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ABSTRACT

Enhancing the energy output of solar cells increases their competitiveness as a source of energy. Producing thinner solar cells is attractive, but
a thin absorbing layer demands excellent light management in order to keep transmission- and reflection-related losses of incident photons
at a minimum. We maximize absorption by trapping light rays to make the mean average path length in the absorber as long as possible. In
chaotic scattering systems, there are ray trajectories with very long lifetimes. In this paper, we investigate the scattering dynamics of waves in a
model system using principles from the field of quantum chaotic scattering. We quantitatively find that the transition from regular to chaotic
scattering dynamics correlates with the enhancement of the absorption cross section and propose the use of an autocorrelation function to
assess the average path length of rays as a possible way to verify the light-trapping efficiency experimentally.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0049330

Classical chaotic scattering leads to trapped rays with long life-
times, which are of importance in improving light management
for more efficient solar cells. In this paper, we study the wave
dynamics in solar-cell models with proven chaotic dynamics on
the classical level. We show a connection between the emergence
of wave chaos and the enhancement of absorption efficiency due
to light trapping.

I. INTRODUCTION

The demand for renewable energy is driven by the need for
producing clean energy to meet climate and sustainability goals.
Photovoltaic solar cells are a rapidly growing technology that has
resulted in a tremendous increase in photovoltaics (PV) energy pro-
duction over the last decade. From 2010 to 2018, the world-wide
total installed capacity increased more than tenfold from 40 GWp to
over 500 GWp.1 The share of PV is now 2.6% of the total electric-
ity generated globally and covers 4.3% of European energy demand.
To become even more competitive, the price per GWp needs to be

lowered. The efficiency of solar cells is the most important metric
to improve in this regard. Single-junction silicon-based technology
is by far the most commonly used technology today. This technol-
ogy has matured to the point that the theoretical Shockley–Queisser
limit of 29% is almost realized2,3 as shown by the demonstrated
PV cell record for a crystalline Si of 26.7%.4,5 However, producing
thin solar cells reduces the cost and environmental footprint at the
expense of efficiency since the absorbing layer is less likely to absorb
light than a thicker cell would, and, in the case of silicon, the indi-
rect bandgap makes the material a weak absorber. To mitigate the
losses from creating thinner solar cells, smart management of light
is required. If the incoming light is effectively trapped within a solar
cell, the transmission and reflection losses are minimized, thus max-
imizing the efficiency. Moreover, thinner solar cells entail additional
benefits by being less prone to bulk recombination and having better
voltage characteristics.

The concept of light trapping is often analyzed from the per-
spective of geometric optics. The goal is to force photons from the
incoming sunlight into rays that stay long enough in the absorb-
ing layer of the solar cell to excite electrons and holes. To achieve
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long-lived ray trajectories, one must control the dynamics of the
incoming light rays. In general, improved light trapping is engi-
neered by creating or adding structures or textures. They can be on
the surface and on the back side of the solar cell, or they may be
realized as advanced plasmonic structures.6–13

Solar cells are ray-splitting systems since the surface of the
solar cells acts as a ray-splitting boundary where rays are reflected
or transmitted according to probabilities given by the Fresnel
equations.14 Ray-splitting dynamics has been studied extensively
in the context of chaotic scattering,15–18 in which ray splitting19–25

and ray trapping26,27 play a major role. Both concepts are of cen-
tral relevance to light trapping in solar-cell applications. Ray trap-
ping is connected to the defining property of a system exhibiting
chaotic dynamics, which is the hypersensitivity to initial conditions.
The presence of chaotic dynamics has interesting implications in
the context of absorption in solar cells. Bunimovich showed that
dynamics in a Bunimovich billiard, a bounded dynamical system,
is ergodic,28,29 meaning that the whole energetically accessible phase
space of the system is visited by a generic ray, i.e., a ray started with
initial conditions that are not too special. If ergodic rays are present
in a solar cell, it means that incoming rays are deflected away from
the vertical direction, resulting in a longer average path length.30

There are few reports of the benefits of chaotic scattering dynamics
in solar cells. Mariano et al.31 report experimental and computa-
tional findings that a solar cell integrated on a special photonic fiber
plate leads to an optically ergodic system and a greatly enhanced
light absorption. Using classical ray-tracing calculations and veri-
fying the results with a commercial finite-difference time-domain
(FDTD) solver, Seim et al.32 recently showed that the transition from
regular to chaotic scattering dynamics correlates with the enhance-
ment of the absorption efficiency. The result was proven for a model
system with a shape akin to a Bunimovich billiard, where the tran-
sition from regular to chaotic scattering was controlled by a single
parameter. It was also shown that the result was structurally stable;
i.e., it was not sensitive with respect to the system parameters cho-
sen. This is a very important property for the successful technical
realization of such a system. If the phenomenon was only valid for
a special, exactly realized shape, one could never expect to be able
to reproduce the shape in the lab, let alone in a large-scale industrial
process.

While in systems of any dimension, geometrical ray optics
and electromagnetic (E&M) wave simulations produce compara-
ble results in the short wavelength limit, in two or more dimen-
sions, there is not a general ray theory known to the authors that
is exact for systems that cannot be considered to be within the
geometrical optics limit. However, in effectively one-dimensional
systems, for instance, a stack of planar films, an exact ray the-
ory exists.33 In higher-dimensional systems, we are, therefore, in
need of E&M wave calculations for simulating optical systems and
obtaining their optical properties accurately. A solar cell is an inher-
ently wave-mechanical scattering system. In terms of scattering
dynamics, the dynamics on the wave level “feel” the underlying
classical dynamics,17 but chaos on the classical level does not nec-
essarily imply chaos on the wave level, more commonly called
wave chaos. The aim of this paper is to confirm the findings
of Seim et al.32 by applying techniques from the fields of quan-
tum and wave chaos to extend our knowledge of how chaos can

improve the light-trapping properties in surface-structured solar
cells.

We start out by presenting a very brief account of the aspects
of classical and quantum chaos that are relevant in the context of
this paper, enhancing the light trapping in solar cells. Section III
explains the model system and the numerical methods used. Then,
the results are presented in two parts, the first highlights the appear-
ance of chaotic signatures and the enhancement of the absorption
efficiency as an effect of varying a system parameter. The second
part shows that these effects are tied to the transition from the reg-
ular to chaotic scattering regime. The results and usefulness to light
trapping are summarized in Sec. IV.

II. CLASSICAL AND QUANTUM CHAOS

Chaos is a phenomenon that is seen in many dynamical sys-
tems. The defining trait of chaotic systems is that the dynamical
motion is strongly dependent on the initial conditions. Chaos is
divided into two separate, but connected fields, classical chaos and
wave chaos.

A. Classical chaos

Classical chaos started with Jacques Hadamard in 1898 with
his study of exponential divergence of rays in a dynamical billiard.
The rays in dynamical billiards are the trajectories they trace out as
particles move on a surface bounded by reflecting walls. Dynami-
cal billiards are, therefore, closed systems. Various closed systems
with chaotic dynamics have been studied in great detail, with per-
haps most extensively studied being the Sinai and Bunimovich
billiards.34,35 The open counterpart to bounded billiard systems are
called scattering systems.16 Classical chaos in ray systems is often
characterized by how two rays with very similar initial conditions
separate from each other in the phase space as a function of time.
In regular systems without chaos, the separation is linear in time,
while in irregular chaotic systems, the separation is exponential. The
Lyapunov exponent λ gives the rate of divergence

s(t) = eλts(0), (1)

where s(0) is the initial separation distance and s(t) is the separation
at a time t. A positive Lyapunov exponent is needed for exponential
divergence and is, therefore, used as a tool to diagnose chaos in a
system.

B. Quantum chaos

Quantum chaos, or more generally wave chaos, is a dynami-
cal phenomenon that may occur quite generally in all wave systems.
Wave chaos can appear in real, complex, as well as vector fields,
and the governing wave equations can be linear equations such as
the Schrödinger equation or Maxwell’s equations, or they can be
non-linear such as the Gross–Pitaevskii equation.36

In 1955, Wigner introduced random matrices to model the
spectra of heavy atomic nuclei,37,38 a tool that has since proven enor-
mously useful in analyzing wave chaos.36 Random matrix theory,
in particular, with a view on its application to wave chaos, was
then developed further by Dyson, Mehta, and others.36,39 One of the
central results is the Wigner surmise. It postulates the probability
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density function, P(s), of a sequence of nearest-neighbor spacings
between energy levels in heavy nuclei. It is given by

P(s) =
πs

2
e−π s2/4, (2)

where s = s′/D with s′ being a particular nearest-neighbor spac-
ing and D being the mean distance between neighboring energy
levels. Equation (2) is commonly referred to as the Wigner sur-
mise or the Wigner distribution. The class of random matrices that
this particular version of the Wigner distribution is universal for is
called the Gaussian orthogonal ensemble (GOE).40,41 Later, it was
conjectured by Bohigas et al. that all chaotic systems have the uni-
versality of the Wigner distribution predicted by random matrix
theory.42 Confidence in the conjecture was built over the years by
a large amount of evidence.36,39,43 It is generally agreed upon that
(generic) regular systems have Poissonian level distributions44–46 and
that (generic, time-reversal invariant) chaotic systems have level
distributions fitting the Wigner surmise.42,47,48

The transition from regular to chaotic dynamics has been stud-
ied in the context of universality in the S-matrix fluctuations.44,49

Berry and Robnik,50 and Brody51,52 have developed models to make
quantitative predictions for the level statistics as a system gradually
becomes more irregular. These models are interpolations between
the Poisson and Wigner distributions. The Berry–Robnik distribu-
tion is

PBR(S, ρ) = ρ2 e−ρSerfc(
√
πρ̄S/2)

+ (2ρρ̄ + πρ̄3S/2) e−ρS−πρ̄2S2/4, (3)

where ρ̄ = 1 − ρ is the fraction of chaos in the available phase space.
Brody’s distribution is

PB(S,ω) = α(ω + 1)Sω e−αSω+1
, (4)

where

α =
[

0

(

ω + 2

ω + 1

)]ω+1

(5)

and ω is a measure of the level repulsion. Thus, ω = 0 yields the
Poisson distribution, and ω = 1 yields the Wigner surmise. How-
ever, the ω in the Brody distribution does not have a rigorous
physical interpretation like the ρ has in the Berry–Robnik distri-
bution. We use these distributions later on as tools to quantify the
onset of chaos in a model system by comparing them to histograms
of level statistics.

III. THE FILM+DOME SYSTEM

The model system shown in Fig. 1(a) is a scattering system.
It is comprised of three mirrors arranged like a bucket (left, bot-
tom, and right), while the system is open at the top, where it has
a non-absorbing dome structure placed on top of a light-absorbing
film. Thus, in the context of electromagnetic theory and optics, our
system, conceptually, is a waveguide,53 closed at one end, with a
dielectric coupling structure, i.e., the dielectric dome, attached to
its open end. Both structures, i.e., film and dome, are characterized
by their index of refraction, nfilm ∈ C and ndome ∈ R, respectively.
We call this the film+dome system. Because our aim is to study the

(a) (b)

FIG. 1. (a) The film+dome scattering system is enclosed in a mirror-shaped
bucket. (b) The discretized film+dome system.

effects of wave chaos in an optically thin surface-structured solar
cell, we model the absorption capabilities of the solar cell by the
imaginary part of the index of refraction alone, without any addi-
tional device modeling. Thus, the approach chosen is well suited
to study scattering phenomena. The aim is not to predict the I–V
characteristics of an experimental realization of the same system.
We have previously investigated the classical dynamics of the same
system.32

The scattering problem depicted in Fig. 1(a) is two-dimensional
but equivalent to the three-dimensional problem where the struc-
ture is extended out of the two-dimensional plane of the picture;
i.e., we assume cylindrical symmetry along the z axis. In this geome-
try, it is convenient to assume that the polarization of the incoming
radiation is pointing along the z direction of the extended structure
since this allows for a two-dimensional description of the associ-
ated E&M wave problem. As a consequence of this assumption, the
polarization is always perpendicular to the plane of incidence. In
this case, the E&M wave equation is the Helmholtz equation. It is
interesting to note that the problem is completely analogous to the
time-independent Schrödinger equation if the solutions are assumed
to be separable in time and space. We solve the Helmholtz equation
to get the steady state solutions of the scattering problem,

(∇2 + n2K2)ψ = 0, (6)

where n is the complex index of refraction in the two-dimensional
region enclosed by the mirrors, x ∈ [0, w] and y ∈ [0, ∞]. We opt
to solve the Helmholtz equation by using Green’s function method.
Green’s function, G(x, x′, y, y′; K), obeys the boundary conditions

ψ(x, 0) = 0, (7a)

ψ(0, y) = ψ(w, y) = 0 (7b)
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and is thus constructed by the normalized eigenfunctions

φmk(x, y) =
2

√
πw

sin
(mπx

w

)

sin(ky), (8)

where k ∈ R, and m ∈ N, according to the waveguide interpretation
of our system above, is the waveguide mode index. G(x, x′, y, y′; K) is
now constructed according to

G(x, x′, y, y′; K) =
∞

∑

m=−∞

∫ ∞

0

φmk(x, y)φmk(x
′, y′) dk

K2 − π2m2

w2 − k2
, (9)

where the sum is over all modes, m, of the system (waveguide),
including both propagating modes and evanescent modes. The full
derivation of G(x, x′, y, y′; K) can be found in Appendix A. Depend-
ing on whether K is real (propagating mode) or complex (evanescent
mode), we split G(x, x′, y, y′; K) into two branches, corresponding to
propagating and evanescent modes, according to

K2 −
π 2m2

w2
> 0, propagating modes, (10)

K2 −
π 2m2

w2
< 0, evanescent modes, (11)

respectively. The complete Green’s function is divided into two
expressions

Gprop =
M

∑

m=1

i

wBm

sin
(mπx

w

)

sin

(

mπx′

w

)

×
[

eiBm(y+y′) − eiBm|y−y′|
]

,

(12)

Geva =
∞

∑

m=M+1

1

wAm

sin
(mπx

w

)

sin

(

mπx′

w

)

×
[

e−Am(y+y′) − e−Am|y−y′|
]

, (13)

with Am =
√

π2m2

w2 − K2, Bm =
√

K2 − π2m2

w2 , and M is the number

of propagating modes available given by the floor function

M =
⌊

Kw

π

⌋

. (14)

The allowed incoming waves are plane waves traveling along the
y axis in the negative direction, weighted by a sine function in the
x-direction. They are of the form

ψin = e−ikyy sin(kxx), (15)

where kx = pπ/w and p is a positive integer. For each value of p,
there is a propagating mode associated with an incoming wave. The
wavelength λ of the incoming wave is given by ky = 2π/λ, and K is
defined in relation to ky and kx in the following way:

K2 = k2
y + k2

x. (16)

Three film+dome systems were evaluated in order to ensure that
the results are not dependent on special system parameters, i.e., to
ensure structural stability. In order to make contact with the param-
eter settings in Ref. 32, which allows us to corroborate the classical

results therein with detailed electromagnetic wave simulations, the
three film+dome systems investigated here consist of a 5µm wide
absorbing film with index of refraction nfilm = 2 + 0.0054i. The
three films are 1, 2, and 3µm thick, while the dome is 3.46µm tall
and 5µm wide. The index of refraction in the dome, ndome, is the
variable parameter.

A. Absorption cross section

The solution of the non-free Helmholtz equation can be found
using the Lippmann–Schwinger formula

ψp(x, y) = φp(x, y)−
∫

G(K, x, x′, y, y′)K2

× [1 − n(x′, y′)
2
]ψp(x

′, y′) dx′ dy′, (17)

where φp(x, y) is one of the M free solutions, meaning no dielectric
material in the bucket-shaped mirror configuration. The free solu-
tion for each propagating mode available to the system is differing
only in the sine envelope, which is controlled by the parameter p,
hence the subscript in Eq. (17). This formula can be reformu-
lated into a matrix problem of the form Ax = b for obtaining a
quick numerical solution. The absorption cross section, which pre-
viously has been shown to be 1 − R, with R being the reflectivity,33 is
calculated directly from the wave function ψ according to

σ =
4π

λw

∫

nr(x, y)ni(x, y)ψ(x, y) dx dy, (18)

where nr and ni are the real and imaginary parts of the complex
index of refraction, respectively. In addition to Green’s function
method, the absorption cross section was also calculated using a
commercial FDTD solver.54 The wave function in Eq. (18) is then
substituted with the electrical field obtained from the FDTD solver
when the system reaches the steady state. Note that these programs
differ in how the calculation is performed. In Green’s function
method, incoming waves with a correct shape according to Eq. (15)
are injected into the bucket, while in the FDTD solver, a plane
wave is sent toward a bucket with an infinite height. These two
methods, however, yield approximately the same results since the
incoming plane wave in the FDTD solver, once it hits the mirrors
of the bucket, very quickly adjusts to the correct mirror bound-
ary conditions. Matching the incoming plane wave with the modes
(15) of the waveguide that leads to the dome, we obtain exp(−ikyy)
=

∑

q Zq exp(−ikyy) sin(qπx/w), where Zq, q = 1, 2, . . ., are the

amplitudes of the waveguide modes excited by the incoming
plane wave. Canceling exp(−ikyy) on both sides, multiplying with
sin(pπx/w), and integrating both sides over the interval [0, w] yield
Zp = 0 for even p and Zp = 4/(πp) for odd p. This means that
the main component excited by the incoming plane wave is p = 1
and the amplitudes of higher-order modes decrease according to
∼1/p. Thus, since Z2 = 0, the intensity of the lowest-p admixture,
i.e., the p = 3 mode, is only about 10% of the p = 1 mode used
as the incoming mode of our Green-function method and explains
both the differences, but also the relatively good agreement between
FDTD and our Green-function simulations. In fact, the incoming
plane wave used by our FDTD solver is closer to reality since an
incoming light wave is better modeled as a plane wave than as a
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special mode of the type (15). This is so since compared to the wave-
length of the incoming light, the waveguide leading to the dome is
about ten times wider.

B. Computing the scattering matrix

For an incoming wave in mode p, the solution of the free
problem is

φp = (e−ikyy − eikyy) sin
(pπx

w

)

, (19)

and we expect the scattered wave function to be a mixture of all
possible waves allowed in the system, which is of the form

ψp =
M

∑

m=1

Sp→m eiBmy sin
(pπx

w

)

(20)

in the asymptotic limit, i.e., y → ∞. Sp→m denotes the scattering
amplitude from the initial mode p to the final mode m. In this limit,
the propagating-mode Green’s function is

lim
y→∞

Gprop = G
(y→∞)
prop =

M
∑

m=1

−2

wBm

sin
(mπx

w

)

× sin(
mπx′

w
) eiBmy sin(Bmy′). (21)

Now, inserting G
(y→∞)
prop into the Lippmann–Schwinger equation

yields

ψp = φ
(y→∞)
p +

∫

G
(y→∞)
prop (x, x′, y, y′)K2

× [1 − n(x′, y′)
2
]9p(x

′, y′) dx′ dy′ (22)

from which, by comparing with Eq. (20), we can read off the
scattering matrix elements

Sp→q = −δpq −
2K2

wBq

∫

sin

(

qπx′

w

)

sin(Bqy
′)

× [1 − n(x′, y′)
2
]ψp(x

′, y′) dx′ dy′. (23)

C. Enhancement of the absorption cross section

We calculated the absorption cross section according to
Eq. (18) for the film+dome system as a function of the index of
refraction, ndome, for three film+dome systems. Figure 2 shows a
comparison of the average absorption cross section 〈σ 〉λ, result-
ing from an average over a wavelength range spanning from 480
to 510 nm, between FDTD, 〈σFDTD〉, and Green’s function method,
〈σGF〉. The Beer–Lambert efficiency, obtained from classical ray cal-
culations, is also shown. These classical ray calculations were carried
out using a ray-tracer software written specifically for the purpose
of classical ray simulations. The details of the calculations can be
found in Ref. 32. The FDTD and ray results agree very well. We
expect this since the systems are close to the geometrical optics
limit with the wavelengths being about ten times smaller than the
total width of the systems. The 〈σGF〉 data are computed using the
wave function of the first propagating mode, which has the form
e−ikyy sin(kxx). As discussed at the end of Sec. III A, the agreement

(a)

(b)

(c)

FIG. 2. Average absorption cross section 〈σ 〉λ, obtained by averaging σ(λ) over
a wavelength interval from 480 to 510 nm, calculated using FDTD (black circles)
and Green’s function approach (blue dots). Film thickness: (a) 1 µm, (b) 2 µm,
and (c) 3 µm. For all three film thicknesses, a rapid increase in 〈σ 〉λ is seen
when ndome is sufficiently large. The orange curve shows the efficiency calcu-
lated by geometric rays, including ray splitting, using Beer–Lambert’s law to model
absorption.32
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with 〈σFDTD〉 is, therefore, not expected to be one-to-one since the
incoming wave forms used in the two wave calculations (FDTD
and Green’s function method) are different. A plane wave is used
in the FDTD calculation. However, the point here is not to make
a direct comparison between the FDTD solver and Green’s func-
tion calculations but to qualitatively search for the same behavior in
〈σ 〉λ as a function of ndome using rays, FDTD, and Green’s function
approach. The agreement between the full wave FDTD and the first-
mode Green’s function calculation is good despite the difference
mentioned previously between the two programs.

All three models show an increase in the average absorption
efficiency, 〈σ 〉λ, as ndome is increased, with a maximum between 2.0
and 2.3. This holds true for all the systems with different film thick-
nesses. This shows that the maximum of the conversion efficiency
occurs roughly at the index-matched situation, i.e., ndome ≈ 2 for
all three film thicknesses. This is intuitively expected since a large
index mismatch at the dome–film interface would lead to substan-
tial reflection and a reduction in the conversion efficiency, an effect
that is clearly visible in Fig. 2 for values of ndome that are far away
from n = 2. However, closer inspection of Fig. 2 also reveals that
precise index matching is favorable only for thick films, whereas
for thin films, the optimal ndome may be different from the index-
matched situation. For instance, in Fig. 2(a), corresponding to a
thin film of film thickness 1µm, we see that the maximum of effi-
ciency occurs at ndome ≈ 2.1, i.e., higher than the index-matched
situation, ndome = 2. In Fig. 2(b), a thicker film of film thickness
2µm, we see that the maximum moves to the left, toward ndome = 2,
but is still higher than the index-matched situation, i.e., ndome = 2.
In Fig. 2(c), which shows the conversion efficiency for yet a thicker
film, at film thickness 3µm, the maximum is now close to ndome = 2,
the index-matched situation. This corroborates the intuition that the
index-matched situation is optimal for thick films, while for thin
films, the optimal index of refraction may not be the index-matched
situation. Of course, as we see in Fig. 2, the deviations from the
index-matched situation will be small since, as mentioned above,
a large index mismatch will lead to significant reflection, which
reduces the conversion efficiency, as indeed observed in Fig. 2. Still,
as we see in Fig. 2, even small changes in ndome can have a sig-
nificant effect on the efficiency: In Fig. 2(a), e.g., the difference in
efficiency between the optimal ndome and the index-matched ndome is
close to 5%.

We also observe that at a certain ndome, 〈σ 〉λ rapidly increases,
hinting at a change of the dynamical behavior. This critical point is
seen at about ndome = 1.85, ndome = 1.6, and ndome = 1.5 for the sys-
tems with film thicknesses 1, 2, and 3µm, respectively, with respect
to the classical ray data (orange curve in Fig. 2). In other words, the
phenomenon of the critical point with increasingly rapid enhance-
ment of 〈σ 〉λ is structurally stable; i.e., it does not depend on a strict
choice of system parameters. However, the value of ndome for which
the critical point occurs does depend on the relative size difference
of the film and dome. For instance, in the 1µm thick film, the
effect appears at a higher ndome compared to the 3µm thick film and
is also stronger. This specific wavelength range, 480–510 nm, was
chosen because it contains a significant part of the solar spectrum
(including its maximum) while keeping the number of propagat-
ing modes available in the system [dictated by Eq. (14)], as large
as possible. Care must be taken when calculating 〈σ 〉λ over finite

wavelength intervals. The rule of thumb is that the interval must
be broad enough to cover the average of σ to get a good agree-
ment between the FDTD and classical ray calculations, which are not
dependent on the wavelength in the same way as in FDTD. Using the
2µm thick film as an example, we see, in Fig. 3(a), that roughly one
“period” of σ is included in the chosen interval. Generally, σ is not
expected to look periodic, but for small values of ndome, the system is
essentially just a film, which shows smooth, rolling fluctuations. One
“period” of these fluctuations captures the average of σ . In Fig. 3(d),
where ndome is larger and σ is more packed with resonances, the cal-
culated values are not so sensitive to the choice of the interval. There
is a transition from slow [Figs. 3(a) and 3(b)] to rapid fluctuations
[Figs. 3(c) and 3(d)], which hints at a change of the dynamics present
in the scatterer. The high density of resonances we observe is also a
feature of Ericson fluctuations, which are frequently associated with
quantum chaotic scattering.55,56 To prove that we are in the Eric-
son regime falls outside the scope of this paper. However, such an
investigation would be of interest to the topic.

D. Signatures of chaos in the scattered wave function

In this section, we present evidence of chaos by inspecting the
scattered wave functions visually. We look for two signatures of
chaos in the distribution of the wave function field strength: scars57

and scarlets.58 These signatures provide straightforward and intu-
itive “litmus tests” to find whether chaos is present in a dynamical
wave system or not. Scarlets are highly irregular patterns that mani-
fest themselves as wrinkly filaments in the wave function field distri-
bution arising in chaotic systems. Originally scarlets were discussed
in the context of quantum chaos, but since then, experimental stud-
ies have shown the presence of scarlets in other wave systems such
as acoustic resonators59 and in water waves.60 Thus, scarlets and
scars are believed to be general wave phenomena. As we have come
to expect for a chaotic system, Figs. 4(c) and 4(d) show scarlets
in the wave function, while Figs. 4(a) and 4(b) show ordered pat-
terns. This indicates that the scattering dynamics in the two latter
cases are more regular than chaotic. These are strong indications
that the film+dome system undergoes a transition from regular to
chaotic scattering dynamics and is in agreement with the findings in
Sec. III C.

Related to the work on eigenvalues and periodic-orbit theory by
Gutzwiller,61 Berry and Tabor,48,62 and Balian and Bloch,63 Heller57

found that unstable periodic orbits have a very visible effect on the
eigenfunctions of classically chaotic systems. In some wave func-
tions, the classical path of the periodic orbits can be seen directly
in cases where the fluctuations in the wave function have a higher
density along the path. Figure 5 shows two wave functions that are
scarred by periodic orbits. In Fig. 5(b), a triangular orbit is scarring
the wave function. This scarring surrounds a periodic orbit of a simi-
lar shape. Additionally, the phase space contains periodic orbits that
zig-zag across the x axis, such as the one shown in Fig. 5(d). From
a ray-trapping perspective, the existence of such orbits can be very
important. The rays move in an almost horizontal fashion, result-
ing in a long path length in the absorbing film. This motion is very
desirable in light-trapping schemes. However, the periodic rays of a
scattering system cannot be reached by rays coming from outside of
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(a)

(b)

(c)

(d)

FIG. 3. Comparison of the spectral absorption cross section as calculated by
FDTD (blue) and the first propagating mode from Green’s function approach
(orange). (a) ndome = 1.2, (b) ndome = 1.4, (c) ndome = 1.8, (d) ndome = 2.0.

the scatterer, but they can get arbitrarily close, thus being effectively
trapped considering their finite lifetimes due to absorption.

An arrow-shaped pattern can be seen in Fig. 4(b), which resem-
bles a scar. An orbit undergoing a total internal reflection at that
angle is not possible for ndome = 1.2. These scar-like patterns are due
to ray splitting, i.e., rays that split into a reflected and transmitted
component at the boundary at the air–dome interface.

E. Transition to chaotic scattering dynamics

Assuming the Bohigas–Giannoni–Schmit conjecture, the dis-
tribution of the nearest-neighbor spacings, P(s), of the eigenangles
of the eigenvalues eiξ of the S matrix are universal. We will now look
closely at these distributions for the film+dome system as a function
of ndome.

When the dome is completely removed from the film+dome
model, the system is fully integrable and an analytic closed-form
solution can easily be found. An integrable scattering system has
fully regular scattering dynamics with uncorrelated levels, which fol-
low Poissonian statistics; see Fig. 6(a). In Fig. 6(b), we see that a
depression at small s appears. Placing the dome structure on top of
the film destroys the integrability of the system, even with a very low
index of refraction ndome = 1.01. For values of ndome close to 1, the
system is said to be pseudo-integrable. In this case, the system has
no classically chaotic counterpart, and there is no global universality
for P(s) to explain the shape of the distribution.64 At ndome = 1.1 and
ndome = 1.2, the level distribution is clearly not a Poissonian but has
not fully developed into a Wigner distribution either. There is level
repulsion shown in the distributions, but the peak is skewed to the
left of what the Wigner surmise predicts.

In the event where an integrable system is perturbed, a smooth
transition to mixed dynamics is expected.44,65,66 This is contrary to
the abrupt transition to chaos of an integrable Hamiltonian that is
made ergodic.64 We expect our system to be the former. It is, there-
fore, difficult to see the onset of chaos by visually comparing the
distributions with the Wigner surmise. We apply an objective sta-
tistical test to quantify exactly where the transition from regular to
chaotic dynamics occurs. The χ 2 goodness of fit test, which we used,
is described in more detail in Sec. B.

The χ 2 test shows the probability of obtaining a histogram
that gives a higher χ 2 value when compared to a certain distribu-
tion. Lower χ 2 values are better. Both the Berry–Robnik distribution
and the Brody distribution were used in the χ 2 test against the
histograms of the level statistics. By varying the “chaoticity param-
eters,” ρ̄ and ω, for the Berry–Robnik and Brody distributions,
respectively, in the interval [0, 1], we find the best-fitting distribu-
tions. Figure 7 shows histograms of level spacing distributions as
ndome is increased in steps of 0.1. The best-fitting Berry–Robnik and
Brody distributions are plotted on top of the histograms. The level
statistics were gathered for wavelengths in the intervals 457–474 nm
and 477–497 nm for a total of 3129 nearest-neighbor level spacings
for the film thickness 2µm. For the 1 and 3µm thick films, only the
interval 477–497 nm with 1620 nearest-neighbor level spacings were
used.

First, by visually inspecting Fig. 7, we see that the Berry–Robnik
and Brody distributions start to fit better to the histograms for
ndome = 1.6 and higher, indicating that the onset of chaos starts
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FIG. 4. Irregularities in the scattered wave function become more and more prevalent with increasing ndome. This is a signature of chaos. (a) ndome = 1.1, (b) ndome = 1.2,
(c) ndome = 1.8, (d) ndome = 2.0.

around this value. There are statistical fluctuations present in the
level statistics histograms due to the sample size and the size of the
S matrices. We assume that a histogram agrees well with the distri-
bution it is compared to if the probability is higher than some limit.
If the probability is lower than the limit, the deviation from the dis-
tribution is said to be statistically significant. We chose to use 5%
as the limit in our statistical tests. Figure 8 shows the probabilities
obtained from the χ 2 test for each value of ndome. The smooth tran-
sition of the level statistics from an integrable system (no dome),
to the pseudo-integrable, to chaotic, makes it difficult for the his-
tograms to pass strictly the statistical test we apply. We, therefore,
expect only the cases with well-developed chaos to pass the test. The
test is passed for ndome values 1.9, 1.6, 1.5 (passing values), and above
for the film+dome systems with 1, 2, and 3µm thick films, respec-
tively. However, due to the statistical fluctuations present, there are

some outliers. The passing values match closely with the critical
points 1.85, 1.6, 1.5 for the 1µm, 2µm and 3µm thick films, respec-
tively, which are the ndome values where a rapid enhancement of the
absorption cross section is observed.

F. Chaos enhanced light trapping

The autocorrelation function of an S-matrix element is
defined as

A(λ) =
∫

S̃∗
i,j(λ)S̃i,j(λ+1λ) dλ
∫

S̃∗
i,j(λ)S̃i,j(λ) dλ

, (24)

where S̃i,j(λ) is the fluctuating part of the S-matrix element Si,j; i.e.,
the mean background is removed. It measures the correlation of the
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FIG. 5. (a) and (c) show scars in the scattered wave function, which trace the path of a periodic orbit. In (b) and (d), the scarred orbits are superposed. The two examples
are from the film+dome system with a 1µm thick film and ndome = 2.0.

S-matrix elements as a function of the wavelength of the incom-
ing wave, λ. The half-width at half-maximum of the autocorrelation
function in energy is inversely proportional to the classical lifetime
τ of rays,55

τ =
1

v1k
, (25)

where v is the speed and

1k =
2π

λ2
1λ. (26)

Thus, from (25), we get an approximation of the lifetime of the rays,
〈LA〉, in the classically analog systems to the quantum film+dome
system. Using the 2µm thick film+dome system as an exam-
ple, we subtract the mean background from the scattering matrix.

Then, (24) can be used to calculate the autocorrelation function
A as a function of 1λ. This analysis was done in three different
ways: (1) using the S2,1 element of the even-parity S matrix of the
film+dome system, (2) averaging over 16 off-diagonal S-matrix ele-
ments, and (3) averaging over all diagonal S-matrix elements [see
open orange, green, and blue circles in Fig. 9(a), respectively]. The
analysis was done for each value of ndome. The autocorrelation func-
tions are shown in Fig. 9(b). By tracing 10000 non-Newtonian rays
(NNR), the average geometric path length for the classical rays,
〈Lgeo

NNR〉, was also computed [see the solid blue line in Fig. 9(a)].
Non-Newtonian rays can split into a transmitted and reflected ray
for each encounter with a ray-splitting boundary with the appro-
priate probability weights according to the Fresnel equations. As
a consequence, the trajectories propagate through the film+dome
scatterer and split such that their probability goes toward zero. The
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(a)

(b)

(c)

(d)

FIG. 6. The dashed line is the Poisson distribution, P(s) = es, and the solid line
is the Wigner surmise. For low values of ndome, the film+dome system is pseu-
do-integrable. At ndome equal to 1.1 and 1.2, the distributions are between the
pseudo-integrable and Wigner case. (a) No dome, (b) ndome = 1.01, (c) ndome
= 1.1, (d) ndome = 1.2.

average path lengths computed from the autocorrelation functions,
〈LA〉, and classical rays, 〈Lgeo

NNR〉, are increasing as a function of
ndome, and they are shown in Fig. 9(a). There is remarkably good
agreement between the classical ray calculations and the quantum
wave calculations.

The connection between experimentally optimizing light trap-
ping by surface structures and the results presented here is the aver-
age path length of rays. Knowing how the average path length of rays
depends on various system parameters is very useful, but the aver-
age path length cannot be measured directly. However, as we have
seen, it can be extracted from the autocorrelation function, which
can be measured. Thus, the fact that the autocorrelation function
can be measured experimentally25 makes it a powerful diagnostic
tool that can be used to optimize the light-trapping capabilities of
new surface-structure designs.

G. Relevance for realistic systems

In this section, we discuss the relevance of our results for
light trapping in realistic solar cells. We do this in three stages.
In Sec. III G 1, we show that considering the realistic case of
anti-reflection coatings and encasing solar-cell components in a
protective film, the index of refraction chosen up to now in this
paper for our simulations, i.e., n ≈ 2, is already a realistic choice
for several high-performance solar-cell materials, including silicon.
In Sec. III G 2, we then show that even without protective layers,
our choice of n ≈ 2 is realistic since it can be applied directly to
inorganic, inorganic–organic, or organic solar-cell materials of cur-
rent interest that naturally have n ≈ 2. In Sec. III G 3, presenting
the results of additional classical simulations, we show explicitly
that our methods can be applied to solar-cell materials of higher
indexes of refraction and that our conclusions derived from the
cases with n ≈ 2 still hold. Thus, we show that our methods are
relevant for optimizing the light-trapping efficiency of solar cells
no matter what specific energy-converting material is used, rang-
ing from a low index of refraction inorganic, inorganic–organic,
and organic materials to high-performance inorganic materials with
large indexes of refraction. In addition, our additional simulations
for different indexes of refraction, presented in Sec. III G 3, support
our claim that even without access to high-performance compu-
tational hardware (a laptop computer is sufficient), the necessary
simulations are efficient and can easily be repeated for many dif-
ferent choices of indexes of refraction, surface-structure geometries,
and film thicknesses.

1. Front layers

It is well known in optics that in the case of geometric ray
optics, where diffraction phenomena are absent, the absolute val-
ues of refractive indexes do not matter; all that matters is their ratios
when transitioning from one material to another.14 Therefore, if a
silicon solar cell with n ≈ 4 is covered with a transparent film or an
anti-reflection coating with index of refraction n ≈ 2 (for instance,
silicon nitride, SiNx, whose index of refraction is tunable from 1.6
to 2.7, has a near-zero absorption coefficient, and is widely used on
silicon solar cells as antireflection coating67), then our classical ray
simulations, performed for the case of n ≈ 2 in both dome structures
and films, are directly relevant to this case since the ratio of n ≈ 4
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. The histograms show the level statistics of the different film+dome systems. The smooth black line is the best-fitting Berry–Robnik distribution, and the red dashed
line is the best-fitting Brody distribution. (a) ndome = 1.3, (b) ndome = 1.4, (c) ndome = 1.5, (d) ndome = 1.6, (e) ndome = 1.7, (f) ndome = 1.8, (g) ndome = 1.9, (h) ndome = 2.0.

inside the dome+film system and n ≈ 2 outside the dome+film sys-
tem is about 2, i.e., the same values that were used in our classical
simulations. We emphasize that all realistic solar-cells in an actual
practical use are encased in some kind of protective material, which
always lowers the effective index of refraction. Thus, our classical
simulations above, while not focused on a specific solar-cell mate-
rial, are nevertheless already performed in an index of refraction
regime that is in the range of realistic inorganic solar-cell materials.
We show in Sec. III G 2 that realistic solar-cell materials exist, which

(a) (b)

(c)

FIG. 8. Pd is the probability of finding a χ̃
2 higher than χ̃ 2

0 , which corresponds
to the best fit. The 5% limit is shown as a horizontal line. The best-fitting
Berry–Robnik and Brody distributions are found by maximizing Pd . Film thickness:
(a) 1 µm, (b) 2 µm, and (c) 3 µm.

(a)

(b)

FIG. 9. (a) The average geometric path length, calculated by ray-tracing 10 000
non-Newtonian rays (blue full line), derived from the width of the autocorrelation
function, using S2,1 (orange open circles), using an average over 16 off-diagonal
S-matrix elements (green open circles), and averaging over all diagonal S-matrix

elements (red open circles). (b) Autocorrelation function, |A(λ)|2, of S̃2,4. The
half-width at half-maximum decreases as ndome increases. This correlates the
transition to chaotic dynamics with longer classical path lengths present in the
system.
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naturally have indexes of refraction around n ≈ 2. For those materi-
als, even without coverings, our simulations, performed above with
n ≈ 2, are of direct relevance.

2. Solar-cell materials with <(n) ≈ 2

There is a large class of solar-cell materials with n ≈ 2. These
can be grouped loosely into inorganic, inorganic–organic, and
organic solar-cell materials.68 While not yet as efficient as silicon as
energy-conversion materials, these materials have recently surfaced
as serious contenders for the construction of solar cells because of
their desirable material properties, e.g., ease of manufacture or pli-
ability. Typical representatives of the inorganic, inorganic–organic,
and organic families of solar-cell materials are, e.g., CsPbBr3,69 the
perovskite CH3NH3PbI3,70 and C60,71 with n ≈ 1.9, 2.2, and 2.1,
respectively, in the spectral region around λ ≈ 500 nm. While these
substances have n in the range used in our simulations above, the
imaginary parts of their indexes of refraction are considerably larger
than what we used in our simulations. However, since we use the
imaginary part of the index of refraction only as a probe of the effec-
tiveness of light trapping and since the imaginary part of the index
of refraction does not influence the transition to chaos, it is unim-
portant for our optimization mechanism. The existence of realistic
solar-cell materials with real parts of the index of refraction in the
range of our simulations above demonstrates that our simulations
are realistic. To remove any doubt about the applicability of our
method to realistic systems, we present in Subsection III G 3 the case
of silicon, which demonstrates that our method works for the most
popular solar-cell material where we also chose exactly the index of
refraction, both real and imaginary parts, as they apply to silicon.

FIG. 10. The absorption cross section obtained by non-Newtonian rays incident
on the dome+film system for film thicknesses 0.5µm (blue), 1.0µm (orange),
2µm (green), and 3µm (red). The arrows show the value of ndome where New-
tonian rays have a sudden surge in path length (Fig. 11). This is an indication of
the onset of chaotic dynamics in the system.

(a)

(b)

(c)

(d)

FIG. 11. The maximal lifetime of Newtonian rays sent orthogonally into the sys-
temwith respect to the film–dome interface, expressed as path length. The sudden
surge in the maximal path length is an indication that the system is becoming
chaotic. Film thickness: (a) 0.5 µm, (b) 1.0 µm, and (c) 2.0 µm, (d) 3.0 µm.
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3. Silicon

In this section, we present a realistic thin-film solar-cell system
consisting of a Si film as the energy-conversion material, a dome
as a surface structure, and a protective coating with index of refrac-
tion n = 1.5. Since the most challenging spectral region for thin-film
technology is in the red or infrared spectral regions, where Si has
a very small absorption efficiency and light trapping becomes of
great importance, we chose for our demonstration Si at 800 nm with
refractive index n = 3.675 + 0.0054i.72

Figure 10 shows the result of the conversion efficiency for four
different film thicknesses as a function of ndome. As expected on the
basis of the discussion in Sec. III G 1, we see the same phenomena
emerging as already observed in our simulations with n ≈ 2; i.e., (i)
the onset of strong conversion efficiency coincides with the onset of
chaos (arrows in Fig. 10) and (ii) the efficiency curves shift to the left
for increased film thickness.

For each film thickness, the onset of chaos was determined by
looking for a jump in the lifetime of rays as a function of ndome. This
is justified since the onset of chaotic scattering is accompanied by
the emergence of the scattering fractal, which contains rays of infi-
nite lifetime. As demonstrated in Fig. 11, the transition to very large
lifetimes is sharp, which means that the onset of chaos can be unam-
biguously extracted from Fig. 11. The arrows in Fig. 10 are placed at
those values of ndome where the sharp transition to long-lifetime rays
occurs in Fig. 11.

Thus, we established, using the exact Si index of refraction, both
real and imaginary parts, that our basic conclusion about the tight
connection between light-trapping efficiency and chaos stays valid,
even in the case of realistic inorganic solar-cell materials with a large
index of refraction.

IV. CONCLUSIONS

We have observed the existence of a critical region in ndome

where the absorption cross section starts to increase rapidly in a
solar cell model with a light-trapping surface structure. By changing
the index of refraction in the light-trapping structure, the scattering
dynamics of the system makes a transition from regular scattering
to the irregular, chaotic scattering regime at a critical value of ndome.
We show that there is a three-way correlation between the onset
of chaotic scattering, the increase of the path length of rays in the
scatterer, and the increase of the absorption cross section.

The implications are of substantial importance. Researchers in
laboratories and industry are already making thinner solar cells to
improve voltage characteristics and lowering the cost, but the low-
ered efficiency that comes with thin solar cells is a major obstacle,
which, to be overcome, demands smart management of light. The
three-way correlation shows that chaos can be used as a design
guide for computationally prototyping surface structures. All the
tools needed to evaluate a given structure and the degree of chaos it
induces in a system are readily available. By measuring the autocor-
relation function presented, the increase in the average path length
can be verified experimentally.

In this paper, using both classical ray-tracing and E&M wave
simulations, we established a new, fundamental mechanism in solar-
cell optimization, i.e., chaos-induced enhancement of conversion
efficiency. Due to the fundamental nature of our findings, we have

no doubt that our results will be of use for the design of highly
efficient surface-structured thin-film solar cells.
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APPENDIX A: GREEN’S FUNCTION APPROACH TO

SOLVING THE HELMHOLTZ EQUATION

We solve the Helmholtz equation

(∇2 + n2K2)ψ = 0 (A1)

by using Green’s function method. To construct Green’s func-
tion, we choose eigenfunctions that satisfy the boundary conditions,
which are defined by our model system. The model is defined as a
2D region where x ∈ [0, w] and y ∈ [0, ∞] such that

ψ(x, 0) = 0, (A2a)

ψ(0, y) = ψ(w, y). (A2b)

We choose eigenfunctions of the form

φmk(x, y) = Nmk sin
(mπx

w

)

sin(ky), (A3)

where k ∈ R, m ∈ I is the mode index and Nmk are the normaliza-
tion constants.

The eigenfunctions are normalized,
∫ w

0

∫ ∞

0

φmk(x, y)φm′k′(x, y)∗ dx dy = 1, (A4)

NmkNm′k′

∫ w

0

∫ ∞

0

sin
(mπx

w

)

sin

(

m′πx

w

)

× sin(ky) sin(k′y) dx dy = 1. (A5)

We can do the integrals separately
∫ ∞

0

sin(ky) sin(k′y) dy =
π

2
δ(k − k′). (A6)

The integral
∫ w

0

sin
(mπx

w

)

sin

(

m′πx

w

)

dx (A7)

or, equivalently,

−
1

2

∫ w

0

[

cos((m + m′)
πx

w
)− cos

(

(m − m′)
πx

w

)]

dx (A8)

can be split into two cases,

1

2

∫ w

0

1 dx =
w

2
, m = m′, (A9)
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−
1

2

∫ w

0

[

cos
(

(m + m′)
πx

w

)

− cos
(

(m − m′)
πx

w

)]

dx = 0,

m 6= m′. (A10)

With m = m′ and k = k′, the two normalization integrals give

Nmk =
2

√
πw

; (A11)

thus, the eigenfunctions are

φmk(x, y) =
2

√
πw

sin
(mπx

w

)

sin(ky). (A12)

Green’s function is defined as

DxyG(x, x′, y, y′; K) = δ(x − x′)δ(y − y′), (A13)

where the 2D operator Dxy is

Dxy =
∂2

∂x2
+
∂2

∂y2
+ K2. (A14)

We can expand Green’s function in terms of the eigenfunctions
φmk(x, y)

G(x, x′, y, y′; K) =
∞

∑

m=−∞

∫ ∞

0

cmk(x
′, y′)φmk(x, y) dk (A15)

and find the expansion coefficients cmk(x
′, y′) by doing

DxyG(x, x′, y, y′; K) = δ(x − x′)δ(y − y′), (A16)

Dxy

∞
∑

m=−∞

∫ ∞

0

cmk(x
′, y′)φmk(x, y) dk = δ(x − x′)δ(y − y′). (A17)

Dxy only operates on φmk; therefore, we get

Dxyφmk(x, y) = φmk(x, y)

(

K2 −
π 2m2

w2
− k2

)

. (A18)

Before we insert into (A17), we rewrite the delta functions

δ(x − x′) =
2

w

∞
∑

m=1

sin
(mπx

w

)

sin

(

mπx′

w

)

, (A19)

δ(y − y′) =
2

π

∫ ∞

0

sin(ky) sin(ky′) dk. (A20)

Now, (A17) has the form

∞
∑

m=−∞

∫ ∞

0

cmk(x
′, y′)φmk(x, y)

(

K2 −
π 2m2

w2
− k2

)

dk

=
4

πw

∞
∑

m=−∞
sin

(mπx

w

)

sin

(

mπx′

w

) ∫ ∞

0

sin(ky) sin(ky′) dk,

(A21)

and we see directly that

cmk(x
′, y′) =

φmk(x
′, y′)

K2 − π2m2

w2 − k2
. (A22)

We arrive at the bilinear form of G

G(x, x′, y, y′; K) =
∞

∑

m=−∞

∫ ∞

0

φmk(x, y)φmk(x
′, y′) dk

K2 − π2m2

w2 − k2
. (A23)

Next, we carry out the integral where only the y-dependent part of
G contains k; thus, the integral we need to consider is

∫ ∞

0

sin(ky) sin(ky′) dk

K2 − π2m2

w2 − k2 + iε
, (A24)

where the iε is an infinitesimal size added to do the complex
integration. Two cases must be considered,

K2 −
π 2m2

w2
> 0 for propagating modes, (A25)

K2 −
π 2m2

w2
< 0 for evanescent modes. (A26)

We let

Am =
√

π 2m2

w2
− K2, (A27)

Bm =
√

K2 −
π 2m2

w2
. (A28)

Since 2 sin(ky) sin(ky′) = cos[k(y − y′)] − cos[k(y + y′)], we only
consider the following integrals for the case of propagating modes:

∫ ∞

0

cos[k(y − y′)] dk

B2
m − k2 + iε

= −
π i

2Bm

eiBm|y−y′|, (A29)

−
∫ ∞

0

cos[k(y + y′)] dk

B2
m − k2 + iε

= −
π i

2Bm

eiBm(y+y′) (A30)

and the following for the case of evanescent modes:

∫ ∞

0

cos[k(y − y′)] dk

−A2
m − k2

= −
π

2Am

e−Am|y−y′|, (A31)

−
∫ ∞

0

cos[k(y + y′)] dk

−A2
m − k2 + iε

= −
π

2Am

e−Am(y+y′). (A32)

The number of propagating modes, M, is decided by the summation
index m. From Eq. (A25), we get

M =
⌊

Kw

π

⌋

. (A33)
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Now, we can write down the complete expression for Green’s
function,

Gprop =
M

∑

m=1

i

wBm

sin
(mπx

w

)

sin

(

mπx′

w

)

×
[

eiBm(y+y′) − eiBm|y−y′|
]

,

Geva =
∞

∑

m=M+1

1

wAm

sin
(mπx

w

)

sin

(

mπx′

w

)

×
[

e−Am(y+y′) − e−Am|y−y′ |
]

.

(A34)

APPENDIX B: BINNING AND THE χ2 GOODNESS OF

FIT TEST

The χ 2 goodness of fit test was performed as described in Tay-
lor’s book An Introduction to Error Analysis.73 For our purposes,
eigenangles were extracted from the S-matrix samples and then
binned before applying the χ 2 test. The bin width was determined
using the Freedman–Diaconis rule;74 i.e., the bin width is dependent
on N, the size of the data set. The Freedman–Diaconis bin width bw

is defined as

bw =
2IQR

3
√

N
, (B1)

where IQR is the interquartile range of the data set.
χ 2 is a measure of the agreement between an observed distri-

bution Ok and an expected distribution Ek. It is defined as

χ 2 =
N

∑

k=1

(Ok − Ek)
2

Ek

. (B2)

In the unlikely event that there is a perfect agreement, χ 2 will be 0.
However, if the fit is good, it is expected that χ 2 will be on the same
order as N or smaller. If the fit is bad, χ 2 will be much larger than N.
In order to say something about the quality of the fit, we look at how
likely it is to find some value χ 2

0 for a given data set and expected dis-
tribution. Specifically, we calculate the probability for finding a χ 2

greater than the χ 2
0 found from the data. This probability is given as

Probd(χ̃
2 ≥ χ̃ 2

0 ) =
2

2d/20(d/2)

∫ ∞

χ0

xd−1 e−x2/2 dx, (B3)

where d is the number of degrees of freedom, d = N − c, the num-
ber of observations minus the number of constraints. χ̃ 2 = χ 2/d is
called the reduced chi squared.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1International Energy Agency, see http://www.iea-pvps.org/index.php?id=266 for
“IEA: A Snapshot of Global PV”; accessed 5 August 2019.

2T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of
silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
3L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,
“Silicon solar cells: Toward the efficiency limits,” Adv. Phys.: X 4, 1548305 (2019).
4M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A.
W. Ho-Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovoltaics Res.
Appl. 26, 3–12 (2018).
5K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto,
D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction
solar cell with interdigitated back contacts for a photoconversion efficiency over
26%,” Nat. Energy 2, 17032 (2017).
6J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for
improved light trapping in thin silicon solar cells,” Opt. Express 18, 5481–5495
(2010).
7J. Gjessing, A. Sudbø, and E. Marstein, “A novel back-side light-trapping struc-
ture for thin silicon solar cells,” J. Eur. Opt. Soc. Rapid Publ. 6, 11020 (2011).
8C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière,
M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Bal-
lif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6,
2790–2797 (2012).
9P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-
film solar cells with randomly rough and hybrid textures,” Opt. Express 21,
A808–A820 (2013).
10Q. Tang, H. Shen, H. Yao, K. Gao, Y. Jiang, Y. Li, Y. Liu, L. Zhang, Z. Ni, and
Q. Wei, “Superiority of random inverted nanopyramid as efficient light trapping
structure in ultrathin flexible C-Si solar cell,” Renew. Energy 133, 883–892 (2019).
11Y. Xu and Y. Xuan, “Photon management of full-spectrum solar energy through
integrated honeycomb/cone nanostructures,” Opt. Commun. 430, 440–449
(2019).
12J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorp-
tion enhancement in thin-film solar cells using whispering gallery modes in
dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
13H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,”
Nat. Mater. 9, 205 (2010).
14F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed.
(Pearson Education, Inc., 2007).
15J. M. Seoane and M. A. F. Sanjuán, “New developments in classical chaotic
scattering,” Rep. Prog. Phys. 76, 016001 (2012).
16E. Ott and T. Tél, “Chaotic scattering: An introduction,” Chaos 3, 417–426
(1993).
17R. Blümel and W. P. Reinhardt, Chaos in Atomic Physics (Cambridge University
Press, 1997).
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