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ABSTRACT

The objective of the study was to develop a static 
empirical model for the estimation of net energy content 
of compound feeds in a dynamic feeding system using 
net energy for lactation at 20 kg of dry matter intake/d 
(NEL20) values calculated by the Nordic Feed Evalu-
ation System (NorFor) model. In the NorFor system, 
NEL20 is a standardized value used to describe net 
energy content of feeds. The static model would allow 
prediction of the net energy value of compound feeds 
without access to the input data needed for the dynam-
ic models. Our hypothesis was that NEL20 values of 
compound feeds can be predicted using organic matter 
digestibility (in vitro) and chemical components of the 
compound feeds as input variables. For this, 75 com-
pound feeds and their 108 associated ingredients were 
collected across Scandinavia for model development. 
The proposed best model for prediction of compound 
feed NEL20 included crude fat, neutral detergent fiber, 
digestible organic matter measured in vitro, and crude 
protein (urea corrected) as independent variables. Lack 
of additivity of chemical components between values 
analyzed directly in the compound feed and values cal-
culated by the weighted sum of ingredients was detected 
as the main source of error in the model, emphasizing 
the importance of accurate chemical analysis and sam-
pling practices. Results from practical use of the model 
show that it may be a valuable tool that could be used 
by several actors in the feeding sector using the NorFor 
system. Feed manufacturers could use it to monitor the 
net energy content in their final product, and farmers 
could use it to check the net energy content of the 
purchased compound feed. However, validation of this 
model against an independent set of samples is lacking 
in this study and its prediction performance should be 
further evaluated. The model will need recalibration 

if the feed parameters used in the dynamic model for 
the estimation of reference values change, as this would 
not be reflected in the predicted values of the created 
model.
Key words: energy estimation, additivity, in vitro 
digestibility, concentrate ingredient, dairy cow

INTRODUCTION

In recent decades, several dynamic mechanistic mod-
els have been developed for feed and ration evaluation, 
such as the Cornell Net Carbohydrate and Protein 
System (Tylutki et al., 2008), the Nordic Feed Evalu-
ation System (NorFor; Volden, 2011), and the INRA 
Feeding System for Ruminants (Sauvant et al., 2018). 
Although these models incorporate time as a variable 
with detailed biological interactions, they have limita-
tions in practice, such as a lack of available data or poor 
data quality to use as input for the model (Tedeschi et 
al., 2005).

Net energy content estimation for compound feeds 
in the NorFor system is a good example of a dynamic 
model. The NorFor system does not have a fixed net 
energy of lactation value for feedstuffs because dietary 
interactions between feedstuffs, such as nutrient deg-
radation and passage rate with feed intake level, are 
considered. However, for purchasing decisions and feed-
stuff ranking, a comparison of the energy contents of 
feedstuffs is essential; thus, standard net energy values 
for individual feedstuffs were formulated in NorFor 
(Åkerlind and Volden, 2011). The net energy of lacta-
tion at 20 kg of DMI/d (NEL20) is the most used 
standard energy value. The NEL20 values (MJ/kg of 
DM) are created for all feedstuffs, considering the same 
fixed input parameters, such as animal characteristics 
(600 kg of weight, 20 kg of DMI/d), 50% concentrate 
proportion in the diet, and passage rates for CP, starch, 
and NDF, among others. Other variables are feedstuff 
specific, such as chemical composition, degradation 
rates, and indigestible fractions. For raw materials 
(e.g., grains and by-products), in sacco characteristics, 
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such as degradation rates and indigestible fractions, are 
taken from the NorFor Feed Table (NorFor, 2020) based 
on Nordic databases and in situ characteristics. These 
input values are unavailable for commercial compound 
feeds, so NEL20 is calculated by the weighted sum of 
the ingredients (Åkerlind and Volden, 2011), making 
it reliant on ingredient composition. However, in the 
European Union (EU), declaration of the ingredient 
proportion of compound feeds is not mandatory. Hence, 
to have an accurate diet formulation, an alternative 
method for estimating the net energy of compound 
feeds (NEL20 in NorFor), independent from ingredient 
composition, is required.

Several feeding systems have static empirical equa-
tions for the energy prediction of compound feeds based 
on OM digestibility (OMD) in vitro and chemical 
composition as explanatory variables; see, for example, 
the INRA system, the English Feed Into Milk system 
(Thomas, 2004), the German system (GfE, 2009), and 
the Danish system (Weisbjerg and Hvelplund, 1993). 
The objective of our study was to develop a static em-
pirical model for the estimation of net energy content 
of compound feeds in a dynamic feeding system using 
NEL20 values calculated by the NorFor model. A suc-
cessful static model would allow accurate prediction of 
the energy value of compound feeds without access to 
the input data needed for the dynamic models. Our 
hypothesis was that NEL20 values of compound feeds 
can be predicted using OMD (in vitro) and chemical 
components of the compound feeds as input variables.

MATERIALS AND METHODS

Samples

We collected a total of 75 compound feed samples to-
gether with their associated ingredients (108 ingredient 
samples) over 2 yr from 6 feed companies in Denmark, 
Sweden, and Norway (2 companies from each country). 
Collected ingredients were sampled from the batch 
from which the compound feed samples were produced, 
and the exact recipe for compound feeds samples was 
provided. To ensure variation between years, we gath-
ered samples from different feed companies and differ-
ent feed mills from the same company (with different 
ingredient sources) over a period of 2 yr.

Compounds and ingredient samples included at 2% 
of DM and higher were analyzed for OMD using the 
enzymatic digestibility of OM method (EDOM; Weis-
bjerg and Hvelplund, 1993), a multienzymatic method 
described in detail by Álvarez et al. (2020). Digest-
ible OM (DOMEDOM) was estimated as EDOM (%) 
× OM (g/kg of DM). Ash was determined by sample 
incineration at 550°C, nitrogen (N) was determined by 

the Dumas method (Dumas, 1831) using a Leco instru-
ment (Leco Corp.), and CP was estimated as N × 6.25. 
Crude fat (CFat) as petrol ether was extracted after 
HCl hydrolysis according to EU 152/2009 (European 
Commission, 2009), and NDF (ash corrected) was de-
termined using the amylase-treated NDF method (ISO 
16472:2006; ISO, 2006). Starch (ST) was analyzed as 
described by Kristensen et al. (2007). After hydroly-
zation by α-amylase and amyloglucosidase, glucose is 
converted to hydrogen peroxide (by glucose oxidase) 
and measured electrochemically using a silver–platinum 
probe (YSI Inc.). Organic raw materials with an inclu-
sion lower than 2% of DM in sampled compound feeds, 
minerals, and vitamins were not analyzed, so values 
from the NorFor Feed Table (NorFor, 2020) were used.

The NEL20 value of ingredients was estimated using 
degradation rates and indigestible fractions from the 
NorFor Feed Table (NorFor, 2020) and the measured 
chemical composition (Åkerlind and Volden, 2011). 
For compound feeds, NEL20 values were calculated ac-
cording to NorFor by adding the NEL20 values of each 
ingredient according to their proportion in the mixture, 
referred to here as the weighted sum. These meth-
ods were used to calculate NEL20 of ingredients and 
compound feed used as the reference value for model 
development (referred to here as the NEL20 reference).

Statistical Analysis

All statistical analysis was performed using R soft-
ware (version 3.6.0; R Core Team).

Model Development. Three data sets were used 
to develop models: a data set of 75 compound feed 
samples (referred to here as the compound data set), a 
data set of 108 ingredients (referred to here as the in-
gredient data set), and a data set of both 75 compound 
feeds and 108 ingredients, in total 183 samples (referred 
to here as the all data set). The dependent variable 
was NEL20 (MJ/kg of DM). Independent variables for 
potential inclusion in the models were DOMEDOM, CP, 
CFat, NDF, ST, and ash (% of DM). The CP content of 
compound feeds was corrected for urea by subtracting 
the urea CP proportion from the compound feed CP 
content (CPcorr). The order of inclusion for variables in 
models was determined through stepwise forward selec-
tion by small sample size corrected Akaike information 
criterion (AICc; Hurvich and Tsai, 1989) using the 
“stepAIC” function and the “AICc” criteria from the 
MASS package (Venables and Ripley, 2002). Models 
were developed using a sequential approach, includ-
ing one variable at a time. Models were created with 
and without feed company or year as random effects. 
Models with random effects were developed using the 
“lmer” function from the “lme4” package (Bates et al., 
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2015). Models without random effects were developed 
using the “lm” function from the “stats” package in R 
(R Core Team).

The variance inflation factor (VIF) assessed the mul-
ticollinearity of independent variables in models (Zuur 
et al., 2010) with 3.3 as the limit criterion (Kock and 
Lynn, 2012). If a VIF value higher than 3.3 was de-
tected, the variable with the highest VIF was discarded 
until the VIF for all variables met the criterion. Model 
fit was evaluated by AICc and root mean squared error 
(RMSE). No mean or linear biases were evaluated, as 
no independent data were used to evaluate model fit.

Model Validation. As models were created with 
different data sets, they were compared by evaluating 
prediction performance on compound feed samples 
only. For models developed with the all data set and 
compound data set (as compound feed samples were 
part of the development data set), validation was per-
formed by cross-validation (the leave-one-out tech-
nique) using predicted residual error sum of squares 
(PRESS) according to Allen (1974). For models devel-
oped with the ingredient data set, where compound 
feeds were not part of the data set, validation was 
performed by using compound feed samples as an inde-
pendent data set. Root mean squared error of predic-
tion (RMSEP) was calculated for all models to evalu-
ate prediction performance. For cross-validation, RM-

SEP was calculated with PRESS as 
PRESS

no. of samples
.  

For models validated with compound feeds as an inde-
pendent data set, RMSEP was calculated as 

∑
−( )predicted reference

no. of samples

2

.

Additive Property. For DOMEDOM, ash, CPcorr, 
CFat, NDF, and ST, additivity was evaluated to test 
its effect on NEL20 prediction. Additivity was calcu-
lated according to Álvarez et al. (2020) by regressing 
the weighted sum of ingredients for the corresponding 
value (predicted) against the value directly measured 
in the compound feed (observed). Differences between 
predicted and observed values are referred to as addi-
tivity residuals. For regressions, the “lm” function from 
the “stats” package in R (R Core Team) was used. The 
additivity property was compared with EU-permitted 
tolerances for compositional labeling of compound 
feeds (European Commission, 2010). The EU tolerance 
levels define for all chemical components the acceptable 
differences between declared content and actual content 
in concentrates (for tolerances specifications, see Fig-
ure 1). Residual analysis was performed by regressing 
model-predicted values against residual values. For this 
analysis, model-predicted values were centered around 

the mean, making slope and intercept independent and 
orthogonal for mean and linear bias evaluation, respec-
tively (St-Pierre, 2003).

To evaluate the effect of additivity residuals on 
NEL20 prediction by the model, for each compound 
sample additivity residuals of all chemical components 
were evaluated together. This was done by including 
the additivity residual of each chemical component 
as input in the selected model. Using this approach, 
all components were evaluated at the same time and 
weighted by their importance by the model’s coeffi-
cient, also referred to as the weighted sum of additivity 
residuals. The weighted sums of additivity residuals 
were regressed against their NEL20 residual (NEL20 
predicted − NEL20 reference), and Pearson correlation 
coefficient (r) was evaluated.

Model Use in Practice. To exemplify how the 
selected model could be used in practice, 30 indepen-
dent compound feed samples (referred to here as the 
example data set) were collected from 4 companies with 
their corresponding NEL20 values as declared by each 
company (referred to here as NEL20 declared). Ingredi-
ent composition was supplied by each company, but 
no ingredient samples were collected; therefore, NEL20 
reference values were not calculated. The NEL20 de-
clared values were calculated in the NorFor software 
and reported by each company by including ingredients 
of the compound feed and their chemical composition 
and proportion. The values used for the NorFor calcula-
tions by the companies were a combination of measured 
and table values, with the proportion being company 
dependent and unknown for this study. The compound 
feed samples were analyzed for DM, ash, DOMEDOM, 
CFat, NDF, CP, and ST as well as CPcorr calculated by 
the same methods used to analyze samples for model 
development. The NEL20 values predicted by the best 
model were regressed against the values declared by 
the company. Tolerance limits of EU (±5%; European 
Commission, 2010) were used as criteria to determine 
significant differences in this regression.

RESULTS

Characteristics of Feed Samples

Chemical composition, digestibility, and NEL20 
reference of compound feeds and ingredient samples 
are summarized in Table 1. Of the 75 compound feed 
samples, 40 contained more than 25% DM ST and 
could be referred to as energy supplements, whereas 
21 were protein supplements with more than 25% DM 
CPcorr. The NEL20 range for compound feed presented 
a minimum of 6.06 MJ/kg of DM and a maximum of 
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Figure 1. Regression between predicted nutrients (calculated by the weighted sum of ingredients; x-axis) and measured nutrients in com-
pound feed (y-axis) for (a) NDF, (b) crude fat (CFat), (c) digestible OM by enzymatic digestibility of OM method (DOMEDOM), (d) CP corrected 
by urea (CPcorr), (e) ash, and (f) starch (ST). Solid line: x = y; gray lines: European Union (EU) tolerance (allowed difference between declared 
value and actual content for the corresponding nutrient). Tolerance levels used for NDF (correspond to EU tolerance for crude fiber) and ST: 
±3.5% of total mass or volume for contents of 20% or more; 17.5% of the content for contents of less than 20% but not less than 10%; ±1.7% 
of the total mass or volume for contents of less than 10%. Tolerance levels used for CFat, CPcorr, and ash: ±3% of the total mass or volume for 
contents of 24% or more; 12.5% of the content for contents of less than 24% but not less than 8%; ±1% of the total mass or volume for contents 
of less than 8%. Tolerance levels used for DOMEDOM (correspond to EU tolerance for energy): ±5% of the content. Dashed lines: regression line. 
Regression equation: coefficient (SE). RMSE = root mean squared error.
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8.43 MJ/kg of DM, with 7.14 MJ/kg of DM as the 
mean value.

Ingredient samples presented a wider range than 
compound feeds for all variables (Table 1). Ingredient 
samples were used to produce compound feed samples, 
and a detailed description of their composition, fre-
quency of inclusion in the compound feed samples, and 
quantity of samples included in the data set is shown in 
Table 2. Rapeseed cake followed by soybean meal and 
rapeseed meal were the most frequently used protein-
rich ingredients in compound feeds. Barley was the 
most frequently used starch source, followed by wheat, 
oats, and rye. Sugar beet pulp and wheat bran were the 
most included fiber-rich ingredients. Other frequently 
used ingredients were distillers grains, maize, and maize 
gluten meal.

Model Development and Validation

Stepwise AICc selection for prediction of NEL20 
showed the same order of variable inclusion for the all 
data set and ingredient data set, with CFat as the first 
variable included, followed by NDF, CPcorr, DOMEDOM, 
ash, and ST. For the compound data set, NDF was the 
first variable, followed by CFat, DOMEDOM, CPcorr, ST, 
and ash. Models with ST presented a VIF higher than 
3.3; thus, ST was removed from those models. After 
ST was removed, VIF met the criteria. Models includ-
ing company and year as a random effect presented 
higher AICc in all model comparisons, so models only 
including fixed effects were chosen. Table 3 shows AICc 
and RMSE for all models used for model fit evaluation 
and RMSEP used to evaluate prediction performance. 
Model I presented the best fit (AICc = −71.8, RMSE 

= 0.149 MJ/kg of DM) and predictive performance 
(RMSEP = 0.149 MJ/kg of DM), followed by model 
J. Model E, developed with the largest data set (183 
samples) and NEL20 range (3.05–18.8 MJ/kg of DM) 
presented a fit and predictive performance comparable 
with that of models J and I. Therefore, models E and 
I were chosen as the best models for NEL20 prediction 
in compound feeds, and further analysis was conducted 
based on these models.

Twelve out of 75 compound feed samples contained 
urea. Urea inclusion in these 12 samples was 1.21% of 
DM on average, with a minimum inclusion of 0.341% 
of DM and a maximum inclusion of 3.30% of DM. The 
effect of not correcting CP for inclusion of urea in the 
compound feeds was tested in models E2 and I2. Models 
E and I presented better fit than their corresponding 
models not corrected for urea (Table 3).

Additivity

The additive properties of NDF, CFat, DOMEDOM, 
CPcorr, ash, and ST are shown in Figure 1a to f for 
the 75 compound feed samples. Of the 75 samples, 49 
were also evaluated by Álvarez et al. (2020). To as-
sess additivity, EU tolerance limits for each chemical 
component were used as criteria (for specific toler-
ance limits, see Figure 1). For NDF, the EU does not 
specify tolerances; thus, limits defined for crude fiber 
were used. Of the 75 samples, only 2 were outside these 
limits (Figure 1a). From residual analysis, intercept (P 
= 0.76) and slope (P = 0.49) presented no mean or 
linear bias, respectively. For CFat, 8 out of 75 samples 
were outside the EU tolerance limits (Figure 1b). From 
residual analysis, additivity of CFat presented a signifi-
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Table 1. Summary statistics of the chemical composition of compound feeds and their ingredients used for model development of NEL20

Item1

Compound feeds

 

Ingredients

Mean2 Min3 Max4 SD Mean Min Max SD

Number of samples 75 75 75 75  108 108 108 108
DOMEDOM (% of DM) 83.5 71.8 93.9 4.2  83.1 35.5 96.6 11.1
Ash (% of DM) 7.02 2.39 14.37 1.63  4.73 0.20 22.60 3.04
CP (% of DM) 23.9 11.7 42.7 7.21  23.7 0.131 66.7 16.4
CPcorr (% of DM) 23.4 11.7 40.7 6.79      
CFat (% of DM) 6.03 2.21 12.1 2.07  7.95 0.56 98.9 16.1
NDF (% of DM) 22.6 10.4 36.2 5.52  26.3 0.00 71.6 16.7
ST (% of DM) 23.6 1.60 56.8 14.1  24.0 0.00 72.6 26.6
NEL20 reference (MJ/kg of DM) 7.14 6.06 8.43 0.49  7.36 3.05 18.8 2.24
1DOMEDOM: digestible OM by enzymatic digestibility of OM method; CPcorr: CP corrected by urea content in compound feeds; CFat: crude 
fat; ST: starch; NEL20 reference: net energy of lactation at 20 kg of DMI/d. NEL20 reference of ingredients: calculated using table values and 
measured chemical composition. NEL20 reference of compound feeds: calculated by the weighted sum of its ingredients.
2Average content.
3Minimum content.
4Maximum content.
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cant negative mean bias (−0.23% DM, P < 0.05) but 
no linear bias (P = 0.17). The EU does not provide a 
tolerance limit for DOMEDOM, and tolerance stated for 
energy was used. No samples were outside these limits 
(Figure 1c), but residual analysis showed a significant 
positive mean bias (1.03% DM, P < 0.05) but no linear 
bias (P = 0.61). For CPcorr, 2 samples were outside EU 
tolerance limits. Residual analysis showed a significant 
linear bias (P < 0.05), meaning overestimation of low 
observed CPcorr values and underestimation of high 
observed CPcorr values (Figure 1d). No significant mean 
bias was detected for CPcorr (P = 0.15). Ash showed the 
highest number of samples (17) outside EU tolerance 
limits. Residual analysis showed significant mean bias 
(−0.63% DM, P < 0.05) and linear bias (P < 0.05) 
overestimating low observed values and underestimat-
ing high observed values (Figure 1e). The additivity 
relationship for ST showed that 8 samples were outside 
EU tolerance limits (Figure 1f). Starch did not show 
mean bias (P = 0.28) or linear bias (P = 0.46).

Regression between NEL20 values predicted by 
models E and I against NEL20 reference for compound 
feeds is shown in Figure 2a and b, respectively. Differ-

ences between predicted and NEL20 reference values 
were observed. From these differences, 2 samples were 
outside the EU tolerance lower limit (−5%) for model 
E, whereas no samples were outside the limits for model 
I. Evaluation of the effect of additivity differences on 
the NEL20 prediction of models E and I (Figure 3a 
and b for models E and I, respectively) show a strong 
association between weighted additivity residuals and 
NEL20 residuals (r = −0.73, P < 0.001 for model E 
and r = −0.69, P < 0.001 for model I).

Prediction of ingredient NEL20 by models E and I 
is shown in Figure 4. For both models, the RMSEP of 
ingredients was higher than for compound feeds. Figure 
4 shows that ingredients such as wheat bran, maize, 
rapeseed meal, and rapeseed cake were overpredicted 
by the models (positive residuals), whereas ingredients 
such as sugar beet pulp, barley, rye, wheat, soybean 
meal, and maize gluten meal were underpredicted by 
the models (negative residuals). Moreover, these residu-
als are higher for model I than for model E. Figure 4 
also shows that ingredients in the extremes of the graph 
(e.g., oat hulls, whole rapeseeds, and fat supplements) 
showed the highest residuals for model I.

Álvarez et al.: DAIRY INDUSTRY TODAY

Figure 2. (a) Regression between net energy for lactation at 20 kg of DMI/d (NEL20) values of 75 compound feed samples predicted by 
model E (x-axis) and their respective NEL20 reference values (y-axis). (b) Regression between NEL20 values of 75 compound feed samples 
predicted by model I (x-axis) and their respective NEL20 reference values (y-axis). Solid lines: x = y; dashed lines: regression line; gray lines: 
European Union tolerance (difference between energy declared value and actual energy content; ±5% of the content). Regression equation: coef-
ficient (SE). RMSEP = root mean squared error of prediction.
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Model Use in Practice

Only compound feed samples were collected; there-
fore, no NEL20 reference values were obtained and 
only NEL20 declared values by the manufacturers were 
evaluated, simulating the practical use of models E and 
I. Chemical composition and NEL20 declared values 
are shown in Table 4. Chemical composition showed 
similarities to compound feeds used for model devel-
opment (Table 1), although maximum values of ash, 
CPcorr, and NEL20 were higher in the example data set, 
but DOMEDOM and ST were lower. However, as model 
E was developed using the all data set (including both 
compound and ingredients) for model development, the 
range of all variables was larger than in the example 
data set. Comparison between the NEL20 values pre-
dicted by models E and I and the NEL20 declared by 
companies is shown in Figure 5a and b, respectively. 
Mean NEL20 declared value was 7.64 MJ/kg of DM. 
For model E, mean NEL20 predicted value was 7.33 
MJ/kg of DM, and 11 compound feeds samples out of 
30 lay outside the upper 5% EU tolerance level. For 
model I, mean NEL20 predicted was 7.30 MJ/kg of 
DM, and 12 compound feed samples lay outside the 
upper 5% EU tolerance level. For both models, for all 
but 1 sample, declared NEL20 values were higher than 
the values predicted by models E and I.

DISCUSSION

In the NorFor system, NEL20 is the most used stan-
dard net energy value. For compound feeds, NEL20 cal-
culation depends on ingredient composition. However, 
manufacturers are not obliged to declare energy content 
or ingredient share. Therefore, a method to measure 
NEL20 directly from the compound feed is essential for 
accurate diet formulation using NorFor, as compound 
feeds can represent more than half of the feed ration. 
With this study, we intended to formulate static em-
pirical equations to predict the NEL20 of compound 
feeds independent of their ingredients, based on chemi-
cal composition and in vitro enzymatic OMD (EDOM), 
determined according to Weisbjerg and Hvelplund 
(1993) and evaluated by Álvarez et al. (2020). If the 
method has sufficient accuracy and all the actors using 
the NorFor system (farmers, advisors, feed companies, 
and NorFor itself) agree, a common method will enable 
final company verification of products, allow farmers to 
confirm declared net energy values, and improve trust-
worthiness of the industry.

Other feed evaluation systems feature empiri-
cal models for the energy prediction of compound 
feeds. The INRA system uses an equation proposed 
by Sauvant et al. (2002) based on chemical composi-
tion and OMD. In this system, OMD is predicted by 

Álvarez et al.: DAIRY INDUSTRY TODAY

Figure 3. (a) Regression between weighted additivity differences (x-axis) and net energy for lactation at 20 kg of DMI/d (NEL20) residuals 
from compound feeds using model E (y-axis). (b) Regression between weighted additivity residuals (x-axis) and NEL20 residuals from compound 
feeds using model I (y-axis). Weighted additivity residuals: additivity differences of the chemical components weighted by including them in 
model E (a) and model I (b); dotted lines: regression line. Regression equation: coefficient (SE).
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ADF and ADL or measured by enzymatic digestibility 
(Baumont et al., 2018). The Feed Into Milk system 
(Thomas, 2004) recommends an equation based on 
compound feed enzymatic digestibility (Thomas et al., 
1988). Germany uses prediction equations based on 
an enzymatic method for OMD determination (GfE, 
2009). Denmark established an official prediction 
equation also based on OMD, measured by the EDOM 
method, for the Danish feed-unit system (Weisbjerg 
and Hvelplund, 1993) and chemical composition. 
Thus, chemical composition and OMD were includ-
ed as potential variables in this study. Selection of 
DOMEDOM for OMD representation was based on the 
premise that models should be not only accurate and 

precise but also easy to adopt. The EDOM method 
has been proven accurate (Weisbjerg and Hvelplund, 
1996) and precise (Álvarez et al., 2020). Moreover, 
it is already a familiar method used in commercial 
laboratories in Scandinavia, as it is the official method 
for energy declaration in compound feeds in the static 
Danish feed-unit system (Danish Veterinary and Food 
Administration, 2020) and is used for OMD determi-
nation in some forage types. In this study, inclusion 
of DOMEDOM as a variable agrees with the results 
of Cottyn et al. (1984) and De Boever et al. (1994), 
who found that models that only included chemical 
composition were less accurate than models that also 
included OMD as a variable (Table 3).

Álvarez et al.: DAIRY INDUSTRY TODAY

Figure 4. Net energy for lactation at 20 kg of DMI/d (NEL20) residuals of ingredients predicted by models E and I (predicted − observed; 
MJ/kg of DM; y-axis) against NEL20 reference values (MJ/kg of DM; x-axis): (a) NEL20 reference from 3.05 to 7.29 MJ/kg of DM; (b) NEL20 
reference from 7.30 to 18.84 MJ/kg of DM. AB = alkaline barley; B = barley; Bl = mix of grains; C = citrus pulp; CF = calcium fat; DF = dry 
fat; DG = distillers grains; Ex = ExPro heat-treated rapeseed meal (AAK AB); G = dry Lucerne pellets; Lip = Lipitec (saturated fat; NLM 
Vantinge AS); LSC = line seed cake; M = maize; MGM = maize gluten meal; ML = malt sprouts; O = oat; OH = oat hulls; OK = oat kernel; 
P = peas; PC = palm kernel cake; R = rye; RS = rapeseed (crushed); RSC = rapeseed cake; RSM = rapeseed meal; SB = sugar beet pulp; SBC 
= soybean cake; SBM = soybean meal; SFM = sunflower meal; SP = Soypass (Denofa AS); T = triticale; W = wheat; WB = wheat bran; WM 
= wheat middling. Root mean squared error of prediction (RMSEP) of ingredients for model E = 0.29 MJ/kg of DM; RMSEP of ingredients for 
model I = 0.41 MJ/kg of DM (see models in Table 3).
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Prediction of NEL20

Two years of sample collection from several Scan-
dinavian feed companies revealed a large variation in 
samples’ net energy values (6.06–8.43 MJ/kg of DM 
in compound feeds and 3.05–18.8 MJ/kg of DM in 
ingredient samples), representative of the industry. In-
dustry representation was also reflected in the collected 
samples, as most ingredients used in compound feed 
production, such as cereals, rapeseed by-products, and 
soybean meal were represented by the highest sample 
number in our data set (Table 2). This variation al-
lowed the model development to be as representative of 
the Scandinavian feed industry as possible, supporting 
the adoption of the selected model in practice.

The use of 3 data sets in this study allowed models 
to be created and evaluated using different net energy 
ranges and feed types (compounds, or ingredients, or 
both), providing a more solid base for model evalua-
tion. However, inclusion of ingredients as part of the 
data set is debatable, as the objective is to use the 
model on compound feeds. Moreover, including the in-
gredients could result in dependency in the data set, as 
compound feeds included in the data set are produced 
by the ingredients. Nevertheless, we decided to include 
the evaluation of model E to compare its performance 
with the best fitting model, model I.

The equation error of model I (RSD = 1.99% of mean) 
was lower than the average error of 3.97% of mean 
(average of 2.57 and 5.36% for normal and fiber-rich 
concentrates, respectively) reported by De Boever et al. 
(1994) and 4.32% of mean reported by Giger-Reverdin 
et al. (1994). The German system (GfE, 2009), static 
and empirical, reported an equation error of 2.04% of 
mean (RMSE), similar to model I. The Danish feed-

unit system (Weisbjerg and Hvelplund, 1993), which 
is also static and empirical, showed a higher RSD than 
model I for digestible energy (3.13% of mean).

Better prediction of compound feeds of model I 
(RMSEP = 2.08% of mean) compared with model E 
(RMSEP = 2.20% of mean) could be explained by the 
inclusion of the same compound feeds for model devel-
opment and for this evaluation. On the contrary, model 
E included a larger range, as not only these compound 
feed samples but also the ingredient samples were in-
cluded.

Higher error of prediction for ingredient NEL20 of 
model I was expected, as ingredients were not included 
in the data set for development of this model but were 
included in the development of model E. Prediction er-
ror for model E was lower than the EU 5% limit (3.98% 
of mean) and therefore could potentially be used to 
estimate NEL20 of ingredients. However, to be included 
as a useful model for ingredient prediction, validation 
against an independent set of ingredients should be per-
formed. As the prediction error of ingredients of model 
I was higher than the EU tolerance limit (5.58% of 
mean), model I could potentially not be useful for pre-
diction of NEL20 of ingredients, although an indepen-
dent validation is also recommended. When ingredients 
were not included in the developing data set, as for 
model I, extreme contents of chemical components had 
an effect on the prediction of ingredients. For example, 
oat hulls with high content of NDF, rapeseed with high 
content of CFat, and pure fat supplements showed a 
significant underestimation of NEL20 values by model I 
but not by model E. This could be due to the NEL20 of 
these ingredients being outside the NEL20 range used 
for development of model I. High prediction error of in-
gredients supports the use of detailed characteristics in 
the dynamic model for prediction of ingredients, such 
as indigestible fractions and passage rates, if available. 
These characteristics are available for ingredients in 
most cases.

The additivity results from this study can be com-
pared with the results of Álvarez et al. (2020), although 
they share 49 out of 75 compound feeds. Additivity er-
rors (RMSE) in our study showed errors similar to those 
identified by Álvarez et al. (2020) for DOMEDOM (1.03% 
vs. 1.07% of DM), NDF (1.48% vs. 1.46% of DM), and 
ST (2.04% vs. 1.90% of DM), whereas CPcorr showed 
lower error in our study (0.97% vs. 1.56% of DM) but 
higher error for CFat (0.62% vs. 0.39% of DM). Ad-
ditivity values for ash were only evaluated in our study 
and showed high differences between weighted sum of 
ingredient calculation and ash analyzed directly in the 
compound feed. These differences could be allocated 
to the siliceous proportion of the ash, as dry incinera-
tion could produce a cover over the sample, preventing 

Álvarez et al.: DAIRY INDUSTRY TODAY

Table 4. Chemical composition (% of DM) and NEL20 values (MJ/
kg of DM) of compound feeds collected from 4 feed companies in 
Scandinavia and used as an example of models E and I

Item1 Mean Minimum Maximum SD

No. of samples 30 30 30 30
DOMEDOM 82.5 76.1 87.9 2.62
Ash 7.91 6.20 16.6 1.91
CP 27.6 18.6 44.2 6.93
CPcorr 27.4 18.6 44.2 6.62
CFat 7.53 5.20 12.0 1.62
NDF 23.4 14.9 28.4 3.13
ST 15.2 1.60 31.8 10.6
NEL20 declared 7.64 6.97 9.00 0.443
1DOMEDOM = digestible OM by enzymatic digestibility of OM method; 
CPcorr = CP corrected by urea content in compound feeds; CFat = 
crude fat; ST = starch; NEL20 declared = net energy of lactation at 
20 kg of DMI/d, declared by the feed companies. Calculated by each 
company as weighted sum of NEL20 of ingredients using table and 
measured chemical composition. Proportion of table and measured 
values depended on each company and is unknown for this study.
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complete combustion (Nørgaard Pedersen, 1962; Liu, 
2019). As ingredients samples get analyzed in their 
pure form or mixed in the compound feed, the sili-
ceous proportions of the analyzed samples get modified, 
thus potentially affecting the combustion performance. 
Higher incineration temperatures (600°C) and longer 
incineration time could be used in the reanalysis (Liu, 
2019).

Although additivity correlation for all variables was 
high, some differences in additivity were found (Figure 
1a to f). The effect of the lack of additivity of chemical 
analyses on residual values for NEL20 was expected 
and showed a correlation of −0.73 for model E (Figure 
3a) and −0.69 for model I (Figure 3b). This indicates 
that, although not completely, a large proportion of 
the differences between NEL20 reference and predicted 
values could be attributed to differences between in-
gredients and compound feed analysis. The effect of 
lack of additivity can be explained by the fact that 
NEL20 reference values are calculated with ingredients, 
whereas the NEL20 values predicted by model I are 
based on nutrients analyzed in compound feeds. Thus, 
any difference in chemical components between the 
ingredient weighted sum and compound feeds (lack of 
additivity) will be reflected in NEL20 residuals. Identi-
fication of this error source in the model is meaningful 

because it can explain potential differences between 
declared and predicted NEL20 values. Moreover, these 
differences can be easily detected by performing an ad-
ditivity comparison, as shown in Figure 1a to f. Lack 
of additivity could be caused by analytical errors, 
potential interactions among ingredients, sampling 
errors, or mixing errors when creating the compound 
feed. Another potential error is the methods used for 
analyzing chemical components. For nitrogen analysis, 
NorFor recommended the Dumas or Kjeldahl methods; 
thus, using different methods could potentially result 
in differences. However, these methods have shown 
high correlation (0.99) in grain and other feedstuffs 
(Hansen, 1989; Watson and Galliher, 2001), although 
it was not tested in our study. For the other chemical 
components, NorFor recommends only one method for 
each, and those methods were the ones used in this 
study. Moreover, intrinsic errors of the model will also 
contribute to the differences between NEL20 reference 
and predicted values.

Model Use and Maintenance

Dynamic ration evaluation systems such as NorFor 
can be supplemented by static empirical models. This 
type of static model could serve as a proxy when data 

Álvarez et al.: DAIRY INDUSTRY TODAY

Figure 5. (a) Relationship between net energy for lactation at 20 kg of DMI/d (NEL20) values in 30 compound feed NEL20 values predicted 
by model E (x-axis) and declared by the feed companies (y-axis). (b) Relationship between NEL20 values in 30 compound feed NEL20 values 
predicted by model I (x-axis) and declared by the feed companies (y-axis). Solid lines: x = y; gray lines: European Union declaration limit of 
±5.0%. NEL20 predicted by model E = 7.33 MJ/kg of DM; NEL20 predicted by model I = 7.30 MJ/kg of DM; NEL20 declared = 7.64 MJ/
kg of DM.
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for calculating the reference method is time consuming 
and expensive to measure. It could be used as a cor-
roboration method by feed manufacturers to determine 
whether the final compound feed matches the planned 
energy content. It could also be used at the farm level 
to evaluate a concentrate mix produced on the farm. 
The model would reduce farmer expenses, as analysis 
could be done on the final product instead of on all 
ingredients. Moreover, the model could be used by the 
purchaser to ensure that the purchased compound feeds 
correspond to the declared energy values. The example 
given in Figure 5a and b shows, for both models, that the 
net energy content in 12 out of 30 samples lay outside 
the EU acceptance limit of ±5%. However, that this is 
an example for the model use in practice and we are not 
comparing NEL20 reference values, as no ingredients 
were analyzed. The finding suggests that not only dif-
ferences in additivity or the intrinsic model error could 
be sources of error. Deviation between declared and 
real inclusion of ingredients, direct mixing errors, and 
variation in chemical composition and digestibility of 
ingredients could result in differences between NEL20 
values predicted by these models and declared by the 
companies. In this respect, feed companies could use a 
systematic evaluation method such as this as a useful 
tool for quality control of compound feeds. Moreover, a 
systematic evaluation method could be a useful tool for 
authorities, as it would improve reliability in the feed 
industry. However, these models predict NEL20 based 
on estimates, not in vivo values.

Implementation of the model could encounter chal-
lenges related to specific ingredients, such as urea 
content. In the NorFor system, urea has a net energy 
content of zero; therefore, CP was corrected for the CP 
originating from added urea in compound feed samples 
used to develop the model. If not corrected, CP would 
include the NPN from urea; thus, the regression factor 
for CP in the model would be underestimated. This 
is reflected in model I2, where the coefficient of CP 
is lower when urea was not corrected, with a higher 
prediction error. Nevertheless, the need for urea correc-
tion challenges the objective of this study, which was 
to develop a model that is independent of ingredient 
composition, as the urea content needs to be known for 
it to be corrected. European and US laws require urea 
content on their feed labels; therefore CPcorr, could be 
easily obtainable. An alternative approach is to analyze 
for ammonium-N in the compound feed and use this for 
correction of urea-N. It is important to point out that 
compound feed containing urea will contain higher and 
erroneous predicted values if not corrected. Therefore, 
the use of models on samples with urea would require 
further analyses of the urea or ammonium content.

For developing a static model, it was central for this 
study to detect variables that were independent from 
the resource-demanding kinetic feed variables, such as 
nutrient degradation rates and indigestible fractions. 
However, this also challenges the models because the 
rate of degradation and digestibility of ingredients may 
change in the future due to new varieties, feedstuffs, 
studies, or technology. Such changes would modify the 
reference values but would not affect the parameters 
used in the empirical model; therefore, the changes 
would not be reflected in the predicted values.

Maintenance of the model’s predictive performance 
should be done frequently. Model maintenance can be 
accomplished by collecting and analyzing representative 
compound feeds and their corresponding ingredients 
to calculate the reference value to be used for model 
recalibration. Recalibration of the static model would 
be required whenever the reference dynamic model is 
changed and updated.

CONCLUSIONS

This study developed a static empirical model for the 
prediction of net energy content of compound feeds in 
NorFor by using OMD measured by EDOM and chemi-
cal components measured directly in compound feeds. 
The proposed best model, model I, included CFat, 
NDF, DOMEDOM, and CPcorr as independent variables. 
The model was developed using 75 compound feed 
samples as a data set, representative of the compound 
feeds used in the feed industry in Scandinavia today. 
The model could allow estimation of net energy concen-
tration of compound feed samples when input data for 
the dynamic model are lacking. However, independent 
evaluation is required for the proposed method to be 
adopted as a valuable tool in practice.
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