! Reference source not found.. The 
MLP, as most ANN-based models, uses artificial neurons as building blocks, displayed on the 
right side in Figure 19. Each neuron receives weighted inputs and computes an output using 
an activation function. The weights between the layers in a MLP are small numbers in the 
range 0 to 0,3 [31] randomly initiated before the network is trained. The sum of the inputs is 
passed through the activation function. The activation function can be thought of as a 
threshold that decides if the neuron should be activated or not. For example, if the summed 
input is larger than or equal to 0,5 the neuron will output 1. If not, it will output 0.  

 

 
Figure 19: Left side: the structure of a simple MLP. Right side: a single neuron with an activation function. Adapted from 

[31]. 

 
In Figure 19 there are three layers: input layer, hidden layer, and output layer. The number 
of neurons in the input layer equals the number of features or columns in the dataset. 
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These neurons only pass the input value to the hidden layer and do not contain any 
activation function. All the preceding layers except for the final layer are called hidden 
layers. In the figure, there is only one hidden layer. Increasing the number of layers 
increases the networks’ ability to learn patterns in the dataset. The downside of deeper 
networks is the increased requirement for computing power and the increased probability 
of overfitting. Increasing the number of neurons in each layer has roughly the same effect 
on the network as increasing the number of layers. The last layer is called the output layer. 
This layer is responsible for producing a value or a vector that corresponds to the certain 
task. Obtaining the right format for the output can be determined by modifying the number 
of neurons in the layer and the type of activation function [31]. The following list describes 
the activation functions used for the different types of ML algorithms:  
 

- Regression: Usually has one neuron in the output layer without any activation 
function. This results in a continuous output variable. 

- Binary classification: Usually has one neuron with a sigmoid activation function in 
the output layer. This results in a value between 0 and 1 which represents the 
probability of the model predicting the primary class. This is used in the MLP 
algorithm.  

- Multiclass classification: Usually has multiple neurons, one for each class, in the 
output layer. The activation function used is usually the softmax function, which 
gives the probability of class membership for each class label.  

 
6.7.1.2 Radial Basis Function Neural Network 

Another type of FFNN is the Radial Basis Function Neural Network (RBFNN). In a RBFNN, the 
activation functions inside the neurons in the hidden layer are RBFs. The RBFs compute the 
Euclidean distance from the point of the sample being evaluated to the center of each 
neuron. This creates clusters around the center of each neuron. Each cluster can be thought 
of as a class label. For example, if a data sample is inside the cluster of node 1 it will be 
predicted by the model to belong to class 1 [41].  
 
6.7.2 Recurrent Neural Network  

There are some problems where FFNNs do not perform very well. These problems are 
associated with sequential data. An example of where such data is used is in time-series 
forecasting, such as predicting the price of a stock over time. The reason for this is that 
FFNNs do not have a memory of past seen events. Therefore, the network is not able to 
capture the trends over a longer period. The Recurrent Neural Network (RNN) solves this by 
adding recurrent loops to the architecture. In each layer, the signals do not only get passed 
forward to the next layer but are also passed sideways inside the layer. This is displayed in 
Figure 20 [30].   
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Figure 20: The figure displays the structure of a multilayer RNN. From [30]. Usage authorized by Dr. Sebastian Raschka. 

 
In this figure, x(t) is the input, h1(t) and h2(t) are the two hidden recurrent layers and y(t) is the 
output, all at time t. As can be seen from the figure, the hidden layers do not only receive 
their input from x(t) but do also receive values from the previous timestep, h1(t-1) and h2(t-1). 
This is how the algorithm is capable of remembering past information [30].  
 
6.7.2.1 Long Short-Term Memory 

A problem that occurs when updating the weights of a deep RNN, is that the weights can 
become very small resulting in the network not making any progress. This is called the 
vanishing gradient problem. The Long Short-Term Memory (LSTM) network overcomes this 
problem by carrying information over many time steps, thus preventing older signals from 
vanishing. The building block of an LSTM is a memory cell, shown in Figure 21 [30].  
 

 
Figure 21: The figure displays a memory cell inside an LSTM network and where it is in a multilayer RNN. The arrows 

display how the information flows. From [30]. Usage authorized by Dr. Sebastian Raschka. 
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In addition to the input (xt) and the hidden layer (ht), the memory cell also contains the cell 
state (Ct) and the four separate gates (the yellow boxes in Figure 21). The cell state 
transports the information through all the memory cells. This can be thought of as the 
memory of the LSTM network. The four gates decide what information is included in the cell 
state. During training, these gates learn what information is important and discard the 
information that is not relevant. This is done through activation functions. In an LSTM 
network, the sigmoid (σ) and the tanh (Tanh) activation functions are used. The tanh 
activation function acts in the same way as the sigmoid, only that instead of squishing the 
input to be a value between 0 and 1, the input is squished to be a value between -1 and 1. In 
Figure 21, the white circle with a black dot represents an element-wise multiplication and 
the white circle with a cross represents an element-wise addition [30].  
 
 

6.8 Times-series forecasting 

The process of predicting future events based on historical data is called time-series 
forecasting. To transform the time-series problem into a supervised learning problem one 
could use the sliding window method. The method uses a set of time-dependent 
measurements as input, as seen in Figure 22. This could for example be PMU 
measurements. The number of measurements used as input is decided by the width of the 
window, i.e., the time interval. Based on the input, the method will predict a label, either a 
category (classification task) or a quantity (regression task) [42].  
 

 
Figure 22: The figure displays how the sliding window method works. Adapted from [43]. 

 
In the literature, there is usually a distinction between static and time-adaptive sliding 
windows. When using a static time window, the author of the model uses a predefined time 
window that does not change. An example of this is setting a six-cycle time window. In this 
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case, the algorithm gathers PMU data for six cycles before it computes a prediction. Here, a 
cycle is meant by the time it takes for the sinusoidal waveform to repeat itself (e.g., from 
peak to peak in Figure 6). One cycle in a 50 Hz system is therefore 0,02 seconds. When using 
a time-adaptive window, on the other hand, the algorithm increases the width of the time 
window as it goes. It starts with the first time-step. This could be after one cycle of PMU 
data. If the model produces a prediction inside the “not credible” boundary, the next time-
step will be used as input. This repeats until the model either has made a credible 
prediction, or it meets the user-defined end time. The “not credible” boundary is also user-
defined. The advantage of utilizing this method is that it may be faster than the static 
method [44].    
 

6.9 Criteria for ML algorithms   

There are two important parameters to consider when assessing ML algorithms. These are 
the response time and performance of the model. Response time is meant by the time it 
takes for a trained ML model to produce a prediction given an input. Performance is meant 
by how close the predictions from the trained ML model are to the ground truth or real-
world outcome. In Table 2, timeframes for assessing different power system conditions, 
relevant for this thesis, are presented [45]. 
 

Table 2: The table presents the required response times for selected power system conditions. Values from [45]. 

Power system condition Required response time for predictive 
model 

Transient stability 150 milliseconds – 1 second 
Dynamic (electromechanical) 

stability/LFOs 
1 – 5 seconds  

Fault/disturbance prediction Unknown; depends on fault/disturbance 
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Chapter 7: Classification of faults 

To categorize ML models, the different categories need to be clearly defined. The timespan 
of a fault can be divided into three parts, as displayed in Figure 23.   
 

 
Figure 23: The figure displays the waveform for the three timeframes of a fault occurring in the power grid. The blue 

dotted line visualizes a case where the predictive model predicts that the system will be unstable following a cleared fault, 
while the red dotted line visualizes a case where the predictive model predicts that the system will return to a stable state 

immediately after the fault is cleared. Inspired by [45]. 

 

7.1 Post-fault/Power system stability 

In this thesis, post-fault models are defined as models that predict the real-time stability of 
the power system right after a fault has happened. Power system stability is associated with 
the power system being able to regain a state of operating equilibrium after a fault. It can 
be divided into rotor angle stability, frequency stability, and voltage stability [46], as 
displayed in Figure 24. In this thesis, only articles concerning rotor angle stability will be 
evaluated. The reason for focusing particularly on this subcategory is because this category 
of system stability is one of the desired functionalities of the NEWEPS prototype.  
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Figure 24: The figure displays the main categories and sub-categories of power system stability. Some sub-categories from 

the original source are omitted because it is outside of the scope of this thesis. Adapted from [46]. 

 
Rotor angle stability is associated with the damping of electromechanical oscillations 
inherent in power systems. The rotor angle (also called the load angle) is the angle between 
the axis of the stator and the rotor in the synchronous generator. It can be used to 
determine the active power from the generator. Larger rotor angles result in larger power 
output and vice versa. If the load angle is increased beyond 90 degrees, the generator will 
lose synchronism. The rotor angle also determines the load sharing between multiple 
synchronous generators connected in parallel. When in an equilibrium state, the generators 
are running at equal speeds. Once this balance is disturbed, oscillations in the rotor angles 
will appear. If these are not properly damped, the generators can fall out of synchronism 
and instability occurs. In a power system with sufficient rotor angle stability, the 
synchronous machines will therefore be able to regain synchronism after a fault. The 
subcategory can be further divided into large and small disturbances [46].  
 
Large-disturbance rotor angle stability is usually called transient stability. A large 
disturbance could, for example, be a short-circuit fault in the transmission line, which 
results in large excursions of generator rotor angles. Assessing rotor angle excursions of 
synchronous machines following such a disturbance gives an indication of the transient 
stability of the power system. Small-disturbance rotor angle stability is concerned with the 
study of non-oscillatory instabilities and the damping of low-frequency oscillations (LFOs). 
These occur when the power system is subjected to small disturbances like small load 
changes and small generators tripping. In this thesis, only LFOs will be considered. LFO 
appears in poorly damped power systems, meaning the system is lacking enough damping 
torque [47].  
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7.2 Fault occurrence 

In this timeframe, the goal is to quickly determine where the fault has occurred (fault 
localization) and what type of fault it is (fault classification) [8]. These models will, as 
mentioned before, not be covered in this thesis as these are not predictive models. 
However, good classification models are of great importance for both real-time grid 
operations and for creating real-world training data for predictive models. This category of 
models has been extensively researched since the late 1990s and is currently being used by 
multiple TSOs worldwide [45]. In the report from CIGRE [45] it was, however, not specified if 
these models made use of ML technology. This large difference in the amount of research 
and literature between fault identification and fault prediction implies that the former is a 
less complicated problem to solve than the latter.  
 

7.3 Pre-fault  

In this thesis, pre-fault models are models that predict upcoming faults. This could be day-
ahead, intra-day, intra-hour, etc. Through the literature study, it was found that very few 
articles are using PMU data as input for ML models to predict upcoming faults. For that 
reason, some articles using non-PMU data have been included in the study. The pre-fault 
category is therefore divided into the following two categories: fault prediction models and 
fault prediction models using non-PMU data.  
 
To be able to predict an upcoming fault, the fault needs to have a signature in advance of 
the fault event. It has been found that many of the most frequent faults happening in the 
power system have a signature indicating an upcoming fault [8] [35]. These signatures can 
be detected on the waveforms from the phase currents and phase voltages going in the 
transmission lines. The anomalies in the waveforms may be so subtle that they are easily 
overlooked by grid operators. Cases from a Texas A&M’s Distribution Fault Anticipator (DFA) 
[35] project show that such anomalies occurred ranging from three days to a month ahead 
of the event of the major fault. In one of the cases, the final fault resulted in an hour-long 
blackout. Subtle signals from intermittent minor faults were produced one month ahead of 
this blackout event. High-fidelity recording equipment in combination with pattern 
recognizing ML models could be able to detect these signatures and give a warning to the 
grid operator, avoiding such blackouts. Some faults have more distinct signatures than 
others. Component failures due to humidity, aging, etc. have been recognized as faults 
having such signatures. An example of this is the mechanical degradation of transformers 
[48].  
 

7.4 Common faults and disturbances in the Norwegian power system 

Every year, Statnett releases a report presenting all the disturbances and faults that 
happened during this year [49]. In 2018, there were 740 disturbances in the 33 kV-420 kV 
grids, displayed in Figure 25. Of these disturbances, approximately 62% were categorized as 
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either being caused by surroundings or technical equipment. In their report, Statnett has a 
measure on the amount of energy that would have been delivered to the customers if there 
would not have been a disturbance in the grid. This is called Undelivered Energy (UE). In 
2018, disturbances caused by surroundings accounted for 60% of the total UE. It has been 
estimated that UE disturbances yearly account for 800 million NOK. This number represents 
the socio-economic expenses for the end-user due to the disturbances [50].  
 

 
Figure 25: A bar plot displaying the number of disturbances in the transmission grid in 2018 (blue) and the annual average 
based on data from 2009 to 2018 (red). The disturbances are divided into the different factors that caused the disturbance 

(x-axis). Adapted from [49]. 

 
A disturbance can consist of one or more faults. 818 faults caused the 740 disturbances in 
2018. Disturbances in the transmission line were most frequently observed, accounting for 
36,3% [49]. There are several different types of transmission line faults. Figure 26 displays 
these types of faults. The most common ones are unsymmetrical faults. From these, the 
single line-to-ground fault is the most common one [51].  
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Figure 26: The figure displays the different types of faults that can happen in a power system. Adapted from [52]. 

 
From Table 3 it can be seen that vegetation and wind are two of the three primary triggering 
causes for disturbances caused by surroundings. Both vegetation, such as trees and twigs, 
and strong wind do oftentimes cause earth- and short-circuit-faults [8]. These two 
categories of triggering causes for disturbances have been found to produce signatures 
ahead of the fault [35]. Such faults are not only very costly for the TSOs but can also 
potentially pose great danger for the environment in which the disturbance happens.  
 

Table 3: The table displays the triggering causes for the disturbances categorized as surroundings. Thunderstorms (and 
lightning strikes), vegetation, and wind are the three most common causes of disturbances. Adapted from [49]. 
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The third primary triggering cause for disturbances is thunderstorms and lightning strikes. 
This category of surroundings does not produce a signature in the waveforms. But since this 
category accounts for a large portion of the disturbances, it should not be overlooked when 
building a predictive model. A common way to include the effect thunderstorms and 
lightning strikes have on the power grid, is to integrate weather forecasts in the predictive 
model. Articles describing predictive ML models based on weather forecasts will therefore 
be included in this thesis. 
 

7.5 Previous research from Statnett and SINTEF Energy Research  

There has been done some previous research in the field of predictive ML models by 
Statnett and SINTEF, one of Europe’s largest independent research organizations.  
 
7.5.1 IMPALA 

IMPALA, a project initiated by Statnett, NTNU, and Optimeering, which launched in 2017, 
aimed at developing an ML system capable of predicting power imbalances in the power 
system. This means that rather than trying to predict faults and disturbances they wanted to 
predict the consumption pattern of the end-user [53][54]. Several different data inputs are 
used such as estimations on future production and consumption, weather data, and 
historical data. According to a representative from the IMPALA project, the offline testing of 
the system was a success and their team is currently aiming for a 15-minute window ahead 
prediction [55].  
 
Their goal is to create a system that should be integrated into real-time operation. The 
system should be able to not only make predictions about power imbalances but also be 
capable of ordering the right amount of balancing power needed from a new Nordic 
balancing model [56], thus keeping the frequency in the power grid stable, making the grid 
more robust. This system will be completed by 2022. Through the IMPALA project, Statnett 
has gained a lot of experience in the field of predictive ML models concerning load 
forecasting and power imbalances. This is the reason for excluding these particular models 
from the literature review performed in this thesis.  
 
7.5.2 EarlyWarn 

The EarlyWarn project, a collaboration between SINTEF Energy Research, Statnett, and 
NTNU, which launched in 2017, aims at applying ML techniques to predict faults and 
disturbances in the power system [57]. The stakeholders are hoping that the use of ML 
techniques in a proactive fault detection system, may downsize or even prevent the adverse 
impacts of a disturbance. In the project, both data from PMUs and Power Quality Analyzers 
(PQAs) are tested. According to a representative from the EarlyWarn project [58], the team 
working on these models has experienced that locating and classifying faults are more easily 
done than predicting upcoming faults. This confirms the assumption made earlier in this 
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thesis that producing ML models for fault prediction is more difficult than producing ML 
models for fault identification.  
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Chapter 8: Reviewed literature 

The results from the literature review are divided into the defined categories, namely post-
fault models and pre-fault models. These categories are further divided into articles 
concerning transient stability and LFO, and fault prediction and fault prediction using non-
PMU data, respectively. For each subcategory, a table containing the articles found from the 
literature search is presented. The table contains which algorithm the author(s) used, the 
methods used for training and testing the algorithm, and the performance of each ML 
model. In each subcategory, a more in-depth look at two articles from the table is 
presented. This is to display the different procedures that are commonly used by authors 
working with these predictive tasks. The reasons for choosing these articles are given below.  
 
Each subcategory contains a discussion section, where the performance of the ML models is 
discussed considering the methods used by the author. The test times and the test system 
used will also be considered. In this section, the data in the training and test sets and the 
size of the whole dataset are also examined, as these are important factors that could 
influence the performance. Every article from the tables will be included in the discussion.  
 
The in-depth articles were chosen based on multiple criteria:  

- The model should be state-of-the-art. The most recent articles are therefore chosen.  
- The relevancy for the Nordic power system. For example, articles that use test 

systems where wind farms are incorporated are preferably chosen.  
- Norwegian weather conditions. Articles that consider high wind are preferably 

chosen, as this is a common weather condition in Norway, see Table 3. 
- Articles considering earth/ground faults are preferably chosen. These faults are, 

according to an experienced grid operator [59], very common and need to be 
addressed. 

 

8.1 Post-fault models  

8.1.1 Transient stability 

8.1.1.1 “Real-Time Monitoring of Post-Fault Scenario for Determining Generator Coherency 
and Transient Stability through ANN” 

In [60], the authors proposed a RBFNN to determine real-time transient stability status and 
identification of coherent generator groups. Identifying the coherency among generators 
after large disturbances can be beneficial for initiating control islanding, according to the 
authors. By splitting the system into smaller networks, the adverse effects of a disturbance 
can be minimized, avoiding a total system failure. Real-time information about generator 
coherency is therefore vital for the grid operators in order to initiate the proper control 
islanding strategies. In the article, an IEEE 39-bus test system was used for generating the 
training data and for testing the trained model.  
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For each sample, there were used six consecutive cycles of post-disturbance data from 
PMUs. The inputs for the model were rotor angles and voltage magnitudes. Faults were 
imposed at the generators, at the loads, and in the midpoint of the transmission lines, 
producing a labeled dataset containing 369 stable and 305 unstable cases. The faults 
consisted of three-phase faults with varied load patterns. Fault clearing time was set 
randomly between five and twelve cycles. Fault clearing time is here meant by the time 
used by the operator to clear the fault. The model was trained on 505 samples of the total 
674 samples. Once trained, the model predicted the future rotor angles for the generators 
in the system and determined both the system’s transient stability and the coherent groups 
of the generators 10-4 seconds after the fault was cleared.  
 

8.1.1.2 “A new method of decision tree-based transient stability assessment using hybrid 
simulation for real-time PMU measurements” 

In [61], the authors used DT and RF models to classify transient stability as stable or 
unstable. The major contribution in this article, according to the authors, is that they 
highlight the problem of misleading training and test data for models predicting transient 
stability. They argue that that the conventional method of generating training data for ML 
models, originating from phasor-based simulators, produces unrealistic data and does not 
catch the dynamic aspects that measuring units such as PMUs inhabit. Training algorithms 
on this type of data will produce models that are not suitable for practical power systems. 
Therefore, a hybrid simulation method is proposed. The methods consist of both a phasors-
based program and an electromagnetic transient simulator, which is based on three-phase 
waveforms of currents and voltages.  
 
Another problem highlighted by the authors is that the phasor estimation algorithms might 
produce erroneous measurements during a limited period after a disturbance. This happens 
under off-nominal frequency conditions. The impairment in the measurements appears as 
transient ripples. Samples from this limited period, called the settling time, need to be 
removed according to the authors. The authors display the importance of taking both of 
these problems into account. This was done by training a DT and RF model using the 
conventional method and the proposed method and then comparing the performance of 
these two.  
 
An IEEE 68-bus test system and a WSCC 127-bus test system were used to generate 
datasets. By introducing three-phase-to-ground faults on all buses and all lines, having the 
fault appear at 25%, 50%, and 75% of the length of the line, 30 000 samples for each system 
for training and testing were produced. Fault clearing time was randomly set between four 
and eight cycles. The ratio of unstable to stable instances in the dataset was 1:2. The ML 
models used voltage magnitude as an input feature and used a 0,1 second time window. 
Five-fold cross-validation was used to tune the parameters of the classifiers.  
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Table 4: The table summarizes the methods used and the performances of the ML models associated with transient 

stability problems. 

Article Year Algorithm Fault applied Method Task Performance 

[60] 2017 RBFNN 

Load 
variations and 
three-phase 

faults at three 
different 
locations 

Static 
sliding 

window. 
Size = 
0,1 s 

Predict 
transient 
stability: 
stable or 
unstable 

Acc = 98,36 
% 

Estimate 
rotor 
angle 

Avg. Error = 
5,238 % 

Predict 
coherent 

generators 
in groups 

All correctly 
classified 

[61] 2020 RF and DT 

Load 
variations and 
three-phase-

to-ground 
faults on buses 

and lines 

Static 
sliding 

window. 
Size = 
0,1 s 

Predict 
transient 
stability: 
stable or 
unstable 

RF: Acc 
= 95,3-98,5 

% 

DT: Acc = 
92,9-96.4 % 

[62] 2020 
MLP, DT and 
Naïve Bayes 

classifier 

Three-phase 
faults on buses 

Time-
adaptive 

sliding 
window. 
Avg. size 
= 0,08 s 

Detect 
faults and 

predict 
transient 
stability 

MLP: Acc = 
96,56-
98,02% 

[63] 2018 LSTM 

Load 
variations and 
three-phase 

faults at 
multiple 
different 
locations, 

during (N-1) 
contingencies 

Time-
adaptive 

sliding 
window. 
Avg. size 
= 0,034 s 

Predict 
transient 
stability: 
stable or 
unstable 

Acc = 99,98-
100% 
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8.1.2 Discussion about transient stability 

The RBFNN used in [60] gives predictions very fast, needing only six cycles of post-
disturbance data and having a test time of around 10-4 seconds. The test time is the time 
that the trained model needs to give predictions using the test samples as input. The DT and 
RF models in article [61] used the same time window. In a 60 Hz system, six cycles of post-
disturbance data result in 0,1 seconds. But in this article, the test time was not mentioned. 
From Table 2 it is clear that a short test time is crucial for models assessing transient 
stability. Both articles generated balanced datasets, which make the accuracy scores 
trustworthy. By changing the fault clearing time, which both articles did, the models get 
more robust. 
 
The authors in [61] used 30 000 samples for training and testing, while the authors in [60] 
only used 674 cases. Here, one case is assumed to consist of many samples (or time steps) 
resulting in a larger dataset. Even though there is no definite answer on how big a dataset 
needs to be, using only 674 samples for such a complex problem would be deemed as being 
too few. In [61] a larger test system was also used compared to the test system in [60]. This 
increases the significance of the results in [61] as the predictive model had to process a 
more complex system.  
 
From Table 4 it can be observed that the models produced great performance results. The 
table also displays the performance of ML models from two other articles [62] [63]. The 
main difference between these two types of articles is that the latter type of articles used a 
time-adaptive sliding window instead of a static sliding window. Although this seems to 
increase the accuracy score of the models, it also increases the complexity of the models, 
which might increase the test time. The authors did, however, not mention the test times. 
This tradeoff might be worth it, given the increase in performance, as this could be good 
enough to implement the models in real-time operation.  
 
None of the models were tested on real-world data or used in a real-time grid operation 
scenario. They depend on artificially generated data using different simulation tools. This 
creates a stream of data, imitating real-time operation. Implementing the models in real-
world grid operation would probably lower the performance. The reason for this is that 
most power system simulation tools do not have the capability to capture every stochastic 
aspect and complexities of a large, real-world power system. However, the models in [61], 
being trained on a hybrid simulation method, might perform better in such a situation.  
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8.1.3 Low-frequency oscillations  

8.1.3.1 “Prediction of Electromechanical Oscillatory Parameters in Power Systems Using 
ANN”  

In [64], the authors proposed an FFNN to predict power oscillation parameters, i.e. 
instantaneous frequency, instantaneous amplitude, and damping ratio. They argue that by 
providing grid operators with real-time information about these parameters, the amount of 
cascaded tripping and blackouts could be reduced. A Hilbert transform is used to compute 
the dataset used for training and testing. The Hilbert transform uses voltage signals from 
PMUs to compute the power oscillation parameters, thus creating a labeled dataset for 
training the FFNN. Once the model was trained on the dataset, a new separate set of 
samples was made (test set) to determine the performance of the model.   
 
For simulation, a two-area 11-bus test system was used. In the system, two similar areas are 
connected by a weak tie (transmission line). Two scenarios were created. In the first 
scenario, a three-phase fault was applied to the weak tie and in the second, a load, close the 
weak tie, was removed. This resulted in a dataset containing 1200 samples. The test time is 
in the order of 10-4 seconds.  
 
8.1.3.2 “Wide-area PMU-ANN-based monitoring of low frequency oscillations in a wind 

integrated power system” 

In [65], the authors used an FFNN to predict the LFO modes and classify their localness in a 
modified IEEE 39-bus test system under several N-1 contingencies. The system is modified 
by placing two wind farms in the system. Together these windfarms accounted for 25% of 
the total production, affecting the damping of LFOs in the system. The output parameters 
from the trained model were frequency, mode index, and damping ratio. Mode index is 
used to rank the LFOs according to their localness. Damping ratio is a value that tells the 
operator if the system is classified as critical and needs to be damped to maintain the 
system’s oscillatory stability. The authors argue that with this information, grid operators 
will be able to perform proper control actions within the critical timeframe.  
 
Voltage magnitudes and angles from PMUs were used as inputs for the model. A Principal 
Component Analysis (PCA) was implemented, reducing the number of features in the 
generated dataset. A PCA retains most of the information in a dataset while reducing the 
training and testing times of the model. The dataset was generated through modal analysis. 
Modal analysis is an offline analysis tool used to characterize the dynamic evolution of a 
power system. This type of analyzing method is, according to the authors, time-consuming 
and does not perform well on larger systems.  
 
The dataset contained 2500 samples of the first four-cycle data of voltage magnitudes and 
angles following the disturbance. The trained model predicted the frequency and the 
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damping ratio of LFOs and determined if oscillations were local or inter-area. Local LFOs 
occur typically in the 1-2 Hz frequency range and appear only on small parts of the power 
system. Inter-area LFOs occur around the 0,1-1 Hz frequency range and exist in 
interconnected power systems through long tie lines [47]. The predictions were produced 
after 10-4 seconds. 
 

Table 5: The table summarizes the methods used and the performances of the ML models associated with LFO problems. 

Article Year Algorithm Fault applied Method Task Performance 

[64] 2021 FFNN 

Two 
scenarios: 

three-phase 
fault in weak 

tie and 
removal of 

load 

Not 
mentioned 

Predict power 
oscillation 

parameters 

MSE 
= 0,0003195-

0,0675 

[65] 2018 FFNN 

Single line 
outages and 

load 
variations 

Static 
sliding 

window. 
Size = 0,067 

s 

Predict LFOs MSE = 0,0052 

Predict 
localness of 
LFO: local or 

inter-area 

All correctly 
classified 

[66] 2017 
Two 

RBFNN’s 

Single line 
outages and 

load 
variations 

Not 
mentioned 

Predict LFOs MSE = 0,0172 

Classify critical 
generator 

All correctly 
classified 

 

8.1.4 Discussion about LFO models 

The models in both articles produced great test times of around 10-4 seconds, which makes 
them suitable for real-time operation. In [65], the effect of having wind farms in a power 
system was examined. This could be of interest for Nordic TSOs and the NEWEPS project 
because the number of wind farms is going to increase soon, as discussed earlier in this 
thesis. No time window was mentioned in [64], while [65] operated with the first four cycles 
from the PMUs. Using a sampling rate of 60 Hz results in a 0,067 second time window. The 
authors in [65] used PCA to reduce the number of features in the dataset, going from 160 to 
16. In larger systems, containing more PMUs, the number of features will increase. Utilizing 
PCA is therefore something that should be considered when building a predictive ML model. 
In [66], aside from predicting LFOs, the authors also determined the critical generator of the 
system. Critical generator meaning the generator responsible for creating the oscillations. 



  Reviewed literature 
 

 48 
 

The authors argue that by quickly notifying the grid operator about where the critical 
generator is, corrective control actions can be performed, suppressing the oscillations in 
real-time. Including this in a decision support system gives the grid operators a more holistic 
view of the power system.  
 
All the articles used an adequate number of samples in the datasets (>1200 samples). None 
of the articles presented the number of stable versus unstable samples in the dataset. 
Considering that the performance metric MSE was used, this does not pose a challenge, as 
long as the data samples did not contain too extreme outliers.  
 
All the models produced great results. The test systems used were, however, rather small. 
This could explain the superior score from [64] as the author of this article used an 11-bus 
test system, while the authors of the other two articles both used a 39-bus test system. 
Each model’s data was also artificially generated through simulation tools. Some properties 
from each model could, nonetheless, be beneficial in a future decision support system. 
Combining these properties in a hybrid model could produce a great real-time tool for 
assessing LFOs for grid operators.  
 

8.2 Pre-fault models 

8.2.1 Fault prediction 

8.2.1.1 “PMU Analytics for Power Fault Awareness and Prediction” 

In [67], the authors tested several ML algorithms to assess different tasks in the power 
system. The first task was to locate and classify single-line to ground faults and three-phase 
to ground faults, applied in the middle of the transmission lines. The faults lasted for 140 
milliseconds. Multiple algorithms were tested, but the DT performed best. The second task 
was to forecast the same type of faults. The following ML algorithms were tested for this 
task: LR, SVR, MLP, and Gaussian Process Regression. LR and SVR performed best. For 
assessing the performance of the ML models, a ten-bus test system was used.  
 
The inputs for the classification and forecasting models were voltage and current 
magnitudes and angles for all three phases from four PMUs. The measurement data is 
captured every 100 milliseconds from the data streams produced by the phasor 
measurement devices, resulting in a dataset containing 40 804 samples. This dataset was 
used to train and test classification models locating where the fault in the power system 
happened and classifying what kind of fault it was, either being a single line to ground faults 
or a three-phase to ground faults.  
 
The forecasting models were able to predict the occurrence of electrical faults twelve 
timesteps (or 1200 milliseconds, one timestep = 100 milliseconds) ahead of the fault. The 
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authors also found that by increasing the timesteps, the performance of the model 
decreased.  
 
8.2.1.2 “Neural Network Based Early Warning System for an Emerging Blackout in Smart 

Grid Power Networks” 

In [68], the authors proposed a method to predict whether or not a given power system is 
moving towards cascading failure. The method was divided into two phases. In the first 
phase, data from PMU was converted to probabilistic data by using probability distribution 
curves. Under normal power flow conditions, when all transmission lines are within their 
rated capacity, the curve has a symmetrical Gaussian distribution about its mean. As the 
system approaches cascading failures, the probability distribution curves become more and 
more non-Gaussian. This was used to label data points as being in normal condition or as 
tending towards a blackout, thus creating a historical dataset. The IEEE 30-bus test system 
was used to create the dataset, by tripping transmission lines and observing how the 
probability distribution changed. In the second phase, this dataset was used to train an 
FFNN. The four inputs for the FFNN were mean, variance, skewness, and kurtosis of the 
distribution curves. Once trained, the model could, according to the authors, be used in 
real-time operation to predict the critical transmission lines causing cascading failures. 
 
The dataset consisted of 35 samples of normal and cascading situations. This was used for 
training and testing the FFNN.  
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Table 6: The table summarizes the methods used and the performances of the ML models associated with fault prediction. 

Article Year Algorithm Fault applied Method Task Performance 

[67] 2019 

DT Single and 
three-phase 

line to ground 
faults 

Static sliding 
window: Size 

= 0,1 s 

Detect fault 
F1-score = 

99,4 - 99,8% 

Classify fault 
F1-score = 

99,5% 

SVR 
Predict faults 12-
timesteps ahead 

NRMSE = 
9,26% 

[68] 2015 FFNN 
Tripping 

transmission 
lines randomly 

Probability 
distribution 

curves 

Predict cascading 
failures 

MSE = 
3,314*10-3 

[69] 2018 FFNN 
Tripping 

transmission 
lines randomly 

Probability 
distribution 

curves 

Predict cascading 
failures and 

provide 
counteractive 

measures 

No 
performance 

given 

[70] 2014 
SVM with 

RBF 
kernel 

Tripping highly 
loaded 

transmission 
lines 

Probability 
distribution 

curves 

Predict cascading 
failures 

Acc = 100% 

 

8.2.2 Discussion about fault prediction models 

All the models, from both articles, [67] and [68], displayed great performances. The authors 
of [68] used a quite novel method to predict cascading failures in the power grid. Instead of 
using PMU data directly for training the model, the PMU data was used to create probability 
distribution curves, which in turn was used for training the FFNN model. The model was 
then able to give probabilities on how likely it is that one transmission line fault will produce 
a cascading failure.  
 
In [69], the same authors built on this method and model and proposed a mitigation plan 
that made use of the early warning signals from the FFNN. The mitigation plan used forced 
line outage as a preventive measure against cascading failures. The line, which was being 
selected for the outage, was based on the maximum phase angle difference and grid 
topology. The reason for using phase angle differences as a measure was because it was 
observed that, right before the Northeast blackout of August 2003 in North America, the 
differences in phase angles showed a major increase. There is barely any literature about 
predictive ML systems using data from PMU with automatic counteractive measures built in. 
This contribution is therefore quite novel. This probabilistic approach was first presented in 
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[70] where an SVM was being used. The novelty of this method could be interesting to 
explore further. 
 
The number of samples used for both training and testing in these articles was quite low (35 
samples). Additionally, the authors did not use k-fold validation, which could have been 
used as a remedy for such a small dataset. As the models were based on artificially 
simulated data, a small dataset may produce a model that is not robust and does not 
generalize well when subjected to real-time data.  
 
From Table 6 it can be seen that the F1-scores for the models in [67] were very high for 
detection and classification of faults. On the other hand, the model that tried to predict 
faults, scored a bit lower indicating that fault prediction is a more difficult task than 
classifying. This is in accordance with the assumptions made earlier in the thesis. The SVR 
model predicted 1200 milliseconds ahead of the fault which is not a lot of time for the grid 
operator to act on. But the model is still of high interest, as it assesses a challenge that is 
quite novel in this field, namely usage of PMU based ML models for fault prediction. 
Although not clearly stated in the article, it seemed like a prediction was made every 100 
milliseconds. An interesting point discussed in the article was that the performance of the 
predictive model decreased as the timesteps increased. This problem must be addressed for 
the model to be more valuable for TSOs. 
 
It should be noted that the test systems used in all the articles were rather small. The 
performance scores of the models might therefore decline when subjected to larger test 
systems.  
 

8.2.3 Fault prediction models using non-PMU data 

8.2.3.1 “Machine Learning to Predict Fault Events in Power Distribution Systems”  

In [71], the author tested four different algorithms to predict faults in the grid based on 
expected weather data. The following four algorithms were tested: FFNN, SVM, DT, 
and Naïve Bayes. The trained models predicted if a fault was going to happen and where it 
was going to occur based on weather data. The research was divided into two parts. In the 
first part, the historical dataset was constructed for training the four models. F1-score was 
used to establish that the FFNN performed best. In the second part, the best-trained model 
was supposed to be utilized for real-time operation. This was, however, not done in the 
article.  
 
The dataset, containing 3471 samples, was constructed by comparing historical fault events 
with the weather forecasts for the same period and the areas where the fault happened. 
The input for the models was weather data such as wind speed, humidity, and lightning 
strikes data.   
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8.2.3.2 “Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and 

SVM” 

The authors in [72] proposed an LSTM and SVM hybrid model to predict transmission line 
trip faults in the power grid. Temporal information in the measurements was firstly caught 
by the three separate LSTM networks, one for each measurement. The measurements used 
for this model were current, voltage, and active power from every line. Then the features, 
captured by the LSTM networks, were merged and used as input for one SVM to predict if 
there was a fault or not. The most common reasons for line trip faults are, according to the 
authors, among others, aging, weather changes, and bad insulation. The authors argue that, 
before the line trip faults occur, there is a gradual indication in the line resistance. During 
this process, it is possible to detect a change in the electrical measurements. These changes 
are what the authors wanted to detect, thus being able to predict upcoming faults.  
 
Real-world data was acquired from the China Southern Power Grid in the 2011-2014 period. 
The balanced dataset consisted of 5120 samples, where each sample contained 500 
timesteps of current, voltage, and active power, 15 minutes before the event happened. 
The event was either a normal state or a fault. Data from 2011 to 2013 were used for 
training the model. The trained model was then used to predict faults for the first half of the 
year 2014. The training and testing times were around one minute.  
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Table 7: The table summarizes the methods used and the performances of the ML models associated with fault prediction 
using non-PMU data. 

Article Year Algorithm Fault applied Method Task Performance 

[71] 2021 FFNN 

No faults 
applied, 
based on 
historical 

data 

Not time-
dependent 

data, no 
sliding 

window 

Predict faults 
on 

components 
based on 
weather 

conditions 

Avg. F1-
score = 0,75 

[72] 2018 
LSTM and 

SVM 
hybrid 

No faults 
applied, 
based on 
historical 

data 

Predictions 
are given 
based on 

15-minute 
real-time 

data 

Predict faults 
in lines based 
on electrical 

measurements 

Acc. = 95% 

[73] 2017 FFNN 

No faults 
applied, 
based on 
historical 

data 

Prediction 
every 15 

min, based 
on hourly 
new real-
time data 

Predicts line 
overloading 

based on 
multiple 
inputs 

RMSE = 
19,57-25,01 

[74] 2017 LR 

No faults 
applied, 
based on 
historical 

data 

Not time-
dependent 

data, no 
sliding 

window 

Predict faults 
on 

components 
based on 

hurricane data 

F1-score = 
0,9027 

[75] 2018 SVM 

No faults 
applied, 
based on 
historical 

data 

Not time-
dependent 

data, no 
sliding 

window 

Predict faults 
on 

components 
based on 

hurricane data 

Avg. F1-
score = 
0,858 

 
 
8.2.4 Discussion about fault prediction models using non-PMU data 

The models in the articles performed to varying degrees. Articles [71], [74], and [75] were all 
mainly based on weather data and the location of the power system components. [71] used 
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several weather conditions as input for the algorithms, providing a more holistic 
interpretation of the power system situation compared to the other two articles, which only 
used wind speeds as input. Real-world, historical data was being used for both training and 
testing the algorithms. This could explain the relatively low performance of these weather-
based predictive models.  
 
In [72], electrical measurements from transmission lines were used to predict faults in the 
grid. Although real-world, historical data was being used for training and testing, the trained 
model was able to predict with reasonably high accuracy. The hybrid model used by the 
authors should therefore be considered as a highly relevant model. Developing a system 
that uses several algorithms to solve different parts of the process, might be the way to go 
to achieve a well-performing system. The type of sensors that were being used to capture 
this data is not explained but is reasonable to think that a PMU could provide the data 
necessary. The test time was, however, not given but it is assumed that predictions are 
produced between 0 and 15 minutes before the fault happens, as the sampling period is 15 
minutes. Considering that the authors made use of real-world data from a relatively large 
power system, this model and method are quite novel and should be further researched.  
 
The authors in [73] used both weather data and grid data to predict ampacity levels in the 
three phases of transmission lines. The article used a quite novel method, considering the 
trained FFNN was being retrained in real-time, based on hourly new data. This has not been 
shown in any other article assessed in this thesis. Rather than just training the model once 
and let it predict on time-series data, the model is dynamic and adapts to changes in the 
grid. The model was tested using a simulator, producing a stream of time-dependent data. 
Predictions on the ampacity levels were produced every 15 minutes. The performance was 
poor, but the novelty of the method used should be remarked. 
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Chapter 9: Case study 

This case study is included to illustrate how predictive ML models can learn from patterns in 
data from power systems. Just as the literature review, this case study is divided into pre- 
and post-fault. 
 

9.1 Post-fault 

9.1.1 Case description 

For simulating a post-fault scenario, the test system created by Siemens called “savnw” was 
used. This is a 21-bus system with six generators. A one-line diagram of the system is 
represented in Figure 27. The generators of interest in this thesis are named G1 and G2 in 
the figure. As the goal of this case study is to assess how the generator angles respond in 
the different fault scenarios, a reference generator has to be chosen. Because generator G3 
has the largest inertia in this test system, it is chosen as a reference. This is because the 
rotor angle of the generator with the largest inertia tends to move the least. To display how 
the system reacts to faults, the dynamic simulation function of PSS/E was used.  
 
Three cases with two scenarios in each case were simulated. One where the system is able 
to restore stability and one where it becomes unstable and loses synchronism. To create 
these scenarios, a bus fault was applied one second into the simulation. This bus is marked 
with a black circle in the middle of Figure 27. Introducing a bus fault in a dynamic PSS/E 
simulation reduces the voltage at the faulted bus to almost zero, simulating a three-phase 
short-circuit fault in the same way as many of the articles presented above have done. The 
bus fault was resolved after 0,12 seconds (Case 1), 0,16 seconds (Case 2), and 0,08 seconds 
(Case 3). In a 50 Hz system, clearing a fault after 0,12 seconds results in a fault clearing time 
of six cycles. Graphs for Case 1 are presented in Figure 28 and Figure 29. Results of the three 
cases are given in Table 8. This table was produced through the Spyder integrated 
development environment using the programming language called Python. The code is 
given in the Appendix.  
 
To simulate how such a fault could be resolved, power lines going to the faulted bus are 
tripped. In Figure 27, the blue cross indicates the line tripped in scenario 1 and the red 
crosses indicate the lines tripped in scenario 2. The total simulation run is 30 seconds. For 
each simulation the system is reset, assuring that the same start conditions apply to both 
scenarios. This was done for all three cases. More information about the test system is given 
in the Appendix.  
 



  Case study 
 

 56 
 

 
Figure 27: The example test system from Siemens called "savnw". The pink and green vertical lines are buses, the circles 

are generators, the two jagged lines are two winding transformers, the straight line parallel to a bent line are 
compensators, and the triangles are loads. In this thesis, G1 and G2 are analyzed, and G3 is used as the reference. The 

faulted bus is marked with a black square. The red and blue crosses indicate which lines are being tripped to resolve the 
fault.  

 

9.1.2 Case results 

The results of all the simulations are presented below. Figure 28 and Figure 29 display the 
results from the stable and unstable situations for Case 1, respectively. The green line is G1, 
and the red line is G2, both with reference to G3. In both figures, a) displays the rotor angles 
0,12 seconds after fault clearance (in Case 1 the fault was cleared 1,12 seconds into the 
simulation run), b) displays the rotor angles after 10 seconds of simulation, c) displays the 
frequency after 10 seconds of simulation and d) displays the rotor angles after 30 seconds 
of simulation. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 28: The figures display a stable situation for Case 1. The green line is G1, and the red line is G2. The rotor angles are 
measured in degrees and the frequency is measured in hertz. a) displays the rotor angles of the generators 0,12 seconds 

after fault clearance, relative to G3. b) displays the rotor angles of the generators ten seconds into the simulation, relative 
to G3. c) displays the frequency of the generators ten seconds into the simulation. d) displays the rotor angles of the 

generators 30 seconds into the simulation, relative to G3. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 29: The figures display an unstable situation for Case 1. The green line is G1, and the red line is G2. The rotor angles 
are measured in degrees and the frequency is measured in hertz. a) displays the rotor angles of the generators 0,12 

seconds after fault clearance, relative to G3. b) displays the rotor angles of the generators ten seconds into the simulation, 
relative to G3. c) displays the frequency of the generators ten seconds into the simulation. d) displays the rotor angles of 

the generators 30 seconds into the simulation, relative to G3. 

 
Table 8 displays the results from the three cases and is an example of how a labeled dataset 
for training and testing of predictive ML algorithms could look like. The rightmost column 
contains the class label for each sample. A zero indicates a stable situation and a one 
indicates an unstable situation. The other columns contain timesteps after the instance of 
the fault being cleared. In this dataset, six cycles of post-fault rotor angle data are used as 
input for the ML algorithm. Each column represents one timestep, where each timestep is 
0,02 seconds. The amount of post-fault data used in this dataset is inspired by multiple 
articles from the literature review.  
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Table 8: An example of a labeled dataset used for training and testing an ML algorithm. The table contains the post-fault 
rotor angles for the generators G1 and G2 relative to G3. Each case is either labeled as being stable or unstable. The 
columns represent time steps after the fault is cleared. This dataset contains six cycles of post-fault rotor angle data.  

 0 0,02 0,04 0,06 0,08 0,10 Stable? 
Case 1: G1 stable -18,24 -17,93 -17,70 -17,52 -17,39 -17,33 0 
Case 1: G2 stable -33,70 -36,33 -38,84 -41,23 -43,40 -45,28 0 
Case 2: G1 stable -17,45 -17,01 -16,69 -16,47 -16,37 -16,40 0 
Case 2: G2 stable -39,55 -42,96 -46,12 -49,03 -51,58 -53,69 0 
Case 3: G1 stable -18,66 -18,59 -18,52 -18,46 -18,43 -18,41 0 
Case 3: G2 stable -29,47 -30,37 -32,20 -34,90 -36,59 -38,13 0 

Case 1: G1 unstable -18,24 -17,99 -18,11 -18,51 -19,21 -20,21 1 
Case 1: G2 unstable -33,70 -36,42 -39,49 -42,82 -46,34 -50,01 1 
Case 2: G1 unstable -17,45 -17,07 -17,11 -17,49 -18,23 -19,34 1 
Case 2: G2 unstable -39,55 -43,06 -46,83 -50,77 -54,81 -58,88 1 
Case 3: G1 unstable -18,66 -18,59 -18,73 -19,44 -20,21 -21,23 1 
Case 3: G2 unstable -29,47 -31,37 -33,70 -37,94 -39,55 -42,96 1 

 
 

9.1.3 Case discussion 

The figures in Figure 28 show that the power system quickly dampens the oscillations after 
only one second and is fully damped ten seconds into the simulation. The figures in Figure 
29, on the other hand, show that the oscillations are not damped and continue to oscillate 
the whole simulation until around 20 seconds. Here the generators lose synchronism and 
spin out of control. The reason that the rotor angles return to zero shortly after the 
generators lose synchronism is because PSS/E trips the generators when the rotor angles 
exceed 180 degrees.  
 
Figure 28 a) and Figure 29 a) reveal the generator angles 0,12 seconds after the fault is 
cleared. This is equivalent to six cycles of post-disturbance data, which was used by multiple 
authors from the post-fault category. In Figure 28 a) it is possible to see that the curve of 
G1, already at that early stage, resembles a damped oscillation. In Figure 29 a), however, 
the peak of G1’s curve happens earlier before it drops abruptly downwards. These patterns 
are what an ML model will learn when training on such data, gaining important information 
from data during a very short timeframe. This can be seen clearly in Table 8, where the 
differences in rotor angles between stable and unstable situations are displayed. A trained 
ML model, receiving this type of data, can compute predictions on stability after only 10-4 
seconds as seen from the literature review.  
 
To create an ML model that generalizes well, the dataset used for training and testing must 
contain a lot of different cases, with different scenarios and conditions. The dataset in Table 
8 represents a small version of such a dataset. Creating a sufficient dataset could be done 
through power system software tools such as PSS/E.  
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9.2 Pre-fault  

9.2.1 Case description and results 

To display how ML models could potentially predict upcoming faults based on incipient 
faults and faults signatures, a case from Texas A&M will be used as an example. In this case, 
wildlife caused a fault on a transmission line on May 21. This is displayed in Figure 30. The 
fault was cleared by a fuse and the fuse was shortly thereafter replaced by service. Three 
days later, low-levels anomalies started to occur on the same phase of the same line. Figure 
31 displays examples of these on May 24. The waveform seemed quite normal but on the 
third and fourth cycles, there were small distortions near the peaks. These subtle anomalies 
continued the next six days until May 30, when a customer reported lights-out. “The 
responding crew found that the clamp connecting the primary phase conductor to the 
customer’s service transformer had burned open” [35]. The power outage on May 30 was a 
result of the wildlife fault nine days earlier which stressed the transmission line [35].  
 

 
Figure 30: The figure displays a snapshot of the current signals right when the wildlife fault happened. From [35] [©2019 

IEEE]. 
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Figure 31: The figure displays a snapshot of the current signals three days later. It shows only phase b of the current signal. 

From [35] [©2019 IEEE].  

 
9.2.2 Case discussion 

This case displays that fault signatures can be very subtle and difficult for a human grid 
operator to register. Registering these signatures requires high-fidelity measuring devices. 
PMUs, measuring up to 60 samples per second, have a sampling rate capable of capturing 
such anomalies. As these devices produce large amounts of data every second, a data 
analysis method such as ML could be used. A trained ML model, such as an LR-based model 
from [67] or an RNN with LSTM-based model from [72], could be used to give early warnings 
to grid operators. In this case, an early warning system could have notified the grid 
operators about a recurrent anomaly and given a warning. This could in turn have 
prevented the final outage on May 30.   
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Chapter 10: Literature review discussion 

10.1 Current usage of ML techniques in the Nordic synchronous area 

Statnett’s use of ML techniques for real-time fault and power system stability assessment is 
very limited. Through the conversation with an experienced grid operator at Statnett, it was 
found that there is an artificial intelligence-based program that aims at predicting faults in 
the grid. This is, however, not used by the operators because currently the conventional 
methods, which do not make use of predictive ML models, are faster and more reliable [59]. 
As mentioned earlier, SINTEF’s EarlyWarn project has been researching ML models for fault 
prediction. Through the discussion with the representative, it was, however, determined 
that the research was in its early stages. Additionally, the models in this project mainly use 
data from PQAs as input. Research in this specific area has also been limited among the 
other Nordic TSOs. Through the Smart Transmission Grid Operation and Control 
(STRONGRID) project, the use of PMU data has been explored. ML techniques were, 
however, not tested.  
 
The limited research and implementation of predictive ML models for fault and power 
system stability assessment done by the Nordic TSOs indicate a low TRL. Some research has 
been done, which results in a TRL of around 1 for both pre- and post-fault. The goal of the 
NEWEPS project is to create a prototype system. With such a system in place, the TRL will be 
at around 6. Although it is not given that the prototype system will be based on ML 
techniques, the TRL gives an indication on where the research and competence on 
predictive ML models at Statnett might be at the end of the project.  
 

10.2 Post-fault 

In this category, there has been done a substantial amount of research, especially with 
models predicting transient stability. For this specific task, the literature search resulted in 
four more articles than presented in Table 4. These were not prioritized due to time 
limitations. This does, however, give an indication of how much research there has been 
done on this topic. Articles concerning LFOs were, on the other hand, more difficult to 
discover. With the limitations set, only the articles given in Table 5 were found through the 
literature research.  
 
To what extend is it possible to use Machine Learning models to predict the stability of the 
grid immediately after a fault happens?  
The models reviewed in the literature study performed very well, having accuracies and 
RMSE values of around 95%-100% and 0,06-0,0003 respectively. The models are also fast 
enough to be used in real-time operation. None of the models are, however, tested on real-
world data or in real-time operation. This will most probably decrease the performance of 
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each model as mentioned earlier in this thesis. The articles reviewed are, nonetheless, great 
examples of the possibilities of predicting post-fault grid stability.  
 
How relevant are the predictive Machine Learning models for Statnett and the NEWEPS 
project?   
For the Nordic TSOs, the RNN using LSTM and the FFNN are two networks that perform very 
well and should be considered when starting research on ML models for post-fault stability 
assessment using PMU data. As gathering enough real-world data for training and testing 
models could be difficult, the hybrid simulator from [61] could be used in order to create 
realistic and non-misleading PMU data. To improve the robustness of the model, k-fold 
cross-validation could be implemented during training, especially when the dataset is small. 
A time-adaptive sliding window seems to produce slightly better scores and could also 
decrease the amount of post-fault data needed. It may, however, as mentioned, create a 
more complex model that has longer test times compared to a model using a static sliding 
window.  
 
To decrease the training time of the models, PCA could be used to reduce the number of 
features. Besides predicting transient stability and LFOs, techniques for forecasting 
generator coherent groups are investigated which could help when performing controlled 
islanding of the grid. Models for both detecting critical generators causing the LFOs and 
determining the localness of LFO modes have also been presented. These features could be 
incorporated in a hybrid early warning system, such as NEWEPS.  
 
Based on the literature review done in this thesis, this category of ML models is evaluated to 
currently be between TRL 3 and 4. The articles in this category display simulations handling 
realistic problems using representative datasets. As there has been done more research on 
transient stability compared to LFOs, ML models concerned with transient stability are 
evaluated to be at a TRL 4, while LFOs are evaluated to be at a TRL 3. As this is a substantial 
number of levels ahead of where the Nordic TSOs currently are, finding resources to 
improve ML models for stability prediction in post-fault situations should not be difficult.  
 

10.3 Pre-fault 

In this category, there has been a lot less research compared to the post-fault category, 
which resulted in dividing the research in this category into PMU models and non-PMU 
models. Every article found for ML models using data from PMUs, meeting the set 
limitations, is presented in Table 6. For non-PMU models, in Table 7, there were two more 
articles found which met the limitations, but these were not prioritized. It should be noted 
that three of the articles concerning PMU based models discuss the same method and 
model, decreasing the amount of relevant literature even further.  
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To what extend is it possible to use Machine Learning models to predict upcoming faults in 
the grid before the fault happens? 
The overall performance of the ML models in this category is slightly worse than for post-
fault models, as displayed in the tables presented in Chapter 8. This indicates a difficulty in 
predicting upcoming faults which could be a reason for the limited literature on this topic. In 
all the articles using data from PMUs, the datasets were simulated. A reason for this could 
be the scarcity of relevant real-world PMU data and the convenience of using simulation 
tools. When subjected to real-world data, ML models trained solely on artificially simulated 
data could experience a decrease in performance. This can especially happen when the 
models are tested on small test systems or trained on small datasets. In the articles 
concerning ML models employing non-PMU data, real-world historical data was, however, 
adopted. This increases the relevancy and the generalization ability of these models. The 
articles reviewed in this category display that using ML models to predict upcoming faults 
could be possible in the future. The research done on these ML models using data from 
PMUs is, however, in its beginning stages.  
 
How relevant are the predictive Machine Learning models for Statnett and the NEWEPS 
project?   
For the NEWEPS project, the results from this category could be of high interest as this is a 
topic where there has been limited research and testing. Especially the hybrid model (RNN 
using an LSTM with SVM classifier) from [72] is very relevant as it is used on real-world data 
and performs very well. Using one LSTM network for each measurement could be an 
intelligent way to incorporate more information into the predictive model. Although the 
model does not use PMU data, adjusting the method used in [72] will most probably make it 
capable of using PMU data.  
 
The model in [67] uses PMU data as input but has a slightly worse score than [72] despite 
the authors using a smaller test system in [67]. The article is, however, an important 
contribution as it this is the only model that uses PMU data directly in this category. A 
dynamic model that adapts to changes in the grid as shown in [73], should also be evaluated 
and tested as this will result in a more flexible predictive system. Incorporating weather 
data in a predictive early warning system could be beneficial and give a more holistic and 
comprehensive view of the power grid. As weather conditions have been shown to have a 
large impact and correlation on the number of faults and disturbances happening in the 
grid, these data should be included in such a system.  
 
This category of ML models is evaluated to currently be between a TRL 3 and 4. Articles 
about predictive ML models using data from PMUs are quite limited indicating a low TRL. 
Some research in this specific area has, however, been done resulting in a TRL 3. By 
including ML models using non-PMU data the amount of research done increases. [72] 
displays experiments on real-world power systems indicating a higher TRL. This specific 
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category is therefore evaluated to be at TRL 4. Through the NEWEPS project, the Nordic 
TSOs are in a great position to be part of this important research of using ML to predict 
faults and disturbances in the grid.   
 

10.4 Benefits of predictive ML models  

Creating and implementing an early warning system would yield benefits viewing it from 
both an economic as well as an operational standpoint. Operating the grid in a more 
probabilistic way, and thus moving further away from the deterministic N-1 concept, which 
was presented earlier in the thesis, could reduce costs for the Nordic TSOs. An example of 
this is reduced material costs when building new power lines, as fewer lines might be 
needed. Such a system could potentially also reduce the costs associated with UE, as more 
of the faults and disturbances happening in the grid could be anticipated.  
 
A reliable early warning system could help grid operators in keeping an increasingly more 
dynamic and complex power system stable and preventing outages. More extreme weather 
conditions will most likely make this task even more difficult. Fault prediction will therefore 
be an important part of such an early warning system.  
 
Utilizing predictive ML models as presented in this thesis could be an important step in 
creating such an early warning system and realizing the benefits mentioned above. This 
system could be divided into two separate subsystems, one focusing on analyzing fault 
signatures and predicting faults and disturbances, in the pre-fault timeframe and the other 
one focusing on predicting system stability, in the post-fault timeframe.  
 
  



  Conclusion 
 

 66 
 

Chapter 11: Conclusion 

This master’s thesis has given an overview of the research and the current status of ML 
models using PMU data for predicting power system stability and faults. Through a 
literature study, it was decided that the state-of-the-art algorithms should be divided into 
either concerning pre- or post-fault problems. Such a categorization has not been observed 
in the literature and is therefore unique for this master’s thesis. The thesis highlights the 
important distinction between these two timeframes. By reviewing the relevant literature, 
meeting the set limitations in this thesis, it has been found that the current usage of such 
models is quite limited and is still in its early stages. The model testing performed in these 
articles does, however, display promising results, indicating that predictive ML prototypes 
using PMU data may not be far from being developed.  
 
This thesis has found that there is more literature and more research done on post-fault 
models using data from PMUs than on pre-fault. Including only ML models using data from 
PMUs as input, the models belonging to the post-fault category are evaluated to be 
between a TRL 3 and 4, while pre-fault models are evaluated to have a TRL of 3. By including 
non-PMU models, the pre-fault category is evaluated to have a TRL of 4. A valuable 
overview of the most common ML models researched and the expected performance, 
displayed as tables, has in this thesis been produced. Different methods for using the data 
from PMUs have been explained, presented, and evaluated. By comparing the speed, 
performance, and relevancy of each model, recommendations have been made for the 
Nordic TSOs to further pursue. The information and overview presented in this thesis could 
be used as a starting point for further research.  
 
In the case study, it was displayed through examples how ML models can predict stability 
and faults in the power grid. For the post-fault timeframe, examples were created using the 
dynamic simulation function of the power system software tool PSS/E. A three-phase short-
circuit fault was applied to create two different scenarios in three different cases. The fault, 
the fault clearing time, and the amount of post-fault data used in this simulation were based 
on the results from the literature review. Through the three cases, it was found that there 
are differences in the rotor angles of the generators after only 0,08 to 0,16 seconds after 
the fault is cleared, comparing the stable and the unstable cases. This shows that there are 
clear patterns which an ML model can learn, and thus differentiate between a stable and an 
unstable case. For the pre-fault timeframe, a case from Texas A&M was used. It was found 
that there are subtle anomalies in the waveforms ahead of certain faults. These are so 
subtle that they are difficult for human grid operators to detect. Trained ML models, 
however, have the capability of detecting such small anomalies, and thus being able to give 
early warnings about upcoming faults.  
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A TRL evaluation of the current state of predictive ML models using PMU data by Statnett 
and the other Nordic TSOs has also been carried out. This has been done through 
conversations with relevant experts in the fields of ML and power system operation. Both 
the pre- and post-fault categories have been evaluated to be at TRL of 1, seeing that there 
has almost not been done research on this specific topic. The results from this thesis could 
therefore prove to be a great entry for starting this specific research for the NEWEPS 
project, as the project’s goal is to reach a TRL of 6.  
 
The discussion, based on the results from the literature review, culminated in 
recommendations of the most promising algorithms and methods. More research on these 
algorithms and methods could prove to be beneficial. For stability assessment in post-fault 
situations, an RNN with LSTM or an FFNN seems to produce the best scores. Using a time-
adaptive sliding window might help to decrease the test times but could also make the 
model more complex. For fault forecasting in pre-fault situations using data from PMUs, a 
SVR seems to be the most promising model. However, by including predictive ML models 
using non-PMU, a hybrid model using RNN with LSTM and an SVM classifier might be the 
better option as this has shown superior performance compared to the SVR.  
 
Other predictive models using non-PMU data have also been assessed to compliment the 
lack of PMU based predictive models. The use of weather data as an additional input to an 
ML model has been discussed and it has been considered to be a great way of producing a 
model that gives a more holistic real-time view of the power grid. This would increase the 
number of features that the model would need to learn. PCA has, therefore, been suggested 
as a counteractive measure to decrease the number of features without losing valuable 
information.  
  
The benefits, for Statnett and the other Nordic TSOs, of using a predictive ML model in an 
early warning system has also been discussed, seeing it both from an economical and an 
operational point of view. Implementing ML models could potentially decrease expenses 
associated with planning and constructing new power lines, and with expenses because of 
UE. Predictive ML models could also be used as a decision support tool, assisting grid 
operators with keeping the power grid stable.  
 

11.1 Further work and recommendations 

Through the research done in this master’s thesis, it has been found that predictive ML 
models using PMU data are highly relevant for the NEWEPS project and should be further 
researched. The following algorithms are the most promising found in this thesis: 
 

- For quick prediction of power grid stability in the post-fault timeframe: RNN with 
LSTM or FFNN  

- For fault prediction in the pre-fault timeframe: RNN with LSTM and SVM hybrid 
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Further research on these algorithms should be done, increasing Statnett’s TRLs in both 
categories. The models should be tested on relevant data and simulations of the Nordic 
power grid. This master’s thesis could be a great starting point for getting an overview of 
the different simulation methods used. The case study could be used as inspiration for 
creating larger simulations. Incorporating real-world data would be beneficial to create a 
more robust model. Creating a prototype system with predictive ML models implemented is 
the next step after simulation testing. These prototypes should be tested in real-time and 
real-world operation, eventually becoming an essential part of normal grid operation for 
Statnett.  
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Appendix 

A. TRL table  

Table 9: The table displays the different TRLs and explains each level thoroughly. From Statnett. 

  

Description software Description methods/knowledge

1
Basic principles 

are observed

Literature studies are conducted to confirm basic 
principles for the concept. A possible idea is described 
which is based on the identified principles. This also 

includes mathematical formulations for possible 
algorithms.

Literature studies are conducted to confirm basic 
principles of the technology. A possible idea is 

described which is based on the identified principles.

2
Concepts are 
formulated

Practical application is formulated which includes 
functional requirements, system limits and whether 

the software is to be part of existing software or 
independent. Preparatory analytical studies with 
synthetic data support the concept and the basic 
system architecture with modules/functions is 

identified.

Practical application of the method or need for new 
knowledge is formulated. This also includes the 
delimitation of the problem area. Preparatory 

analytical studies support the concept and the concept 
for obtaining new knowledge/data is described.

3

The critical 
functions or 

characteristics 
of the concept 

are proven

Active work with the software has started. This 
includes coding of limited functions to validate critical 

properties and analytical assumptions. All testing 
takes place with non-integrated software components 

and partially representative data.

Active work on the concept has begun. This includes 
analytical studies to prove that the method can work 
or to be able to confirm that the chosen concept for 

obtaining new knowledge/data is suitable.

4

Technological 
component or 

concept is 
developed

Software components are integrated into a first trial 
version to determine their compatibility. Basic 

functionality is tested in simplified environments. 
Requirements for data quality and format are 

formulated.

Basic parts of the new method are developed and 
adapted to the need. The concept for obtaining new 
knowledge/data is developed in detail so that it is 

certain that it can be used.

5

Technological 
component or 

concept is 
validated in 

relevant 
environment

The software components are integrated so that the 
system configuration can be tested. Experiments with 

realistic problems, representative data sets and 
simulated interfaces to existing systems are carried 
out. Coding of functions/modules is completed and 

software testing is started.

All parts of the new method are integrated into a 
system to determine that they work together. The 

method is tested with realistic issues. The concept of 
obtaining new knowledge/data is tested in a very 
limited area/sample to be able to see if it works.

6

Prototype or 
concept 

demonstrated 
in relevant 

environment

The practical use and performance of the software 
solution is demonstrated with a complete prototype, 
ready-made user interface and realistic issues. The 

software has all the features but is likely to contain a 
number of known or unknown bugs. During the 

demonstration, the software is partially integrated 
with existing systems.

The practical feasibility of the new method is 
demonstrated with realistic issues. The concept for 

obtaining new knowledge/data is tested in a limited 
area/sample by going through the entire process 
which also includes analysis of data and the like.

7

Full-scale 
prototype or 

concept 
demonstrated 
in operating 
environment

The prototype of the software solution is implemented 
in an operational environment, where critical 

functionality is available for demonstration. The 
software version is ready for use if there are no 

significant errors. During the demonstration test, the 
software is fully integrated with operating systems.

The new method is demonstrated in an operational 
environment, where it is integrated with existing 

operational solutions and processes. New 
knowledge/data is obtained and analyzed so that it 

can be used in operational processes.

8
Qualification in 

operational 
environment

The software is fully integrated with operating 
systems and all functionality is tested in use. 
Documentation of the software is completed.

The method/knowledge is used and evaluated in real 
operational situations.

9
Used in real, 

operative 
situation

The software is used in its final form in operation over 
a longer period of time. All documentation is verified 

and long-term software support is in place.

The method/knowledge is used in its final form in 
operation over a longer period of time.

TRL
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B. More information about PSS/E 

 

 
Figure 32: A more detailed one-line diagram of SIEMENS test system called "savnw". 

 



  Appendix 
 

 76 
 

Table 10: Information about the start values at buses for dynamic simulation. 

Bus 
Number 

Bus Name Base 
kV 

Volt
age 
(pu) 

Angle 
(deg) 

Normal 
Vmax 
(pu) 

Normal 
Vmin 
(pu) 

Emergenc
y Vmax 

(pu) 

Emergenc
y Vmin 

(pu) 
101 NUC-A 21,6 1,02 16,55 1,1 0,9 1,1 0,9 
102 NUC-B 21,6 1,02 16,55 1,1 0,9 1,1 0,9 
151 NUCPANT 500 1,01 10,89 1,1 0,9 1,1 0,9 
152 MID500 500 1,02 -1,12 1,1 0,9 1,1 0,9 
153 MID230 230 0,99 -3,24 1,1 0,9 1,1 0,9 
154 DOWNTN 230 0,94 -9,88 1,1 0,9 1,1 0,9 
201 HYDRO 500 1,04 6,16 1,1 0,9 1,1 0,9 
202 EAST500 500 1,01 -1,32 1,1 0,9 1,1 0,9 
203 EAST230 230 0,97 -6,92 1,1 0,9 1,1 0,9 
204 SUB500 500 0,98 -3,73 1,1 0,9 1,1 0,9 
205 SUB230 230 0,95 -9,18 1,1 0,9 1,1 0,9 
206 URBGEN 18 1,02 -2,97 1,1 0,9 1,1 0,9 
211 HYDRO_G 20 1,04 12,92 1,1 0,9 1,1 0,9 

3001 MINE 230 1,03 -1,37 1,1 0,9 1,1 0,9 
3002 E. MINE 500 1,03 -1,83 1,1 0,9 1,1 0,9 
3003 S. MINE 230 1,02 -2,25 1,1 0,9 1,1 0,9 
3004 WEST 500 1,02 -3,43 1,1 0,9 1,1 0,9 
3005 WEST 230 0,99 -5,18 1,1 0,9 1,1 0,9 
3006 UPTOWN 230 0,99 -3,79 1,1 0,9 1,1 0,9 
3007 RURAL 230 0,96 -8,54 1,1 0,9 1,1 0,9 
3008 CATDOG 230 0,96 -9,05 1,1 0,9 1,1 0,9 
3011 MINE_G 13,8 1,04 0 1,1 0,9 1,1 0,9 
3018 CATDOG_G 13,8 1,02 -4,08 1,1 0,9 1,1 0,9 

 
 

Table 11: Information about start values at generator buses for dynamic simulation. 

Bus 
Number 

Bus Name Mbase 
(MVA) 

Pgen 
(MW) 

Qgen 
(Mvar) 

H, inertia 
(MJ/MVA) 

101 NUC-A 900 750 81 4 
102 NUC-B 900 750 81 4 
206 URBGEN 1000 800 600 2,5 
211 HYDRO_G 725 600 17 5 

3011 MINE_G 1000 259 104 3 
3018 CATDOG_G 130 100 80 3 
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C. Results from literature search 

Transient stability: 
Table 12: Table displaying all the relevant articles found about transient stability. 

Title Algorithm Year 
Estimation of rotor angles of synchronous 
machines using artificial neural networks 

and local PMU based quantities 

ANN 2007 

Real-Time Monitoring of Post-Fault Scenario 
for Determining Generator Coherency and 

Transient Stability through ANN 

ANN 2017 

Wide Area Measurement-based Transient 
Stability Prediction using Long Short-Term 

Memory Networks 

LSTM 2017 

Intelligent Time-Adaptive Transient Stability 
Assessment System 

LSTM 2019 

A new method of decision tree based 
transient stability assessment using hybrid 

simulation for real-time PMU measurements 

DT 2020 

Transient stability assessment via decision 
trees and multivariate adaptive regression 

splines 

DT 2016 

Stacked-GRU Based Power System Transient 
Stability Assessment Method 

Gated 
Recurrent 
Unit (GRU) 

2018 

Real-time transient stability prediction of 
power systems based on the energy of 

signals obtained from PMUs 

MLP, DT, 
Naïve Bayes 

classifiers 

2020 

 
LFO: 

Table 13: Table displaying all the relevant articles found about LFO. 

Title Algorithm Year 
Intelligent Wide Area Monitoring of Power 
System Oscillatory Dynamics in Real Time 

ANN 2017 

Wide-area PMU-ANN based monitoring of 
low frequency oscillations in a wind 

integrated power system 

ANN 2018 

Prediction of Electromechanical Oscillatory 
Parameters in Power Systems Using ANN 

ANN 2021 
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Fault prediction: 
Table 14: Table displaying all the relevant articles found about fault prediction. 

Title Algorithm Year 
PMU Analytics for Power Fault Awareness 

and Prediction 
DT and SVR 2019 

Support Vector Machine Based Proactive 
Cascade Prediction in Smart Grid Using 

Probabilistic Framework 

SVM 2014 

Augmenting WAMPAC with machine 
learning tools for early warning and 

mitigation of blackout events 

ANN 2018 

Neural Network Based Early Warning System 
for an Emerging Blackout in Smart Grid 

Power Networks 

ANN 2015 

 
Fault prediction without PMU: 

Table 15: Table displaying all the relevant articles found about transient stability without PMU. 

Title Algorithm Year 
Machine Learning to Predict Fault Events in 

Power Distribution Systems 
ANN 2021 

Machine Learning based Power Grid Outage 
Prediction in Response to Extreme Events 

LR 2017 

Three–Phase Line Overloading Predictive 
Monitoring Utilizing Artificial Neural 

Networks 

ANN 2017 

Improving Power Grid Resilience Through 
Predictive Outage Estimation 

SVM 2018 

Data-Based Line Trip Fault Prediction in 
Power Systems Using LSTM Networks and 

SVM 

LSTM and 
SVM 

2018 

Data-Driven Multi-Hidden Markov Model-
Based Power Quality Disturbance Prediction 

that Incorporates Weather Conditions 

Multi-Hidden 
Markov 
Model 

2019 

Computerized System for Detection of High 
Impedance Faults in MV Overhead 

Distribution Lines 

ANN 2016 

 
  



  Appendix 
 

 79 
 

D. Python code 
#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Sun May 23 10:24:18 2021 
 
@author: tobiaskorten 
""" 
 
#%% Import data from PSSE (as excel files). 
 
import pandas as pd 
import numpy as np 
 
stable_urbgen1 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable1_urbgen.xlsx', header=1, names = np.array(['Time', 
'Stable 1: URBGEN rotor angles'])) 
stable_urbgen2 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable2_urbgen.xlsx', usecols = 'B', header=1, names = 
np.array(['Stable 2: URBGEN rotor angles'])) 
stable_urbgen3 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable3_urbgen.xlsx', usecols = 'B', header=1, names = 
np.array(['Stable 3: URBGEN rotor angles'])) 
 
stable_mineg1 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable1_mine_g.xlsx', usecols = 'B', header=1, names = 
np.array(['Stable 1: MINE_G rotor angles'])) 
stable_mineg2 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable2_mine_g.xlsx', usecols = 'B', header=1, names = 
np.array(['Stable 2: MINE_G rotor angles'])) 
stable_mineg3 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Stable/stable3_mine_g.xlsx', usecols = 'B', header=1, names = 
np.array(['Stable 3: MINE_G rotor angles'])) 
 
unstable_urbgen1 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Unstable/unstable1_urbgen.xlsx', header=1, names = 
np.array(['Time', 'Unstable 1: URBGEN rotor angles'])) 
unstable_urbgen2 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Unstable/unstable2_urbgen.xlsx', usecols = 'B', header=1, names 
= np.array(['Unstable 2: URBGEN rotor angles'])) 
unstable_urbgen3 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Unstable/unstable3_urbgen.xlsx', usecols = 'B', header=1, names 
= np.array(['Unstable 3: URBGEN rotor angles'])) 
 
unstable_mineg1 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
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gave/Excel/Unstable/unstable1_mine_g.xlsx', usecols = 'B', header=1, names 
= np.array(['Unstable 1: MINE_G rotor angles'])) 
unstable_mineg2 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Unstable/unstable2_mine_g.xlsx', usecols = 'B', header=1, names 
= np.array(['Unstable 2: MINE_G rotor angles'])) 
unstable_mineg3 = 
pd.read_excel('/Users/tobiaskorten/Documents/Masteroppgave/Python_masteropp
gave/Excel/Unstable/unstable3_mine_g.xlsx', usecols = 'B', header=1, names 
= np.array(['Unstable 3: MINE_G rotor angles'])) 
 
 
#%% Concatenate the seperate dataframes into two dataframes (stable and 
unstable) and drop duplicates. 
 
stable = pd.concat([stable_urbgen1, stable_mineg1, stable_urbgen2, 
stable_mineg2, stable_urbgen3, stable_mineg3], axis=1) 
unstable = pd.concat([unstable_urbgen1, unstable_mineg1, unstable_urbgen2, 
unstable_mineg2, unstable_urbgen3, unstable_mineg3], axis=1) 
 
stable.drop_duplicates(subset ="Time", keep = 'first', inplace = True) 
unstable.drop_duplicates(subset ="Time", keep = 'first', inplace = True) 
 
 
#%% Remove unnecessary samples and append class label column. 
 
stable_new = stable.query('Time >= 1.08 and Time < 1.28') 
unstable_new = unstable.query('Time >= 1.08 and Time < 1.28') 
 
stable_new.insert(len(stable_new.columns), 'Stable?', 0) 
unstable_new.insert(len(unstable_new.columns), 'Stable?', 1) 
 
 
#%% Filter out samples such that the timestep is 0.02 seconds and transpose 
the dataframes. 
 
stable_values = stable_new[::2] 
unstable_values = unstable_new[::2] 
 
stable_valuest = stable_values.transpose() 
unstable_valuest = unstable_values.transpose() 
 
 
#%% Divide the stable samples into the three seperate cases and the two 
generators. Filter out the relevant samples for each case. 
 
urbgen_s1 = stable_valuest.iloc[[1], :] 
urbgen_s1 = urbgen_s1.iloc[:, 2:-2] 
urbgen_s1.set_axis(range(6), axis=1, inplace=True) 
urbgen_s1.insert(len(urbgen_s1.columns), 'Stable?', 0) 
 
mineg_s1 = stable_valuest.iloc[[2], :] 
mineg_s1 = mineg_s1.iloc[:, 2:-2] 
mineg_s1.set_axis(range(6), axis=1, inplace=True) 
mineg_s1.insert(len(mineg_s1.columns), 'Stable?', 0) 
 
urbgen_s2 = stable_valuest.iloc[[3], :] 
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urbgen_s2 = urbgen_s2.iloc[:, 4:] 
urbgen_s2.set_axis(range(6), axis=1, inplace=True) 
urbgen_s2.insert(len(urbgen_s2.columns), 'Stable?', 0) 
 
mineg_s2 = stable_valuest.iloc[[4], :] 
mineg_s2 = mineg_s2.iloc[:, 4:] 
mineg_s2.set_axis(range(6), axis=1, inplace=True) 
mineg_s2.insert(len(mineg_s2.columns), 'Stable?', 0) 
 
urbgen_s3 = stable_valuest.iloc[[5], :] 
urbgen_s3 = urbgen_s3.iloc[:, :-4] 
urbgen_s3.set_axis(range(6), axis=1, inplace=True) 
urbgen_s3.insert(len(urbgen_s3.columns), 'Stable?', 0) 
 
mineg_s3 = stable_valuest.iloc[[6], :] 
mineg_s3 = mineg_s3.iloc[:, :-4] 
mineg_s3.set_axis(range(6), axis=1, inplace=True) 
mineg_s3.insert(len(mineg_s3.columns), 'Stable?', 0) 
 
 
#%% Concatenate the seperate dataframes into one dataframe for stable 
values. 
 
stable_last = pd.concat([urbgen_s1, mineg_s1, urbgen_s2, mineg_s2, 
urbgen_s3, mineg_s3], axis=0, ignore_index=False, sort=True) 
 
 
#%% Divide the unstable samples into the three seperate cases and the two 
generators. Filter out the relevant samples for each case. 
 
urbgen_us1 = unstable_valuest.iloc[[1], :] 
urbgen_us1 = urbgen_us1.iloc[:, 2:-2] 
urbgen_us1.set_axis(range(6), axis=1, inplace=True) 
urbgen_us1.insert(len(urbgen_us1.columns), 'Stable?', 1) 
 
mineg_us1 = unstable_valuest.iloc[[2], :] 
mineg_us1 = mineg_us1.iloc[:, 2:-2] 
mineg_us1.set_axis(range(6), axis=1, inplace=True) 
mineg_us1.insert(len(mineg_us1.columns), 'Stable?', 1) 
 
urbgen_us2 = unstable_valuest.iloc[[3], :] 
urbgen_us2 = urbgen_us2.iloc[:, 4:] 
urbgen_us2.set_axis(range(6), axis=1, inplace=True) 
urbgen_us2.insert(len(urbgen_us2.columns), 'Stable?', 1) 
 
mineg_us2 = unstable_valuest.iloc[[4], :] 
mineg_us2 = mineg_us2.iloc[:, 4:] 
mineg_us2.set_axis(range(6), axis=1, inplace=True) 
mineg_us2.insert(len(mineg_us2.columns), 'Stable?', 1) 
 
urbgen_us3 = unstable_valuest.iloc[[5], :] 
urbgen_us3 = urbgen_us3.iloc[:, :-4] 
urbgen_us3.set_axis(range(6), axis=1, inplace=True) 
urbgen_us3.insert(len(urbgen_us3.columns), 'Stable?', 1) 
 
mineg_us3 = unstable_valuest.iloc[[6], :] 
mineg_us3 = mineg_us3.iloc[:, :-4] 
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mineg_us3.set_axis(range(6), axis=1, inplace=True) 
mineg_us3.insert(len(mineg_us3.columns), 'Stable?', 1) 
 
 
#%% Concatenate the seperate dataframes into one dataframe for unstable 
values. 
 
unstable_last = pd.concat([urbgen_us1, mineg_us1, urbgen_us2, mineg_us2, 
urbgen_us3, mineg_us3], axis=0, ignore_index=False, sort=True) 
 
 
#%% Concatenate the two dataframes for stable and unstable samples into one 
dataframe. 
 
complete = pd.concat([stable_last, unstable_last]) 
 
 
#%% Export the complete dataframe to an excel file. 
 
complete.to_excel('output.xlsx') 
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