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Abstract

Power laws, that is, power spectral densities (PSDs) exhibiting 1=f a behavior for large frequencies f, have been observed
both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings.
While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a
possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation.
Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for
the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole
moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer
functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously
distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-

frequency 1=f a power laws with power-law exponents analytically identified as aI
?~1=2 for the soma membrane current,

ap
?~3=2 for the current-dipole moment, and aV

?~2 for the soma membrane potential. Comparison with available data
suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated
current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1=f )
noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings
suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this
finding goes beyond neuroscience as it demonstrates how 1=f a power laws with a wide range of values for the power-law
exponent a may arise from a simple, linear partial differential equation.
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Introduction

The apparent ubiquity of power laws in nature and society, i.e.,

that quantities or probability distributions y(x) satisfy the

relationship

y(x)!x{a, ð1Þ

where a is the power-law exponent, has for a long time intrigued

scientists [1]. Power laws in the tails of distributions have been

reported in a wide range of situations including such different

phenomena as frequency of differently sized earth quakes,

distribution of links on the World Wide Web, paper publication

rates in physics, and allometric scaling in animals (see [1] and

references therein). A key feature of power laws is that they are

scale invariant over several orders of magnitude, i.e., that they do

not give preference to a particular scale in space or time. There are

several theories with such scale invariance as its fingerprint, among

the most popular are fractal geometry [2] and the theory of self-

organized critical states [3].

Conspicuous power laws have been seen also in the field of

neuroscience [4], among the most prominent the observed power

laws in the size distribution of neuronal ‘avalanches’ [5,6] and in

the high-frequency tails of power spectral densitites (PSDs) of

electrical recordings of brain activity such as electroencephalog-

raphy (EEG) [7,8], electrocorticography (ECoG) [9–12], the local

field potential (LFP) [13–16], and the soma membrane potential
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and currents of individual neurons [17–21]. To what extent these

various power laws have the same origin, is currently not known

[4,6]. In any case, it is the latter type of power law, i.e., those

observed in the PSDs of electrical recordings, which is the topic of

the present paper.

Ever since Hans Berger recorded the first human electroen-

cephalogram (EEG) in 1924 [22], its features have been under

extensive study, especially since many of them are directly related

to disease and to states of consciousness. In the last decades the

frequency spectra of the EEG has, for example, attracted

significant attention as the high-frequency part of the PSD in

experiments with maximal frequencies typically in the range 30–

100 Hz has often well fitted by a 1=f a power laws with a typically

in the range from 1 to 2.5 [7,8]. Such apparent power laws have

not only been seen in macroscopic neural recordings such as EEG,

ECoG and LFP, they also appear at the microscopic level, i.e., in

single-neuron recordings. PSDs of the subthreshold membrane

potentials recorded in the somas of neurons often resemble a 1=f a

power law in their high-frequency ends (v* 100–1000 Hz),

typically with a larger exponent a ranging from 2 to 3 [17–21].

This particular power law seems to be very robust: it has been

observed across species, brain regions and different experimental

set-ups, such as cultured hippocampal layer V neurons [17],

pyramidal layer IV–V neurons from rat neocortex in vitro [19,20],

and neocortical neurons from cat visual cortex in vivo [18,21]. At

present, the origin, or origins, of these macroscopic and

microscopic power laws seen in PSDs of neural recordings are

actively debated [4,6].

Lack of sufficient statistical support have questioned the validity

of identified power-law behaviors, and as a rule of thumb, it has

been suggested that a candidate power law should exhibit an

approximately linear relationship in a log-log plot over at least two

orders of magnitude [1]. Further, a mechanistic explanation of

how the power laws arise from the underlying dynamics should

ideally be provided [1]. In the present paper we show through a

combination of analytical and numerical investigations how power

laws in the high-frequency tail of PSDs naturally can arise in

neural systems from noise sources homogeneously distributed

throughout neuronal membranes. We further show that the

mechanism behind microscopic (soma potential, soma current)

power laws will also lead to power laws in the single-neuron

contribution (current-dipole moment) to the EEG. Moreover, we

demonstrate that if all single-neuron contributions to the recorded

EEG signal exhibit the same power law, the EEG signal will also

exhibit this power law. We find that for different measurement

modalities different power-law exponents naturally follow from the

well-established, biophysical cable properties of the neuronal

membranes: the soma potential will be more low-pass filtered than

the corresponding current-dipole moment determining the single-

neuron contribution to the EEG [23,24], and as a consequence,

the power-law exponent a will be larger for the soma potential

than for the single-neuron contribution to the EEG [25] (see

illustration in Fig. 1).

When comparing with experimental data, we further find that

for the special case when uncorrelated and homogeneously

distributed membrane-current sources themselves exhibit 1=f
power laws in their PSD, the theory predicts power-law exponents

a in accordance with experimental observations for the micro-

scopic measures, i.e., the soma current and soma potential. The

experimental situation is much less clear for the EEG signal where

frequency spectra presently is limited upwards to 100 Hz.

However, we note that under the assumption that such single-

neuron sources dominate the high-frequency part of the EEG

signal, the theoretical predictions are also compatible with the

power-law-like behavior so far observed experimentally.

Both synaptic noise and intrinsic channel noise will in general

contribute to the observed noise spectra, cf. Fig. 1. While our

theory per se is indifferent to the detailed membrane mechanism

providing the noisy current, our findings suggests that the

dominant noise source underlying the observed high-frequency

power laws seen in PSDs may be channel noise: prevalent theories

for synaptic currents are difficult to reconcile with a 1=f power law

in the high-frequency tail of power spectra, while potassium ion

channels with such 1=f noise spectra indeed have been observed

[26]. Note that this does not imply that channel noise in general

dominates synaptic noise in electrophysiological power spectra: it

only suggests that the high-frequency power-law part, which in the

in vivo situation typically represents a tiny fraction of the overall

noise power, is dominated by channel noise.

Through the pioneering work by Wilfred Rall half a century ago

[27,28] the ball and stick neuron model was established as a key

model for the study of the signal processing properties of neurons. An

important advantage is the model’s analytical tractability, and this is

exploited in the present study. We first demonstrate the relevance of

this simplified model in the present context by numerical compar-

isons with results from a morphologically reconstructed multi-

compartmental pyramidal neuron model. Then we derive analytical

power-law expressions for the various types of electrophysiological

measurements. While a single current input onto a dendrite does not

give rise to power laws, we here show that power laws naturally arise

for the case with homogeneously distributed inputs across the

dendrite and the soma [29], see Fig. 1. For this situation we show

that the ball and stick neuron model acts as a power-law filter for

high frequencies, i.e., the transfer function from the PSD of the input

membrane currents, s(f ), to the PSD of the output (soma potential,

soma current, or current-dipole moment setting up the EEG), S(f ),
is described by a power law: S(f )=s(f )~1=f a. Notably the

analytically derived power-law exponents a for these transfer

functions are seen to be different for the different measurement

modalities. The analytical expressions further reveal the dependence

of the PSDs on single-neuron features such as the correlation of input

Author Summary

The common observation of power laws in nature and
society, that is, quantities or probabilities that follow 1=xa

distributions, has for long intrigued scientists. In the brain,
power laws in the power spectral density (PSD) have been
reported in electrophysiological recordings, both at the
microscopic (single-neuron recordings) and macroscopic
(EEG) levels. We here demonstrate a possible origin of such
power laws in the basic biophysical properties of neurons,
that is, in the standard cable-equation description of
neuronal membranes. Taking advantage of the mathe-
matical tractability of the so called ball and stick neuron
model, we demonstrate analytically that high-frequency
power laws in key experimental neural measures will arise
naturally when the noise sources are evenly distributed
across the neuronal membrane. Comparison with available
data further suggests that the apparent high-frequency
power laws observed in experiments may stem from
uncorrelated current sources, presumably intrinsic ion
channels, which are homogeneously distributed across
the neural membranes and themselves exhibit pink (1=f )
noise distributions. The significance of this finding goes
beyond neuroscience as it demonstrates how 1=f a power
laws power-law exponents a may arise from a simple,
linear physics equation.
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currents, dendritic length and diameter, soma diameter and

membrane impedance.

The theory presented here also contributes to 1=f -theory in

general [30]: it illustrates that a basic physics equation, the cable

equation, can act as a 1=f a power-law filter for high frequencies

when the underlying model has spatially distributed input.

Furthermore, a may have any half-numbered value between 1/2

and 3, depending on the physical measure (some potential, soma

current, single-neuron contribution to the EEG) under consider-

ation, and the coherence of the input currents. Intuitively, the

emergence of the power-law spectra can be understood as a result

of a superposition of simple low-pass filters with a wide range of

cutoff frequencies due to position-dependent dendritic filtering of

the spatially extended neuron [23,24,31]. This is in accordance

with the orginal idea of Schottky from 1926 [32] that the 1=f shot-

noise observed in vacuum tubes by Johnson could be understood

by the combined action of a continuous distribution of ‘exponen-

tial relaxation processes’ [33].

The paper is organized as follows: In the next section we derive

analytical expressions for the soma potential, soma current and

current-dipole moment for the ball and stick neuron for the case

with noisy current inputs impinging on the soma ‘ball’ and

homogeneously on the dendritic stick. While these derivations are

cumbersome, the final results are transparent: power laws are

observed for all measurement modalities in the high-frequency limit.

In Results we first demonstrate by means of numerical simulations

the qualitative similarity of the power-law behaviors between the

ball and stick model and a biophysically detailed pyramidal neuron.

We then go on to analytically identify the set of power-law

exponents for the various measurement modalities both in the case

of uncorrelated and correlated current inputs. While the derived

power laws strictly speaking refer to the functional form of PSDs in

the high-frequency limit (Eq. 1), the purported power laws in neural

data have typically been observed for frequencies less than a few

hundred hertz. Our model study implies that the true high-

frequency limit is not achieved at these frequencies. However, in our

ball and stick model, quasi-linear relationships can still be observed

in the characteristic PSD log-log plots for the experimentally

relevant frequency range. These apparent power laws typically have

smaller power-law exponents than their respective asymptotic

values. The numerical values of these exponents will depend on

details in the neuron model, but the ball and stick model has a very

limited parameter space: it is fully specified by four parameters, a

dimensionless frequency, the dimensionless stick length, the ratio

between the soma and infinite-stick conductances, and the ratio

between the somatic and dendritic current density. This allows for a

comprehensive investigations of the apparent power-law exponents

in terms of the neuron parameters, which we pursue next. To

facilitate comparison with experiments we round off the Results

section exploring how PSDs, and in particular apparent power laws,

depend on relevant biophysical parameters. In the Discussion we

then compare our model findings with experiments and speculate

on the biophysical origin of the membrane currents underlying the

observed PSD power laws.

Models

In the present study the idealized ball and stick neuron model

will be treated analytically, while simulation results will be

presented for a reconstructed layer V pyramidal neuron from

cat visual cortex [34] (Fig. 2). Both the ball and stick model and

the reconstructed layer V neuron model are purely passive,

ensuring that linear theory can be used. The input currents are

distributed throughout the neuron models with area density rd in

the dendrite and rs in the soma. The input currents share

statistics, i.e., they all have the same PSD, denoted s~s(v), and a

pairwise coherence c~c(v). The coherence is zero for uncorre-

lated input and unity for perfectly correlated input.

For the ball and stick neuron, the cable equation is treated

analytically in frequency space. We first provide a solution for a

single current input at an arbitrary position, and then use this

solution as basis for the case of input currents evenly distributed

throughout the neuronal membrane. The resulting PSDs can be

expressed as Riemann sums where the terms correspond to

single-input contributions. In the continuum limit where the

neuron is assumed to be densely bombarded by input currents, the

Figure 1. Schematic illustration of the input-output relationship between transmembrane currents (input) and the different
measurement modalities (output). The transmembrane currents are illustrated by synaptic currents and channel currents. A synaptic current is
commonly modeled by means of exponentially decaying functions (synaptic kernel) triggered by incoming spike trains, whereas a channel current
typically is modeled by a channel switching between an open state (o), letting a current with constant amplitude through the channel, or a closed
state (c). The input currents are filtered by the neuronal cable, resulting in a low-pass filtered output current in the soma with a power spectral
density (PSD) designated SI . The PSDs of the other measurement modalities studied here, i.e., the soma potential (SV ) and the current-dipole
moment giving the single-neuron contribution to the EEG (Sp), are typically even more low-pass filtered, as illustrated by the PSDs plotted in the
lower right panel.
doi:10.1371/journal.pcbi.1003928.g001
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Riemann sums become analytically solvable integrals. From these

analytical solutions we can then extract the various transfer

functions relating the output PSDs to the PSDs of the input

current. Here the output modalities of interest are the net somatic

current, the soma potential and the single-neuron contribution to

the EEG, see Figs. 1 and 2.

Below we treat the ball and stick neuron analytically. For the

pyramidal neuron (Fig. 2), the NEURON Simulation Environ-

ment [35] with the supplied Python interface [36] was used.

Cable equation for dendritic sticks
For a cylinder with a constant diameter d the cable equation is

given by

l2 L2V (x,t)

Lx2
~tm

LV (x,t)

Lt
zV (x,t), ð2Þ

with the length constant l~1=
ffiffiffiffiffiffiffiffiffi
gmri
p

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRm=4Ri

p
and the time

constant tm~cm=gm~RmCm. Rm, Cm and Ri denote the specific

membrane resistance, the specific membrane capacitance and the

inner resistivity, respectively, and have dimensions ½Rm�~Vm2,

½Cm�~F=m2 and ½Ri�~Vm. Lower-case letters are used to

describe the electrical properties per unit length of the cable:

gm~1=rm~pd=Rm, cm~pdCm and ri~4Ri=pd2, with units

½gm�~1=Vm, ½cm�~F=m and ½ri�~V=m. For convenience, the

specific membrane conductance, Gm~1=Rm, will also be used, see

Table 1 for a list of symbols.

With dimensionless variables, X~x=l and T~t=tm, the cable

equation, Eq. 2, can be expressed

L2V (X ,T)

LX 2
{

LV (X ,T)

LT
{V (X ,T)~0: ð3Þ

Due to linearity, each frequency component of the input signal

can be treated individually. For this, it is convenient to express the

membrane potential in a complex (boldface notation) form,

V~V̂V(X ,W )ejWT , ð4Þ

where V̂V is a complex number containing the amplitude abs(V̂V) and

phase arg(V̂V) of the signal, and the dimensionless frequency is defined

as W~vtm. The complex potentials are related to the measurable

potential V (X ,T) through the Fourier components of the potential,

Figure 2. Normalized power spectral densities (PSDs) for the soma current, the current-dipole moment (i.e., EEG contribution) and
the soma potential for a ball and stick neuron and a pyramidal neuron. A homogeneous density of noisy input currents is applied
throughout the neural membrane. Columns 1 (ball and stick neuron) and 2 (pyramidal neuron) show PSDs for white-noise input, the blue and green
lines correspond to uncorrelated and correlated input currents, respectively. Note that there is no green line in the two upper rows, since a
homogeneous density of correlated inputs throughout the neuron gives no net soma current or dipole moment. An ensemble of PSDs from 20 single
input currents for the ball and stick neuron and 107 single input currents for the pyramidal neuron is shown in grey. The results for the most distal
synapses are shown in dark grey and the results for the proximal synapses in light grey, corresponding to the color shown in the filled circles at the
respective neuron morphology (between columns 1 and 2). Column 3 illustrates how different power-law spectra of the input currents change the
output PSDs: the blue, pink and brown lines express the PSD for uncorrelated white (constant), pink (1=f ) and Brownian noise input (1=f 2),
respectively. The values of a in legends denote estimated power-law exponents at 1000 Hz, i.e., the negative discrete log-log derivative,
{D( log S)=D( log f ). In the rightmost column the values of a correspond to pink noise input, for Brownian noise input and white-noise input the
values are ‘+1’ and ‘21’ with respect to the pink input, respectively, as indicated by the brown ‘+’ and the blue ‘2’. The ball and stick neuron was
simulated with 200 dendritic segments (corresponding to the default parameters listed in Table 1), while the pyramidal neuron was simulated with
3214 dendritic segments. Broken lines correspond to the ball and stick neuron, whole lines to the pyramidal neuron.
doi:10.1371/journal.pcbi.1003928.g002
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V (X ,T)~V0(X )z
X?
k~1

RefV̂V(X ,Wk)ejWkTg, ð5Þ

where V0(X ) is the direct current (DC) potential. The cable

equation can then be simplified to

d2V̂V

dX 2
{q2V̂V~0, ð6Þ

where q2:1zjW , see [23,31]. The general solution to Eq. 6 can

be expressed as

V̂V(X ,W )~C1 cosh (qL{qX )zC2 sinh (qL{qX ): ð7Þ

The expression for the axial current is given by

Ii(x,t)~{
1

ri

LV (x,t)

Lx
, ð8Þ

and is applied at the boundaries to find the specific solutions for

the ball and stick neuron. In complex notation and with

dimensionless variables this can be expressed as

Table 1. List of symbols in alphabetical order.

Symbol Default (Unit) Description

B~d2
s =dl 0.2 relative soma to infinite-stick conductance

Cm 0:01pF=mm2 specific membrane capacitance

cm~pdCm 0:0628pF=mm membrane capacitance per unit length of cable

d 2mm stick diameter

ds 20mm soma diameter

f (Hz) frequency

Gm~1=Rm 0:333pS=mm2 specific membrane conductance

gm~1=rm~pd=Rm 2:09pS=mm membrane conductivity per unit length of cable

G?~1=ril 2:09nS infinite-stick conductance

L~l=l 1 electrotonic length

l 1mm stick length

q~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zjW

p
~Y?=G? (1) frequency dependence of the infinite-stick admittance

Ri 1:5MVmm inner resistivity

ri~4Ri=pd2 0:477MV=mm inner resistance per unit length of cable

s 1fA2=Hz power spectral density of input current

T~t=tm (1) dimensionless time

W~vt (1) dimensionless frequency

X~x=l (1) dimensionless position

Yin (S) input admittance

Y~Ys=Y?~qB (1) relative soma to infinitestick admittance

Ys~pd2
s Gmq2 (S) soma admittance

Y?~qG? (S) infinite–stick admittance

l~1=
ffiffiffiffiffiffiffiffiffi
gmri
p

1mm neuron length constant

r~rs=(rszrd) 0.5 relative input density

rd 2=mm2 dendritic current-input number density

rs 2=mm2 somatic current-input number density

tm~RmCm 30ms membrane time constant

v~2pf rad/s angular frequency

In the column labeled ‘Default (Unit)’ the default value of the parameter is given. If a default value is not listed, the unit is given in parenthesis. The specific electrical
properties of the soma membrane and stick membrane are here assumed to be equal.
doi:10.1371/journal.pcbi.1003928.t001
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ÎIi(X ,W )~{
1

ril

LV̂V(X ,W )

LX
~{G?

LV̂V(X ,W )

LX
, ð9Þ

where G? is the infinite-stick conductance. Similarly, the

transmembrane current density (including both leak currents and

capacitive currents) is given by

im~{
LIi(x,t)

Lx
~

1

ri

L2V (x,t)

Lx2
, ð10Þ

with its complex counterpart,

îim(X ,W )~{
1

l

LÎI(X ,W )

LX
~

1

ril
2

L2V̂V(X ,W )

LX 2
~gm

L2V̂V(X ,W )

LX 2
:ð11Þ

Ball and stick neuron with single current input
The ball and stick neuron [27] consists of a dendritic stick

attached to a single-compartment soma, see Fig. 3A. Here we

envision the stick to be a long and thin cylinder with diameter d

and length l. The membrane area of the soma is set to be pd2
s ,

corresponding to the surface area of a sphere with diameter ds, or

equivalently, the side area of a cylindrical box with diameter and

height ds.

The solution of the cable equation for a ball and stick neuron

with a single input current at an arbitrary dendritic position is

found by solving the cable equation separately for the neural

compartment proximal to the input current and the neural

compartment distal to the input current, These solutions are then

connected through a common voltage boundary condition V̂V0 at

the connection point. For the proximal part of the stick, Ohm’s

law in combination with the lumped soma admittance gives the

boundary condition at the somatic site, and for the distal part of

the stick, a sealed-end boundary is applied at the far end. In this

configuration the boundary condition V̂V0 acts as the driving force

of the system. The potential V̂V0 can, however, also be related to a

corresponding input current ÎIin through the input impedance, i.e.,

ÎIin~V̂V0ŶYin.

Distal part of dendritic stick. First, we focus on the part of

the stick distally to the input in Fig. 3A. Assume that the stick has

V̂V0 as a boundary condition at the proximal end and a sealed-end

boundary at the distal end. We use the subscript ‘d’ for ‘distal’ stick

at the spatial coordinates, and shift the coordinate system so that

the input is in Xd~0. The boundary condition at the proximal

end, i.e., at the position of the input current, then becomes

V(Xd~0)~V̂V0, while a sealed end is assumed at the distal end of

the stick, i.e., at Xd~Ld. Here Ld denotes the electrotonic length

of a stick with physical length l, i.e., Ld~ld=l. A sealed-end

boundary corresponds to zero axial current, Eq. 9.

With these boundary conditions the specific solution to the cable

equation becomes [23,31],

V̂Vd(Xd,W )~
V̂V0 cosh (qLd{qXd)

cosh (qLd)
: ð12Þ

Figure 3. Schematic illustration of the ball and stick neuron model and its filtering properties. (A) Schematic illustration of the ball and
stick neuron model with a single input at a given position X~X ’. The lumped soma is assumed iso-potential and located at X~0. (B) Frequency-
dependent current-density envelopes of return currents for a ball and stick neuron with input at X~0:8L. The somatic return currents are illustrated
as current densities from a soma section with length 20mm placed below the stick. For 1 Hz, 10 Hz, 100 Hz and 1000 Hz the amplitudes of the
somatic return currents are about 1/7.3, 1/7.5, 1/22 and 1/3100 of the input current, respectively. Parameters used for the ball and stick neuron

model: stick diameter d~2mm, somatic diameter ds~20mm, stick length l~1mm, specific membrane resistance Rm~3Vm2 , inner resistivity

Ri~1:5Vm and specific membrane capacitance of Cm~0:01F=m2 . This parameter set is the default parameter set used in the present study, see
Table 1. (C) Representative log-log plot for a PSD when input is homogeneously distributed across the entire neuron model. The low frequency (lf),

intermediate frequency (if) and high frequency (hf) regimes are stipulated. The regimes are defined relatively to aall
? describing the asymptotic value

of the exponent of the respective power-law transfer functions (HI , Hp or HV ), with both uncorrelated and correlated input (‘all’ types of input) onto
both the soma and the stick.
doi:10.1371/journal.pcbi.1003928.g003
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The axial current ÎIi(Xd,W ) is given by Eq. 9,

ÎIi,d(Xd,W )~V̂V0qG?
sinh (qLd{qXd)

cosh (qLd)
: ð13Þ

The dendritic input admittance, Yin,d(W )~ÎIi,d(Xd~0,W )=

V̂Vd(Xd~0,W ), will then be

Yin,d(W )~qG? tanh (qLd): ð14Þ

Since lim
L??

tanh (qL)?1, the infinite-stick admittance can be

expressed as Y?(W )~G?q~q=ril, and the finite-stick admit-

tance can be expressed as Yin,d(W )~Y?(W ) tanh (qLd). From

Eqs. 11 and 12 it follows that the transfer function linking an

imposed voltage V̂V0 in the proximal end to a transmembrane

current density in position Xd can be expressed as [23]

îim,d(Xd,W )~gmq2 cosh (qLd{qXd)

cosh (qLd)
V̂V0: ð15Þ

The complex dipole-moment for a stick with a sealed end is then

given by the integral

p̂pd(W )~l2

ðLd

0

îim,d(X ,W )XdX~lG?V̂V0½1{1= cosh (qLd)�:ð16Þ

Soma and proximal part of dendritic stick. Let us now

consider a ball and stick neuron with an input current at the far

end of the stick, effectively corresponding to the proximal part of

the ball and stick neuron in Fig. 3A. We denote the coordinates

with the subscript ‘p’ for ‘proximal’. Similar to the situation for the

distal stick, we apply a boundary condition V̂V0 to the site of the

current input and put this in Xp~0, i.e., Vp(Xp~0)~V̂V0. The

stick is assumed to lie along the Xp-axis, to have electrotonic length

Lp, and the soma site located at Xp~Lp. The lumped-soma

boundary condition implies that the leak current out of the

dendritic end is, through Ohm’s law, proportional to the soma

admittance, ÎIi,p(Lp,W )~ÎIs~YsV̂Vp(Lp,W )~YsV̂Vs, where ÎIs, V̂Vs

and Ys denote the somatic transmembrane current, soma potential

and somatic membrane admittance, respectively. Thus, for Xp~0

the boundary condition becomes:

V̂Vp(0,W )~V̂V0, ð17Þ

and, through Eq. 9, we have at Xp~Lp:

ÎIi,p(Lp,W )~{G?
LV̂Vp(Xp,W )

LXp
DXp~Lp~YsV̂Vs: ð18Þ

The complex constant C2 in Eq. 7 is found from the boundary

condition in Eq. 18,

C2~
YsV̂Vs

G?q
~V̂Vs

Ys

Y?
, ð19Þ

which, combined with Eq. 17, gives C1:

C1~
V̂V0

cosh (qLp)
{V̂Vs

Ys

Y?
tanh (qLp): ð20Þ

By substituting the constants C1 and C2 and by using

V̂Vs~V̂V(Lp,W ), Eq. 7 gives

V̂V0=V̂Vs~ cosh (qLp)(1zY tanh (qLp)), ð21Þ

where Y~Ys=Y?. Next, Eq. 21 is used to substitute for V̂Vs in the

constants C1 and C2, and after some algebraic manipulations the

solution for the cable equation with the given boundary conditions

becomes,

V̂Vp(Xp,W )~V̂V0
cosh (qLp{qXp)zY sinh (qLp{qXp)

cosh (qLp)zY sinh (qLp)
: ð22Þ

The axial current is through Eq. 9 given by

ÎIi,p(Xp,W )~V̂V0Y?
sinh (qLp{qXp)zY cosh (qLp{qXp)

cosh (qLp)zY sinh (qLp)
, ð23Þ

and the input admittance is, through Ohm’s law, given by

Yin,p~ÎIi,p(0,W )=V̂V0,

Yin,p~Y?
sinh (qLp)zY cosh (qLp)

cosh (qLp)zY sinh (qLp)
: ð24Þ

The axial current at Xp~Lp, i.e., the somatic transmembrane

current, will then be

ÎIs~ÎIi,p(Lp,W )~
V̂V0Ys

cosh (qLp)zY sinh (qLp)
, ð25Þ

and the transmembrane current density will be given by Eq. 11,

îim,p~V̂V0gmq2 cosh (qLp{qXp)zY sinh (qLp{qXp)

cosh (qLp)zY sinh (qLp)
: ð26Þ

By an integral similar to Eq. 16, the current-dipole moment for

the stick is found to be

p̂pstick(W )~V̂V0 lG?{
lpYszlG?

cosh (qLp)zY sinh (qLp)

� �
: ð27Þ
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The contribution to the current-dipole moment from the

somatic return current is the product of the somatic current, Eq.

25, and the fixed dipole length (i.e., distance between the position

of the current input and the soma), here corresponding to the stick

length lp,

p̂ps~lpÎIs~
lpV̂V0Ys

cosh (qLp)zY sinh (qLp)
: ð28Þ

The total dipole moment for a ball and stick neuron with

current input at the far end of the stick is therefore

p̂pp~p̂pszp̂pstick~V̂V0lG?{
V̂V0lG?

cosh (qLp)zY sinh (qLp)
: ð29Þ

Full solution. The full solution for current inputs at arbitrary

positions is achieved by superposition of the distal-stick solution

and the solution for the proximal stick with a lumped soma, see

Fig. 3A. We will now use the same notation and coordinate system

as in Fig. 3A, i.e., Xp~{XzLp and Xd~X{Lp, and introduce

the sum of the stick lengths L~LpzLd. Thus, the stick is along

the X -axis from X~0 (soma end) to X~L (distal end), and the

input current is assumed to be injected at position X ’. By

summation of Eqs. 16 and 29 the ball and stick dipole moment

now becomes

p̂p~{V̂V0lG?
1

cosh (qL{qX ’)
{

1

cosh (qX ’)zY sinh (qX ’)

� �
:ð30Þ

The total input admittance of the ball and stick neuron is given

by the sum of the proximal admittance and the distal admittance,

Yin~Yin,pzYin,d~

Y?
sinh (qLp)zY cosh (qLp)

cosh (qLp)zY sinh (qLp)
z tanh (qLd)

� �
,

ð31Þ

which, with the coordinates used in Fig. 3A, becomes

Yin~Y?
sinh (qX ’)zY cosh (qX ’)
cosh (qX ’)zY sinh (qX ’)

z tanh (q(L{X ’))
� �

: ð32Þ

From Eq. 30 we now find, by means of Ohm’s law and this

expression for the input admittance, the following transfer function

between input current ÎIin and dipole moment, p̂p~TpÎIin,

Tp~
lG?

Y?

cosh (qL{qX ’){Y sinh (qX ’){ cosh (qX ’)
Y cosh (qL)z sinh (qL)

: ð33Þ

Transfer functions for the other quantities of interest,

TV~V̂Vs=ÎIin, TI~ÎIs=ÎIin, Ts
V~V̂Vs=ÎIs

in, Ts
I~ÎIs=ÎIs

in, Ts
p~p̂ps=ÎIs

in,

can be found similarly. The superscript ‘s’ denotes that this

applies for an input current at the soma. By substituting for V̂V0 in

Eq. 25, the transfer function for the soma current becomes

TI~
Y cosh (qL{qX ’)

Y cosh (qL)z sinh (qL)
: ð34Þ

From Eq. 34 and by assuming Ohm’s law for the soma

membrane, the soma potential transfer function becomes

TV ~
1

Y?

cosh (qL{qX ’)
Y cosh (qL)z sinh (qL)

: ð35Þ

For a somatic input current, ÎIin~ÎIs
in, the soma potential is,

through Ohm’s law, described by its total neuron input impedance

seen from soma,

Ts
V~

1

Yin(X ’~0)
~

1

Y?

cosh (qL)

Y cosh (qL)z sinh (qL)
: ð36Þ

By comparison between Eq. 35 and Eq. 36, we see that Eq. 35

also applies for the special case with somatic input, i.e.,

Ts
V~TV (X ’~0). The net somatic transmembrane current

(including both ÎIs
in and the somatic return current) has to enter

the stick axially in X~0. Thus, the net somatic current can be

described by ÎIs
s~{V̂Vs

sYin,dDLd~L, and the transfer function

becomes

Ts
I~{

sinh (qL)

Y cosh (qL)z sinh (qL)
, ð37Þ

which differs from the result in Eq. 34, i.e., Ts
I=TI (X ’~0).

The intracellular resistance between the soma and the start

position X~0 of the stick is assumed to be zero, and the soma

potential will therefore be the same regardless of whether the input

current is positioned at the proximal end of the stick (i.e., at X~0)

or in the soma. However, when estimating the net somatic

membrane current this distinction is important: the current input

will itself count as a part of the calculated soma current if it is

positioned in the soma, but not if it is positioned at the proximal

end of the dendritic stick.

For somatic input, the finite-stick expression in Eq. 16 will apply

to the dipole moment. However, the input admittance is now

different, and the transfer function becomes

Ts
p~

lG?

Y?

cosh (qL){1

Y cosh (qL)z sinh (qL)
, ð38Þ

i.e., the expression in Eq. 33 holds, Ts
p~Tp(X ’~0).

Ball and stick neuron with spatially distributed input
Above we derived transfer functions T for the ball and stick

neuron, connecting current input at an arbitrary position on the

neuron to the various measurement modalities, i.e., the current-

dipole moment (Tp), the soma potential (TV ) and the soma current

(TI ). We will now derive expressions for the PSDs when the ball

and stick neuron is bombarded with multiple inputs assuming that

all input currents have the same PSD and a pairwise coherence

c(v) [37]. The PSDs can then be divided into separate terms for

uncorrelated (c(v)~0) and fully correlated (c(v)~1) input.
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The PSD, S~S(v), of the output can for the case of multiple

current inputs be expressed as

S~
XN

k~1

XN

l~1

ÎIk
inTk (̂IIl

inTl)�

~s (1{c)
XN

k~1

Tk(Tk)�zc
XN

k~1

XN

l~1

Tk(Tl)�

" #

~s (1{c)
XN

k~1

DTkD2zcD
XN

k~1

Tk D2
" #

~sH, ð39Þ

where s~s(v) is the PSD of the input currents, c~c(v) is their

coherence and H~H(v) is the transfer function between the PSD

of the input and the PSD of the output. The complex conjugate is

denoted by the asterisk.

We now assume the first J of the N input currents to be

positioned at the soma compartment, and the rest of the input to

be spread homogeneously across the dendritic stick. The transfer

function for the soma compartment, Ts, is the same for all somatic

inputs, Tk~Ts for k~1,2, . . . ,J, while the input transfer function

for the dendritic stick is position dependent, Tk~T(Xk,W ) for

k~Jz1,Jz2, . . . ,N . The PSD transfer function can then be

expressed

H~(1{c) J Tsj j2z
XN

k~Jz1

Tk
�� ��2 !

zc JTsz
XN

k~Jz1

Tk

�����
�����
2

: ð40Þ

To allow for analytical extraction of power laws, we next

convert the sums into integrals. By assuming uniform current-

input density (per membrane area) in the dendritic stick (given by

rd~(N{J)=lpd ), it follows that the axial density of current inputs

is 1=(rdpd). In the continuum limit (N??) we thus have

XN

k~Jz1

F (Tk)?
ðL

0

F (T(X ))rd pd ldX ð41Þ

where the last factor l comes from the conversion to dimensionless

lengths. The PSD transfer function, H:S=s, in Eq. 40 can then

be split into three parts,

H~(1{c)(Huc,szHuc,d)zcHc, ð42Þ

where

Huc,s~rspd2
s DTs(W )D2 ð43Þ

is the PSD transfer function for uncorrelated input at the soma

compartment,

Huc,d~rdpdl

ðL

0

DT(X ,W )D2dX ð44Þ

is the PSD transfer function for uncorrelated input distributed

throughout the dendritic stick, and

Hc~Drspd2
s Tszrdpdl

ðL

0

T(X ,W )dX D2 ð45Þ

is the PSD transfer function for correlated input distributed both

across the dendritic stick and onto the soma.

We have now derived (i) a general expressions for the PSD

transfer function H expressed by the general, single-input transfer

functions T and Ts, and (ii) specific analytical expressions for the

single-input transfer functions for the dipole moment, the soma

potential and the soma current. We will next combine these results

and analytically derive specific PSD transfer functions for the

dipole moment, the soma potential and the soma current for

distributed input.

Correlated current inputs. For correlated activity the

somatic transfer function and the corresponding integral of the

dendritic transfer function are summed, see Eq. 45. For the soma

current the integral within Eq. 45 is given by

ðL

0

TI (X ,W )dX~
Y sinh (qL)=q

Y cosh (qL)z sinh (qL)
: ð46Þ

By defining the denominator

D(v)~Y cosh (qL)z sinh (qL), ð47Þ

the PSD transfer function for the soma current is after some

algebra found to be

HI
c ~D(rdpdlY=q{rspd2

s ) sinh (qL)D2=DDD2

~
p2d4

s (rd{rs)
2

2
½cosh (2aL){ cos (2bL)�=DDD2, ð48Þ

with the squared norm of D given by

DDD2~
1

2
(B2(a2zb2)z1) cosh (2aL)z2aB sinh (2aL)
�

z(B2(a2zb2){1) cos (2bL)z2Bb sin (2bL)
�
, ð49Þ

with a and b denoting the real and imaginary parts of q,

respectively, i.e.,

a~(½(1zW 2)1=2z1�=2)1=2, ð50Þ
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and

b~(½(1zW 2)1=2{1�=2)1=2: ð51Þ

In Eq. 49 the specific membrane conductance and capacitance

are assumed to be the same in the soma and the dendrite. Thus,

Ys~pd2
s q2Gm and Y?~q=(lri). The admittance ratio can then

be expressed as

Y~qB, ð52Þ

where B~d2
s =(dl).

The contribution to the soma potential from dendritic input is

given by the same integral as in Eq. 46 divided by the somatic

impedance. By adding the corresponding transfer function for the

somatic input the PSD transfer function is found to be:

HV
c ~D½rdpdl sinh (qL)=qzrspd2

s cosh (qL)�=Y?D2=DDD2

~
p2l2r2

i

2 a2zb2ð Þ2DDD2
cos (2bL) d4

s r2
s a2zb2
� 	

{d2l2r2
d

� 	�

z cosh (2aL) d4
s r2

s a2zb2
� 	

zd2l2r2
d

� 	

z2dd2
s lrdrs(a sinh (2aL)zb sin (2bL))

�
: ð53Þ

For the current-dipole moment, the integral within Eq. 45,

combined with the transfer function from Eq. 33, has the following

simple solution,

ðL

0

Tp(X ,W )dX~
lG?

Y?qD
Y 1{ cosh (qL)½ �, ð54Þ

and the PSD transfer function for the dipole moment for

correlated input currents is found to be

Hp
c ~D

plG?½1{ cosh (qL)�(rddlY=q{rsd
2
s )

Y?D
D2

~
p2d4

s l2(rd{rs)
2( cos (bL){ cosh (aL))2

(a2zb2)DDD2
: ð55Þ

Uncorrelated current inputs. In the case of uncorrelated

input currents, the squared norm of hyperbolic functions, as well

as cross-terms of different hyperbolic functions, must be integrated

from X~0 to X~L to get the contributions from the dendritic

stick. These integrals can be solved by converting the hyperbolic

functions to their corresponding exponential expressions and

expanding the products before applying straight-forward integra-

tion of the different exponential terms. For example, the following

integral has to be solved for all PSDs, both the soma current PSD,

the soma potential PSD and the PSD of the single-neuron

contribution to the EEG:

I1~

ðL

0

D cosh (qL{qX )D2dX , ð56Þ

where I now denotes an integral, not a current. The integrand is

translated to its exponential counterpart,

I1~ðL

0

1

4
e(qzq�)(L{X )ze{(qzq�)(L{X )ze(q{q�)(L{X )ze{(q{q�)(L{X )
h i

dX ,
ð57Þ

and the integral is straightforwardly evaluated and found to be:

I1~
1

4
{

1

qzq�
z

1

qzq�
{

1

q{q�
z

1

q{q�

�

z
e(qzq�)L

qzq�
{

e{(qzq�)L

qzq�
z

e(q{q�)L

q{q�
{

e{(q{q�)L

q{q�

#
: ð58Þ

The expression can be transformed back to hyperbolic functions

I1~
1

2

sinh½(qzq�)L�
qzq�

z
sinh½(q{q�)L�

q{q�


 �
, ð59Þ

and simplified as

I1~ sinh (2aL)=4az sin (2bL)=4b, ð60Þ

where we have used

sinh (2jbL)~j sin (2bL): ð61Þ

From the expressions for the single-input transfer functions for

the soma potential, Eq. 35, and soma current, Eq. 34, it follows

that HV
uc,d and HI

uc,d (cf. Eq. 44) are both proportional to I1, i.e.,

HV
uc,d~R2

?
sinh (2aL)=az sin (2bL)=b

4 a2zb2ð Þ , ð62Þ

and

HI
uc,d~

B2(a2zb2)(a sin (2bL)zb sinh (2aL))

4ab
: ð63Þ

For H
p
uc,d the following integrals also appear:

I2~

ðL

0

D cosh (qX )D2dX , ð64Þ
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I3~

ðL

0

D sinh (qX )D2dX , ð65Þ

I4~

ðL

0

cosh (qL{qX ) cosh (q�X )dX , ð66Þ

I5~

ðL

0

cosh (qL{qX ) sinh (q�X )dX , ð67Þ

I6~

ðL

0

cosh (qX ) sinh (q�X )dX , ð68Þ

All integrals can be solved by a similar scheme as above, and the

solutions are

I2~ sinh (2aL)=4az sin (2bL)=4b, ð69Þ

I3~ sinh (2aL)=4a{ sin (2bL)=4b, ð70Þ

I4~ sinh (aL) cos (bL)=2az cosh (aL) sin (bL)=2b, ð71Þ

I5~ sinh (aL) sin (bL)=2b{j sinh (aL) sin (bL)=2a, ð72Þ

I6~ cosh (2aL)=4a{1=4azj cos (2bL)=4b{1=4b: ð73Þ

Note that the solutions to the integrals I5 and I6 are complex. In

the expression for the dipole moment the complex conjugated

versions of the integrals I5 and I6, i.e., I�5 and I�6, also appear. For

these the results are found directly from Eqs. 72–73 with j replaced

by {j. The PSD transfer function for the dipole moment with

uncorrelated input at the dendrite only, H
p
uc,d, can then be

expressed as

H
p
uc,d~

rdpdl3

jqj2jDj2

½I1zI2zjYj2I3{2RefI4g{2RefY�I5gz2RefY�I6g�:
ð74Þ

The full expression of H
p
uc,d is then

H
p
uc,d~

rdpdl3

(a2zb2)DDD2
sinh (2aL)=2az sin (2bL)=2b½

z(y2
1zy2

2)( sinh (2aL)=4a{ sin (2bL)=4b)

{ sinh (aL) cos (bL)=az cosh (aL) sin (bL)=b

{y1 sinh (aL) sin (bL)=bzy2 sinh (aL) sin (bL)=a

zy1( cosh (2aL){1)=2azy2( cos (2bL){1)=2b�, ð75Þ

where y1~RefYg and y2~ImfYg. For the special case where

the specific admittance of the soma is equal to the specific

admittance of the dendrite, i.e., Y~qd2
s =ld, this simplifies to the

expression given in Eq. 85.

The somatic contributions to the uncorrelated PSD transfer

functions are given by

HI
uc,s~rspd2

s ½cosh (2aL){ cos (2bL)�=DDD2, ð76Þ

HV
uc,s~

rsR
2
md2

s

pd2l2

cosh (2aL)z cos (2bL)

2(a2zb2)DDD2
, ð77Þ

and

Hp
uc,s~

rspd2
s l2

2(a2zb2)jDj2

½cosh (2aL){2 cosh (aL) cos (bL)z cos (2bL)z2�,
ð78Þ

see Eqs. 36–38.

Summary of PSD transfer functions for ball and stick
neuron

For convenience we here summarize the results, now solely in

terms of dimensionless variables (except for the amplitudes A), i.e.,

r:rs=(rszrd), B:d2
s =(dl), L:l=l, and W:vt (see Table 2).

The general expression for the PSD transfer functions reads:

H~(1{c)HuczcHc, ð79Þ

where Huc~Huc(W ) represents the contributions from uncorre-

lated current inputs, Hc~Hc(W ) represents the contributions

from correlated inputs, and c~c(W ) is the pairwise coherence

function. The contributions from uncorrelated input currents are

in turn given as sums over contributions from somatic

Huc,s~Huc,s(W ) and dendritic inputs Huc,d~Huc,d(W ), i.e.,

Huc~Huc,szHuc,d: ð80Þ

The contribution to the PSD transfer functions for correlated

input currents are given by

HI
c ~AI

cB2½cosh (2aL){ cos (2bL)�=DDD2, ð81Þ
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Hp
c ~

Ap
cB2

a2zb2
cosh (2aL)=2½

{2cosh (aL) cos (bL)z cos (2bL)=2z1�=DDD2, ð82Þ

HV
c ~

AV
c

2(a2zb2)2
cos (2bL) B2r2 a2zb2

� 	
{(1{r)2

� 	�

z cosh (2aL) B2r2 a2zb2
� 	

z(1{r)2
� 	

z2B(1{r)r(a sinh (2aL)zb sin (2bL))�=DDD2, ð83Þ

with the squared norm of D given by Eq. 49, and a and b defined

by Eqs. 50 and 51, respectively.

The contributions from uncorrelated dendritic inputs are:

HI
uc,d~

AI
uc,dB2(a2zb2)ffiffiffi

2
p sinh (2aL)

2a
z

sin (2bL)

2b


 �
=DDD2, ð84Þ

H
p
uc,d~

A
p
uc,d

ffiffiffi
2
p

(a2zb2)

sinh (2aL)

2a
z

sin (2bL)

2b




z
B2(a2zb2)

2

sinh (2aL)

2a
{

sin (2bL)

2b

� �

{
sinh (aL) cos (bL)

a
{

cosh (aL) sin (bL)

b

{
Ba sinh (aL) sin (bL)

b
z

Bb sinh (aL) sin (bL)

a

zB
cosh (2aL){1

2
zB

cos (2bL){1

2

�
=DDD2, ð85Þ

HV
uc,d~

AV
uc,dB2ffiffiffi

2
p

(a2zb2)

sinh (2aL)

2a
z

sin (2bL)

2b


 �
=DDD2: ð86Þ

In the special case with input to soma only, the PSD transfer

functions are the same for uncorrelated (Eq. 43) and correlated

input (Eq. 45), the only difference being the amplitudes,

Huc,s~
HcDr~1

rspd2
s

:

(r~rs=(rszrd)~1 implies that the input is onto soma only.) The

corresponding PSD transfer functions from uncorrelated somatic

input thus become

HI
uc,s~AI

uc,sB
2½cosh (2aL){ cos (2bL)�=DDD2, ð87Þ

Hp
uc,s~

Ap
uc,sB

2

a2zb2
cosh (2aL)=2½

Table 2. PSD amplitudes and high-frequency power laws.

Case Amplitude (A) a? (W{a? ) A’~A|(f =W )a

HI
c (rd{rs)

2(pdl)2 1 (rd{rs)
2pd3=8RiCm

HI
uc,d rdpdl=

ffiffiffi
2
p

1/2 rdp1=2d3=2=4R
1=2
i C1=2

m

HI
uc,s

rspdl=B 1 d3rs=8Cmd2
s Ri

Hp
c (rd{rs)

2p2d2l4 2 (rd{rs)
2d4=64R2

i C2
m

H
p
uc,d rdpdl3=

ffiffiffi
2
p

3/2 rdd5=2=32p1=2R
3=2
i C3=2

m

Hp
uc,s rspdl3=B 2 d4rs=64pC2

md2
s R2

i

HV
c (rdzrs)

2R2
m

2; 3 r2
s =4p2C2

m ; r2
dd3=32p3C3

md4
s Ri( � )

HV
uc,d rdR2

m=
ffiffiffi
2
p

pdlB2 5/2 rdd3=2=16p7=2d4
s R

1=2
i C5=2

m

HV
uc,s rsR

2
m=pdlB 2 rs=4p3C2

md2
s

The amplitudes A and the asymptotic powers a? for the different PSDs. The right column shows the amplitude A’ for the asymptotic PSDs expressed in terms of

biophysical parameters. When W approaches infinity, the asymptotic value of all PSD transfer functions except for HV
c is given by H?AW{a? . For HV

c there are two

asymptotic values of non-standard form: HV
c ?AV

c r2W{2~r2
s R2

mW{2 for rs=0 (left) and HV
c ?AV

c B{2W{3~r2
dR2

mB{2W{3 for rs~0 (right). ( � ): The values of the

right column does not correspond to the given formula for A’, but rather to A’r2 (left) and A’B{2 (right).
doi:10.1371/journal.pcbi.1003928.t002
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{2cosh (aL) cos (bL)z cos (2bL)=2z1�=DDD2, ð88Þ

HV
uc,s~

AV
c B2

2(a2zb2)
½cosh (2aL)z cos (2bL)�=DDD2: ð89Þ

From single-neuron current-dipole moments to EEG
In an infinite, homogenous, isotropic Ohmic medium with

conductivity s, the extracellular potential recorded at a given

position~rr far away from a single-neuron current dipole is given by

[25,38].

W1(~rr,t)~
p1(t) cos h1

4ps(~rr{~rr1)2
, ð90Þ

where~rr1 designates the spatial position of the current dipole, p1 is

the magnitude of the current-dipole moment, and h1 is the angle

between the dipole moment vector ~pp1 and the position vector

~rr{~rr1. An important feature is that all time dependence of the

single-neuron contribution to the potential W lies in p1(t) so that

W1(~rr,t) factorizes as

W1(~rr,t)~p1(t)g1(~rr): ð91Þ

For the electrical potential recorded at an EEG electrode, the

forward model in Eq. 90 is no longer applicable due to different

electrical conductivities of neural tissue, dura matter, scull and

scalp. Analytical expressions analogous to Eq. 90 can still be

derived under certain circumstances such as with three-shell or

four-shell concentric spherical head models (see Nunez and

Srinivasan [38], Appendix G), but the key observation for the

present argument is that the single-neuron contribution to the

EEG will still factorize, i.e., W1(~rr,t)~p1(t)~gg1(~rr) where ~gg1(~rr) here is

an unspecified function.

The compound EEG signal from a set of Nn single-neuron

current dipoles is now given by

W(~rr,t)~
XNn

n~1

pn(t)~ggn(~rr), ð92Þ

where the index n runs over all single-neuron current dipoles. For

each Fourier component (frequency) we now have

ŴW(~rr,f )~
XNn

n~1

p̂pn(f )~ggn(~rr): ð93Þ

For the special case where the different single-neuron current

dipoles moments are uncorrelated we find that the power spectral

density SEEG
UC (f ) of the EEG is of the form [39]

SEEG
UC (~rr, f )~DŴW(~rr, f )D2~

XNn

n~1

Dp̂pn(f )D2 D~ggn(~rr)D2: ð94Þ

(We have here introduced the notation ‘UC’, i.e. capitalized, to

highlight the difference between the present assumption of

uncorrelated single-neuron current dipoles and the separate

assumption of uncorrelated membrane currents onto individual

neurons in the above sections.) If the single-neuron current dipoles

have the same power-law behavior in a particular frequency

range, i.e., Dp̂pn(f )D2&cn=f ap

, it follows directly that the EEG signal

will inherit this power-law behavior:

SEEG
UC (~rr, f )~

XNn

n~1

ĵpn(f )j2 j~ggn(~rr)j2&(
XNn

n~1

cn j~ggn(~rr)j2)=f ap
~GUC(~rr)=f ap

,
ð95Þ

where GUC(~rr) determines the PSD amplitude, but not the slope.

The inheritance of the single-neuron power-law behavior also

applies to the case of correlated sources, provided that the pairwise

coherences are frequency independent. By similar reasoning as

above we then find

SEEG
C (~rr, f )~D

XNn

n~1

p̂pn(f )~ggn(~rr)D2&GC(~rr)=f ap
: ð96Þ

Analogous expressions for the PSD for the EEG can also be

derived when both correlated and uncorrelated single-neuron

current dipoles contribute, but we do not pursue this here; see

Lindén et al. [37] and Leski et al. [39] for more details.

Numerical simulations
The NEURON simulation environment [35] with the supplied

Python interface [36] was used to simulate a layer-V pyramidal

neuron from cat visual cortex [34]. The main motivation for

pursuing this was to allow for a direct numerical comparison with

results from the ball and stick neuron to probe similarities and

differences, see Fig. 2. In addition, NEURON was also used on

the ball and stick neuron model to verify consistency with the

analytical results above. Both the layer-V pyramidal neuron and

the ball and stick neuron had a purely passive membrane, with

specific membrane resistance Rm~3Vm2, specific axial resistivity

Ri~1:5Vm, and specific membrane capacitance Cm~0:01F/m2.

Simulations were performed with a time resolution of 0.0625 ms,

and resulting data used for analysis had a time resolution of

0.25 ms. All simulations were run for a time period of 1200 ms

and the first 200 ms were removed from the subsequent analysis to

avoid transient upstart effects in the simulations.

The digital cell reconstruction of the layer-V pyramidal neuron

was downloaded from ModelDB (http://senselab.med.yale.edu/),

and the axon compartments were removed. To ensure sufficient

numerical precision compartmentalization was done so that no

dendritic compartment was larger than 1/30th of the electrotonic

On Power Laws from Linear Neuronal Cable Theory

PLOS Computational Biology | www.ploscompbiol.org 13 November 2014 | Volume 10 | Issue 11 | e1003928

http://senselab.med.yale.edu/


length at 100 Hz (using the function lambda_f(100) in NEURON),

which resulted in 3214 compartments. The soma was modeled as

a single compartment.

The ball and stick neuron was modeled with a total of 201

segments, one segment was the iso-potential soma segment with

length 20mm and diameter 20mm, and 200 segments belonged

to the attached dendritic stick of length 1 mm and diameter

2mm.

Simulations were performed with the same white-noise current

trace injected into each compartment separately. The white-noise

input current was constructed as a sum of sinusoidal currents [24]

I(t)~I0

X1000

f ~1

sin (2pftzQf ) ð97Þ

where Qf represents a random phase for each frequency

contribution. Due to linearity of the cable equation, the

contributions of individual current inputs could be combined to

compute the PSD of the soma potential, the soma current and the

dipole moment resulting from current injection into all N

compartments. In correspondence with Eq. 39, the summation

of the contributions from the input currents of different segments i

with membrane areas Ai was done differently for uncorrelated and

correlated input currents. The uncorrelated PSDs, Suc, were

computed according to

Suc(v)~
XN

i~1

riAi Dyi(v)D2, ð98Þ

while the correlated PSDs, Sc, were computed according to

Sc(v)~D
XN

i~1

riAiyi(v)D2: ð99Þ

Here, yi(v) denotes the Fourier components of the signal y(t)
(either soma potential, soma current or dipole moment due to

input in one segment), the product riAi gives the total number of

input currents into one segment i, and the density ri represents rd

for dendritic input and rs for somatic input.

The total dipole moment ~pp was in the numerical computations

assumed to equal the dipole moment in one direction only: the

direction along the stick for the ball and stick model, and the

direction along the apical dendrite for the pyramidal neuron

model, both denoted as the x-component, px. For the pyramidal

neuron this is an approximation as the dipole moment also will

have components in the lateral directions. However, the promi-

nent ‘open-field’ asymmetry of the pyramidal neuron in the

vertical direction suggests that this is a reasonable approximation

when predicting contributions to the EEG signal. The current-

dipole moment is then given by

px~
XN

i~1

xiIi(t), ð100Þ

where Ii is the transmembrane current of compartment i, and xi is

the corresponding x-position.

Results

Biophysically detailed neuron model vs. ball and stick
model

To establish the relevance of using the simple ball and stick

neuron to investigate the biophysical origin of power laws, we

compare in Fig. 2 the normalized power spectral densities (PSDs)

of the transmembrane soma current (row 1), the current-dipole

moment (row 2), and the soma potential (row 3) of this model

(column 1) with the corresponding results for a biophysically

detailed layer-V pyramidal neuron (column 2); the rightmost

column gives a direct comparison of PSDs. Both neuron models

have a purely passive membrane and receive spatially distributed

current input. As described in the Models section, the PSD of the

single-neuron contribution to the EEG will be proportional to the

PSD of the neuronal current-dipole moment given the observation

that the extracellular medium, dura matter, scull and scalp appear

to be purely ohmic [24,38]. We here stick to the term ‘current-

dipole moment’ even if the term ‘single-neuron contribution to the

EEG’ could equally be used.

A first striking observation is that unlike single-input PSDs (thin

gray lines in Fig. 2), the PSDs resulting from numerous,

homogeneously distributed input currents (thick lines) have a

linear or quasi-linear appearance for high frequencies in these log-

log plots, resembling 1=f a power laws. This is seen both when the

numerous current inputs are correlated (green thick lines) and

uncorrelated (blue thick lines). We also observe that the decay in

the PSD with increasing frequency is strongest for the soma

potential, somewhat smaller for the current-dipole moment, and

smallest for the soma current. This is reflected in the power-law

exponents a estimated at 1000 Hz from these PSDs, see legend in

Fig. 2. Here we observe that a is largest for the soma potential

(bottom row) and smallest for the soma current (top row).

In the example in Fig. 2 we have assumed constant input

current densities across the neurons, i.e., rs~rd. For this special

case, correlated current input will, at all times, change the

membrane charge density equally across the neuron, and as a

consequence the neuron will be iso-potential. In this case the axial

current within the neuron will be zero, and likewise the net

membrane current (with the capacitive current included) for any

compartment, including the soma. As a consequence the current-

dipole moment vanishes, and the model can effectively be

collapsed to an equivalent single-compartment neuron. For the

soma current and dipole moment we thus only show results for

uncorrelated inputs in Fig. 2. However, correlated current input

will still drive the soma potential (green curves in columns 1 and 2).

Here we observe that the exponent a is smaller for uncorrelated

input than for correlated input both for the ball and stick neuron

and for the pyramidal neuron.

The results above pertain to the situation with white-noise

current inputs, i.e., flat-band PSDs. However, the results are easily

generalized to the case with current inputs with other PSDs. Since

our neuron models are passive and thus linear, the PSDs simply

multiply. This is illustrated in column 3 of Fig. 2 which shows how

our PSDs for uncorrelated input change with varying PSDs of the

current input, s(v). The blue curves correspond to white-noise

input and are identical to the blue curves in column 2. The pink

and brown curves illustrate the case of pink (1=f ) and Brownian

(1=f 2) input, respectively. Since the PSDs multiply, the power-law

exponent of the input noise simply adds to the exponent a. Thus,

the pink and Brownian input increase the slope a with 1 and 2,

respectively, compared to white-noise input.

Even though the dendritic structure of the reconstructed

pyramidal neuron is very different from the ball and stick neuron
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in that it has both a highly branched structure and a varying

diameter along its neural sections (tapering), both models seem to

produce linear or quasi-linear high-frequency PSDs in the log-log

representation. Also the power-law exponents are found to be

fairly similar. This implies that the ball and stick neuron model

captures salient power-law properties of the more biophysically

detailed neuron model, and motivates our detailed analytical

investigation of the power-law properties of the ball and stick

neuron following next.

Power laws for ball and stick neuron
In the Models section above we derived analytical expressions

for the PSD transfer functions of the soma current (HI ), current-

dipole moment (Hp) and soma potential (HV ) for the ball and stick

neuron for spatially distributed input currents. The resulting

transfer functions H(f ), summarized in Eqs. 79–89, were of the

form

H(f )~(1{c(f ))(Huc,s(f )zHuc,d(f ))zc(f )Hc(f ), ð101Þ

where Huc,s(f ) and Huc,d(f ) represent the contributions from

uncorrelated somatic and dendritic inputs, respectively, and Hc(f )
represents the contribution from correlated inputs. c~c(f ) is the

pairwise coherence of the current inputs, all assumed to have the

same PSDs (s~s(f )).

These mathematical expressions are quite cumbersome, but

they are dramatically simplified in the high-frequency limit,

f??, in which the dominant power can be found analytically by

a series expansion of the mathematical expressions for the transfer

functions in Eqs. 81-89.

The expressions for the PSD transfer functions contain terms

which are both polynomial and superpolynomial (i.e., including

exponentials/exponentially decaying functions) with respect to

frequency. As these superpolynomial terms will dominate the

polynomial terms in the high-frequency limit, it follows from Eq.

49 that for high frequencies the absolute square of the

denominator D can be approximated by

DDD2& sinh (2aL) coth (2aL)(B2(a2zb2)z1)=2zaB
� �

, ð102Þ

where terms decaying exponentially to zero with increasing

frequency have been set to zero. The frequency dependence is

through a and b, see Eqs. 50 and 51. Note that

limf?? coth (2aL)~1 since limf?? a~?. In the high-frequen-

cy limit the PSD transfer functions Eqs. 81–89 become

HI
c&AI

c=(a2zb2z2a=Bz1=B2), ð103Þ

Hp
c &Ap

c=½(a2zb2)(a2zb2z2a=Bz1=B2)�, ð104Þ

HV
c &AV

c

r2½B2(a2zb2)z1{2aB�z2r(aB{1)z1

(a2zb2)2½B2(a2zb2)z2aBz1�
, ð105Þ

HI
uc,d&AI

uc,d(a2zb2)=½
ffiffiffi
2
p

a(a2zb2z2a=Bz1=B2)�, ð106Þ

H
p
uc,d&A

p
uc,d

a2zb2{2a=Bz2=B2ffiffiffi
2
p

a(a2zb2)(a2zb2z2a=Bz1=B2)
, ð107Þ

HV
uc,d&AV

uc,d=½
ffiffiffi
2
p

a(a2zb2)(a2zb2z2a=Bz1=B2)�, ð108Þ

where the amplitudes A are found in Table 2. When the PSDs

expressed in Eqs. 103-107 are expanded reciprocally for high

frequencies, i.e., W~vtm~2pf tm&1, we get

HI
uc,d=AI

uc,d&

1=½W 1=2z
ffiffiffi
2
p

=Bz(1=B2z1=2)W{1=2zO(W{1)�,
ð109Þ

HI
c =AI

c&1=½Wz
ffiffiffi
2
p

W 1=2=Bz1=B2zO(W{1=2)�, ð110Þ

H
p
uc,d=A

p
uc,d&

1=½(W 3=2z2
ffiffiffi
2
p

W=Bz(B2z6)W 1=2=2B2zO(W 0)�,
ð111Þ

Hp
c =Ap

c&1=½W 2z
ffiffiffi
2
p

W 3=2=BzW=B2zO(W 1=2)�, ð112Þ

HV
uc,d=AV

uc,d&

1=½W 5=2zW 2
ffiffiffi
2
p

=BzW 3=2(1=B2z1=2)zO(W 1)�,
ð113Þ

HV
c =AV

c &1=½W 2=r2zW 3=2
ffiffiffi
2
p

(2r{1)=Br3

zW (1{2r)2=B2r4zO(W 1=2)�,
ð114Þ

where r is the dimensionless relative density, r~rs=(rszrd), and

B~d2
s =ld , with ds and d denoting the somatic and dendritic

diameter, respectively, and l denoting the dendritic length

constant. The expansions were done in Mathematica (version

7.0), and a list of parameters used throughout the present paper is

given in Table 1 (along with the default numerical values used in

the numerical investigations in later Results sections).

In Eqs. 109–114 terms which are exponentially decaying to zero

for large W have been approximated to zero. Note that Eq. 114

does not apply in the special case of no somatic input, r~0, for

which the series expansion gives

HV
c =AV

c &1=½W 3B2zW 5=2
ffiffiffi
2
p

BzW 2zO(W 3=2)�: ð115Þ

The corresponding high frequency expansions of the PSD

transfer functions for uncorrelated somatic input, Huc,s=Auc,s, are

not shown, as these expressions are identical to the corresponding

transfer functions for correlated input into the soma only, Hc=Ac

(i.e., equal to Eqs. 110, 112 and 114 with r~1).

Eqs. 109–115 show that, due to position-dependent frequency

filtering of the numerous inputs spread across the membrane

(cf. Fig. 3B), all PSD transfer functions express asymptotic
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high-frequency power laws. Moreover, these genuine ‘infinite-

frequency’ power-law exponents, denoted a?, span every half

power from a?~1=2 (for HI
uc,d, Eq. 109) to a?~3 (for HV

c , Eq.

115) for the different transfer functions. The results are summa-

rized in Table 2.

To obtain the power-law exponents in the general case with

contributions from both correlated and uncorrelated current

inputs, we need to compare the different terms in the general

expression for H(f ) in Eq. 101. With different leading power-law

exponents a? in their asymptotic expressions, the term with the

lowest exponent will always dominate for sufficiently high

frequencies. From Table 2 we see that for all three quantities of

interest, i.e., HI (f ), Hp(f ) and HV (f ), the lowest exponent always

comes from contributions from uncorrelated inputs. Note that the

correlated term in Eq. 101 also involves a frequency-dependent

coherence term c(f ), but to the extent it modifies the PSD, it will

likely add an additional low-pass filtering effect [39] and, if

anything, increase the power-law exponent. If we assume that the

coherence is constant with respect to frequency we identify the

following asymptotic exponents aall
? (i.e., with ‘all’ types of possible

input) for HI , Hp and HV :

aall,I
? ~1=2, aall,p

? ~3=2, aall,V
? ~2 :

Note that these power-law exponents are unchanged as long as

uncorrelated activity is distributed both onto the soma and the

dendrite, but will increase to aI
?~1 and ap

?~2 if no uncorrelated

input are present on the dendrite. Similarly, without input onto

soma, the asymptotic value will change for the soma potential

PSD: it becomes aV
?~2:5 if uncorrelated input is uniformly

distributed on the dendrite, and aV
?~3 if the dendritic input is

correlated.

Apparent power laws for experimentally relevant
frequencies

Detailed inspection of the power-law slopes for the ball and stick

model in Fig. 2 and comparison with the power-law exponents a?
listed in Table 2 reveal that although the curves might look

linearly decaying in the log-log plot for high frequencies, the

expressed exponents a are still deviating from their high-frequency

values a?, even at 1000 Hz. As experimental power laws have

been claimed for much lower frequencies than this, we now go on

to investigate apparent PSD power laws for lower frequencies. For

this it is convenient to define a low-frequency (lf) regime, an

intermediate-frequency (if) regime and a high-frequency (hf)
regime, as illustrated in Fig. 3C. The transition frequencies

between the regimes are given by the frequencies at which a is

50% and 90% of aall
? , respectively.

The log-log decay rates of the PSD transfer functions can be

defined for any frequency by defining the slope a(W ) as the

negative log-log derivative of the PSD transfer functions,

a(W )~{d( log H)=d( log W ): ð116Þ

In Figs. 4, 5, and 6 we show color plots of a(W ) for the soma

current (aI (W )), current-dipole moment (ap(W )), and soma

potential (aV (W )), respectively, both for cases with uncorrelated

and correlated inputs. The depicted results are found by

numerically evaluating Eq. 116 based on the expressions for H
listed in Eqs. 81–89. Note that since our model is linear, the log-

log derivative is independent of the amplitude A. Thus, with either

completely correlated or completely uncorrelated input, the

dimensionless parameters B, L, r and W span the whole

parameter space of the model. The 2D color plots in Figs. 4–6

depict a as function of W and B for three different values of the

electronic length L~l=l (L = 0.25, 1, and 4), i.e., spanning the

situations from a very short dendritic stick (L~0:25) to a very long

stick (L~4). Electrotonic lengths greater than L~4 produced

plots that were indistinguishable by eye from the plots for L~4.

The thin black contour line denotes the transition between the

low- and intermediate-frequency regimes (a~0:5a?), whereas the

thick black contour line denotes the transition between the

intermediate- and high-frequency regimes (a~0:9a?).

Soma current. Fig. 4 shows the slopes a of the PSD transfer

functions for the soma current, HI . The first row applies to

correlated inputs (HI
c ) for all values of rs and rd as long as rs=rd.

This independence of r~rs=(rszrd) is seen directly in the

transfer functions in Eqs. 81 and 82. (For the special case rs~rd

there will be no net somatic current). The plot in row 1 also applies

to the case of uncorrelated current inputs onto the soma only

(HI
uc,s). That these particular PSD transfer functions have identical

slopes are to be expected: the correlated result pertains also to the

special case rd~0 for which all input is onto the soma, and

changing from correlated to uncorrelated current inputs onto the

soma will only change the overall amplitude of the resulting soma

current, not the PSD slope.

The first row of Fig. 4 illustrates how the slope a approaches the

asymptotic value aI
?~1 for correlated input (rs=rd) (and

uncorrelated input onto the soma) for high frequencies, see

Table 2. It also shows that this asymptotic value is reached for

lower frequencies when B~d2
s =(dl) is large, i.e., when the soma

area is large compared to the effective area ld of the dendrite.

Row 2 correspondingly shows how a for large frequencies

approaches the asymptotic value of aI
?~1=2 (row 2) for

uncorrelated input uniformly spread over the dendrite. For the

case depicted in row 3, i.e., uncorrelated input onto both the soma

and dendrite with rs~rd, the asymptotic high-frequency expres-

sion is seen to eventually be dominated by the lowest power, i.e.,

a&aall,I
? ~1=2.

The lf regime, that is, the area to the left of the thin contour

line, is seen to be quite substantial in Fig. 4, and is also highly

dependent on B. For the default parameters, depicted by the white

horizontal line, the left column in Fig. 4 shows that the lf regime

extends up to much more than 100 Hz for compact neurons

(L = 0.25), and even for L~1 and L~4 (two rightmost columns)

the lf regimes are substantial. (For our default membrane time

constant of 30 ms, 100 Hz corresponds to the middle vertical

white line in the panels.) Such a prominent lf regime was also seen

for the pyramidal neuron in Fig. 2 where the normalized PSD for

the somatic membrane current with uncorrelated input was almost

constant up to 1000 Hz.

It is also interesting that in some situations the soma current is

band-pass filtered with respect to the input currents. This is

especially seen in Fig. 4 for intermediate (L~1) and long (L~4)

sticks with uncorrelated dendritic input currents (row 2), where the

substantial dark blue area represents a band of negative a-values

which is turning positive for higher frequencies, and the PSD thus

is band-pass filtered around the frequencies corresponding to

a~0. For the higher frequencies within the frequency interval

typically recorded in experiments (up to a few hundred hertz),

Fig. 4 shows that one could expect some low-pass filtering of the

noisy current input for the intermediate and long sticks (lwl), in

particular if the current input is (i) predominantly onto the soma or
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Figure 4. Slopes aI for the PSD transfer function for the soma current for a ball and stick neuron in terms of its dimensionless

parameters. Row 1 corresponds both to correlated input currents (HI
c ) with any input densities rs=rd, and to uncorrelated input to soma only

(HI
uc,s). Row 2 corresponds to the case of uncorrelated input currents solely onto the dendrite. Row 3 corresponds to uncorrelated input currents with

equal density, rs~rd, throughout the neuron. The dimensionless parameter B~d2
s =dl is plotted along the vertical axes, while the dimensionless

frequency W is plotted logarithmically along the horizontal axes. In the left column the dimensionless length is L~0:25, in the middle column L~1
and the right column L~4. The horizontal white line express the default value of the parameter B, B~0:2 (soma diameter ds~20mm, stick diameter
d~2mm, length constant l~1 mm), while the vertical white lines correspond to frequencies of 10 Hz, 100 Hz and 1000 Hz, respectively, for the

default membrane time constant tm~30 ms. The thin black line denotes a~0:5aall
?~0:25 and the thicker black line denotes a~0:9aall

?~0:45, with

aall
?~0:5 denoting the asymptotic value for the case of both uncorrelated and correlated input onto the whole neuron. All plots use the same color

scale for a, given by the color bar to the right.
doi:10.1371/journal.pcbi.1003928.g004

Figure 5. Slopes ap for the PSD transfer function for the current-dipole moment (single-neuron EEG contribution) for a ball and
stick neuron in terms of its dimensionless parameters. Row 1 corresponds both to correlated input currents (Hp

c ) with any input densities
rs=rd, and to uncorrelated input to soma only (Hp

uc,s). Row 2 corresponds to the case of input currents solely onto the dendrite. Row 3 corresponds

to uncorrelated white-noise input currents with equal density, rs~rd, throughout the neuron. The dimensionless parameter B is plotted along the
vertical axes, while the dimensionless frequency W is plotted logarithmically along the horizontal axes. In the left column the dimensionless length is
L~0:25, in the middle column L~1 and the right column L~4. The horizontal white line express the default value of the parameter B, B~0:2
(soma diameter ds~20mm, stick diameter d~2mm, length constant l~1 mm), while the vertical white lines correspond to frequencies of 10 Hz,

100 Hz and 1000 Hz for the default membrane time constant tm~30 ms. The thin black line denotes a~0:5aall
?~0:75 and the thicker black line

denotes a~0:9aall
?~1:35, with aall

?~1:5 denoting the asymptotic value for the case of both uncorrelated and correlated input onto the whole
neuron. All plots use the same color scale for a, given by the color bar to the right.
doi:10.1371/journal.pcbi.1003928.g005
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(ii) correlated, and the neuron has a large value of B. However, as

indicated by Fig. 2, this effect may be very small for pyramidal

neurons.

Current-dipole moment/EEG contribution. Fig. 5 shows

corresponding slope plots of the PSD for the current-dipole

moment, Hp, i.e., the single-neuron contribution to the EEG.

The panels are organized as for the soma current in Fig. 4, and as

for the soma current we observe that for high frequencies a
approaches the asymptotic value ap

? = 2 for the cases with either

correlated input (rs=rd) or uncorrelated input onto the soma only

(row 1), see Table 2. Further, for the case with uncorrelated input

on the dendrites, a is seen to approach the predicted aall,p
? ~1:5

(rows 2 and 3).

Moreover, as for the soma current the lf regime is seen to be

large for compact neurons (L = 0.25). For such neurons one would

thus expect very little filtering within the frequency interval

typically recorded for the EEG, typically up to 100 or 200 Hz

(middle vertical white line in panels). For less compact neurons

(L = 1 and 4), the filtering is, however, seen to be substantial also

within the frequency interval from 10 to 100 Hz, even for low

values of B. This filtering is seen to be even more prominent for

the pyramidal neuron in Fig. 2, suggesting that the filtering could

be of considerable importance for the large pyramidal neurons in

human cortex thought to dominate human EEG.

The if regime is seen to be quite narrow in all panels in Fig. 5,

implying that the PSD has a quite abrupt transition to the hf
regime where the slope is quite constant and close to its asymptotic

values ap
?. The pyramidal neuron receiving uncorrelated input in

Fig. 2, however, is seen to obey an approximate power-law with ap

of only about 1.25 at 1000 Hz. This is not within the range

defined here as the hf regime, i.e., a§0:9ap
?~1:35, but rather

within the upper range of the if regime.

Soma potential. In Fig. 6 the slopes a of the PSD of the

soma potential are shown. Unlike HI
c and Hp

c , the PSD transfer

function HV
c for the soma potential with correlated input currents

varies with r~rs=(rszrd), and is also non-zero for rs~rd, cf.

Eq. 83. More panels are thus needed to describe the model

predictions properly: Row 1 corresponds to correlated input onto

the dendrite only (HV
c (rs~0)), row 2 corresponds to somatic input

only, either correlated (HV
c (rd~0)) or uncorrelated (HV

uc,s), while

row 3 corresponds to uncorrelated dendritic input (HV
uc,d). The two

bottom rows correspond to homogeneous input onto the whole

neuron, i.e., rd~rs, with uncorrelated input in row 4 and

correlated input in row 5.

The different panels of Fig. 6 display quite varied PSD slopes

for the various scenarios of input current. Row 1 shows that for

correlated input solely onto the dendrite, a is quite close to the

Figure 6. Slopes aV for the PSD transfer function for the soma potential for a ball and stick neuron in terms of its dimensionless
parameters. Row 1 corresponds to correlated input currents solely onto the dendrite. Row 2 corresponds to input currents solely onto soma, either

correlated (HV
c (rd~0)) or uncorrelated (HV

uc,s). In row 3 uncorrelated input currents are applied homogeneously across the dendrite. Row 5

corresponds to uncorrelated input currents with equal density, rs~rd, throughout the neuron. Row 6 shows results for correlated input currents with
equal density, rs~rd, throughout the neuron. The dimensionless parameter B is plotted along the vertical axes, while the dimensionless frequency
W is plotted logarithmically along the horizontal axes. In the left column the dimensionless length is L~0:25, in the middle column L~1 and the
right column L~4. The horizontal white line express the default value of the parameter B, B~0:2 (soma diameter ds~20mm, stick diameter d~2mm,
length constant l~1 mm), while the vertical white lines correspond to frequencies of 10 Hz, 100 Hz and 1000 Hz for the default membrane time

constant tm~30 ms. The thin black line denotes a~0:5aall
?~1 and the thicker black line denotes a~0:9aall

?~1:8, with aall
?~2 denoting the

asymptotic value for the case of both uncorrelated and correlated input onto the whole neuron. All plots use the same color scale for a, given by the
color bar to the right.
doi:10.1371/journal.pcbi.1003928.g006
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asymptotic value aV
? = 3 (cf. Table 2) for modest frequencies, even

for the compact neuron with L~0:25. The narrow if region and

large power-law exponent a in row 1 makes this case quite

different from the results depicted in the other panels. With input

instead onto the soma only (row 2), for example, a completely

different slope pattern is observed: for compact neurons (L~0:25)

the log-log slope of the PSD is seen to have regions with a positive

double derivative (concave slope), with the consequence that the if
regime is divided into two distinct frequency regions with an

intermediate hf interval.

Row 3 depicts the case with uncorrelated input onto the

dendrites. Qualitatively the results resemble the case with

correlated dendritic inputs in row 1, except that here a approaches

the asymptotic values aV
?~2:5 (cf. Table 2), rather than 3. For the

non-compact neurons (L~1 and L~4) the default parameters

give an if region for uncorrelated dendritic input which goes up to

almost 100 Hz. However, the thick contour line illustrates that the

transition to the hf regime is highly dependent on the values B,

and a slightly larger B is seen to substantially lower the transition

frequency to the hf regime.

With uncorrelated input homogeneously distributed over the

whole neuron, i.e., rs~rd (row 4), we observe a similar pattern of

power-law exponents as for somatic input only (row 2). Thus the

contribution from the soma for which aV
?~2, dominates the

contribution from the dendritic inputs where aV
? = 2.5. Another

observation is that for the non-compact neurons (L = 1 and 4) the

if regime is wide for a large range of B values. For the default

parameters corresponding to B = 0.2 we observe that the if
interval stretches from less than 10 Hz to almost 1000 Hz.

For the last example case in row 5 with correlated input spread

homogeneously onto the whole neuron (rs~rd) we observe that a
is independent of the parameter B. For homogenous correlated

input the whole neuron is iso-potential and corresponds to a

single-compartment neuron with zero dipole moment and zero net

membrane current, as reflected in the vanishing amplitudes of AI
c

and Ap
c in Table 2. In this special case the spatial extension of the

dendritic stick will not affect the filtering properties of the neuron,

and the PSD transfer function can be expressed as a simple

Lorentzian, i.e., HV
c Dr~0:5!1=(1zW 2). The slope a is thus solely

determined by the membrane time constant tm hidden within the

dimensionless frequency W~2pf tm.

PSDs for varying biophysical parameters for ball and stick
neuron

The 2D color plots in Figs. 4–6 depicting the slopes a of the

PSDs of the transfer functions H(f ), give a comprehensive

overview of the power-law properties of the ball and stick model as

they are given in terms of the three key dimensionless parameters

W~vtm~2pf tm, B~d2
s =dl, and L~l=l. To get an additional

view of how the model predictions depend on biophysical model

parameters, we plot in Figs. 7 and 8 PSDs, denoted S(f ), for a

range of model parameters for the soma current, current-dipole

moment and soma potential when the neuron receives homoge-

neous white-noise current input across the dendrite and/or the

soma. We focus on biophysical parameters that may vary

significantly from neuron to neuron: the dendritic stick length l,
the specific membrane resistance Rm, the dendritic stick diameter

d , and the soma diameter ds. The specific membrane resistance

may not only vary between neurons, but also between different

network states for the same neuron [40,41].

To predict PSDs S(f ) of the various measurements, and not just

PSDs of the transfer functions H(f ), we also need to specify

numerical values for the current-input densities rd and rs (and not

only the ratio r~rs=(rszrd)), as well as the magnitude of the

PSDs of the current inputs. These choices will only affect the

magnitudes of the predicted PSDs, not the power-law slopes. As

the numerical values of the high-frequency slopes predicted by the

present work suggest that channel noise from intrinsic membrane

conductances rather than synaptic noise dominates the observed

apparent high-frequency power laws in experiments (see Discus-

sion), we gear our choice of parameters towards intrinsic channel

noise. We first assume the input densities rd and rs (when they are

non-zero) to be 2 mm{2, in agreement with measurements of the

density of the large conductance calcium-dependent potassium

(BK) channel [42]. Next we assume the magnitude of PSD of the

white-noise current input to be s(f ) = const = 1 fA2/Hz. This

choice for s gives magnitudes of predicted PDSs of the soma

potential, assuming uncorrelated current inputs, in rough agree-

ment with what was observed in the in vitro neural culture study of

[17], i.e., about 1023–1022 mV2/Hz for low frequencies. Note

that the shape of the PSDs, and thus estimated power-law

exponents, are independent of the choice of current-noise

amplitude.

Figs. 7 and 8 show PSDs for uncorrelated and correlated input

currents, respectively. A first observation is that the predicted PSD

magnitudes are typically orders of magnitude larger for correlated

inputs, than for uncorrelated inputs. With the present choice of

parameters, the cases with correlated inputs predict PSDs for the

soma potential and soma current much larger than what is seen in

in vitro experiments [17,19,20]. A second observation is that

variations in the dendritic stick length (first column in Figs. 7–8)

and membrane resistance (second column) typically have little

effect on the PSDs at high frequencies, but may significantly affect

the cut-off frequencies, i.e., the frequency where the PSD kinks

downwards. This may be somewhat counterintuitive, especially

that the PSDs for the current-dipole moment are independent of

stick length l as one could think that a longer stick gives a larger

dipole moment. For the ball and stick neuron, however, this is not

so: input currents injected far away from both boundaries (ends) of

a long stick will not contribute to any net dipole moment, as the

input current will return symmetrically on both sides of the

injection point and thus form a quadrupole moment. This

symmetry is broken near the ends of the stick: for uncorrelated

input a local dipole is created at each endpoint; for correlated

input the dendrite will be iso-potential near the distal end of the

stick, while a local dipole will arise at the somatic end if rd=rs.

Note though that this is expected to be different for neurons with

realistic dendritic morphology, since the dendritic cables typically

are quite asymmetric due to branching and tapering.

The effects of varying the dendritic stick diameter and soma

diameter are quite different (cf., two rightmost columns in Figs. 7–

8). Here both the magnitudes and the slopes of the high-frequency

parts are seen to be significantly affected. On the other hand, the

cut-off frequency is seen to be little affected when varying the soma

diameter ds, in particular for the current-dipole (Sp) and soma

potential (SV ) PSDs. (Note that for the case with homogeneous

correlated input, rs~rd (row 4 in Fig. 8), the ball and stick model

is effectively reduced to a single-compartment neuron for which

the PSD is independent of d and ds.)

In Figs. 4–6 regions in the log-log slope plots were observed to

have positive double derivatives, i.e., concave curvature. The effect

was particularly prevalent for the soma potential transfer function

HV in the case of short dendritic sticks (L~0:25) with dominant

current input to the soma. This feature is also seen in the

corresponding ‘soma-input’ curves (bottom rows of Figs. 7–8), also

for non-compact sticks, i.e., for the default value l = 1 mm (L = 1).
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Discussion

Summary of main findings
In the present work we have taken advantage of the analytical

tractability of the ball and stick neuron model [27] to obtain

general expressions for the power spectral density (PSD) transfer

functions for a set of measures of neural activity: the somatic

membrane current, the current-dipole moment (corresponding to

the single-neuron EEG contribution), and the soma potential.

With homogeneously distributed input currents both onto the

dendritic stick and with the same, or another current density, onto

the soma we find that all three PSD transfer functions, relating the

PSDs of the measurements to the PSDs of the noisy inputs

currents, express asymptotic high-frequency 1=f a power laws. The

corresponding power-law exponents are analytically identified as

aI
?~1=2 for the somatic membrane current, ap

?~3=2 for the

current-dipole moment, and aV
?~2 for the soma potential. These

power-law exponents are found for arbitrary combinations of

uncorrelated and correlated noisy input current (as long as both

the dendrites and the soma receive some uncorrelated input

currents).

The significance of this finding goes beyond neuroscience as it

demonstrates how 1=f a power laws with a wide range of values for

the power-law exponent a may arise from a simple, linear physics

equation [30]. We find here that the cable equation describing the

electrical properties of membranes, transfers white-noise current

input into ‘colored’ 1=f a-noise where a may have any half-

numbered value within the interval from 1=2 to 3 for the different

measurement modalities. Intuitively, the physical underpinning of

these novel power laws is the superposition of numerous low-pass

filtered contributions with different cut-off frequencies (i.e.,

different time constants) [32,33] due to the different spatial

positions of the various current inputs along the neuron. (Note,

however, that power laws with integer coeffients (1 and 2) also are

obtained with purely somatic input; cf. Table 2.) As our model

system is linear, the results directly generalize to any colored input

noise, i.e., transferring 1=f b spectra of input currents to 1=f bza

output spectra.

Figure 7. Dependence of PSDs on biophysical parameters for uncorrelated input. PSDs of the soma current (row 1), current-dipole
moment (row 2) and soma potential (row 3) for the ball and stick model with uncorrelated white-noise input currents homogeneously distributed
throughout the membrane. The input density is two inputs per square micrometer, and the input current is assumed to have a constant (white noise)
PSD, s~1fA2=Hz. The columns show variation with stick length (first column), specific membrane resistance (second column), stick diameter (third
column) and soma diameter (fourth column) with values shown in the legends below the panels. All other parameters of the ball and stick neuron

have default values: stick diameter d~2mm, somatic diameter ds~20mm, stick length l~1mm, specific membrane resistance Rm~3Vm2 , inner

resistivity Ri~1:5Vm and a specific membrane capacitance Cm~0:01F=m2 . The values of a printed in the legends describe the powers of the slopes
at 1000 Hz. The upper a corresponds to the low value of the parameter varied (green), the middle a corresponds to the default parameter (red), while
the lower a corresponds to the high value of the parameter varied (blue).
doi:10.1371/journal.pcbi.1003928.g007
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Figure 8. Dependence of PSDs on biophysical parameters for correlated input. PSDs of the soma current (row 1), current-dipole moment
(row 2) and soma potential (rows 3 to 5) for the ball and stick model with correlated white-noise input currents homogeneously distributed
throughout the stick only (row 1 to 3), the soma only (row 5) or with equal density throughout the soma and the stick (row 4). The input density is
two inputs per square micrometer, unless a zero density is indicated on the axis. The input current is assumed to have a constant (white noise) PSD,

s~1fA2=Hz. The columns show variation with stick length (first column), specific membrane resistance (second column), stick diameter (third
column) and soma diameter (fourth column) with values shown in the legends below the panels. All other parameters of the ball and stick neuron

have default values: stick diameter d~2mm, somatic diameter ds~20mm, stick length l~1mm, specific membrane resistance Rm~3Vm2 , inner

resistivity Ri~1:5Vm and a specific membrane capacitance Cm~0:01F=m2 . The values of a printed in the legends describe the powers of the slopes
at 1000 Hz. The upper a corresponds to the low value of the parameter varied (green), the middle a corresponds to the default parameter (red), while
the lower a corresponds to the high value of the parameter varied (blue).
doi:10.1371/journal.pcbi.1003928.g008
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Comparison with apparent power laws observed in
neural recordings

Our ball and stick model expressions for the PSDs cover all

frequencies, not just the high frequencies where the power-law

behavior is seen. When comparing with results from neural

recordings, one could thus envision to compare model results with

experimental results across the entire frequency spectrum.

However, the experimental spectra will generally be superpositions

of contributions from numerous sources, both from synapses [41]

and from ion channels [17]. These various types of input currents

will in general have different PSDs, i.e., different s(f ). A full-

spectra comparison with our theory is thus not possible without

specific assumptions about the types and weights of the various

noise contributions, information which is presently not available

from experiments. However, the presence of power-law behavior

at high frequencies implies that a single noise process (or several

noise processes with identical power-law exponents) dominates the

others in this frequency range.

In the following we first discuss apparent power laws observed

in the soma potential and soma current in vitro [17,19,20]. Next,

we discuss apparent power laws seen in vivo, both in the soma

potential [18,21,43] and, briefly, in the EEG [7]. Here synaptic

noise is expected to provide almost all of the noise variance, but

our results suggest that the power law at the high-energy tail of the

spectrum nevertheless may be due to ion-channel noise.

In vitro situation—ion-channel noise. From recordings of

the PSD of the soma potential in hippocampal cell culture for

frequencies up to 500 Hz, a value of aV
exp of about 2.4 was

estimated at the high-frequency end [17]. Here synaptic blockers

were applied, and the resulting noise level was small. Similar

power-law exponents, i.e., *2.4 and *2.5, were estimated in slice

experiments from rat somatosensory cortex for frequencies up to

(only) 100 Hz [19,20]. In these experiments synaptic blockers were

generally not used, and the noise level was found to have a

standard deviation about a factor two larger than in the cell

culture study of [17]. In [19] it was shown that with synapses

blocked, the noise in the frequency interval between 15 Hz to

35 Hz was reduced with about a factor two. For the soma current,

the experiments are fewer, but a power law with aI
exp*1:1 was

observed in experiments on hippocampal cell culture for

frequencies up to 500 Hz [17]. For cultures and slices we expect

synaptic noise to play a minor role for frequencies above a few

hundred hertz, where intrinsic ion-channel noise, presumably

largely uncorrelated, is expected to dominate (see also Fig. 9

showing how this might be the case even in an in-vivo like

situation where the synaptic noise has much larger overall power

than the ion-channel noise).

For the pyramidal neuron depicted in Fig. 2 we correspondingly

estimated power-law coefficients aV*1.6 and aI*0.2 in the high-

frequency tail of the PSDs of the transfer functions for

uncorrelated current inputs. Thus if these uncorrelated input

current sources themselves have a pink (1=f , i.e., b = 1) power-law

dependence of the PSD in the relevant frequency range, the

power-law exponents of the model PSDs become aV +b*1.6+
1 = 2.6 and aIzb*1.2, intriguingly close to the experimental

observations. Note that while these model results pertain for a

particular choice of model parameters for the pyramidal neuron,

the results shown in Fig. 7 for the ball and stick neuron imply that

moderate changes in the model parameters will yield modest

changes in predicted power-law exponents.

This comparison thus suggests that the in vitro power laws are

provided by intrinsic ion-channel noise with a pink, i.e., 1=f , PSD

noise spectrum. In fact, several recordings of channel noise in

potassium channels have shown such 1=f scaling [26,44–46]. At

this stage, it is tempting to speculate further on what particular

type of ion channel could give rise to the observed power-law

spectra. Several experiments have hinted that potassium channels

may be important sources of intrinsic membrane noise

[17,26,44,45], and of those a natural candidate may the slow

BK (‘big’) potassium channel [17] which has a large single-channel

conductivity and thus the potential for providing large current

fluctuations [47].

Note, however, that power-law exponents alone are not

sufficient to uniquely determine whether the dominant inputs

are correlated or uncorrelated. As seen for the ‘infinite-frequency’

power-law exponents a? in Table 2 and Figs. 4–8, a’s are equal to

or larger for correlated inputs than for uncorrelated inputs for our

ball and stick neuron; the typical difference for a? being 1/2.

Thus correlated current inputs with power-law PSDs with an

exponent b of about 1/2 (rather than the pink-noise value of b = 1)

would give about the same power-law exponent (a+b) in the

various measurements. Note also that since the power-law

exponents a with uncorrelated inputs are generally smaller than

for correlated inputs, the uncorrelated contributions will in

principle always dominate for sufficiently high frequencies.

However, the contribution from correlated current inputs scales

differently with the number density of input currents than for

uncorrelated inputs: the PSD grows as the square of the input

densities (rs, rd ) for correlated inputs, while it grows only linearly

with these input densities for uncorrelated inputs. Thus in

experimental settings the relative contributions from correlated

and uncorrelated current inputs will depend on the size of these

densities as well as the value of the coherence c [39], parameters

which cannot be expected to be universal, but rather depend on

the biophysical nature of the underlying current noise source. It

may thus in general be difficult to a priori assess whether the noise

spectra are dominated by correlated or uncorrelated input from

power-law exponents alone.

In vitro situation–mixed noise. In in vivo experiments

from cat neocortical neurons where PSDs for frequencies up to

1000 Hz have been used to estimate power-law exponents, the

soma potential has also been seen to express power laws with aV
exp

between 2 and 3 with a mean of 2.44 [18,21]. This is very similar

to the findings in vitro, and may suggest that although synaptic

noise may dominate the lower frequencies, the biophysical origin

of the power laws observed the high-frequency tail of in vivo and

in vitro PSDs could be the same. If so, it suggests that intrinsic ion-

channel noise may be the underlying noise source as synaptic

noise, despite likely dominating the overall noise variance in the in
vivo situation, is expectedly small in the in vitro situation.

Further, it has been difficult to account for 1=f input spectra in

model studies based on assuming a synaptic origin of the noise. In

[20] and [21] synapses were spread evenly across dendrites of

morphologically reconstructed neurons and were activated by

presynaptic spike trains assumed to have Poissonian distributions

(cf. Fig. 1). With current-based exponential synapses (I!e{t=ts ),

the PSD of the current noise source will have the form of a

Lorentzian, i.e.,

s(f )~s(0)=(1z(2pf ts)
2) ð117Þ

where ts is the synaptic time constant. For high frequencies this

implies s*1=f 2 (b = 2), cf. results for Brownian (1=f 2) input in

right column of Fig. 2, not s*1=f as suggested by comparison

of our model results with experiments. Alternatively, for an
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alpha-function synaptic current model (I!te{t=ts ), the PSD of the

noise source will have the form

s(f )~s(0)=((1z(2pf ts)
2))2 ð118Þ

for which s*1=f 4 for high frequencies.

As previous studies also concluded that standard theories predict

a too large value for the soma-potential power-law coefficient,

several alternatives have been suggested: One suggestion has been

that the synaptic time constant is so small (ts~2 ms in [20])

implying that the transition to the high-frequency power-law

regime will occur at a high cut-off frequency (f*1=2pts). Indeed,

if this cut-off frequency is in the upper range of the recorded

frequency interval, s(f ) will essentially be independent of

frequency (i.e., white) and apparent soma-potentials power laws

with smaller coefficients can be obtained. Another suggestion has

been that a high-pass frequency dependence of the compound

spike input may overwrite the low-pass filtering of the synapses

and yield smaller power-law coefficients in the soma potential. In

[48] such an effect was included by means of a phenomenological

model (inspired by network simulation results) imposing a certain

conduction-delay distribution. For particular delay distributions

(parameterized by the parameter b in their Eqs. 1 and 2) such a

high-pass effect of the compound spike input would be predicted.

Likewise, in [49] it was shown that low-frequency spike

correlations in recurrent cortical networks are suppressed by

inhibitory feedback so that the compound spike-train spectrum

can exhibit high-pass characteristics instead of the flat (white)

frequency spectrum inherent in stationary Poissonian spike-train

statistics. A third suggestion was offered by [21] suggesting that a

non-ideal, i.e., frequency-dependent, membrane capacitance

could have the necessary high-pass effect and predict a soma-

potential power-law coefficient from synaptic noise in accordance

with experimental findings even with a white Poisson-like

compound spike input.

The present study suggests a fourth alternative. While the noise

has contributions both from intrinsic ion channels and synapses,

the ion-channel contribution will dominate for sufficiently high

frequencies as the synaptic contribution decays faster for high

frequencies: in the high-frequency limit the noise process with the

smallest power-law exponent, i.e., the ion-channel contribution,

will eventually dominate. Note that, as demonstrated in Fig. 9, this

is not incompatible with the expected dominance of synaptic noise

in the in vivo situation. Here we show an example where a model

neuron receives both synaptic and 1=f noise (the latter putatively

ion-channel noise) and where the synaptic noise variance is more

than ten times larger than the 1=f noise. As a consequence the

noise in the soma potential seen in a regular time plot is completely

dominated by synaptic noise, cf., red potential trace (1=f ) vs. blue

(synaptic) and black (1=f +synaptic) traces in Fig. 9A. This

dominance of synaptic noise is further illustrated by the soma-

potential histograms in panel B showing a much narrower

Figure 9. Suggested scenario for generation of soma-potential noise in the in vivo situation with a combination of 1=f membrane
current sources, presumably due to intrinsic ion channels, and synaptic current sources. Both sources are assumed uncorrelated and
homogeneously spread out across a ball and stick neuron. (A) Excerpt of real-time soma potential following injection of synaptic noise through an
exponential synapse (white noise filtered through Eq. (117), blue line), 1=f noise, putatively from intrinsic ion channel (white noise filtered through a
1=f filter, red line), and sum of both (black line). (B) Histogram over soma potential for the three situations in A (50 s period with a sampling rate of
10 kHz). (C) Soma-potential PSDs for five cases: the three cases in A (1=f ; exponential synapse, Eq. (117); sum of 1=f and exponential synapse) as well
as alpha-function synapse (Eq. 118, green line) and sum of alpha-function synapse and 1=f (magenta line). All traces are normalized to the value of
the summed PSDs for 1=f noise and exponential synapse for the lowest depicted frequency (0.1 Hz). (D) Locally (in frequency) estimated power-law
coefficient a, i.e., Eq. (116). The noise amplitudes are set so that soma-potential noise from (i) the 1=f current noise input has a standard deviation of
sV = 0.6 mV (as seen in in vitro experiments [19]; frequencies between 0.2 and 100 Hz included in the noise variance sum) and (ii) total noise
(synaptic+1=f ) a standard deviation of sV = 2.5 mV (similar to in vivo experiments reported in Fig. 11 in [18]). Parameters used for the ball and stick

neuron model is the default values (cf. caption of Fig. 3 and Table 1) except for the membrane resistance which has been reduced to Rm~0:5Vm2 to
mimic an expected high conductance in an in vivo state [21]. The synaptic time constant is set to ts~30 ms for the exponential synapse (Eq. 117) and
ts~5 ms for the alpha-function synapse (Eq. 118).
doi:10.1371/journal.pcbi.1003928.g009
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distribution for the 1=f noise than the synaptic and total noise. In

the power spectra of panel C we further see the dominance of

synaptic noise for the lower frequencies, i.e., up to around 100 Hz,

but for the highest frequencies, i.e., above a few hundred Hz, we

observe that the 1=f noise (red curve) eventually dominates due to

the sharper frequency decay of synaptic noise contributions

(exponential synapse (Eq.117), blue curve; alpha-function synapse

(Eq.118), green curve). Note that much less than 1% of the total

noise variance comes from frequencies above 100 Hz.

The cross-over frequency where the 1=f -noise and synaptic

noise are equal, will depend on model details. In the example in

Fig. 9 we have, for example, assumed the input spike trains to have

a white noise spectrum corresponding to a stationary Poissionian

spike distribution [13]. However, for the present example the

cross-over occurred for 330 Hz for the exponential synapse and

160 Hz for the alpha-function synapse, cf. Fig. 9C. The cross-over

behavior is also illustrated in panel D showing the locally (in

frequency) estimated power-law coefficients (Eq. 116) for the

various noise situations. A first observation is that the estimated a
approaches 3 in the high-frequency limit in accordance with the

value for aV
?zb~2z1~3 listed in Table 2. For exponential and

alpha-function synaptic noise the corresponding limiting values of

a?zb is 4 and 6, respectively. With 1=f noise added to the

synaptic noise, we observed that a again approaches 3 in the high-

frequency limit reflecting that the power-law term with the

smallest exponent will always dominate for sufficiently high

frequencies. When both synaptic and 1=f noise are present, we

see that the relatively weak 1=f noise nevertheless affect the locally

estimated a for all frequencies above 100 Hz, pushing the

estimated exponents closer to the experimentally observed values

which until now have been reported to be smaller than 3 [18]. The

point here is not to quantitatively predict particular apparent

power-law exponents seen at different frequencies, but rather to

illustrate the point that relatively weak 1=f noise stemming from,

for example, intrinsic ion channels may dominate the high

frequencies of the noise spectra even when its variance contribu-

tion is an order of magnitude smaller than the contribution from

synaptic activity.

If uncorrelated pink-noise (1=f ) input currents were assumed to

dominate high-frequency EEG noise, the pyramidal neuron results

in Fig. 2 would imply power-laws in the high-frequency tails with

exponents of apzb*2.25. Unfortunately, for EEG experimental

PSDs are only available for frequencies up to 100 Hz [7], and here

putative power laws have exhibited a large variation in power-law

exponents with aexp’s varying between 1 and 2 [7]. The present

results (e.g., Fig. 2) imply that for so low frequencies, one is not yet

fully in the power-law regime, and estimated power-law exponents

from simple fitting to power spectra will be smaller than exponents

for genuine power laws occurring at higher frequencies. Thus, the

observed power-law exponents could per se be compatible with an

underlying 1=f current noise source driving the EEG signal noise.

However, as for the in vivo soma-potential power laws discussed

above, synaptic inputs will expectedly modify the EEG power

spectra at frequencies of around 100 Hz. A proper comparison of

model predictions for EEG high-frequency power laws with

experiments will thus have to await measurements of EEG power

spectra at higher frequencies.

Interestingly, in vivo measurements of power spectra for the

soma potentials have revealed apparent power-law behavior with

a*2:5 for frequencies even as low as 50 Hz or smaller [18].

Fig. 9C illustrates how the combination of ion-channel noise and

synaptic noise may give rise to such apparent power-law behavior

at frequencies below the range where ion-channel noise can be

expected to dominate in vivo. For the model example in Fig. 9C,

we see that the local log-log slope of the PSD for the exponential

synapse noise is not too different from -2.5 in the frequency range

between, say, 50 and 150 Hz (blue line). Further, the sum of ion-

channel noise and exponential synapse noise can give the

appearance of a power law extending down to 50 Hz, even if

the combination of underlying noise sources is not the same across

the entire frequency range. Further experimental and theoretical

investigations are needed to explore this question, however.

Power laws for local field potentials (LFPs) and ECoG
signals

Power laws have also been reported in recordings of extracel-

lular potentials inside (local field potential; LFP) and at the surface

of cortex (electrocorticography; ECoG). However, the reported

power-law exponents vary a lot, with aexp’s between 1 and 3 for

LFPs [13–16] and between 2 and 4 for ECoG signals [9–12,50].

From a modeling perspective the single-neuron contribution to

putative power-law exponents for these signals is more difficult as,

unlike the EEG signal, the single-neuron contributions are not

determined only by the current-dipole moment: dominant

contributions to these signals will in general also come from

neurons close to the electrode (typically on the order of hundred or

a few hundred micrometers [37]), so close that the far-field dipole

approximation relating the current-dipole moment directly to the

contributed extracellular potential [25] is not applicable [37].

A point to note, however, is that it may very well be that power

laws observed in the LFP or ECoG are dominated by other

current sources than the power laws observed in the EEG spectra:

As observed in [37,39] (see also [51]) the LFP recorded in a

cortical column receiving correlated synaptic inputs can be very

strong, and it is thus at least in principle conceivable that power

laws in the LFP may stem from synaptic inputs from neurons

surrounding the electrode, whereas the EEG signal, which picks

up contributions from a much larger cortical area, may be

dominated by uncorrelated noise from ion channels. Further, the

soma potential and soma current of each single neuron may also

still be dominated by uncorrelated channel noise, even if the LFP

is dominated by correlated synaptic activity. This is because

correlated synaptic inputs onto a population of neurons add up

constructively in the LFP, whereas the uncorrelated inputs do not

[37,39]. For single-neuron measures such as the soma potential

and soma current there will be no such population effects, and the

uncorrelated inputs may more easily dominate the power spectra.

As a final comment it is interesting to note that in the only

reported study we are aware of for the frequency range 300-

3000 Hz, the PSD of the LFP exhibited a power law with a fitted

exponent of a = 1.1 [15]. This is very close to what would be

predicted if the LFP was dominated by the soma current from

uncorrelated (pink) noise sources: In Table 2 we see that the

‘infinite-frequency’ power-law exponent for the transfer function

from dendritic current inputs to soma current is aI
?~0:5. With a

pink (1=f ) PSD of the input noise current, the ‘infinite-frequency’

prediction for the soma current exponent will thus be 1.5. This is

already fairly close to the experimental observation of 1.1. Further,

from Fig. 4 it follows that the apparent power-law coefficient for

the transfer-function power law may be somewhat smaller than 0.5

in the frequency range of interest, suggesting that the agreement

between experiments and model predictions assuming uncorrelat-

ed noise may be even better. If so, it may be that the LFP power

spectra are dominated by synaptic inputs for frequencies below a

few hundred hertz (with rapidly decaying LFP contributions with

increasing frequency, i.e., higher power-law exponents in accor-

dance with [13,14,16]), while uncorrelated inputs, and thus power

laws with smaller exponents, dominate at higher frequencies.
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Linearity approximations
In the present analysis we have modeled the membranes of

somas and dendrites as simple passive linear (RC) circuit elements.

This implies a strictly linear response to the current inputs,

allowing for the present frequency-resolved (Fourier) analysis.

However, the same kind of analysis can be done for active

dendritic membrane conductances, at least close to the resting

potential of the neuron: In the so called quasi-active membrane

models, the active conductances are linearized and modeled by a

combination of resistors, capacitors and inductors [52,53]. These

extra circuit elements will change the PSD. For example, the

inductor typically introduces a resonance in the system. In Koch

[53] the impedance for this ‘quasi-active’ membrane was however

found to coincide with the impedance for a purely passive

membrane for frequencies above 200 Hz, implying that the

predicted high frequency power laws will be about the same. This

is in accordance with experimental results from neocortical slices,

where blocking of sodium channels were shown mainly to affect

the soma potential PSD for frequencies below 2 Hz [19].

Nevertheless, the investigation of the role of active conductance

on PSDs is a topic deserving further investigations.

Here we modeled the noise-generating membrane mechanism

as a simple current, i.e., Inoise~I(t), making the system fully

linear. As a (non-linear) alternative, these noise currents could

have been modeled as conductance-based currents, i.e.,

Inoise~g(t)(V{Erev) where g(t) is the conductance, and Erev is

the channel reversal potential. In the case of potassium channels,

Erev will typically be around -80 mV. However, when exploring

the situation when the membrane potential is not too close to the

channel reversal potential, we observed in simulations the same

high-frequency power-law behavior for conductance-based and

current-based noise-current models (results not shown). That these

two models give the same power law can be understood as follows:

In the conductance-based case the channel current has two terms,

i.e., Inoise(t)~g(t)V (t){g(t)Erev. The conductance g(t) is here

dependent on the incoming spike trains, but not on the membrane

potential. The first term involves a product of g(t) and V (t), while

the second term has the same mathematical form as the current-

based noise model. Since the potential membrane potential V (t)
always will be low-pass filtered compared to the input, the linear

term g(t)Erev is expected to dominate the product g(t)V (t) for

high frequencies. If so, it follows that the linear term will determine

the power-law behavior, and that the power-law behavior will be

the same as for the current-based model.

Concluding remarks
A key conclusion from the present work is that the power-law

predictions from our models are in close agreement with

experimental findings for the soma potential and the soma current

provided the transmembrane current sources are assumed to be (i)

homogeneously distributed throughout the whole neuron, (ii)

uncorrelated, and (iii) have a pink (1=f ) noise distribution. It

should be stressed that we do not argue against synaptic noise

being a major component underlying neural noise spectra; the

importance of synaptic inputs in setting the noise level has been

clearly demonstrated, for example by the large difference in

membrane potential fluctuation between in vivo and in vitro
preparations [41,43]. We rather suggest that the power-law

behavior seen at the high-frequency end of these noise spectra

may be dominated by intrinsic channel noise, not synaptic noise.

We also speculate that potassium channels with inherent noisy

current with PSDs following a 1=f distribution in the relevant

frequency range, underlie the observed high-frequency power

laws, and the slow voltage- and calcium-activated BK channel,

reported to have a very large channel conductance [47], is

suggested as a main contributor [17]. If future experiments indeed

confirm that the BK channel is a dominant source of membrane

noise, this may have direct implication of the understanding

several pathologies. Not only has the BK channel been implicated

as a source of increased neural excitability [54] and epilepsy [55],

but also disorders such as schizophrenia [56], autism and mental

retardation [57] have been linked to the BK channel through a

decrease in its expression [58].
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18. Rudolph M, Pelletier JG, Paré D, Destexhe A (2005) Characterization of

synaptic conductances and integrative properties during electrically induced eeg-

activated states in neocortical neurons in vivo. J Neurophysiol 94: 2805–2821.

19. Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, et al. (2005)

Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564:

145–160.

20. Yaron-Jakoubovitch A, Jacobson GA, Koch C, Segev I, Yarom Y (2008) A

paradoxical isopotentiality: a spatially uniform noise spectrum in neocortical

pyramidal cells. Front Cell Neurosci 2: 3.

On Power Laws from Linear Neuronal Cable Theory

PLOS Computational Biology | www.ploscompbiol.org 25 November 2014 | Volume 10 | Issue 11 | e1003928



21. Bédard C, Destexhe A (2008) A modified cable formalism for modeling neuronal

membranes at high frequencies. Biophys J 94: 1133–1143.
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