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Abstract

Gastrointestinal carcinoma are the cancers that affect the gastrointestinal tract and
other organs that include esophagus, pancreas, stomach, colon, rectum, anus, liver
and intestine. Gastrointestinal cancers account to 26% of global cancer incidence.
They account to 35% of all cancer-related deaths. Being able to find the factors
responsible for increasing the life span of patients adds significant value in the
course of treatment for the doctors.

This Master’s thesis explored the feasibility of employing two new state-of-art
techniques- Repeated Elastic Net Technique (RENT) for feature selection and Se-
quential and Orthogonalized Partial Least Squares regression (SO-PLS). This study
helped to (1) find features that are important for predicting the target using RENT
and to (2) use the underlying dimensionality of the data blocks to explain the vari-
ance of the target using SO-PLS.

The feature selection using RENT proved to be useful by reducing the number
of features from 57 to 7 in the first block and from 27 to 7 in the second block.
By using these selected features from both blocks, SO-PLS regression achieved a
cumulative calibrated explained variance of 76.4%. The score and loading plots
from SO-PLS helped in identifying the features that explain the distribution of
values in the target block.

These results indicate that RENT and SO-PLS have the potential in developing
as useful techniques for clinicians in understanding the factors responsible for the
longevity of patient life.
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Chapter 1

Introduction

1.1 Background

According to World Health Organisation, cancer is the second leading cause of
death in human beings globally. As of 2018, an estimate of 9.6 million people lost
their lives due to cancer [1]. One in every six deaths in the world is caused by
cancer. According to a research [2], it is estimated that 13·2 million cancer related
annual deaths by 2030.

Figure 1.1: Global estimated age-standardized incident rates of cancer in

2020 [3].

Cancers are cells that grow uncontrollably which eventually form a mass of tissue.
These cancerous cells interfere with the regular functionality of the tissues and
organs in the human body [4]. In some cases, cancer spreads from one part of the
body to other surrounding areas. There are different stages in cancer varying from
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stage-0 to stage-4 depending on the severity [5]. There are around 100 types of
cancer depending on which organ or tissue the cancer cells form [6].

Various factors play vital roles in developing cancer in individuals like lifestyle,
genetics, environment, exposure to radiation, ageing, etc [7]. In general, it is not
possible to find out which factors are responsible for cancer in individuals. It is
believed that interaction of many such factors together can result in changes in the
cells which may lead to cancer.

Diagnosis of cancer in general, is done using different ways like physical exam,
laboratory tests, imaging tests, biopsy [8] etc. In laboratory tests, urine and blood
tests are performed. Imaging tests such as computed tomography scan (CT), mag-
netic resonance imaging (MRI), positron emission tomography scan (PET) allows
to examine bones and internal organs. During biopsy, a sample of cells are col-
lected to test in lab which is widely considered as a definitive way for cancer diag-
nosis.

There are different ways to treat cancer such as surgery, radiation therapy, chemother-
apy, immunotherapy, hormonal therapy, stem cell transplant etc. [9]. The type of
the treatment depends on the condition of patient, location, stage and grade of the
cancer.

In the recent decades, many researchers around the globe have been doing impres-
sive work on cancer research [10] [11]. With the growing cases every year it has
become need of the hour for early detection and prognosis of cancer as it helps the
doctors determining the course of the treatment. With large amounts of healthcare
data available for the research, a lot of work is underway. Data analysis techniques
such as convolutional neural networks(CNN) for segmentation of tumours, Multi-
block regression techniques for prognosis etc. can be used for the right treatment
determination.

Healthcare data is available in different forms such as images, tables etc. In our
project we focus on data in table(traditional data container) and methods that can
analyse such data. The data we work on is a multi-variate data and may come
from different sources and can have different complexity. This kind of data needs
methods that can handle such complexities.

Many multi block data analysis techniques have made their way in the research
[12] based on multi block practice. In addition to principal component analy-
sis [13], partial least squares regression [14], a number of techniques which are
built on these have surfaced[15]. With these techniques, the inter dependency of
the blocks and their contribution to the target blocks are studied. Sequential and
orthogonalised partial least square regression (SO-PLS) is one such multivariate
technique used to know the relation between predictor and target variables.

Feature selection techniques mainly focus on finding a subset of features which re-
duce the unnecessary noise or features while retaining the systematic information
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explained by the data[16]. The selected subset of features helps in easier interpre-
tation with fewer features and prevents overfitting of the models. In addition to
good prediction, these techniques are also used for fast and cost effective predic-
tion [17]. By finding features that are important we can collect only needed data
thereby reducing the cost incurred for collecting the data.

In multi block and multi variate data analysis, each block of data can represent one
type of measurement or data from one instrument. Feature selection techniques
can be used to find the subset of features in each block that explains most of the
information contained in the block. It helps in reducing the size of the blocks
considerably while retaining most of the information. These blocks when fed to the
multi block models reduces the computational costs and time considerably.

1.2 Problem Statement

In cancer treatment, knowing which variables guide the treatment process helps
clinicians to plan the course of the treatment. It is believed feature selection not
only helps in treatment progress but also helps in prognosis and early detection of
the disease. This helps clinicians in identifying the severity of patients’ condition
in addition to conventional medical techniques.

Feature selection helps in improving the predictive performance of the model and
helps in getting more interpretable model. It also helps in knowing which data to
collect to acquire relevant knowledge for future analyses.

In medicine, understanding the blocks of data which contains features collected
using similar procedures helps in knowing variables to look for finding bio markers
for treatment progress. Deriving components in the data blocks to see underlying
patterns in data is useful to understand and predict new findings.

With the availability of healthcare data to the scientific research community, it has
become need of the hour to use this data to train models using machine learning
and data science techniques to find critical patterns which help in studying how
the variables effect the progress of the treatment. A number of techniques have
surfaced for multi block and multivariate data which is usually seen in the field of
medicine.

In this thesis we propose two state of the art techniques - feature selection using
repeated elastic net technique (RENT), sequential and orthogonalised partial least
squares regression (SO-PLS) for cancer data.

SO-PLS is being used for the first time on these type of data. It belongs to a class
of component based methods. With its interpretation tools and visualisation of the
data and understanding of the data it would be interesting to see how it works on
this data .The proposed techniques helps in identifying the variables which con-
tribute to the target variable.
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1.3 Structure of the thesis

The thesis starts with explaining the methods involved such as RENT, SO-PLS,
PCA in chapter 2. In chapter 3, the details about the data are provided. The work-
flow of the thesis is discussed in chapter 4. Chapter 5 covers the results obtained
which are then discussed in 6. The summary of the thesis is given in chapter
7.
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Chapter 2

Theory

In this chapter we describe different methods used in this master thesis.

2.1 Repeated Elastic Net Technique for Feature Selection

In modern times, a lot of data is produced in a quick pace, not only does the sam-
ples but also number of features increases. This makes the computation and train-
ing of predictive models a difficult and time consuming process. In such data it is
a common sight to face issues such as overfitting, correlation which makes train-
ing a model troublesome. These issues guided the necessity to select the features
that are important for prediction [18] and not loose too much predictive perfor-
mance.

Feature selection is reducing the number features when working with a predictive
model. Reducing number of features helps in reducing the computational time and
keeping the performance at the same mark or increasing it [19]. A variety of feature
selection methods have been published and studied by many researchers [20] [21].
Most of the techniques concentrate on optimization of the selected feature subsets
considering the performance of prediction.

Repeated elastic net technique for feature selection (RENT) is a feature selection
technique that implements not just considering the frequency with which each fea-
ture is selected but also feature weight distribution of models using elastic net reg-
ularisation. RENT is built on central idea of ensemble models studied by Mein-
shausen and Bühlmann [22].

RENT trains a number of linear regression models on subsets of the training data.
It uses elastic net for regularisation

RENT used three main criteria in selecting the features that use feature weight
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distribution across all the models:

1. Frequency with which a feature is selected

2. The degree of alternation for feature weights between positive and negative
values

3. If feature weights are unequal to zero significantly

By using specific thresholds for each of the above criteria we can guide how ag-
gressively RENT should reduce the number of select features. We can change
the number of features selected by changing the threshold in each criterion. This
kind of ensemble learning makes RENT a suitable feature selection technique in
datasets where number of features are more than number of samples [19].

Figure 2.1: Pipeline depicting feature selection using RENT

Figure 2.1 is a schematic which depicts the pipeline in RENT. We sample the train-
ing data set Xtrain into k independent and identically distributed (i.i.d) subsets
denoted as X(k)

train ⊂ Xtrain. Now model evaluation is done on each of these sub-
sets of the validation sets X(k)

val = Xtrain \ X(k)
train where \ is the set difference

operator.

2.1.1 Regularization

A model is said to overfit if it learns very accurate patterns and noise from training
data but fails to predict well on a new data. Regularization is a technique that
helps in overfitting. It is done by reducing the generalisation error by appropriately
fitting the function on a selected training set. This helps in preventing overfitting.
Regularization penalizes those weights which are large by adding regularisation
part to the loss function.There are two main regularization techniques:

1. Ridge regression also referred to as L2

2. Lasso regression also referred to as L1

Consider a simple linear regression which looks like this
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Y ≈ β0 + β1X1 + β2X2 + · · ·+ βmXm (2.1)

In the above equation Y represents the relation learned and β’s are the coefficients
for the predictor variables X1, X2 etc.

The residual sum of squares(RSS) as loss function for the regression is calculated
by using the below equation

RSS =

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

(2.2)

where n is number of predictor variables, βj is the coefficient of jth predictor
variable, yi is the ith response variable.

It should be taken care to reduce the RSS. This is where regularization comes into
account.

Ridge Regression

Ridge regression is also called L2 regularization as it uses L2 norm. it was pro-
posed by Hoerl and Kennard in 1970 [23]. This regularisation modifies the RSS
by adding square of magnitude of the coefficients as the penalty term. From the
equation 2.2 by adding penalty term it becomes

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

β2j (2.3)

which is equal to

RSS + λ

p∑
j=1

β2j (2.4)

In the above equations λ is the tuning parameter to decide how much we want to
penalize.

Lasso Regression

Lasso regression was proposed by Robert Tibshirani [24] for least absolute shrink-
age and selection operator. Lasso uses L1 norm so it is called L1 regularization.
Lasso differs from ridge regression in a sense that it uses absolute value of the co-
efficients where as ridge uses squares of the coefficients. From the equation 2.2 by
adding penalty term it becomes

7



n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj | (2.5)

which is equal to

RSS + λ

p∑
j=1

|βj | (2.6)

Elastic Net Regularization

Elastic Net method is a combination of both ridge regression penalty term and lasso
penalty term. This is a hybrid which uses both the penalties. The extent to which
each penalty term should be used is regulated by α. Consider the penalty for lasso
as λ1(β) and penalty for ridge as λ2(β). The elastic net becomes ridge regression
if α is 0 and it becomes lasso regression if α is 1. Now the penalty for elastic net
is derived as

λenet(β) = γ[αλ1(β) + (1− α)λ2(β)] (2.7)

where γ is the regularization strength.

2.1.2 Selection Criteria

For all the models as shown in the figure 2.1 on page 6 we observe the weights
that we train βk,n where k is the number of the model for each feature fn in Xtrain,
where n = 1,...N. We get useful information from distribution of weights across the
K models for all the features fn from βn = (β1,n, . . . , βK,n). All the vectors βn,
where n = 1,...,N form a matrix B of dimension (K × N). The average frequency
c(βn) can be calculated by counting number of times a feature is selected in all the
K models, it can be calculated as:

c(βn) =
1

K

K∑
k=1

1[βK,n 6=0] (2.8)

The mean and variance of the weights of the features, µ(βn) and σ2(βn) are:

µ(βn) =
1

K

K∑
k=1

βk,n, (2.9)

σ2(βn) =
1

K − 1

K∑
k=1

(βk,n − µ(βn))2. (2.10)
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Here, we consider three main criteria to select a feature fn in RENT :

1. Frequency of selection of fn, c(βn) across K models.

2. The estimation of parameters has stable sign and does not change between
postive and negative sign.

3. The feature has a reliably high parameter estimates which are not zero and
has low variance across K models.

All the three criteria for selecting fn can be expressed as:

τ1(βn) = c(βn),

τ2(βn) =
1

K

∣∣∣∣∣
K∑
k=1

sign(βk,n)

∣∣∣∣∣ ,

τ3(βn) = tK−1

 µ(βn)√
σ2(βn)
K

 ,

where tK−1 is the cumulative density function of the t-distribution with K-1 de-
grees of freedom [19].

The feature selection criteria from the metrics τ1(βn), τ2(βn), τ3(βn) can be de-
fined by cutoff values t1, t2, t3 ∈ [0, 1]. Any feature from the list of all features
is added to the selected feature list if all the three criteria are satisfied : τi ≥ ti,
∀i ∈ {1, 2, 3}. The user can regulate the feature selector by tuning the threshold
values of t1, t2 and t3. The number of selected features increases as we reduce the
thresholds of these three values and decreases if we increase the threshold.

2.2 Principal component analysis

2.2.1 Understanding PCA

A dimensionality reduction method like principal component analysis (PCA), can
be described as a technique prominently used to reduce dimension of a large data
set to a smaller data set which retains most of the information present in the large
data set. By reducing the dimension the noise also gets reduced which helps in
extracting important information in the data. PCA is predominantly used in fields
like image compression [25], facial recognition. It is also used in data mining,
finding patterns in high dimensional data, bioinformatics, chemometrics, cancer
study, etc.
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PCA is considered as a feature extraction method in machine learning world. It
achieves dimensionality reduction by projecting the data to a new space where the
axes are orthogonal. The newly obtained variables after reducing the dimension are
called principal components(PC). Some prominent properties of principal compo-
nents are:

1. These are linear combinations of the original variables.

2. All the principal components are orthogonal to each other.

3. The first principal component has the highest variance, the second PC has
the next highest value of variance and so on.

4. Principal components are uncorrelated.

2.2.2 Main steps in PCA

PCA involves the following steps:

1. Standardise the data.

2. Compute the covariance matrix

3. Compute eigen vectors and calculate the corresponding eigen values

4. Sort and pick k eigen vectors with k largest eigen values

5. Transform the original matrix from selected k principal components

Details on how we approached each step are given below.

Standardise the data

In PCA, if a feature has high variance it gets to dominate the first principal com-
ponent more than the features having low variance in data. For standardisation we
scale the data so that its mean is 0 and standard deviation is 1. By this we have all
the features in the same scale.

x
(i)
std =

x(i) − µx
σx

(2.11)

Where x(i) is value of a particular sample, µx is the mean and σx is the standard
deviation of the feature.

Compute the covariance matrix

Covariance can be described as a measure of how a feature changes with the change
in an other feature. It is used to understand the relationship between two features.
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A positive value in covariance indicates that if value of one feature increases the
other feature’s value increases. A negative value in covariance refers to a inversely
proportional behaviour in both the features.

The covariance, σjk between two feature vectors xj and xk can be calculated by
using:

σjk =
1

n− 1

n∑
i=1

(x
(i)
j − µj)(x

(i)
k − µk)

Where n is number of samples, x(i)j , x(i)k are ith values in each of the features j and
k, µj and µk are mean of the features.

A covariance matrix is a symmetric matrix which contains the values of covariance
between each pair of element in a given vector. A random vector with n elements
has a covariance matrix with dimensions n× n.

Σ =


σ21 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ23 σ34
σ41 σ42 σ43 σ24


The above matrix represents a covariance matrix, Σ of a random vector with 4
elements, with dimensions 4*4.

Compute eigen vectors and calculate the corresponding eigen values

The eigen vectors can be said to be the vectors in the direction of maximum vari-
ance for the covariance matrix. They can also be referred to as principal compo-
nents of covariance matrix. Eigen values on the other hand are the magnitudes of
the eigen vectors. An eigen vector having maximum eigen value corresponds to
maximum variance.

For a matrix A, the eigen vector must hold the following equation:

A~v = λ~v

where ~v is eigen vector of unit magnitude and λ is eigen value associated with ~v,
and is a scalar. The above equation can further be written as

A~v − λ~v = 0

~v(A− λI) = 0
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where I is identity matrix.

Sort and pick k eigen vectors with k largest eigen values

Sort the eigen values calculated with respect to the eigen vectors in descending
order. Select the k largest values from the list. The value of k depends on how many
principal components we wish to compute, this determines the dimensionality we
want to consider.

Transforming the original matrix from selected k principal components

In the last step we change the axes from the original axes to principal component
axes. After transformation the new axes can be represented by principal compo-
nents.

Transformed data = feature matrix ∗K eigenvectors

T = XP

2.3 Partial least squares regression

Notation used

Matrix X contains I observations and J predictor variables stored in an I x J ma-
trix. Matrix Y contains has I observations and K dependent variables in an I x K
matrix.

Partial least squares(PLS) regression was introduced in the year 1983 by Wold, H
[26] as an extension to ordinary multiple regression. In multiple regression analysis
we observe the effects on response variables from a set of predictor variables. PLS
regression is used when the number of factors are more than that of number of
observations or high multi-correlation between factors. In this condition multiple
regression fits the model perfectly but most likely fail to predict new data.

In situations like this we can also use principal component regression, where we
can find principal components which explain the maximum variance in the data.
But this approach explains the information in the predictor variables but can fail to
explain the predictor variables[27].

In the cases of over-fitting, there is chance of looking at latent variables that ex-
plain most of the variance in the response variables. These latent variables are lin-
ear combinations of predictor variables. The linear combinations are derived such
that the dimensionality is reduced to a lower dimension which helps in deriving a
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relation between predictors and responses. In addition PLS regression maximises
the covariance between them.

PLS regression comes in handy when (1) the number of observations is less than
number of variables which results in overfitting as calculation of regression coef-
ficients is not easy and (2) when the correlation between the predictor variables is
high which results in wrong sign for the regression coefficients[28].

2.4 Sequential and Orthogonalized Partial Least Squares
Regression

In recent times, a lot of multiblock data has surfaced in different disciplines. Multi-
block data can be data organised into blocks by similar type of measurements.
These blocks will have different level of variation within them and modelling all
data together may not be optimal. Due to which the need for multi-block analysis
techniques has increased over the time [15]. Many partial least squares regression
based multi-block techniques have proved useful. One such regression technique
used in this thesis is sequential and orthogonalized partial least squares(SO-PLS)
regression.

SO-PLS handles the multi dimensionality present in the data without the need of
any prior pre-processing i.e. it does not vary with the differences in the scale factor
of the blocks. In addition it can handle different number of underlying components
in blocks. This advantage of computing optimal number of components for each
block gives SO-PLS an edge over most of the current state of the art multi-block
algorithms.

2.4.1 SO-PLS Model

In this section we discuss about the working principle of the SO-PLS model. For
easier explanation of the method we take two input blocks, let us call them X and
Z. And the output data block, also called target block is Y. The common dimension
for all the blocks is the number of rows. The linear regression model for this multi-
block data can be presented as:

Y = XB + ZC + E (2.12)

In the above equation X and Z are predictor blocks with dimensions (N × J) and
(N ×Q) respectively, whereas the response block Y has a dimension of (N ×K).
The regression coefficients for the linear model B and C will have dimensions
(J ×K) and (Q ×K) respectively. E, being the residual matrix has a dimension
which is equal to (N ×K).
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The SO-PLS implementation involves iterative use of PLS regression and orthog-
onalization as represented in Figure 2.2

Figure 2.2: Sequential use PLS regression and orthogonalization.

The SO-PLS algorithm can be explained in four steps [29]:

1. Perform regression on the first block, i.e. Target block Y is fitted to predictor
block X using PLS regression.

2. The second predictor block Z is orthogonalised with respect to the scores
from the PLS regression (TX) in step (1), from which we get ZOrth.

3. The residual of Y from step 1 is fitted to ZOrth by using PLS regression.

4. Now the predictions from both the PLS regressions in step (1) and (3) are
summed and final prediction for Y is obtained.

As shown in the above Figure 2.3 on the next page the SO-PLS implementation
involves two major steps, PLS regression and orthogonalization. If the number
of blocks in the multi-block data is more than two, then the process of performing
orthogonalization and PLS regression are repeated for all the models, i.e. we repeat
the steps (2) and (3) before predicting the target block in step (4).

2.4.2 Choosing optimal number of components

To find the optimal number of components for a SO-PLS model we individually
estimate the number of latent variables for each PLS model. The number of optimal
components chosen for one block influences the number of components selected
for the following blocks. In such cases using cross-validation proven to be a good
practice when using PLS models[29].

In general two different types of approaches are used for choosing optimal number
of components in SO-PLS - sequential approach and global approach[30]. In the
sequential approach we select the optimal number of components in one block and
then move to the other blocks in a sequential order. Here the number of components
in a block stay fixed when choosing the components in the following block. In the
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Figure 2.3: Step wise representation of SO-PLS.

global approach we choose the number of components in each block based on best
global performance.

In this thesis sequential approach is used as there is less chance of overfitting by
chance. Though sequential approach of selecting number of components is more
time consuming it guards better against overfitting.

The optimal number of features selected by the SO-PLS model can be selected
using a graphical plot called ”Måge plot”. The horizontal axis in the plot has
number of components and the vertical axis has root mean squared error of cross-
validation(RMSECV). In the graph we can see the combination of components in
each block. By finding the local minimum in the graph we get optimal components
for the blocks.

2.5 Validation

2.5.1 Cross-validation

Cross-validation is a technique in statistics used for machine learning model eval-
uation. It is a process of repeatedly splitting the data into two subsets, one called
training set and the other called test set. We split the data using sklearn’s train test
split class. Then we train the model on training set and test it on test set. Figure
2.4 gives the schematic representation on how cross validation works.
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Figure 2.4: Schematic representation of cross-validation

Though cross validation helps in evaluating the model’s performance it has draw-
backs as we remove a part of the input data in training the model. This affects
model capability to learn all underlying factors as we are not training the whole
data. We risk losing important patterns which we left in the test data. This in turn
introduced error by bias. To avoid this we use K-fold cross validation.

2.5.2 K-fold cross validation

In K-fold cross validation we divide the whole data set into k subsets. For every
iteration we take one set as validation set and remaining subsets as training sets.
By doing this we reduce the bias significantly as we use all the data for training and
reduce the variance as we use almost all the data for validation at least once.

There is another type of K-fold cross validation which takes into consideration the
distribution of the data. It is called stratified k-fold cross validation.

2.5.3 Stratified K-fold cross validation

Stratified k-fold cross validation uses stratification before dividing the data into k
subsets. Stratification is a process in which data is rearranged such that every subset
is a good representation of the total data. In this every data point gets tested only
once and will be in the training set k-1 times. Stratified K-fold is generally used for
classification problems as we wish to have approximately same class distribution
in each fold.
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Figure 2.5: Schematic representation of K-fold cross validation

2.5.4 Repeated stratified k-fold cross validation

Repeated stratified K-fold performs stratified K-fold cross-validation a number of
times specified by the user. It helps in improving the estimated performance of any
machine learning model.

After the first stratified K-fold cross validation is done, the samples are reshuffled
in stratified manner into the same number of folds and a new stratified K-fold is
run. This process is repeated depending on the repeats specified by the user.

After performing the stratified K-fold cross validation the result is the mean of all
the cross validation models.
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Chapter 3

Materials

The data is obtained from researchers at Functional and Molecular Imaging re-
search group at the Oslo University Hospital. The data contains different blocks
which have the clinical properties of cancer patients.

In the below sections, we describe the data blocks and the features in them. We
have two blocks of data which represent different characteristics of patients. The
first data block has features about patient’s clinical properties. The second data
block contains information about the blood values of the patients.

3.1 First data block features

Below we give an overview of the features in first data block:

Column Name Description Feature type Values
DATEBRTH Age of the patient Date Date

DATEMET-
DATEDIAG

Number of days between the
date of diagnosis and

date of metastasis
Numerical Number of days

SEX Gender Nominal Male/Female

PRIMTUM
Location of the
primary tumor

Nominal

Colon,
Esofagus,
Gastric,

Pancreas,
Rectum,
Others

PRTUMRES
If the primary tumour is

resected
Nominal yes/no
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OPT Other prior therapy Nominal

RADTHRPY,
STRPTCYT,
SANDOSTN,
INTRFERN,

NONE,
OTHRPRTH

SURGMET Surgery of metastasis Nominal yes/no

SMOKHAB Smoking habits Nominal
Smoker,

Ex-Smoker,
Non-Smoker,

PROTHRCA Prior other cancers Nominal yes/no

MORPH Morphology Nominal
Small cell carcinoma,
Large cell carcinoma

KI67
Indicator of rate of

cell growth
Numerical percentage

CGA1 Cancer associated gene value Nominal
Negative,

Partly Positive,
Strongly Positive

SYNAPTOF Immunohistochemical factor Nominal
Negative,

Partly Positive,
Strongly Positive

OCTREO indicator for octreo scan Nominal
Negative,

Pos. <Liver,
Pos. >Liver

SOM
Organ metastasis at the
start of chemotherapy

Nominal

LIVER,
LYMPHNDS,

LUNG,
BONE, OTHRORGM,

BRAIN

PERFSTAT WHO performance status Nominal

WHO 0,
WHO 1,
WHO 2,
WHO 3

BMI Body mass index Numerical numeric values
HORMSYMP Hormonal symptoms Nominal yes/no
CARSYNDR Carcinoid syndrome Nominal yes/no

TIMETOTRM1
Days between diagnosis and

first treatment
Numerical Number of days

RESPONS1
How patient respond to

treatment
Nominal

Complete Response(CR),
Partial Response(PR),

Progressive Disease(PD),
Stable Disease(SD)
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3.2 Second data block features

The second block of features represent the blood values as listed below.

Column Name Description Feature type Values

HIAA
The 5-hydroxyindoleacetic acid test
used to monitor carcinoid tumors.

Nominal
>2UNL,

>Normal<=2UNL,
Normal

CGA2
Chromogranin A test is used as

tumor marker
Nominal

>2UNL,
>Normal<=2UNL,

Normal

HMGLBN Hemoglobin values Nominal
<11 g/dl,
Normal

LACTDHDR Lactate dehydrogenase Nominal
>2UNL,

>Normal<=2UNL,
Normal

PLATELTS Blood platelets count Nominal
>400x10ˆ9 / L,

Normal

WHITEBLD White blood cells count Nominal
>10x10ˆ9 / L,

Normal

CRETININ
Describes if creatinine level

is normal or not
Nominal

Normal,
>Normal

ALKPHSPH Alkaline phosphatase Nominal
>3UNL,

>Normal<=3UNL,
Normal

3.3 Response variable block

The response block is a single dimensional variable. It is a continuous variable
which is number of days between first diagnosis and the last observation of the
patient. It can be interpreted as a measure of how long the patient lives after being
diagnosed with cancer. This makes the problem a regression problem whose aim is
to determine the factors responsible for larger value in the response variable.
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Chapter 4

Analysis workflow

The workflow of the thesis is divided into the following sections:

• Data exploration and preparation

• Feature selection using RENT

• SO-PLS modelling

At the start of this chapter we start by an overview of the software used in this
project. As part of data exploration we describe techniques used for data vi-
sualisation, handling missing data, checking for any deviating data points. In
the next section we talk about feature selection using repeated elastic net tech-
nique(RENT). Finally we apply sequential and orthogonalized partial least squares
regression.

4.1 Software

In this section, the software’s used and their versions are presented in Table 4.1.

Software Version
Python 3.7.4

Anaconda 4.9.1

Scikit-learn 0.22.1

Numpy 1.19.5

Pandas 0.25.3

Table 4.1: Software versions
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4.2 Data Exploration and Preparation

Data exploration plays a very important role in having an initial look at the data.
The data exploration section is presented in following steps:

• Data pre-processing.

• Data visualisation.

• Checking for Deviating observations using PCA.

• Determining potential target variables.

• Handling features having missing values.

4.2.1 Data pre-processing

As part of data pre-processing, we started with taking an initial look at raw data
which was read by using the python package pandas. We started by figuring out
how many samples and features each data block contains. This gave us an idea on
how the next steps are to be performed as we would have a rough idea what the
values are in each of the columns.

Data Description and preparation

The data received from the owners contain 4 data blocks. Each data block contains
80 samples and all together combined 99 features. The common axis across the
blocks is the number of samples. As part of pre-processing and discussions with
Functional and Molecular Imaging research group at the Oslo University Hospital,
the number of features were reduced from 99 to 35 features. Identifying potential
target variables will be discussed in the 4.2.4 on page 31.

The preparation of data was done in 4 steps :

1. Handling missing data.

2. Feature engineering and transformation.

3. Converting categorical variables to indicator variables.

4. Data experts advice.

Handling missing data

Once we read the data, it is necessary to make sure that the data has no missing
values. This is because scikit-learn and SO-PLS code do not handle missing data.
When checked for missing values we found that there are many features which
have a considerable fraction of its samples missing. These features were removed
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from the data blocks so the remaining features have missing values which can be
replaced by imputation techniques.

The following Table 4.2 shows number of features with missing values in each data
block.

Block Total features Features with missing values

Block1 34 4

Block2 18 1

Table 4.2: Missing values for each data block

There is a trade-off by including seemingly important features having missing val-
ues, we lose some patients. These decisions have been made with the researchers
and clinicians of the group. This is discussed in the next section.

In the remaining data which have columns free from more than 3 missing values,
we have to impute the missing values. There are different missing data imputation
techniques. In case of missing values we have to identify what type of missing it
is. In general there are 2 main types of missing, missing at random (MAR) and
missing not at random (MNAR).

In our data we see that the missing values can be classified as missing at random
based on the feedback from clinicians. It means the probability of data point to
miss is completely random. In cases like this, the most common type of simple im-
putation is mean or median imputation. In mean or median imputation the missing
value is replaced with mean or median of the values in the feature.

The advantages of using mean or median imputation is that it is simple to im-
plement. By using mean or median as a replacement we do not introduce any
unwanted bias in the data [31] unless if the data is already biased.

In the remaining columns in the data, we had two features KI67, BMI which have
one missing value each. By using mean imputation, the missing N/A values were
replaced by the mean of their respective feature values. This imputation enables
us to have these features for further models which helps in improved prediction
capacity of the model. With further discussion with the clinicians and the feedback
of their domain knowledge considering which features should be important for the
model, we proceed with including these features.

Feature engineering and transformation

The next step after removing the columns with missing values is feature transfor-
mation. Feature transformation is a technique to modify or derive features from
existing features while keeping the original information intact. This helps in mak-
ing data readable by the model to which the data is used as input.
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In our data there are features which cannot be used in any machine learning models
and needed transformation. One such feature is ’DATEBRTH’, which has samples
as type date. Generally, machine learning models do not take date type as input. We
changed this feature by modifying the date type object to numerical value which is
years and replaced in the place of DATEBRTH.

Similarly, there are features like Date of diagnosis, DATEDIAG and Date of metas-
tasis, DATEMET. These features do not have any individual value for using them
in data models. We have derived a new feature by subtracting DATEDIAG from
DATEMET which gives the time takes for metastasis. We removed these two fea-
tures and replaced them with a single feature which has numerical values, i.e. num-
ber of days taken for cancer metastasis.

Converting categorical variables to indicator variables

Categorical variables are those variables which take a limited number of possible
values. Most of the machine learning models we use such as regression models,
support vector machines requires the input to be numerical. For us to use these
models categorical variables should be converted to numerical variables.

Categorical features are classified into two types - Nominal features and Ordinal
features. Nominal features are those which do not have any particular order of
precedence. Examples of nominal features are city names, sex, etc. On the con-
trary ordinal features have an order or scale associated with them. A feature like
’customer satisfaction survey’ can be a good example of ordinal feature which
takes values ”not satisfied”, ”satisfied”, ”highly satisfied”.

In the data, we have many categorical features which needs to be converted to nu-
merical features. There are many binary variables in the form of strings which need
to be converted to numerical. For example there are variables which determine if
there is an occurrence of cancer metastasis in lung, bone, etc. These variables take
values Yes or No. It is necessary to convert them to numerical values for the model
to include them. So we converted these kind of variables to binary that is 0 or
1.

Then, there are categorical variables which take more than 2 distinct values. For
such variables we created dummies using pandas get dummies() utility function.
For example there is a variable called ’PRIMTUM’ which takes 6 distinct values.
We converted this variables to 6 distinct dummy variables which take values ac-
cording to the tumour type. This type of encoding enables us to use these variables
in the regression models.

Data experts advice

As the data we use is real world data, it is necessary to consult colleagues with do-
main knowledge to make sure which features to include and prove to be important
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for the final model. As part of our initial data discussions with the data owners, we
discussed on which data variables can be excluded.

This is done after we encoded the categorical variables to numerical variables. We
excluded those variables which does not make any logical sense to the target. For
example there are some samples such as ’HMGLBN’ where the clinical tests for
calculating hemoglobin were not done. So the value in such case is not done. In
such cases including the value ’Not done’ will be irrelevant.

The final stage of data preparation is to remove those features that are irrelevant to
including. Once the discussions are done with the clinicians and data experts we
have the input features in place, we proceed with the next step that is visualising
the data.

4.2.2 Data visualisation

Histograms

A histogram is a visual representation of frequency distribution of the data with
respect to the features in the data block. In a histogram the entire range of values in
a feature are divided into equal intervals and then show the number of values that
fall in each interval. The intervals in which the data is divided are called as ’bins’.
Bins are generally of same size and adjacent to each other.

Once the data is divided into equal sized bins the number of values that fall under
a particular bin are considered as part of the bin. These values in the bin are shown
as a rectangle with height equal to the number of values in it.

To understand histograms we take a look at the mathematical representation of the
histogram. Histogram can be seen as a function mi which is used to count the
number of samples that fall under a bin. Let us consider n samples which should
be part of k bins. Then the histogram mi can be shown as:

n =
k∑
i=1

mi

k =
max(x)−min(x)

h

where min(x), max(x) are the minimum and maximum values of the samples for a
particular feature respectively and h is the bin width.

There are many different ways of deciding on how many bins can the samples be
divided into. By using histogram utility function from pandas we can specify the
number of bins as a value in the function arguments. If not specified, by default the
number of bins will be 10.
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There are many statistics which helps in analysis of a histogram. One such statis-
tics which explains the distribution of the data points is skewness. Skewness is
used to measure asymmetry in a histograms. We get a symmetric histograms if the
distribution is normal. It means that when we consider the mean of the distribu-
tions, there will be same amount of data on both sides. Therefore the skewness is
0.

The direction of skewness is measured towards the tail of the distribution. The
length of the tail is proportional to the magnitude of skewness. If the tail on the
right side of the distribution is longer it is said to have positive skewness. The mean
of the distribution will be to the right of its peak. If the tail is on the left side, it has
negative skewness and its mean is to the left of its peak.

Figure 4.1: skewed and normal distributions

If a data is skewed that means it has outliers. Outliers are data points that are
different from other data points significantly. Most of the regression models do
not perform well on data having outliers. In a histogram with skewness the tail
region acts as outliers. This makes skewness an unwanted criterion for performing
regression analyses.

Skewness can be reduced by using data transformations. Data transformations
make the data symmetric or nearly symmetric. This kind of data is is ideal for
many statistical models to handle. Depending on the type of skewness we apply
data transformation techniques.

The most common types of data transformations include logarithm transformation,
square root transformation, Box-Cox transformation. All these transformations
make data as normally distributed as possible. The equations 4.1, 4.2 are for log,
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square root respectively. In equation 4.3 we see the Box-Cox transformation, here
λ varies from -5 to 5. All the values of lambda are considered and the optimal value
is selected which gives the best approximation of the normal distribution.

y′ = log10(y) (4.1)

y′ =
√
y (4.2)

y(λ) =

{
yλ−1
λ , if λ 6= 0

log y, if λ = 0
(4.3)

We used Box-Cox data transformation on the target variable because the distribu-
tion of the target is very skewed and it to make it follow normal distribution.

Correlation plots

Correlation is a term used to measure the strength of possible linear association
between two continuous variables [32]. The correlation coefficient is used to rep-
resent the correlation strength. The correlation coefficient takes values between -1
and +1.

A correlation coefficient value of 0 indicates that the variables do not have any
linear relation between them. The closer the value of correlation coefficient is to -1
or +1, the stronger the linear relation between variables. A correlation coefficient
value of +1 indicates that there is perfect positive correlation, and -1 indicates
perfect negative correlation.

There are mainly three types of correlation coefficients - Pearson correlation co-
efficient, Kendall correlation coefficient and Spearman correlation coefficient. Of
these we use pearson correlation coefficient as it benchmarks the linear relationship
between features. The pearson correlation coefficient is calculated by using

r =

∑n
i=1(xi − x̄)(yi − ȳ)√

[
∑n

i=1(xi − x̄)2][
∑n

i=1(yi − ȳ)2]
(4.4)

where,
r is the correlation coefficient
n is the number of total samples.
xi, yi are values of x and y variables for the ith sample.
x̄, ȳ are mean values of x and y variables.

We use a table representation called a correlation matrix to see the correlation
coefficient values between the variables. The correlations between the variables
were also visually represented using correlation scatter plots. A scatter plot is used
to display relation between two variables. Each sample gets plotted relative to the
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value in the two variables for which the scatter plot is generated. An example
scatter plot is shown in Figure 4.2.

Figure 4.2: Plot showing correlation between Age and BMI

4.2.3 Checking for Deviating observations using PCA

The next step in data preprocessing was to find if there are any deviating samples in
the data. There are several ways of finding deviating samples one such method we
used is principal component analysis(PCA). PCA helps in projecting our existing
high dimensional data to a lower dimensional sub-space. We visualise the data
using the score plot provided by the PCA.

Using PCA data was visualised using its score and loading plots. By looking at the
score plot we get to know how samples are distributed across the space spanned by
any two components. By considering the loading plot we get to see if there are any
patterns in the features. By superimposing score and loading plots we can identify
which samples have higher of lower values of a feature.

The Figure 4.3 on the next page shows a sample superimposition of scores and
loading plot. The points Obj1, Obj2, etc. are the samples and Var1, Var2, etc. are
the features.

The main purpose we used PCA was to find the deviating observations by using
the score and loading plots plotted by considering the more dominant principal
components.
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Figure 4.3: Plot showing superimposed plots and loading plots for PCA

4.2.4 Determining potential target variables

In a dataset where we have no core expertise, it is always important to know which
variables can be potential target variables. We have considered a couple of potential
targets and modelled them to find out how the model performs.

After a series of discussions with the data experts we came up with a target variable
which results in a regression problem. We used data transformation to create a new
feature computed from two other features in the data.

A target variable called ’Days of survival’ is derived from existing variables which
can be used for regression problem. This is done by taking the difference of two
variables ’DATELOBS’ and ’DATEDIAG’. This gives number of days between the
date of cancer diagnosis and the date of last observation before death. The values
of this feature range from 4 to 3963 days.

As the distribution of values is large, we plotted the histogram of the new target and
it is positively skewed. We tried multiple data transformation techniques to reduce
skewness like log transformation, Box-Cox transformation so that we can make
the distribution near to normal. Finally we fixed the new target as the Box-Cox
transformation of the ’Days of survival’.

4.2.5 Including features having missing values

We have excluded the features having more than 3 missing values in them. There
is a possibility that these features help in better prediction of the target. This was
done by computing different models where we had a trade-off between inclusion of
features and dropping patients out of the data to as few missing as possible.

As part of trial and error evaluation, first we build the models using the data blocks
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having features which do not have missing values and see which features are se-
lected in RENT which is described in section 4.3. Then we ran the multi-block
regression model SO-PLS and see the total explained variance as described in sec-
tion 4.4. We registered the features selected and performance of the models using
these features in SO-PLS.

Then we added a feature called ’TIMETOTRM1’ which has 4 missing values. This
was done at a cost of losing 4 patients. We removed the samples having miss-
ing values. We compromised on number of samples for model performance and
number of features selected. Now we perform RENT and SO-PLS to see if this
improves the number of features selected and explained variance. If there was
a significant positive change it helps in increasing the prediction capacity of the
model.

In the same way we tried this with multiple features in a trial and error fashion.
One such feature which proved to be helpful is ’RESPONS1’. Though the cost
of including the feature is more as we have to remove 11 patients in including
both ’TIMETOTRM1’ and ’RESPONS1’. This showed an increase in the accuracy
of linear regression in RENT and also the explained variance in SO-PLS signifi-
cantly.

Once these features were included we took expert advice in deciding if we can
remove the samples to improve the model’s performance. After we get a positive
feedback we proceed to the next steps in the project. So we have 68 samples and a
combined 35 features in both the blocks included.

4.3 Feature Selection using the RENT workflow

For selecting the features that contribute in predicting the target variable we use
Repeated Elastic Net Technique for feature selection (RENT). Internally RENT
trains an ensemble of unique models using elastic net regularisation to select fea-
tures. Every model in the ensemble is trained with a randomly selected unique
subset of the complete training data [19]. By training these data models we get
weight distributions of each feature that contains information on feature selection
stability. Further we can define adjustable classification criteria.

In RENT we sample the training set into different subset and train them individu-
ally. Apart from that we used repeated stratified k fold cross validation on the data
to train data intensively to build robust RENT models. The methodology we used
is explained in section 2.5 .

4.3.1 Using repeated stratified k-fold cross-validation with RENT

In our project we used feature selection RENT by combining it with cross-validation
techniques. It is to increase the robustness of the model to select features consis-
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tently over different cross validated models. By running a simple RENT feature
selection we get a set of selected features. If we run the RENT again with a dif-
ferent random state there is a chance we get a different set of selected features.
To avoid this we decided to use cross validation techniques which helps in getting
more robust estimate of the performance.

As the data set contains 80 samples as discussed earlier, we proceeded with running
RENT by implementing 4-fold cross validation as shown in figure 2.5 on page 17.
In such case we have 60 samples as training set and 20 samples as test set for every
RENT model. These training and test sets were alternated for all the 4 RENT
models. For every model we run we get a set of selected features for that selected
training and test sets. By doing this we have all the samples in test set at least once.
This helps the model to study all the underlying patterns.

To increase the robustness further, we applied repeated stratified k-fold cross val-
idation on the data set. We applied two repeats in the process. By doing so we
got a total of (4 × 2) that is 8 RENT feature selections. Here 4 is the cross val-
idation folds and 2 is number of times we are repeating the cross validation. By
having more number of models we get to regulate the features selected for the final
model by the frequency of selection of features in these 8 models. A schematic
representation of 4-fold 2-repeat RENT is shown in Figure 4.4.

Figure 4.4: Schematic representation of stratified 4-fold 2 repeat RENT

implementation

For example, if a feature A gets selected in 7 out of 8 models and another feature
B gets selected only 2 times out of 8. We get to decide if we want to keep feature
B by considering the performance of the final model. In our project we decided to
keep the features that were selected at least once out of 8 models.
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4.3.2 Applying RENT regression

In this section we describe how we used RENT for our project. As the machine
learning problem we have is regression we use the RENT Regression() class to
apply the feature selector.

Parameters

A set of multiple parameters are required when we run the RENT Regression()
class. First of all we pass the training data in the data parameter. In the target
parameter variable we pass the corresponding target variable for the train data we
input earlier. Then comes the feat names parameter where we pass the column
labels for the training data. This is used to get the names of the selected features
later.

The next two parameters we pass are the regularisation parameters for elastic net
regularisation. The formula for elastic net regularisation is given by

λenet(β) = γ[αλ1(β) + (1− α)λ2(β)] (4.5)

As the prediction performance of the elastic regularisation model depends on dif-
ferent combinations of γ and α as shown in equation 4.5, it is necessary to define
these values we want to use in two different lists my C params and my l1 ratios
respectively. The parameter C in RENT represents inverse values for γ. And pa-
rameter l1 ratio represents the value of α. An l1 ratio value of 1 is equivalent to
L1-regularisation and a value of 0 is equivalent to L2-regularisation. The values
between 0 and 1 gives a mix of both L1 and L2 regularisation.

By setting the parameter autoEnetParSel=True we identify the best combination
of γ and α from the lists, my C params and my l1 ratios by using 5-fold cross
validation. With these selected elastic net values RENT will compute an ensemble
of models for selecting the features. If autoEnetParSel=False then we compute k
models for all combinations of values in both the lists. This will take a high run
time and processing capacity.

The input parameter poly is used if the user wants to include the squares of features
and the interactions between them. It comes in handy if the data is non-linear, but
the computational cost is high. Another input parameter called testsize range gives
the option to the user for more randomness in ensemble models by allowing the
test set sizes to vary in the provided range (lower, higher). To have identical test
set size keep both the values same.

Next comes the parameter K. K is number of ensemble models we wish to have
in RENT. The higher the number of ensemble models the higher the stability of
the model. This is because if we have a higher number of models it gives denser
weight distributions which results in high feature selection stability.
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Running RENT on our data

By looking at the performance of RENT, we have implemented three repeated strat-
ified K-fold RENT models.

In the first model we applied RENT on the features having no missing values. We
observed the selected features for this data blocks and also the prediction scores
for linear regression model.

In the next RENT model we included a new feature named ’TIMETOTRM1’ which
is a transformed feature from ’DATETRM1’ and ’DATEDIAG’ which has values
as days between the diagnosis and first treatment. This comes at a cost of removing
4 samples having missing values. This was done to test if the models’ stability in
selecting features is improved.

We also included another feature called ’RESPONS1’ which is the patients re-
sponse to treatment. This feature was included at a cost of 5 samples. We repeated
the same procedure of running repeated stratified k-fold RENT and saw if the fea-
ture selection stability increases.

In the third RENT model we looked at the patients having high mean absolute
error. We removed the 3 patient samples that have high mean absolute error. By
recording the accuracy scores and RMSEP values we decided on which features to
be selected further. The decision to remove the features was done collectively with
the thesis supervisors and data experts.

Summary criteria

Once we ran the RENT model its time to define our requirements for selecting
features. This was done by defining the selection criteria. As discussed in section
2.1.2 for the selection criteria to be set we need to define the values of t1, t2,
t3 using the select features() utility method. It has three parameters tau 1 cutoff,
tau 2 cutoff, tau 3 cutoff which range between 0 and 1. By setting these values we
can regulate how aggressively RENT selects features.

We have given a value of 0.9 to tau 1 cutoff which means that we consider only
those features that were selected at least 90% of the time across k ensemble models.
A parameter value of 0.9 was given to tau 2 cutoff which means it selects features
where a minimum 90% of parameter estimates have the same sign. A value of
0.975 was given to tau 3 cutoff which means we test if the weights of the features
are high consistently with low variance in k models.

We can change this values to make sure how strict the RENT should select features.
This was done by looking at the τ1, τ2, τ3 values for each of the feature by using
get summary criteria(). If we reduce the cutoff of these three values we select more
features and vice versa.
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To decide on whether we can compromise on the value of τ1 we used an utility
method provided by RENT: plot selection frequency(). This outputs a plot which
gives a visual representation of how often a feature’s weight was non-zero across
all the ensemble models.

We have to be aware that a feature might get selected by elastic net, i.e. the weight
is non-zero, but it might be very small and not influential. It can also happen that
the sign of the weight might be alternating between positive and negative across
models which indicated it is unstable. We used a RENT provided method called
get weight distributions() to look at more detailed information of full distribution
of weights of individual features across all the models. this returns an array con-
taining weights for all ensemble models as rows and features as columns.

Checking the performance using the selected features

Now we have features selected by RENT based on distribution of weights of fea-
tures across the models. The next step was to check the model performance on the
unseen data by using the features we selected by RENT as shown in figure 4.4 on
page 33. We used linear regression model to evaluate the performance with the
selected features.

The metrics used to evaluate the performance are ’coefficient of determination’
denoted as R2 or ’R squared’ and ’Root mean squared error(RMSE)’. ’R squared’
is defined as the proportion of variance in one variable explained by the one or more
variables. In regression models it is the variance in dependent variable explained
by independent variables. The formula for R2 is given by:

R2 = 1− RSS

TSS
(4.6)

where RSS is sum of squares of residuals which is

RSS =

n∑
i=1

(
yi − ŷi

)2
and TSS is total sum of squares given by

TSS =

n∑
i=1

(
yi − ȳ

)2
where ȳ is the mean of observations.

RMSE can be defined as the residual standard deviation. That is how far the data
points are from the regression line. It is given by the below equation
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RMSE =

√√√√ n∑
i=1

(
yi − ŷi

)2
n

(4.7)

where n is number of observations,
y1, y2,. . . , yn are observed values,
ŷ1, ŷ2,. . . , ŷn are predicted values.

4.4 SO-PLS regression

After working with RENT and done with feature selection, the next step was to use
the data blocks with selected features in multi-block regression techniques. In this
project we used sequential and orthogonalised partial least squares regression as
the multi-block analysis method. From feature selection using RENT we have two
blocks of features and a target block which is number of days.

In SO-PLS, we do partial least squares regression on each block in a sequential
mode. This was done in two approaches to see in which approach the model per-
forms better. In the first approach we started by fitting the target and the first block
and then orthogonalise the second block and fit it using PLS regression.

In the second approach we did it in the opposite way. We started by fitting the
second block with target using PLS regression. Then perform orthogonalisation on
the first block and fit it to the target using PLS regression. There were many ways
to see which block to fit to the target, but as there were just 2 blocks we went with
this approach.

4.4.1 Selecting number of components in each block

To find the number of components in each block we performed SO-PLS cross
validation on one block. By doing SOPLSCV() we can plot root mean squared
error of prediction(RMSEP) against number of components. The components with
smallest RMSEP value is the ideal number of components for that block.

The plot for RMSEP is given by using the utility method provided by SO-PLS
plotRMSEP(). This method call takes parameter which is returned by method RM-
SECV(). By selecting components with smallest RMSEP that means by these com-
ponents we can explain maximum variance in the target.

To find the unexplained variance in the target block after fitting the first block
from the next block we used the number of components that we selected from
first block and perform cross validation SO-PLS. We again consider the number of
components for which the RMSEP is smallest. Once we find optimal number of
components from each block, we now run the final model SOPLS().
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4.4.2 Final SO-PLS model

As the final step we run SO-PLS model. Now we had everything needed in place -
the predictor data blocks, target block, the number of ideal components so that the
block has least RMSEP. The next step was to run the SO-PLS model and see how
it performs on the data with the selected features.

In SOPLS(), we pass a numpy array converted target block, a list of predictor
blocks numpy arrays in the order of their execution, number of components to be
considered for each block as a list and whether we need to standardise predictor
blocks and target block as parameters.

To see the performance of the model and how well it predicted the target we use
plotSOPLS() to see different plots. This gives principal components of predic-
tion(PCP) score plot, loading plot of both predictor blocks and target block and a
plot showing global explained variance in the target block.

Finally the values of explained variance in the target block by the predictor data
blocks is given by the methods Y cumCalExplVar() and Y cumValExplVar() which
are cumulative calibrated explained variance and cumulative validated explained
variance. These methods give explained variance from the first block and the final
explained variance from both the data blocks after including the second block.
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Chapter 5

Results

This section contains the results for the sections we described in chapter 4. Similar
to the previous chapter we divide the results into three sections:

• Data exploration

• Feature selection using RENT

• SO-PLS regression

5.1 Data Exploration and Preparation

In this section we present the results from data exploration and preparation as men-
tioned in the previous chapter. First we looked at the null values as mentioned in
the previous chapter in section 4.2.1. Then as part of knowing the patterns in the
data we use PCA on both the data blocks.

5.1.1 PCA on the first block

Here we present the results of principal component analysis on the first block of
data. As part of it we have a score plot in Figure 5.1 on the next page and the
explained variance for the number of principal components in Figure 5.2 on the
following page.

From the score plot in Figure 5.1 on the next page for the first block we see that
there is no particular pattern in the scores when we consider the two first principal
components. It can also be seen that both the principal components explain just 9.8
+ 6.9 = 16.7% of the variance in the block.
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Figure 5.1: Score plot for the two principal components in first block

Figure 5.2: Plot showing explained variance for the first block

From Figure 5.2, we can see that explained variance is on the y-axis and number of
components on the x-axis. It shows as we increase the number of principal compo-
nents the explained variance increases. It can be seen that if we consider 4 principal
components we have a calibrated explained variance of around 30%.

5.1.2 PCA on the second block

From Figure 5.3 on the next page, the score plot on the second block it can be
inferred that the data points do not have any underlying patterns when we consider
the first two principal components. And the two principal components explain a
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variance of 18.1 + 12.6 = 30.7% in the data.

Figure 5.3: Score plot for the two principal components in the second

block

Similar to the first block’s explained variance plot, in second block we get an ex-
plained variance of 50% considering 4 principal components.

Figure 5.4: Plot showing explained variance for the second block

5.1.3 Preparing the target block

As part of seeing how data is distributed in the target block we plot the histogram
of the target variable. This is to see if the data we are using as target variable is
unevenly distributed.
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Figure 5.5: Histogram of target variable

From Figure 5.5, we can see that the data distribution is uneven. From the his-
togram we can see that it has positive skewness. We deal with the skewness using
data transformation techniques.

Figure 5.6: Histogram of target variable after Box-Cox transformation

Figure 5.6 shows the histogram of the target variable after Box-Cox transformation.
It can be seen that the distribution of data values are now more similar to a normal
distribution.
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5.2 Feature selection results

In this section we have the results and findings from the repeated elastic net tech-
nique for feature selection (RENT) as discussed in 4.3 on page 32.

5.2.1 Running RENT without features having missing values

Split No Selected features R-squared RMSEP

Split 1
Age,

OCTREO Negative
-0.32 1157.8

Split 2
CGA1 Negative,

SOM LUNG
0.04 901.36

Split 3
CGA1 Negative,

OCTREO Negative
-0.27 1113.4

Split 4 SURGMET 0.27 387.8

Split 5

AGE,

SEX,

PRIMTUM Colon,

SURGMET,

KI67,

SYNAPTOF Negative

-2.9 866.6

Split 6
Age,

SEX,

OCTREO Negative

-0.12 1302.1

Split 7 PROTHRCA No 0.05 684.4

Split 8

PRTUMRES,

SURGMET,

MORPH Other,

CGA1-Negative

-0.5 1174.8

Table 5.1: Features selected by RENT for each cross-validation split with-

out including features having missing values and the performances for first

block
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Split No Selected features R-squared RMSEP

Split 1
CGA2 Normal,

PLATELTS ≥ 400*10ˆ9
-0.08 1045.9

Split 2
HIAA Normal, CGA2 Normal,

LACTDHDR ≥ 2UNL,

LACTDHDR Not Done

-0.07 951.8

Split 3

HIAA ≥ Normal≤2UNL,

HIAA Not Done, CGA2 ≥2UNL,

CGA2 Normal, CGA2 Not Done,

WHITEBLD Normal,

ALKPHSPH ≥3 UNL,

ALKPHSPH≥Normal≤3 UNL,

ALKPHSPH Normal,

ALKPHSPH Not Done, TUMMARK1

-0.39 1162.7

Split 4 CGA2 Normal -0.97 638.5

Split 5 CGA2 Normal -0.24 484.7

Split 6
CGA2 Normal,

LACTDHDR Not Done
-0.001 1229.4

Split 7

CGA2 ≥ 2UNL, CGA2 Normal,

CGA2 Not Done,

LACTDHDR Not Done,

ALKPHSPH Not Done,

ALKPHSPH≥Normal≤3 UNL,

ALKPHSPH Normal

-1.4 1094.1

Split 8
CGA2 Normal, LACTDHDR≥2UNL,

LACTDHDR Not Done
-0.04 964.5

Table 5.2: Features selected by RENT for each cross-validation split with-

out including features having missing values and the performances for sec-

ond block
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From tables 5.1 on page 43 and 5.2 on the facing page it can be seen that the R-
squared values are small or negative and the RMSEP values are too large for all the
eight splits of RENT. It indicates that all the models have poor performance. We
decided to include features having missing values which may or may not improve
the performance of the models. We included the features RESPONS1 and TIME-
TOTRM1 at the cost of removing 8 patients by taking data expert’s advice.

5.2.2 RENT after including RESPONS1 and TIMETOTRM1

Split No Selected features R-squared RMSEP

Split 1
PRIMTUM Colon, SURGMET,

RESPONS1-Complete Response (CR)
0.26 712.6

Split 2 PRTUMRES -0.31 979.1

Split 3
SURGMET, CGA1 Negative,

RESPONS1 Complete Response (CR)
-0.22 807.5

Split 4

SURGMET, SMOKHAB Unknown,

CGA1 Negative, SOM LIVER,

RESPONS1 Complete Response (CR),

TIMETOTRM1

0.44 872.8

Split 5 RESPONS1 Complete Response (CR) 0.46 405.3

Split 6
PRIMTUM Colon, SURGMET,

CGA1 Negative, SOM LUNG,

CGA1 Strongly Positive, TIMETOTRM1

0.56 728.3

Split 7
PRIMTUM Colon, SURGMET,

RESPONS1 Complete Response (CR)
0.38 422.4

Split 8
RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD)
0.07 1095.9

Table 5.3: Features selected by RENT and performances for each cross-

validation split with RESPONS1 and TIMETOTRM1 included for first

block
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Split No Selected features R-squared RMSEP

Split 1
CGA2 Normal,

LACTDHDR Not Done
-0.33 954.1

Split 2
HIAA Normal,

CGA2 Normal
-0.15 918.9

Split 3
CGA2 Normal,

LACTDHDR Not Done

-0.23 811.8

Split 4
CGA2 Normal,

LACTDHDR ≥Normal ≤2UNL,

ALKPHSPH≥Normal ≤3 UNL:

-0.03 1191.6

Split 5 CGA2 Normal -0.94 768.8

Split 6
CGA2 Normal,

LACTDHDR Not Done
-0.01 1101.2

Split 7
CGA2 Normal,

HMGLBN ≤ 11 g/dL,

LACTDHDR ≥Normal≤2UNL

-0.9 741.8

Split 8
CGA2 Normal,

LACTDHDR≥2UNL,

WHITEBLD ≥ 10 x 10ˆ9 / L

-0.3 1297.6

Table 5.4: Features selected by RENT and performances for each cross-

validation split with RESPONS1 and TIMETOTRM included for second

block

After including the features RESPONS1 and TIMETOTRM1, some of the splits
had substantial improvement in predictive performance, but not all, as seen in the
Tables 5.3 on the previous page and 5.4. This prompted us to take a look at the
average absolute error for each patient across all the ensemble models in the RENT
models for all the splits. By observing the patients whose average absolute error is
uncommon, we can remove them to improve the performances.

5.2.3 RENT after removing samples having high average absolute er-
ror samples
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Sample Test Average abs error
0 177 722.48

2 186 411.9

6 182 978.4

11 175 646.0

12 181.0 1068.0

14 162 745.92

21 200 5736.7

26 170 1306.1

35 201 1060.3

36 183 1404.9

42 204 3742.9

43 204 3983.5

50 173 1068.3

56 191 1915.2

62 202 1376.0

64 187 1826.1

65 186 1329.5

67 170 564.2

68 203 659.0

Table 5.5: Average absolute value of 20 patients in a split

Tables 5.5 and 5.6 on the following page contain the average absolute error of
20 samples in the data for one split of the RENT model for both the blocks. We
can see that the patients 21, 42 and 43 as highlighted have high absolute error. It
seems that these three patients are not representative for the patient group. There
might be other underlying factors that do not show in the data we have, but may be
decisive for the response. After multiple discussions with thesis supervisors and
data experts we decided to eliminate these three patients.

47



Sample Test Average abs error
0 177 871.9

5 186 994.9

6 188 825.8

11 180 1062.7

12 182 1207.9

14 182 679.1

21 176 4345.8

26 172 1184.8

35 203 1220.6

37 171 876.0

42 189 4133.1

43 209 3944.4

50 188 900.5

56 173 1927.9

62 175 1587.3

64 202 1884.9

65 187 1339.6

68 186 727.8

69 170 893.8

Table 5.6: Average absolute value of 20 patients in another split
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Split No Selected features R-squared RMSEP

Split 1

SURGMET, CGA1 Negative,

RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

TIMETOTRM1

0.34 0.55

Split 2

PERFSTAT WHO 0, CGA1 Negative,

RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

TIMETOTRM1

0.30 0.67

Split 3
RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

TIMETOTRM1

0.22 0.58

Split 4
RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

SMOKHAB Smoker

0.41 0.68

Split 5
CGA1 Negative, TIMETOTRM1,

RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD)

0.67 0.42

Split 6
SURGMET, PERFSTAT WHO 0,

RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD)

0.03 0.86

Split 7
RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

TIMETOTRM1

0.48 0.53

Split 8

RESPONS1 Complete Response (CR),

RESPONS1 Progressive Disease (PD),

TIMETOTRM1, SMOKHAB Smoker,

PERFSTAT WHO 0

0.27 0.62

Table 5.7: Features selected by RENT and performances for each cross-

validation split after removing the samples with high absolute error for the

first block
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Split No Selected features R-squared RMSEP

Split 1
CGA2 Normal,

LACTDHDR ≥ 2UNL,

HMGLBN ≤ 11 g/dL

-0.04 0.69

Split 2
CGA2 Normal,

LACTDHDR ≥ 2UNL,

ALKPHSPH Normal

0.39 0.63

Split 3
CGA2 Normal,

LACTDHDR ≥ 2UNL,

HMGLBN ≤ 11 g/dL

0.37 0.52

Split 4
CGA2 Normal,

LACTDHDR ≥ 2UNL,

ALKPHSPH Normal

0.37 0.71

Split 5
CGA2 Normal,

LACTDHDR ≥ 2UNL,

ALKPHSPH Normal

0.18 0.66

Split 6
CGA2 Normal,

LACTDHDR ≥ 2UNL,

CGA2 ≥Normal≤ 2UNL

0.02 0.86

Split 7
CGA2 Normal,

LACTDHDR ≥ 2UNL,

PLATELTS ≥ 40 x 10ˆ9/L

0.20 0.66

Split 8

CGA2 Normal,

LACTDHDR ≥ 2UNL,

HMGLBN ≤ 11 g/dL,

ALKPHSPH Normal,

ALKPHSPH ≥3 UNL

0.18 0.66

Table 5.8: Features selected by RENT and performances for each cross-

validation split after removing the samples with high absolute error for the

second block
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The performances of repeated stratified K-fold RENT for both the data blocks after
removing the patients whose average absolute error is high are presented in Tables
5.7 on page 49 and 5.8 on the facing page. It can be seen that the values of R-
squared and RMSEP have shown significant positive change from previous RENT
models after we removed the patients which indicates improved performance of
the feature selection models.

5.2.4 Selected features for SO-PLS modelling

Sl No Feature Name
No of times

selected
1 SURGMET 2

2 RESPONS1 Complete Response (CR) 8

3 RESPONS1 Progressive Disease (PD) 8

4 CGA1 Negative 3

5 TIMETOTRM1 6

6 PERFSTAT WHO 0 3

7 SMOKHAB Smoker 2

Table 5.9: Number of times features are selected out of 8 splits for the first

block

Sl No Feature Name
No of times

selected
1 CGA2 Normal 8

2 LACTDHDR ≥ 2UNL 8

3 HMGLBN ≤ 11 g/dL 3

4 ALKPHSPH Normal 4

5 CGA2 ≥Normal≤ 2UNL 1

6 PLATELTS ≥ 40 x 10ˆ9/L 1

7 ALKPHSPH ≥3 UNL 1

Table 5.10: Number of times features are selected out of 8 splits for the

second block

Tables 5.9 and 5.10 show number of times each feature got selected from RENT
models in both the blocks. For SO-PLS modelling we select those features which
are selected by RENT at least once across all splits.
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5.3 SO-PLS regression

In this section we present the results and plots from SO-PLS model. The order of
the blocks, i.e. which block should we consider first is determined by trying both
the approaches.

5.3.1 Cross validation

Below we provide plots we obtained while doing cross validation to find the opti-
mal number of components we use in each block. Here we try two approaches by
considering which data block we include first.

Considering first block as the initial block in cross validation

Figure 5.7: SO-PLS cross validation for first block

From Figure 5.7, it can be inferred that out of 7 components for just one component
the RMSEP value is lowest. So we consider 1 component for the first block and
include the next block for cross validation.
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Figure 5.8: SO-PLS cross validation for both the data blocks considering

block 1 first

Figure 5.8 shows the cross validation results of both the blocks included. It can
be seen that from considering 1 component in the first block and 1 component in
the second block we get an RMSEP of roughly 0.45 which is the lowest among all
possible combinations.

Considering second block as the initial block in cross validation

Similarly, we repeat the same with considering the second block as the initial block
for cross validation.

Figure 5.9: SO-PLS cross validation for second block

From cross-validation with only the second block as in Figure 5.9 we get that opti-
mal number of components is 1 and gives an RMSEP of 0.625 which is lowest of
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all.

Figure 5.10: SO-PLS cross validation for both the data blocks considering

block 2 first

Similar to previous subsection, we perform cross validation with both the blocks
included having all possible combinations between them. Figure 5.10 gives that
optimal number of components as 1 and 1 for both blocks.

5.3.2 SO-PLS model

In this section we have the results of the final SO-PLS model which is run with the
optimal number of components for each block obtained from the results of cross
validation in section 5.3.1 on page 52.

Order of the blocks
Explained variance after

adding initial block
Total explained variance

after second block
Block1, Block2 67.4% 73.9%

Block2, Block1 42.9% 76.4%

From Figure 5.11 on the facing page, we can see that around 100% of the explained
variance is obtained from just one principal component. The second component (y-
axis) has negligible values (1e-16) which is practically 0. The distribution of the
points is from left to right, second component should be ignored.
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Figure 5.11: SO-PLS principal component prediction score plot

Figure 5.12: SO-PLS X-loading plot showing the distribution of features

The loading plot in 5.12 shows the pattern in which the features are distributed
with respect to the principal components. By observing the similar patterns in both
score and loading plots we can identify the features that are highly correlated with
the target feature.

By superimposing the score and loading plot and manually checking the patient
feature values, the patients who fall on top right corner in the scores plot live longer
than those who fall on the bottom left. That is the values in the target are higher
than their counterparts.

In the same way the features in the top right quadrant in the loading plot have a
positive effect on the target values (live longer) whereas the features in the bottom
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left corner have an inverse effect on the target variable.

Explained variance plot for the final model

Plot 5.13 shows the explained variance by considering the optimal number of com-
ponents in both the blocks.

Figure 5.13: SO-PLS explained variance plot with both blocks

In the plot we can see the increase in explained variance value when we add the
blocks sequentially. Initially the explained variance is 0. By including block 2 we
see that the calibrated explained variance is 42.9% and validated explained variance
as 36.3%. Further including block 1 it explained the variance that is not covered
by block 2 thus increasing the value of calibrated explained variance to 76.4% and
validated explained variance to 69.9%.

This indicated by considering just 7 features in both first block and second block
we can explain 76.4% of the calibrated explained variance in the target variable
using SO-PLS multi-block model.
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Chapter 6

Discussion

6.1 Dataset

6.1.1 Features having irrelevant values

The data we used in the thesis was prepared by manually entering values of patient
clinical characteristics from the case sheets available at the hospital. The case
sheets or patient records contain clinical values recorded at the time of diagnosis
or during the treatment of patients. The data entered in the case sheets can be
specific to the patients conditions.

Different cancer types require different clinical tests to be performed on the pa-
tients. Due to this there are many clinical features which are not recorded for all
the patients. They can be in the form of null values or just marked not done. For
example if the platelets count test is not done for a patient the value is entered as
’Not Done’. While this might not be relevant for the diagnosis for the doctors, it
might turn up to be important feature. Ideally such non-informative features should
be removed even if RENT selects them.

The clinical values of patients are collected for the purpose of treatment and not
considering the future data modelling chances. So data transformation and feature
exclusion required data experts domain knowledge.

6.2 Patients with high average absolute error

From tables 5.5 on page 47 and 5.6 on page 48, the patients 21, 42 and 43 have
high average absolute error. By removing these patients and proceeding to model
without them proven to help the performance of the model.
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An improved performance implies that predicted values of these patients are de-
viating significantly from the target value. This effects the overall performance of
the model. These samples are removed after discussing with data experts and thesis
supervisors.

For example, it can be seen in Figure 6.1 that for patient number 42 has an unusual
value of ’BMI’ compared to others. This may be a reason why the mean absolute
error in RENT for patient 42 is high.

Figure 6.1: Plot showing values of BMI for all the patients

For the other two patients 21 and 43 , we could not identify any deviations in the
data. This may be because of underlying features that do not show in the data we
have.

6.3 Implications for SO-PLS model

6.3.1 Explained variance

The explained variance plot 5.13 on page 56 from the SO-PLS model shows the
increase in the variance explained by adding each block to the model. By adding
second block to the model the variance explained in target is increased by around
43%. And further adding first block will give a cumulative explained variance of
76.4%.

The increase in the explained variance percentage after adding first block is 33.4%.
This is the the additional increase in variance that is not explained by the compo-
nents extracted from the features in second block.
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6.3.2 Overfitting

From Table 6.1 it is seen that the difference between the calibrated and validated
explained variances are relatively low. This implies there is no indication of over-
fitting for the model.

Explained variance Only second block After adding first block
Cumulative calibrated

explained variance
42.9% 76.4%

Cumulative validated

explained variance
36.3% 69.9%

Table 6.1: Table showing both calibrated and validated explained vari-

ance

6.3.3 Correlation between the features

The X & Y correlation loadings plot shown in Figure 6.2 gives an insight of which
features contribute more in explaining the variance in the target block. The features
which are close to the target point in the plot have high positive correlation to the
target.

Figure 6.2: SO-PLS correlation loading plot

The rings in the plot helps in depicting how much variance of each feature was ex-
plained by the components. On the outer ring the percentage of explained variance
is 100% and on the inner ring it is 50%. For example it can be interpreted that for
the feature ’RESPONS1 Progressive Disease(PD)’ roughly 60% of all the varia-
tion in this feature is explained by the component as we have only one component.
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This implies a lot of information in this feature is relevant for the model.

The features that are closer to the target box means they are highly correlated to
target. That means high values for these features means high values for target
block. In the same way the features that are farther from the target box have very
less correlation with the target block. So high values of these indicate the patients
do not live longer.

It means that the clinicians having information of these features gets a good initial
indication on whether a patient will live longer or shorter on the initial look.

6.4 Possible future work

We have used two blocks of data having multiple features in each. As a future work
in the project we can further divide the data available into more blocks. By doing
so we can get more insight on how much the features in each block contribute to
explaining the variance in target. At this point we cannot guarantee by doing this
if the performance of the model increases or not.

In RENT for feature selection we are using stricter values for the selection crite-
ria. That is we are using values of τ1, τ2, τ3 as 0.9, 0.9 and 0.95 respectively. By
reducing the values of these cutoffs and rerunning RENT we can select more fea-
tures for both the blocks. It can turn out these newly selected features will explain
more unexplained variation in the target when used in SO-PLS model than we get
now.

Also RENT uses linear regression to model linear relationships in the data. In
further work one could take into account the feature interactions. This introduces
non-linearity and may provide more information for modelling.
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Chapter 7

Conclusion

The multiblock data analysis done on healthcare data acquired from patients diag-
nosed with gastrointestinal carcinoma has showed that sequential and orthogonal-
ized partial least squares (SO-PLS) regression may be a potential tool for finding
useful data insights. By exploiting the underlying dimensionality in the data it
may help the clinicians in looking out for the features that contribute more to the
required target.

Using state of the art feature selection method, repeated stratified K-fold RENT,
proved that selecting features based on their performances in linear regression may
help in increasing the explained variance of the target variable when using multi-
block techniques.

It can be concluded that by using SO-PLS along with RENT feature selection has
shown enough potential for further development in the field of health care, the next
step of which would be dividing the data blocks to even smaller data blocks to see
how important they turnout in knowing how long a patient lives.
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