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Abstract 
The Atlantic salmon underwent a whole-genome duplication 80 million years ago and has kept 

around half of the duplicated genes. Over time, some genes have become more active, while 

others have become less active, due to regulatory changes. This thesis explores if it is possible 

to separate these genes by the number of nearby transcription factor binding sites. 

With previously obtained information about the binding sites for different transcription 

factors for each gene and the direction of the expression level shift for this gene, a matrix was 

constructed containing the difference in bound transcription factor binding sites between the 

gene duplicates. One of the gene duplicates has a significant change in gene expression level, 

while the other is conserved. The duplicate pairs with increased expression in one copy are 

called upcons, and the pairs with decreased expression in one copy are called downcons. 

Multiple machine learning algorithms were tested to classify upcons vs downcons. Overall, 

support vector machines performed best, achieving an accuracy of 67%. 

In conclusion, the results are indicative that classification of the evolutionary direction of 

genes based on nearby transcription factor binding sites can be done. 

Sammendrag 
Atlanterhavslaken gjennomgikk en helgenomduplisering for 80 millioner år siden og har 

beholdt rundt halvparten av de dupliserte genene. Noen gener har blitt mer avlest, mens 

andre har blitt avlest sjeldnere, dette grunnet endringer i reguleringen. Denne oppgaven vil 

undersøke om det er mulig å skille slike gener etter antallet bindingsseter 

transkripsjonsfaktorer har i nærheten av genene. 

Med tidligere innhentet informasjon om bundne bindingsseter for forskjellige 

transkripsjonsfaktorer for hvert gen og retningen på endringen for genuttrykksnivået for 

genet, ble en matrise laget som inneholdt forskjellen i bindingsseter mellom duplikatgenene. 

Det ene genet i duplikatparet har en signifikant endring i genuttrykksnivå, men ikke det andre. 

De parene hvor endringen er positiv, kalles «upcons», og de negative kalles «downcons». 

Flere maskinlæringsmetoder var testet i klassifikasjonen av «upcons» og «downcons».  SVM 

var den metoden som gjorde det best. Den klarte å velge riktig i 67% av tilfellene. 

Konklusjonen er at det er gjennomførbart å klassifisere geners evolusjonære retning basert på 

transkripsjonsfaktorers bindingsseter. 
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Introduction 
The salmonids underwent a whole-genome duplication around 80 million years ago. After a 

whole-genome duplication every gene exist as two copies, along with their regulatory 

elements, these copies are referred to as gene duplicates. Today, Atlantic salmon (Salmo 

salar) has retained around half of the duplicated genes. It is interesting to know how the genes 

evolved to solve the challenges posed by a doubled genome. How did these genes evolve as 

to overcome the fitness costs and become a successful polyploid species?  

This thesis is a continuation of the work done by Gillard et al.[1], where they looked at the 

evolutionary shifts of gene duplicates. They compared the gene expression level of the gene 

duplicates to the gene expression level of orthologs in species without the salmonid-specific 

whole-genome duplication. While most genes had a conserved gene expression level between 

salmonids and non-salmonids, some genes had a significantly different expression level 

between the gene duplicates.  

The transcription of genes is regulated by the presence of transcription factors (TF). TFs can 

bind both in the promoter region and in enhancers far away from the gene. Bound 

transcription factors recruit the transcriptional machinery. Transcription factors bind to 

specific binding sites in the DNA sequence which are unique to each TF. TFs can bind at sites 

that deviate slightly from their preferred binding site. This behavior can be characterized by a 

position weight matrix, which is often called the motif. These transcription factor binding sites 

(TFBS) can be identified by immunoprecipitation techniques, and the motifs are found by 

aligning the results. 

The gene expression level is dependent on the number of bound TFBS. A higher number leads 

to higher gene activity.  

This study explores the transcription factor binding sites surrounding genes and whether the 

number of TFBS for different TFs can explain the evolutionary shift in gene expression level 

between gene duplicates. The scope of the study is limited to looking at upregulation versus 

downregulation in gene duplicates where one copy is conserved. 

Background 
ATAC-footprinting 
Assay of Transposase Accessible Chromatin Sequencing (ATAC-seq) is a technique which can 

identify the regions of the chromosomes that are accessible for transcription, also called open 

chromatin. To do so, ATAC-seq cuts DNA using Tn5 transposase, which only cut protein-free 

DNA. Each fragment is sequenced and aligned back to the genome. The accessible regions are 

then found by peak calling, finding the peaks in the read count from alignment. [2] 

Interactions between transcription factors and genes can found by mapping motifs to the 

open chromatin of the genome, with the assumption that TFs regulate the closest gene. It is 

therefore necessary to impose a limit on the maximum distance between TFBS and gene. 
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Another popular approach to identify open chromatin is DNase-seq (DNase I hypersensitive 

sites sequencing), which is far costlier than ATAC-seq. Most computational tools are designed 

for DNase-seq data, and don’t necessarily work as expected for ATAC-seq data. [2]  

However, recently a computational framework designed for ATAC-seq data was developed, 

called TOBIAS. [3]   

TOBIAS Method 
TOBIAS (Transcription factor Occupancy prediction by Interference of ATAC-seq Signal) is a 

comprehensive framework for footprinting analysis. It takes as input TF motifs, ATAC-seq data 

and annotated sequences, and outputs the positions of the TFBS, whether they are bound or 

not and their distance to the transcription start site of genes. [3] 

The Tn5 enzyme is blocked by proteins bound to DNA like histones and TFs, which results in 

depletion in the ATAC-seq signal. An area of low signal in a larger region of high signal is called 

a footprint. Since Tn5 has a sequence preference, some motifs which disfavors Tn5 interaction 

will give false positives. The Tn5 signal might also hide some bound TFBS, causing false 

negatives. So, the first thing TOBIAS does is to correct the ATAC-seq data for Tn5 bias by 

removing the expected Tn5 cut sites from the signal. [3] 

While the same TFBS will be present in every cell, the TF itself might not be expressed, leaving 

the TFBS unbound in that cell. TOBIAS determines if a TFBS is bound by looking at the footprint 

depth. If Tn5 is blocked by a bound TF, there won’t be a read peak there. [3] 

Expression Variance and Evolution (EVE) Model 
The EVE model describes both phylogenetic evolution and expression variance in populations. 

It uses an Ornstein-Uhlenbeck (OU) process to model stabilizing selection. In contrast to 

Brownian motion, which is usual for modelling genetic drift, OU processes are constrained 

around an optimal value θ, parameterized over the strength of drift, σ2, and the strength of 

the pull, α, towards that optimal value. [4] 

The EVE model uses the parameter β to represent the ratio of between- and within-species 

variation.  For each gene, there should be a linear relationship between the evolutionary 

expression level variance, defined by 
𝜎𝑖
2

2𝛼𝑖
, and the population expression level variance, 

defined by 𝛽𝑖
𝜎𝑖
2

2𝛼𝑖
. Without selection, the value of β should be approximately the same for all 

genes. [4] 

The EVE model can also be used to test for branch-specific expression level shifts. That is if the 

OU process for gene 𝑖 has a different optimal value in one lineage than in the others. This way 

a hypothesis can be formulated by comparing the likelihood under 𝐻0: 𝜃𝑖
𝑎 = 𝜃𝑖

𝑜 versus 

𝐻𝑎: 𝜃𝑖
𝑎 ≠ 𝜃𝑖

𝑜, where 𝜃𝑖
𝑎 is the optimal value for gene 𝑖  in the lineage of interest and 𝜃𝑖

𝑜 is the 

optimal value for gene 𝑖 in the other lineages. The resulting likelihood ratio test statistic is chi-

squared distributed with one degree of freedom. The sign of 𝜃𝑖
𝑎 − 𝜃𝑖

𝑜 gives the direction of 

the shift. [4] 
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Machine Learning Methods 
Machine learning is about finding patterns in the data, it is a broad term that is usually divided 

into supervised and unsupervised learning. Supervised learning is about feeding the algorithm 

with many examples of how the data is distributed. This is usually for solving classification and 

regression tasks. With unsupervised learning, the algorithm tries to find the underlying 

structure of the data, usually meaning clustering methods, also including principal component 

analysis. Other machine learning methods include neural networks. [5] 

Different machine learning methods have different strengths and weaknesses, here the 

following methods are tried. 

Support Vector Machines 
Support Vector Machines (SVM) tries to find the optimal hyperplane that separates the classes 

in the data. If the problem is not linearly solvable, the SVM can utilize a kernel function to 

transform the data into higher dimensional space where a hyperplane differentiates the 

classes neatly.  

The optimal hyperplane is the one with the maximal distance to the support vectors, also 

called the margin. Support vectors are the data points closest to the decision boundary. Thus, 

the support vectors heavily influence the position and orientation of the hyperplane. [6] 

SVM is parameterized by the cost function. The cost is a regularization parameter which allows 

for misclassifications in the training data, so that the hyperplane is less suspectable to outliers. 

With higher cost, the greater the hurdle to allow misclassification gets. [6] 

The radial basis kernel also has the gamma parameter. The gamma parameter determines the 

influence of the training examples, with a low gamma, data points far apart can be considered 

similar, while a large gamma needs the points to be closer. In technical terms this refers to the 

width of the peaks of the hypersurface in feature space. [6] 

In the R implementation, the default value for the cost is 1 and the gamma is the inverse 

number of features. 

Random Forests 
Random Forests (RF) is an ensemble of decision trees. Each tree is grown from a random 

subset of the training data, and all have one vote, with the most popular class being the 

prediction. Decision trees work by recursively partitioning the data such that the leaf nodes 

contain a single class. This is achieved by maximizing the Gini index, the purity of class labels 

at the node, at each split. [7] 

Multiple trees are grown from random subsets of the data, a process called bagging. Since 

only some features are used for each tree, the forest can estimate the importance of each 

feature. [7] 

Random Forests also reports the out-of-bag error. Each tree is tested on the training examples 

not used to construct the tree, and the average error of every tree is the estimated error of 

the forest.  
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Random Forests is parameterized by the number of trees to grow and the number of features 

to try at each split. In the R implementation, the default values are 500 trees and the square 

root of the number of features, rounded down. 

K-Nearest Neighbor 
K-nearest neighbor (KNN) is a technique that classifies new data by its distance to all the 

training data points, deciding on the most popular class among the neighbors, k representing 

the number of neighbors to consider. [8] 

Linear Discriminant Analysis 
Linear Discriminant Analysis (LDA) calculates the probability of an observation belonging to 

class A using Bayes theorem. It assumes that the data is normally distributed and estimates 

the mean and variance from the training data. When more than one explanatory variable is 

used, the distribution is multivariate normal, and the covariance matrix is computed instead. 

The class distribution is usually used as the prior. Thus, it classifies new data as the most likely 

class. [8] 

Hierarchical Clustering 
Clustering uses a distance matrix to cluster features that are similar. The distance between 

clusters can be computed in different ways. Single linkage is the shortest distance between 

two clusters, complete linkage is the longest distance between two clusters and average 

linkage is the average distance between all points, one from each cluster, in the two clusters. 

Clustering is deterministic, meaning that the same dendrogram will be produced each time, 

given the same data. By cutting the dendrogram at a given height, one can discover groups in 

the data. 

Model Evaluation 
The data set is divided into test and training sets. The training set is the data used to fit the 

model and therefore also have class labels, and the test set, which is used to validate the 

model, also has class labels but is treated as unlabeled new data, which the model has not 

seen before. The true labels can then be compared to the predicted labels, for instance in the 

form of a confusion matrix. 

Overfitting 
Overfitting occurs when a model has more features than observations. The model will learn 

random patterns in training data that do not generalize well to unseen data. 

Model A is overfitted if there is a model B which does better on test data but worse on training 

data than model A. 

Cross Validation 
Cross validation (CV) is used to check performance of a model on unseen test data. The dataset 

is split into multiple smaller sets, one is used as the test set and the rest as the training set. 

Each observation is in the test set once and in the training set the remaining times. This is 
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called k-fold cross validation. Alternatively, a single observation can be used for validation 

each time, called leave-one-out cross validation. 

Evaluation Statistics 

Table 1 The confusion matrix 

 Actual Positives, AP Actual Negatives, AN 

Predicted Positives, PP True Positives, TP False Positives, FP 

Predicted Negatives, PN False Negatives, FN True Negatives, TN 

Many performance metrics are based on the confusion matrix presented in Table 1.  

Accuracy is the proportion of correct predictions. Sensitivity, also known as recall, is the 

proportion of true positives among actual positives. Specificity is the proportion of true 

negatives among actual negatives. Precision is the proportion of true positives among 

predicted positives. The F1 Score is the harmonic mean of precision and recall. Matthew’s 

correlation coefficient is the difference between the product of true positives and true 

negatives and the product of false positives and false negatives, divided by the square root of 

the product of actual positives, actual negatives, predicted positives and predicted 

negatives. [9] 

Gene Ontology 
Gene ontology (GO) is a comprehensive network of gene annotations. It is divided in three 

ontologies: biological process, molecular function, and cellular component. Biological process 

refers to the goals of the cell and are processes that are accomplished by multiple molecular 

activities. Molecular function is for the actual enzymatic function and explains what happens 

on a molecular level. Cellular component refers to physical location in the cell. The network is 

a directed graph with each of the ontologies as the top node. The child nodes are specifications 

of the parent node. [10, 11] 

Gene ontology can be used to check if a gene set of interest is enriched for some GO term. 

That is if the genes in the set, more often are annotated by the same GO term than what one 

would expect by chance. 

GO Enrichment Analysis 
The type of enrichment analysis is usually divided into Function Enrichment Analysis (FEA) and 

Gene Set Enrichment Analysis (GSEA).  

GSEA uses a list L of all genes, ranked by some metric, and checks if the gene set S is enriched 

at the top or bottom of list L. It computes an Enrichment Score (ES) by walking down the list 

L, increasing ES whenever it encounters a gene in S or decreasing when not in S. By 

randomizing the classes, the p-value is the fraction of randomized lists with a higher ES than 

the real data. 

FEA looks at whether a gene set of interest is enriched for a functional category. To test this, 

it uses the hypergeometric test, or Fisher’s exact test, to test if there is a significant overlap 

between the gene set and the set of genes annotated with this functional category. 
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Evolutionary Fates 
After whole-genome duplication, there are three different fates for gene duplicates that are 

retained. The first is that one copy retains the ancestral gene function while the other is 

allowed to accumulate mutations and achieve a novel gene function, called 

neofunctionalization. Second is that the ancestral gene function is split between the two, 

called subfunctionalization. Third is that both retains the ancestral gene function but that the 

absolute gene dosage is reduced as to maintain the ancestral dosage. Most gene duplicates 

are not retained and undergo a slow pseudogenization. Pseudogenization is when a gene 

accumulates so many deleterious mutations that it can no longer be transcribed and 

translated, or the protein is no longer functional.     

Methods 
Dataset Preparation 
Gillard et al.[1] used the TOBIAS method to find bound transcription factors in the liver of 

Atlantic salmon. 

Gillard et al.[1] also used the EVE model to study the evolution of gene expression between 

salmonids and non-salmonid fish. 

Data Analysis 
All data analyses were done in R, version 4.0.2[12], using the Orion compute cluster at NMBU. 

The result table from TOBIAS was a huge dataset, where only a subset was of interest. It was 

filtered such that only motifs expressed in liver within a 20 kilobase window around the 

transcription start site were kept. Furthermore, only genes also used in the EVE analysis were 

used. 

The resulting table were summarized as a list of tables. One table for each motif, with genes 

in one column and the corresponding number of times the motif was near this gene in the 

other. By iterating through the list, a data matrix was constructed. This matrix has genes as 

rows and TF motifs as columns. It was constructed in the following manner: for each TF, if the 

gene were an element of the set, return the number of bound motifs, else return zero. This 

matrix had dimensions 10360 x 746. 

Information about motifs within transposable elements, was taken from Lien et al.[13]. This 

was the same type of table as the result from TOBIAS and was processed the same way, 

resulting in a matrix of the same dimensions, and was column-bound to the other matrix. 

The result table from EVE was filtered such that only duplicate pairs, where both genes were 

present in the data matrix, were kept. Furthermore, two subsets of this table were made, 1) 

one with duplicate pairs where one gene was upregulated and the other was conserved, called 

upcons, and 2) one with duplicate pairs where one gene was downregulated and the other 

was conserved, called downcons.  378 pairs of upcons and 1100 pairs of downcons. 
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Now, the data matrix was subset into four smaller matrices. 1) One with upregulated genes, 

2) one with conserved upcons, 3) one with downregulated genes, and 4) one with conserved 

downcons. Concurrently, transformed versions were made by applying the R function 

as.logical to each column. Resulting in a binary-valued matrix where zeros are treated like 

zeros and nonzero numbers like ones. 

Then the contrasts were found, defined as the difference between the up- /downregulated 

copy and the conserved copy, as illustrated in Figure 1. The differences between the 

transformed matrices were also found. Positive numbers mean that there are motifs in the 

up/down copy that are not present in the conserved copy, while negative numbers mean 

there are motifs in the conserved copy that are not present in the up/down copy, and zeros 

mean no change.  

 
Figure 1 Illustration of how the contrast was computed.  

To get an equal number of observations for both classes, random subsampling of the 

downcons was done. 

Since there is twice as many features as observations, feature selection must be done before 

model fitting. Hierarchical clustering was chosen, using the R function hclust. The distance 

metric was 1 – correlation between the columns of the data matrix, and clustering was done 

with average linkage. The dendrogram was cut at height 0.7, and one TF was chosen at random 

from each cluster, resulting in 297 chosen features. The random seed was set to “123”. 

Feature selection by appearance shift were also tried. By looking at the column sums of the 

transformed matrices, that is how often a motif has appeared or disappeared between 

duplicates, one can choose the motifs with the biggest shifts in appearance. Among upcons, 

the motifs with column sums above 40 were kept, while among downcons, the motifs with 

column sums below -100 were kept. The intersection of these were chosen, resulting in 26 

selected TFs. 

The machine learning methods used were Random Forest by the R function randomForest 

from the randomForest package[14], Support Vector Machines by the R function svm from the 

e1071 package[15], k-Nearest Neighbor by the R function knn from the class package[8], and 

Linear Discriminant Analysis by the R function lda from the MASS package[8]. 

Models using the four methods, RF, SVM, KNN and LDA, were trained using default parameters 

under 6-fold cross validation. The k of KNN was set to 5. The confusion matrices for each of 

the methods were aggregated at each iteration of the cross validation, resulting in an average 

CV accuracy score for each model. 



11 
 

Hyperparameter Tuning 
The cost and gamma parameters of SVM were tuned by grid search, under cross validation. 

The cost was in the range 10-2 to 103 and the gamma was in the range 10-6 to 100. 

GO Enrichment Analysis 
GO enrichment analysis was used to see whether some gene functions were easier to predict 

than others. The hypergeometric test was used to check if any GO terms were 

overrepresented among the correctly predicted genes, as opposed to the misclassified genes. 

The set of correctly predicted genes were the genes that were correctly predicted by both the 

SVM and RF model. Upcons and downcons were tested separately. 

The R function fish_GO from the salmonfisher package[16] was used to retrieve all the GO 

terms associated with the genes. The hypergeometric test was performed by the R function 

HyperGTest from the GOstat package[17], this function takes a parameter object as input, 

which was delivered by the R function GSEAGOHyperGParams from the GSEABase 

package[18], with correctly predicted genes as the gene set of interest, all tested genes as the 

background to test against, and testing for overrepresentation of Biological Process terms, the 

p-value threshold was set to 0.01. 

Randomization 
To check if the results could have happened by chance, the class labels were randomized, and 

cross validation was run again 100 times. 

Reproducibility 
The code is available on GitLab, at https://www.gitlab.com/tobibjor/thesis.  

Results 
Multiple different approaches were attempted. Initially I tried to classify three classes: upcons, 

downcons and conscons (gene duplicates where both copies were conserved). Since it was 

difficult for the models to be able to discriminate the classes, this was dropped in favor of only 

classifying upcons vs downcons. The class imbalance problem was attempted solved by 

copying the training examples of the minority classes, but it did not work. The absolute value 

of the contrasts was tried, but this had a negative impact on performance.  

Regression was also tried, with the shift in θ from EVE as response. This was dropped as the 

residuals were larger than the deviation from the mean, meaning that the mean was closer to 

the true value than the prediction was. 

  

https://www.gitlab.com/tobibjor/thesis
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Machine Learning 

Table 2 Results from model fitting under 6-fold CV. Feature selection by hierarchical 
clustering (297 features) and feature selection by appearance shift (26 features). 

  RF SVM KNN LDA 

297 features Accuracy 0.651 0.651 0.571 0.571 

F1 Score 0.657 0.662 0.357 0.573 

26 features Accuracy 0.642 0.669 0.614 0.660 

F1 Score 0.642 0.792 0.574 0.668 

The dataset contained 1478 genes and 1492 TF motifs. 756 genes were used for model fitting, 

equally distributed between classes upcons and downcons. Two methods of feature selection 

were performed on the 1492 motifs, leading to models with 297 and 26 features, respectively.  

Table 2 presents the results for models trained with default parameters and under 6-fold cross 

validation. SVM gave the best results, overall, and an increase in performance with fewer 

features was observed for all but one method. 

Hyperparameter Tuning 

 

Figure 2 Contour plot of accuracies of SVM from grid search 

The optimal parameters of the SVM model with 297 features found by grid search, were cost 

equal to 100 and gamma equal to 10-5, as seen in Figure 2. Surprisingly, this did not lead to an 

improvement of either the accuracy or the F1 Score, compared to the untuned model. 

GO Enrichment Analysis 
Five GO terms were overrepresented among correctly predicted upcons. These were related 

to the ERAD pathway and regulation of signaling pathways. 
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49 GO terms were overrepresented among correctly predicted downcons. Many of these were 

related to cell death, however “digestive tract development” was the most significant. 

Randomization 
None of the accuracies from the randomized models exceeded the observed accuracy, but it 

is reasonable to assume these accuracies to be normally distributed. The randomized 

accuracies had a mean of 0.5 and standard deviation of 0.022. Thus, the p-value of achieving 

an accuracy of 65% by chance, is 1.5 ⋅ 10−9. 

Discussion 
The results are indicative that the changes in gene regulation can be explained by changes in 

the number of TFBS and by which TFs that bind.  

On average downcons have much fewer TFBS than upcons. Looking at the sign of the 

contrasts, 67% of the downcons are negative, and 57% of upcons are positive. A naive classifier 

solely based on the sign, would still get an accuracy of 62%, given the confusion matrix in 

Equation 1, with upcons in the first position and the predictions as rows. 

[
378 ⋅ 57% 378 ⋅ 33%
378 ⋅ 43% 378 ⋅ 67%

] = [
215 125
163 253

] (1) 

GO 
The gene set were genes that were correctly predicted by both SVM and Random Forest, so 

the enriched GO terms more common among genes that were correctly predicted, rather than 

with the dataset as a whole. The results indicate that some gene functions are more prevalent 

in the dataset. Genes with similar function are probably regulated in the same way, and the 

models seem to pick up on that, which seem to be the case for the downcons in particular.  

The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for marking 

misfolded proteins for degradation [19]. So, it is logical that many genes in this pathway are 

upregulated, as to offset the risk from increased pseudogenization of unneeded genes. 

Biological Insights 
The transformed matrices show that the up copy have primarily gained new motifs, meaning 

that different TFs are regulating than the conserved copy, while the down copy have primarily 

lost motifs. This likely indicate that upcons have probably begun the process of 

neofunctionalization while downcons have started the slow process of pseudogenization. 

Gillard et al.[1] noted that genes where both duplicates were downregulated were often 

involved with ribosomes and attributed this to the prevention of faulty proteins ruining 

protein complexes and keeping within the size constraints of the cell. 

In conclusion, my results are indicative that patterns that allow for the prediction of the 

evolutionary direction of genes based on nearby TF motifs, do exist in the data. 
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