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Abstract 

Anthropogenic nitrogen deposition rate in boreal forests increased over the last century and 

significantly impacted many parts of these ecosystems. Boreal forests contain a large amount of 

carbon (C), and nitrogen (N) is a limiting factor for plant growth. Consequently, anthropogenic N 

deposition is likely to boost productivity and C sequestration in the boreal ecosystem. Some boreal 

regions are experiencing a significant amount of N deposition. On the other hand, forest fertilization 

is used in areas with limiting N supply to enhance timber volume and C sequestration as a means 

of climate change mitigation. As a result, other parts of the boreal ecosystem may be considerably 

affected due to nutrient enrichment. Condensed tannin (CT) is a carbon-based secondary metabolite 

known to provide herbivore defence to the plants, available in boreal plant species with a high 

concentration. Change in CT concentrations with N deposition in green leaves has been reported 

in earlier studies. This experiment was carried out to comprehend better how the change of resource 

condition affects tannins concentration in senesced foliage and soil organic layer as well as nitrogen 

pool and carbon storage in the boreal forests' soil.  I conducted this research in an old Picea abies 

forest in South-Eastern Norway, which has been fertilized annually since 2003 with 150 kg N ha-

1. The forest has 20 established experimental plots, ten controls, and the other ten are fertilization 

application plots. I measured CT concentration, C and N concentration in senesced foliage of Picea 

abies and Vaccinium myrtillus as well as in soil organic layer and pH value for soil.  

Fertilization increased foliar N concentration, decreased C: N ratio, while foliar CT did not change 

in senesced foliage. Increase of N concentration and decrease of C: N ratio were in accordance with 

the resource-based ecological theories on plant defence, i.e., a higher resource availability condition 

causes improved growth rather than improving plant defence. However, no response in CT 

concentrations to fertilization suggests an inherent phenological accumulation pattern of tannins.  

As expected, soil organic layer CT declined in fertilized plots, likely due to a shift in ground 

vegetation from Ericaceae dominance to graminoid dominance. I also found an increase in C and 

N concentration and decreased corresponding C: N ratio in fertilized plots. N content significantly 

increased, whereas C content was nonresponsive. Organic layer pH value responded negatively to 

fertilization, which can be explained by increasing low pH containing Picea abies litterfall. Overall, 

tannins are well known to immobilize nutrients, and N availability in this study reduced the CT 

concentration of the soil organic layer and increased the N concentration, thereby increasing the 

decomposition of organic matter. Therefore, my study findings may imply that N deposition and 

forest fertilization facilitate organic matter decomposition when climate change also speeds up this 

process. 
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1. Introduction 

Boreal forests, the largest terrestrial ecosystem, contain a large proportion of global carbon in 

their soil and play a significant role in climate change mitigation (Carroll and Noss, 2020, 

IPCC, 2014, Price et al., 2013). These forests soil have a limited supply of nitrogen (N) 

naturally, and forest productivity is known to be limited by available soil N (Tamm, 1991). 

Consequently, anthropogenic N addition is likely to boost productivity and sequestration of 

carbon (C) in those ecosystems (De Vries, 2014, Fernández-Martínez et al., 2014). However, 

over the last century, the use of anthropogenic N has increased significantly due to fertilizers 

production and usage, combustion of fossil fuels and land-use intensification, resulting in 

increasing N deposition, which in turn have changed many parts of this biome. (Galloway and 

Cowling, 2002, Meunier et al., 2016, Gundale et al., 2014). Anthropogenic N deposition varies 

regionally. For example, Fennoscandian boreal forests have relatively low N deposition than 

boreal forests in Central Europe (Dentener et al., 2006, Gundale et al., 2011). However, N 

deposition generally has a minor effect on the boreal forest ecosystem (Gundale et al., 2011).  

Nitrogen plays a pivotal role in the plant life cycle, especially in plant growth (Bergh et al., 

2014, Nissinen and Hari, 1998, Wallace et al., 2007), and N fertilization has been proven to 

show an immediate effect on forest yield in low N environments (Jacobson and Pettersson, 

2010, Saarsalmi and Mälkönen, 2001). Therefore, forest management has been using fertilizer 

applications since the 1960s to increase timber production to meet global demand and as a 

means of C sequestration (Hedwall et al., 2014, De Vries, 2014, Gundale et al., 2011). 

Subsequently, in addition to improving tree growth, a substantial rise in ecosystem C storage 

has been reported as a consequence of N deposition (Maaroufi et al., 2015, Pregitzer et al., 

2008). Besides, nutrient enrichment may cause changes in other parts of the ecosystem; for 

instance, it might cause an increase in foliar N concentration also (Throop and Lerdau, 2004, 

Booker and Maier, 2001, Nybakken et al., 2018). It is demonstrated that N availability also 

changes species composition in boreal forest floors, shifting from slow-growing Ericaceous 

shrubs to fast-growing graminoids (Mäkipää, 1994, Strengbom and Nordin, 2008). Even 

improved N available condition at the base of forest food webs potentially triggers cascade 

effects; thus, changes in food web structure and function can significantly affect higher trophic 

levels (Meunier et al., 2016, Nybakken et al., 2018). Additionally, insect herbivore populations 

have also been shown to benefit from N deposition by increasing insects population growth 

and performance (Strengbom et al., 2005, Throop and Lerdau, 2004). Despite several 
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investigations, the entire effects of fertilizer on forest susceptibility to pathogens and herbivores 

are still unclear.  

Tannins are an important group of phenolics, a carbon-based plant secondary metabolite (PSM) 

of vascular plants, traditionally considered as defensive compounds against herbivores. Their 

variation in chemistry and the massive concentration within species makes them the fourth 

most abundant biochemical compound in plants (Hernes and Hedges, 2000), indicating their 

importance in plants function and evolution (Zucker, 1983). According to Kuiters (1990), 40% 

of bark and leaves dry weight in woody species are made up of tannins, where foliar tannins 

account for up to 25% of dry weight (Kraus et al., 2003). Tannins are divided into two major 

categories: condensed tannin (CT) and hydrolyzable tannin (HT) (Kraus et al., 2003). The type 

of tannin varies by plant species, such as gymnosperms and monocots produce only CTs (Bate-

Smith, 1977). Condensed tannins are particularly in attention because of their diverse structural 

variation and unique protein binding ability, which was thought to be effective for herbivory 

defence. However, contradictory empirical evidence about tannin's effectiveness in herbivore 

defence leads to an increasing interest in tannin's role in the plant-litter-soil interactions (Close 

and McArthur, 2002, Feeny, 1970, Kraus et al., 2004). CTs concentration and composition 

vary across plant species and within plants in response to changes in environmental conditions, 

including nutrient availability, CO2, pH, light intensity, temperature, water availability, and 

ozone (Gonzalez-Hernandez et al., 2003, Close and McArthur, 2002, Hofland-Zijlstra and 

Berendse, 2009, Kraus et al., 2003, Nabeshima et al., 2001, Northup et al., 1998, Rivero et al., 

2001, Wam et al., 2017, Salminen and Karonen, 2011). Several theories have been proposed 

to explain differences in foliar tannin levels (Kraus et al., 2003). The carbon-nutrient balance 

hypothesis (Bryant et al., 1983) and growth-differentiation balance hypothesis (Herms and 

Mattson, 1992) suggest that N deficiency inhibits growth; as a result, photosynthates 

accumulate in the plant that potentially redirected to PSM production. Moreover, the protein 

competition model explained that protein and phenolic compound production compete for the 

same precursor, phenylalanine (Jones and Hartley, 1999, Nybakken et al., 2018). Endara and 

Coley (2011) supported these hypotheses in a meta-analysis and showed, species that grow in 

high fertility lead plants to spend more on growth than defence. Tannins concentration also 

have reported to change by genotype (Driebe and Whitham, 2000), season (Ganthaler et al., 

2017), and phenology ( green versus senescent leaves) (Covelo and Gallardo, 2001), in addition 

to the environmental factors.   
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Nonetheless, in addition to CTs' importance in green leaves for herbivore defence, after leaves 

senescence, they may have afterlife effects on decomposition and nutrient cycling. CTs 

potentially affect nutrient cycling by decelerating decomposition and N mineralization process 

through direct microbial toxicity or by creating recalcitrant complexes with organic N, thereby 

immobilizing nutrients and making them unavailable for plants and microbial uptake (Fierer et 

al., 2001, Kraus et al., 2003), which may have knock-on effects on soil C sequestration and 

nutrient turnover (Adamczyk et al., 2019, Madritch and Lindroth, 2015). Certain boreal forest 

plants, such as coniferous trees (e.g., Picea abies) and Ericaceous dwarf shrubs (e.g., 

Vaccinium myritillus), naturally contain high levels of CTs. Because tannins are known to enter 

the soil through both above- and below-ground litter, those ecosystems also contain a high CT 

concentration in the soil organic layer, where foliage litter contribute a significant part 

(Smolander et al., 2012, Adamczyk et al., 2014, Kuiters and Sarink, 1986, Adamczyk et al., 

2013). Species composition changes are, therefore, likely to change ecosystem-level CT 

concentration, as CTs production varies across species. Thus, quantifying the CT level in 

senesced foliage is important and interesting in order to comprehend their role in the ecological 

processes more clearly.  

However, unfortunately, investigations on PSM production response to different influential 

factors mainly focused on only green leaves. Among them, very few have examined the effects 

of fertilization on PSM production in green foliage of tree species (Nybakken et al., 2018) and 

on the total phenolic concentration (Blodgett et al., 2005), while trees senesced foliage tannins 

level has not been studied. Nybakken et al. (2018) demonstrated that fertilization decreases 

total phenolics in current-year needles of Picea abies but did not affect the previous year 

needles. Another study by De Long et al. (2016) showed that N fertilization decreased CT level 

in both green and senesced leaves in subarctic heath species. Although this study tested both 

green and senesced leaves in heath species, still we lack sufficient scientific knowledge on how 

the improved N available situation may affect trees senesced foliage and ground vegetation 

tannins level and the forest ecosystem.  

This study aimed to investigate CT concentration's response with fertilizer application in 

senesced foliage of two different plant species, Picea abies and Vaccinium myrtillus, as well 

as soil organic layer. The research was carried out in an old Picea abies dominated boreal forest 

in South-Eastern Norway, which has been fertilized annually since 2003 with 150 kg N ha-1. I 

measured CT level, C, N, C: N ratio of both senesced foliage and soil as well as pH value for 

soil. I used this setup to test the following hypotheses: fertilization will (1) increase N 
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concentration in senesced foliage; therefore, C: N ratio will decrease, resulting in a decrease of 

CT level; (2) decrease CT concentration in soil organic layer due to a shift in the field layer 

from Vaccinium myrtillus dominance to the dominance of graminoids and forbs; and (3) 

increase N and C concentration, correspondingly C: N ratio will decrease in soil organic layer. 

Understanding CT's response with N input is vital as they play a significant role in ecosystem 

processes, including hampering decomposition and, therefore, influencing nutrient dynamics. 
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2. Material and Methods 

2.1. Study site 

The study site is located in Gausdal Vestfjell (61°10'N, 09°90'E), near Kittilbu, South-Eastern 

Norway, at an elevation of approximately 800 m (Gauslaa et al., 2008, Davey et al., 2017). The 

annual mean temperature and mean precipitation is -0.1°C and 810mm, respectively, from the 

period 1961-1990 (based on information from the Kittilbu meteorological station; 

source: www.met.no) (Bach et al., 2009, Gauslaa et al., 2008). The bedrock consists of cambro-

Ordovician-age sedimentary rocks (shale) covered by dense moraine layers 

(Source: www.NGU.no) (Bach et al., 2009, Gauslaa et al., 2008). The forest is a subalpine old 

boreal forest dominated by Norway Spruce (Picea abies) (Gauslaa et al., 2008). The dwarf 

shrub Vaccinium myrtillus and bryophytes, for instance, Pleurozium schreberi, Hylocomium 

splendens, Polytrichum commune, and Sphagnum girgensohnii, dominate the field vegetation 

(Gauslaa et al., 2008). There are also several flowering plants, including Vaccinium vitis-idaea 

and Avenella flexuosa (Gauslaa et al., 2008). 

     

     Figure 1: Location map of the study site in Gausdal Vestfjell, South-Eastern Norway. 

 

http://www.met.no/
http://www.ngu.no/
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There are 20 established 15 x 15 m2 experimental plots, 10 controls, and the other 10 are 

fertilization application plots (Fig 1). The plots are approximately 50 to 350 m in distance from 

each other (Davey et al., 2017). Fertilized plots have been treated since 2003 with granulated 

pellets consisting of 24% N, 2%P, 6% K with other trace elements (Ca, Mg, S, B, and Cliorine-

Containing) with the amount of 150 kg ha-1  (YaraMila® FULLGJØDSEL® by Yara, 

Norway)(Davey et al., 2017).   

     

2.2. Sample collection and preparation 

2.2.1. soil  

I collected soil samples in early summer, 15-16 June 2020. I took a 5x5 m2 area within each 

plot for the soil sample and divided it into five 1 x1 m2 subplots. Plots contained one subplot 

in each corner and one in the centre. Therefore, I have set up a total of 100 subplots with five 

subplots inside each of the ten control and ten fertilized plots. First, I collected soil cores of 10 

cm in diameter and split the cores into two; one half I placed into plastic bags and another half 

was used for another project. The organic layer depth was measured on the hole. The next day, 

I weighed wet soil cores, let them dry for 48 hours in an oven at 30°C temperature, and weighed 

the dry cores to measure the soil's water holding capacity. 

For the extraction process, at first, I homogenized soil cores by mixing well in a two-litre plastic 

box using hand so that there were no chunks, picked out roots and twigs with a diameter larger 

than approximately 2mm, and removed living bryophytes and other plant parts. I filled those 

homogenized samples in two steel containers of 50 ml capacity using a clean spoon, ground 

them in a ball mill (MM 400, Retsch, Haag, Germany) with 30 Rpm for 1.45 minutes to get a 

fine powder, mixed them into one plastic container and kept in the freezer for further analysis. 

This powdered soil was used for measuring tannin, pH, and C and N concentrations. 

 

2.2.2. Senesced foliage  

Senesced foliage samples were collected in early autumn 12-13 September 2020. I collected 

senesced foliage (needles and leaves) randomly from all over the plots by shaking trees for 

Picea abies needles and cutting leaves with stem using scissors for Vaccinium myrtillus. Then 
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placed them into paper bags and air-dried for approximately 15 days. For preparing foliage 

samples for analysis, I sorted the dried needles and leaves from the stem before grinding and 

then milled approximately 0.5 to 1gm of foliage out of them. The grinding process was the 

same for foliage as the soil samples. 

 

2.3. Extraction of condensed tannins 

The concentration of CT from both soil and plant material was measured by following the acid 

butanol assay described for proanthocyanidins by Hagerman (2002). 100 mg of powdered soil 

sample and 10 mg of foliage sample were dissolved with 4 ml of 70% acetone in a test tube, 

close the lid immediately, and vortex in a planner shaker (KS 501 digital, IKA-WERKE, 

Germany) for 1 hour (200 rpm). Immediate after shaking, I centrifuged them at 4000 rpm for 

10 minutes and then discarded the supernatant in 15 ml test tubes. The same extraction process 

was repeated twice and then evaporated to dryness in a vacuum centrifuge (Eppendorf 

concentrator plus; Eppendorf, Hamburg, Germany), lid tightly and stored in the freezer with 

foil-covered to keep them away from sunlight and not over the room temperature until further 

analysis. 

 

2.4. Analysis of condensed tannins 

The dried extracts were redissolved in 2 ml MeOH using an ultrasonic cleaner (VWR, 

Malaysia), and I took out 0.5 ml extract from it to10 ml glass tubes for analysis. Then added 

3ml butyric acid (95% butanol,5% HCL) and 0.1 ml of iron reagent (2% ferric ammonium 

sulfate in 2 M HCL) with the extract, lid tightly the tubes and placed them for boiling in water 

at 99°C for one hour. Similar two control samples (without sample extract) were made along 

with the original samples to compare the absorbance. After cooling down, the light absorption 

at 550 nm was measured with a spectrophotometer (UV-1800; Shimadzu Corp., Kyoto, Japan). 

The same procedure was followed for both type of samples (soil and foliage).  

CT analysis of half of the soil samples was done using the same procedure with some 

modification in redissolving the dry extract with 0.5 ml MeOH and vortex vigorously. The 

residue colour turned very dark during this process; therefore, I used the method described 

above to avoid the error due to diluting the residue repeatedly.  
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2.5. Analysis of soil pH 

For pH measurement, 5 ml of each subplot's powdered soil were mixed very nicely with 12.5 

ml of deionized water in a glass test tube and left overnight. After 24 hours, shaken again and 

measured the pH value using a pH meter (WTW GmbH, Weilheim, Germany). 

2.6. Analysis of carbon and nitrogen  

For both soil and senesced foliage, total carbon and nitrogen concentration was measured using 

5-7 mg of powdered sample, wrapped in tin foil, with a Micro cube elemental analyzer 

(Elementar Analysensysteme GmbH, Hanau, Germany). 

 

2.7. Statistical analysis 

Data arrangement and calculation of CT concentration, mean and standard error of the variables 

were performed using Microsoft Excel, version 365 (Microsoft Corporation 2019). Linear 

mixed-effect model analysis was performed for soil samples to test the correlation between 

response variables and fixed and random factors using the lmer () function of package "lme4" 

in R, as there were five sub-samples per plot. On the other hand, foliage samples had only one 

value per plot; hence, linear model analysis was performed using the lm () function of the "stat" 

package in R. Treatment (control and fertilized) was used as the main explanatory variable for 

all analyses, and PlotId (sub-plots) used as a random factor when using linear-mixed effect 

analysis for soil sample. Response variables were CT concentration, N and C concentration 

and C: N ratio for both foliage and soil samples and pH value for soil. Other cofactors such as 

water holding capacity (WHC), depth of the organic layer, total graminoids and Vaccinium 

myrtillus were used as fixed effects to see interaction effects between treatment. Each covariate 

was analyzed in a separate analysis, and results have shown in the appendix. The soil organic 

layer's N and C content was calculated by dividing the product of concentration and dry weight 

of the soil core in kg by the area in m2. The soil sample analyses, including vegetation data, 

were done at the plot level using averages of the sub-plots from a previous master thesis 

(Lorentzen, 2017). The normality assumption and whether the data meets homoscedastic or not 

is checked visually by Q-Q (quantile-quantile) plots. Statistical analysis is considered 

significant when p < 0.05. These p-values were obtained from the t-statistic using 

Satterthwaite's approximation to the denominator degrees of freedom as a default function of 

the "lmerTest" package for soil samples. For senesced foliage, Welch's t-test was performed to 
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obtain the p-value. All statistical analyses and the graphical illustration of data were performed 

in R version 4.0.3 (2020-10-10, Bunny-Wunnies Freak Out) and Rstudio version 1.3.1039. 

Package "tidyverse" was used for graphic illustration, and QGIS version 3.16.3 was used to 

create a location map of the study area. 
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3. Result 

3.1. Senesced foliage response   

Condensed tannins (CT) concentration of neither Picea abies nor Vaccinium myrtillus was 

affected by fertilization (Table 1) (Fig 2a). Nitrogen concentration of Picea abies and 

Vaccinium myrtillus was significantly higher by (27%) and (24%) in fertilized plots compared 

to the control plots (Table 1) (Fig 2b). C to N ratio differed significantly between treatments 

with a decrease of 26% for Picea abies and 24% for Vaccinium myrtillus in fertilized plots 

(Table 1) (Fig 2d). Carbon concentration was not different between plots (Table 1) (Fig 2c).  

 

Table 1:  T-value and P-value of the Soil CT (CT concentration; mg g-1), pH (pH value), N 

(nitrogen concentration), C (carbon concentration), CN (carbon to nitrogen ratio), N Content 

and C Content, and foliar CT, N, C, CN of Picea abies and Vaccinium myrtillus test results of 

each of the two treatments control and fertilized. The T-value obtained from the basic linear 

mixed model represents the quotient of the estimated mean and standard error of the respective 

response variable. Significant P-values from Satterethwaite's t-test for soil sample and Welch's 

t-test for foliar samples are presented by bold and symbols: * p<0.05; ** p<0.01; *** p<0.001. 

 

  Material    Responses      T value P-Value 

 

 

 

       Soil 

 

         CT        -2.23        0.039* 

         pH        -2.61        0.0178*  

N concentration         7.00        0.000*** 

C concentration         2.55        0.012* 

         CN        -5.00        0.000*** 

   N Content         2.647        0.016* 

   C Content        1.63        0.121 

 

Vaccinium               

myrtillus 

         CT        -0.97        0.35 

         N        11.15        0.000*** 

         C        -0.012        0.991 

         CN        -10.27        0.000*** 

 

  Picea abies 

         CT        -0.40        0.70 

         N         5.669        0.000*** 

         C        -0.253        0.803 

         CN        -8.867        0.000*** 
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Figure 2: Mean value of response variables of Picea abies and Vaccinium myrtillus with 

standard error (a) Condensed Tannin concentration, (b) Nitrogen concentration, (c) Carbon 

concentration, (d) C: N (carbon to nitrogen) ratio for the two treatments. The mean value was 

calculated by dividing the total sum of the values by the number of plots, including subplots 

(n= 50 for each treatment). The significant p-value for each response is shown by '*' and 

nonsignificant p-values by 'ns' beside the respective column. 
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3.2. Soil response 

Condensed tannin concentration was significantly lower by an average of 13% in fertilized 

plots compared to control (Table1) (Fig:3a). CT concentration was not affected by any of the 

variables (WHC, depth of the soil core, total graminoids, and Vaccinium myrtillus cover) 

individually. However, a substantial interaction effect between treatment and total V. myrtillus 

cover was found (Table 2) (Appendix).  

Carbon and nitrogen concentration increased in fertilized plots, but C: N ratio and pH value 

decreased significantly. C and N concentration increased by 12% and 7%, respectively 

(Table1) (Fig 3d) (Fig 3c). pH value decreased by 2% (Table1) (Fig 3b) and C:N ratio by 8% 

(Table1) (Fig 3e). Nitrogen concentration and C: N ratio was affected significantly only by 

water holding capacity (WHC), and C concentration only affected Vaccinium myrtillus cover 

(Table 2) (Appendix) among all the variables. Nitrogen content significantly increased by 18% 

(Table 1) (Fig 4a), but C content was not affected (Table 1) (Fig 4b). 

  

 

 

 



13 
 

 

Figure 3: Mean values of response variables of soil with standard error (a) condensed Tannin 

Concentration, (b) pH value, (c) Nitrogen Concentration, (d) Carbon Concentration), (e) C: N 

Ratio (carbon to nitrogen ratio), for the two treatments. The mean value was calculated by 

dividing the total sum of the values by the number of plots, including subplots (n=50 for each 

treatment). Significant p-values for each response are shown by the asteroid ('*' and '***') 

beside the respective column. 
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Figure 4: Mean value with standard error a) nitrogen and b) carbon content in control and 

fertilized plots. The significant p-value for each response is shown by '***' and nonsignificant 

p-values by 'ns' beside the respective column. 
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4. Discussion 

4.1. Senesced foliage responses with increased nitrogen 

I found mixed support for my first hypothesis. That is, fertilization increased foliar N 

concentration and lowered the C: N ratio. Foliar CT concentrations were, however, not 

responsive to the fertilization treatment. The increase of foliar nitrogen concentration of both 

species to N addition is in accordance with the result of the previous thesis of Lorentzen (2017), 

who measured C and N concentration in fresh green foliage. This result also is in line with 

earlier studies (Booker and Maier, 2001, Nybakken et al., 2018) and reflects consistency with 

ecological theories on carbon and nitrogen balance (Bryant et al., 1983, Jones and Hartley, 

1999). Because N is an essential element of chlorophyll, and chlorophyll content is roughly 

proportional to leaf N content (Evans, 1983), plants with a higher foliar N concentration are 

likely to have higher chlorophyll levels (Foulkes et al., 2009). Thus high N concentration with 

increased N availability may indicate increased chlorophyll content that escalates 

photosynthesis and, as a result, C fixation for plant growth. Booker and Maier (2001) found 

that N fertilization increased needle N concentration of Pinus taeda by 23%. Strengbom and 

Nordin (2008) and Gundale et al. (2014) also showed V. myrtillus had a rise in N concentration 

with fertilizer addition.  

Moreover, my results in both species, C concentration, did not show any significant difference 

between treatments, consistent with the decrease of  C: N ratio with fertilization, suggesting 

that the plant growth possibly increased compared to the carbon storage (Ågren, 2004). It may 

be that I performed this study with senesced foliage, and the metabolic process of senesced 

foliage is different from green foliage. In senesced foliage, the metabolic processes undergo 

through nutrient conservation mechanism in which the breakdown of chloroplast leads to the 

redistribution of amino acids, a major nitrogen source (Buet et al., 2019). In this way, plants 

store nutrients to use other parts of the plant later and reduce their nutrient dependency at the 

nutrition-poor site (Gregersen et al., 2008, Buet et al., 2019). Thus, in light of the stated 

reasoning, findings of increased N concentration and decreased C: N ratio are in accordance 

with the carbon-nutrient balance hypothesis (Bryant et al., 1983) and the protein competition 

model (Jones and Hartley, 1999); i.e. a better resource availability condition should result in 

improved growth and decreased plant defence. It should be mentioned that plant growth was 

not measured in this experiment. However, an exception to this idea, Strengbom and Nordin 
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(2008) found significantly higher C concentration in a grass species, Avenella flexuosa, after 

fertilizer addition.  

Opposing my hypothesis, foliar CT concentration had no significant difference in response to 

the N-treatments. Previous empirical studies have shown conflicting effects of fertilization on 

foliar CTs. The majority of studies found a significant decrease in CT concentration with 

fertilizer application (Nybakken et al., 2018, Kraus et al., 2004, Osier and Lindroth, 2001), 

whereas some also found nonsignificant effects of fertilization on foliar CT concentration 

(Booker and Maier, 2001, Iason et al., 1993, Iason and Hester, 1993, Hättenschwiler et al., 

2003). These contradictory outcomes may occur for various reasons, including differences in 

environmental conditions, the experimental setup of those studies, sample collection and 

handling and differences in samples (Kraus et al., 2004). Due to these reasons, some factors 

may not exceed the fertility level or caused significant differences in the carbon-nutrient 

balance required for the foliar compositional change (Kraus et al., 2004).  In the present study, 

I measured CT concentration in senesced foliage. Nybakken et al. (2018) studied fertilization 

effect on chemical defence in Picea abies green needles at the same study site and found that 

fertilization decreased CT level in current year needles but increased in previous year needles. 

There are some other studies that might not be linked to the N addition rather related to the 

seasonal variation or age variation of PSM accumulation patterns. For example, Ganthaler et 

al. (2017) studied seasonal and infection-induced accumulation patterns of phenolic 

compounds in Picea abies and found that catechin (the precursor of CT) concentration 

increased during bud swelling and in the needle maturation, and the previous year needles have 

a high concentration of CT. Again, this study showed no significant differences in the 

accumulation pattern of catechin in healthy and infected needles, suggesting an inherent 

phenological accumulation pattern of CT, regardless of stress condition. Wam et al. (2017)  

investigated compositional change with plant age in Betula Pubescens, reported that CT level 

increased with plant age, and at older age, they remained fairly constant. In light of the findings 

of these mentioned studies, my investigated result of Picea abies is pointing to the prioritization 

of phenological accumulation pattern of CT rather than nitrogen availability in senesced 

foliage.  

Furthermore, Iason et al. (1993) found nonresponsive CT concentration to fertilization in 

Calluna vulgaris, an Ericaceous species. The author explained this result by that fertilization 

increases plant growth initially, but during the time of flowering, there may still be high 

photosynthesis while plants do not need fixed carbon for further development of growth and 
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hence, use that carbon to produce phenolics. Because I sampled litter in mid-September and at 

that time plants have already passed the growing and flowering stage and started litterfall, this 

explanation may also be applied for my data of Vaccinium myrtillus. It might be that the high 

concentration of CT that accumulated during flowering remained in the leaves until they fall 

off after-senescence. Thus, my CT results cannot be explained by either the carbon-nutrient 

balance hypothesis (Bryant et al., 1983) or the protein competition model (Jones and Hartley, 

1999); instead, it challenges the generality of these hypotheses. Therefore, my result of 

increasing N concentration with not responding CT level in senesced foliage could be 

interpreted in a way that fertilization promotes plant growth, but the chemical response may 

vary with the phenological stage of the plant according to the need and availability of 

photosynthates. However, to have a more precise understanding of plants' underlying 

mechanism on compositional change with increased N input, investigation on CT responses to 

fertilization in both green and senesced leaves along with N analysis in tissue level should be 

emphasized further. 

 

4.2. Soil organic layer response with increased nitrogen  

As I hypothesized, condensed tannin in the soil organic layer decreased with N addition. 

Unfortunately, little is known about tannin concentration in response to nitrogen fertilization 

in forest soil, especially in the organic soil layer. However, I measured soil organic layer tannin 

concentration, and the primary source of organic layer tannin is mostly from litter inputs. Thus, 

species compositional change likely to affect the organic layer tannins levels significantly. The 

reason may be that different plant species produce different level of tannins, and subsequently, 

different tannin-containing litter input might influence organic layer tannins concentration. In 

addition, it is well established that tannins are produced in abundance by Ericaceous species 

but not by graminoid species. (Jung et al., 1979). In my study site, the shift of vegetation cover 

from Ericaceae dominated to graminoid dominated with fertilization application was reported 

by Lorentzen (2017). Therefore, the interpretation for the decline of CT concentration in 

fertilized plots might be the effect of species turnover. Moreover, I found a significant 

interaction effect between treatment and Vaccinium myrtillus on CT concentration, whereas 

the individual effect of Vaccinium myrtillus was not significant when not accounting for 

treatment (Table 2) (Appendix), suggesting intraspecific variation might not be the reason for 

the change in soil CT instead, possibly driven by species turnover in ground vegetation. 
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Supporting my third hypothesis, I found an increase of C and N concentration and a reduction 

of the C: N ratio in the soil organic layer in response to the fertilization. These findings are in 

line with the fertilization experiment of Mäkipää (1994), who found that nitrogen addition 

increased N concentration and the amount of organic matter in the humus layer. Forest 

fertilization increases litterfall by increasing leaf production and decreasing leaf turnover time, 

thus increases organic matter in the forest soil (Linder and Axelsson, 1982). I also found a 

significant positive relationship of N concentration with soil WHC when not accounting for 

treatments (Table 2) (Appendix), indicating more available N for plants to uptake and increase 

plant productivity. It is well known that N mineralization and soil moisture are generally 

positively correlated (Gonçalves and Carlyle, 1994).  Moreover, Ilek et al. (2015) showed that 

the organic horizons of Picea abies stands have a higher water holding capacity. Thus, higher 

N concentration in the organic layer can be reasonably explained by the abundance of N rich 

foliage litter, especially needle litter, due to fertilization and the increase of soil moisture. Soil 

C concentration increased in fertilized plots, which could also be due to increased organic 

matter in the organic layer. Here, it should be mentioned that soil organic matter content or 

litterfall was not calculated in this experiment. However, above-ground litter can only account 

for a part of the organic matter, where below-ground litter also significantly contribute to this. 

Vogt et al. (1990) and Haynes and Gower (1995) observed that N deposition reduces root 

biomass in mature forest. Ahlström et al. (1988) also reported that root production and the 

extent of decaying roots declined after fertilization. Thus, to get a more precise understanding, 

both above- and below-ground litter input should be included in the analysis.  

In line with the previous studies, the corresponding C to N ratio significantly declined in 

fertilized plots, reflecting increasing soil organic matter decomposition. A potential reason for 

this could be that fertilization improves litter quality with high N concentration and lower PSM 

concentration, subsequently facilitate microorganisms' efficiency to boost decomposition. 

Additionally, increasing graminoid abundance, which has rapid turnover time, probably makes 

this environment more conducive to decomposers. This explanation is in accordance with 

Prescott et al. (1992), who showed that fertilization increased decomposition. When N and C 

content is calculated as per unit area, the data showed a significant increase of N in fertilized 

plots. This data is consistent with earlier studies from boreal forest ecosystems (Mälkönen, 

1990, Nohrstedt et al., 2000, Tamm et al., 1995) and indicates an increase of soil N pool with 

fertilizer addition. Contrary to most studies, C content did not differ among treatments (Control 

and fertilized), suggesting no fertilization effect on soil carbon storage. According to Lorentzen 
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(2017), the application of fertilizers did not change the total amount of biomass, which may 

explain the similarity of carbon storage between treatments. 

Contrary to earlier studies, pH level significantly reduced in fertilized plots compared to 

controls.  It could be that fertilization increases the amount of Picea abies needle litter in the 

organic matter, leading to a further decrease of pH in the soil organic layer. Pallant and Riha 

(1990) studied the influence of individual trees on the spatial variability in soil pH and 

concluded that Picea abies could significantly contribute to soil acidification. Thus, following 

this line of reasoning, the above explanation for this decrease of pH value in fertilized plots 

seems likely to be true. However, since I have only measured the pH of the organic layer, it is 

important to examine the broadscale by adding mineral layer pH response to understand better 

the effects of nitrogen addition on ecosystem processes. 
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5. Conclusion  

The present study demonstrated that nitrogen input affects ecosystem processes in the boreal 

forest. I found that fertilization affected senesced foliage chemical composition by increasing 

N concentration and decreasing the C to N ratio, but unexpectedly, CT concentration did not 

respond. On the other hand, in the soil organic layer, both C and N increased, but C to N ratio 

and CT decreased with fertilizer addition. C and N results for both foliage and soil are 

consistent with previous studies on fertilization effects in boreal forests. The findings of foliar 

N concentration and corresponding C: N ratio response to fertilizer is in accordance with the 

resource-based ecological theories. However, senesced foliage CT concentration results can be 

well explained by CT's inherent phenological accumulation pattern. In terms of forest soil, the 

decrease of CT in fertilized plots could be due to vegetation coverage shifting from Ericaceae 

to graminoid and forbs. I also found an increase of N content in fertilized plots, reflecting an 

increase of soil N pool. C content did not differ between treatments, suggesting soil C storage 

was not affected by N fertilizer. Even though only MeOH soluble CT, C, N and C: N ratio of 

foliage and soil organic layer and pH of soil have been measured in this experiment, the results 

provide a good overview of the ecosystem responses to fertilizer addition.  

In conclusion, tannins are well known to immobilize nutrients, and N availability in this study 

reduced the CT concentration of the soil organic layer and increased the N concentration, 

thereby increasing the decomposition of organic matter. Therefore, my study findings may 

imply that N deposition and forest fertilization facilitate organic matter decomposition when 

climate change also speeds up this process. 
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7. Appendix 

Table 2:  T-values and P values of each of the measured covariates and their interaction effect 

with treatments for soil organic layer. Analysis was done separately for each of the covariates. 

Significant P-values from Satterethwaite’s t-test are representing by bold and the symbols: 

*p<0.05; **p<0.01; ***p<0.001. 

  Response                Covariates  T value P-Value 

                    WHC -1.748 0.086 

 

 

       CT 

       Treatment x WHC 1.869 0.068 

                 Depth -0.112 0.911 

        Treatment x Depth 0.630 0.530 

          Total Graminoid 0.052 0.959 

  Treatment x total Graminoids 0.019 0.985 

              V. myrtillus -0.473 0.643 

    Treatment x V. myrtillus 2.163  0.046* 

                   WHC 0.818 0.417 

 

 

       pH 

        Treatment x WHC -0.686 0.497 

                  Depth -1.041 0.302 

        Treatment x Depth 0.564 0.574 

         Total Graminoids -0.621 0.543 

 Treatment x total Graminoids 0.826 0.421 

             V. myrtillus -0.438 0.668 

    Treatment x V. myrtillus -1.196 0.249 

                      WHC 2.441  0.020* 

 

 

         N 

 

          Treatment x WHC -1.288 0.206 

                  Depth -1.000 0.322 

          Treatment x Depth 0.194 0.847 

          Total Graminoid 0.150 0.882 

 Treatment x total Graminoids -0.082 0.936 

              V. myrtillus -0.227 0.823 

    Treatment x V. myrtillus 0.246 0.809 

                   WHC 1.614 0.110 

 

  

         C 

 

 

         Treatment x WHC 0.150 0.881 

                 Depth 0.121 0.904 

         Treatment x Depth 0.953 0.343 

         Total Graminoid -1.178 0.256 

 Treatment x total Graminoids 1.196 0.249 

             V. myrtillus -2.250   0.040* 

    Treatment x V. myitillus -0.655 0.522 

                   WHC -2.412   0.020* 

 

 

        CN 

        Treatment x WHC 1.950 0.056 

               Depth 1.733 0.087 

       Treatment x Depth -0.200 0.842 

        Total Graminoid -1.401 0.180 

 Treatment x total Graminoids 1.106 0.285 

              V. myrtillus -1.286 0.217 

     Treatment x V. myrtillus -0.365 0.720 
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