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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor (Ph.D.) at the Norwegian University of Life Sciences
(NMBU). I started this work after four years as a research scientist at SINTEF.
In parallel with this work, I have continued with a 25% position at SINTEF
and participated in research projects there. This research was conducted at
NMBU and SINTEF from 2017 to 2021 as an institute PhD funded by the
Norwegian Research Council 1, resulting in a collection of five papers included
in this thesis. The last three papers are partially funded by internal grants at
SINTEF.

The topic of this thesis is the application of learning-based methods within
vision-based guidance of agricultural robots. This is a topic that is cross-
disciplinary and applied in nature, and involves both machine learning, com-
puter vision, robot guidance and practical fieldwork. Because of this, the
background chapters span a broad range of topics, and they are covered with
varying depth to keep them concise but relevant for the research problems
addressed in the papers. The intention has been to present it in a way that is
accessible for an audience with a background in one of these disciplines or a
related field.
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Abstract

To feed a growing world population and achieve the goal of zero hunger2, we
must develop new technologies to improve farm productivity and sustainability.
Agri-robots can be a part of this solution, but new research is needed to
provide reliable and low-cost autonomous operation across the broad spectrum
of agricultural environments. Combining low-cost RGB cameras for vision with
the recent advances in deep learning is a promising direction that can enable
easier adaption and lower hardware costs than existing solutions.

We explicitly tackle two of the main challenges faced when applying deep
learning in robotics: learning from data of limited quantity and/or quality,
and making neural networks easier to understand for humans. Thus, the main
objectives of this work are to develop and apply methods that are more data-
efficient and explainable than state-of-the-art in learning-based visual robot
guidance, and to apply this insight to guide agri-robots in the field.

These topics are explored through five papers. First, we investigate the
properties of an established end-to-end learning strategy for guidance and
apply it in crop row following. Although promising at first, the black-box
nature of this approach and inherent difficulties for debugging led to two
different strategies; 1) a more explainable network architecture with a new
supervision strategy for this task, and 2) a novel visualisation method to better
understand visual features in convolutional neural networks. Finally, we unite
these strategies in a new hybrid learning approach for row following that is
both robust, data-efficient and more transparent.

The main contributions of this thesis are 1) Increased explainability through
the development of a novel feature visualisation method, which provides explana-
tions that are complementary to existing methods, 2) Increased data-efficiency
and adaptability of learning-based crop row following through a new supervision
approach which eliminates the need for hand-drawn labels, and 3) New insight
into applications of learning-based methods in the field, by testing several
supervision strategies on a real robot in the field, and considering the whole
pipeline from data collection to predicted steering angle.

2The second UN sustainability goal, https://www.un.org/sustainabledevelopment/hu
nger/
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Abstract in Norwegian/Sammendrag

For å brødfø en voksende verdensbefolkning og oppnå målet om å utrydde
sult3, er vi nødt til å utvikle ny teknologi for økt bærekraft og produktivitet i
landbruket. Landbruksroboter kan være en del av løsningen, men vi trenger ny
forskning for å oppnå pålitelige autonome operasjoner til en lav pris innenfor
et enormt spekter av ulike miljøer. En lovende retning er å kombinere billige
RGB-kameraer med de nylige fremskrittene innenfor dyplæring, som kan gi
løsninger som er enklere og mer tilpasningsdyktige enn de som eksisterer i dag.

I dette arbeidet ser vi spesielt på to utfordringer som oppstår når man
anvender dyplæring innenfor robotikk; Å lære mest mulig fra data med begrenset
mengde og kvalitet, og å gjøre beslutningene til nevrale nett enklere å forstå
for mennesker. Hovedmålet er å utvikle og anvende metoder som er mer
dataeffektive og forklarbare enn eksisterende læringsmetoder for radfølging,
og anvende denne innsikten til å utvikle et system for autonom styring av
landbruksroboter ute i åkeren.

Disse temaene har blitt utforsket gjennom fem artikler. Først undersøkte vi
egenskapene til en etablert alt-i-ett (end-to-end) læringsmetode for styring, og
tilpasset metoden til visuell radfølging i åker. Selv om de første resultatene var
lovende, viste det seg etter hvert at metoden var vanskelig å forstå og feilsøke.
Dette motiverte oss til å utvikle to nye metoder: 1) En ny veiledningsstrategi
som gjør at vi kan bruke en mer transparent nettverksarkitektur som er lettere
å forstå, og 2) en helt ny visualiseringsteknikk som viser hva slags egenskaper
konvolusjonsnettverket har lært. Til slutt forener vi disse to metodene i en
hybrid læringsstrategi som er både robust, dataeffektiv og mer transparent.

De vitenskapelige hovedbidragene i denne avhandlingen er som følger 1)
Økt forklarbarhet gjennom utvikling av en helt ny teknikk for visualisering
av egenskaper som er komplementær til eksisterende metoder, 2) Mer data-
effektive og tilpasningsdyktige metoder for radfølging gjennom nye måter å
veilede dyplæringen på som eliminerer behovet for manuell merking av data,
og 3) Ny innsikt innen anvendelser av læringsbaserte metoder i felt, gjennom
testing av flere ulike strategier med en ekte robot i jordbæråkeren, og ved å
betrakte hele systemet under ett fra datainnsamling til estimert styringsvinkel.

3FNs bærekraftsmål nr. 2, https://www.fn.no/om-fn/fns-baerekraftsmaal/utrydde-
sult

xv

https://www.fn.no/om-fn/fns-baerekraftsmaal/utrydde-sult
https://www.fn.no/om-fn/fns-baerekraftsmaal/utrydde-sult




Abstract in Simple English

Sometimes, explaining your work in the simplest language gives new insight.
This is written according to xkcd’s Simple Writer4 with a vocabulary of only
thousand words.

What this work is about

In this work, we make field-goers find their way using picture takers and
computer brains. To teach the field-goer not to drive on the small red food
things, we show a lot of pictures to the computer brain and tell it what is
where. This is very boring and can take a long time, so we found a way to
make the picture taker tell the computer brain what is where, so we don’t need
to do it anymore. To know if the computer brain has made a good choice, we
told it to draw a picture to show us what it is thinking.

4A Controlled Natural Language created by Randall Munroe, used in Up Goer Five
https://xkcd.com/1133/ and [Munroe, 2015], and further analysed in [Kuhn, 2016].
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Chapter 1

Introduction

We stand at a point in history where the separation between the digital and physical
worlds is blurring. Plummeting hardware costs and the increased computational
power at everyone’s fingertips enables an explosion of new technology and applications,
like wide-spread video conferencing with augmented reality that can hide your messy
background at the home office or suddenly turn you into a cat. This crossroad can
also be a game-changer for more pressing matters, like producing enough food.

One of the major global challenges we are facing today is to feed a growing world
population whilst battling a changing climate. This is related to the second of the
UN’s sustainable development goals, Zero Hunger1, which states that “Increasing
agricultural productivity and sustainable food production are crucial to help alleviate
the perils of hunger”, naming technology development as one of the targets on the way
to achieve this ambitious and important goal. In agriculture, there is an enormous
technology gap between the large-scale industrialised monocultures on one side and
the smaller and more diverse farms on the other (Figure 1.1). The first category
suffers from a lack of precision, spraying large amounts of pesticides on the whole
field when only a fraction is infected. The second often relies on large amounts of
seasonal manual labour, for instance during the short and intense strawberry season
in Norway. Automating agricultural practices with fleets of agri-robots can improve
farm productivity and sustainability at both ends of this spectrum by increasing
precision and efficiency. However, the wide variety of agricultural applications and
environments makes this a challenging task that is beyond the current state-of-the-art
within robotics research.

A key technology for future large-scale deployment of agri-robots is low-cost
navigation solutions. Current systems typically rely on accurate global positioning,
which works well for open fields, but fails in indoor environments and requires
expensive equipment on every single robot. Other solutions are based on scanning
LIDARs which typically works well for more confined spaces with vertical structures.
This works well in polytunnels or orchards, but it will usually require tailor-made
algorithms for a specific farm or crop type. Future large-scale agri-robot fleets need
sensing solutions that can operate on all kinds of crop types and environments with
minimal setup cost. One possible solution to this problem is probably already in
your pocket: Images from common RGB cameras contain an extreme amount of
information, the challenge is to convert it into something useful. To detect crop rows
in camera images, it is common to look for something green to separate plants from
the brown ground. However, this is sensitive to seasonal changes, and is not always

1https://www.un.org/sustainabledevelopment/hunger/

1

https://www.un.org/sustainabledevelopment/hunger/


1. Introduction

Figure 1.1: The diversity in agricultural applications is almost limitless. From the top,
row-wise: Pesticide spraying with an aeroplane in a wheat field in Argentina, worker picking
strawberries in a polytunnel in Norway, manual harvest in a flooded rice field, transport
during broccoli harvest in Norway. Photo credits, from top and row-wise: Santiago Nicolau,
Stian Tandberg, World Bank Photo Collection, Saga Robotics.

the most distinguishing feature, as illustrated with the all-green sea of broccoli leaves
in Figure 1.1.

With the current success and advancement of deep learning, it is possible to learn
any kind of visual feature directly from images. This means that instead of tailoring
the algorithms to every crop type or season, we can train a neural network using
examples labelled with the properties it should learn. This is an extremely powerful
tool, which not only can learn the difference between crops and lanes, but also give
steering commands to the robot. But how do we collect good examples that cover all
the variation the robot will ever encounter in the field? And how can we understand
the reason behind a command if it makes a mistake?

This thesis seeks to address two of the main challenges of applying deep learning
for robot vision. As reflected in the title, the focus is on 1) data-efficient learning, i.e.
dealing with data of a limited quality or quantity, 2) explainable learning, i.e. making
the black box a bit more transparent for humans, and 3) applying this insight to
visual navigation for agri-robots on real farms. Based on this motivation, we defined

2



the following research questions:

1. How can modern learning-based methods best be applied to crop-row following
with agri-robots?

2. How can such methods be made more explainable?
3. How can such methods be made more data-efficient?

Attacking these questions required inter-disciplinary work in the cross-section
between machine learning, computer vision and applied field robotics, which resulted
in the five papers included in this thesis. The thesis is organised as follows: After
this introduction, there are three background chapters that present the necessary
fundamentals and position the work of this thesis with respect to the relevant research
fields. The first covers different topics related to the agri-robot application, before
we move on to the fundamentals of machine learning in Chapter 3. In Chapter 4,
we discuss learning-based methods in practice, and present state-of-the-art on two
topics: Learning-based robot guidance and interpretation of deep neural networks.
Then, short summaries of the scientific papers of this work are presented in Chapter 5
together with the overall scientific contribution of this work. Finally, the papers are
attached in their original version.

3





Chapter 2

Agricultural robotics

This background chapter is a bundle of topics related to the application of agricultural
robots. It gives an overview of different agri-robot applications, before looking into
different sensing strategies for robot guidance in such applications, where we dive
deeper into traditional methods for vision-based crop row detection. Then, we briefly
cover the basics of robot and camera geometry and describe the robot platform used
for the work in this thesis.

2.1 Agricultural robot applications

Today, different agri-robot platforms are deployed in a wide range of applications,
both commercially and for research. In large open fields, Unmanned Aerial Vehicles
(UAVs) give a good overview and cover more ground in less time than conventional
tractors and are used for spraying and monitoring. At the other end of the scale,
mobile robots are used for precision-weeding, targeting each weed with pesticides
or mechanical removal instead of large-scale spraying. Robots harvesting high-value
crops like capsicums and strawberries are also under development, which could replace
the huge amount of seasonal human labour this requires today. Fleets of robots
can also be used for transport and other tasks to aid the human workers and make
logistics on the farm more efficient.

The Thorvald robot platform (see Figure 2.1) from Saga Robotics1 is one such
agri-robot platform, which is in use in many different environments, both for research
and commercial applications. The most successful commercial application so far
is UV-treatment of berries and fruits to control mildew fungi2. This operation is
performed autonomously in strawberry polytunnels, greenhouses with rails between
rows of cucumbers and tomatoes, and vineyards. Variations of the same platform are
used in a wide range of other applications, for instance to collect data for efficient
phenotyping in cereal fields [Burud et al., 2017], and for transport during broccoli
harvest, greatly improving the working conditions for the human pickers. A gripper for
automatic strawberry picking is currently undergoing pilot testing, which will reduce
the need for human labour while enabling precision measurements of the quality of
the berries. The Thorvald robot platform is designed to be easily re-configurable
[Grimstad and From, 2017] in terms of mechanics and robot control, but the wide

1https://sagarobotics.com
2https://www.morningagclips.com/uv-system-means-lights-out-for-strawberry-

pathogen/?fbclid=IwAR1l5M0Fc6fzvzt4PCsgn1QDer0whSQmbuY9n2Ak41m3G1leXrlc6fiqn-c
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2. Agricultural robotics

Figure 2.1: Example applications of the re-configurable Thorvald Robot platform. From
top, row-wise: strawberries in field, broccoli in field, strawberries in polytunnel, tomatoes in
greenhouse. Navigation sensors are highlighted with circles.

range of applications and environments require a myriad of different sensor setups,
which results in large significant development costs and risk for new applications.

There is virtually no end to the variation in environments for agricultural ap-
plications, which makes it challenging to design a one-system-fits-all for navigation.
Agricultural environments come with a wide variety of appearance and complexity, as
indicated with the examples in Figure 2.1 and Figure 2.2, and may change drastically
from season to season. In general, the environments have fewer straight and massive
structures than an urban or indoor environment, but within each application there
may be lower complexity and variation than what you would see in a city. Most agri-
cultural fields have a row organisation, which provides structure useful for guidance,
but the appearance is often less uniform and predictable than roads.

2.2 Guidance of agricultural robots

Localisation and guidance of autonomous platforms is a huge and rapidly growing field
of research, spanning from self-driving cars to vacuum cleaner robots to tiny UAVs.
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Figure 2.2: Example agricultural robot platforms with different navigation solutions. From
top left: 3D row detection with BoniRob [Biber et al., 2012], vision-based (RGB) row
detection in [Ahmadi et al., 2019].

In this context, guidance of agricultural robots has its own set of challenges specific
to agricultural environments. In this section, we will give a brief overview of some
agri-robot applications and different sensing strategies for navigation of agri-robots,
to motivate why we focus on vision-based navigation in this work.

2.2.1 Sensors for navigation

To achieve full autonomy, agri-robots usually need to navigate both on a global scale,
i.e. to drive from A to B and plan the route between rows, and a local scale, i.e.
to stay in the right position relative to the plant row to perform the designated
task. These two levels of navigation require different kinds of sensing strategies for
localisation. Pure global localisation can be a successful strategy in environments
that does not change over time. Relative localisation can typically provide a higher
relative accuracy at a lower cost and can adapt to changes in the environment or
position the robot relative to specific parts of the crops for direct interaction. Each
agri-robot platform typically uses a wide range of different sensors to cover the whole
spectrum of navigation tasks for different applications.

Different sensor options for global and relative localisation are summarised in
Table 2.1 and is discussed further below; First sensors and strategies for global
localisation, and then optical sensors that can be used to extract information about
the environment for both global and relative localisation strategies.

Global Navigation Satellite System (GNSS)

Positioning with a Global Navigation Satellite System (for instance GPS or GLONASS),
provide a position in a global reference system. GNSS only works in open areas
with line-of-sight in the direction of the satellites, as it estimates the position based
on transmission time differences between the receiver and four or more different
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Table 2.1: Properties of different sensors used for navigation. Above line: Global positioning
sensors. Below: Optical sensors that can be used for both global and relative localisation.

Sensor Cost Accuracy Reso-
lution

Suitable environment

GNSS low m - Open, outdoor
RTK-GNSS high cm - Open, outdoor
IMU low-mid (varies) - Any
Scanning LIDAR mid-high cm low Any
Passive depth camera low-mid cm-dm high With texture and good

light conditions
Flash LIDAR mid-high cm-dm mid Any
Active depth camera low-mid cm-dm mid Indoor/ limited outdoor
RGB cameras low cm-dm high Any

satellites. GNSS receivers have become common in all kinds of mobile devices, which
has reduced the hardware cost and increased the position update rate, but regular
receivers have a limited accuracy (around 1-2 m horizontally and 3-4 m vertically)3,
which makes it more suitable for road navigation than precise robot steering. Precision
can be increased to the mm-range by averaging over a long time, but that requires a
stationary receiver. Another option is called real-time kinematic (RTK) positioning,
which utilises the phase difference relative to a fixed base station, to improve accuracy
to around 1 cm. RTK-GNSS require more expensive receivers and line-of-sight to an
established base station that can provide correction signals. Correction data can also
be bought as a service, (for instance CPOS4, which eliminates the need for a separate
base station. RTK-GNSS is a good choice for navigation in open fields, but like nor-
mal GNSS it is unreliable in covered environments like greenhouses and polytunnels,
or close to tall buildings. GNSS cannot provide attitude information directly, but
this can be achieved with a setup with multiple antennas. The configuration of the
dual-antenna setup in the upper left corner of Figure 2.1 can provide the heading
and pitch angle of the robot.

The main limitation with GNSS, as with other global localisation strategies is that
it only provides a global position, and no information about the surrounding world.
The acquired global position must somehow be related to the robot’s environment,
for instance with a geo-referenced map or pre-programmed route, which is not always
available for a field. Steering tractors steered with GNSS is already an established
technology, and when GNSS is used from the beginning with planting or seeding, the
tractor can successfully do many routine operations on GNSS-steering only.

3https://www.gps.gov/systems/gps/performance/accuracy/
4https://www.kartverket.no/en/on-land/posisjon/guide-to-cpos
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Inertial Measurement Unit (IMU)

Almost every mobile robot carries an Inertial Measurement Unit, which estimates
relative six-degrees-of-freedom (6-DOF) positions by integrating angular velocity
and acceleration measured by several accelerometers and gyroscopes [Barfoot, 2017].
Again, as the sensor is common in mobile devices, the hardware cost is low and speed
is high, but the accuracy varies with price. Another drawback of IMUs is that the
integration process accumulates errors, and the pose estimates will usually drift over
time. IMUs are typically combined with other sensors to get absolute position and
limit drifting.

Scanning LIDAR

Light detection and ranging (LIDAR) perform point-wise range measurements with
lasers and comes in several different forms. Traditional scanning LIDARs have a
mirror that moves the laser to obtain beams of point measurements, with a very wide
field-of-view. The density and speed of the point cloud vary with the price of the
scanner. Scanning LIDARs have a long range and are robust to illumination changes
and strong sunlight and are well suited for outdoor use. LIDARs have been applied
on several agri-robot systems, for instance in [Le et al., 2019] which use it to build a
full 3D map to navigate between buildings and fields on a farm, while [Biber et al.,
2012] perform crop row detection with the 3D data. However, the resolution is much
lower than for a camera, and it requires distinct structures in the surroundings to
give features that can be useful for localisation.

Depth cameras

Depth cameras provide high-resolution depth images, which can be obtained using
several different technologies, which are roughly divided into active and passive
sensors.

A stereo camera is a passive technology, where regular cameras are mounted as
a stereo pair. The depth image is constructed by matching visual features in the
different camera views. One limitation of the stereo camera is the range, which
is shorter for small baselines. Stereo requires good light conditions and texture to
function properly, which is usually the case in agri-cultural settings in daytime. [Stefas
et al., 2016] demonstrated successful use of a stereo rig for row navigation in apple
orchards with a UAV.

Active sensors use an additional light source (often infrared) to obtain the depth
image. Since it does not depend on the stereo feature matching, it can provide depth
data on any surface. One such technology is Time-of-flight cameras (ToF), which
use the same principle as the LIDAR scanners, but have higher resolution and give
a full 2D depth image in one go. Some sensors use a combination of active and
passive sensing, like the Intel RealSense D435, which project an IR pattern to assist
the stereo in areas without good features. Active depth sensors have been popular
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for indoor robotics applications, but the light source is usually overpowered by the
sunlight, and does not give reliable depth measurements outdoors. One exception is
the recent Flash LIDAR technology that uses a different frequency than the typical
ToF cameras.

RGB cameras

Regular RGB cameras are lightweight, low-cost and versatile sensors that can be
used in several ways in the context of robot navigation. RGB cameras work in
most conditions and have a higher resolution and frame rate than LIDAR and depth
cameras, which make them a versatile sensor for navigation. The 2D images from a
regular camera contain a lot of information but need further processing to extract
features related to the 3D world that can be useful for navigation. Like stereo cameras,
RGB cameras require good light conditions to provide useful information. Infrared
cameras can provide images in low-light conditions that can be processed in a similar
way as RGB images.

2.2.2 Localisation strategies

Data from the optical sensors mentioned above has to be processed further to get
more high-level information that can be useful for localisation or guidance of a robot.

Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM) systems build a map from detected
key-points or features while simultaneously localising the camera pose in that (global)
map. The features can be extracted from any of the optical sensor modalities
mentioned above; LIDAR point clouds, depth images or regular RGB images. To use
SLAM for navigation, a full mapping of the environment must be performed during
the setup of the system, which can be time-consuming for large fields. The various
forms of SLAM are commonly used in many mobile robot applications, and LIDAR-
based SLAM has been successfully used on the Thorvald platform in polytunnels
and greenhouses. It works best for overlapping robot trajectories and can suffer from
coordinate drift and false matches in the self-similar environment of agricultural crop
rows.

Crop row detection

A common localisation strategy for agri-robots is vision-based row detection. This can
provide relative positioning with respect to any crop row with good precision. One of
the most recent implementations on a robot [Ahmadi et al., 2019] (see Figure 2.2)
combine this with visual servoing for path following. The main drawback with the
traditional row detection methods is that the visual feature extractor must be tailored
for every application. This is where modern methods based on deep learning can
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provide a more streamlined adaptation, by learning the visual appearance directly
from examples.

Learning-based row following with RGB cameras can potentially provide guidance
in any type of agricultural environment with a low-cost sensor, and we believe it has
a great potential to provide general low-cost guidance of autonomous agri-robots.
Therefore, this is the chosen strategy for the work in this thesis. To give a more
extensive overview of the related work on this topic, traditional methods are presented
below, and learning-based strategies are discussed in Chapter 4.

2.2.3 Classical methods for vision-based crop row detection

Vision-based crop following has been a research topic for decades, and several methods
have been successfully demonstrated for real applications using tractors and robots.

Traditionally, this pipeline typically consists of two main operations: First,
segmentation is performed to convert the camera image to a binary mask separating
plants from the background. Based on this, a line or path representing the row is
computed.

Using traditional computer vision methods, the segmentation is typically obtained
by computing some form of vegetation index, followed by thresholding to produce a
binary segmentation mask. A simple and widely used vegetation index is the Excess
greenness index (ExG) [Woebbecke et al., 1995], which is defined as

ExG = 2g − b− r (2.1)

where r, g, b are the values of the R, G and B channels (in arbitrary units), normalised
for each pixel:

r = R

D
, g = G

D
, b = B

D
, D = R+G+B (2.2)

Note that r+g+b=1. This gives a one-channel image with high values (up to 2)
when green dominates the pixel for g > 1

3 , and negative values (down to -1) when
g < 1

3 . Example ExG images for a strawberry field are shown in Figure 2.3. In the
ideal case (first row in Figure 2.3), this gives two distinct peaks in the histogram
that can be separated with a threshold value, to produce a binary segmentation.
This can be done using Otsu’s method [Otsu, 1979][Gonzalez and Woods, 2007, ch.
12], which chooses a threshold based on the maximum intra-class variance. This
method works best for bimodal distributions (i.e. similar amount of background and
foreground pixels) with a sharp “valley” in between. For the examples in Figure 2.3,
the segmentation is successful for the cases with tidy hay-covered lanes and full green
plants, but when lanes are overgrown with green shoots, or the plants turn red and
brown in autumn, the ExG does not provide well-separated peaks in the histograms,
and the segmentation is less successful. To get a cleaner segmentation, morphological
operations [Gonzalez and Woods, 2007, ch. 9] are used to fill in gaps and remove
noise.
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Figure 2.3: Segmentation based on greenness index on example images from a strawberry field
(performed with MATLAB’s graythresh implementation of Otsu’s method). The columns
show: 1) Image, 2) ExG image (enhanced for visibility), 3) ExG histogram, 4) Binary
segmentation mask after thresholding.

Based on the binary segmentation masks, there are several approaches for line/path
estimation, depending on the problem at hand. For thinner crops, the challenge
is typically to extract a path through non-connected plant regions, while for fuller
crops like the strawberry plants in Figure 2.3 the challenge is to find a path along
the middle of one thick region. One option is to use the Hough Transform [Hough,
1962][Gonzalez and Woods, 2007, ch ], a well-known method for line detection used
for crop row detection in for instance [Marchant and Brivot, 1995, Åstrand and
Baerveldt, 2005]. Every pixel in the binary image is transformed to Hough Space
H(s, α) where s and α is the position and angle of the line. In essence, all pixels in
the image that belongs to one line will accumulate values at the same point in Hough
space, so lines can be found by thresholding this accumulator.

One drawback with Hough-based line detection is that the transform is performed
on every single “True” pixel in the binary mask, which would result in slow execution
and too many line candidates for the thick rows in the strawberry field. Another
option is to extract feature points and perform regression to fit a line or (or polynomial
for curved rows, as in [García-Santillán et al., 2018a]. The feature points can for
instance be extracted by processing one horizontal strip at a time, but the exact
technique used tend to vary based on the application in question. Common challenges
are false positives caused by high weed pressure and large gaps between plants that
disconnect the lines.

Current state-of-the-art in vision-based crop row detection, e.g [García-Santillán
et al., 2018b, Zhang et al., 2018] builds on years of research that has optimised every
single step of the process. In addition to the techniques described above, the 20-step
algorithm in [Zhang et al., 2018] includes a modified vegetation index, clustering,
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Figure 2.4: Some useful coordinate frames for a robot driving in a field with a camera: The
static world frame FW , the robot frame FR, and the camera frame FC .

start point extraction and a shortest path method to connect the points. There have
been a few recent works that propose to simplify row detection with learning-based
methods, which we will come back to in Chapter 4.

2.3 Robot and camera geometry

Since we want to use crop row detection as a means of localising and steering the robot
in the field, we need to relate detected crops in the camera image to the world the
robot is driving around in. This is described through geometric reference frames and
camera view geometry. These two topics lay the foundation for the label generation
through virtual camera views in Paper I, II and V, and the automatic mask projection
in Paper III and V which is described in more detail in Appendix B.1.

This section only touches basics, and the reader is referred to [Hartley and
Zisserman, 2003] and [Barfoot, 2017] for a more detailed treatment of these topics.

2.3.1 Transformations of reference frames

Consider a moving agri-robot with a camera tilted downwards as illustrated in 2.4.
The configuration or state of a mobile robot in the three-dimensional world is often
called the pose and has six degrees of freedom (DOF): three in position and three
in rotation. The pose can be described as the position and rotation of the (moving)
robot reference frame FR relative to a (static) world reference frame FW , as illustrated
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in Figure 2.4. Let the point of interest P be expressed with a vector vW in the world
coordinate system, that can be written in homogeneous coordinates by appending an
additional element of 1, v =

[
vx vy vz 1

]>, such that it can be multiplied with
a 4× 4 matrix and be transformed to the robot reference frame [Barfoot, 2017, ch. 6]:

vR = TWRvW. (2.3)

The world-to-robot-transform TWR is a homogeneous transformation matrix, composed
of a 3× 3 rotation matrix R and translation vector t = [tx, ty, tz]:

T =
[

R t>
0> 1

]
. (2.4)

When several reference frames are involved, as for the moving robot in Figure 2.4, the
transformations can be chained to obtain the world-to-camera-transform and express
the point of interest in camera coordinates:

vC = TRCTWRvW = TWCvW (2.5)

In practice, the robot-to-camera transform TRC is determined through calibration.
Estimating the world-to-robot transform TWR is the task of the robot localisation
system. To perform a transformation in reverse, one can simply apply the matrix
inverse. Thus, a point in camera coordinates can be changed to world coordinates
like this:

vW = TCWvC = T−1
WCvC (2.6)

2.3.2 Camera view geometry

The relationship between a coordinate p = [xI , yI , 1] in the image reference frame and
view vector in the camera reference frame vC is approximated with a mapping called
the camera model which can capture different levels of complexity and non-linear
effects. We will start with the simple linear model of a pinhole camera, also called
the rectilinear model, as illustrated in Figure 2.5, where the projection of the 3D
view vector into the 2D image plane gives

xI = f
xC
zC

,

yI = f
yC
zC

(2.7)

where the focal length f is the distance from the optical camera centre to the image
plane. This determines the field-of-view (FOV) of the camera, i.e. the angle between
the outermost view vectors. The horizontal field-of-view is HFOV = 2 tan( w2f ), where
w is the width of the image sensor, and similarly for vertical FOV with the height of
the sensor. Additionally, it is common to account for an offset between the camera
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Figure 2.5: Illustration of rectilinear and fisheye projection models, and corresponding
example images.

centre and the origin of the image plane, denoted by c = (cx, cy). If the optics and the
sensor is perfectly aligned, this is usually given by c = (w2 ,

h
2 ) where w and h are the

width and height of the image sensor. Combining these effects into a homogeneous
transformation matrix, we define the 3 × 3 (intrinsic) camera calibration matrix
[Hartley and Zisserman, 2003] as

K =

[
f 0 cx
0 f cy
0 0 1

]
. (2.8)

By appending an additional column of zeros to get a 3× 4 projection matrix C,
the transformation from 3D camera to 2D image coordinates can be expressed as

p = [K|0]vC = CvC, (2.9)

which can be chained with the transformation matrices above to transform a vector
all the way from world frame to image frame:

p = CTRCTWRvW (2.10)
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2.3.3 Spherical projection

Omnidirectional lenses, or so-called fisheye lenses have a very wide FOV, and can not
be modelled with the linear projection above. Fish-eye lenses can be approximated
by projection in spherical coordinates onto the flat image sensor, as illustrated in
Figure 2.5.

p′ =
[

r
sin(θ)xC
r

sin(θ)yC

]
, (2.11)

where p′ = (x′I , y′I) are centred image coordinates, r =
√
x2
I + y2

I is the distance from
the image centre and θ is the angle compared to the optical axis. For an ideal fisheye,
the relationship between r and θ is linear and can be parameterised with a constant
α, corresponding to radians per pixel.

2.3.4 Distortion

So far, we have assumed a perfect linear projection, but for a real camera, the
projection will be subject to distortions in the lens. A correction is usually performed
to bring the camera model back to the rectilinear case, such that the previous
equations can be used.

The most common non-linear effect is radial distortion, which is most prominent
for cameras with wide field-of-view and/or short focal length. This is modelled by a
non-linear function usually approximated by a Taylor expansion

f(r) = 1 + κ1r + κ2r
2 + κ3r

3 + ... (2.12)

where r is the distance between the pixel and the image centre. The number of
distortion coefficients κ1, κ2, ... are usually limited to 3 or 4.

2.3.5 Camera calibration

The parameters in Equation (2.8) and Equation (2.12) are estimated through intrinsic
camera calibration. This can be performed in several ways, but the key idea is to
detect features on an object where the spatial relationship between the features is
known, for instance the corners of a chessboard. Collecting several images with
different object placements, Equation (2.9) can then be solved through numerical
optimisation. See e.g. [Hartley and Zisserman, 2003, ch. 7] for more details. For the
work in this thesis, the OcamCalib Toolbox [Scaramuzza et al., 2006] was used for
camera calibration.

2.4 Experimental robot setup

In four of the papers in this thesis, an agri robot platform was used for data collection
and field trials. This section gives a brief overview of the robot and sensor setup, and
the agricultural environments that were used for experiments in these papers.
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Figure 2.6: Robot setup for field data collection and experiments. Left: The Thorvald robot
platform configured for a strawberry field, as used in Paper III and Paper V with RTK-GNSS
antennas (pink), fisheye camera (yellow) and Intel RealSense D345 (depth was not used for
this work). Right: The Thorvald robot platform configured for a strawberry polytunnel, as
used in Paper I and Paper II with fisheye camera (red) and LIDAR laser scanner (blue).

The Thorvald robot platform was used for data collection, configured for two
different field types: One for open strawberry fields with crops on the ground, and
one for strawberry polytunnels with crops on tabletops, as shown in Figure 2.6. In
the strawberry field, the robot was driven manually during data collection, while in
the strawberry polytunnel the robot was driving autonomously based on data from a
laser scanner. The robot platforms have onboard computers that are running ROS5,
and the camera and positioning data was recorded to rosbags.

Data was recorded over four summer seasons in different tunnels and rows at
different growth stages and light conditions, as illustrated with some examples in
Figure 2.7. When constructing datasets for machine learning, the camera stream was
subsampled to avoid too much overlap between frames, and entire rows were reserved
for the test set and not seen during training.

5Robot Operating System, http://wiki.ros.org/
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Figure 2.7: Example appearance from the collected datasets. Upper: strawberry fields.
Lower: strawberry polytunnels.
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Chapter 3

Machine learning fundamentals

As we saw in the previous chapter, traditional methods for crop row detection work
well in many cases, but consist of many steps that often have to be tailored for each
new application. Therefore, we have investigated learning-based methods, which
can learn any type of feature from the data itself. This chapter will go through the
necessary background in machine learning; It starts with some basic terminology,
before we move on to the building blocks of modern deep neural networks for computer
vision, and look into strategies for learning with limited data.

3.1 Learning a model

In machine learning, we attempt to learn a model from data that can predict the
outcome of a variable based on some features [Hastie et al., 2009, Andrew Ng et al.,
2000]. This model can range from a simple linear regression with a bias and slope, to
deep neural networks with millions of weights.

We use the following notation:

ŷ = hθ(x), x ∈ Rp, (3.1)

where x is the input variable with p features, ŷ is the prediction of the output value
or response y, and h is the model with parameters θ.

The parameters of the model are learned by optimising an objective, using training
data. In the supervised learning case, the input data samples are accompanied by the
correct output value, often called labels {xi, yi}, i = 1, ..., N , which can be used to fit
the parameters of the model. In the unsupervised case, only x is given and there are
no ground truth labels to guide the learning. For the remainder of this thesis, we will
consider supervised learning if not stated otherwise.

There are two main types of prediction tasks, depending on the nature of the out-
put: Regression and classification. Regression is the task of predicting a quantitative
output, like the price of a car, or the angle of a crop row in an image of a field. In
regression, the objective is to get as close to the ground truth values as possible. A
typical objective function (also called cost, loss or error) for regression is the mean
squared error (MSE) overall N samples,

L(θ) = MSE(θ) = 1
N

N∑
i=1

(hθ(xi)− yi)2 , (3.2)

which is minimised to find the best parameters. Classification on the other hand, is
the task of predicting a qualitative or categorical output, which only can take the
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Figure 3.1: Illustration of overfitting and underfitting in machine learning when fitting a line
to a set of data samples. From left: 1) Underfitting with a too simple model, 2) good fit
with a model of appropriate complexity, 3) overfitting with a model of too high complexity.
Image courtesy: Anup Bhande1

values from a discrete set of K classes, like dog breed or whether the crop row is to
the left, right or straight ahead. Here, the goal is to separate the classes in a way that
minimises the number of erroneous classifications. A typical choice of loss function
for classification problems is the categorical cross-entropy loss

L(θ) =
∑
j

− log(σ(hθ(xj)), (3.3)

where σ is the softmax function:

σ(zj) = ezj

ΣKk=1e
zk
, j = 1, ...,K. (3.4)

which force the output to be close to 0 or 1, which gives a better class separation
than linear of quadratic loss.

We want to find the model that gives the best fit or the best class separation for
the problem at hand. However, a model with a high degree of freedom or capacity
may produce a very small error on the training samples, but fail to describe the
overall relationship. This phenomenon is called overfitting and is illustrated with an
example in Figure 3.1. The real goal in machine learning is to generalise, i.e. find a
model that also fits well with samples that are not in the training data.

Therefore, it is the expected prediction error on the test data, also known as test
error or generalisation error, that should be minimised. This error can be decomposed
into three terms [Hastie et al., 2009, ch. 7] for a test sample x0:

E[y − ĥθ(x0)2] = Bias2(ĥθ(x0)) + Var(ĥθ(x0)) + σ2. (3.5)
where ĥ is the estimated model, which varies based on the choice of the training
set. The variance term indicates how much the prediction varies with the choice
of training samples, and the squared bias term is how much it deviates from the
true mean. σ2 is the variance of the noise in the test data, which cannot be reduced
even with the perfect model. Typically, a model with a low degree of complexity
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Figure 3.2: A two-layer neural network (it is common not to count the input layer) with one
hidden layer of 5 units and one output layer of 2 units.

gives a low variance and high bias, underfitting, while a model with a high degree
of complexity results in low bias and high variance, overfitting. There is always a
trade-off between bias and variance to minimise the test error when choosing the
model complexity (number of parameters) and fitting the model parameters.

There is a huge variety in model types that has been proposed within machine
learning over the years, with different properties when it comes to model complexity
and bias-variance trade-offs. For the remainder of this work, we will focus on one
particular family of models, namely neural networks.

3.2 Neural networks

Neural networks are a family of models that have existed for decades and exploded
in popularity with the breakthrough of deep learning. The building blocks of neural
networks are simple functions that create models of very high learning capacity when
stacked together.

In its most general form, the neural network model is a cascade of layers trans-
forming the input:

hθ(x) = fLθL
(...f2

θ2 (f1
θ1 (x))), (3.6)
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where f lθl
is the function representing layer l = 1, ..., L with parameters θl. The

simplest neural network is a feed-forward neural network [Goodfellow lan, 2016, ch.
6],[Andrew Ng et al., 2000, Karpathy, 2017] with fully-connected layers as shown in
the schematics of Figure 3.2. Each unit in a layer, or neuron, is a cascade of two
functions: a linear combination of the outputs from the previous layers, followed by a
(non-linear) activation function σ. For the first hidden layer, the expression for the
output of unit j is

aj = σ(w>j x + bj), (3.7)
with parameters θ = (w, b), weights w ∈ Rd and bias b ∈ R. The output of a
fully-connected layer l is a vector with activations of all the nl individual units, which
acts as the input to the next layer. This can be written as a recursive expression:

a(l) = σ(W(l)a(l−1) + b(l)), l = 1, ..., L (3.8)

where W(l) is a matrix of size nl×nl−1, the input is a(0) = x, and the final output of a
network with L layers is hθ(x) = a(L). The number of parameters in a fully-connected
network (neglecting the bias) is

∑L

l=1 nl nl−1, i.e. it depends on the input size n0 = d,
the number of units in each layer, and the number of layers. In practice, going deeper
than 3 layers for regular fully-connected networks does not increase performance
[Karpathy, 2017].

There are several options for the activation function σ(z) [Goodfellow lan, 2016,
ch. 6], [Karpathy, 2017]. For the hidden layers, this must be a non-linear function, or
the network would just produce a linear combination of the inputs. Common choices
are the sigmoid function, forcing the output to be close to 0 or 1,

σ(z) = 1/(1 + e−z). (3.9)

More common for deep neural networks is the simpler Rectified Linear Unit (ReLU),

σ(z) = max(0, z), (3.10)

which sets all negative values to zero. For classification, the output layers consist of
K units giving the probability of class K, usually computed by a softmax activation

σ(zj) = ezj

ΣKk=1e
zk
, j = 1, ...,K (3.11)

which acts in a similar way as the sigmoid does for the binary case. For regression,
the final output is usually computed with a linear activation.

3.3 Convolutional neural networks

A regular fully connected network is not a very good choice for learning image
representations. The all-to-all connectivity causes two main issues: 1) The number of
parameters does not scale well with input size. For instance, an RGB image with
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Convolutional neural networks

Figure 3.3: Illustration of a three-layer CNN (input layer not counted), with units arranged
in 3D blocks of size Cl × Wl × Hl.

100× 100 pixels gives 30000 weights for only one unit in the first hidden layer. This
is computationally infeasible, and also leads to overfitting. 2) Connections between
neighbouring pixels are not explicitly prioritised, which makes it hard to learn even
simple image features. To fix these issues, we use convolutional neural networks
(CNNs) [Goodfellow lan, 2016, ch. 9],[Karpathy, 2017], that implement weight sharing
and two-dimensional neighbourhood connectivity.

The units in a convolutional layer are stacked in a three-dimensional structure,
with size C × W × H, where W and H are the width and height of the spatial
dimension, and C is the number of channels, or layer depth, as illustrated for a
three-layer CNN in Figure 3.3.

As illustrated in Figure 3.4, the pre-activation output of one unit at position
(i, j) in a convolutional layer can be computed as a convolution of the output of the
previous layer with a filter kernel. The expression per input channel c is

z′(l)(i, j) = (W(l) ∗ a(l−1)
c )(i, j) + b(l), (3.12)

where the 2D convolution is defined by

(W(l) ∗ a(l−1))(i, j) =
k′∑

m=−k′

k′∑
n=−k′

W(l)(m,n) a(l−1)(i−m, j − n), (3.13)

and the weight matrix W(l) has a limited spatial extent of k × k, where the odd-
numbered k is called the filter size and k′ = k−1

2 . In the channel dimension, the kernel
spans over the whole depth Cl−1 of the input, and is combined through summation,
as for a fully-connected layer:
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3. Machine learning fundamentals

Figure 3.4: The convolution operation with a sliding kernel on a 2D input with three channels

z(l)
d =

Cl−1∑
c=1

W(l)
c,d ∗ a(l−1)

c + b(l)
c , l = 1, ..., L (3.14)

This operation is repeated for a stack of filters Wc,d, d = 1, .., Cl and combined with
the activation function, giving an output with a depth of Cl channels,

a(l)
d = σ(zld), d = 1, ..., Cl. (3.15)

Each channel in a is called an activation map, and the whole depth is used as input
to the next layer.

The number of parameters in a CNN is determined by the spatial extent of the
filters, the number of channels of the layers, and the total number of layers, but is
independent of the spatial size of the input, in contrast to fully connected layers.
This is because the weights of the kernel are shared across the spatial dimensions.
For one layer, the number of parameters is k × k × Cl−1 × Cl.

To limit the number of weights and enable deeper networks, it is common to
reduce the spatial dimension of the layers at regular intervals. This can be done
with a max pooling layer [Goodfellow lan, 2016, ch. 9], which performs a maximum
operation over units in a small neighbourhood, typically 2× 2, separately for each
channel. Although the number of parameters in a CNN is independent of the size
of the input, larger inputs require deeper networks with successive downsampling to
capture features of a larger spatial scale. As more layers are added, there is a gradual
increase in the receptive field, i.e. the area of the input that is influencing each unit.
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Training neural networks

Figure 3.5: Loss as a function of epochs, for a training set (solid line) and validation set
(dashed line).

3.4 Training neural networks

The optimal parameters, θ, for a neural network are computed by minimising the error
compared to the ground truth, as described by the loss function L. The minimisation
problem is typically solved numerically through optimisation with gradient descent
[Goodfellow lan, 2016, ch.5]. First, a forward pass is executed with the current
weights to compute the loss and the gradients for one iteration g = ∇θL(θ). To
compute the gradient with respect to each weight, the gradients are distributed during
a backward pass of the network with a technique called back-propagation [Rumelhart
et al., 1986], using the chain rule and partial derivation. To perform back-propagation,
all operations in the network has to be differentiable. The parameters are updated
according to the gradients θ ← θ − εg, where ε is the learning rate.

Computing gradients for all samples at once is not feasible for training sets with
millions of samples. In practice, stochastic gradient descent [Goodfellow lan, 2016,
ch. 5] is often used, which estimates the gradient-based on one minibatch of samples
at a time. When this has been repeated for all mini-batches in the training dataset,
an epoch has been completed. Several variations have been proposed to improve
convergence [Goodfellow lan, 2016, ch. 8], e.g. gradual adjustment of learning rate
like RMSProp [Hinton et al., ] or AdaDelta [Zeiler, 2012], or adding momentum as in
Adam [Kingma and Ba, 2015].

With a good ground truth, a network of the correct size and a suitable learning
rate, the training loss should typically decay as illustrated with the solid line in
Figure 3.5.
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3. Machine learning fundamentals

Figure 3.6: Bottleneck architecture for image classification, exemplified with VGG16 [Si-
monyan and Zisserman, 2014]. Each white block consists of one max pooling layer, followed
by three convolutional layers of the same size and depth, with ReLu activations after each.
The size of the last convolutional layer in the feature extractor is 7 × 7 × 512. The decision
head (black) consists of a series of two fully connected layers with ReLu activations and an
output layer with softmax activation. The output is one label for the entire image.

Figure 3.7: Encoder-decoder architecture for segmentation, exemplified with SegNet [Badri-
narayanan et al., 2015]. The encoder is similar to a bottleneck network, while each block of
the decoder is a series of three convolutional layers followed by an upsampling layer. The
output is a per-pixel mask with class labels.

3.5 Deep network architectures

In image recognition, the task is to assign a class value to the content of the whole
input image. For this task one would typically use a so-called bottleneck architecture,
as illustrated in Figure 3.6 with the well-known VGG16 [Simonyan and Zisserman,
2014]. It starts with a high-resolution input with few channels, and through a stack
of convolutional layers and pooling gradually reduces the resolution and increases the
number of channels. The early layers typically represent simple large-scale features
like colour and edges, while the final layers can represent more complex features like
leaves, grass, fur, and eyes. The output of this feature extractor is fed into a decision
head, typically a series of fully connected layers followed by softmax activation, which
outputs probabilities of all the classes. Note that for this task, there is only one
output per image in the input batch.

In segmentation, on the other hand, the task is to assign a class value per pixel
in the input image, which gives a much richer output. The output could be a mask
separating different object classes in the image, as shown in Figure 3.7, or pixels
with plants vs. pixels with soil. This problem is typically solved with a so-called
encoder-decoder architecture, which uses a similar feature extractor as for image
recognition, but replaces the decision head with upsampling layers that increase the
resolution to produce the per-pixel output. This is illustrated in Figure 3.7 with the

26



Regularisation

well-known SegNet [Badrinarayanan et al., 2015] architecture.
One of the main shortcomings with the basic CNN architectures described above

is the loss of resolution for the deeper layers. This is why more recent architectures
like [He et al., 2015] and [Huang et al., 2017] implement different routing strategies
to combine information from earlier layers in the final decision, which has improved
the classification accuracy on ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [Russakovsky et al., 2015]. Although these architectures have more in-
tricate connections, the overall principle is still the same. Similarly, segmentation
architectures route the information from high-resolution early layers to increase the
precision on the borders of the segmentation. SegNet [Badrinarayanan et al., 2015]
transfers pooling indices to the decoder to improve the resolution. Later, more
intricate routing and multi-resolution pooling have been proposed in for instance
RefineNet [Lin et al., 2016] and Deeplab [Chen et al., 2017].

Another shortcoming of CNNs is the lack of (global) spatial information. The
convolutional filters save a lot of parameters by sharing weights, which makes them
spatial invariant. This is great for learning general visual features but makes it hard
for the network to make decisions based on location in the image, as discussed in [Liu
and Frank, ]. The fully connected layers do not have this weight sharing, but the 2D
structure is scrambled when the input to the fully connected layers is serialised. The
proposed solution in [Liu and Frank, ] is to explicitly encode 2D coordinates as two
extra channels for the input image and subsequent convolutional layers, giving the
network the possibility to use this information when learning the features.

3.6 Regularisation

Regularisation is an important concept in machine learning that is applied to prevent
overfitting. There are many different techniques, but the essence is making the
problem harder to learn.

A well-established technique in machine learning is to limit the magnitude of the
parameter by adding a penalty in the loss function [Hastie et al., 2009][Andrew Ng
et al., 2000]. To apply this to the weights W in a layer of a neural network, we add
the term λ‖W‖ to the loss. The regularisation strength λ is a hyperparameter, and
‖·‖ can be the L2 norm, L1 norm or a weighted combination. Within deep learning,
it is most common to use the L2 norm which puts more penalty on large weights, on
one or several of the fully connected layers. This is often called L2 regularisation.

A more recent technique introduced specifically for neural networks in [Srivastava
et al., 2014] is to restrict the number of active neurons with dropout. During training,
neurons and their connections are skipped with probability p. At test time, all neurons
are active. This gives the effect of ensemble learning with multiple smaller networks.
Dropout can be applied to one or more layers, and the dropout probability p is a
hyperparameter.

One of the most important hyperparameters in training neural networks, is the
epoch at which to stop the training to avoid overfitting. As mentioned earlier, the
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3. Machine learning fundamentals

main goal in machine learning is to minimise the generalisation error, not the training
error. As a proxy for the generalisation error, we compute the loss on a validation set,
which is not a part of the backpropagation, and stop the training when the validation
error starts rising again (i.e. the network is overfitting), as illustrated in Figure 3.5.
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Chapter 4

Machine learning in practice

The potential of learning-based vision goes beyond simply replacing a traditional
feature extractor with a neural network, but also comes with new challenges in terms
of data collection and explainability. Now that we have established the problem of
agri-robot guidance and covered the basics in machine learning, we will go a bit more
in depth on topics related to machine learning in practice; How to train with limited
data, how deep learning can be applied in robot guidance, and how deep neural
networks can be made more explainable.

4.1 Data-efficient learning

One of the main challenges with deep learning for real-world scenarios is the amount of
labelled data needed to make the training converge and generalise well for the problem
at hand. We use term data-efficient learning [Adadi, 2021] can involve efficiency in
number of samples, the amount and quality of labels, and label acquisition. This
includes for instance artificial creation of more data and/or labels augmentation,
transferring knowledge from data-rich domains like simulation or large-scale datasets
and using semi- or unsupervised learning.

4.1.1 Augmentation

A well-established technique for increasing the number of samples is by artificially
adding variation through augmentation. For the augmentation to be successful, it
must produce a different response in the convolutional filters. Typical augmentation
strategies for images are affine transformations (stretching, skewing and rotation),
added noise and colour jitter. Successful augmentation can prevent overfitting to
biases in the dataset.

4.1.2 Label quality

The amount of gradients per input image depends on the type of prediction task.
During back-propagation of the neural network, there will be K gradients per input
sample in a classification problem with K classes, while there is only one gradient
per input sample in regression. For image segmentation, the number of gradients per
image is w×h×K, where w×h is the size of the input image. The optimisation will
converge faster when more gradients are available, and thus segmentation requires
fewer training images than classification, and regression will require more. Therefore,
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4. Machine learning in practice

inaccurate or noisy segmentation labels can contain more information per image than
classification labels of higher quality.

4.1.3 Transfer learning

When training a problem with very limited data, it can be useful reuse weights
trained on larger datasets in the same domain through transfer learning or pre-
training. For image recognition with many object categories, it is common practice
to start with a network pre-trained on ImageNet [Russakovsky et al., 2015], which
contains images from common object categories, for instance dog and cat breeds. A
smaller application-specific dataset could be dog vs. cat classification 1. The idea is
to first train a model on the big established dataset, and then finetune on the small
application-specific dataset by training only the last layers while keeping the earlier
layers frozen. In this way, we can utilise general features trained on a big dataset,
and generalise better than by training only on the small dataset. If the problems are
very similar, but with different target labels, it can be sufficient to fine-tune the the
last layers that perform the final prediction. For more different problems, the last
convolutional layers may also need fine-tuning. For the dog and cat example, the
network trained on ImageNet has probably learned all the necessary features for dog
vs. cat classification by learning to separate dog and cat breeds in the big dataset,
and it should be sufficient to re-train the final fully-connected layers. The drawback
of this approach is that the network probably has a lot more capacity and features
than necessary for this simple problem. Additionally, the original network may have
overfitted to some specific features or biases in the original dataset to solve the tricky
problem with many dog breeds, which is probably not present in the new dataset.

4.1.4 Alternative supervision approaches

There are some alternative approaches to fully-supervised learning with hand-labelled
data.

Self-supervised learning is very broad class of methods that utilise relevant in-
formation or underlying structures to learn from unlabelled data. One example is
learning visual feature extractors from various pretext tasks, often reconstructing
some kind of perturbation, like predicting colour from grey scale [Zhang et al., 2016],
or estimating the location of patches randomly sampled from an image [Doersch et al.,
2015], and many more. The feature extractors trained on such pretext tasks can be
used as pre-training for downstream tasks like object detection.

Semi-supervised learning is a class of methods that learn from a mix of labelled
and unlabelled data. On such approach is called Pseudo-Label [Lee et al., 2013],
where the model is first trained on labelled data, then used to predict on unlabelled
data, and the most confident predictions is added to the dataset. [Beyer et al., 2019]

1https://www.kaggle.com/c/dogs-vs-cats/data
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Supervision strategies for agri-robot guidance

explore the combination self- and semi-supervised learning in combining pretext tasks
with a few labelled samples.

Data-efficient supervision is a currently a very active research topic in computer
vision, which we have only touched briefly upon here. Other relevant strategies include
reinforcement learning and unsupervised learning, which are both very different from
methods in the supervised paradigm.

4.2 Supervision strategies for agri-robot guidance

For practical applications, it is important to consider what supervision strategy is
best suited for solving the problem at hand. This is a somewhat underappreciated
topic in the literature, but a few related works that are relevant for the guidance of
(agri) robots are presented here.

4.2.1 Semantic segmentation

The most straight-forward way to apply deep learning in guidance for agri-robots is
to replace the segmentation step in the traditional pipeline for vision-based crop row
following outlined Section 2.2.3 with a neural network. Semantic segmentation with
CNNs has been successfully applied for detection of crops and weed in monitoring and
spraying applications [Potena et al., 2016, Milioto et al., 2018, Ma et al., 2019], and
has also been used for crop row following in tea plantations [Lin and Chen, 2019] and
strawberry fields [Ponnambalam et al., 2020]. However, such approaches require large
amounts of manually labelled segmentation masks, which is expensive and impractical
for agricultural applications and the wide range of variation and appearance change
discussed in Section 2.2. In other domains, like autonomous driving, large datasets for
semantic segmentation of urban environments has been established, which makes this
approach more feasible. To our knowledge, there is no established dataset relevant
for agri-robot guidance that is large enough to train and test CNNs.

4.2.2 Self-supervised learning

With a self-supervised learning strategy, labels are automatically generated from the
input data. For semantic segmentation, there are several different approaches for
automatic label generation, for instance using knowledge of the scene and camera
viewpoint [Zeng et al., 2017], other sensor modalities [Wendel and Underwood, 2016,
Zhou et al., 2012, Reina and Milella, 2012, Blas and Blanke, 2011], or correspondences
[Larsson et al., 2019]. [Zeng et al., 2017] automatically generate a big dataset with
segmentation labels for robot grasping, using knowledge of the setup and camera
viewpoint. In mobile robotics, it is more common to use other sensor modalities to
guide the training. [Wendel and Underwood, 2016] use a hyperspectral scanner to
automatically extract training data for weed classification with RGB camera. For
autonomous offroad driving applications, 3D sensors (e.g. stereo cameras or scanning
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lidars) have been used to initially identify and label ground and non-ground regions
in matching imagery [Zhou et al., 2012]. Similar approaches have also been applied
to the guidance of tractors in agricultural settings for the classification of driving
surfaces [Reina and Milella, 2012] and localisation of cut plant material for automatic
baling [Blas and Blanke, 2011]. These approaches all require an initial classification
of 3D sensor data in order to generate training labels for the visual classifier. In
Paper III, we propose a new approach for automatic label generation specifically for
crop row following, that generate approximate segmentation masks based on robot
position and camera projection.

4.2.3 End-to-end learning

Another approach is to train guidance end-to-end, i.e. learn steering commands
directly from input images. This eliminates the need for hand-labelled masks, but as
all the intermediate outputs are removed, it is less explainable than the segmentation
approach. There are several ways to obtain the ground truth steering commands in a
(semi) automatic manner, to avoid manual labelling entirely. Reinforcement learning
has seen great success in learning robot control in game settings, but the domain
gap to real-world scenarios can be challenging to bridge. [Sadeghi and Levine, 2016]
managed to transfer image-based drone flight from simulation to indoor environments
by use of heavy augmentations. Other approaches, like [Giusti et al., 2015, Loquercio
et al., 2018, Dumoulin et al., 2017], phrase guidance as an image recognition problem,
and learn steering angles in a fully supervised manner with an automated data
collection procedure. [Giusti et al., 2015] collected a trail dataset with a rig of three
cameras pointing straight, left and right. This setup automatically gives the ground
truth for the yaw angle of the camera. A bottleneck CNN is trained to predict one
of the three heading directions, and used for autonomous flight with a UAV along a
forest trail. In a similar manner, [Loquercio et al., 2018] collect images in an urban
environment with corresponding steering labels by recording the steering commands
of a car. To our knowledge, such end-to-end learning approaches has not been applied
to row following in agriculture in any other work. In Paper I we apply the approach
from [Giusti et al., 2015] to crop row following in agriculture, and extend the labelling
procedure to continuous angles through with virtual field-of-view extraction during
post-processing.

4.3 Explaining deep neural networks

The black-box nature of deep neural networks is another practical problem with
learning-based methods. When humans cannot understand the reason for the pre-
dictions, it is hard to debug or improve the system, and decisions may not be
trustworthy. Here are a few common issues that motivate research in explainability
of neural networks:
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“Clever Hans” predictions. Data collection can often introduce unintended cor-
relations that the neural network may use as a shortcut during training. [Ribeiro
et al., 2016a] established a classical example, where they intentionally trained a neural
network to use snow as the main feature for wolf vs. husky classification. Such errors
can be hard to identify in large dataset, so how do we know if the network has made
a too “clever” prediction?

Misclassification. When inspecting specific failure cases, it can be hard to tell
the reason for the erroneous classification. Is there a specific part or property of the
image that cause the error, and why does the model interpret it the wrong way?

Transfer learning is very common in practical applications with little data, but
it can be hard to tell whether the features of the existing model fits the new data,
especially when validation data is limited. Additionally, there might be artefacts or
biases brought over to the new dataset that are only present in the source dataset.

4.3.1 Direct inspection of CNNs

Although bottleneck CNNs are not as transparent as traditional methods, there are
several properties that can be used for debugging. Listing the softmax values instead
of the final classification decision gives some information about the certainty of the
prediction, but the values tend to be close to either 1 or 0 for the over-confident
behaviour of cross-entropy loss. Activation maps of different channels in for instance
the last convolutional layer, can be inspected as low-resolution heatmaps, giving an
indication of what triggers the different channels. However, with many channels
(512 in the case of VGG16), it can be hard to get any overall information from this.
Plotting the learned filter kernels is also an option, but is not very interpretable
beyond the first layers. The distribution of gradients during back-propagation can
also give some clues about the health of the training process, for instance to check
for exploding gradients or dead units.

Encoder-decoder networks with their per-pixel outputs are inherently more ex-
plainable than bottleneck networks. The softmax values or final prediction can be
inspected as an image directly, and can be used to inspect whether the network
performs worse in specific regions of the input image.

4.3.2 Visualisation methods

There is clearly a need for methods that can extract information about the inner
workings of the model and display it in a way that is more interpretable for humans.
One strategy is to explain the network’s decision by relating the attention of the
network back to the input image in form of a heatmap for visualisation. Many
different approaches have been proposed for generating such heatmaps, which all have
different properties. A summary of the main approaches with example visualisations
is shown in Table 4.1, and the methods are briefly described below.
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Explaining deep neural networks

One strategy for relating a classifiers decision to specific regions in the image
is to perform simple perturbations (e.g. occlusion) to the input [Zeiler and Fergus,
2014, Simonyan et al., 2014] and aggregate a heatmap per class based on the change
in the output. Similarly, more advanced methods for perturbation of the input image
has been proposed [Ribeiro et al., 2016b, Agarwal et al., 2019]. The drawback of
these methods is that the number of required forward passes is proportional to the
number of classes and resulting heatmap resolution.

Another category is gradient-based visualisation, which in its simplest form use
the partial derivatives of the class score with respect to every input pixel. Then it
visualises the absolute value as a saliency map, as proposed in [Simonyan et al., 2014].
This can be interpreted as a mapping of what pixels in the input image that need to
change the least to change the class score the most. The visualisation is usually very
high-frequent and noisy as seen in Table 4.1, and can therefore be hard to interpret.

Other visualisation methods use back-propagation to distribute the importance
from the network output back to the input. Guided Backpropagation [Springenberg
et al., 2015] conserve only positive gradients, and can therefore not show negative
evidence for a class in the input image. Layer-wise Relevance Propagation [Bach
et al., 2015] use a similar principle, but use a different rule for distributing the
importance, and can display both positive and negative evidence in the input image.
The visualisation can still be a bit noisy, but is more focused than gradient-based
methods. In [Lapuschkin et al., 2019], LRP is used to reveal “Clever Hans” predictions
and dataset bias in the commonly used Pascal VOC dataset.

The class activation mapping technique (CAM) was introduced in [Bolei Zhou
et al., 2016]. It requires a special architecture that feed globally average pooled
convolutional layers directly into softmax. In this way, more of the spatial information
was kept as late in the neural network as possible, such that the activations can be
visualised in the form of a heatmap. The CAM visualisations are well focused on
objects and easy to interpret, but comes at the expense of lower accuracy, and can
not be applied to existing networks without retraining.

Grad-CAM [Selvaraju et al., 2020] computes a set of neuron importance weights
from the class scores to the activation map of the last convolutional layer, which
is used to perform a weighted combination of forward activation maps. They show
that the weights computed in the backpropagation is the same as the learned feature
weights in CAM. Grad-CAM is therefore a generalisation of the CAM method and
has similar properties but a more convenient implementation.

All the methods mentioned above explain the whole network including the decision
head, and produce visualisations conditioned on one class label at a time. One
disadvantage with this, is that running the visualisation on multiple classes, for
instance both the correct class and the predicted one, requires multiple passes of the
method. You also need access to labels to know what class to propagate from. An
alternative approach is to visualise the features directly; Either to target multiple
classes at the same time, which can be useful for debugging misclassification, or to
reason about the properties of the features extractor alone, which can be useful if

35



4. Machine learning in practice

considering whether the features are transferable to another problem. This is one
of the main motivations for the new visualisation method we present in Paper IV,
called Principal Feature Visualisation (PFV). As seen in Table 4.1, our method can
highlight both the dog and the cat in one pass. In Paper V, we see that this enable us
to discover a bias in a dataset that would not have been detected with a visualisation
conditioned on a class label. On the other hand, the PFV method can only explain
features from the convolutional layers, and not the final decision. All-in-all, the
different methods complement each other and can be used for different purposes.

4.3.3 Evaluation of explanation methods

What is a good explanation? Visually pleasing explanations are not necessarily the
ones that contain the most information about the model. A good visualisation method
needs to explain properties of the model or dataset and relate it to the input image for
interpretation. There is a trade-off between interpretability and explanation quality,
and it is important to remember that the most visually pleasing explanations not
necessarily contain the most useful information.

Some evaluation procedures for visualisation methods have been proposed, for
instance in [Samek et al., 2017]. [Adebayo et al., 2018] propose a methodology with
series of randomisation tests, that can be used as simple sanity checks to verify
sensitivity to the model or dataset. The first test is to successively randomise the
weights of the model, and see if the visualisation changes. They find that many of the
gradient-based methods, for instance Guided Backpropagation [Springenberg et al.,
2015], rely too much on information in the input image, and are actually insensitive
to changes in the model. Another test is to randomise the labels of the training data.
If the visualisation does not respond to this perturbation, it cannot detect overfitting.
The results are repeated in Figure 4.1, were we see that the gradient-based method
in the first column shows a random response for the model trained on random labels,
which is the correct behaviour. Several other methods, for instance Guided Backprop
produce a seemingly reasonable explanation for a model trained on unreasonable
data. This is probably because the neural network has developed some kind of edge
detection features despite the random labels.
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Explaining deep neural networks

Figure 4.1: From [Adebayo et al., 2018]: Randomisation test for explanations of a model
trained on the CIFAR digit dataset. The visualisations highlight the pixels contributing to
the "0" label. The grid shows the visualisations for different explanation methods of a model
trained on correct labels (top row) vs. a model trained on random labels (bottom row).
Note that some methods, for instance Guided BackProp and Guided GradCAM produce an
apparently reasonable response also for the model trained on random labels. Best viewed in
colour.
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Chapter 5

Summary of papers

Learning-based methods have a great potential to enable low-cost vision-based guid-
ance for mobile robots, but also come with challenges in terms of transparency and
robustness. The work in this thesis seeks to answer the following research questions,
as introduced in Chapter 1: 1) How can modern learning-based methods best be
applied to crop-row following with agri-robots? 2) How can such methods be made
more explainable? 3) How can such methods be made more data-efficient? The
first two papers were related to question 1) and 3), and focused on investigating
the properties of an established data-efficient learning strategy for application to
crop row following. The lack of explainability of this approach led to a different
strategy in Paper III, where a more explainable network architecture with a new
supervision strategy for this task is proposed. Paper IV focuses on explainability for
learning-based computer vision in general, and a new method for feature visualisation
of neural networks is proposed. Finally, Paper V applies the visualisation method
from Paper IV to the agri-robot application and proposes a new network architecture
for row following that is both data-efficient and more explainable.

5.1 Paper I: End-to-end Learning for Autonomous
Navigation for Agricultural Robots

In this paper, we proposed using an end-to-end learning strategy to predict steering
angles for autonomous crop row following using only RGB image input, and presented
the preliminary results for this method implemented onboard an agri-robot operating
in a strawberry polytunnel.

The motivation behind this paper was to apply recent work in deep learning to
learn a general approach for row following directly from visual input. The chosen
end-to-end supervision strategy – i.e. learning steering commands directly from
input images – is very data-efficient as the labels are generated as a part of the data
collection process. The disadvantages are that there is no other output than the final
steering command, which makes it hard to debug, and it also requires a large amount
of training data. We applied an approach that was demonstrated on forest trails to
an agricultural setting and trained a standard bottleneck CNN to predict steering
angles based on a dataset with images labelled left/right/straight.

Initial tests in strawberry polytunnels showed promising results for networks that
were pre-trained on trail data and fine-tuned on polytunnel data. This indicated
that this could be a good approach, and the work was continued in Paper II. How-
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ever, experiments with existing visualisation methods gave ambiguous results, which
motivated the development of the new visualisation technique in Paper IV.

5.2 Paper II: End-to-end Learning for Autonomous Crop
Row-following

In this paper, we extended the work from Paper I, by implementing continuous angle
prediction and using a larger polytunnel dataset collected with our robot setup. The
motivation behind this paper was to further explore the role of pre-training and
improve the precision of the steering commands. We hypothesised that pre-training
on the established trails dataset would reduce the amount of application-specific
training data needed.

The two main findings in this paper were that 1) A bit surprisingly, pre-training
reduced the accuracy for the small dataset, and 2) Despite good results on the pure
classification tasks, the results on angular precision were not good enough for robot
guidance. This confirmed the disadvantage of training steering commands end-to-end;
it is hard to tell whether this result is due to a lack of generalisation of the visual
features, or if the issue lies in the decision head predicting the angle.

This motivated us to take a step back and train the visual features separately,
which led to the work on crop row segmentation in [Ponnambalam et al., 2020] and
Paper III, before returning to the end-to-end approach in Paper V.

5.3 Paper III: Robot-supervised Learning of Crop Row
Segmentation

In this paper, we propose a self-supervised learning strategy for vision-based row
following. We call it robot supervised, as we are using a supervision robot fully
equipped with RTK-GNSS to automatically generate segmentation masks to train a
neural network.

The main finding in this work was that the accuracy of the predicted segmentation
masks was higher than the automatically generated labels the neural network was
trained on. This meant that the network has learnt to ignore the noise introduced by
the automatic supervision approach. The result was successful crop row detection
through a more data-efficient approach than conventional segmentation labels, and
a network that is easier to interpret and debug than the end-to-end approach in
Paper II. However, it does require an additional processing step to estimate the row
following commands, which is addressed with a hybrid approach in Paper V.
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Paper IV: Principal Feature Visualisation in Convolutional Neural
Networks

5.4 Paper IV: Principal Feature Visualisation in
Convolutional Neural Networks

In this paper, we proposed a new visualisation method for convolutional neural
networks, called Principal Feature Visualisation (PFV). This method maps learned
features of a CNN back to the original image space, where principal directions in
feature space are represented as different colours in an RGB image. The motivation
was to develop a method that is simple to set up and execute during the forward
pass, produces a visualisation that is clearly localised in the input image, and shows
features that are easy to interpret.

In contrast to other methods, our visualisation shows the learned features of a
bottleneck network directly, independently of the decision head. We demonstrated
our method on two explanation use-cases, where we successfully identified missing
features in misclassified examples, and predict which classes will work after fine-tuning
on a new dataset.

While this paper focused on the explanation of image recognition tasks from the
computer vision domain, the method is directly applicable to the end-to-end row
following network in Paper I and Paper II, which we will come back to in Paper V.

5.5 Paper V: Applied learning for row-following with
agri-robots

In this paper, we suggest two techniques to improve the performance of learning-
based methods in practical applications like row-following. First, we apply our
visualisation method to make end-to-end learning from crop row following more
transparent, and then we unify the supervision approaches from the previous papers
to propose a new hybrid network architecture and supervision approach that learns
segmentation in parallel to steering commands. Addressing the issues from Paper I
and Paper II, the motivation was to apply deep learning in a way that is both more
transparent and more robust to biases and artefacts in the training data. By adding
an additional segmentation output to the end-to-end network, we enforce semantically
meaningful features, which makes it easier to control the training process and get
robust performance in practical applications with limited data.

This paper has three main contributions. First, we demonstrate the application
of the Principal Feature Visualisation (PFV) method “in-the-wild” for the first time,
leading to the discovery of a bias in a public dataset. Second, we propose a novel
hybrid network architecture and supervision approach for row following that is both
explainable, robust and data-efficient. We get good results on a strawberry field
dataset, with an average heading error of around 1◦. The network even performs well
with extremely little data and avoids the pitfall of a biased training set. Finally, we
validate our approach through open-loop trials with an agri-robot and demonstrate
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good performance in a realistic setting. We believe our solution can perform row-
following and enable autonomous driving.

5.6 Relevant papers not included in the dissertation

The candidate has co-authored two relevant publications that have not been included
in the thesis: In [Ponnambalam et al., 2020], the focus was on robot control based on
a CNN-based crop row segmentation, with the same platform and setting as Paper III,
but with manually annotated data. In [Dyrstad et al., 2019] we presented an approach
for learning robot bin-picking in simulation, which was successfully tested by picking
shiny parts from a bin with a real robot and 3D sensor. This is another direction of
data-efficient learning, which is more transferable for 3D data than the RGB images
used in the works of this thesis.

5.7 Scientific contribution

The scientific contributions of this thesis can be summarised in the three categories
related to the research questions:

Increased explainability has been achieved with the development of the novel
feature visualisation method in Paper IV, which provides explanations that are
complementary to existing methods, and has been successfully demonstrated both
on general image recognition tasks and more specifically for crop row following in
agriculture. Additionally, the hybrid approach for crop row following presented in
Paper V gave a network architecture that is inherently more explainable than the
end-to-end approach, and also demonstrated increased robustness.

Increased data-efficiency for learning-based crop row following has been
achieved with the new supervision approach presented in Paper III, which elim-
inated the need for hand-drawn labels in segmentation-based crop row following.
Additionally, the end-to-end learning approach was extended to provide labels with
continuous angles, which gives more variation in the training data. The ability
to efficiently label data with both segmentation masks and heading angles was an
important enabler for the hybrid learning approach in Paper V.

New insight in applications of learning-based methods in the field. This has
been achieved by considering the whole pipeline from field data collection to the final
prediction result. Supervision strategies have been tested on data from real robots
in the field, and successively improved in terms of data efficiency, robustness and
explainability in the first three papers, before arriving at the ultimate approach in
Paper V that is practical in terms of data collection, easier to debug, and more robust
than the original end-to-end approach.
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End-to-end Learning for Autonomous Navigation
for Agricultural Robots

Marianne Bakken1,2,∗, Richard Moore1 and Pål From2

Abstract— For robotic technology to be adopted within the
agricultural domain, there is a need for low-cost systems that
can be deployed autonomously across a wide variety of crop
types, environmental conditions, and planting methods, without
extensive re-engineering. We present an end-to-end learning
approach for row following in agriculture, that can be used for
navigation on lightweight robotic platforms. Building on recent
work on deep convolutional neural networks (DCNNs) and end-
to-end learning approaches, we propose to train our DCNN to
output control commands directly from RGB image input data,
using a large-scale forest trail dataset and then fine-tune on
small datasets from agricultural settings. For this purpose, we
recorded data for row-following from a strawberry polytunnel
and a sugar cane field. Preliminary evaluation on independent
test datasets show promising results on a domain not seen
during training. This indicates that our approach generalises
well across agricultural domains, and that the low-level features
obtained from the trail dataset are relevant for agricultural
applications. Future work includes data capture from different
applications and seasons to train and test on more data, and
verify the control approach on a real robot or drone.

I. INTRODUCTION

Automating agricultural practices through the use of
robots (i.e. agri-robots) is a key strategy for raising farm
productivity and achieving sustainable food production for
future generations. To maximise efficiency and to avoid
damaging crops, agri-robots must be able to navigate precisely
and reliably through crop plantations. However, modern
food production techniques have resulted in diverse growing
environments – from greenhouses and polytunnels to open
fields – presenting a significant technological challenge for
the development of generally useful agri-robots.

External localisation systems such as DGPS/RTK-GPS [1]
can provide precise position information for robots, but such
systems are expensive and require a network of base stations
to provide real-time correction data as well as a precise
map of crop locations. Visual-inertial navigation (V-INS) or
VI-SLAM systems do not rely on external hardware and
enable impressively accurate state estimation for lightweight
autonomous vehicles [2], but they also require a precise map
of crop locations and suffer from coordinate frame drift in
agricultural settings due to the typically long non-overlapping
trajectories and self-similar environments.

There is therefore great interest in developing local navi-
gation solutions that enable the robot to extract some degree
of understanding from the current scene in order to make
intelligent guidance decisions. Such approaches could be

*Corresponding author, marianne.bakken@sintef.no
1SINTEF Digital, Oslo, Norway
2 Norwegian University of Life Sciences (NMBU), Ås, Norway

Fig. 1: The mobile robot recording setup used to capture the
strawberry polytunnel dataset. A forward-facing, wide-angle
video camera (red circle) mounted above the robot was used
to capture images for offline training and testing. A DCNN
was trained to predict view orientation for autonomous row
following in a diverse set of agricultural scenes.

low-cost as they do not rely on external infrastructure or
precise maps, and the same technology could be flexibly
applied to diverse environments or other robotic platforms.
Our proposed method should be applicable to ground based
robots as well as aerial robots.

Existing local sensing approaches typically aim to segment
the scene into vegetation and non-vegetation classes based on
either 2D image data from RGB [3], [4] or NIR [5] cameras,
or 3D data from stereo systems [6] or scanning LIDAR [7].
The vehicle’s lateral offset from the preferred trajectory is
then computed by leveraging the typically linear layout of
crop plantations [6], [3], [4], [8]. However, 3D methods do
not perform well when crops are too sparse or too dense,
and 2D methods traditionally employ hand-crafted features,
or features that are specific for a particular environment, and
thus do not generalise well to other agricultural settings.

Here we build on recent work with deep convolutional
neural networks (DCNNs) to train optimised image features
for classification. In order to train environment-independent
features, the training dataset should comprise images from
very many different agricultural settings. To the best of our
knowledge, no such openly available general agricultural
dataset exists and collating and annotating such a dataset
would be costly, so instead we propose to leverage open trail-
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following datasets that contain mixed vegetation and trail
scenes [9]. Our hypothesis is that a network trained to detect
features present in the trail-following dataset could easily be
adapted for crop row following in agricultural settings and
should perform well over a wider variety of environments
than networks trained on a small number of agricultural
scenes. Furthermore, we propose to use an end-to-end learning
strategy, i.e. using one single neural network to predict high-
level control policies directly from sensor data. This follows
on from the work of [9] and [10], who showed that end-to-
end learning can be successfully employed to overcome the
problem of designing control policies for aerial platforms in
scenes with widely varying appearances. We will train our
DCNN to output control commands directly from RGB image
input data. This should enable reliable crop row following
over a wider variety of agricultural settings and with more
flexibility than traditional local navigation approaches.

Specifically, we propose to 1) use existing large-scale
datasets for trail following to train DCNNs for crop row
following; 2) use fine-tuning on smaller domain-specific
datasets to adapt the trained networks for use in agricultural
environments; and 3) investigate how the networks should
be trained to generalise as well as possible to diverse
agricultural settings without additional data capture. We
present a preliminary evaluation of our approach in two
different agricultural domains: strawberry polytunnels and
sugar cane fields. We also investigate visualisation techniques
to analyse the features and decision structures learned by the
networks.

II. RELATED WORK

In this section, we will focus on literature regarding
deep neural networks for robotic control based on RGB
cameras. This literature is often focused on aerial robots, but
is applicable to other mobile robot platforms as well.

Recently, there has been an increasing amount of work on
learning control policies directly from RGB images using deep
neural networks. Reinforcement learning in particular has
seen great success in game settings, but require an extremely
large number of training examples, which are usually not
possible to collect in real environments. Transfer of networks
trained purely on simulated data to real-world scenarios has
been successfully demonstrated by [11], showing image-based
autonomous indoor flight with a drone without using any
real images for training. AirSim [12] provides a simulation
environment specifically targeted for outdoor aerial platforms,
but there are very few simulation environments available.
With such diversity in environments and tasks, building a
full simulation environment for all agricultural applications
is infeasible.

Supervised learning approaches require fewer samples
compared to reinforcement learning, but the samples must be
labelled. The success of DCNNs in object recognition and
detection is due mainly to the massive amount of manually
labelled data in datasets like ImageNet [13] and Pascal VOC
[14]. Networks pre-trained on such datasets can often be
used directly as general feature extractors for domains that

are represented in the dataset (e.g. pedestrian detection for
Pascal VOC), but training DCNNs for other domains, such as
agriculture, requires large amounts of new data to be collected
and annotated, which is both time-consuming and expensive.

Recent work has shown promising results in supervised
end-to-end learning of high-level control for aerial robots [10].
However, for autonomous control of aerial robots it is often
not practical or possible to acquire large scale labelled datasets
in flight, thus [10] use a car driving dataset from Udacity1

to train a drone to follow roadways. This approach gives a
continuous output and can be taught a wide range of control
policies, but since it needs ground truth steering commands,
it requires an expert driver for data capture. A simpler data
collection approach was employed by [9], who collected
an extensive dataset for prediction of view orientation on
forest trails with a head-mounted three-camera rig, which
gave a built-in labelling of orientation (left/straight/right).
Based on this, they trained a view orientation classifier,
which was used to compute yaw control of a drone from
RGB images only. [15] developed this approach further by
experimenting with different network architectures and adding
lateral control, which showed improved performance and
indicated good generalisation capabilities within the trail
domain. This approach allows ground truth commands to be
easily generated during data capture, but is limited somewhat
by the type of steering commands that can be learned.

We expect that the IDSIA trail dataset2 from [9] better
captures typical agricultural features like vegetation and soil
than for instance the Udacity city driving dataset. Thus, we
select this dataset for pre-training our DCNN.

III. METHODOLOGY

Our approach uses a deep convolutional neural network
(DCNN) to learn steering angles from images labelled with
different viewpoints. We pre-train our DCNN using the
large-scale IDSIA trail dataset before fine-tuning the top
(classification) layers with our own smaller dataset recorded in
a strawberry polytunnel. We investigate several regularisation
techniques to improve the generalisation capability of the
trained network as much as possible prior to fine-tuning.

A. Network architecture

Our approach is based on the principles from the trail
following method in [9]. As a starting point, we use the
VGG16 [16] network architecture, a popular and well-tested
architecture that was also used in [15] for trail following. The
last fully-connected layer was modified to work with three
output classes and the input size was changed to 150x150.
An overview of the network architecture is shown in Fig. 2.

B. Datasets

1) Trail dataset: The IDSIA Swiss Alps trail dataset from
[9] consists of several kilometres of trail recordings. The
images are recorded with a rig of three cameras looking left,
straight and right, that makes up the ground truth labels for the

1Available at https://github.com/udacity/self-driving-car
2Available at http://people.idsia.ch/~giusti/forest/web/
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Fig. 2: Network architecture for VGG16 with dropout on
fully-connected layers and 3 output classes. Dropout layers
was added to enable experiments with regularisation, but not
used in the "original" version.

three viewpoint classes. The dataset contains different kinds
of trails, and also has some road sections. Most recordings
are from the same season, probably late autumn, and have
very little green vegetation. See Fig. 3 for example images.
As in [15], we used the folders 003, 008 and 010 for testing,
and the remainder for training.

2) Agricultural datasets: We recorded two new datasets
for row following in agriculture, with a recording approach
similar to that described for the IDSIA dataset. The first
dataset comprises a strawberry polytunnel, and was captured
using a mobile robot equipped with a Basler Ace camera and
Sunex 190 degree fisheye lens mounted on a pole to mimic a
drone’s perspective (Fig. 1). Video sequences were recorded
while driving straight along the strawberry rows in the tunnel,
by means of an autonomous control system not part of this
work. By using a wide-field-of-view camera instead of a
fixed rig of three cameras, we could extract virtual camera
views from any angle after the recordings were made. To
make it compatible with the IDSIA dataset and the 3-class
viewpoint classification, virtual camera views were extracted
with a field of view of 140 degrees and offsets of -27/0/27
degrees (similar to the GoPro rig described in [9]). Example
images from the dataset are shown in Fig. 3. The images
in the strawberry polytunnel dataset are quite self-similar,
despite the robot driving along two separate rows from both
directions. To make the test data as different as possible, the
recordings from the second row was reserved for the test
dataset.

The second agricultural dataset was recorded with a mobile
phone in a sugar cane field in Brazil. The videos were
recorded by walking straight along a row and holding the
camera in one of three different directions. Example images
are shown in Fig. 3.

C. Training procedures

1) Framework and setup: Our network was first trained
on the IDSIA dataset as described in [15] using the Keras
framework [17] with a Tensorflow backend. Hyperparameters
not stated in [15] were determined empirically. To avoid many
similar training images, every second image was sampled,
resulting in 7571 different images in the training set, prior to
augmentation. The folders in the IDSIA training set were split

Fig. 3: Example left, straight and right class images from
the different datasets: a) IDSIA (forest trails), b) Sylling
(strawberry polytunnels), c) Brazil (sugarcane fields). The
two agricultural datasets are very different; the strawberry
tunnels are very structured and self-similar, while the rows
in the sugar cane field are almost hidden in the tall grass.

2/7 for validation/training. We used built-in data augmentation
in Keras: random shear (0.2), zoom (0.2), horizontal flips,
rotation (10 degrees) and height shift (0.2). Transformations
that would change the class of the image, such as random
crops was omitted, and for the horizontal flip the left/right
labels was swapped. The network was trained with the Adam
optimiser [18] with categorical cross-entropy loss, a learning
rate of 7 · 10−5 and a batch size of 32 for 50 epochs. This
takes 3.5 hours on a TitanX GPU. Model checkpoints were
saved every 5th epoch, and the model with the best validation
accuracy was picked for further testing.

2) Regularisation: We experimented with three common
regularisation techniques during training: Early stopping,
weight decay, and dropout. Early stopping was implemented
by picking the model with the lowest loss after 50 training
epochs. The L2 parameter norm penalty, also known as weight
decay, was implemented through the kernel regulariser for
each layer in Keras. Dropout was implemented via the Keras
dropout layer. We experimented with different values for
learning rate and the hyperparameters of weight decay and
dropout during training. The most promising combination was
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weight decay with regularisation strength 0.001 and dropout
with probability 0.5 on the fully-connected layers only, trained
with a learning rate of 1 · 10−5.

3) Fine-tuning: fine-tuning was done by freezing all the
layers except the fully-connected layers on a model pre-
trained on the IDSIA dataset, and then running the training
procedure on the Sylling training set with a very low learning
rate (7 · 10−8). The training was run for 50 epochs, and
model checkpoints were saved such that we could pick the
final model from any time in the training process. Since the
dataset is small and we only train the top layers, this training
procedure is quite fast (50 epochs takes 22 minutes on a
TitanX GPU).

D. Visualisation of deep neural nets

The Picasso visualisation framework [19] was used to
obtain saliency maps for selected example images. Activation
maps are extracted directly from the layers in Keras.3

IV. EXPERIMENTAL RESULTS

In this section, we show preliminary quantitative results for
the view orientation classification for different datasets. As
the amount of agriculture-specific data is very limited, we first
investigate the performance and generalisation capabilities
of different regularisation strategies using a network trained
on the large-scale IDSIA trail dataset. We then compare our
network’s performance in agricultural settings before and
after fine-tuning with domain-specific data.

A. Regularisation

Training experiments with different regularisation ap-
proaches were performed with the IDSIA training set as
described in III-C.2. The two most promising models from the
training experiments was then evaluated on the IDSIA, Sylling,
and Brazil test datasets to investigate their generalisation
capabilities.

The results in the upper part of Table I show that the
original network implementation with no explicit fine-tuning
scores well on the IDSIA test set (about the same accuracy
as the one reported in [15]), but performs worse than random
guessing on the agriculture datasets. With any of the two
regularisation strategies, performance is reduced somewhat
on the IDSIA dataset but shows improved accuracy for
the agriculture datasets, although the error rates are still
unacceptably high. The confusion matrices in Fig. 4a–c reveal
that the classifier fails to recognise the straight class in the
two agriculture datasets. The IDSIA classification is biased
equally towards left and right, while the Brazil classification
is biased towards the right class.

As further discussed in Section V, visualisation indicates
that the network with weight decay and dropout has better
generalisation properties, and this was therefore chosen as a
basis for further experiments with fine-tuning.

3Visualised with a modified version of https://github.com/
philipperemy/keras-visualize-activations

TABLE I: Accuracy on different datasets. Upper part: Trained
on IDSIA dataset only, different regularisation strategies.
Lower part: Pre-trained on IDSIA, fine-tuned on Sylling.

Test accuracy [%]
IDSIA Sylling Brazil

Original (no explicit regularisation) 89.1 29.6 28.1
Early stopping 87.9 77.0 55.5
Weight decay and dropout on top layers 88.9 65.7 64.0
Fine-tuned on Sylling data 85.9 96.9 98.4

(a) IDSIA (b) Sylling (c) Brazil

(d) IDSIA (e) Sylling (f) Brazil

Fig. 4: Confusion matrices for prediction on different datasets
before (a–c) and after (d–f) fine-tuning, for the network with
weight decay and dropout on top layers. This shows that the
Sylling and Brazil classification fails on the straight class
before fine-tuning.

B. Fine-tuning

The accuracy on the test datasets before and after fine-
tuning is shown in the lower part of Table I, and the confusion
matrices are shown in Fig. 4d–f. As expected, we see a
decrease in performance for the IDSIA data after fine-tuning
with Sylling data, and increased performance for the Sylling
data. The Sylling test dataset is however quite similar to the
training dataset. It is therefore more interesting to look at
the result for the Brazil dataset, which was not seen during
training and comprises scenes very different to those of the
Sylling dataset. We observed that the test accuracy of the
Brazil dataset increased from 64% to 98.4% after fine-tuning
on Sylling data – a significant performance improvement on
an unseen domain.

V. DISCUSSION

Our approach shows promising classification results in our
initial tests with diverse agricultural data. In this section we
analyse our results using several visualisation techniques to
try and better understand the benefits and limitations of this
approach as well as the differences between regularisation
techniques and the effect of fine-tuning.
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Fig. 5: Saliency maps for example images and different
network versions. Upper part: regularisation a) original (no
explicit regularisation); b) early stopping; c) weight decay
and dropout on top layers. Lower part: i) before fine-tuning;
ii) after fine-tuning. Saliency maps indicate which parts of
an input image trigger a particular class the most – here we
illustrate the response for an example of the straight ahead
class.

A. Regularisation

In Table I, the original network (without explicit regulari-
sation) showed a clear tendency for overfitting on the IDSIA
training data, and while the two regularisation techniques
showed improved performance on the diverse test datasets,
it is difficult to judge generalisation ability based solely
on accuracy metrics. This is highlighted by the saliency
(Fig. 5) and activation (Fig. 6) maps for the three different
networks. As seen in the upper part of Fig. 5, the saliency
map for the original network shows a very specific and
localised response, which is still present for the early stopping
network. However, the network regularised with weight decay
and dropout shows broader and smoother responses with
distinguishable responses for trail and vegetation regions,
indicating features that might more robustly be transferred
to diverse environments. There is also a clear difference
in the activation maps (Fig. 6): the regularised networks,
especially that with weight decay and dropout, have more
activated layers, meaning that a larger portion of the network
is actually in use.

Both the saliency maps and the activation maps indicate
that the early stopping network has features that are less
developed and will be more prone to overfitting than the
weight decay and dropout network. It was therefore concluded
that the weight decay and dropout regularisation approach
was a better starting point for fine-tuning the network for
agricultural settings.

Fig. 6: Activations of 64 of the filters in Layer 2 of Block
3 in 2, during forward pass of one example trail image, for
different regularisation approaches: a) Original (no explicit
regularisation), b) Early stopping, c) weight decay and dropout
on top layers. (Contrast has been enhanced to help visibility.)

With proper regularisation, the performance of our network
on the Sylling and Brazil datasets improves to an accuracy of
around 66% (Table I). However, it is clear from studying the
confusion matrices (Fig. 4) that, although the left and right
classes perform well, the straight ahead class performs very
poorly. This is an interesting result and highlights the fact
that each class is learned independently by the network – i.e.
there is no logical relationship between the learned classes.
The particular features learned by the network to represent
the straight ahead class in the IDSIA trail dataset are not
well represented in the agricultural datasets. This could be
as a result of evident differences between the forest trail
and agricultural domains – namely that in the agricultural
datasets, the sky or tunnel ceiling is clearly visible in all cases
and provides little information on the location of the crop
row, whereas in the trail dataset the sky is often occluded
and the upper image regions contain background vegetation.
Features in the upper image region that may have been
strong indicators for the straight ahead class in the trail
dataset no longer provide useful input for the agricultural
data and hence, the network performs poorly for this class.
This explanation is supported by the saliency maps for the
regularised network when tested with agricultural data (Fig.
5), which show significant activations in the sky region prior
to fine-tuning.

Representing the guidance problem as a regression with
continuous steering angle should permit a more logical
relationship between outputs and avoid unexpected network
behaviour like that described above. Our data collection
setup, with wide-field-of-view camera and virtual viewpoints,
supports this approach, but the data collected in the IDSIA
trail dataset does not. We plan to collect additional datasets
to investigate this approach.

B. Fine-tuning

The network accuracy on agricultural test sets following
fine-tuning indicates that the spectrum of features learned
from the trail data is broad enough to encompass those
features present in the agricultural domain, verifying our
initial hypothesis. This also indicates that the feature detec-
tion/classification layers of our DCNN could be efficiently
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adapted to the agricultural domain with little new data, and
generalise well to diverse agricultural settings.

The changes made to the classification layers during fine-
tuning have altered the relative weights of the various features
used to distinguish between orientation classes. As discussed
above, there are some evident differences between the trail
data and agricultural data, and fine-tuning has made the
fully-connected layers more focused on detecting the rows
in the lower part of the image, since there are no relevant
features above the horizon. This observation applies also for
many other agricultural applications, and it will be interesting
to perform additional testing with different environmental
conditions and settings to investigate this further.

VI. CONCLUSIONS
We have presented an approach for learning row following

in agriculture, that can predict steering angles from RGB
images only, enabling lightweight autonomous navigation
for e.g. low-flying drones and lightweight agriculture robots.
We trained a deep neural network based on a large-scale
trail dataset, and fine-tuned on our own agriculture dataset,
showing promising results for an agricultural domain not
seen in training. Our preliminary results indicate that our
approach has the advantage of enabling a proficient, pre-
trained base network to be easily adapted to new domains
with little application-specific data. The adaptation is done
by fine-tuning a small part of the network, which gives a
more rapid test cycle than full training of a deep network,
and opens up for the possibility to adapt the system for new
applications or seasons on-site in the field.

VII. FUTURE WORK

It should be noted that the agricultural datasets used in
this paper are very small and can only give a preliminary
indication of the performance of this approach. More data
is needed for further training and testing of varying seasons
and applications.

To date, we have only evaluated classification performance
for our network, and not control policies. The control policy
used here is very simple – discrete yaw commands – which
results in jerky control patterns and can have difficulties
recovering from lateral offsets. This can be improved by
adding lateral control as in [15], which requires one more
camera in the recording setup. Alternatively, one could learn
steering commands directly as in [10], but this increases the
complexity of the recording step.

Our network was trained on settings with a single row, and
our agricultural test sets contained a single predominantly
visible row. For many agricultural settings, multiple rows
would be visible in each input image, which may confuse our
network. In future work we will investigate how the presence
of multiple crop rows impacts network performance and
whether this problem could be overcome by augmenting the
training datasets, or by utilising alternative network designs,
e.g. recurrent networks that might enable the robot to “lock
on” to the current row.

We also plan to perform tests on a real robot or drone in
an agricultural setting to verify the control performance.
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Abstract: For robotic technology to be adopted within the agricultural domain, there is a
need for low-cost systems that can be flexibly deployed across a wide variety of crop types,
environmental conditions, and planting methods, without extensive re-engineering. Here we
present an approach for predicting steering angles for an autonomous, crop row-following,
agri-robot using only RGB image input. Our approach employs a deep convolutional neural
network (DCNN) and an end-to-end learning strategy. We pre-train our network using existing
open datasets containing natural features and show that this approach can help to preserve
performance across diverse agricultural settings. We also present preliminary results from open-
loop field tests that demonstrate the feasibility and some of the limitations of this approach for
agri-robot guidance.

Keywords: Robot vision; Robot navigation; Machine learning; Agricultural robotics; Mobile
robots

1. INTRODUCTION

Automating agricultural practices through the use of
robots (i.e. agri-robots, Fig. 1) is a key strategy for im-
proving farm productivity and achieving sustainable food
production to meet the needs of future generations. How-
ever, modern food production techniques have resulted
in diverse growing environments – from greenhouses and
polytunnels to open fields (Fig. 2) – presenting a significant
technological challenge for the development of generally-
useful agri-robots.

In order for autonomous agri-robots to be a realistic and
cost-effective alternative for the end-user (i.e. farmers),
they must overcome the following challenges:

(1) Accurate navigation to maximise efficiency and avoid
damaging crops.

(2) Flexibility to support various environments, crop
types, and environmental conditions.

(3) Minimal setup and installation cost.
(4) Safe and reliable operation, including intelligent re-

sponse to unexpected conditions or events.

Accurate and flexible navigation can be achieved with
external localisation systems such as D-/RTK-GNSS (e.g.
Perez-Ruiz and Upadhyaya (2012)), but such systems
require a network of base stations to provide real-time
correction data as well as a precise map of crop locations
and are therefore expensive to install. Visual-inertial navi-
gation (V-INS) or visual- or lidar-based SLAM systems do
not rely on external hardware and have been demonstrated
on board agri-robots (e.g. Le et al. (2019)), but they also
require a precise map of crop locations and can suffer from
coordinate frame drift in agricultural settings due to the

? This work was funded by The Norwegian Research Council, grant
number 259869.

Fig. 1. The mobile robot recording setup: A forward-
facing, wide-angle video camera (red circle) mounted
above the robot was used to capture images for offline
training as well as online field tests. A DCNN was
trained to predict view orientation for autonomous
row following in agricultural environments.

typically long non-overlapping trajectories and self-similar
environments. To meet the above challenges, it is therefore
interesting to investigate local (i.e. onboard) navigation
solutions that provide direct guidance relative to crop
locations and have no external hardware dependencies.

Existing local sensing approaches typically aim to segment
the scene into vegetation and non-vegetation classes based
on either 2D image data from RGB (Bakker et al. (2008);
Jiang et al. (2010)) or NIR (Halmetschlager et al. (2014))
cameras, or 3D data from stereo systems (Kise et al.
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(2005)) or scanning LIDAR (Biber et al. (2012)). The vehi-
cle’s heading or lateral offset from the preferred trajectory
can then be computed by leveraging the typically linear
layout of crop plantations (Kise et al. (2005); Bakker et al.
(2008); Jiang et al. (2010); English et al. (2015)). However,
3D methods do not perform well when crops are too sparse
or too dense, and 2D methods traditionally employ hand-
crafted features, or features that are specific to a particular
crop type and/or cultivation method, and thus do not
generalise well to other agricultural settings.

Much recent work has shown that deep convolutional
networks (DCNNs) are able to learn optimised image
features for a wide range of classification and segmentation
tasks even in poorly structured scenes, so it is therefore
interesting to investigate whether DCNNs can enable more
general solutions for crop row following than traditional
approaches. However, DCNN-based approaches require
feature appearance variation to be captured at training
time, which means data capture and annotation is a time-
consuming and costly process.

Our hypothesis is that by pre-training a DCNN on avail-
able data sets with non-specific vegetation features, e.g.
forest trails (Giusti et al. (2015)), we can reduce the
amount and diversity of agricultural-specific training data
required and additionally improve the ability of the net-
work to generalise to other agricultural use cases. Our
preliminary work (Bakken et al. (2018)) has shown that
a network trained on forest trail data can be relatively
simply adapted for crop row following in various settings
by fine-tuning with a small amount of agricultural-specific
training data. Here we expand on this work to compare
the performance of our pre-trained and fine-tuned network
with a network trained fully on agricultural data to show
that our approach retains better generalisation capability.

Additionally, since our ultimate aim is to establish whether
this approach can be used successfully to provide guidance
for an autonomous agri-robot in diverse settings, we im-
plement our approach on board a test platform for field
testing. We propose to use an end-to-end learning strategy
to train our DCNN to output control commands for our
autonomous vehicle directly from RGB image input data,
following on from the work of Giusti et al. (2015) and
Loquercio et al. (2018), who showed that end-to-end learn-
ing can be successfully employed to overcome the problem
of designing control policies for autonomous platforms in
scenes with widely varying appearances. Here we present
preliminary results from initial open-loop field trials that
demonstrate the feasibility and some of the limitations of
our approach.

2. RELATED WORK

Recently, there has been an increasing amount of work on
learning control policies directly from RGB images using
deep neural networks. Reinforcement learning in particular
has seen great success in game settings, but requires
an extremely large number of training examples, which
are usually not possible to collect in real environments.
Transfer of networks trained purely on simulated data to
real-world scenarios has been successfully demonstrated
by Sadeghi and Levine (2016), but with such diversity

Fig. 2. Diverse agricultural scenes with crop rows (t-b, l-
r): sugarcane, apple, strawberry, broccoli. Rows are
often not easily identifiable and can change rapidly in
appearance – presenting a difficult challenge for au-
tonomous robots. We use the strawberry polytunnel
case as a controlled environment for initial testing,
but have designed our approach to generalise to other
agricultural scenes.

in environments and tasks, building a full simulation
environment for all agricultural applications is not feasible.

Supervised learning approaches require fewer samples
compared to reinforcement learning, but the samples must
be labelled and/or the networks pre-trained on datasets
such as ImageNet (Deng et al. (2009)) or Pascal VOC
(Everingham et al. (2010)). However, features from the
agricultural domain are not well represented by such
datasets and so large amounts of new data would need to
be collected and annotated, which is both time-consuming
and expensive.

Supervised end-to-end learning of high-level control poli-
cies directly from RGB input has shown great promise
in alleviating the difficulty of annotating training data
(e.g. guidance of aerial robots, Loquercio et al. (2018)).
However, for autonomous control of aerial robots it is often
not practical to acquire accurate ground truth labels for
data captured in flight, thus Loquercio et al. (2018) use
a car driving dataset from Udacity 1 to train a drone
to follow roadways. Their approach uses a network with
regression output layer that gives a continuous output and
can be taught a wide range of control policies, but requires
an expert driver for data capture. In a recent publication,
Kaufmann et al. (2018) trained a similar network for drone
racing by carrying a drone around a race course to collect
training data, which did not require expert steering, but
depended on additional sensors and an offline state estima-
tion for data labelling. A simpler data collection approach
was employed by Giusti et al. (2015), who collected an
extensive dataset for prediction of view orientation on
forest trails with a head-mounted three-camera rig, which
gave a built-in labelling of orientation (left/straight/right).
Based on this, they trained a view orientation classifier,
which was used to compute yaw control of a drone from
RGB images only. Smolyanskiy et al. (2017) developed this
approach further by experimenting with different network
architectures and adding lateral control, which showed
improved performance and indicated good generalisation

1 Available at https://github.com/udacity/self-driving-car
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capabilities within the trail domain. This approach allows
ground truth commands to be easily generated during data
capture, but is limited somewhat by the type of steering
commands that can be learned.

We expect that the IDSIA trail dataset 2 from Giusti et al.
(2015) better captures natural features such as vegetation
and soil than for instance the Udacity city driving dataset.
Thus, we select this dataset for pre-training our DCNN.

3. METHODOLOGY

We propose to apply the the principles from the trail fol-
lowing method of Giusti et al. (2015) to crop row-following
in agriculture, and use trail data for pre-training to reduce
the amount application-specific agricultural training data
needed. In our preliminary study (Bakken et al. (2018)),
this showed promising results on a very limited polytunnel
dataset. In this paper, we expand our dataset substantially
to polytunnels from several different locations and seasons.
We have also extended the label generation procedure and
the network architecture to work for regression, in order to
provide a continuous output angle. To assess our network’s
ability to generalise beyond one single location and set-
ting, controlled experiments are performed with networks
trained on differing amounts of polytunnel training data
and tested on locations not seen during training. We also
assess the performance of our approach for guidance of an
autonomous agri-robot with open-loop field tests.

3.1 Network architecture

Our approach is based on Giusti et al. (2015), using
the VGG network architecture (Simonyan and Zisser-
man (2014)) with three output classes and dropout on
fully-connected layers. We also implemented a regression
network based on this architecture, with one continuous
output value from the last layer instead of a three-class
output. An overview of our network architecture is shown
in Fig. 3.

Fig. 3. Network architecture for VGG16 with dropout on
fully-connected layers and 3 output classes. For the
regression version of the network, the output size is
one instead of three.

3.2 Datasets and label generation

Trail data set The IDSIA Swiss Alps trail data set
from Giusti et al. (2015) consists of several kilometres
of trail recordings. The images are recorded with a rig
of three cameras looking left, straight, and right that
2 Available at http://people.idsia.ch/~giusti/forest/web/

provides the ground truth labels for the three viewpoint
classes. The data contains different kinds of trails, and
also has some road sections. Most recordings are from the
same season, probably late autumn, and have very little
green vegetation. See Fig. 4 for example images. As in
Smolyanskiy et al. (2017), we used the folders 003, 008,
and 010 for testing (trails test), and the remainder for
training (trails training).

Agricultural datasets We recorded a new data set for
row following in strawberry polytunnels, with a recording
approach similar to that described for the trails data set.
The data was captured from five different polytunnels,
totalling 3 km of recordings at 5 fps. Our recording setup
was a Basler Ace camera with Sunex 190 degree field of
view (FoV) fisheye lens. For most recordings, this was
mounted approximately 2 m above ground level with a
downward tilt of 25 degrees. Some recordings were per-
formed with lower height and less tilt for more variation.
Video sequences were recorded travelling straight along the
centre of each row, either on board a mobile agricultural
robot (Fig. 1) or by hand.

The strawberry polytunnel dataset is divided into three
subsets for training and testing: single polytunnel consists
of data from one row within a single polytunnel at a single
point in the growth cycle; diverse polytunnels includes data
from other rows within the same tunnel as single polytun-
nel as well as three additional tunnels; and polytunnel test
consists of data from a separate location and season and
is used only for testing. For each tunnel, data has been
recorded in both directions. Example three-class images
from two of five different polytunnels are shown in Fig. 4.

Label generation By employing a wide-FoV camera in-
stead of a fixed rig of three cameras as in Giusti et al.
(2015), we are able to extract virtual camera views from
arbitrary angles after the recordings were made. This gives
much more flexibility than a fixed rig, and makes it possi-
ble to train a continuous regression output. Our procedure
for extracting virtual camera views was integrated directly
into the Keras image augmentation pipeline, such that
roll, pitch, and yaw angle offsets could be specified and
corresponding virtual views extracted directly at training
and test time. In our regression training setup, we specify a
fixed roll and pitch and three random yaw angles between
-27 and 27 degrees with a 140 degree FoV, per full-FoV
image. For classification, three fixed yaw angles of -27, 0
and 27 was used per full-FoV image.

3.3 Training procedures

Our network was pre-trained on the trails dataset with
additional regularisation, followed by fine-tuning the fully-
connected layers of the DCNN (Fig. 3) on our own poly-
tunnel data. A full description of the training setup as well
as experiments with hyperparameters and regularisation
is given in Bakken et al. (2018). For comparison, we also
performed training from scratch on polytunnel data only,
using the same setup as with the trails dataset, but with a
slightly smaller learning rate 1 · 10−6, until a loss plateau
was reached.

For our regression network, the loss function was changed
to mean-squared error. The weights in all other layers from
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Fig. 4. Example left, straight and right class images from
the different datasets: a) trails, and two different
tunnels from our strawberry polytunnel datasets: b)
single polytunnel and c) polytunnel test

the trails pre-training were kept (since the trails data has
only discrete labels), but the fine-tuning was run on our
own data with regression labels. The learning rate was
slightly lower than for the classification network, 4 · 10−7,
and the the training was run until a loss plateau was
reached.

3.4 Classification experiments

We compared the classification performance of our net-
work under two different training regimes:

(1) trained using only data from the single polytunnel set,
and

(2) pre-trained on the trails training dataset and then
fine-tuned using the single polytunnel dataset.

Both trained networks were then tested for classification
accuracy (against left/right/straight ground truth steering
angles) on two data sets (see section 3.2):

(1) the polytunnel test set, containing an unseen poly-
tunnel at a different phase in the growing cycle (sig-
nificantly different vegetation density) to that of the
training set, and

(2) the trails test set containing unseen forest trails.

The same experiments were repeated with training data
from the diverse polytunnels training set.

3.5 Preliminary field trials

Preliminary field trials were performed in a strawberry
tunnel similar to the polytunnel test set (not seen during
training) with the same robot and camera setup as for
data collection. We integrated our DCNN into a ROS
node that received a live image stream from the camera

and predicted steering angles in real-time. Our ROS node
executed on a laptop CPU on board the mobile robot
platform, with a rate of 9 Hz. During this preliminary
testing, we operated our system open loop and the robot
was steered manually at a speed of 0.4 m/s along a slalom
path between crop rows to allow qualitative performance
analysis on live data.

4. EXPERIMENTAL RESULTS

Here we present both quantitative results from offline anal-
ysis as well as qualitative results from online field testing.
We first compare the steering angle classification accuracy
of our network pre-trained on forest trail data and fine-
tuned on agricultural data with a network trained fully
on agricultural data. We then investigate the usefulness
of this approach for steering an autonomous robotic plat-
form performing crop row following, and compare discrete
classification network output with continuous regression
output.

4.1 Classification accuracy in diverse settings

The results from the classification experiments (described
in section 3.4) are summarised in Table 1.

Table 1. Classification accuracy for different
training regimes and test cases.

Training data set
Classification accuracy (%)
Polytunnel test Trails test

Single polytunnel 84.0 31.5

Trails + single polytunnel 78.5 85.7

Diverse polytunnels 99.5 48.1

Trails + diverse polytunnels 97.9 78.6

When trained using only data from the single polytunnel
set, our DCNN performed well in other polytunnel envi-
ronments, despite the unseen variation in tunnel appear-
ance, camera angle, and vegetation density. However, the
same trained network was not able to transfer at all to the
general vegetation scenes present in the trails test dataset.
On the other hand, by pre-training on the trails training
set and fine-tuning on single polytunnel data, we were
able to also achieve reasonable performance in all poly-
tunnel environments whilst preserving good performance
for general vegetation scenes. Increasing the diversity and
amount of polytunnel data using for training (diverse poly-
tunnels) enabled our DCNN to improve its classification
performance on the general vegetation scenes in the trails
test set, but still fell well short of the performance of the
network pre-trained on trails data. These results suggest
that the features learned by the network pre-trained on
trails data are more general than those learned by the
network trained only on a specific agricultural setting (sin-
gle polytunnel), and that this approach should therefore
generalise more readily to diverse agricultural settings.

4.2 Preliminary field trials

To test the robustness of our fine-tuned network to real
world conditions, we implemented our DCNN on board a
mobile robot (section 3.5) and drove it through the tunnels
found in the polytunnel test set, which were not presented
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Fig. 5. Snapshots from ROS visualisation video showing
predicted steering angle from a classification network
(top) and a regression network (bottom) as the robot
is turning left. The classification output does not re-
spond to the moderate angle in the middle image. The
regression output gives some response to moderate
angles, but underestimates both the moderate and the
large angle.

during training and included significant seasonal and other
differences. Quantitatively, the network fine-tuned on di-
verse polytunnels showed very good performance when
tested on the polytunnel test set, which contains only three
possible steering angles ([-27, 0, 27] degrees, as for the trail
data in Giusti et al. (2015)) (Table 1 lower). However,
qualitative analysis (Fig. 5) from field tests showed that
the sensitivity of the network to smaller steering angle
disturbances was not sufficient for autonomous crop row
following.

4.3 Regression for continuous steering

To address the poor sensitivity of our network, we re-
implemented the top-most layer in our network to give
single continuous output (section 3.1). When fine-tuned
on the diverse polytunnels training set and tested on the
unseen polytunnel test set, we achieved an RMSE of 5.8
degrees compared to ground truth viewing angles. Quali-
tative assessment of the field test data shows a much im-
proved sensitivity to steering angle disturbances compared
to the classification network, but the regression network
has a tendency to underestimate the viewing/steering an-
gle.

5. DISCUSSION

It is important for our use case that the agri-robot is
capable of adapting to a new environment with minimal
setup effort and cost. It is therefore not feasible to collect
training data across all locations, seasons, and conditions
in order to fine-tune the network for each new setting.
Our hypothesis for this work was that pre-training on a
general dataset containing a mix of appropriate features
would reduce the amount of training data needed from the
specific use case, and furthermore that generic agricultural
features could be obtained by pre-training on available
data sets containing general vegetation scenes, e.g. forest
trails.

5.1 Diverse agricultural settings

The overall classification accuracies for both the specific
agricultural setting (polytunnels) and more general setting
(forest trails), presented in Table 1, support our hypothesis
that features extracted from general vegetation scenes are
applicable for agricultural use cases and appear to be
more readily generalisable to diverse settings than those
obtained from a specific agricultural setting. However,
further research is required to prove or disprove our hy-
pothesis that pre-training on a general dataset reduces the
amount and/or diversity of training data required from the
particular use case. In our results presented here (Table 1),
the same quantity of polytunnel training data (single poly-
tunnel or diverse polytunnels) was used for both training of
the standalone network and fine-tuning of the pre-trained
network, and in fact the standalone network performed
better on the polytunnel test set. This is not surprising, as
training and testing on the same setting (although with
differences, see section 3.2) can lead to overfitting and
inflated performance measures, and perhaps indicates that
our polytunnel test could have contained more diversity
or perhaps that polytunnel environments contain enough
visual cues beyond those of the crops themselves that
seasonal variations are not as important.

In future work we plan on expanding our research to
more diverse agricultural settings with less structure (e.g.
Fig. 2). The benefit (or not) of pre-training on a general
setting should be more evident from these test cases.

5.2 Autonomous control

Our open-loop field trials reaffirm our conclusions from
the offline polytunnel tests: that viewing/steering angle
prediction performs well even for seasons and locations not
experienced during training. However, we also identified
some important limitations to our initial classification
approach, which to some extent has been alleviated by
changing to a regression output with continuous angle.
The precision of the steering angle is not yet satisfactory,
and some adjustments of the training setup are required
to improve this. Further field testing will be performed
to evaluate this simple yaw-angle based control policy.
A natural next step could be to consider adding lateral
control as in Smolyanskiy et al. (2017), which requires
at least an additional camera for the recording setup.
Alternatively, one could learn steering commands directly
as in Loquercio et al. (2018), but this increases the
complexity of recording training data. To ensure safe
and reliable operation for such an end-to-end training
approach, we will also investigate methods to recognise if
the current environment is outside its scope of operation,
and present a confidence measure along with the predicted
steering commands. For our test case, the robot is driving
at a very slow speed (0.4 m/s), and a processing rate
of 9 Hz is more than sufficient for closed-loop execution.
However, a GPU could be used for DCNN inference to
reduce processing time and accommodate faster driving
speeds in future applications.

6. CONCLUSIONS

We have presented an approach for predicting steering
angles for an autonomous, crop row-following, agri-robot
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using only RGB image input. Our approach employs a
deep convolutional neural network (DCNN) and an end-to-
end learning strategy to learn steering angles from images
labelled with different viewpoints. We leveraged existing
open datasets to pre-train our DCNN with naturalistic
features, which improved generalisation capabilities com-
pared to training from scratch on data from a specific
agricultural setting. Experiments on existing forest trail
datasets and our own datasets from an agricultural setting
have demonstrated the accuracy of our approach and its
ability to generalise to environments and seasonal con-
ditions not experienced during training. Our online field
testing on board an agri-robot operating in a strawberry
polytunnel demonstrated the feasibility of this approach
for autonomous robot guidance, but also revealed some
limitations for steering sensitivity, which will be addressed
in future work. Our approach promises a flexible alter-
native to traditional 2D- and 3D-based onboard guid-
ance schemes and with lower setup costs than external-
localisation solutions.

7. FUTURE WORK

Our continuing work will focus on investigating the factors
affecting the response of our network to seasonal and
environmental variations; investigating the performance of
our network on diverse agricultural settings; and imple-
mentation on board our autonomous agri-robot for closed-
loop field testing.
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Robot-supervised Learning of Crop Row Segmentation*

Marianne Bakken1,2, Vignesh Raja Ponnambalam1, Richard J. D. Moore2,
Jon Glenn Omholt Gjevestad1 and Pål Johan From1

Abstract— We propose an approach for robot-supervised
learning that automates label generation for semantic segmen-
tation with Convolutional Neural Networks (CNNs) for crop
row detection in a field. Using a training robot equipped with
RTK GNSS and RGB camera, we train a neural network that
can later be used for pure vision-based navigation. We test our
approach on an agri-robot in a strawberry field and successfully
train crop row segmentation without any hand-drawn image
labels. Our main finding is that the resulting segmentation
output of the CNN shows better performance than the noisy
labels it was trained on. Finally, we conduct open-loop field
trials with our agri-robot and show that row-following based
on the segmentation result is likely accurate enough for closed-
loop guidance. We conclude that automatically generating noisy
segmentation labels is a promising approach for vision-based
row following that can be quickly and easily adapted to new
scenes.

I. INTRODUCTION

Automating agricultural practices through the use of robots
(i.e. agri-robots, Fig. 1) is a key strategy for improving
farm productivity and achieving sustainable food production
to meet the needs of future generations. One of the basic
requirements for such robots is to be able to navigate
autonomously to and from their base station and along the
crop rows. Finding robust, fast, and cost-efficient navigation
solutions that can generalise across different field types is an
active research topic that can facilitate more wide-spread use
of agri-robots.

There is a wide range of sensing options for agri-robot
navigation, all with different strengths for different types
of fields. In open fields, real-time kinematic (RTK) GNSS
provides an accurate position for the robot but does not
inherently describe the location nor extent of the crops, thus
requiring additional setup effort and cost. Onboard sensors
such as scanning lidar or machine vision cameras enable
direct sensing of the the crops and structures surrounding the
robot. Lidar-based navigation has been shown to work well
in structured environments such as strawberry polytunnels
[1]. Vision-based crop row following using RGB images
is a well-established strategy, typically employing colour
(e.g. greenness) to segment crops from soil, followed by line
extraction to locate crop rows [2]. This has been demonstrated
to work well for several crop types, particularly where the
crop can be imaged from overhead and/or crop rows are well
delineated.
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Fig. 1. The Thorvald II agri-robot platform operating in a strawberry field
during data collection. We perform CNN-based segmentation to detect crop
rows for visual guidance and propose an automatic labelling strategy for
generating training data. During training, a mask representing crop locations
is projected onto the camera image using the pose of the robot, measured
with a dual-antenna RTK GNSS system. After training, CNN-based image
segmentation can be used to guide the robot along the crop rows, without
hand-drawn training labels.

Fig. 2. Example appearance variation in strawberry fields on a Norwegian
farm. From top left: Thin plants, lanes partly covered with hay, strong
shadows, crops with red leaves in autumn, clean lanes without offshoots and
lanes covered completely with green offshoots.

With large seasonal variations, as illustrated in Fig. 2 for
strawberry crops, greenness index is not always sufficient to
get a good separation of plants and lanes. By utilising the
recent advances in deep learning, it should be possible to learn
a wider variety of features from labelled data. Recent work [3],
[4] has shown promising results using Convolutional Neural
Networks (CNNs) for semantic segmentation in agricultural
scenes. However, hand-labelled training data covering all
possible seasonal variations and crop types does not scale
very well, and a neural network trained with insufficient
data does not necessarily produce features that are more
generalisable than traditional methods.

To overcome this limitation we have developed a robot-
supervised learning approach that enables us to successfully
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train a CNN for semantic segmentation of crop rows without
hand-labelled training images, as illustrated in Fig. 1. To
achieve this, we utilise knowledge of the sensor setup,
structure of the field, and robot pose during the training
phase to learn robust features with a CNN that can later be
reused on cheaper robot platforms without RTK GNSS, or
in sections of the field that do not have GNSS labelled rows.
We develop and test our method on data from a strawberry
field, but the approach can be applied to any type of field
with row-based geometry.

Our hypothesis is that the CNN will be able to learn
good features for crop row segmentation despite the reduced
accuracy at the borders of the automatically generated labels.
We test this hypothesis against hand-labelled real world data
and with open-loop field trials. Our test field had relatively
limited variation and distinct crop and lane appearances (Fig.
1), which allowed us to isolate and analyse the effect of
noisy labels. The ability to generate and label training data
on-the-fly will be critical for adapting our system to more
complex scenes (Fig. 2).

The main contributions of this paper are: 1) We present an
approach for automated generation of training labels for crop
row segmentation with a robot platform. 2) Evaluation on
real field data show that automatic labelling gives comparable
(or better) network performance to manual labelling. 3) Field
trials indicate that the segmentation result should be accurate
enough for autonomous robot guidance.

II. RELATED WORK

1) Vision-based crop row following: Vision-based crop
row following in agriculture has been a research topic for
decades, and several works have shown accurate and robust
row detection for various crop types. To get a good segmen-
tation separating plants from soil, these methods typically
involve some variation of greenness identification (e.g. Excess
Green Index (ExG) [5]), combined with thresholding and
morphological operations. Then, lines are typically estimated
in the segmented image with e.g. Hough Transform as in [2],
[6] or least squares fit as in [7], [8], [9] to extract paths that
can be used for guidance of autonomous robots.

While methods using greenness index as the main feature
can do a great job in many types of fields, there are several
situations where this approach may fail. The plants can
be covered by dirt after a rainfall, seasons may change
the spectral signature of the leaves, or the ground can be
covered in vegetation due to weed or offshoots (as in the
strawberry field in Fig. 2), to name just a few. There are a
few examples of classical methods that use other features,
like [10] who propose a learning-based method with Support
Vector Machines (SVM) to tackle plants covered in dirt after
a rainfall, or [11], who uses stereo cameras to create an
elevated crop row map. In any case, tailoring new features
for each new field/crop type or appearance does not scale
well.

2) Supervised learning: Supervised deep learning ap-
proaches, particularly CNNs for semantic segmentation,
have been successfully applied for vision-based guidance

of autonomous vehicles, and more recently also for off-
road and agricultural environments. Maturana et al. [12]
build their own off-road dataset with semantic labels and
elevation maps, and demonstrate autonomous driving on off-
road paths. Valada et al. [13] collect data with RGB, NIR
and depth from forest roads, and fuse these modalities in a
CNN for segmentation that shows good results in challenging
light conditions and appearance variations. Recently, learning-
based semantic segmentation has also been applied for row
following in agri-cultural environments, like tea plantations
[3], and our earlier work in strawberry fields [14]. These
works all relied on large quantities of manually-labelled
training images to learn the different semantic classes.

3) Self-supervised learning: One way to overcome the
need for manually labelled data is using a self-supervised
learning strategy, where labels are automatically generated
from the input data. There have been many different ap-
proaches to label generation for semantic segmentation,
for instance using knowledge of the scene and camera
viewpoint [15], other sensor modalities [16], [17], [18],
[19], or correspondences [20]. Zeng et al. [15] automatically
generate a big dataset with segmentation labels for robot
grasping, using knowledge of the setup and camera viewpoint.
They showed that features learned in a such a simplified setup
perform well in cluttered scenes as well. In mobile robotics,
it is more common to use other sensor modalities to guide
the training. [16] use a hyperspectral scanner to automatically
extract training data for weed classification with RGB camera.
For autonomous offroad driving applications, 3D sensors (e.g.
stereo cameras or scanning lidars) have been used to initially
identify and label ground and non-ground regions in matching
imagery [17]. Similar approaches have also been applied
to the guidance of tractors in agricultural settings for the
classification of driving surfaces [18] and localisation of cut
plant material for automatic baling [19]. These approaches
all require an initial classification of 3D sensor data in order
to generate training labels for the visual classifier.

4) End-to-end learning: Another option for avoiding
manual labelling is to perform training in an end-to-end
mannner, i.e. learn some form of control policy directly from
input images. Recently, both reinforcement learning [21]
and CNN-based approaches [22], [23], have been used for
vision-based guidance of mobile platforms. This eliminates
the need for detailed per-pixel image labels for training the
underlying networks, and simplifies the labelling process. In
our previous work, we have shown that this approach can be
applied to the guidance of agri-robots [24]. However, end-
to-end learning approaches do not separate the process of
learning visual features from classification or policy-learning,
and their black-box nature can make it hard to adapt the
system to new settings or perform troubleshooting. They
also require orders of magnitude more training images than
supervised semantic segmentation.

III. METHOD

The pipeline for visual crop row following in this paper
consists of three steps: 1) automatic generation of training
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Fig. 3. Illustration of the label projection principle. The (local) virtual field
model represent the crop rows as adjacent rectangles, specified by the lane
spacing w and the crop width wc with extent e. The model is projected to
the camera image to create semantic labels.

data through label projection, 2) training a CNN for crop row
segmentation, and 3) using the result for visual guidance by
estimating robot pose from the segmentation. In this section,
we focus on label projection, and briefly report the setup
of the CNN for segmentation and the procedure for row
following for completeness.

A. Automatic label generation

We use camera projection and position of the robot relative
to the crop rows to project approximate segmentation labels
to camera images, as illustrated in Fig. 3. To perform this
projection, we make a few assumptions about the geometry
of the field: 1) the crop rows are locally straight and parallel
with a fixed width, and 2) the ground is flat and parallel with
the robot coordinate frame.

We create a virtual field model using a set of rectangles
that are locally aligned with the crop rows. The position and
alignment of the virtual model is done in the following way:
We measure consecutive points on the crop row centreline
with a GNSS receiver, and position reference frame of the
virtual model Fmodel,i on each point. The orientation of the
rectangles is then aligned with the crop row using a local
linear fit of the centreline points.

Using position and heading information from GNSS on
the robot, we compute the lateral offset and the yaw angle
deviation compared to the local crop row centreline, which
is used to transform Fcam to the nearest model frame Fmodel,i.
Then the projection from pixel to ground point is computed
using the camera intrinsics and extrinsics.

The geometry of the virtual field model can be adjusted
as indicated in Fig. 3. Typically, the lane spacing is fixed,
as it corresponds to the wheel spacing of the tractor. The
crop width will vary and has to be measured separately for
different fields and seasons.

B. CNN for crop row segmentation

Based on the automatically generated labels, we train
a CNN for semantic segmentation that gives a per-pixel

classification of the input image with the labels of interest,
i.e., crops, lanes, and background in this case. The training
procedure and network architecture are straightforward and
well-tested, but are listed here for completeness. We use
the SegNet [25] implementation from the Keras Image
Segmentation Library [26] with ResNet50 [27] as the base
model, input size 360×640, output size 320×176 and 3
output classes. Training is performed with the following
setup: categorical cross-entropy loss ignoring the zero class,
adadelta as an optimiser, and regularisation through early
stopping (choosing the epoch with the lowest validation loss.)
The setup is identical for training with automatic and manual
labels, but the epoch for early stopping will vary.

For the experiments in this paper, we trained the models
on our field dataset as described in IV-A.3.

C. Crop row following

In order to compute steering commands for crop row
following, we must estimate the instantaneous heading angle
deviation and lateral offset of the robot from the centreline of
the crop row. To compute these parameters during open-loop
field trials, we used the following approach: 1) The image
region corresponding to the active crop row was isolated from
the predicted segmentation mask image (CNN output) using
a heuristic algorithm. 2) The set of pixels corresponding to
the midline of the extracted crop row blob was computed. 3)
The set of midline pixels was projected onto the ground plane
using the intrinsic and extrinsic calibration parameters for the
camera. 4) A robust linear fit was applied to the projected
midline points to compute the relative heading deviation and
lateral offset of the robot.

IV. EXPERIMENTAL EVALUATION

Our approach is tested with a robot in a real field to
evaluate how our approximations and possible inaccuracies
in positioning affect the label quality. We then train a CNN
based on automatically generated labels and compare the
segmentation results to a CNN trained on manual labels.
Finally, we evaluate whether our training and segmentation
approach is sufficiently accurate for row following with our
agri-robot.

A. Experimental setup

1) Robot and positioning system: We use the Thorvald
[28] agri-robot platform from Saga Robotics to collect images
and robot pose data in the field. The sensor setup with dual
GNSS antennas and camera is shown in Fig. 4.

The dual-antenna GNSS receiver AsteRx4 from Septentrio
is used to record accurate robot pose whilst driving in the field.
In the current setup, the GNSS receiver is equipped with two
AntCom G8Ant-3A4TB1-M1 antennas with approximately
0.5m separation, which provides high accuracy positions and
attitude information (i.e. true heading and roll) at 10Hz. With
RTK GNSS, the position accuracy is estimated to be 1.5 cm
horizontally and 3 cm vertically, and the heading accuracy
0.3° with this setup.
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Fig. 4. Our data collection setup showing RealSense camera (for this
study we use only RGB images) and dual GNSS antennas mounted on Saga
Robotics’ Thorvald platform.

Measurements of the static GNSS position of the crop row
centreline were obtained manually using a Topcon HIPER
SR geodetic GNSS RTK receiver.

Both GNSS receivers utilise corrections from the virtual
reference network CPOS from the Norwegian Mapping
Authority (NMA) to obtain integer fixed carrier phase RTK
GNSS solutions.

The robot has an Intel Realsense D345 camera mounted
at centre front, with a tilt of 22.5° downwards. The colour
images from the camera have a resolution of 640× 480 (we
do not use the depth data in this paper), and the framerate
was set to 6 fps. Images and position data are synchronised
through ROS [29] and data is recorded using rosbags.

2) Field data collection: Data collection was performed
in a strawberry field with an uneven and hilly terrain with
slightly curved rows. The lane spacing is at a fixed 1.25m, but
the width of the crops varies and was measured individually
for each row of the recordings.

During data capture, the robot was driven manually along
the rows in both directions, in two different patterns 1) straight
and centred (approximately) and 2) turning from side to side
in a slalom pattern. The driving speed was approximately
0.5m s−1.

3) Dataset: In order to assess the quality of the automat-
ically generated labels and validate the final segmentation
result, we required some reference manual image annotations.
The manual labelling was performed with the open-source
annotation tool Labelme [30] where labels are hand-drawn
with piecewise linear boundaries. Background, Crops, and
Lanes were assigned labels 0, 1, and 2. The pixels that fall
outside the 3 middle crop rows or 2 middle lanes in the image
were labelled as background.

For training and testing the CNN, we used images recorded
in a slalom pattern to get variation in angular and lateral offset.
The training set consists of 195 images from one row, recorded
in both directions and sampled at a 20 frames interval to
avoid too much overlap between frames. After annotation,
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Fig. 5. Examples of automatically generated labels for crop rows in
a strawberry field 1) without and 2) with GNSS positions. The label
visualisations show a) mask overlayed on image and b) false positives
and false negatives (blue) for the lane class.

TABLE I
MASK QUALITY OF AUTOMATIC LABELS, MEASURED IN MEAN IOU

COMPARED TO MANUAL LABELS.

IoU
Driving pattern With GNSS Without GNSS
Straight and centred 0.78 0.80
Slalom 0.79 0.51

20% of the data was reserved for validation during training
of the CNN, to choose hyper-parameters. The test set was
recorded in a different row from the same field that was not
seen during training, by driving in a similar pattern as for the
training set. There are 46 images in the test set. This dataset
does not cover all the variation shown in Fig. 2, but since
we focus on the performance of the labelling approach and
not the overall generalisation of the segmentation, we believe
it is sufficient for this purpose.

4) Evaluation metrics: For quantitative comparisons of
label masks and segmentation results, we use frequency-
weighted Intersection over Union (IoU) ignoring the back-
ground class.

B. Automatic labels

We compare our automatically generated labels with
manual hand-drawn labels for the two different driving
patterns described above. In addition to the standard setup
with GNSS data, we also generated a set of labels without
accounting for robot motion with GNSS data, i.e. assuming
perfect alignment with the crop row. We report the mean
IoU between manual and automatic masks in Table I, and
visualisation of a few examples is shown in Fig. 5. When
using GNSS data to project the labels, the same performance
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TABLE II
SEGMENTATION RESULTS ON TEST SET, MEASURED IN MEAN IOU

COMPARED TO MANUAL LABELS.

Labelling strategy IoU
Manual 0.93
Automatic with GNSS 0.88
Automatic without GNSS 0.53
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Fig. 6. Example segmentation results for models trained on 1) automatically
generated masks with GNSS positions and 2) manual (hand-drawn) labels
and. Visualisations show a) segmentation overlayed on image and b) false
positives (red) and false negatives (blue) for the lane class.

is achieved for the slalom driving pattern as the straight and
centred one.

C. Segmentation

The model for crop row segmentation was trained as
described in Section III-B on labels automatically generated
with GNSS data, from the same row as shown in Section IV-
B. For comparison, we also trained a model on the same
images, with manual labels. The model used for testing
was picked based on minimum validation error, which was
after 9 epochs for the automatic labels and 4 epochs for the
manual labels. The models were tested on the separate test
set, using manually labelled data as ground truth. The mean
IoU of the segmentation masks are reported in Table II, and
some example segmentation masks and their pixel-wise errors
displayed in Fig. 6.

From the numbers in Table II and the examples in Fig. 6,
we see that the model trained on automatic labels performs
quite well. The mean IoU of 0.88, is actually slightly higher
than the IoU of the masks it was trained on. When larger
patches are misplaced, as is the case for labels generated
without GNSS in sharp turns, the CNN is not able to learn
any general features, as expected.

TABLE III
OPEN-LOOP ROBOT TRIALS. MEAN ABSOLUTE ERROR (MAE) OF

ESTIMATED YAW AND POSITION COMPARED TO GNSS GROUND TRUTH.

Yaw angle MAE Lateral offset MAE
Manual labels 0.6° 4.8 cm
Automatic labels 0.1° 0.6 cm
Predicted masks 1.6° 4.6 cm

Fig. 7. Yaw angle deviation (top) and lateral offset (bottom) between robot
and crop row centreline for a slalom drive. Traces show the yaw/lateral offset
estimated from predicted masks (blue) as well as directly from manual labels
(green) and automatically generated labels (red), and also the GNSS-based
ground truth (black). Best viewed in colour.

D. Open-loop robot trials

We performed a series of open-loop field tests to validate
that our CNN trained with automatic labels produced pre-
dicted crop masks with accuracy sufficient for closed-loop
robot crop following. We compared the yaw angle deviation
and lateral offset estimated from the predicted masks (see
Section III-C) against the same values estimated from GNSS
ground truth.

Fig. 7 shows that both the yaw angle deviation and lateral
offset estimated from the segmentation results closely fol-
lowed the ground truth for the entire dataset. The mean errors
between estimated and ground truth values are summarised
in Table III. For comparison, yaw deviation and lateral offset
were also computed from the training labels, for both manual
and automatic labels. Estimating yaw and lateral offset from
the automatic labels was predictably closest to GNSS-derived
ground truth because the automatic labels were generated from
GNSS data. This result at least confirms that our approach
for extracting yaw angle and lateral offset from the mask
images is valid.
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V. DISCUSSION

1) Automatic labelling: Our results indicate that when ac-
counting for robot motions with GNSS, the overall alignment
of the automatically generated masks is equally good for
any driving pattern. However, the assumptions made when
generating the mask introduce some errors, and the three most
common are summarised in Fig. 8. The first column shows a
lateral bias in predicted masks, possibly due to uncorrected
roll angle of robot w.r.t. ground plane due to uneven track
depths. The second shows a section where the height and
width of the crop row is larger than the value estimated at the
beginning of the row. In the third, there is a dent in the crop
row boundary, that is not captured by straight boundaries
of the projected mask. The first issue could be reduced by
computing a full 6-DOF pose of the robot, while the other
two are expected due to the limitation of the rectangular
fixed-size field mask.

2) Segmentation: The reported IoU values for the final
segmentation actually showed better performance than the
automatically generated labels it was trained on, indicating
that the neural network was able to learn the general
appearance of the classes despite noisy labels along the
boundaries. This is probably because of the large amount of
good pixel labels per image, which dominate the total loss
during training. Closer inspection of the segmentation masks
reveal some issues, as shown in Fig. 9. The first two cases
show under- and over-estimation of the crop row width, which
may arise from the label errors discussed above. As long as
this is consistent within each image, it does not introduce
any shift for the row following. For the third case, the errors
are mostly due to the fact that the segmentation is more
fine-grained than the simplified ground truth, which does not
capture the detailed curves around the plants.

Finally, it should be noted that the segmentation results
reported in this article pertain to a limited test set that does
not encompass a large variety of crops or seasonal changes
in appearance. However, we believe that this is sufficient for
exploring the effect of training with inaccurate segmentation
boundaries. The overall performance of the final segmentation
and row following system needs to be further evaluated on
more data and different crop types, which will be addressed
in future work.

Overall, these results indicate that our proposed auto-
labelling approach produces guidance information that should
be of sufficient accuracy for future closed-loop crop following
trials with our agri-robot platform.

VI. CONCLUSIONS

In this paper, we have proposed a new approach for
automated labelling for crop row segmentation, using GNSS
data from an agri-robot in the field. As expected, the
simplified mask introduces some labelling errors near the
class boundaries, however the resulting segmentation output
of the CNN showed slightly better performance than the noisy
labels it was trained on. This indicates that the neural network
was able to learn general features despite inaccuracies in the
labelled crop regions. Our open-loop field trials indicate that
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Fig. 8. Three example failure cases for automatically generated masks
with GNSS positions. From left: 1) lateral bias in predicted masks; and 2)
variation in crop row height and width unaccounted for by the rectangular
crop labels; and 3) detail of rough crop boundaries not captured by straight
label boundaries. Best viewed in colour.
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Fig. 9. Three example failure cases for segmentation with model trained
on automatically generated masks. From left: 1) and 2) under- and over-
estimation of crop row width; and 3) the simplified ground truth does
not follow detailed curves around the plants. For reference, segmentation
result for model trained with manual labels is also shown. The different
visualisations are described in Fig. 6. Best viewed in colour.

the segmentation accuracy is sufficient for row-based guidance
of an agri-robot.

We conclude that training with labels that are generated
automatically but noisily is a promising approach for quickly
and easily adapting a vision-based row following robot to
seasonal variations and new crops or fields on-the-go. In
future work we will test our approach on a broader dataset
to investigate its capabilities for generalisation.
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Abstract. We introduce a new visualisation technique for CNNs called
Principal Feature Visualisation (PFV). It uses a single forward pass of the
original network to map principal features from the final convolutional
layer to the original image space as RGB channels. By working on a batch
of images we can extract contrasting features, not just the most dominant
ones with respect to the classification. This allows us to differentiate
between several features in one image in an unsupervised manner. This
enables us to assess the feasibility of transfer learning and to debug a
pre-trained classifier by localising misleading or missing features.

Keywords: Visual explanations, deep neural networks, interpretability,
principal component analysis, explainable AI

1 Introduction

Deep convolutional neural networks (CNNs) have had a significant impact on
performance of computer vision systems. Initially they were used for image clas-
sification, but recently these methods have been used for pixel-level image seg-
mentation as well. Segmentation methods are able to capture more information,
but require significantly more expensive labelling of training data. Moreover,
classification (bottleneck) networks are still used for many applications where
the problem can’t be formulated as a segmentation task or pixel-wise labelling
is too expensive.

One of the main issues with bottleneck networks is that they provide no visual
output, that is, it is not possible to know what part of the image contributed
to the decision. As a consequence, there is a demand for methods that can help
visualise or explain the decision-making process of such networks and make it
understandable for humans.

A range of visualisation and explanation methods have been proposed. Class
Activation Mapping, e.g. [10], is a computationally efficient way to show the
support of a class in the input image, but the resulting heatmap is quite coarse.

? Funded by The Norwegian Research Council, grant no. 259869
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Gradient-based methods like [3] give a more localised response, but require back-
propagation through the whole network, and is very sensitive to edges and noise
in the input image.

All these methods operate in a supervised manner on one category or feature
at a time. In contrast, our method is unsupervised and visualise several categories
or features in one pass. It can be applied directly to any bottleneck network
without any additional instrumentation.

Our approach provides a visualisation that maps the principal contrasting
features of a batch of images to the original image space in a single forward pass
of the network. We target bottleneck networks, such as image classifiers, and
use a singular value decomposition on the feature map of the layer we wish to
visualise, e.g., the final convolutional layer, to extract the principal contrasting
features for a batch of images. These features are then interpolated back to the
original image space, and the activation maps of the earlier layers are used to
weight the resulting feature visualisation. An overview of the method is shown
in Fig. 1.

‘CAT’ 

Convolution  

and Pooling 

Fully connected 

Sum channels 

Interpolate 

Activation map 

Decomposition SVD 

Interpolate 

Fig. 1. Overview of our Principal Feature Visualisation (PFV)method.

The main advantages of our method are:

1. Contrast: Per-pixel visualisation of the principal contrasting features.

2. Lightweight: Requires a single forward pass of the original unmodified net-
work, using only intermediate feature maps.

3. Easy to interpret: suppresses non-relevant features.

4. Unsupervised: No additional input or prior knowledge about image classes
is required.

82



Principal Feature Visualisation in Convolutional Neural Networks 3

We show how the advantages of the method allow it to be used as a tool for
debugging misclassification and assessing the feasibility of transfer learning in
Section 5.

Our code is publicly available at https://github.com/SINTEF/PFV.

2 Related Work

Several categories of methods to interpret CNNs have been proposed. We focus
on the methods that provide a visual human-understandable representation, in
particular methods that relate the attention of the network back to the original
image space in the form of masks or heatmaps.

One way of attributing classifier decision to location in the input is to perform
simple perturbations (e.g. occlusion) to the input [16,13] and make a heatmap
per class based on change in the output. Similarly, more advanced methods for
perturbation of the input image has been proposed [9,2]. The drawback of these
methods is that the number of required forward passes is proportional to the
number of classes and resulting heatmap resolution.

Other methods focus on localisation of semantically meaningful concepts in
the input. For instance by extracting and clustering superpixels, and then com-
pute the saliency as a ranking [7] over these extracted “concepts” [6]. Network
dissection is another direction [4], where the response in network hidden units
(convolutional layers) are scored according to a predefined set of visual concepts.

Gradient-based visualisation is a group of methods that provide more lo-
calised responses and are widely cited in literature. The simplest form of this
is to compute the partial derivatives of the output with respect to every input
pixel [13]. Several additions to this principle, for instance DeepLIFT [12], Guided
Backpropagation [15] and Layer-wise Relevance Propagation (LRP) [3], has im-
proved the localisation and visual appeal. However, as showed through simple
sanity checks in [1], many of these methods rely too much on information from
the input image, and are actually insensitive to changes in the model. Addition-
ally, they can require a lot of instrumentation, such as special types of layers
and separate training of hyperparameters.

Class Activation Mapping provides a direct mapping from the class score to
the activations from the forward pass of a CNN. The original work in [5] required
a special network architecture, but Grad-CAM [10] provided a more general way
to compute the mapping by backpropagation from the class score to the last
convolutional layer (not all the way back to the inputs as pure gradient-based
methods). Grad-CAM passes the sanity checks in [1], but gives a less localised
response than gradient-based methods, and still requires backpropagation from
each class to produce responses from multiple classes or objects. Our approach
use the activations from the forward pass in a similar manner as Grad-CAM,
but rather than computing a mapping through backpropagation, we do a simple
unsupervised learning during the forward pass.

Some methods include counter-evidence to give a richer explanation. Grad-
CAM and LRP for instance, suggest using negative gradients in addition to the
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positive ones to show evidence against a class. In [17], a top-down attention
propagation strategy is proposed, that performs backpropagation of both posi-
tive and negative activations to create a contrasting visualisation. Our method
provides an inherent contrast, and does not need to treat this specifically.

There are also several methods that apply clustering or spectral techniques
for model explanation. One such method [8] applies spectral clustering on a set
of relevance maps computed with LRP, and performs eigengap analysis and t-
SNE visualisation to identify typical prediction strategies. This requires several
steps of processing, and is applied on one class at a time. Another work [11] uses
Eigenspectrum analysis of the feature maps in neural networks to optimise neural
architectures and understand the dynamics of network training. Our approach
uses spectral information in a similar manner to these approaches, but to our
knowledge is the first one to project this type of information back to image space
in one pass.

Compared to existing explanation methods, we aim for an approach that is
simple to execute, that depends on activations from the network itself rather
than edges in the input image, and can highlight the contrast between several
features and classes in one pass.

3 Principal Feature Visualisation

3.1 Method description

Our goal is to obtain a low-dimensional representation of the feature space of
feed-forward bottleneck networks which can be mapped to the original image
space. Such a visualisation should be achieved in an efficient manner by using a
single forward pass of the network, without any additional instrumentation.

Principal component analysis (PCA) projects a signal onto a set of linearly
uncorrelated variables (principal components) ranked by the amount of vari-
ance explained in the original signal. Conveniently, the projection of features
onto these components introduces an implicit measure of contrast, due to the
orthogonality of the components.

In brief, our method decomposes a feature map into its principal contrasting
features for a batch of images. This is accomplished by extracting principal
components through singular value decomposition. The decomposed feature map
is then interpolated back to the original image space, where we use the activation
maps in the preceding layers as spatial weighting. An overview of the method is
shown in Fig. 1, and we describe it in detail below.

Consider a CNN with N convolution and pooling layers. For each layer l a
feature map Fl is an nB × nc,l × nx,l × ny,l matrix, where nB is the number
of images passed through the layer (batch size), nc,l number of channels and
nx,l, ny,l is the spatial size of that layer. We denote by (nx,0, ny,0) the size of
original input images.

Suppose we want to visualise the last convolutional layer N . Our method
proceeds as follows. First, for each intermediate Fl we calculate activation maps
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for each image in batch

Ab
l (i, j) =

nc,l∑

c=1

Fl(b, c, i, j), b ∈ {1, . . . , nB} (1)

We then compute the total activation map Ab for each batch image as a sum
of upsampled activation maps for each layer. That is

Ab =

N−1∑

l=1

P(Ab
l ;nx,0, ny,0), (2)

where P(Ab
l ;nx,0, ny,0) denotes upsampling of Ab

l back to original input image
size.

Now consider the feature map FN of the final layer. Our approach is to use
PCA to decompose the features for visualisation. First, we reshape FN to a
nc,N × (nB · nx,N · ny,N ) matrix. In this way we treat each per-pixel channel
response as a separate observation. We denote this reshaped matrix as F ′ and
centre it by subtracting mean values:

F ′ = F ′ − F̄ ′ (3)

Then we find the principal feature responses by decomposing F ′ using sin-
gular value decomposition as

F ′ = USV T , (4)

where S is a diagonal matrix containing the singular values and U is the decom-
position of F ′ into the space described by the eigenvectors V .

The principal components are then the sorted columns of the following matrix

FPCA = US = [d1 . . . dr] (5)

For visualisation convenience, we choose a subset of FPCA columns {d1, . . . ,dnd
}.

For the rest of the paper we assume nd = 3, which allows us to visualise FN by
mapping d1,d2,d3 to red, green and blue channels. We denote by DN a matrix
consisting of these columns

DN = [d1 d2 d3] (6)

By reshaping DN back to nB × 3×nx,N ×ny,N size and treating each batch
image as a separate Db

N we can upsample Db
N back to the original size (nx,0, ny,0).

We use the activation map Ab to weight the upsampled Db
N and normalise the

result as follows

V b = normalise
(
Ab ◦ P(Db

N ;nx,0, ny,0)
)
, (7)

where ◦ is an element-wise product and P is upsampling operator. Note that the
colours in the final images V b are relative to the processed batch.
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input image activation map (Ab) unweighted V b V b V b
h

Fig. 2. Variations of our Principal Feature Visualisation method applied on a pre-
trained bottleneck CNN (VGG16) and a batch of dog and cat images. The activation
map Ab is used to weight the feature map. Colours represent the strongest principal
features of the batch and their location in image space. Best viewed in colour.

3.2 VGG Example

We illustrate the properties of our method with a simple example of a few dog
and cat images and a VGG16 network [14] pre-trained on ImageNet.

First, we show the final visualisation V b together with two intermediate steps:
the activation maps Ab, and unweighted V b from upsampling directly without
weighting. V b was computed with a forward pass on a batch of six images of dogs
and cats. The intermediate activation maps Ab

l were extracted before each max
pool layer, and the feature map of the final layer, FN , was extracted before the
last max pool layer. We used bilinear interpolation for upsampling. The results
are shown in Fig. 2. For this batch, the principal feature maps assign different
colour channels to dogs, cats and background. Studying the intermediate steps,
we see that the principal feature map without weighting shows more response
from the channel in the background. The weighting with earlier activation maps
thus enhances the strongest features, while the principal components provides
contrast between different features.

Second, we illustrate how the visualisation depends on the composition of
the input batch. Fig. 3 shows our method applied on different single-image input
batches. The colours now represent different features within that image only. For
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input image batch size = 1 untrained CNN

Fig. 3. Batch size illustration and sanity check with untrained network. Second column
shows the visualisation of single-image input batches. The colours now represent differ-
ent high-level features like ears and nose rather than the class-level features in Fig. 2.
Third column shows a simple sanity check: the visualisation of an untrained network
of randomly initialised weights. The result is completely different, as expected. Best
viewed in colour.

the image with two objects, there is still some class-related contrast. This brief
example indicates that batch composition can be used deliberately as a tool to
control the contrast in the visualisation and tailor it to any application. More
examples of this are shown in Section 5.2 and supplementary material.

In order to be useful for model debugging, a visualisation method should be
sensitive to the model parameters. We perform a simple parameter randomisa-
tion test as suggested in [1], by running our method on a randomly initialised
untrained version of the network. As seen in Fig. 3, the resulting visualisation
of the random model is visually very different from the pre-trained one. This
indicates model sensitivity in our visualisation, which can be used for debugging
the training process.

4 Comparison with other methods

We compare our method (PFV) with Grad-CAM [10] and Contrastive Excitation
Backprop (c-EBP) [17] on VGG16 pre-trained on ImageNet. We use a batch
of images that is not included in ImageNet, but contains objects of ImageNet
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categories. A few examples are shown in Fig. 4, where we have used the top-3
predicted classes as targets for Grad-CAM and c-EBP.

Grad-CAM and c-EBP are supervised methods based on backpropagation,
that generate a heatmap conditioned on the predicted class. Consequently, these
methods highlight evidence for a particular class, and suppress sources that do
not contribute to the decision. Contrastive EBP approximates the probability
that a given image pixel contribute positively or negatively to the decision.
When the target classes are unknown and we simply specify them as the top-k
predictions, these methods require a potentially large number of backward passes
to describe the feature diversity in the image.

In contrast, our PFV is an unsupervised method calculated based on a sin-
gle forward pass, that highlights the principal contrasting features in a batch of
images. As our method is based on principal components which form an orthog-
onal basis where one component cannot explain another, it focuses on feature
variance instead of evidence for a decision. The colours of PFV represent differ-
ent features, with no direct connection to the final classification. However, by
performing PFV on a batch of images, e.g. the three images in Fig. 4, colours are
consistent across the batch and show which objects that have similar features.

Kuvasz
(0.31)

Lynx (0.70)

G. pyrenees
(0.56)

G. retriever
(0.24)

Tiger cat
(0.16)

Washer
(0.11)

Grad-CAM

G. pyreness
(0.19)

Tabby
(0.06)

L. retriever
(0.06)

Kuvasz

Lynx

G. pyrenees

Constrastive
G. retriever

Contrastive
Tiger cat

Contrastive
Washer

Excitation backprop

Contrastive
G. pyreness

Contrastive
Tabby

Contrastive
L. retriever

Ours (PFV)

Fig. 4. Comparison of GradCAM, Constrastive Excitation Backprop (c-EBP) and PFV
on VGG16 pre-trained on ImageNet. Grad-CAM and c-EBP results are shown for the
top-3 predicted classes. PFV results is for a batch of the three images shown. Colours
represent heatmaps for Grad-CAM and c-EBP, and principal features for PFV. Best
viewed in colour.
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5 Applications

In this section we apply our method to two use-cases: debugging misclassified
examples by localising misleading and missing features in the input image; and
ad hoc prediction of the success of transfer learning with a pre-trained network.

5.1 Debugging classification errors

When a network fails to classify an image correctly, it can be hard to know what
part of the image is to blame. We show how our method can be used to identify
misleading or missing features and their location in the image by comparing
principal feature maps of incorrectly and correctly classified samples.

To do this, we apply PFV on an example task: dog breed classification. There
are 120 dog breeds among the 1000 categories of the ImageNet dataset, and the
features of the pre-trained VGG16 network should therefore be well suited for
this task. We ran prediction on a handful of images of the class “English Springer
Spaniel” not present in the original dataset, and identified the failed samples. It
turns out that all the failed samples show dogs in water, and we want to examine
why they fail. Is it because of the water, occlusion of body parts, or something
else?

We applied the following procedure: For each misclassified sample, PFV was
applied on a batch of six correctly classified samples; three of the true class and
three of the mistaken class. To aid the comparison of the PFV images, we also
plot the distribution of red, green and blue in the foreground of the PFV image,
i.e., the three strongest principal components.

Figure 5 shows the result of running PFV on two batches of images containing
two misclassified images: Batch A (“Springer spaniel” misclassified as “goose”)
and Batch B (“Springer spaniel” misclassified as “Sussex Spaniel”). To identify
missing or misleading features, we compare the PFV distributions of the other
images in the batch with the failed sample, and look for the location of the
colours with large deviation. In the left case (Batch A), the misclassifed sample
has a red component on the head as in the true class “springer”, but is missing
the red component on the rest of the body. It also has a strong green component
on the body as in “goose”. In the right case (Batch B), the misclassified sample
is missing the strong green component located on the white fur in front in the
“springer” image, and the PFV distribution is more similar to that of “sussex
spaniel“, which has no white fur. For both cases, the location of the missing
features reveal that the failed classifications can most likely be blamed on body
parts occluded by water.

This example shows that our method can be used to localise missing or
misleading features, because it highlights the contrasting features within a batch,
not just the most dominant features from the classification.

5.2 Transfer learning

Transfer learning is often applied when there is limited training data available
to train a deep neural network from scratch. In this section we show that it is

89



10 M. Bakken et al.

goose (86%)

springer (93%)

goose (99%)

input

Batch A

PFV

sussex (40%)

springer (55%)

sussex (99%)

input

Batch B

PFV

Fig. 5. Principal Feature Visualisation (PFV) on misclassified samples compared to
correctly classified samples. In the first row, the two input images are of the category
“English Springer Spaniel”, but has been classified as “goose” and “Sussex Spaniel”.
In the second and third row, the input images are examples from the two different
PFV batches. Bars show the distribution of red, green and blue foreground pixels of
the PFV image. The colour encoding is not consistent because the method is applied
on two different batches, and hence the principal vectors are different. Best viewed in
colour.
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possible to predict the success or failure of transfer learning on a new dataset
by visualising the principal features of the pre-trained network on images from
this dataset.

Fig. 6. Initial principal feature visualisation of VGG16 features on the Pascal VOC2012
dataset. The dataset contains 20 classes, features are visualised for a random example
from each class. Similar colours indicate similar features. Best viewed in colour.

We analyse the features of VGG16, pre-trained on ImageNet, applied to the
Pascal VOC2012 dataset.

Initially, we randomly sample one image from each of Pascal VOC2012’s 20
classes and form a batch of these images. We then apply PFV and visualise
the principal contrasting features of this batch, shown in Fig. 6. For simplicity,
the feature visualisations are shown as an overlay to a grey scale version of the
input image. As the images are quite dissimilar, decomposing the features of the
images into three principal features, only gives us a coarse indication of which
examples contain similar feature sets. Based on this visualisation we observe that
the animal classes appear to have similar features, while vehicles and bicycles
appear to have a different set of features. Interestingly, we also see observe that
there are only weak feature responses for chair, sofa and potted-plant, while for
the class dining-table, the main responses are from the objects on the actual
table.
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To further investigate the difference between the features in the animal cat-
egories, that have similar colours in Fig. 6, we randomly sample new batch of
images from these categories. This time, we sample 4 random images from each
of the categories: “dog”, “cow”, “cat”, “horse” and “sheep”. We then again apply
PFV to find the principal contrasting features for this batch of images, shown in
Fig. 7. Note again, that the colours in the images are relative to each batch. As
the class variation in this batch of images is lower than in the initial experiment,
we observe that we obtain a finer decomposition. Here we see that cats and dogs
become more clearly separated from the other classes. The other three classes;
cows, horses and sheep, does appear to contain similar features. In addition, one
example from the “dog” class and one from the “cat” class appear as outliers,
which might be due to the images being difficult examples or that ImageNet
contains multiple cat and dog breeds.

Fig. 7. Principal feature visualisation of VGG16 features on the Pascal VOC2012
dataset for the classes; “dog”, “cat”, “cow”, “horse” and “sheep”, with a batch of four
random examples sampled from each class. Similar colours indicate similar features.
Best viewed in colour.

Based on this analysis we hypothesise that in a fine-tuned model using
VGG16 ImageNet features, we expect little confusion between the cat and dog
class, a more pronounced confusion between the “horse”, “cow” and “sheep”
classes. In addition, the weak feature responses for classes “chair”, “diningtable”
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and “sofa”, indicate an overall poorer performance in the detection of these
classes.

To check this hypothesis we fine-tune VGG16 pre-trained on ImageNet on
the Pascal VOC2012 dataset. We retrain only the final fully connected layer (the
classifier), the rest of the network (i.e., all convolutional layers) is kept fixed dur-
ing training. For simplicity we only select images containing one class per image,
to be able to use a standard cross-entropy loss in the optimisation. We train un-
til the validation loss stops decreasing and investigate the final performance in
terms of a confusion matrix. The confusion matrix is shown in Fig. 8.
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Fig. 8. Confusion matrix for the validation set for a VGG16 network, after fine-tuning
on Pascal VOC2012. Left, overall view of confusion matrix. Middle, confusion be-
tween classes “cat”, “cow”, “dog”, “horse” and “sheep. Right, confusion between classes
“chair”, “table”, “plant” and “sofa”. Best viewed in colour.

The worst performing categories are of the classes “dining table”, “sofa”,
and “chair”. We also observe that “cow” is significantly confused with classes
“horse” and “sheep”. These observations suggest that such a feature visualisation
strategy can give an intuition about when pre-training will be beneficial and
when it might fail.

6 Conclusion

We have presented a method for visualising the principal contrasting features
of batch of images during forward pass of a bottleneck CNN. Our approach has
several advantages over related methods, namely that it combines low overhead
with intuitive visualisation, and doesn’t require any user input or modification
of the original CNN. We have shown how these advantages allow us to interpret
the performance of CNNs in two common settings: debugging misclassification
and predicting the applicability of transfer learning.

Our code is available at https://github.com/SINTEF/PFV.
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ABSTRACT
Deep neural networks have the power to be game changing for cost-effective visual navigation solu-
tions such as for agri-robots, but the gap between controlled data science research and deployment
in real applications is still a hindrance for further adoption. In this paper, we address several issues
that are commonly faced when training neural networks for practical applications: how to efficiently
acquire training labels, how to inspect which features the network has learned, and how to ensure
robustness against dataset bias. Our proposed solution is two-fold; we apply a feature visualisation
method to debug black-box row-following networks, and we propose a novel network architecture and
learning approach for row-following that is inherently more explainable and robust than end-to-end
networks. Finally, we demonstrate the performance of our method by performing row-following in
open-loop field trials with an agri robot in a strawberry field. Our experiments led us to discover an
unexpected bias in a public dataset and demonstrated that our proposed hybrid network architecture
is robust to dataset bias and can learn meaningful features, even with small quantities of training data.

1. Introduction
Deep neural networks (DNNs) have revolutionised the

field of computer vision since their introduction about a decade
ago, producing classification performance better than a hu-
man baseline on several challenging benchmark datasets. There
is increasing adoption of these techniques within robotics
and other practical fields as well, but their real-world perfor-
mances often do not meet expectations. Due to limited quan-
tity and quality of training data, practical DNN applications
are more susceptible to problems such as domain shift and
dataset bias than controlled data science experiments. Fur-
thermore, DNNs are harder to debug and adapt than classical
methods due to their black-box nature. However, the capa-
bility to learn complex and generic representations directly
from sensor data is powerful, and issues with applied learn-
ing should be addressed to realise the full power of DNNs
for practical applications.

Agricultural robotics is a rapidly growing field where
deep learning could make a huge difference. One of the
key technologies required for large-scale adoption of light-
weight agri-robots is robust, fast, and cost-efficient naviga-
tion solutions. Such solutions must generalise across sea-
sons and be adaptable to different field types. Navigation
and guidance of mobile robots is huge field of research, and
there are myriad different sensor options including GNSS
positioning and scanning LIDARs that are well suited for
many applications. Within agriculture, vision-based row-
following using RGB-images is a well-established strategy
that requires only a single camera and can be adapted to
most applications. Classical camera-based methods usually
implement some form of greenness index, which has been
demonstrated to work well for some crop types. However, if

⋆This research was funded by the Norwegian Research Council, grant
no. 259869
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CNN

Figure 1: We propose techniques that make learning-based
row following less of a black-box: 1) Visualisation of contrast-
ing features with PFV (orange) and 2) enforcing a meaningful
representation by adding a segmentation output (green). The
proposed system is trained in a data-efficient manner with-
out manual image labels, and is validated with open-loop field
trials with an agri-robot.

this approach is to be adapted to applications with very dif-
ferent visual appearance, for instance red crops or overgrown
lanes, the features must be manually tailored.

When applying DNNs to the problem of visual row fol-
lowing, it is possible to learn a wide array of visual features
directly from images. Instead of tailoring algorithms to ev-
ery crop type or season, we can train a neural network using
examples labelled with the properties it should learn. The
challenge is to collect enough labelled data to cover all the
variation the robot will ever encounter in the field. Convo-
lutional neural networks (CNNs) for semantic segmentation
have been successfully applied for crop row following [1, 2],
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but require large amounts of hand drawn labels, which does
not scale well in practical applications. Other strategies en-
able more efficient capturing and labelling of training data,
for instance by training row-following end-to-end with dif-
ferent camera view angles that are automatically labelled
during data capture [3]. The main drawback of such meth-
ods is that they are much less transparent, and have proven
difficult to debug and use in practice[4, 5].

For successful development of adaptable and flexible vi-
sual guidance solutions in practical applications, we need to
close the gap between state-of-the-art neural networks and
the classical methods for the application in question. This
paper takes the practical problem of row-following in agri-
culture and highlights solutions to potential problems that
will be encountered in this scenario. Specifically, we suggest
three techniques to avoid common pitfalls: 1) data-efficient
supervision strategies that minimise the labelling effort by
trading label quality for data variation, 2) visualisation tech-
niques that help understand what the network has learned,
such that adjustments can be made to dataset, network archi-
tecture, or training setup, and 3) add additional outputs that
can help the network to learn semantically meaningful and
robust features, which makes it inherently more explainable
and more robust to issues such as dataset bias.

The specific contributions of this paper are: 1) the first
demonstration of the Principal Feature Visualisation (PFV)
method “in-the-wild”, leading to the discovery of a bias in a
public dataset; 2) proposal of a novel hybrid network archi-
tecture and supervision approach tailored for the row follow-
ing problem that is optimised for interpretability, robustness,
and data-efficiency, which shows good results even with ex-
tremely little data and a biased dataset; and 3) validation of
our approach through open-loop trials with an agricultural
robot in a strawberry field.

This paper is organised as follows: first, we briefly sum-
marise state-of-the-art on the broad range of topics relevant
for this paper, before we go through techniques from our pre-
vious work on learning-based row following and introduce
the specific problems that motivate the work in this paper;
then, the three main contributions will be presented and dis-
cussed in three separate sections, Visualisation of end-to-end
learning, Hybrid learning, and Field trials; and finally, we
summarise our findings and give an overall conclusion.

2. Background
2.1. Related work
Vision-based crop row following Vision-based crop row
following in agriculture has been a research topic for decades,
and several works have shown accurate and robust row de-
tection for various crop types. To get a good segmentation
separating plants from the soil, these methods typically in-
volve some variation of greenness identification (e.g. Ex-
cess Green Index (ExG) [6]), combined with thresholding
and morphological operations. Then, lines are typically es-
timated in the segmented image with e.g. Hough Transform
as in [7, 8] or least squares fit as in [9, 10, 11] to extract paths

that can be used for guidance of autonomous robots.
While methods using greenness index as the main fea-

ture can do a great job in many types of fields, there are sev-
eral situations where this approach may fail. The plants can
be covered by dirt after a rainfall, seasons may change the
spectral signature of the leaves, or the ground can be cov-
ered in vegetation due to weed or offshoots, to name just
a few. There are a few examples of classical methods that
use other features, like [12] who propose a learning-based
methodwith Support VectorMachines (SVM) to tackle plants
covered in dirt after a rainfall, or [13], who uses stereo cam-
eras to create an elevated crop row map. In any case, tailor-
ing new features for each new field/crop type or appearance
does not scale well.
Learning-based crop row segmentation Recently, con-
volutional neural networks (CNNs) for semantic segmen-
tation have been successfully applied for guidance of au-
tonomous cars, and more recently also for agricultural envi-
ronments like tea plantations [1] and paddy fields [14], and
our previous work in strawberry fields [2]. The main draw-
back of these methods is they rely on labour-intensive per-
pixel labelling of the whole dataset, and do not address how
such labels can be adjusted or updated for practical applica-
tions with large variation to seasonal appearance.

Another issue with state-of-the-art architectures for se-
mantic segmentation is that they are optimised for bench-
marking datasets [15, 16], where the task is to separate many
object classes and produce high-resolution object boundaries.
This requires many parameters in the network, which makes
both training and inference slower, and is more capacity and
resolution than necessary for crop row following, which is
usually in a simpler environment but with potentially large
seasonal variations. For real-time applications, it is desirable
to have lightweight network architectures with fewer param-
eters. This can be achieved, for instance, by reducing the
output resolution of the segmentation.
End-to-end learning Performing segmentation as a sepa-
rate step aligns well with classical approaches for row fol-
lowing, but performing the row and steering estimation in
an end-to-end manner can give more flexibility and ease the
labelling process. Supervised end-to-end learning of steer-
ing commands was first proposed for cars and UAVs. Some
works[17, 18] record steering commands and use them as
training labels, whilst [19] employ static cameras at different
angles to automatically record ground truth viewing angle,
eliminating the need for per-pixel image labels and simpli-
fying the labelling process. However, end-to-end learning
approaches do not separate the process of learning visual fea-
tures from classification or policy-learning, and their black-
box nature can make it hard to adapt the system to new set-
tings or perform troubleshooting. They also require orders
of magnitude more training images than supervised seman-
tic segmentation and are more vulnerable to biases in the
dataset.
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Automatic labelling Methods for generating training la-
bels automatically can reduce the manual workload required
to train CNNs. In [5] we adapted and applied the approach
from [3] to crop row following, but we used a single wide-
FOV camera and extracted virtual camera views in software,
which gave increased flexibility and enabled us to also gen-
erate training labels for regression of a continuous heading
angle.

In some settings, the geometry of the scene can be em-
ployed to simplify and automate the labelling of training
data. For example, in [20] we presented a method for au-
tomatic projection of crop row labels, based on camera view
geometry andGNSS-positions of the robot, assuming locally
straight and parallel rows with a fixed width. This produces
an approximate mask with straight boundaries. We trained
a neural network for crop row segmentation based on these
labels, and found that it was able to predict a more accurate
segmentation than the approximate labels it was trained on,
which indicated that it had learnt to ignore the noise in the
labels.
Dataset bias Deep neural networks are more dependent on
a good dataset than traditional methods. In particular, bottle-
neck networks withmany parameters – such as those used for
end-to-end learning – are susceptible to overfitting on arte-
facts in the dataset. In machine learning, this phenomenon
is known as dataset bias. It is usually a by-product of the
recording or labelling procedure, where a misleading feature
correlates with the label. Several works have demonstrated
that neural networks overfit to such biases, e.g. where a
poorly balanced training set lead the neural network to learn
gender stereotypes and classify male subjects as doctors and
female subjects as nurses [21]. [22] show that the trained
model focus on a source tag that is present in many horse
images in the commonly used Pascal VOC dataset. When
the tag is pasted to car images, it is classified as horse. Since
the validation data comes from the same dataset, this arte-
fact went unnoticed for a long time. Both examples above
applied visualisation techniques to identify these biases.
Visualisation of neural networks To make it easier to in-
terpret and debug convolutional neural networks, several ex-
planatory methods have been proposed. Many of them aim
to visualise the attention of the network in form of masks or
heatmaps on top of the original image. This is often done
by computing the gradient of the output with respect to ev-
ery pixel in the input image during back-propagation [23,
24, 25]. This gives a localised response for the input pix-
els which matter most for the classification. Grad-CAM[21]
compute the gradients with respect to the last convolutional
layer (not all the way back to the input image), and can in
this way relate the features from the forward pass to differ-
ent class responses. Several works [21, 22, 26] use such vi-
sualisation techniques to highlight known biases in datasets,
which can help identify what changes must be made to the
dataset to fix the issue.

In [27], we presented the Principal Feature Visualisation

(PFV) method, which is a lightweight visualisation method
that is executed during the forward pass, and shows the fea-
tures of a CNN as a colour-encoded heatmap. The differ-
ence from other visualisation methods is that it shows the
contrasting features of the CNN relative to the input im-
age, independently of the decision head. This means that
our method can be used for debugging the feature extrac-
tor itself, and for instance determine if learned features of
a model are suitable for transfer learning to a new dataset,
as demonstrated with generic image recognition datasets in
[27].
2.2. Motivation

For practical applications of deep learning, access to quan-
tities of varied training data is usually limited, and it is not
always possible to avoid biases in the recorded data. The
capability to detect these biases and avoid overfitting them
is crucial for success in practical applications. The work in
this paper is specifically motivated by the problem of row-
following for agri-robots.

End-to-end learning is a convenient supervision strategy
for row-following, which makes it easy to acquire labelled
data, but there are some pitfalls that need to be addressed.
We believe that the high degree of freedom in our end-to-
end network in [5] coupled with minimal training data led to
overfitting and poor robustness to artefacts and variations in
the dataset. Debugging these issues proved difficult due to
the black-box nature of end-to-end learning.

Visualisation techniques can be employed to make end-
to-end networks more transparent. In [4], we used activation
and saliencymaps [24] to debug issues with transfer learning
from trails to polytunnels, but this did not give any clear an-
swers. The more recent PFV method [27] can visualise the
learned features directly and, as we shall see in section 3,
gives new insight into the source of this issue.

Although visualisation can help us understand the issues
with end-to-end networks, we need a more transparent train-
ing approach that can avoid such problems in the first place.
One way of achieving this is to explicitly train a segmen-
tation of the crop rows, as we did in [2]. The promising
results with automatic generation of segmentation labels in
[4] make this a much more feasible approach. In this work,
we build on the network architecture and labelling approach
from [20] and combine it with the end-to-end learning ap-
proach from [4], to get a transparent architecture that can be
trained in an end-to-end fashion.

To summarise, the motivations for our work presented in
this article were two-fold:

1. Make the end-to-end approach less ‘black-box’ and be
able to detect issues in the training process by use of
feature visualisation.

2. Develop a more robust and transparent network archi-
tecture that can still be trained in a data-efficient man-
ner.
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Figure 2: Overview of the PFV visualisation method on a
bottleneck CNN.

3. Visualisation of end-to-end learning
We developed the PFVmethod [27] partly in response to

difficulties we experienced transferring learning from trail
to agri use cases. In this section we present the results of
our investigations with this approach as applied to our agri
use case. In particular, our research was centred around two
questions: 1) can PFV predict whether transfer learning will
work for particular use cases, and 2) can PFV illuminate the
underlying issues that cause misclassification after transfer
learning?

This is the first demonstration of the PFV method “in-
the-wild” in a real application rather than on standard image
recognition datasets. For visualisation of neural networks,
human perception is an important factor. Therefore, we also
present a new colour mapping of the features that is easier to
interpret than the original mapping.
3.1. Method
3.1.1. Principal Feature Visualisation (PFV)

In short, the principal feature visualisation method uses
singular value decomposition to project the high-dimensional
response of a convolutional layer down to a low-dimensional
mapping in image space. This operation is performed dur-
ing the forward pass of the network, on a batch of input im-
ages. The resulting mapping can be displayed as a pixel-
wise heatmap for each input image, where the contrasting
features in the image batch are encoded as different colours.
An overview of the method is shown in fig. 2 and described
further below. For more details, see [27] or the open-source
code 1.

A feature map Fl is an nB × nc,l × nx,l × ny,l matrix
containing the responses of layer l in a convolutional neural
network (CNN), where nB is the number of images passed
through the layer (batch size), nc,l number of channels and
nx,l, ny,l is the spatial size of that layer.

1https://github.com/SINTEF/PFV

We then find the principal feature responses by decom-
posing the feature map using singular value decomposition
as

F ′ = USV T , (1)
where F ′ is a centered version of the feature map in the last
layer reshaped into a column vector, S is a diagonal matrix
containing the singular values, and U is the decomposition
of F ′ into the space described by the eigenvectors V .

The principal components are then the columns of the
following matrix, sorted according to descending singular
value

FPCA = US = [d1 … dr]. (2)
For visualisation, we keep the N first principal components
{d1,… ,dN} and denote the matrix with these columnsDN .
To increase the resolution of the final visualisation, this ma-
trix is multiplied with an activation map A computed from a
sum of feature maps from earlier layers,

V = A◦D′N , (3)
where ◦ is an element-wise product and D′N has been re-
shaped and interpolated back to image size.
3.1.2. Colour mapping for PFV

To visualise V , the original method uses N = 3 princi-
pal components and maps them directly to red, green, and
blue (RGB) image channels. While this is an intuitive map-
ping for features that lie close to one of the three axes, the
colourmixing between the components in RGB is not as easy
to interpret. When plotting the two first components in V ,
we have seen that they often form long clusters stretching
in different directions from the origin. Thus, to more clearly
visualise the feature space, we propose using the hue, satura-
tion and value (HSV) colour space, which gives an intuitive
representation in polar coordinates. The mapping is done
in the following way: Let {d1, d2} be the two first principal
components of a pixel. For each pixel, compute the polar
coordinates of the point (d1, d2),

� = atan2(d2, d1), r =
√
d21 + d

2
2 . (4)

where atan2 gives the angle to the x-axis in the interval (−�, �].
The angle is mapped directly to hue, while the squared am-
plitude is assigned to both saturation and value, to emphasise
strong values:

ℎ = �′, s = r′2, v = r′2 (5)
where �′ is � normalised to [0, 1] and r′ is r clipped to [0, 1].

When applying the PFV method, it is important to con-
sider the composition of the input batch, as it shows the con-
trasting features of one batch at at time. For instance, to high-
light the feature difference in three classes, the batch must
consist of a balanced set of images from these classes. If the
input batch consist of a single image, the visualisation would
highlight the different features within that image instead.
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Figure 3: Comparison of features in trail and polytunnel images for a neural network trained on the IDSIA trail dataset. Pictures
show example input images for left/straight/right classes, and the principal feature visualisation of the network’s response for
strawberry polytunnel images, trail images, and colour-augmented trail images. Different colours indicate different directions in
feature space for the trained network. (Note that the green feature only shows up for the ‘straight’ trail image, and not in the
polytunnel.) Plots to the right show colour histograms for the different classes for the three image sets. Figure best viewed in
colour.

3.2. Experimental evaluation
3.2.1. Debugging transfer learning

In [4], we experience issueswith transfer learning. Specif-
ically, when applying the VGG16 network trained only on
trail-following data (IDSIA dataset from [3]) to similar data
from a strawberry polytunnel, we observed that both ‘left’
and ‘right’ classes were classified correctly, but that there
were no predictions for ‘straight’.

Here, we use the PFV visualisation method to detect dif-
ferences in the feature response for trail and polytunnel im-
ages that may explain the failed transfer learning. The model
is the VGG16 network trained on trail images from [4], and
we compute the principal components based on the last layer
before the decision head. The input batch consisted of left,

right, and straight example images from both trail and poly-
tunnel dataset. Example image triplets from each dataset and
their PFV visualisations are shown in fig. 3.

The visualisation shows strong localised responses for
the trail images, particularly near the vanishing point of the
trail. We see that the ‘straight’ image in the trail dataset
has a strong green PFV component that is not present in
the ‘left’ and ‘right’ images, which are encoded with orange
PFV component. The green component does not appear in
the ‘straight’ images from the strawberry polytunnel, which
indicates that the feature extractor has learnt some feature
that is specific to the ‘straight’ trail images. This is probably
why the decision head fails to predict the ‘straight’ class for
the polytunnel data. The difference in feature response for
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areas with similar appearance indicates that there could be
an underlying bias in the dataset.
3.2.2. Detecting dataset bias

To further investigate the possible bias in the dataset, the
samples for the different classes of the trail dataset were in-
spected more closely. We found a slight difference in colour
balance between the three classes, as shown in the right col-
umn of fig. 3. The peak in the histogram of the straight
class in the trail dataset is shifted compared to the two other
classes, and the image appears more red in tone, which is
barely visible to the human eye.

If the red colour shift is the reason for the green PFV
component and misclassification, then the visualisation and
classification result should change if this shift is inverted.
To test this, the hue was manipulated on a set of trail images
from the same location. For the ‘left’ and ‘right’ images, the
hue was reduced towards red, and for the ‘straight’ image,
the hue was increased towards green. The resulting images,
PFV responses, and colour profiles after manipulation are
shown in the lower part of fig. 3. We see that after the colour
manipulation, the colours of the PFV visualisations are in-
verted: ’left’ and ’right’ is now green, and ’straight’ shows a
faint orange. This manipulation also alters the classification
result, which indicates that colour profile is one of the main
features that the network uses to classify the direction.
3.3. Discussion

Applying PFV on the trail-to-agri transfer learning prob-
lem revealed a bias in the original trail dataset to which the
neural networkwas overfitting. We emphasise that the source
of the error was not known to the authors a priori, and the
feature visualisation was an essential tool for identifying the
problem. To detect the difference between the three classes
in this case, the visualisation had to highlight the difference
between the features, not only which areas are important for
the classification, as for other visualisationmethods [23, 24].

Now that we have detected the bias, how can this be
fixed or avoided in a practical application? The origin of the
colour bias could be due to the recording setupwith three dif-
ferent cameras, which probably had different white balances.
This is not an issue for our polytunnel data, as all viewing
angles are recorded simultaneously with a single wide-FOV
camera. The colour bias discovered by feature visualisation
can explain why fine-tuning of the convolutional layers was
necessary to learn the straight class. Applying colour aug-
mentation during the training process, which is fairly com-
mon technique in deep learning, would also help in this case.

Although colour augmentation or a different recording
setup could resolve this specific problem, there could always
be other biases or issues with the data that are more tricky
to fix or discover. This example illustrates the importance of
making the training process more explainable and control-
lable, to ensure that the network learns reasonable features
to base its decision on. This insight is the main motivation
for our hybrid network architecture that is presented in the
next section.

4. Hybrid learning
The insights from the previous section and previouswork

on the end-to-end learning for row-following motivated the
development of a more explainable and robust network ar-
chitecture and supervision approach addressing these issues.
Additionally, the good results with automatic segmentation
labels in [20] makes it possible to train a segmentation out-
put in a data-efficient manner.

In this paper we present a novel hybrid network architec-
ture and supervision approach for row following. The overall
idea is to enforce a low-resolution segmentation representa-
tion and train both this and the angle output simultaneously
in a supervised manner with automatically generated labels.
We evaluate our approach on a dataset from a strawberry
field, with particular attention to robustness to limited data
and possible dataset biases.
4.1. Method
4.1.1. Hybrid network architecture

The overall network architecture consist of three mod-
ules, as illustrated in fig. 4. The input is an image with RGB
channels, which is transformed to a low-resolution feature
map with the segmentation encoder. There are two different
outputs that can be trained in tandem: a crop segmentation
mask that is produced by the segmentation decoder, which is
fed to a decision head that predicts the direction of the crop
row. The design of these modules is illustrated in the lower
part of fig. 5 and discussed in more detail below.
Segmentation encoder For the segmentation encoder, we
chose the well-known SegNet architecture [28], as imple-
mented in the Keras Image Segmentation Library2. It is a
simple architecture without skip connections, and consists
mainly of four convolution blocks, where each block con-
sists of zero-padding of the input, a convolutional layer with
filter size 3 × 3, batch normalisation, ReLU activation and
a max-pooling layer with pool size 2 × 2. The output of the
encoder, or the bottleneck, has 256 channels and 22×22 res-
olution (ignoring the batch dimension).
Light-weight segmentation decoder Conventional seg-
mentation architectures have many parameters that are used
for learned upsampling. Inspection of the activations of the
architecture used in [20], have indicated that the resolution in
the bottleneck should be sufficient to estimate the row direc-
tion in the strawberry fields. In that case, we can skip the de-
coder entirely and save both parameters and inference time.
Therefore, rather than using a full SegNet decoder with up-
sampling layers (indicated with a gray shadow in fig. 4), we
added one single convolutional layer to reduce the number
of channels from 256 to 3, followed by a softmax activation
to produce a segmentation output, as shown in fig. 5.
Light-weight decision head To predict the the crop row
direction, we need a decision head that can transform a fea-
ture representation to the final one-value output. In the VGG

2https://github.com/divamgupta/image-segmentation-keras
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Figure 4: Hybrid network architecture with two output branches: segmentation and angle.
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Figure 5: More detailed building blocks of the hybrid network
architecture from fig. 4

architecture used for the end-to-end learning in [5], the deci-
sion head consists of two fully-connected layers, which takes
a low-resolution feature map with a depth of 512 channels as
input. The two main problems with this configuration are:
1) the loss of spatial information, and 2) the large capacity
and associated risk of overfitting. To help the network un-
derstand spatial relationships in the image, we have added
coordinate channels as suggested in [29], and use 1 × 1 con-
volutions instead of fully connected layers. To prevent over-
fitting and enforce a semantically meaningful representation,
we use the 3-channel softmax segmentation map as input to
the decision head. Three shallow convolutional blocks (with
the stack of layers as in the encoder) are added before the
1 × 1 convolutions to reduce the resolution and extract ge-
ometrical features from the segmentation mask. The final
activation is a softsign function f (x) = x

|x+1| , that limits the
output to the interval [−1, 1] and converges polynomially.
4.1.2. Supervision approach
Multi-task loss The two outputs of the hybrid network are
trained in tandem with a dual loss function

L = �La + �Ls (6)
where � and � are weights that determine the contribution
of the angular loss La and the segmentation loss Ls to the
total training loss. For the angular loss, we use the stan-

dard Mean Squared Error (MSE). The segmentation loss is
a class-weighted per-pixel cross-entropy which has the effect
of ignoring the background class.

With the weighted loss function, the exact same architec-
ture can be trained as a pure segmentation network, a pure
end-to-end network, or a combination. In practice, we used
two different configurations for our experiments: 1) Pure
end-to-end, with � = 0 and � = 1, and 2) Segmentation
pre-training, with � = 0 and � = 1 in the pre-training stage,
then with a frozen segmentation part and � = 0 and � = 1to
train the decision head and learn to extract angles from seg-
mentation masks.
Automatic label projection The hybrid network architec-
ture can be trainedwith hand-drawn segmentation labels, but
it would then require more labelling effort than a pure end-
to-end approach. Therefore, we use the automated label pro-
jection from [20]. In this work, we assume that the robot is
driving straight and centred along the crop row, such that
there is no need for additional alignment based on GNSS
positions. Instead, we combine it with virtual camera view
extraction to generate masks with different view angles in
software. The full label generation pipeline is illustrated in
fig. 6. We refer to [20, 4] and the open-source code 3 for
more details about this method.
4.1.3. Experimental setup
Data recording The dataset used in this workwas recorded
in a strawberry field over two years during different seasons,
with an RGB camera mounted on an agri-robot platform.

Specifically, we used a Basler Ace camera and a Sunex
fisheye lens with 190◦ FOV, mounted at approximately 1m
height and 22.5◦ downward tilt (extrinsics were measured
individually for different versions of the setup). For intrinsic
camera calibration, we used the OcamCalib Toolbox [30].

The camera was mounted on the Thorvald [31] robot
platform from Saga Robotics 4 as shown in fig. 7. The robot
platform has an adjustable wheel spacing, that was set to
1.25m to match the row width. The robot was also equipped
with several other sensors used for other studies.

The robot was steeredmanually as straight and centred as
3https://github.com/SINTEF-Computer-Vision/autolabel
4www.sagarobotics.com
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2) Automatic mask projection
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Figure 6: Automatic labelling of crop row data. a) Full-FOV
image from fisheye camera. b) Full-FOV segmentation mask
generated by projection c) Images and masks from different
view angles, extracted virtually in software.

possible along the crop row during data capture, at a speed of
approximately 1m/s to avoid abrupt motions. The onboard
computer is running ROS5 and image frames were recorded
to rosbag at a rate of approximately 5 frames per second
along with localisation- and other meta-data at higher rates.

Data collection was performed in a strawberry field in
Norway with slightly hilly and curved rows. There are sec-
tions of different strawberry types with different plant ages
(strawberry plants are perennial), which gives a large vari-
ety in appearance. The lane spacing is fixed, but the crop
width varies, and was measured manually for each row of
the recordings.
Strawberry field dataset For the hybrid learning dataset,
we used wide-FOV images from a straight drive, as for the

5https://www.ros.org/

Figure 7: Data recording setup with robot in the field. The
fisheye camera used for the recordings in this work is high-
lighted with a circle.

procedure from [5], and generated the training labels for seg-
mentation and heading angle offline.

The images in the dataset are from three different rows,
recorded in both directions. Some example images are shown
in fig. 8. The image stream was temporally downsampled,
such that there is little overlap between consecutive frames.

The automatic segmentation labels were projected to the
full-FOV image as described in section 4.1.2 based on the
camera calibration and extrinsics of the camera-to-robot trans-
formation. We used two lane rectangles and three crop rect-
angles, which were projected up to 5m ahead of the robot.
All pixels that fell outside these rectangles were labelled as
’background’ and assigned a value of 0, such that they would
not contribute to the training loss, while ’crops’ were as-
signed a value of 1 and ’lanes’ a value of 2.

The angle labels were extracted with the virtual FOV
processing explained above. For each image, we extract im-
ages and masks with a 60◦ FOV and three different yaw an-
gles drawn from uniform distributions in the intervals -15 to
5, -5 to 5 and 5 to 15 degrees. All images were extracted
with zero roll angle, and a pitch of −10◦, corresponding to
downward tilt of the camera.

After label generation and view extraction, the full dataset
consisted of 2157 images. Of these, 438 (20%) were re-
served for testing, by extracting continuous sections from
each row, such that therewas no visual overlap between train-
ing and test sets.

To investigate the effects of training with too little data,
we also extracted a very small dataset with 43 images, drawn
randomly from the original training set.
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Artificial dataset bias To perform controlled experiments
on robustness against dataset bias, we generated a dataset
where the input images were altered with columns of blank
pixels. The widths of the columns were proportional to the
angle labels, and they were placed on either the right or left
side of the image depending on the sign of the angle, as
shown in the examples in the lower part of fig. 8. The labels
(both angle and segmentation mask) remained unchanged.
One would perhaps expect that the network would overfit by
just learning to count the number of blank pixels, but as we
shall see, this was not the case with the hybrid network.

The images in the biased dataset are a subset of the full
dataset with 894 images for training and 222 for testing.
Training procedure The network was trained with the fol-
lowing hyperparameters: batch size 8, Adam optimiser with
initial learning rate of 10−4 and learning rate decay, and early
stopping when the validation error starts rising. All image
input valueswas scaled to [0, 1], angular label values to [−1, 1].

Asmentioned above, the hybrid network architecturewas
trained with two different configurations: 1) pure end-to-end
and 2) segmentation-pretraining. In the first case, the whole
network was trained in one go on angle labels only for 110
epochs. In the second case, the networkwas first trainedwith
segmentation labels only for 200 epochs. Then, the encoder
weights were frozen, and the decision head was trained with
angle labels. In both cases, the input imageswere augmented
by a series of operations: jitter in hue, saturation, contrast,
and lighting, as well as gaussian blur. The number of aug-
mentations active per image was randomly assigned, and the
strength also varied. Note that there were no geometric aug-
mentations applied, as this would ruin the angle labels, and
not have any effect on the segmentation training.

The frameworks used in this implementationwereKeras6
for high-level network building blocks, data loading and train-
ing/evaluation functionality, with Tensorflow7 as back-end.
Tensorboard8 was used for monitoring the training process.
Image augmentation during training was performed with the
imgaug library [32].
4.2. Results
4.2.1. Dataset size

To compare the hybrid network with a pure end-to-end
approach, we trained both configurations on the full straw-
berry field dataset, as well as the small subset, and measured
the error in the predicted angles on the test set. The results in
table 1 show that both achieve a low average error of around
1◦, with slightly superior performance for the end-to-end ap-
proach. For the small dataset on the other hand, the hybrid
network performs better. This is expected, as the segmenta-
tionmask hasmany labels per image (one for each pixel), and
is therefore able to learn successfully from very few samples.

6https://github.com/keras-team/keras
7https://www.tensorflow.org/
8https://github.com/tensorflow/tensorboard

Figure 8: Example images from the strawberry field dataset.
Upper two rows: images from different locations and seasons
in the same field. Bottom row: Artificial dataset bias created
with dead pixel columns of width proportional to the ground
truth angle.

Table 1
Performance on full-size and small dataset: Mean absolute
error (MAE) and standard deviation (std) of predicted angles
for end-to-end and hybrid network.

End-to-end Hybrid
MAE[◦] Std MAE[◦] Std

Full dataset 0.9 1.1 1.3 1.6
Small dataset 4.1 5.8 2.2 2.8

4.2.2. Explainability
In order to demonstrate how the segmentation output can

be used to better understand failure cases, we show some ex-
ample outputs for the networks trained on too little data (the
small dataset in section 4.2.1), and compare with the same
output for a network trained end-to-end without segmenta-
tion labels in fig. 9. The left example shows a sample with
small angular error, and a good segmentation. For the sec-
ond example with an angular error of 6.9◦, we can see that
there are errors in the segmentation, probably due to strong
shadows and challenging lighting conditions. This indicates
that the feature extractor needs more varied data or augmen-
tation to be able to generalise. The second image however,
shows a near perfect segmentation although the angular error
is 7◦. This indicates a failure in the decision head, probably
due to insufficient variation in field geometry and view an-
gle in the dataset. Due to the separation of feature extraction
and angle estimation in the hybrid network, it is possible to
train the decision head separately on augmented masks to in-
crease the amount of training data. Thus, it is possible to fix
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Figure 9: Intermediate outputs for hybrid and end-to-end net-
works. The models were trained with too little data, and the
examples show the output for one good (first from left) and
two bad samples in the test set for each of the networks.

the issue in this example without adding any new images to
the training set.

The end-to-end network shows a much larger angular er-
ror for the worst examples than the hybrid network, but the
intermediate output does not show much difference between
the good and bad samples at all. Therefore, we can not tell
whether these samples fail due to appearance or geometry,
and one would just have to get more data and hope for the
best.
4.2.3. Dataset bias

To evaluate the different network architectures’ robust-
ness to dataset bias, we trained both configurations on the
artificially biased dataset with blank pixels, and validated
on input images without the artefacts. The resulting test er-
rors for the predicted angle are reported in table 2. We see
that the hybrid network has a much lower error than the pure
end-to-end network, (for reference, random guessing gives
a MAE of 7.5◦. To verify that the end-to-end network is
actually overfitting the artefact introduced in the image, we
compare the training loss (images with artefacts) and vali-

Figure 10: Training and validation (angular) loss as a function
of epoch for training on a biased dataset with the end-to-end
network (orange) and hybrid network (blue). Note that the
end-to-end network has a very high validation loss that is not
declining.

Table 2
Performance after training on a biased dataset: Mean absolute
error (MAE) and standard deviation (std) of predicted angles,
for both networks trained on biased data.

Learning approach MAE[◦] Std [◦]
End-to-end 5.6 6.4
Hybrid 1.2 1.4

dation loss (images without artefacts) for the two different
networks in fig. 10. We see that while the training loss is de-
caying steadily for both approaches, the end-to-end network
has a very high validation loss that does not converge at all.
Thus, the end-to-end network is strongly overfitting, whilst
the hybrid network does not.
4.3. Discussion

The experiments show very good performance on the
strawberry field dataset, with small average error in esti-
mated angle (around 1◦) for the proposed hybrid architec-
ture. In the ideal situation with sufficient data and little dif-
ference between training and test data, the straight-forward
end-to-end supervision approach works as well as or slightly
better than the hybrid approach. This is probably because the
end-to-end learning benefitsmore frommore data and longer
training time than the segmentation network. The segmen-
tation network quickly learns a mask that is more accurate
than the ground truth due to the inaccurate automatic labels,
and therefore cannot reduce the loss any further even though
more data is added. Additionally, the limited resolution in
the segmentation masks puts a limit to how accurate the pre-
dicted angles can be. Thus, this is a trade-off between speed
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and accuracy.
We see that the hybrid approach performs much better

than the end-to-end approach in less ideal situations, espe-
cially with bias in the dataset. Enforcing a segmentation
representation in the bottleneck forces the decision head to
base its decision on semantically meaningful features, and
therefore prevented overfitting to the added blank pixels. In
this case, the bias was a very specific synthetic artefact, but
this strategy is expected to work just as well on other local
artefacts such as buildings in the horizon or structures in the
polytunnels.

Separating the feature extraction from the angle predic-
tion makes the network architecture itself more explainable,
but it also makes it easier to make small adjustments to the
system. For instance, in the case of good segmentation but
bad angle prediction, as identified in fig. 9, it would be easy
fix this by generatingmaskswithmore varied geometry through
virtual view extraction, without recording any new images.
In the case with bad segmentation, one could start by adding
more image augmentation, but it would perhaps require new
recordings as well. The same technique can be used in case
of large seasonal changes or when adapting a pre-trained net-
work to a new application, to inspect how well the trained
model will transfer to the new task.

5. Robot field trials
To test the performance of the neural network in a real

application, we performed a series of open-loop field trials.
This was done by driving the robot manually in the same
strawberry field as the previous data collection, and running
the neural network for angle prediction on each image in the
camera stream for the whole length of the crop row.
5.1. Setup

For the first test, we used the same setup and driving pat-
tern (straight along the row) as described in section 4.1.3,
but we additionally varied the viewing direction of the vir-
tual camera view that was used to extract image data from
the raw images by a sinusoidal pattern as the robot moved
along the row – emulating a slalom driving pattern. For
the second test, the robot was manually driven in an actual
slalom pattern turning from side to side along the row. The
main difference from the first test scenario is that the manual
slalom drive introduces a varying lateral offset from the crop
row centre line in addition to yaw angle, due to the turning
motion of the vehicle. The ground truth heading angle was
measured in the same manner as in [20] using position data
from a dual-antenna GNSS receiver. Instead of extracting
virtual FOVs from the fisheye camera, colour images from
an Intel Realsense were used. The Realsense camera was
mounted above the fisheye camera, as shown in fig. 7, and
has slightly different extrinsics and FOV than the images the
network was trained on. Both the Realsense camera and the
GNSS antennas are shown in the robot setup in fig. 7. For
both tests, we used the hybrid network architecture from sec-
tion 4.1.1 trained on the full dataset with both segmentation

and angle labels. The inference of the neural network ran on
a laptop with a GeForce GTX 1070 Mobile GPU.
5.2. Evaluation

The real-world performance of our approach during row
following was evaluated qualitatively by plotting the pre-
dicted angle for each camera frame against ground truth from
GNSS. The results from the two tests are presented in fig. 11
and fig. 12 respectively. Additionally, we have animated se-
quences of images from each test showing the predicted an-
gle as an arrow overlaid on the camera stream together with
the estimated segmentation.

From the first test results (fig. 11), we see that the pre-
dicted heading angle follows the ground truth verywell through-
out the entire length of the row. This result shows both that
the segmentation is robust under real-world conditions and
that the estimation of heading angle should be sufficiently
accurate for steering control.

From the second test results (fig. 12), where the robot
was driven in an approximately slalom path, we see that the
form of the estimated heading anglematches the ground truth,
but that after the initial response to each change in turning
direction the estimated heading angle continues to increase
in magnitude throughout each turn. We hypothesised that
the network was in fact conflating the increasing lateral dis-
placement of the vehicle during each turn with the heading
angle, as these two motions produce similar image effects.

To test this hypothesis we computed the expected appar-
ent angular deviation experienced by the robot by consider-
ing a point along the midline of the crop row 2m in front of
the robot’s position. The apparent angular deviation, Δ, of
this point due to the robot’s heading angle deviation, �, and
lateral offset, dL, from the crop row midline is given by

Δ = � + atan2(dL, 2). (7)
The apparent angular deviation is plotted alongside estimated
and ground-truth heading in fig. 12 and it can be seen that
it matches well with the heading angle estimated by our net-
work, confirming our hypothesis. Here we have simply de-
termined the distance to the test point (2m) empirically, but
the goodness of the fit indicates that this is in fact what is
being estimated by the network.

That our network is estimating apparent angular devia-
tion to a point along the crop row in front of the robot in-
stead of the instantaneous angular deviation is not necessar-
ily detrimental for robot control, as this is in fact analogous
to the effect of the integral component in a PID controller – it
will correct for any accumulated lateral drift during closed-
loop control. Ideally, however, the weighting between the
contributions of the angular deviation (P) and lateral offset
(I) to the control of the vehicle would be tunable indepen-
dently. Including estimated lateral offset as an independent
network output was not within the scope of this work, but is
a topic for continuing research.

The inference time of the neural network with one im-
age at a time was 9 ms on the laptop, which should be suffi-
cient for closed-loop control with this robot. For more real-
time demanding applications, faster execution times could
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(a)

(b) (c)
Figure 11: Open-loop results for a straight path with emu-
lated sinusoidal heading angle variation (see section 5.1 for
details). a) Estimated (yellow) vs. ground truth (blue)
heading angle deviation. b) and c) Example images frames
showing estimated angle and lane segmentation. See video
(https://youtu.be/kKmP4x-j5P8) for animation.

be achieved by reducing the number of parameters in the
segmentation encoder.

6. Conclusion
In this work, we have focused on solutions to common

pitfalls encounteredwhen applying deep learning approaches
in practical settings, with visual row-following for an agri-
robot as our specific use case. Our experiments with feature
visualisation enabled us to successfully identify and resolve
a failure we faced during transfer learning, which turned out
to be partly due to a bias in a public dataset. This moti-
vated the development of a hybrid learning approach with
an additional segmentation output that enforces semantically
meaningful representations. In our experiments, we find that
a published end-to-end approach and our new hybrid ap-
proach both show similar performance on our strawberry
field dataset. Butmore importantly, we see that our proposed
hybrid network outperforms the end-to-end approach in less
ideal situations – its performance is almost unaffected when

(a)

(b) (c)
Figure 12: Open-loop results for a real slalom path. a) Es-
timated (orange) vs. ground truth (blue) heading angle de-
viation. Also shown is the apparent angular deviation (light
blue) from eq. (7). b) and c) Example images frames show-
ing estimated angle and lane segmentation See video (https:
//youtu.be/XIw4MbgNdoI) for animation.

training with dataset bias, whilst the performance of the end-
to-end is significantly degraded. Additionally, when training
with a very small dataset, our hybrid network is less affected
than the end-to-end network, and the failed samples can be
inspected by plotting the segmentation output. Finally, we
have conducted open-loop field trials with an agri-robot that
demonstrate good performance of our proposed approach in
a realistic setting, and we believe our solution will enable au-
tonomous onboard guidance with our agri-robot platform.

We conclude that our hybrid learning approach is an ex-
plainable, robust, and data-efficient solution that can help
avoid the pitfalls otherwise encountered when training neu-
ral networks in practical applications, such as crop row-following.
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Principal Feature Visualisation
in Convolutional Neural Networks

Supplementary Material

Marianne Bakken1,2[0000−0003−4958−8194], Johannes Kvam1,
Alexey A. Stepanov1, and Asbjørn Berge1

1 SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway
marianne.bakken@sintef.no

https://www.sintef.no/en/
2 Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway

This document contais supplementary material for the paper Principal Fea-
ture Visualisation in Convolutional Neural Networks published at ECCV 2020
(paper ID 4198). Please see the paper for details on experimental setup.

Our code is available at https://github.com/SINTEF/PFV.

1 PASCAL VOC examples

Same setup as in Section 5.2 of the paper.

1.1 Batches of 20 classes
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Fig. 1. PFV on batch of all 20 classes. Batch number 1.
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Fig. 2. PFV on batch of all 20 classes. Batch number 2.
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Fig. 3. PFV on batch of all 20 classes. Batch number 3.
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1.2 Batches of 3 classes

Fig. 4. PFV on batch of 3 classes: Motorbike, boat and car

Fig. 5. PFV on batch of 3 classes: aeroplane, bird and sheep
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Fig. 6. PFV on batch of 3 classes: chair, sofa, diningtable

Fig. 7. PFV on batch of 3 classes: boat, motorbike, car
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Appendix B

Supplementary material Paper III

B.1 Implementation of label projection for segmentation

The main idea behind the automatic labelling approach is to generate approximate
segmentation labels by projecting the geometry of the scene into the image frame,
based on the intrinsic camera model and the pose of the camera with respect to the
scene (obtained from dual-antenna RTK GNSS). In this section, the implementation
is explained in more detail than it was room for in the paper.

B.2 Label projection

The most general form of the virtual map is a set of separate regions with semantic
labels given in a static reference frame Fmap. Such a map can for instance be generated
by combining prior knowledge about the structure of the scene with measured GNSS
positions.

vi,j

gi,j

Fcam

Fmodel

Fworld

w

wc

e

Figure B.1: Illustration of the label projection principle: A camera pixel is represented as
a vector v(i, j) in camera frame, projected to ground point gi,j in map frame Fmap, and
assigned a label based on which map region it hits in a map. For the special case of the field
map, the regions are adjacent rectangles specified by the lane spacing w and the crop width
wc.
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The projection from the camera to the virtual map is performed in the following
way. For each pixel (i, j) in the camera image, we compute the corresponding vector
vi,j in the camera frustrum using an intrinsic model of the camera obtained through
calibration. vi,j is transformed from the camera coordinate frame Fcam to the map
coordinate frame Fmap, to find the ground point gi,j where vi,j intersects the map
surface.

The virtual map in our implementation is a set of N convex polygons {Pn} in the
plane z = 0 in the Fmap coordinate frame. Each polygon is associated with a label ln.
When assigning the label for a ground point gi,j , we check if it is placed inside any
polygon in {Pn,l}, by comparing the position of gi,j with each edge of the polygon
using the orient2D geometric predicate. If it does not fall inside any polygon, the
background label is assigned to that pixel.

B.3 Field map

To generate our virtual scene map, we must define the polygon boundaries for the
crop regions. We do this by measuring the GNSS centreline of the driven crop row at
approximately 0.25 m intervals and then generating a piece-wise rectangular polygon
for the row using an assumed average crop row width – which will vary across fields
and seasons. Polygons for neighbouring rows are similarly generated by using an
assumed crop row spacing – which is typically fixed for a particular site because it
corresponds to the track width of the tractor.

For the crop row segmentation case, a few approximations are done to simplify the
generation of the virtual map and to obtain the transformation between the camera
and the map coordinate frames.

We define a field map with a set of polygons as described above, more specifically
a set of adjacent rectangles with fixed widths and limited extent representing straight
crop rows and lanes in the field as illustrated in the figure above. To align the
rectangles with the rows of the field, we use a set of crop row positions given in Fworld,
typically obtained with a GNSS receiver beforehand. For each position, a local map
coordinate frame Fmap,n is placed in the middle of the row, aligned with a piece-wise
linear fit of the nearest points.

The geometry of the field map can be adjusted with the following parameters:
extent, lane spacing w and crop width wc as illustrated in the figure above. Typically,
the lane spacing is fixed, as it corresponds to the wheel spacing of the tractor. The
crop width will vary and has to be measured separately for different fields and seasons.
The extent of the mask in the y direction can be adjusted depending on the field of
view of the camera or how far ahead the linear approximation will hold.

The projection from pixel to ground point relies on accurate transformation
between Fcam and Fmap,n. Typically using a GNSS receiver mounted on the robot
platform during recording, we obtain accurate position and heading of Fcam in world
frame Fworld. It is then transformed to the nearest map frame Fmap,n, to compute
the projection as described above.
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Appendix C

Video material

Videos submitted as supplementary material to papers:

C.1 Paper III

The video shows driving pattern during recording and field trials, and animations of
the generated labels and final segmentation results as the robot drive along the row.
https://www.youtube.com/watch?v=CkI3bfmEHMY

C.2 Paper V

The videos show animations of the predicted heading angle and segmentation masks
from the field trials. The first shows a drive with emulated heading angle, the second
shows a real slalom drive.
https://youtu.be/kKmP4x-j5P8
https://youtu.be/XIw4MbgNdoI
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